高中物理 第4章 波粒二象性 1 量子概念的诞生自我小测 教科版选修3-5
2021年高中物理选修三第四章《原子结构和波粒二象性》测试卷(答案解析)(1)
一、选择题1.彩虹是由阳光射入雨滴(视为球形)时,经一次反射和两次折射而产生色散形成的。
现有白光束由图示方向射入雨滴,a 、b 是经反射和折射后的其中两条出射光线,如图所示,下列说法正确的是( )A .光线a 在雨滴中传播时的波长较长B .光线a 在雨滴中的折射率较大C .光线a 在雨滴中的传播速度较大D .若分别让a 、b 两色光分别照射同一光电管,若a 光能引起光电效应,则b 光一定也能 2.对图中的甲、乙、丙、丁图,下列说法中正确的是( )A .图甲中,卢瑟福通过分析α粒子散射实验结果,发现了质子和中子B .图乙是一束单色光进入平行玻璃砖后传播的示意图,当入射角i 逐渐增大到某一值后不会再有光线从bb ′面射出C .图丙是用干涉法检测工件表面平整程度时得到的干涉图样,弯曲的干涉条纹说明被检测的平面在此处是凸起的D .图丁中的M 、N 是偏振片,P 是光屏,当M 固定不动缓慢转动N 时,光屏P 上的光亮度将发生变化,此现象表明光是横波3.如图,是氢原子的能级图,各能级能量关系为12n E E n=,其中E 1为基态能量,n 为量子数。
当原子从5n =能级跃迁到3n =能级时,释放出的一个光子能量为E ,下列说法正确的是( )A .一个处于5n =的氢原子向低能级跃迁时,最多能辐射出10种不同频率的光子B .从5n =能级向低能级跃迁,跃迁到4n =能级辐射的光波长最短C .处于3n =的氢原子跃迁到基态吸收光子能量为12.5ED .某金属的逸出功为E ,用4n =跃迁到2n =辐射的光子照射该金属,逸出光电子的最大初动能为419256E 4.如图,当电键K 断开时,用光子能量为2.5eV 的一束光照射阴极P ,发现电流表读数不为零。
合上电键,调节滑线变阻器,发现当电压表读数小于0.60V 时,电流表读数仍不为零;当电压表读数大于或等于0.60V 时,电流表读数为零。
由此可知阴极材料的逸出功为( )A .1.9eVB .0.6eVC .2.5eVD .3.1eV 5.氢原子的能级如图所示,已知可见光的光子能量范围约为1.62~3.11 eV 。
教科版高中物理选修3-5第四章第4节实物粒子的波粒二象性(40张ppt)
能量为E、动量为p的粒子与 频率为v、波长为的波相联系, 并遵从以下关系:
E h
h P
这种和实物粒子相联系的波称为 德布罗意波(物质波或概率波),其波长 称为德布罗意波长。
1.一切实物粒子都有波动性
后来,大量实验都证实了:质子、中子和原 子、分子等实物微观粒子都具有波动性,并都满 足德布洛意关系。 一颗子弹、一个足球有没有波动性呢?
2.一个一个电子依次入射双缝的衍射实验:
7个电子
100个电子
3000
20000 70000
光的波粒二象性
一:光波具有粒子性 光子的能量
2 E=mc =hv
光子的动量
p mu h
思考:能量E、动量p都是粒子 的特征,实物粒子是否具有波 的特征呢? 二:粒子的波动性
德布罗意的假设:
实物粒子也具有波动性
物质波振幅的平方与粒子在该处邻近出现的概率成 正比。 电子出现的概率反映该处的波强。
实物粒子的波动性
光(波)具有粒子性 实物粒子具有波动性吗? 一、德布罗意物质波假设 L.V. de Broglie从自然界的对称性出发, 认为: 既然光(波)具有粒子性 那么实物粒子也应具有波动性。
1924.11.29德布洛意把题为“量子理论的研究” 的博士论文提交巴黎大学。
二、德布罗意波的波长 他在论文中指出:一个能量为E、动量为 p
1929诺贝尔物理学奖
• L.V.德布罗意 • 电子波动性的理论研究
1937诺贝尔物理学奖 • C.J.戴维孙 • 通过实验发现晶体对电 子的衍射作用
电子衍射
X光衍射
电子衍射与X光衍射图样比较
X射线经晶体的衍射图
电子射线经晶体的衍射图
类似的实验:
高中物理 第四章 波粒二象性 1、2 量子概念的诞生 光电效应与光的量子说教案 教科版选修3-5-教
