2014年广西北海市中考数学试题精版

合集下载

2014中考数学模拟试题含答案(精选5套)

2014中考数学模拟试题含答案(精选5套)

2014年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图) (第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400 = 8;(第26题图)17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2014中考数学模拟试题含答案(精选5套)

2014中考数学模拟试题含答案(精选5套)

2014年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( ) A. 0到1之间 B. 1到2之间 C. 2到3之间 D.3至4之间5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为( ) A. 3 B. 23 C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第11题图)(第12题图)(第7题图)动过程中,△MPQ 的面积大小变化情况是( ) A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′,则 点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分) (2)化简:(1 - n m n +)÷22nm m -.(1)计算:4 cos45°-8+(π-3) +(-1)3;20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第17题图)(第18题图)(第21题图)22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°. 小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF = 1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(第23题图)24. (本小题满分8分)如图,PA,PB分别与⊙O相切于点A,B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM = AN;(2)若⊙O的半径R = 3,PA = 9,求OM的长.(第24题图)25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.(第26题图)2013年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

广西桂林市2014年中考数学试卷(word解析版)

广西桂林市2014年中考数学试卷(word解析版)

广西桂林市2014年中考数学试卷(满分120分,考试时间120分钟)一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1. 2014的倒数是( ) A .12014 B.-12014C.|2014|D.-2014考点:倒数.分析:根据倒数的定义求解. 解答:解:2014的倒数是.故选:A .点评:本题主要考查了倒数的定义,解题的关键是熟记定义. 2.如图。

已知AB ∥CD ,∠1=56°,则∠2的度数是( ) A.34° B.56° C.65° D.124°考点:平行线的性质. 分析:根据两直线平行,同位角相等解答即可. 解答:解:∵AB ∥CD ,∠1=56°, ∴∠2=∠1=56°. 故选:B .点评:本题考查了平行线的性质,熟记性质是解题的关键. 3.下列各式中,与2a 是同类项的是( ) A .3a B .2ab C .-3a 2 D .a 2b 考点:同类项.分析:本题是同类项的定义的考查,同类项是所含的字母相同,并且相同字母的指数也相同的项.中的字母是a ,a 的指数为1,解答:解:2a 中的字母是a ,a 的指数为1,A 、3a 中的字母是a ,a 的指数为1,故A 选项正确;B 、2ab 中字母为a 、b ,故B 选项错误;C 、中字母a 的指数为2,故C 选项错误;D 、字母与字母指数都不同,故D 选项错误, 故选:A .点评:考查了同类项的定义.同类项一定要记住两个相同:同类项是所含的字母相同,并且相同字母的指数也相同.4.在下面的四个几何体中,同一几何体的主视图与俯视图相同的是( )DA B C考点:简单几何体的三视图.21A B C D 第2题图分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形.解答:解:A、圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同,故A选项错误;B、圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同,故B选项错误;C、三棱柱主视图、俯视图分别是长方形,三角形,主视图与俯视图不相同,故C选项错误;D、球主视图、俯视图都是圆,主视图与俯视图相同,故D选项正确.故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有看到的棱都应表现在三视图中5.在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点坐标为()A.(3,2)B.(2,-3)C.(-2,3)D.(-2,-3)考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.解答:解:∵点A(2,3),∴点A关于x轴的对称点的坐标为:(2,﹣3).故选:B.点评:此题主要考查了关于x轴对称点的性质,正确记忆关于坐标轴对称点的性质是解题关键.6.一次函数y=kx+b(k≠0)的图像如图所示,则下列结论正确的是()A.k=2 B.k=3 C.b=2 D.b=3考点:一次函数图象上点的坐标特征.分析:直接把点(2,0),(0,3)代入一次函数y=kx+b(k≠0),求出k,b的值即可.解答:解:∵由函数图象可知函数图象过点(2,0),(0,3),∴,解得.故选:D.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.下列命题中,是真命题的是()A.等腰三角形都相似B.等边三角形都相似C.锐角三角形都相似D.直角三角形都相似考点:命题与定理;相似三角形的判定.分析:利用相似三角形的判定定理对每个选项逐一判断后即可确定正确的选项.解答:解:A、等腰三角形不一定相似,是假命题,故A选项错误;B、等边三角形都相似,是真命题,故B选项正确;C、锐角三角形不一定都相似,是假命题,故C选项错误;D、直角三角形不一定都相似,是假命题,故D选项错误.故选:B.点评:本题考查了命题与定理及相似三角形的判定的知识,解题的关键是了解相似三角形的判定定理,难度不大.8.两圆的半径分别为2和3,圆心距为7,则这两圆的位置关系为()A.外离B.外切C.相交D.内切考点:圆与圆的位置关系.分析:本题直接告诉了两圆的半径及圆心距,根据数量关系与两圆位置关系的对应情况便可直接得出答案.解答:解:∵两圆的半径分别为2和3,圆心距为7,又∵7>3+2,∴两圆的位置关系是:外离.故选:A.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系是解此题的关键.9.下列图形中,既是轴对称图形又是中心对称图形的是()考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形不是中心对称图形,是轴对称图形,故A选项错误;B、此图形是中心对称图形,不是轴对称图形,故B选项错误;C、此图形是中心对称图形,也是轴对称图形,故C选项正确;D、此图形不是中心对称图形,是轴对称图形,故D选项错误.故选:C.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.10.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球。

北海市中等学校招生暨初中毕业统一考试试卷

北海市中等学校招生暨初中毕业统一考试试卷

2014年北海市中等学校招生暨初中毕业统一考试试卷
化学
(考试时间:90分钟,满分:100分)
可能用到的相对原子质量:H-1 C-12 0-16 Cl-35.5 K-39 Ba-137
第1卷(选择题,共40分)
一、选择题(本大题有20小题,每小题2分,共40分;每小题只有一个选项符合题意)1.下列属于化学变化的是
A.海水晒盐B.气球破裂C.纸张燃烧D.西瓜榨汁
2.下列图标中,属于我国“国家节水标志”的是
3.镁元素的元素符号书写正确的是
A.mg B.Mg C.MG D. mG
4.下列物质在氧气中燃烧,有刺激性气味气体产生的是
A.红磷B.细铁丝C.木炭D.硫粉
5.下列图示实验操作中正确的是
6.人们常说“钙奶补钙”、“碘盐补碘”,这里的“钙”、“碘”指的是
A.原子B.分子C.离子D.元素
7.下列物质属于纯净物的是
A.空气B.糖水C.石油D.氮气
8.下列做法符合“低碳环保、节能减排”理念的是
A.垃圾分类回收B.使用一次性筷子
C.污水随意排放D.雾霾与大量使用化石燃料无关
9.下列溶液能使紫色石蕊试液变蓝色的是
A.氯化钠溶液B.氢氧化钠溶液C.醋酸D.盐酸
10.电解水产生的氢气和氧气的体积之比约为。

2023年广西北海市中招考试数学考卷(word版含解析)[最新]

2023年广西北海市中招考试数学考卷(word版含解析)[最新]

