正弦定理说课稿
正弦定理说课稿
正弦定理说课稿【正弦定理说课稿】一、引入正弦定理是高中数学中的重要概念之一,它能够帮助我们解决在三角形中已知某些边长和夹角的情况下,求解其他未知边长或夹角的问题。
本次说课将围绕正弦定理的定义、推导以及应用展开,帮助学生深入理解正弦定理的原理和应用方法。
二、概念讲解1. 正弦定理的定义正弦定理是指在任意三角形ABC中,三条边a、b、c与其对应的角A、B、C 之间满足以下关系:a/sinA = b/sinB = c/sinC2. 推导过程为了帮助学生理解正弦定理的推导过程,我们可以通过绘制一个任意三角形ABC,并在三边上标注对应的边长a、b、c和夹角A、B、C,然后利用三角形的面积公式S = 1/2 * a * b * sinC,结合三角形ABC的高度h,可以得到以下推导过程:a/sinA = b/sinB = c/sinC = 2R (其中R为三角形外接圆的半径)三、应用举例1. 已知两边和夹角,求第三边例如,已知三角形ABC的两边长分别为a = 5cm,b = 7cm,夹角A = 60°,我们可以利用正弦定理求解第三边c:c/sinC = a/sinAc/sinC = 5/sin60°c/sinC = 5/(√3/2)c/sinC = 10/√3c ≈ 10/√3 * sinCc ≈ 10/√3 * sin(180° - 60° - C)c ≈ 10/√3 * sin(120° - C)2. 已知两边和夹角,求其他夹角例如,已知三角形ABC的两边长分别为a = 6cm,b = 8cm,夹角A = 45°,我们可以利用正弦定理求解夹角B和夹角C:a/sinA = b/sinB6/sin45° = 8/sinB6/√2 = 8/sinBsinB = 8/6 * √2sinB ≈ 0.9428B ≈ arcsin(0.9428)3. 已知三角形的三边长,求角度例如,已知三角形ABC的三边长分别为a = 5cm,b = 7cm,c = 8cm,我们可以利用正弦定理求解夹角A、夹角B和夹角C:a/sinA = b/sinB = c/sinC5/sinA = 7/sinB = 8/sinCsinA = 5/7 * sinBsinC = 8/7 * sinBsinA + sinB + sinC = 5/7 * sinB + sinB + 8/7 * sinB = 1sinB = 7/20B ≈ arcsin(7/20)四、教学方法与策略1. 概念讲解结合实例:通过引入正弦定理的定义,结合具体的应用实例,帮助学生理解定理的意义和应用方法。
《正弦定理》说课讲稿
《正弦定理》说课讲稿唐山市丰南区第二中学李立春一、学情分析:(一)教材分析:本节知识是人教版必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角关系、判定三角形的全等有密切联系,在日常生活和工农业生产中也时常有解三角形的问题,而且解三角形问题在高考当中是必考内容,因此,正弦定理和余弦定理的知识非常重要。
根据上述分析,故确定本节:教学重点:1、正弦定理的证明、内容;2、定理的基本应用;教学难点:1、正弦定理的探索及证明;2、已知两边和其中一边的对角判断解的个数问题。
(二)学生情况分析:学生在此之前已经学习了函数、三角函数有关知识,初步掌握了利用函数研究问题的重要方法,并且在初中学习三角形知识及勾股定理的基础上去探索正弦定理做好了铺垫。
经过一个学期的高中学习,学生已经初步能够从特殊的情况中发现一些规律,从而推广为一般情况。
关键是学生在这个方面的应用意识还比较淡漠,所以本节课要做好这种引导工作,学生是比较容易理解的。
这也是本节课要突出的“从特殊到一般”的课堂设计的原因,能够使学生充分地参与进来,体会到成功的喜悦。
二、教学目标:根据上述学情分析,制定如下教学目标:认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理,简单运用正弦定理与三角形的内角和定理解三角形的两类问题。
能力目标:引导学生通过观察、推导、比较,由特殊到一般归纳出正弦定理,培养学生的创新意识、观察能力与逻辑思维能力,体会利用所学知识向量作为数形结合的工具,将几何问题转化为代数问题。
情感目标:培养学生勇于探索、善于研究的精神,挖掘其非智力因素资源,培养其良好的数学学习品质。
调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。
三、教学方法:(一)教法:1、遵循“数学学习的本质是主体(学生)在头脑中建构和发展数学认知结构的过程,是主体的一种再创造行为”的理论,遵循以学生为主体,教师为主导的指导思想,采用探究式教学法,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。