1 量子概念的诞生2 光电效应与光的量子说一、热辐射、黑体与黑体辐射1.热辐射我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关.2.黑体指能够完全吸收入射的各种波长的电磁波而不发生全反射的物体.3.一般材料物体的辐射规律辐射电磁波的情况除与温度有关外,还与材料的种类及表面状况有关.4.黑体辐射的实验规律黑体辐射电磁波的强度按波长的分布只与黑体的温度有关,如图所示.(1)随着温度的升高,各种波长的辐射强度都增加.(2)随着温度的升高,辐射强度的极大值向波长较短的方向移动.在火炉旁边有什么感觉?投入炉中的炭块颜色怎样变化?说明了什么问题?提示:我们靠近火炉时,马上会感到热,这是由于炉中燃烧的炭块在向外辐射能量.我们观察投入炉中炭块的颜色,当温度较低时,炭块呈暗红色,随着温度的不断升高,它变得赤红,橙红,到最后由黄色变成白色,这表明炭块是以电磁波的形式向外辐射能量,而且在不同温度下辐射强度按电磁波波长有不同的分布.二、能量子1.定义普朗克认为,振动着的带电微粒的能量只能是某一最小能量值ε的整数倍,当带电微粒辐射或吸收能量时,也是以这个最小能量值为单位一份一份地辐射或吸收的,这个不可再分的最小能量值ε叫做能量子.2.能量子大小ε=hν,其中ν是电磁波的频率,h称为普朗克常量.h=6.626×10-34J·s(一般取h=6.63×10-34J·s).3.能量的量子化在微观世界中能量是量子化的,或者说微观粒子的能量是分立的.三、光电效应的实验规律1.光电效应照射到金属表面的光,能使金属中的电子从表面逸出的现象.2.光电子光电效应中发射出来的电子.3.爱因斯坦对光电效应的解释(1)存在着饱和光电流:在光的颜色不变的情况下,入射光越强,饱和电流越大.这表明对于一定颜色的光,入射光越强,单位时间内发射的光电子数越多.(2)存在着遏止电压和截止频率:光电子的最大初动能与入射光的频率有关,而与入射光的强弱无关.当入射光的频率低于截止频率时不能发生光电效应.(3)光电效应具有瞬时性:光电效应几乎是瞬时发生的,从光照射到产生光电流的时间不超过10-9s.4.逸出功使电子脱离某种金属所做功的最小值. 不同金属的逸出功不同.将锌板与验电器连在一起,然后用紫外线灯照射锌板,会发现一个奇妙的现象,验电器的指针发生了偏转,这一现象说明锌板在紫外线照射下带电了.为什么会这样呢?提示:这一现象就是著名的光电效应现象,进一步的研究表明,在光照的情况下,从锌板上有电子逸出,锌板带上了正电荷.四、爱因斯坦的光子说与光电效应方程 1.光子说光不仅在发射和吸收时能量是一份一份的,而且光本身就是由一个个不可分割的能量子组成的,频率为ν的光的能量子为hν,这些能量子被称为光子.2.爱因斯坦的光电效应方程 (1)表达式:hν=12mv 2+A .(2)物理意义:金属中电子吸收一个光子获得的能量是hν,这些能量一部分用于克服金属的逸出功A ,剩下的表现为逸出后电子的初动能E k .考点一黑体辐射的规律(1)对黑体的理解:绝对的黑体实际上是不存在的,但可以用某装置近似地代替.如图所示,如果在一个空腔壁上开一个小孔,那么射入小孔的电磁波在空腔内表面会发生多次反射和吸收,最终不能从空腔射出,这个小孔就成了一个绝对黑体.(2)对黑体辐射的理解:任何物体都具有不断辐射、吸收、反射电磁波的本领.辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布.这种谱分布与物体本身的特性及其温度有关,因而被称为热辐射.(3)一般物体与黑体的比较:(4)对热辐射的理解①在任何温度下,任何物体都会发射电磁波,并且其辐射强度按波长的分布情况随物体的温度而有所不同,这是热辐射的一种特性.在室温下,大多数物体辐射的是不能引起视觉的波长较长的电磁波——红外光;但当物体被加热到500 ℃左右时,开始发出暗红色的可见光.随着温度的不断上升,辉光逐渐亮起来,而且热辐射中较短波长的成分越来越多,即能引起视觉的电磁波越来越多,大约在1 500 ℃时变成明亮的白炽光.这说明同一物体在一定温度下所辐射的能量在不同光谱区域的分布是不均匀的,而且温度越高光谱中与能量最大的辐射相对应的频率也越高.