2014年广西北海市中招考试数学考卷(word版含解析)[最新]一、选择题(每题1分,共5分)1. 下列函数中,奇函数是()A. y = x^2B. y = |x|C. y = x^3D. y = x^2 + 12. 已知等差数列{an},a1=1,a3=3,则公差d等于()A. 1B. 2C. 3D. 43. 在平面直角坐标系中,点P(2, 3)关于原点的对称点是()A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 3)4. 下列各式中,值不等于1的是()A. (sqrt(3))^2 / 3B. (sqrt(2))^2 / 2C. (sqrt(5))^2 / 5D. (sqrt(6))^2 / 65. 下列命题中,真命题是()A. 对任意的实数x,都有x^2 >= 0B. 对任意的实数x,都有x^2 < 0C. 对任意的实数x,都有x^2 = 0D. 对任意的实数x,都有x^2 > 0二、判断题(每题1分,共5分)1. 任何两个平行线的斜率都相等。

()2. 一元二次方程的解一定是实数。

()3. 相似三角形的面积比等于边长比的平方。

()4. 互质的两个数一定是质数。

()5. 函数y = ax^2 + bx + c(a ≠ 0)的图像一定经过原点。

()三、填空题(每题1分,共5分)1. 已知等差数列{an},a1=1,公差d=2,则a5=______。

2. 若直线y=2x+1与x轴的交点为A,则点A的坐标为______。

3. 在平面直角坐标系中,点P(3, 4)关于x轴的对称点坐标为______。

4. 已知一组数据的方差是9,那么这组数据的标准差是______。

5. 一次函数y=kx+b的图像经过一、二、四象限,则k的取值范围是______。

四、简答题(每题2分,共10分)1. 请简要说明一元二次方程的求根公式。

2. 什么是平行线的性质?请举例说明。

3. 简述概率的基本性质。

广西南北钦防四城2014年中考数学试题汇编

广西南北钦防四城2014年中考数学试题汇编

广西南北钦防四城2014年中考数学试题汇编(1)满分120分,考试时间120分钟。

一、选择题(共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1. 如果收入80元记作+80元,那么支出20元记作( )A . +20元B . ﹣20元C .+100元 D. ﹣100元2. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.3. 要使二次根式2+x 在实数范围内有意义,则实数x 的取值范围是 ( )(A )x >2 (B )x ≥2 (C )x >2- (D )x ≥2-4. 在平面直角坐标系中,点M (﹣2,1)在( )A . 第一象限B .第二象限C . 第三象限D . 第四象限5.下列运算正确的是 ( )(A )2a ·3a = 6a (B )()32x =6x (C )6m ÷2m =3m (D )6a -4a =26.下列命题是假命题的是( )A . 四个角相等的四边形是矩形B . 对角线相等的平行四边形是矩形C . 对角线垂直的四边形是菱形D . 对角线垂直的平行四边形是菱形 7. 在直径为200cm 的圆柱形油槽内装入一些油以后,截面如图1所示,若油面的宽AB =160cm ,则油的最大深度为( )(A )40cm (B )60cm (C )80cm (D )100cm8. 北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时.设原来火车的平均速度为x 千米/时,则下列方程正确的是( )A .+1.8=B .﹣1.8=C .+1.5=D . ﹣1.5=9. x 1,x 2是关于x 的一元二次方程x 2﹣mx+m ﹣2=0的两个实数根,是否存在实数m 使+=0成立?则正确的是结论是( )A . m=0时成立B .m=2时成立C .m=0或2时成立D .不存在10. 如图,等圆⊙O 1和⊙O 2相交于A 、B 两点,⊙O 1经过⊙O 2的圆心O 2,连接AO 1并延长交⊙O 1于点C ,则∠ACO 2的度数为( )A . 60°B .45°C .30°D .20°11. 如图,△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于( )A .30°B . 40°C . 50°D .60°12. 已知点A 在双曲线y x2-=上,点B 在直线4-=x y 上,且A ,B 两点关于y 轴对称,设点A 的坐标为(m ,n ),则n m +mn 的值是( ) (A )-10 (B )-8 (C )6 (D )4二、填空题(本大题共6小题,每小题3分,满分18分)13.已知∠A=43°,则∠A 的补角等于 度.14.因式分解:x 2y ﹣2xy 2= .15.若一元二次方程x 2﹣6x+m=0有两个相等的实数根,则m 的值为 .16. 如图,一渔船由西往东航行,在A 点测得海岛C 位于北偏东60°的方向,前进20海里到B 点,此时,测得海岛C 位于北偏东30°方向,则海岛C 到航线AB 的距离CD 等于 海里.17. 如图,△ABC 中,∠A=40°,AB 的垂直平分线MN 交AC 于点D ,∠DBC=30°,若AB=m ,BC=n ,则△DBC 的周长为 .18. 甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2014时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是 分.三、解答题(本大题共8小题,满分66分,解答应写出必要的文字说明、演算步骤或推理过程)19. 解方程组20. 先化简,再求值:﹣,其中x=﹣1.21.如图,已知:BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法),并直接写出旋转角度是.22.某校为了解学生对三种国庆活动方案的意见,对该校学生进行了一次抽样调查(被调查学生至多赞成其中的一种方案),现将调查结果绘制成如图两幅不完整的统计图.请根据图中提供的信息解答下列问题(1)在这次调查中共调查了名学生;扇形统计图中方案1所对应的圆心角的度数为度;(2)请把条形统计图补充完整;(3)已知该校有1000名学生,试估计该校赞成方案1的学生约有多少人?23. 如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.23. “保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆. 若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1) 求购买A型和B型公交车每辆各需多少万元?(2) 预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客量总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案的总费用最少?最少总费用是多少?24.设二次函数)0,(2≠∈++=a Z c b a c bx ax y 且、、对一切实数x 恒有4122+≤≤x y x 成立,求 二次函数的解析式。

广西北海中考数学试题及答案

广西北海中考数学试题及答案

数学试卷一、选择题:(精心选一选,你一定能选准!每题4分,共48分)1、在△ABC 中AB=AC ,BC=5cm ,作AB 的垂直平分交另一腰AC 于D ,连接BD 。