高中正弦定理说课稿(共7篇)
篇一:高中正弦定理说课稿1.1.1正弦定理大家好,今天我向大家说课的题目是《正弦定理》。
下面我将从以下几个方面介绍我这堂课的教学设计。
一教材分析本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。
因此,正弦定理和余弦定理的知识非常重要。
根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:认知目标:通过创设问题情境,引导学生发现正弦定理的内容,掌握正弦定理的内容及其证明方法,使学生会运用正弦定理解决两类基本的解三角形问题。
能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。
情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,激发学生学习的兴趣。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:已知两边和其中一边的对角解三角形时判断解的个数。
二教法根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。
三学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。
让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。
高中数学《正弦定理》教案4篇
高中数学《正弦定理》教案4篇高中数学《正弦定理》教案1教材地位与作用:本节学问是必修五第一章《解三角形》的第一节内容,与学校学习的三角形的边和角的基本关系有亲密的联系与判定三角形的全等也有亲密联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。
因此,正弦定理的学问特别重要。
学情分析:作为高一同学,同学们已经把握了基本的三角函数,特殊是在一些特别三角形中,而同学们在解决任意三角形的边与角问题,就比较困难。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探究及证明,已知两边和其中一边的对角解三角形时推断解的个数。
(依据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)教学目标分析:学问目标:理解并把握正弦定理的证明,运用正弦定理解三角形。
力量目标:探究正弦定理的证明过程,用归纳法得出结论。
情感目标:通过推导得出正弦定理,让同学感受数学公式的干净对称美和数学的实际应用价值。
教法学法分析:教法:采纳探究式课堂教学模式,在老师的启发引导下,以同学自主和合作沟通为前提,以“正弦定理的发觉”为基本探究内容,以生活实际为参照对象,让同学的思维由问题开头,到猜测的得出,猜测的探究,定理的推导,并逐步得到深化。
学法:指导同学把握“观看——猜测——证明——应用”这一思维方法,实行个人、小组、集体等多种解难释疑的尝试活动,将自己所学学问应用于对任意三角形性质的探究。
让同学在问题情景中学习,观看,类比,思索,探究,动手尝试相结合,增添同学由特别到一般的数学思维力量,锲而不舍的求学精神。
教学过程(一)创设情境,布疑激趣“爱好是最好的老师”,假如一节课有个好的开头,那就意味着胜利了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠a=47°,∠b=53°,ab 长为1m,想修好这个零件,但他不知道ac和bc的长度是多少好去截料,你能帮师傅这个忙吗?”激发同学关心别人的热忱和学习的爱好,从而进入今日的学习课题。
《正弦定理》说课稿
《正弦定理》说课稿富县高级中学王晓君尊敬的各位评委老师:大家好!今天我说课的题目是《正弦定理》,我将从以下几个方面进行我的说课。
一、说教材《正弦定理》是高中数学北师大版必修5第二章第一节的内容。
在此之前学生已经学习了三角函数、平面向量、三角恒等变换等知识,这为过渡到本章的学习做好了铺垫作用。
正弦定理是三角函数知识与平面知识在三角形中的交会应用。
在物理学等其它学科、工业生产以及日常生活等常常涉及解三角形的问题。
正弦定理教学时数的安排为2课时,其中第1课时为正弦定理的推导、正弦定理以及利用正弦定理来解已知两角一边的三角形;利用正弦定理来解已知两边以及其中一边的对角的三角形和其它简单应用。