②在一定温度下,不同物体所辐射的光谱成分有显著的不同.例如,将钢加热到约800 ℃时,就可观察到明亮的红色光,但在同一温度下,熔化的水晶却不辐射可见光.【例1】(多选)下列叙述正确的是( )A.一切物体都在辐射电磁波B.一般物体辐射电磁波的情况只与温度有关C.黑体辐射电磁波的强度按波长的分布只与黑体温度有关D.黑体能够完全吸收入射的各种波长的电磁波根据热辐射的定义及黑体辐射的实验规律直接判断即可.【解析】根据热辐射的定义,A正确;因为一般物体辐射电磁波的情况除与温度有关外,还与材料种类和表面状况有关,而黑体辐射只与黑体的温度有关,故B错误,C正确;根据黑体的定义知D正确.【答案】ACD总结提能黑体同其他物体一样也在辐射电磁波,黑体的辐射规律最为简单,黑体辐射强度只与温度有关.下列描绘两种温度下黑体辐射强度与波长关系的图中,符合黑体辐射规律的是( A )解析:根据黑体辐射的规律,温度越高,辐射强度越大,辐射出的波频率高的比例增大,即波长小的波比例增大,故选A.考点二能量子的理解和计算1.能量子:超越牛顿的发现(1)普朗克的量子化假设:①能量子:振动着的带电微粒的能量只能是某一最小能量值ε的整数倍.例如,可能是ε或2ε、3ε……当带电微粒辐射或吸收能量时,也是以这个最小能量值为单位一份一份地辐射或吸收的.这个不可再分的最小能量值ε叫做能量子;②能量子公式:ε=hν,ν是电磁波的频率,h是一个常量,称为普朗克常量,其值h=6.63×10-34J·s;③能量的量子化:在微观世界中能量不能连续变化,只能取分立值,这种现象叫做能量的量子化.(2)能量子假说的实验证实:普朗克公式与实验结果比较,发现它与实验结果“令人满意地相符”.如图所示,曲线是根据普朗克的公式作出的,小圆代表实验值.(3)普朗克的能量子假说的意义:普朗克的能量子假说,使人类对微观世界的本质有了全新的认识,对现代物理学的发现产生了革命性的影响.2.能量的量子化微观粒子的能量与宏观世界的能量的认识不同.例如,一个宏观的弹簧振子,把小球推离平衡位置后开始振动,能量为E.第二次我们可以把它推得稍远一些,使它振动的能量稍多一些,例如1.2E或1.3E.推得更远,能量更大.弹簧振子的能量不是某一个最小值的整数倍.只要在弹性限度内,我们可以把小球推到任何位置,其能量可以是任何值.即对弹簧振子的能量,我们说能量值是连续的;而普朗克的假说则认为,微观粒子的能量是量子化的,或说微观粒子的能量是分立的.【例2】一盏电灯发光功率为100 W,假设它发出的光向四周均匀辐射,光的平均波长λ=6.0×10-7m,在距电灯10 m远处,以电灯为球心的球面上,1 m2的面积每秒通过的光子(能量子)数约为( )A.2×1017B.2×1016C.2×1015D.2×10231.每个光子的能量是多少?2.电灯每秒钟产生的光能是多少,这些光能包含多少个光子?【解析】光是电磁波,辐射能量也是一份一份进行的,100 W灯泡每秒产生光能E=100 J,设电灯每秒发出的光子数为n,E=nhν=nh cλ,在以电灯为球心的球面上,1 m2的面积每秒通过的光子(能量子)数n′=n4πr2,n′=Eλ4πr2hc=100×6.0×10-74×3.14×102×6.63×10-34×3×108≈2×1017(个).【答案】 A总结提能 此类题一定要注意空间想象能力,并把画面想象出来.同时要注意关键字眼,如“每秒”“1 m 2”的理解.太阳光垂直射到地面上时,地面上1 m 2接收的太阳光的功率是1.4 kW ,其中可见光部分约占45%.(1)假设认为可见光的波长约为0.55 μm,日地间距离R =1.5×1011m .普朗克常量h =6.6×10-34J·s,估算太阳每秒辐射出的可见光光子数为多少?(2)若已知地球的半径为6.4×106m ,估算地球接收的太阳光的总功率. 答案:(1)4.9×1044个 (2)1.8×1014kW解析:(1)设地面上垂直阳光的每平方米面积上每秒接收的可见光光子数为n ,则有P ×45%=nh cλ.解得:n =0.45λP hc =0.45×0.55×10-6×1.4×1036.6×10-34×3×108个·m -2=1.75×1021 个·m -2. 