如果△BCD 的周长为17cm ,则△ABC 的腰长为( ) A.5cm B.7cm C.11cm D.12cm2、在Rt △ABC 中,∠C=900,cosA=53,AB=15,则BC 的长是( )A.3 B .6 C .9 D .123、高4米的旗杆在水平地面上的影长5米,此时测得附近一个建筑物的影子长20米,则该建筑物的高是( )A .16米B .20米C .24米D .30米 4、如下图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是( )A B C D5、7.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为( )A.1234B.4312C.3421D.42316、过矩形ABCD 的四个顶点作对角线AC ,BD 的平行线,分别相交于E ,F ,G ,H 四点,则四边形EFGH 是( )A .平行四边形 B.菱形 C.矩形 D. 正方形7、如图,在ABC ∆中,AD 是BC 边上的高,︒=∠30C ,32+=BC ,21tan =B ,那么AD 的长是( ) A .21 B. 1 C. 2321+ D. 331+8、.向上抛掷四枚硬币,落地后出现两个正面朝上,两个正面朝下的概率为( )A BC D 西 西 西 西 1 2 34A.41B.83C.85D.81 9、甲、乙两地相距60km ,则汽车由甲地行驶到乙地所用时间y (小时)与行驶速度x (千米/时)之间的函数图像大致是(10、给出下面四个命题:(1) 若直角三角形的两条边长为5和12,则第三边长是13;(2)一条对角线平分一个内角的平行四边形是菱形;(3)两条对角线互相垂直的矩形是正方形;(4)一组对边平行,另一组对边相等的四边形是平行四边形,其中真命题的个数有 ( )A .1个B .2个C .3个D .4个11、反比例函数xky =与正比例函数kx y =的一个交点为(2,3),则它们的另一个交点为( )A. (3,2)B. (-2,3)C. (-2,-3)D. (-3,-2) 12、小兰和小潭分别用掷A 、B 两枚骰子的方法来确定P(x ,y )的位置,她们规定:小兰掷得的点数为x ,小谭掷得的点数为y ,那么,她们各掷一次所确定的点落在已知直线62+-=x y 上的概率为( )A .366 B.181 C.121 D.91二、填空题:(耐心填一填,你一定能填好!每题4分,共40分)13、计算:︒•︒+︒•+︒•︒60tan 60sin 45cos 245tan 30sin = 14、如图,已知正方形ABCD 的边长为2,如果将 线段BD 绕着点B 旋转后,点D 落在CB 的延长线 上的D′点处, 那么tan BAD ∠′=________ 15、口袋里有红、绿、黄三种颜色的球,除颜色外其余都相同.其中有红球4个,绿球5个,任意摸出1个绿球的概率是31,那么任意摸出1个黄球的概率是______16、祺祺为3.6班设计了一个班徽,图中有一个菱形ABCD ,为了检验这个菱形是否准确,请你用带有刻度的三角板为工具,帮祺祺设计一个检验的方案为 .O x yA O x yB O x yC O xD17、若关于x 的方程0242=-++k x x 的一个根为2,则它的另一个根为 。

广西北海市2014年中考语文试卷及答案

广西北海市2014年中考语文试卷及答案

广西北海市2014年中考语文试卷及答案(考试时间:150分钟满分:120分)第I卷(选择题,共24分)一、积累与运用(每小题2分,共12分)1.下列加点字注音有误的一项是()A.引吭.(háng)憧.憬(chōng)花团锦簇.(cù)B.执着.(zháo)和煦.(xù)唾.手可得(chuí)C.惬.意(qiè)斑斓.(lán)言简意赅.(gāi)D.谛.听(dì)分.外(fèn)彬.彬有礼(bīn)2.下列词语中没有错别字的一项是()A.嘹亮姹紫嫣红斩露头角B.震奋旗开得胜相提并论C.裨益脍炙人口名副其实D.陶冶坦荡如底克勤克俭3.下列加点成语运用不恰当的一项是()A.气势磅礴的音乐喷泉、别具匠心....的“海之贝”主场馆。

构成了大气、和谐、独特的北海园博园景观。

B.“人间四月芳菲尽,山寺桃花始盛开”,每到四月,庐山上的桃花金碧辉煌....,吸引了许多前来观光的游客。

C.拿到高中录取通知书的那一刻,他如释重负....地松了一口气,脸上终于露出了久违二灿烂的笑容。

D.今年初,北海沙蟹汁在中央电视台“舌尖上的中国”播出后,成了北海市民茶余饭后津津..乐道..的话题。

4.下列句子没有语病的一项是()A.我区通过实施“雨露计划”,大力开展扶贫培训活动,群众脱贫致富的意识和能力得到显著提高。

B.中国民生银行考察团到北海考察,有人认为,北海发展的优势在于有没有良好的生态环境。

C.今年,当壮族“三月三”民歌节与清明节不期而遇形成的广西独有的小长假到来,让广西人倍感快乐。

D.截至4月8日,广西高铁累计发生旅客大约280万人次左右,有效地缓解了广西交通的压力。

5.依次填入下列文段画线处的句子,最恰当的一项是()如果没有普罗米修斯走在最前面“盗火种”,?如果没有哥白尼走在最前面为科学“布道”,?如果没有鲁迅走在最前面“呐喊”,?如果没有邓稼先走在最前面升起“蘑菇云”,?走在最前面的人士痛苦的,但也是幸福的,因为他们的魂魄,都凝结为时代最美丽的花朵,给世人带来信心和勇气。

广西桂林市2014年中考数学真题试题(含答案解析

广西桂林市2014年中考数学真题试题(含答案解析

2014年广西省桂林市中考数学试卷(满分120分,考试时间120分钟)一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.(2014广西省桂林市,1,3分)2014的倒数是( ) A .12014 B.-12014C.|2014|D.-2014【答案】A 。

2.(2014广西省桂林市,2,3分)如图。

已知AB ∥CD ,∠1=56°,则∠2的度数是( ) A.34° B.56° C.65° D.124° 【答案】B 。

3.(2014广西省桂林市,3,3分)下列各式中,与2a 是同类项的是( )A .3aB .2abC .-3a 2D .a 2b【答案】A 。

4.(2014广西省桂林市,4,3分)在下面的四个几何体中,同一几何体的主视图与俯视图相同的是( )DA B C【答案】D 。

5.(2014广西省桂林市,5,3分)在平面直角坐标系中,已知点A (2,3),则点A 关于x 轴的对称点坐标为( )A.(3,2)B.(2,-3)C.(-2,3)D.(-2,-3) 【答案】B 。

6.(2014广西省桂林市,6,3分)一次函数y=kx+b (k ≠0)的图像如图所示,则下列结论正确的是( ) A .k=2 B .k=3 C .b=2 D .b=3 【答案】D.7.(2014广西省桂林市,7,3分)下列命题中,是真命题的是( ) A .等腰三角形都相似 B .等边三角形都相似 C .锐角三角形都相似 D .直角三角形都相似 【答案】B 。

8.(2014广西省桂林市,8,3分)两圆的半径分别为2和3,圆心距为7,则这两圆的位置关系为( )A.外离B.外切C.相交D.内切 【答案】A 。

9.(2014广西省桂林市,9,3分)下列图形中,既是轴对称图形又是中心对称图形的是( )21A B C D 第2题图【答案】C。

广西桂林市2014年中考数学试题(word版_含答案)

广西桂林市2014年中考数学试题(word版_含答案)

2014年广西省桂林市中考数学试卷年广西省桂林市中考数学试卷(满分120分,考试时间120分钟)一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.(2014广西省桂林市,1,3分)2014的倒数是(的倒数是( ) A .12014 B.-12014C.|2014|D.-2014 【答案】A 。

2.(2014广西省桂林市,2,3分)如图。

如图。

已知已知AB ∥CD ,∠1=56°,则∠2的度数是( )A.34°B.56°C.65°D.124° 【答案】B 。

3.(2014广西省桂林市,3,3分)下列各式中,与2a 是同类项的是(项的是( )A .3a B .2ab C .-3a 2D .a 2b 【答案】A 。

4.(2014广西省桂林市,4,3分)在下面的四个几何体中,同一几何体的主视图与俯视图相同的是(相同的是( )DAB C【答案】D 。

5.(2014广西省桂林市,5,3分)在平面直角坐标系中,已知点A (2,3),则点A 关于x 轴的对称点坐标为(轴的对称点坐标为( )A.(3,2)B.(2,-3)C.(-2,3)D.(-2,-3) 【答案】B 。