二、说教学目标根据本教材的结构和内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,我制定如下教学目标:1、知识与技能目标通过本节课的学习,让学生能快速写出正弦定理的表达式,能利用正弦定理来解决已知两角一边的三角形问题以及相关的实际问题。
2、能力目标通过对正弦定理的推导,培养学生发现问题、探索规律的思维能力;在利用正弦定理来解已知两角及一边的三角形的过程中,逐步培养应用数学知识来解决社会实际问题的能力。
3、情感、态度与价值观目标通过学生参与、思考、交流,体验正弦定理的发现过程,逐步培养学生的探索精神和创新意识;同时在运用正弦定理的过程中,逐步培养学生实事求是、扎实严谨的科学态度。
三、说教材重难点我通过解读和分析教材,确定了以下教学重难点:教学重点:通过新课程标准的解读,教材内容的解析,我认为正弦定理的推导有利于培养学生发散思维,学生能体验数学的探索过程,能加深对数形结合解决数学问题的理解,所以正弦定理的证明是本节课的重点之一;同时,数学知识的学习最终是为了应用,所以正弦定理以及正弦定理的应用也是本节课的重点之一。
教学难点:新定理的发现需要一定的创新意识和发散思维,这正是多数学生所缺乏的,但是社会需要的是创新人才,因此,正弦定理的猜想发现是本节课的难点。
正弦定理说课稿
今天我说课的题目是“正弦定理”,本节课选自人教A版必修5第一章第一节的内容。
下面我将从教材分析、学情分析、教学目标分析、教学重难点及教学过程等几个方面进行阐述。
一、教材分析《正弦定理》这节课是在学生学习了三角函数、平面向量知识之后的进一步探索。
正弦定理是三角函数知识与平面知识在三角形中的交会应用。
为以后学习《余弦定理》提供了方法上的模式,为后续学习解三角形提供了理论依据,是解决实际生活中三角形问题的有力工具之一,使学生进一步了解数学在实际中的应用。
正弦定理的推导过程运用了从特殊到一般、分类讨论的数学思想,这些思想将贯穿于整个高中数学的学习过程。
正弦定理教学时数的安排为2课时,本节课的内容是定理的推导及定理的简单应用。
二、学情分析本节课授课的对象是高一学生。
在此之前学生已经学习了三角函数和平面向量的知识,为本节课的学习奠定了基础。
学生在初中时已经学习过任意三角形中大边对大角,小边对小角的边角关系这为本节课学习做了铺垫。
在之前的学习中学生已经有了一定的探究、分析、解救问题的能力,有利于本节课的学习。
三、教学目标、重点难点根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,我制定如下教学目标:知识与技能:理解并掌握正弦定理的证明,运用正弦定理解三角形过程与方法:提高应用所学知识解决实际问题的意识和能力;学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,体会数形结合的思想方法情感态度价值观:通过推导得出正弦定理,感受数学公式的简洁美和对称美,激发学生热爱科学勇于探索的精神,培养学生勇于创新,多方位审视问题的创造技巧四、教学重、难点基于以上教学目标分析我认为本节课的教学重点是正弦定理的内容,正弦定理的证明及基本应用,教学难点是正弦定理的探索证明及在实际问题和解三角形中的应用。
三、教法与学法根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,采用探究式课堂教学模式,指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取自主式、合作式、探讨式的学习方法。
《正弦定理》说课稿
《正弦定理》说课稿《正弦定理》说课稿作为一名人民教师,通常需要用到说课稿来辅助教学,说课稿是进行说课准备的文稿,有着至关重要的作用。
优秀的说课稿都具备一些什么特点呢?以下是小编帮大家整理的《正弦定理》说课稿,希望能够帮助到大家。
《正弦定理》说课稿1一、说教材正弦定理是高中新教材人教A版必修五第一章1.1.1的内容,是学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形的边长与角度之间的数量关系。
提出两个实际问题,并指出解决问题的关键在于研究三角形的边、角关系,从而引导学生产生探索愿望,激发学生的学习兴趣。
在教学过程中,要引导学生自主探究三角形的边角关系,先由特殊情况发现结论,再对一般三角形进行推导,并引导学生分析正弦定理可以解决两类关于解三角形的问题: (1)已知两角和一边,解三角形; (2)已知两边和其中一边的对角,解三角形。