则所求可见光光子数N =n ·4πR 2=1.75×1021×4×3.14×(1.5×1011)2=4.9×1044(个).(2)地球接收阳光的总功率P 地=P πr 2=1.4×3.14×(6.4×106)2kW≈1.8×1014kW.考点三 光电效应现象及其实验规律1.光电效应如图所示,用紫外线灯照射锌板,与锌板相连的验电器就带正电,即锌板也带正电,这说明锌板在光的照射下发射了电子.(1)定义:在光的照射下物体的电子逸出的现象,叫做光电效应,逸出的电子叫做光电子.(2)光电效应的实验电路实验电路如图所示,阴极K和阳极A是密封在真空玻璃管中的两个电极,K在受到光照时能够发射光电子,电源加在K与A之间,其电压通过分压电路可调,正负极可以对调.电源按图示极性连接时,阳极A吸收阴极K发射的光电子,在电路中形成光电流,电流表可测量光电流.2.光电效应的实验规律(1)实验结果①饱和电流在入射光的强度与频率不变的情况下,I-U的实验曲线如图所示.曲线表明,当加速电压U增加到一定值时,光电流达到饱和值I m.这是因为单位时间内从阴极K逸出的光电子全部到达阳极A.若单位时间内从阴极K 上逸出的光电子数目为n ,则饱和电流I m =ne .式中e 为一个电子的电荷量,另一方面,当电压U 减小到零,并开始反向时,光电流并没有降为零,这就表明从阴极K 逸出的光电子具有初动能.所以尽管有电场阻碍它们运动,仍有部分光电子到达阳极A.②遏止电压当反向电压等于U c 时,就能阻止所有的光电子飞向阳极A ,使光电流降为零,这个电压叫遏止电压,它使具有最大初速度的电子也不能到达阳极A.如果不考虑在测量遏止电压时回路中的接触电势差,那么我们就能根据遏止电压U c 来确定电子的最大初速度和最大初动能,即E km =12mv 2m =eU c .③光的频率相同时,光电子的最大初动能相同在用相同频率不同强度的光去照射阴极K 时,得到的I -U 曲线如图1所示.它显示出对于不同强度的光,U c 是相同的.这说明同频率、不同强度的光所产生的光电子的最大初动能是相同的.④截止频率(极限频率)用不同频率的光去照射阴极K 时,实验结果是:频率越高,U c 越大,如图2所示;并且ν与U c 呈线性关系,如图3所示.频率低于νc 的光,不论强度多大,都不能产生光电子,因此,νc 称为截止频率,对于不同的材料,截止频率不同.(2)实验规律①饱和电流I m的大小与入射光的强度成正比,也就是单位时间内逸出的光电子数目与入射光的强度成正比.②光电子的最大初动能(或遏止电压)与入射光线的强度无关(如图1所示,图中I O1、I O2、I O3表示入射光强度),而只与入射光的频率有关.频率越高,光电子的初动能就越大(见图3).③频率低于νc的入射光,无论光的强度多大,照射时间多长,都不能使光电子逸出.④光的照射和光电子的逸出几乎是同时的,在测量的精度范围内(<10-9s)观察不出这两者间存在滞后现象.【例3】利用光电管研究光电效应实验,如图所示,用频率为ν1的可见光照射阴极K,电流表中有电流通过,则( )A.用紫外线照射,电流表中不一定有电流通过B.用红外线照射,电流表中一定无电流通过C.用频率为ν1的可见光照射阴极K,当滑动变阻器的滑动触头移到a端,电流表中一定无电流通过D.用频率为ν1的可见光照射阴极K,当滑动变阻器的滑动触头向b端滑动时,电流表示数可能不变光电效应实验中发现,入射光的频率越高,越易发生光电效应,且光电流达到最大值时,不会再增大.【解析】因为紫外线的频率比可见光的频率高,所以用紫外线照射时,电流表中一定有电流通过,A错误.因为不知道阴极K的截止频率,所以用红外线照射时,不一定发生光电效应,B错误.即使U AK=0,电流表中也有电流,C错误.当滑动触头向b端滑动时U AK增大,阳极A吸收光电子的能力增强,光电流会增大,当射出的所有光电子都能到达阳极A时,光电流达到最大,即饱和电流,若在滑动前,光电流已经达到饱和电流,那么再增大U AK,光电流也不会增大,D正确.故正确答案为D.【答案】 D总结提能理解好实验现象,理解好光电效应发生的条件是解题的关键.