6.(2014广西省桂林市,6,3分)一次函数y=kx+b (k ≠0)的图像如图所示,则下列结论正确的是(图所示,则下列结论正确的是( )A .k=2 B .k=3 C .b=2 D .b=3 【答案】D. 7.(2014广西省桂林市,7,3分)下列命题中,是真命题的是(下列命题中,是真命题的是( ) A .等腰三角形都相似.等腰三角形都相似 B .等边三角形都相似.等边三角形都相似 C .锐角三角形都相似.锐角三角形都相似 D .直角三角形都相似形都相似 【答案】B 。

8.(2014广西省桂林市,8,3分)两圆的半径分别为2和3,圆心距为7,则这两圆的位置关系为(关系为( ) A.外离外离 B.外切外切 C.相交相交 D.内切内切 【答案】A 。

广西北海市中考数学真题试题(含答案)

广西北海市中考数学真题试题(含答案)

2014年北海市中等学校招生暨初中毕业统一考试试卷(考试时间:120分钟,满分120分)准考证号:姓名:座位号:注意事项:1.试卷分为试题卷和答题卡两部分,要求在答题卡上作答,在本试题卷上作答........无效...2.答题前,请认真阅读答题卡上的注意事项............3.考试结束后,将本试题卷和答题卡........一并交回.一、选择题(本大题共12小题,每小题3分,满分36分;在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡...上对应题目的答案号涂黑).-+-的结果是1.计算(2)(3)A.-5 B.-1 C.1 D.52.从上往下看如图所示的几何体,得到的图形是A. B. C. D.3.甲、乙、丙、丁四人参加射击训练,每人各射击20次,他们射击成绩的平均数是9.1环,各自的方差见如下表格:由上可知射击成绩最稳定的是A.甲 B.乙 C.丙 D.丁4.已知两圆的半径分别为1cm和4cm,圆心距为5cm,那么这两个圆的位置关系是A.内切 B.相交 C.外切 D.外离M-在5.在平面直角坐标系中,点(2,1)A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,在△ABC中,D、E分别是边AB、AC的中点,已知DE=5,则BC的长为A.8 B.9 C.10 D.11BCA7.下列几何图形中,一定是轴对称图形的有等腰梯形平行四边形角圆弧A .1个B .2个C .3个D .4个 8.下列命题中,不正确的是A .n 边形的内角和等于(2)180n -⋅︒B .两组对边分别相等的四边形是矩形C .垂直于弦的直径平分弦所对的两条弧D .直角三角形斜边上的中线等于斜边的一半9.已知一个扇形的半径为12,圆心角为150°,则此扇形的弧长是A .5πB .6πC .8πD .10π10.北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时,设原来火车的平均速度为x 千米/时,则下列方程正确的是A .2102101.8 1.5x x += B .2102101.8 1.5x x -=C .2102101.5 1.8x x +=D .2102101.5 1.8x x-=11.如图,△ABC 中,∠CAB =65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于A .30°B .40°C .50°D .60°DB12.函数21y ax =+与(0)ay a x=≠在同一平面直角坐标系中的图象可能是A .B .C .D . 二、填空题(本大题共6小题,每小题3分,满分18分,请将答案填在答题卡...上) 13.已知∠A =43°,则∠A 的补角等于 度. 14.因式分解:222x y xy -= .15.若一元二次方程260x x m -+=有两个相等的实数根,则m 的值为 . 16.某校男子足球队的年龄分布如下面的条形统计图所示,则这些足球队员的年龄的中位数17.下列式子按一定规律排列:357,,,,,2468a a a a 则第2014个式子是 .18.如图,反比例函数(0)ky x x=>的图象交Rt△AOB 的斜边OA 于点D ,交直角边AB 于点C ,点B 在x 轴上.若△OAC 的面积为5,:1:2AD OD =,则k 的值为 .x三、解答题(本大题共8小题,满分66分.请在答题卡上答题,解答应写出必要的文字说明、演算步骤或推理过程)19.(本题满分6分)计算101()21)3---+20.(本题满分6分)解方程组33411x y x y +=⎧⎨-=⎩21.(本题满分8分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同.现有两辆汽车经过这个十字路口,(1)请用“树形图”或“列表法”列举出这两辆汽车行驶方向所有可能的结果; (2)求这两辆汽车都向左转的概率. 22.(本题满分8分)已知△ABC 中,∠A =25°,∠B =40°. (1)求作:,使得⊙O 经过A 、C 两点,且圆心O 落在AB 边上.(要求尺规作图,保留作图痕迹,不必写作法)(2)求证:BC 是(1)中所作⊙O 的切线.AB23.(本题满分8分)下图是某超市地下停车场入口的设计图,请根据图中数据计算CE 的长度.(保留小数点后两位;参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)24.(本题满分他计划用4万元的资金一次性购进这两种品牌手表共100块.设该经销商购进A 品牌手表x 块,这两种品牌手表全部销售完后获得的利润为y 元. (1)试写出y 与x 之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案? (3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元? 25.(本题满分10分)如图(1),E 是正方形ABCD 的边BC 上的一个点(E 与B 、C 两点不重合),过点E 作射线EP ⊥AE ,在射线EP 上截取线段EF ,使得EF =AE ,过点F 作FG ⊥BC 交BC 的延长线于点G . (1)求证:FG =BE ; (2)连接CF ,如图(2),求证:CF 平分∠DCG ; (3)当34BE BC ,求sin∠CFE 的值.(1) (2)26.(本题满分12分)如图(1),抛物线214y x x c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(2,0)-.(1)求此抛物线的解析式;(2)①若点D 是第一象限内抛物线上的一个动点,过点D 作DE ⊥x 轴于E ,连接CD ,以OE 为直径作⊙M ,如图(2),试求当CD 与⊙M 相切时D 点的坐标;②点F 是x 轴上的动点,在抛物线上是否存在一点G ,使以A 、C 、G 、F 四点为顶点的四边形是平行四边形?若存在,求存点G 的坐标;若不存在,请说明理由.xx2014年广西北海市初中毕业升学数学试题答案一、选择题1. A ;2.C ;3.A ;4. C ;5.B ;6.C ;7.D ;8.B ;9.D ;10.D ;11.C ;12. B 。

广西北海市合浦县1314学年上学期八年级期中考试数学(附答案)

广西北海市合浦县1314学年上学期八年级期中考试数学(附答案)

2013—2014学年第一学期期中考试八年级数学第一卷客观题一、选择题(每小题3分,共36分)1.右图中共有()个三角形。

A.5 B.6 C.7 D.82. 对于任意三角形的高,下列说法不正确的是()A.直角三角形只有一条高B.锐角三角形有三条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部3. 三角形中,到三边距离相等的点是()A.三条高线的交点B.三条中线的交点C. 三条角平分线的交点D.三边垂直平分线的交点。

4. 如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A. AM=CNB. AM∥CNC.AB=CDD. ∠M=∠N5. 一个不等边三角形有两边分别是3、5另一边可能是(A.1 B.2C.3 D.4 6. 如图,,2,6==∆DEECABCAE的中线,已知是则BD的长为()A. 2B. 3C. 4D. 67. 如图,△ABC≌△CDA,AB=5,BC=6,AC=7,则AD的边长是()A.5 B.6 C.7 D.无法确定8. 如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E。