二、说学情本节授课对象是高二学生,是在学生学习了必修四基本初等函数和三角恒等变换的基础上,由实际问题出发探索研究三角形边角关系,得出正弦定理。
高二学生对生产生活问题比较感兴趣,由实际问题出发可以激发学生的学习兴趣,使学生产生探索研究的愿望。
三、说教学目标能准确写出正弦定理的符号表达式,能够运用正弦定理理解三角形、初步解决某些测量和几何计算有关的简单的实际问题。
通过对定理的证明和应用,锻炼独立解决问题的能力和体会分类讨论和数形结合的思想方法。
通过对三角形边角关系的探究学习,经历数学探究活动的过程,体会由特殊到一般再由一般到特殊的认识事物规律,培养探索精神和创新意识。
四、教学重难点正弦定理及其推导。
正弦定理的推导与正弦定理的运用。
五、说教学方法运用“发现问题——自主探究——尝试指导——合作交流”的教学方式,整堂课围绕“一切为了学生发展”的教学原则,突出:师生互动、共同探索,教师指导、循序渐进。
新课引入——提出问题,激发学生的求知欲。
掌握正弦定理的推导证明——分类讨论,数形结合动脑思考,由一般到特殊,组织学生自主探索,获得正弦定理及证明过程。
《正弦定理、余弦定理》说课稿
正弦定理、余弦定理一、导入1. 学习目标本文档将介绍数学中的重要定理之一:正弦定理和余弦定理。
通过本文档的学习,你将能够理解并应用这两个定理解决相关的几何问题。
2. 预备知识在学习正弦定理和余弦定理之前,我们需要掌握以下知识:•三角函数的概念和性质;•直角三角形的性质和应用;•角度的概念和度量方法;•三角形的周长和面积计算方法。
二、正弦定理1. 定理表述正弦定理是指在一个三角形中,三条边的长度和三个对应的角的正弦之间存在一定的关系。
它的数学表述如下:a/sin(A) = b/sin(B) = c/sin(C)其中,a、b、c分别表示三角形的三条边的长度,A、B、C表示三个对应的角。
2. 定理证明要理解正弦定理的证明,我们需要先了解正弦函数的性质。
正弦函数的定义是三角形内任意一角的对边与斜边的比值。
利用三角形的面积公式,我们可以得到三角形面积与正弦函数之间的关系。
根据三角形面积公式:面积 = 1/2 * 底边长度 * 相应高将底边长度取为三角形的边a,相应高取为b * sin(C),可以得到三角形的面积为:面积 = 1/2 * a * b * sin(C)同理,三角形的面积也可以表示为:面积 = 1/2 * b * c * sin(A)由于三角形的面积是不变的,所以上述两个式子等于面积,即:1/2 * a * b * sin(C) = 1/2 * b * c * sin(A)化简后即可得到正弦定理。
3. 定理应用正弦定理在解决各类涉及三角形边长和角度的问题时非常有用。
根据正弦定理,我们可以通过已知两边和他们夹角的大小,求解未知边的长度。
同时,我们也可以根据已知两边和一边夹角的大小,求解未知夹角的数值。
三、余弦定理1. 定理表述余弦定理是指在一个三角形中,三条边的长度和一个角的余弦之间存在一定的关系。
它的数学表述如下:c^2 = a^2 + b^2 - 2 * a * b * cos(C)其中,a、b、c表示三角形的三条边的长度,C表示a和b之间的夹角。
《正弦定理》的说课稿优秀5篇
《正弦定理》的说课稿优秀5篇作为一名默默奉献的教育工作者,往往需要进行说课稿编写工作,借助说课稿可以让教学工作更科学化。
怎样写说课稿才更能起到其作用呢?旧书不厌百回读,熟读精思子自知,本文是美丽的编辑给大伙儿找到的《正弦定理》的说课稿优秀5篇,希望对大家有所帮助。
《正弦定理》的说课稿篇一大家好,今天我说课的题目是《正弦定理》。
新课标指出:高中教育属于基础教育,具有基础性,且具有多样性与选择性,使不同的学生在数学上得到不同的发展。
今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材教师对教材的掌握程度,是评判一位教师是否能上好一堂课的基本标准。
在正式内容开始之前,我要先谈一谈对教材的理解。
《正弦定理》是人教A版必修5一章一节的内容,其主要内容是正弦定理及其应用。
此前学习了三角函数的相关知识,且积累很多的证明、推导的经验,为本节课的学习都起到了一定的铺垫作用。
本节课的学习,也为以后学习和解决生活中的一些问题提供帮助。
因此本节的学习有着特别重要的地位。
二、说学情合理把握学情是上好一堂课的基础,下面我来谈谈学生的实际情况。
这一阶段的学生已经具备了一定的分析问题、解决问题的能力,且在知识方面也有了一定的积累。
所以,教学中,利用学生的特点以及原有经验进行教学,增强学生的课堂参与度。
三、说教学目标根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:(一)知识与技能能证明正弦定理,并能利用正弦定理解决实际问题。