在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器的指针张开了一个角度,如图所示,这时( B )A.锌板带正电,指针带负电B.锌板带正电,指针带正电C.锌板带负电,指针带负电D.锌板带负电,指针带正电解析:发生光电效应时有电子从锌板上跑出来,使锌板及验电器的指针都带正电,B正确.考点四 光电效应方程的理解和应用1.光子说(1)内容:光不仅在发射和吸收时能量是一份一份的,而且光本身就是由一个个不可分割的能量子组成的,这些能量子称为光子.(2)公式:光子的能量ε=hν,h 为普朗克常量,ν为光的频率,h =6.626×10-34 J·s. 2.光电效应方程(1)表达式:E k =hν-W 0.(2)理解:①在光电效应中,金属中的电子吸收一个光子的能量hν,这些能量中的一部分用来克服金属的逸出功W 0,剩下的表现为逸出后电子的初动能E k .②光电效应方程包含了产生光电效应的条件:E k =hν-W 0>0,亦即hν>W 0,ν>W 0h =νc ,而νc =W 0h就是金属的截止频率.(3)最大初动能E k发生光电效应时,电子克服金属原子核的引力逸出时,具有的动能大小不同,金属表面上的电子吸收光子后直接逸出时具有的动能最大,称为最大初动能,用E k 表示.即逸出的电子动能在0~E k 之间.3.光电效应曲线(1)E k -ν曲线①爱因斯坦光电效应方程表明,光电子的最大初动能E k 与入射光的频率ν成线性关系,与光强无关,如图所示,由光电效应方程知,当hν>W 0时,E k >0,即有电子逸出,截止频率νc =W 0h.②电子一次性吸收光子的全部能量,不需要积累能量的时间,光电流自然几乎是瞬时产生的.③光强较大时,包含的光子数较多,照射金属时产生的光电子较多,因而饱和电流大,所以饱和电流与光强成正比.根据光电效应方程知:E k =hν-W 0,光电子的最大初动能E k 与入射光的频率ν呈线性关系,即E k -ν图象是一条直线.上图是光电子最大初动能E k 随入射光频率ν的变化曲线.横轴上的截距是阴极金属的截止频率或极限频率;纵轴上的截距,是阴极金属的逸出功负值;斜率为普朗克常量.(2)I -U 曲线右图所示的光电流强度I 随光电管两极板间电压U 的变化曲线中,I m 为饱和光电流,U c 为遏止电压.(1)利用eU c =12m e v 2m 可得光电子的最大初动能E km . (2)利用E k -ν图线可得极限频率νc 和普朗克常量h .4.光子说对光电效应规律的解释(1)由于光的能量是一份一份的,那么金属中的电子也只能一份一份地吸收光子的能量.而且这个传递能量的过程只能是一个光子对一个电子的行为.如果光的频率低于截止频率,则光子提供给电子的能量不足以克服原子的束缚,就不能发生光电效应.(2)当光的频率高于截止频率时,能量传递给电子以后,电子摆脱束缚要消耗一部分能量,剩余的能量以光电子的动能形式存在,这样光电子的最大初动能E k =12m e v 2c =hν-W 0,其中W 0为金属的逸出功,因此光的频率越高,电子的初动能越大.(3)电子接收能量的过程极其短暂,接收能量后的瞬间立即挣脱束缚,所以光电效应的发生也几乎是瞬间的.(4)发生光电效应时,单位时间内逸出的光电子数与光强度成正比,光强度越大意味着单位时间内打在金属上的光子数越多,那么逸出的光电子数目也就越多.【例4】(多选)下列对光电效应的解释,正确的是( )A.金属内的每个电子要吸收一个或一个以上的光子,当它积累的能量足够大时,就能逸出金属表面B.如果入射光子的能量小于金属表面的电子克服原子核的引力而逸出时所需做的最小功,便不能发生光电效应C.发生光电效应时,入射光越强,光子的能量就越大,光电子的最大初动能就越大D.由于不同金属的逸出功是不相同的,因此使不同金属产生光电效应的入射光的最低频率也不同1.根据光子说的内容可知,光子的能量由谁决定,与光的强度是否有关?2.金属表面的电子成为光电子,要克服哪些力而做功,需要的能量从哪儿获得?【解析】根据爱因斯坦的光子说,光的能量是由光的频率决定的,与光强无关.入射光的频率越大,发生光电效应时产生的光电子的最大初动能越大.