已知∠BAE=10°,则∠C的度数为()B CD EB C第1题图第7题图第9题图A .40°B . 45°C .50°D . 60°9. 如图,∠B =∠D =90°,BC =CD ,∠1=40°,则∠2=( ) A .40° B .50° C .60° D .无法确定 10. (自己作图理解)AD 是△ABC 的角平分线且交BC 于D ,过点D 作DE ⊥AB 于E ,DF ⊥AC 于F •,则下列结论不一定正确的是( ) A. DE =DF B. BD =CD C. AE=AF D .∠ADE =∠ADF 11. 若点)3,(x A 与点),2(y B 关于y 轴对称,则( )A.x =-2, y =-3B.x =2, y =3C.x =-2, y =3D.x =2, y =-3 12. 如图,∠DAE =∠ADE =15°,DE ∥AB ,DF⊥AB , 若AE =8,则DF 等于( ) A.5 B.4C .3D .2二、填空题(每小题3分,共24分)13. △ABC 的周长是12 cm ,边长分别为a ,b , c , 且 a=b +1b=c +1 , 则a= cm , b= cm 。

广西北海市中考数学试卷

广西北海市中考数学试卷

广西北海市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题(共12小题). (共12题;共24分)1. (2分)(2016·金华) 如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A . Φ45.02B . Φ44.9C . Φ44.98D . Φ45.012. (2分)如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是()A . 同位角B . 内错角C . 对顶角D . 同旁内角3. (2分) (2017八下·广州期中) 若在实数范围内有意义,则 x的取值范围是()A . x≥B . x≥-C . x>D . x≠4. (2分)计算2a-a,正确的结果是()A . -2a3B . 1C . 2D . a5. (2分)下列几何体中,俯视图相同的是().A . ①②B . ①③C . ②③D . ②④6. (2分)(2017·金乡模拟) 不等式组的解集在数轴上表示正确的是()A .B .C .D .7. (2分)(2018·孝感) 如图,在中,,,,则等于()A .B .C .D .8. (2分)(2018·杭州模拟) 已知数据1、5、4、3、3、2,则下列关于这组数据的说法错误的是()A . 平均数和众数都是3B . 中位数为3C . 方差为10D . 标准差是9. (2分)下列说法错误的是()A . 一个三角形中至少有一个角不少于60°B . 三角形的中线不可能在三角形的外部C . 三角形的中线把三角形的面积平均分成相等的两部分D . 直角三角形只有一条高10. (2分) (2019九上·牡丹江期中) 某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参加比赛的球队应有()A . 7队B . 6队C . 5队D . 4队11. (2分) (2019八上·龙岗期末) 下列条件中,不能判断△ABC是直角三角形的是()A . a:b:c=3:4:5B . ∠A:∠B:∠C=3:4:5C . ∠A+∠B=∠CD . a:b:c=1:2:12. (2分)若弦AB所对的圆心角是120º,则弦AB所对的圆周角的度数是()A . 120°B . 60°C . 60°或120°D . 240°二、填空题(共6小题). (共6题;共7分)13. (2分)(2018·井研模拟) 分解因式: =________14. (1分) (2017八下·江阴期中) 关于x的方程的解是正数,则a的取值范围是________.15. (1分)(2018·建湖模拟) 如图,在平面直角坐标系中,A(4,0)、B(0,-3),以点B为圆心、2 为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为________.16. (1分) (2020九上·浙江期末) 某人掷两枚质地均匀的般子(般子的六个面分别为l点,2点,3点,4点,5点,6点),则该人掷一次出现两枚般子点数和为6的概率是________.17. (1分) (2018九上·十堰期末) 如图,直线AB切⊙O于C点,D是⊙O上一点,∠EDC=30°,弦EF∥AB,连接OC交EF于H点,连接CF,若CF=5,则HE的长为________.18. (1分)(2020·西安模拟) 如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又不重叠的四边形EFGH,若EH=4,EF=5,那么线段AD与AB的比等于________.三、解答题(本大题共8小题,共66分.) (共8题;共74分)19. (5分)计算:(1)(2).20. (5分) (2020七下·慈溪期末) 先化简,再求值:,其中a=- 。

初中数学广西省北海市中数学考试考试卷及答案word

初中数学广西省北海市中数学考试考试卷及答案word

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:-的绝对值是:()A.- B. C.-6 D.6试题2:“神舟七号”舱门除了有气压外,还有光压,开门最省力也需要用大约568000斤的臂力。

用科学记数法表示568000是:()A.568×103 B.56.8×104 C.5.68×105 D.0.568×106试题3:下列图形即使轴对称图形又是中心对称图形的有:()①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形A.1个 B.2个 C.3个D.4个试题4:一个几何体的三视图完全相同,该几何体可以是:()A.圆锥 B.圆柱 C.长方体 D.球试题5:下列运算正确的是:()A.x3·x5=x15 B.(2x2)3=8x6 C.x9÷x3=x3 D.(x-1)2=x2-12试题6:如图,梯形ABCD中AD//BC,对角线AC、BD相交于点O,若AO∶CO=2:3,AD=4,则BC等于:()A.12 B.8 C.7 D.6试题7:已知二次函数y=x2-4x+5的顶点坐标为:()A.(-2,-1) B.(2,1) C.(2,-1) D.(-2,1)试题8:分式方程=1的解是:()A.-1 B.1 C.8 D.15 试题9:在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中1个白球,2个红球,3个黄球。

从口袋中任意摸出一个球是红球的概率是:()A. B. C. D.试题10:已知两圆的半径分别是3和4,圆心距的长为1,则两圆的位置关系为:()A.外离 B.相交 C.内切 D.外切试题11:如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为:()A.10π B. C.π D.π试题12:如图,等边△ABC的周长为6π,半径是1的⊙O从与AB相切于点D的位置出发,在△ABC外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则⊙O自转了:()A.2周 B.3周 C.4周 D.5周试题13:因式分解:-m2+n2=___________。