(二)过程与方法通过正弦定理的'推导过程,提高分析问题、解决问题的能力。
(三)情感、态度与价值观在正弦定理的推导过程中,感受数学的严谨,提升对数学的兴趣。
四、说教学重难点我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。
而教学重点的确立与我本节课的内容肯定是密不可分的。
那么根据授课内容可以确定本节课的教学重点为:正弦定理。
难点:正弦定理的证明。
正弦定理说课稿
正弦定理说课稿一、教材分析●课题§1.1.1正弦定理●本节课的主要教学内容从学生熟悉的直角三角形出发引入正弦定理,并采用从特殊到一般以及分类讨论思想,给出定理的证明;在获得定理后,通过例题,归纳出用正弦定理可以解决“已知两边和它们的夹角解三角形”、“已知三角形的三边解三角形”等问题。
●本节内容在教材体系中的地位和作用本节内容安排在第一章解三角形的第一节,从定量的角度研究三角形的性质,揭示了关于一般三角形中的重要边角关系,从而引导学生产生探索愿望,激发学生学习的兴趣,解决一些简单的三角形度量问题,以及一些与测量和几何计算有关的实际问题。
●本节内容与教材各部分内容的前后联系本节内容是初中解直角三角形内容的延伸,引导学生回忆任意三角形中有大边对大角,小边对小角的边角关系,引导学生思考是否能得到这个边、角关系准确量化表示的问题。
由于涉及边角之间的数量关系,就比较自然地引导到三角函数;与平面几何中对三角形的定性研究存在内在联系。
二、教学目标在创设的问题情境中,获得必要的数学基础知识和基本技能,理解基本的正弦定理概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及正弦定理在后续学习中的作用。
掌握正弦定理的推导过程;会运用正弦定理求解三角形;会将正弦定理运用到实际问题中。
发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断;通过不同形式的自主学习、探究活动,体验数学发现和创造的历程,提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度;具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
三、教学重点与难点●教学重点正弦定理的证明及应用●教学难点1.解三角形在实际问题中的应用;2.已知“边边角”求解三角形。
四、教法与学法分析●教法与学法运用提出问题引发学生思考的教学模式,师生之间相互交流、探讨,进而掌握正弦定理的证明及应用。
《正弦定理》教案(精选12篇)
《正弦定理》教案(精选12篇)《正弦定理》教案篇1一、教学内容分析本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是学校“解直角三角形”内容的直接延拓,也是坐标法等学问在三角形中的详细运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。
因此,做好“正弦定理”的教学,不仅能复习巩固旧学问,使同学把握新的有用的学问,体会联系、进展等辩证观点,同学通过对定理证明的探究和争论,体验到数学发觉和制造的历程,进而培育同学提出问题、解决问题等讨论性学习的力量。
二、学情分析对高一的同学来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等学问,具有肯定观看分析、解决问题的力量;但另一方面对新旧学问间的联系、理解、应用往往会消失思维障碍,思维敏捷性、深刻性受到制约。
依据以上特点,老师恰当引导,提高同学学习主动性,留意前后学问间的联系,引导同学直接参加分析问题、解决问题。
三、设计思想:培育同学学会学习、学会探究是全面进展同学力量的重要方面,也是高中新课程改革的主要任务。
如何培育同学学会学习、学会探究呢?建构主义认为:“学问不是被动汲取的,而是由认知主体主动建构的。
”这个观点从教学的角度来理解就是:学问不仅是通过老师传授得到的,更重要的是同学在肯定的情境中,运用已有的学习阅历,并通过与他人(在老师指导和学习伙伴的关心下)协作,主动建构而获得的,建构主义教学模式强调以同学为中心,视同学为认知的主体,老师只对同学的意义建构起关心和促进作用。
本节“正弦定理”的教学,将遵循这个原则而进行设计。
四、教学目标:1、在创设的问题情境中,让同学从已有的几何学问和处理几何图形的常用方法动身,探究和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性。