但要使电子离开金属表面,必须使电子具有足够的动能,而电子的动能只能来源于入射光的光子能量,但每个电子只能吸收一个光子,不能吸收多个光子.因此当入射光的频率低于截止频率时,即使照射时间足够长,也不会发生光电效应.使电子脱离某种金属所做功的最小值,叫做这种金属的逸出功,不同金属的逸出功不同.故正确答案为B、D.【答案】BD总结提能光电效应规律中的两条线索、两个关系(1)两条线索:(2)两个关系:光强→光子数目多→发射光电子多→光电流大;光子频率高→光子能量大→产生光电子的最大初动能大.现有a、b、c三束单色光,其波长关系为λa>λb>λc,用b光束照射某种金属时,恰能发生光电效应.若分别用a光束和c光束照射该金属,则可以断定( A )A.a光束照射时,不能发生光电效应B.c光束照射时,不能发生光电效应C.a光束照射时,释放出的光电子数目最多D.c光束照射时,释放出的光电子的最大初动能最小解析:由a、b、c三束单色光的波长关系λa>λb>λc,及波长、频率的关系知:三束单色光的频率关系为:νa<νb<νc.故当b光恰能使金属发生光电效应时,a光必然不能使该金属发生光电效应,c光必然能使该金属发生光电效应,A正确,B错误;又因为发生光电效应时释放的光电子数目与光照强度有关,光照越强,光电子数目越多,由于光照强度未知,所以光电子数目无法判断,C错误;而光电子的最大初动能与入射光频率有关,频率越高,最大初动能越大,所以c光照射时释放出的光电子的最大初动能最大,D错误,故答案为A.重难疑点辨析光电效应问题的分析方法有关光电效应的问题主要有两个方面:一个是关于光电效应现象的判断,另一个就是运用光电效应方程进行简单的计算.解题的关键在于掌握光电效应规律,明确概念之间的决定关系.即有:2.应用爱因斯坦光电效应方程解题的步骤:(1)分析光电效应现象,根据需要建立光电效应方程,或画出光电效应方程所对应的图象.(2)根据eU c =12mv 2c 求出最大初动能. (3)根据饱和光电流与照射光频率的关系图象得到材料恰能产生光电效应时照射光的频率ν0,由hν0=W 0可得逸出功.(4)联立以上各式求解未知物理量.【典例】 用不同频率的紫外线分别照射钨和锌的表面而产生光电效应,可得到光电子最大初动能E k 随入射光频率ν变化的E k -ν图象.已知钨的逸出功是3.28 eV ,锌的逸出功是3.24 eV ,若将二者的图线画在同一个E k -ν坐标图中,用实线表示钨、虚线表示锌,则正确反映这一过程的图是如图所示中的( )【解析】 依据光电效应方程E k =hν-W 可知,E k -ν图线的斜率代表了普朗克常量h ,因此钨和锌的E k -ν图线应该平行.图线的横轴截距代表了极限频率νc ,而νc =W h,因此钨的νc 大些.综上所述,B 图正确.【答案】 B本题最大的特点是利用数学图象解决物理问题.不能把物理问题转化为数学问题,再利用数学函数关系解决物理问题是最易出现的错误.只有在理解光电效应方程的基础上,把其数学关系式与数学函数图象结合起来,经分析、推导得出图象的斜率及在图象横、纵坐标轴上的截距所对应的物理量,从而理解它们的物理意义,有效提高自身应用数学解决物理问题的能力.1.能正确解释黑体辐射实验规律的是( B )A.能量的连续经典理论B.普朗克提出的能量量子化理论C.以上两种理论体系任何一种都能解释D.牛顿提出的能量微粒说解析:根据黑体辐射的实验规律,随着温度的升高,一方面各种波长的辐射强度都增加;另一方面,辐射强度的极大值向波长较短的方向移动,只能用普朗克提出的能量量子化理论才能得到较满意的解释,故选项B正确.2.(多选)关于普朗克“能量量子化”的假设,下列说法正确的是( AD )A.认为带电微粒辐射或吸收能量时,是一份一份的B.认为能量值是连续的C.认为微观粒子的能量是量子化的、连续的D.认为微观粒子的能量是分立的解析:普朗克的理论认为带电微粒辐射或吸收能量时,是一份一份的,微观粒子的能量是量子化的,是分立的,故选项A、D正确.3.(多选)光电效应实验的装置如图所示,则下列说法中正确的是( AD )A.用紫外线照射锌板,验电器指针会发生偏转B.用红色光照射锌板,验电器指针会发生偏转C.锌板带的是负电荷D.