【精校】2014年广西省南宁市中考真题数学

【精校】2014年广西省南宁市中考真题数学

2014年广西省南宁市中考真题数学一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,其中只有一是正确的.1.(3分)如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作( )A. -3mB. 3mC. 6mD. -6m解析:因为上升记为+,所以下降记为-,所以水位下降3m时水位变化记作-3m.答案:A.2.(3分)下列图形中,是轴对称图形的是( )A.B.C.D.解析:A、不是轴对称图形,故A选项错误;B、不是轴对称图形,故B选项错误;C、不是轴对称图形,故C选项错误;D、是轴对称图形,故D选项正确.答案:D.3.(3分)南宁东高铁火车站位于南宁青秀区凤岭北路,火车站总建筑面积约为267000平方米,其中数据267000用科学记数法表示为( )A. 26.7×104B. 2.67×104C. 2.67×105D. 0.267×106解析:267 000=2.67×105.答案:C.4.(3分)要使二次根式在实数范围内有意义,则实数x的取值范围是( )A. x>2B. x≥2C. x>-2D. x≥-2解析:∵二次根式在实数范围内有意义,∴x+2≥0,解得:x≥-2,则实数x的取值范围是:x≥-2.答案:D.5.(3分)下列运算正确的是( )A. a2·a3=a6B. (x2)3=x6C. m6÷m2=m3D. 6a-4a=2解析:A、a2·a3=a5≠a6,故A选项错误;B、(x2)3=x6,故B选项正确;C、m6÷m2=m4≠m3,故C选项错误;D、6a-4a=2a≠2,故D选项错误.答案:B.6.(3分)在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为( )A. 40cmB. 60cmC. 80cmD. 100cm解析:连接OA,过点O作OE⊥AB,交AB于点M,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,∴OM===60cm,∴ME=OE-OM=100-60=40cm.答案:A.7.(3分)数据1,2,4,0,5,3,5的中位数和众数分别是( )A. 3和2B. 3和3C. 0和5D. 3和5解析:把所有数据从小到大排列:0,1,2,3,4,5,5,位置处于中间的是3,故中位数为3;出现次数最多的是3和5,故众数为3和5,答案:D.8.(3分)如图所示,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是( )A. 正三角形B. 正方形C. 正五边形D. 正六边形解析:∵平角∠AOB三等分,∴∠O=60°,∵90°-60°=30°,∴剪出的直角三角形沿折痕展开一次得到底角是30°的等腰三角形,再沿另一折痕展开得到有一个角是30°的直角三角形,最后沿折痕AB展开得到等边三角形,即正三角形.答案:A.9.(3分)“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y 与x的函数关系的图象大致是( )A.B.C.D.解析:可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,答案:B.10.(3分)如图,已知二次函数y=-x2+2x,当-1<x<a时,y随x的增大而增大,则实数a的取值范围是( )A. a>1B. -1<a≤1C. a>0D. -1<a<2解析:二次函数y=-x2+2x的对称轴为直线x=1,∵-1<x<a时,y随x的增大而增大,∴a≤1,∴-1<a≤1.答案:B.11.(3分)如图,在▱ABCD中,点E是AD的中点,延长BC到点F,使CF:BC=1:2,连接DF,EC.若AB=5,AD=8,sinB=,则DF的长等于( )A.B.C.D. 2解析:如图,在▱ABCD中,∠B=∠D,AB=CD=5,AD∥BC,且AD=BC=8.∵E是AD的中点,∴DE=AD.又∵CF:BC=1:2,∴DE=CF,且DE∥CF,∴四边形CFDE是平行四边形.∴CE=DF.过点C作CH⊥AD于点H.又∵sinB=,∴sin∠CDH===,∴CH=4.在Rt△CDH中,由勾股定理得到:DH==3,则EH=4-3=1,∴在Rt△CEH中,由勾股定理得到:EC===,则DF=EC=. 答案:C.12.(3分)已知点A在双曲线y=-上,点B在直线y=x-4上,且A,B两点关于y轴对称.设点A的坐标为(m,n),则+的值是( )A. -10B. -8C. 6D. 4解析:∵点A的坐标为(m,n),A、B两点关于y轴对称,∴B(-m,n),∵点A在双曲线y=-上,点B在直线y=x-4上,∴n=--m-4=n,即mn=-2,m+n=-4,∴原式===-10.答案:A.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)比较大小:-5 3(填>,<或=).解析:∵-5是负数,3是正数;∴-5<3;答案:<.14.(3分)如图,已知直线a∥b,∠1=120°,则∠2的度数是°.解析:∵∠1=120°,∴∠3=180°-120°=60°,∵a∥b,∴∠2=∠3=60°,答案:60.15.(3分)分解因式:2a2-6a= .解析:2a2-6a=2a(a-3).答案:2a(a-3).16.(3分)第45届世界体操锦标赛将于2014年10月3日至12日在南宁隆重举行,届时某校将从小记者团内负责体育赛事报道的3名同学(2男1女)中任选2名前往采访,那么选出的2名同学恰好是一男一女的概率是.解析:列表得:所有等可能的情况有6种,其中选出的2名同学恰好是一男一女的情况有4种,则P= =,答案:17.(3分)如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB 的距离CD等于海里.解析:根据题意可知∠CAD=30°,∠CBD=60°,∵∠CBD=∠CAD+∠ACB,∴∠CAD=30°=∠ACB,∴AB=BC=20海里,在Rt△CBD中,∠BDC=90°,∠DBC=60°,sin∠DBC=,∴sin60°=,∴CD=12×sin60°=20×=10海里,答案:10.18.(3分)如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD的长为.解析:如图,连接OE、OF,∵由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90°,∴OECF是正方形,∵由△ABC的面积可知×AC×BC=×AC×OE+×BC×OF,∴OE=OF=a=EC=CF,BF=BC-CF=0.5a,GH=2OE=a,∵由切割线定理可得BF2=BH·BG,∴a2=BH(BH+a),∴BH=a或BH=a(舍去),∵OE∥DB,OE=OH,∴△OEH∽△BDH,∴=,∴BH=BD,CD=BC+BD=a+a= a.答案: a.三、解答题:(本大题共2小题,每小题满分12分,共12分)要求写出解答过程.如果运算结果含有根号,请保留根号.19.(6分)计算:(-1)2-4sin45°+|-3|+.解析:本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.答案:原式=1-2+3+2=4.20.(6分)解方程:-=1.解析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.答案:去分母得:x(x+2)-2=x2-4,去括号得:x2+2x-2=x2-4,解得:x=-1,经检验x=-1是分式方程的解.四、解答题:(本大题共2小题,每小题满分16分,共16分)要求写出解答过程.如果运算结果含有根号,请保留根号.21.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标. 解析:(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可;(3)找出点A关于x轴的对称点A′,连接A′B与x轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P的位置,然后连接AP、BP并根据图象写出点P的坐标即可.答案:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)△PAB如图所示,P(2,0).22.(8分)考试前,同学们总会采用各种方式缓解考试压力,以最佳状态迎接考试.某校对该校九年级的部分同学做了一次内容为“最适合自己的考前减压方式”的调查活动,学校将减压方式分为五类,同学们可根据自己的情况必选且只选其中一类.学校收集整理数据后,绘制了图1和图2两幅不完整的统计图,请根据统计图中信息解答下列问题:(1)这次抽样调查中,一共抽查了多少名学生?(2)请补全条形统计图;(3)请计算扇形统计图中“享受美食”所对应扇形的圆心角的度数;(4)根据调查结果,估计该校九年级500名学生中采用“听音乐”来减压方式的人数.解析:(1)利用“流谈心”的人数除以所占的百分比计算即可得解;(2)用总人数乘以“体育活动”所占的百分比计算求出体育活动的人数,然后补全统计图即可;(3)用360°乘以“享受美食”所占的百分比计算即可得解;(4)用总人数乘以“听音乐”所占的百分比计算即可得解.答案:(1)一共抽查的学生:8÷16%=50人;(2)参加“体育活动”的人数为:50×30%=15,补全统计图如图所示:(3)“享受美食”所对应扇形的圆心角的度数为:360°×=72°;(4)该校九年级500名学生中采用“听音乐”来减压方式的人数为:500×=120人.五、解答题:(本大题满分8分)要求写出解答过程.如果运算结果含有根号,请保留根号.23.(8分)如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB 交于点G.(1)求证:△ADE≌△CFE;(2)若GB=2,BC=4,BD=1,求AB的长.解析:(1)由平行线的性质可得:∠A=∠FCE,再根据对顶角相等以及全等三角形的判定方法即可证明:△ADE≌△CFE;(2)由AB∥FC,可证明△GBD∽△FCF,根据给出的已知数据可求出CF的长,即AD的长,进而可求出AB的长.答案:(1)∵AB∥FC,∴∠A=∠FCE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS);(2)∵AB∥FC,∴△GBD∽△FCF,∴GB:GC=BD:CF,∵GB=2,BC=4,BD=1,∴2:6=1:CF,∴CF=3,∵AD=CF,∴AB=AD+BD=4.六、解答题:(本大题满分10分)要求写出解答过程.如果运算结果含有根号,请保留根号.24.(10分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?解析:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A 型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由“购买A型和B型公交车的总费用不超过1200万元”和“10辆公交车在该线路的年均载客总和不少于680万人次”列出不等式组探讨得出答案即可.答案:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得答:设购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得,解得:6≤a≤8,所以a=6,7,8;则(10-a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.七、解答题:(本大题满分10分)要求写出解答过程.如果运算结果含有根号,请保留根号.25.(10分)如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.(1)试判断BE与FH的数量关系,并说明理由;(2)求证:∠ACF=90°;(3)连接AF,过A、E、F三点作圆,如图2,若EC=4,∠CEF=15°,求的长.解析:(1)利用ABE≌△EHF求证BE=FH,(2)由BE=FH,AB=EH,推出CH=FH,得到∠HCF=45°,由四边形ABCD是正方形,所以∠ACB=45°,得出∠ACF=90°,(3)作CP⊥EF于P,利用相似三角形△CPE∽△FHE,求出EF,利用公式求出的长. 答案:(1)BE=FH.证明:∵∠AEF=90°,∠ABC=90°,∴∠HEF+∠AEB=90°,∠BAE+∠AEB=90°,∴∠HEF=∠BAE,在△ABE和△EHF中,,∴△ABE≌△EHF(AAS)∴BE=FH.(2)由(1)得BE=FH,AB=EH,∵BC=AB,∴BE=CH,∴CH=FH,∴∠HCF=45°,∵四边形ABCD是正方形,∴∠ACB=45°,∴∠ACF=180°-∠HCF-∠ACB=90°.(3)由(2)知∠HCF=45°,∴CF=FH.∠CFE=∠HCF-∠CEF=45°-15°=30°.如图2,过点C作CP⊥EF于P,则CP=CF=FH.∵∠CEP=∠FEH,∠CPE=∠FHE=90°,∴△CPE∽△FHE.∴,即,∴EF=4.∵△AEF为等腰直角三角形,∴AF=8.取AF中点O,连接OE,则OE=OA=4,∠AOE=90°,∴的弧长为:=2π.八、解答题:(本大题满分10分)要求写出解答过程.如果运算结果含有根号,请保留根号.26.(10分)在平面直角坐标系中,抛物线y=x2+(k-1)x-k与直线y=kx+1交于A,B两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k-1)x-k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.解析:(1)当k=1时,联立抛物线与直线的解析式,解方程求得点A、B的坐标;(2)如答图2,作辅助线,求出△ABP面积的表达式,然后利用二次函数的性质求出最大值及点P的坐标;(3)“存在唯一一点Q,使得∠OQC=90°”的含义是,以OC为直径的圆与直线AB相切于点Q,由圆周角定理可知,此时∠OQC=90°且点Q为唯一.以此为基础,构造相似三角形,利用比例式列出方程,求得k的值.答案:(1)当k=1时,抛物线解析式为y=x2-1,直线解析式为y=x+1.联立两个解析式,得:x2-1=x+1,解得:x=-1或x=2,当x=-1时,y=x+1=0;当x=2时,y=x+1=3,∴A(-1,0),B(2,3).(2)设P(x,x2-1).如答图2所示,过点P作PF∥y轴,交直线AB于点F,则F(x,x+1).∴PF=y F-y P=(x+1)-(x2-1)=-x2+x+2.S△ABP=S△PFA+S△PFB=PF(x F-x A)+PF(x B-x F)=PF(x B-x A)=PF∴S△ABP=(-x2+x+2)=-(x-)2+当x=时,y P=x2-1=-.∴△ABP面积最大值为,此时点P坐标为(,-).(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,则E(-,0),F(0,1),OE=,OF=1.在Rt△EOF中,由勾股定理得:EF==.令y=x2+(k-1)x-k=0,即(x+k)(x-1)=0,解得:x=-k或x=1.∴C(-k,0),OC=k.假设存在唯一一点Q,使得∠OQC=90°,如答图3所示,则以OC为直径的圆与直线AB相切于点Q,根据圆周角定理,此时∠OQC=90°.设点N为OC中点,连接NQ,则NQ⊥EF,NQ=CN=ON=.∴EN=OE-ON=-.∵∠NEQ=∠FEO,∠EQN=∠EOF=90°,∴△EQN∽△EOF,∴,即:,解得:k=±,∵k>0,∴k=.∴存在唯一一点Q,使得∠OQC=90°,此时k=.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