2024年《正弦定理》说课讲稿范本(三篇)
2024年《正弦定理》说课讲稿范本标题:《正弦定理》说课讲稿开场白:各位老师,大家好!我是XX,今天我将为大家带来一堂有关2024年课程改革内容的数学说课。
本次说课的主题是《正弦定理》。
一、教学目标:1. 知识与技能:(1)掌握正弦定理的定义和公式;(2)能够灵活运用正弦定理解决三角形的边长和角度问题;(3)能够通过解决具体问题培养学生的数学建模能力;(4)培养学生合作学习和解决问题的能力。
2. 过程与方法:(1)激发学生的学习兴趣和主动性;(2)通过活动和实例,引导学生自主发现和构建知识;(3)培养学生的探究和合作学习意识;(4)通过解决具体问题锻炼学生的数学应用能力。
二、教学重难点:1. 教学重点:(1)正弦定理的定义和公式;(2)正弦定理的应用。
2. 教学难点:(1)利用正弦定理解决实际问题;(2)能够合理选择角度和边长进行计算。
三、教学过程:1. 导入(5分钟)利用一道引人入胜的数学问题,例如“假设你是一名勇敢的登山者,你和你的伙伴在山上遇到了一个河谷,为了下山,你们需要测量这个河谷的宽度,但是河谷两边太陡,无法直接测量,你打算如何测量?”2. 学习目标与导入(5分钟)通过引入问题,引导学生认识到正弦定理对解决这类问题的重要性,并明确本课的学习目标。
3. 概念讲解与引导(15分钟)(1)通过对实际问题的讨论,引导学生自主发现正弦定理的定义和公式。
(2)对正弦定理的定义进行精确定义,并给出相关的示意图和公式。
4. 案例探究(20分钟)(1)通过练习的形式,让学生运用正弦定理解决具体问题。
(2)组织学生合作学习,共同解决一些实际问题。
5. 锻炼与拓展(10分钟)通过巩固练习和一些拓展问题,进一步加深学生对正弦定理的理解和运用。
6. 总结与归纳(5分钟)对本节课的学习内容进行总结,并引导学生归纳出正弦定理的应用要点和注意事项。
四、板书设计:正弦定理三角形ABC中,a/sinA=b/sinB=c/sinC性质:① 三边比例相等的三角形是相似三角形② 利用正弦定理可以解决无解和多解问题五、课堂小结:通过本堂课的学习,我们了解了正弦定理的定义和公式,掌握了正弦定理在求解三角形边长和角度的应用方法。
关于正弦定理的说课稿
关于正弦定理的说课稿正弦定理是数学中非常重要的定理之一,它的重要性体现在几何、三角形,以及在很多抽象的数学理论中都有着重要的地位。
关于正弦定理的说课,主要包括正弦定理的概念、几何意义以及利用正弦定理求解三角形等内容。
一、正弦定理的概念正弦定理是古希腊数学家和几何学家勒瓦洛克在《几何原本》中提出的定理,它可以描述一个以直角锐角三角形中,两个锐角夹角的正弦值与另外一边的边比例关系。
例如在一个直角三角形ABC中,角A的正弦值和边BC的比现为:sin A/BC = sin B/AC = sin C/AB二、正弦定理的几何意义正弦定理不仅可以描述三角形锐角夹角的正弦值与边比例之间的关系,而且它还具有某种特殊的几何意义。
例如,假设有一个等腰直角三角形ABC,其两个相等的边长为a,其对角线的长度为b,那么正弦定理可以表示为:2a2 = b2这表明,在一个等腰直角三角形中,两个等边的乘积总是等于斜边的平方,即正弦定理的几何意义就是正弦定理的定义本身可以得到证明。
三、利用正弦定理求解三角形利用正弦定理可以解决三角形的许多问题,例如求解一个已知三个边长a、b、c的任意三角形的三个角,则可以利用正弦定理,代入边长数据,然后求解三角形中的三个角:A = arcsin(b*sin(C)/c)B = arcsin(c*sin(A)/a)C = arcsin(a*sin(B)/b)四、正弦定理在抽象数学理论中的应用正弦定理不仅仅可以用于解决三角形问题,它也可以用于解决更抽象数学理论的问题。
比如,正弦定理可以被应用于长度的计算、直角三角形的面积计算以及锐角三角形的周长计算等一系列数学问题中。
总结正弦定理是数学中一个重要的定理,它的定义及几何意义可以用来解决三角形的许多问题,而且它还可以被应用于抽象数学理论,解决更复杂的数学问题。
因此,正弦定理对学习和研究三角形有着重要的意义,同时也作为其他数学理论的基础。
高中数学说课稿《正弦定理》优秀9篇
高中数学说课稿《正弦定理》优秀9篇作为一名教学工作者,就难以避免地要准备说课稿,说课稿有助于顺利而有效地开展教学活动。
那么应当如何写说课稿呢?读书之法,在循序而渐进,熟读而精思,以下是小编帮大伙儿整理的高中数学说课稿《正弦定理》优秀9篇,欢迎借鉴,希望对大家有所帮助。
余弦定理说课稿篇一尊敬的评委老师们:你们好,我今天说课的题目是余弦定理。