使验电器指针发生偏转的是正电荷解析:紫外线频率大于锌板的极限频率,故锌板会发生光电效应,向外放出光电子,从而使锌板和验电器带上正电荷,所以A、D正确.4.(多选)在光电效应实验中,分别用频率为νa、νb的单色光a、b照射到同种金属上,测得相应的遏止电压分别为U a和U b、光电子的最大初动能分别为E k a和E k b.h为普朗克常量.下列说法正确的是( BC )A.若νa>νb,则一定有U a<U bB.若νa>νb,则一定有E k a>E k bC.若U a<U b,则一定有E k a<E k bD.若νa>νb,则一定有hνa-E k a>hνb-E k b解析:设该金属的逸出功为W,根据爱因斯坦光电效应方程有E k=hν-W,同种金属的W不变,则逸出光电子的最大初动能随ν的增大而增大,B项正确;又E k=eU,则最大初动能与遏止电压成正比,C项正确;根据上述有eU=hν-W,遏止电压U随ν增大而增大,A 项错误;又有hν-E k=W,W相同,则D项错误.5.如图所示,擦得很亮的绝缘锌板A水平固定放置,其下方水平放有接地的铜板B,两板间距离为d,两板面积均为S,正对面积为S′,且S>S′.当用弧光灯照射锌板上表面后,A、B板间一带电液滴恰好处于静止状态.试分析:(1)液滴带何种电荷?(2)用弧光灯再照射A板上表面,液滴做何种运动?(3)要使液滴向下运动,应采取哪些措施?(一种即可)答案:(1)负电(2)向上运动(3)将B板向右平移解析:(1)锌板受弧光灯照射发生光电效应,有光电子从锌板A的上表面逸出,而使A 板带正电荷,接地的铜板B由于静电感应而带负电,A、B板间形成方向向下的匀强电场,由液滴处于静止状态知qE=mg,所以液滴带负电.(2)当再用弧光灯照射A板上表面时,光电效应继续发生,使A板所带正电荷增加,A、B板间场强增强,所以qE>mg,使液滴向上运动.(3)要使液滴向下运动,即mg>qE,mg和q不变,则必须使E变小.因A板电荷量Q不变,则当B板向右移动,增大两板正对面积时,电容增大,两板间电势差减小,而d不变,故场强E变小,qE<mg,则液滴向下运动.。
3-5第4章波粒二象性
3-5第四章波粒二象性1 量子概念的诞生这个不要求掌握一、黑体与黑体辐射1.热辐射:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射.2.黑体:如果某物体能够全部吸收外来电磁波而不发生反射,这种物体就称为绝对黑体,简称黑体.3.黑体辐射:加热腔体,黑体表面就向外辐射电磁波,这就是黑体辐射.4.黑体辐射的实验规律(1)黑体辐射电磁波的强度按波长的分布只与黑体的温度有关.(2)对黑体辐射的解释:维恩公式在短波区与实验非常接近,在长波区则与实验偏离很大;瑞利公式在长波区与实验基本一致,但在短波区与实验严重不符,如图1所示.二、能量子1.定义:振动着的带电微粒的能量只能是某一最小能量值的整数倍,最小的一份能量为ε=hν,称为能量子.2.大小:不可再分的最小能量值ε=hν,其中ν是电磁波的频率,h是普朗克常量,h=6.63×10-34 J·s. 2光电效应与光的量子说一、光电效应现象1.光电效应:当光照射在金属表面上时,金属中的电子会因吸收光的能量而逸出金属表面,这种现象称为光电效应.2.光电效应中的光包括不可见光和可见光.3.光电子:光电效应中发射出来的电子.其本质还是电子.二、光电效应的规律1.光电效应的四条规律(1)极限频率(也叫截止频率)的存在:入射光的频率必须大于ν0,才能产生光电效应,与入射光强度及照射时间无关.(2)光电子的最大初动能随着入射光频率的增加而增加,而与入射光强度无关.(3)当产生光电效应时,光电流大小随入射光强度的增大而增大.(4)光电效应的发生几乎是瞬时的,一般不超过10-9_s.2.两个决定关系(1)入射光频率决定着能否发生光电效应和光电子的最大初动能;(2)入射光强度决定着单位时间内发射的光子数.三、光量子概念的提出光电效应方程1.光子:光本身就是由一个个不可分割的能量子组成的,这些能量子被称为光子,频率为ν的光子的能量为hν.2.光电效应方程(1)表达式:hν=12m v2+W或12m v2=hν-W.