北海中考数学试题及答案

北海中考数学试题及答案

北海中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 若a和b是相反数,则下列哪个等式成立?A. a + b = 0B. a - b = 0C. a × b = 0D. a ÷ b = 0答案:A3. 一个等腰三角形的底边长为6cm,腰长为8cm,其周长是多少?A. 22cmB. 20cmC. 18cmD. 16cm答案:A4. 已知x = 3是方程2x - 5 = 1的解,那么方程的另一个根是多少?A. -1B. 1C. 5D. -5答案:A5. 一个圆的半径为5cm,那么这个圆的面积是多少?A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²答案:B6. 函数y = 2x + 3的图象经过第几象限?A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限答案:A7. 一个长方体的长、宽、高分别为2cm、3cm、4cm,其体积是多少?A. 24cm³B. 36cm³C. 48cm³D. 60cm³答案:A8. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 以上都不是答案:C9. 一个扇形的圆心角为60°,半径为4cm,那么这个扇形的面积是多少?A. 4π cm²B. 6π cm²C. 8π cm²D. 10π cm²答案:B10. 一个等差数列的首项为1,公差为2,那么第5项是多少?A. 9B. 10C. 11D. 12答案:A二、填空题(每题3分,共30分)1. 一个数的立方根等于它本身,这个数是____。