(说教材)"余弦定理"是人教A版数学第必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中"勾股定理"内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。
本节课是"正弦定理、余弦定理"教学的第二节课,其主要任务是引入并证明余弦定理,在课型上属于"定理教学课".这堂课并不是将余弦定理全盘呈现给学生,而是从实际问题的求解困难,造成学生认知上的冲突,从而激发学生探索新知识的强烈欲望。
另外,本节与教材其他课文的共性是都要掌握定理内容及证明方法,会解决相关的问题。
下面说一说我的教学思路。
(教学目的)通过对教材的分析钻研制定了教学目的:1.掌握余弦定理的内容及证明余弦定理的向量方法,会运用余弦定理解决两类基本的解三角形问题。
2.培养学生在方程思想指导下解三角形问题的运算能力。
3.培养学生合情推理探索数学规律的思维能力。
4.通过三角函数、余弦定理、向量的数量积等知识的'联系,来理解事物普遍联系与辩证统一。
(教学重点)余弦定理揭示了任意三角形边角之间的客观规律,是解三角形的重要工具。
余弦定理是初中学习的勾股定理的拓广,也是前阶段学习的三角函数知识与平面向量知识在三角形中的交汇应用。
本节课的重点内容是余弦定理的发现和证明过程及基本应用,其中发现余弦定理的过程是检验和训练学生思维品质的重要素材。
资料大全-正弦定理说课稿 精品
正弦定理说课稿正弦定理说课稿一尊敬的各位专家、评委大家好!我是**县**中学数学教师,我今天说课的题目是人教版普通高中课程标准实验教科书数学必修5第一章第一节的第一课时《正弦定理》,依据新课程标准对教材的要求,结合我对教材的理解,我将从以下几个方面说明我的设计和构思。
一、教材分析"解三角形"既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。
这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。
从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。
而本课"正弦定理",作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理重要的解三角形工具,通过这一部分内容的学习,让学生从"实际问题"抽象成"数学问题"的建模过程中,体验"观察——猜想——证明——应用"这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。
同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和"用数学"的意识。
二、学情分析我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对"一些重要的数学思想和数学方法"的应用意识和技能还不高。
但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。
三、教学目标1、知识和技能在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。
过程与方法学生参与解题方案的探索,尝试应用观察——猜想——证明——。
正弦定理说课稿
正弦定理说课稿(2)
正弦定理说课稿
[设计说明]例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:《解三角形的进一步讨论》
(五)小结归纳,深化拓展
1、正弦定理
2、正弦定理的证明方法
3、正弦定理的应用
4、涉及的数学思想和方法。
[设计说明] 师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。
(六)布置作业,巩固提高
1、教材10页习题1.1A组第1题。
2、学有余力的同学探究10页B组第1题,体会正弦定理的其他证明方法。
证明:设三角形外接圆的半径是R,则a=2RsinA,b=2RsinB, c=2RsinC
[设计说明] 对不同水平的学生设计不同梯度的作业,尊重学生的个性差异,有利于因材施教的教学原则的贯彻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦定理说课稿
教材地位与作用:
本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。
因此,正弦定理的知识非常重要。
学情分析:
作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
(根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)教学目标分析:
知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。
能力目标:探索正弦定理的证明过程,用归纳法得出结论。
情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。
教法学法分析:
教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。
学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。
让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。
教学过程(一)创设情境,布疑激趣
“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC 和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。
(二)探寻特例,提出猜想
1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。
2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。
3.让学生总结实验结果,得出猜想:在三角形中,角与所对的边满足关系
这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。
(三)逻辑推理,证明猜想
1.强调将猜想转化为定理,需要严格的理论证明。
2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。
3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。
4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明(四)归纳总结,简单应用1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。
2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。
3.运用正弦定理求解本节课引入的三角形零件边长的问题。
自己参与实际问题的解决,能激发学生知识后用于实际的价值观。
(五)讲解例题,巩固定理
1.例1。
在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。
2.例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2较难,使学生明确,利用正弦定理求角有两种可能。
要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。
完了把时间交给学生。
(六)课堂练习,提高巩固
1.在△ABC中,已知下列条件,解三角形.
(1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm 2. 在△ABC中,已知下列条件,解三角形.
(1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°学生板演,老师巡视,及时发现问题,并解答。
(七)小结反思,提高认识
通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会? 1.用向量证明了正弦定理,体现了数形结合的数学思想。
2.它表述了三
角形的边与对角的正弦值的关系。
3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。
(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。
我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。
在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。
)(八)任务后延,自主探究
如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。
布置作业,预习下一节内容。