答案:0或±12. 一个三角形的内角和为____。

答案:180°3. 一个数的平方根是2,那么这个数是____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年广西北海市中考数学试题精版数学一、选择题(本大题共12小题,每小题3分,满分36分;在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡...上对应题目的答案号涂黑).1.计算(2)(3)-+-的结果是A.-5 B.-1 C.1 D.52.从上往下看如图所示的几何体,得到的图形是A.B.C.D.3.甲、乙、丙、丁四人参加射击训练,每人各射击20次,他们射击成绩的平均数是9.1环,各自的方差见如下表格:A.甲B.乙C.丙D.丁4.已知两圆的半径分别为1cm和4cm,圆心距为5cm,那么这两个圆的位置关系是A.内切B.相交C.外切D.外离5.在平面直角坐标系中,点(2,1)M-在A.第一象限B.第二象限C.第三象限D.第四象限6.如图,在△ABC中,D、E分别是边AB、AC的中点,已知DE=5,则BC的长为A.8B.9C.10 D.11B CA7.下列几何图形中,一定是轴对称图形的有等腰梯形平行四边形角圆弧A.1个B.2个C.3个D.4个8.下列命题中,不正确的是A .n 边形的内角和等于(2)180n -⋅︒B .两组对边分别相等的四边形是矩形C .垂直于弦的直径平分弦所对的两条弧D .直角三角形斜边上的中线等于斜边的一半9.已知一个扇形的半径为12,圆心角为150°,则此扇形的弧长是A .5πB .6πC .8πD .10π10.北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时,设原来火车的平均速度为x 千米/时,则下列方程正确的是A .2102101.8 1.5x x += B .2102101.8 1.5x x -= C .2102101.5 1.8x x += D .2102101.5 1.8x x-= 11.如图,△ABC 中,∠CAB =65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于A .30°B .40°C .50°D .60°DB12.函数21y ax =+与(0)ay a x=≠在同一平面直角坐标系中的图象可能是A .B .C .D . 二、填空题(本大题共6小题,每小题3分,满分18分,请将答案填在答题卡...上) 13.已知∠A =43°,则∠A 的补角等于 度.14.因式分解:222x y xy -= .15.若一元二次方程260x x m -+=有两个相等的实数根,则m 的值为 .16.某校男子足球队的年龄分布如下面的条形统计图所示,则这些足球队员的年龄的中位数是 岁.17.下列式子按一定规律排列:357,,,,,2468a a a a 则第2014个式子是 .18.如图,反比例函数(0)ky x x=>的图象交Rt △AOB 的斜边OA 于点D ,交直角边AB 于点C ,点B 在x 轴上.若△OAC 的面积为5,:1:2AD OD =,则k 的值为 .x三、解答题(本大题共8小题,满分66分.请在答题卡上答题,解答应写出必要的文字说明、演算步骤或推理过程)19.(本题满分6分)计算101()21)3---+ 20.(本题满分6分)解方程组33411x y x y +=⎧⎨-=⎩21.(本题满分8分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同.现有两辆汽车经过这个十字路口,(1)请用“树形图”或“列表法”列举出这两辆汽车行驶方向所有可能的结果;(2)求这两辆汽车都向左转的概率.23.(本题满分8分)下图是某超市地下停车场入口的设计图,请根据图中数据计算CE的长度.(保留小数点后两位;参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)24.(本题满分他计划用4万元的资金一次性购进这两种品牌手表共100块.设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得的利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案?(3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元?25.(本题满分10分)如图(1),E是正方形ABCD的边BC上的一个点(E与B、C两点不重合),过点E作射线EP⊥AE,在射线EP上截取线段EF,使得EF=AE,过点F作FG⊥BC交BC的延长线于点G.(1)求证:FG=BE;(2)连接CF ,如图(2),求证:CF 平分∠DCG ; (3)当34BE BC =,求sin ∠CFE 的值.(1) (2)26.(本题满分12分)如图(1),抛物线214y x x c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(2,0)-.(1)求此抛物线的解析式;(2)①若点D 是第一象限内抛物线上的一个动点,过点D 作DE ⊥x 轴于E ,连接CD ,以OE 为直径作⊙M ,如图(2),试求当CD 与⊙M 相切时D 点的坐标;②点F 是x 轴上的动点,在抛物线上是否存在一点G ,使以A 、C 、G 、F 四点为顶点的四边形是平行四边形?若存在,求存点G 的坐标;若不存在,请说明理由.xx2014年广西北海市初中毕业升学数学试题答案一、选择题1. A ;2.C ;3.A ;4. C ;5.B ;6.C ;7.D ;8.B ;9.D ;10.D ;11.C ;12. B 。

二、填空题13、137°;14、)2(y x xy -;15、9;16、10;17、40284027a ;18、8三、解答题19. 解:原式=3-4+2-1=020. 解:①+②得7x=14, ∴x=2,把x=2代入①得6+y=3, ∴y= -3∴原方程组的解是:⎩⎨⎧-==32y x两辆 (右转,直行)(2)由上表知:两辆汽车都向左转的概率是:9。

22. 解:(1)作图如右图1: (2)如图2,连OC ,∵OA=OC ,∠A=25° ∴∠AOC=50°,又∵∠C=40, ∴∠AOC+∠C=90°∴∠OCB=90° ∴OC ⊥BC∴BC 是⊙O 的切线。

23. 解:由已知有:∠BAE=22°,∠ABC=90°,∠CED=∠AEC=90° ∴∠BCE=158°,∴∠DCE=22°,又∵tan ∠BAE=ABBD,∴BD=A B ²tan ∠BAE, 又∵cos ∠BAE=CDCE, ∴CE= CD ²cos ∠BAE = (BD -BC) ²cos ∠BAE=( AB ²tan ∠BAE -BC) ²cos ∠BAE =(10×0.4040-0.5) ×0.9272≈3.28(m) 24.解:(1)y = 140x+6000,(x ≤50)(2)令y ≥12600,则140x+6000≥12600,∴x ≥47.1,又∵x ≤50 ∴经销商有以下三种进货方案:② (3)∵140>0,∴y 随x 的增大而增大,∴x=50时y 取得最大值, 又∵140×50+6000=13000∴选择方案③进货时,经销商可获利最大,最大利润是13000元。

25. 解:(1)证明:∵EP ⊥AE ,∴∠AEB+∠GEF=90°,又∵∠AEB+∠BAE=90°,∴∠GEF=∠BA E ,又∵FG ⊥BC ,∴∠ABE=∠EGF=90°,在△ABE 与△EGF 中,⎪⎩⎪⎨⎧=∠=∠∠=∠EF AE GEF BAE EGFABE ,∴△ABE ≌△EGF ,∴FG=BE(2)由(1)知:BC=AB=EG ,∴BC -EC=EG -EC ,∴BE=CG ,又∵FG=BE ,∴FG=CG ,又∵∠CGF=90°,∴∠FCG=45°=21∠DCG ,∴CF 平分∠DCG 。

(3)如图,作CH ⊥EF 于H ,则△EHC ∽△EGF ,∴GF HC =EFEC∵BC BE =43,令BE=3a ,则EC=3a ,EG=4a ,FG=CG=3a ,∴EF=5a ,CF=32a ,∴a HC 3=aa 5,HC=53a ,∴sin ∠CFE=CF HC =10226. 解:(1)由已知有:-410)2()2(2=+-+-c ,∴c=3,抛物线的解析式是:3412++-=x x y (2)①令D (x ,y ),(x >0,y >0), 则E (x ,0),M (2x,0),由(1)知C (0,3), 连接MC 、MD ∵DE 、CD 与⊙O 相切,∴∠CMD=90°,∴△COM ∽△MED ,∴MECO =ED OM ,∴23x =y x2,又∵3412++-=x x y ,∴x=)51(23±,又∵x >0,∴x=)51(23+,∴)53(83+=y ,D 点的坐标是:()51(23+,)53(83+)。

②假设存在满足条件的点G (a ,b ).若构成的四边形是□ACGF ,(下图1)则G 与C 关于直线x=2对称,∴G 点的坐标是:(4,3); 若构成的四边形是□ACFG ,(下图2)则由平行四边形的性质有b=-3, 又∵-41332-=++a a ,∴a=2±27,此时G 点的坐标是:(2±27,-3)图1 图2。

相关文档
最新文档