(2)对光电效应方程的理解①逸出功的存在:金属内的电子吸收了一个光子的能量hν后,一部分消耗于电子由金属内逸出表面时所需做的功W,叫逸出功;另一部分转化为光电子动能12m v2.②光电效应方程说明了产生光电效应的条件.若有光电子逸出,则光电子的最大初动能必须大于零,即E k =hν-W >0,亦即hν>W ,ν>Wh =ν0,而ν0=Wh恰好是光电效应的截止频率.3.E k -ν曲线.如图3所示是光电子最大初动能E k 随入射光频率ν的变化曲线.这里,横轴上的截距是截止频率(或极限频率);纵轴上的截距是逸出功的负值;斜率为普朗克常量.图3⎩⎪⎪⎪⎨⎪⎪⎪⎧黑体辐射的特性能量子:普朗克假说ε=hν光电效应⎩⎪⎨⎪⎧光现象转化电现象实质:电子吸收光子光电子实验规律光子说:ε=hν爱因斯坦光电效应方程⎩⎪⎨⎪⎧hν=12m v 2+W 解释光电效应3 光的波粒二象性4 实物粒子的波粒二象性5 不确定关系一、光的波粒二象性 概率波1.康普顿效应X 射线经物质散射后波长变长的现象. 2.光的波粒二象性(1)光的干涉和衍射现象说明光具有波动性,光电效应和康普顿效应说明光具有粒子性. (2)光子的能量ε=hν,光子的动量p =hλ.(3)光子既有粒子的特征,又有波的特征;即光具有波粒二象性. 3.对光的波粒二象性的理解(1)大量光子产生的效果显示出波动性;个别光子产生的效果显示出粒子性.(2)光子的能量与其对应的频率成正比,而频率是描述波动性特征的物理量,因此ε=hν揭示了光的粒子性和波动性之间的密切联系.(3)频率低、波长长的光,波动性特征显著,而频率高、波长短的光,粒子性特征显著. (4)光在传播时体现出波动性,在与其他物质相互作用时体现出粒子性.光的粒子性和波动性组成一个有机的统一体. 4.光是一种概率波光子和电子、质子等实物粒子一样,具有能量和动量.和其他物质相互作用时,粒子性起主导作用;在光的传播过程中,光子在空间各点出现的可能性的大小(概率),由波动性起主导作用,因此称光波为概率波. 二、德布罗意物质波假说1.任何运动着的物体,小到电子、质子,大到行星、太阳,都有一种波与它相对应,这种波叫物质波,又叫德布罗意波.物质波波长、频率的计算公式为λ=h p ,ν=εh.我们之所以看不到宏观物体的波动性,是因为宏观物体的动量太大,德布罗意波长太小的缘故. 2.德布罗意假说是光的波粒二象性的推广,即光子和实物粒子都既具有粒子性又具有波动性,即具有波粒二象性.与光子对应的波是电磁波,与实物粒子对应的波是物质波. 3.物质波的实验验证(1)1927年戴维孙和汤姆孙分别利用晶体做了电子束衍射的实验,从而证实了电子的波动性. (2)人们陆续证实了质子、中子以及原子、分子的波动性,对于这些粒子,德布罗意给出的ν=εh 和λ=hp 关系同样正确.三、不确定关系1.微观粒子运动的位置不确定量Δx 和动量的不确定量Δp x 的关系式为Δx ·Δp x ≥h4π,其中 h 是普朗克常量,这个关系式叫不确定关系.2.不确定关系告诉我们,如果要更准确地确定粒子的位置(即Δx 更小),那么动量的测量一定会更不准确(即Δp x 更大),也就是说,不可能同时准确地知道粒子的位置和动量,也不可能用“轨迹”来描述粒子的运动.一、光子能量的计算1.一个光子的能量ε=hν,其中h 是普朗克常量,ν是光的频率. 2.一束光的能量E =nhν,n 为光子数目. 3.频率与波长的关系:ν=cλ.二、光电效应的规律和光电效应方程 1.光电效应的实验规律(1)任何一种金属都有一个极限频率,入射光的频率必须高于这个极限频率,才能发生光电效应.低于极限频率时,无论光照强度多强,都不会发生光电效应.(2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大. (3)入射光照射到金属上时,光电子的发射几乎是瞬时的,一般不超过10-9 s.(4)当入射光的频率高于极限频率时,单位时间内从金属表面逸出的光电子数目与入射光的强度成正比.2.爱因斯坦光电效应方程E k =hν-W .W 表示金属的逸出功,如果ν0表示金属的极限频率,则W =hν0.三、波粒二象性的理解 1.光的波粒二象性(1)光的干涉、衍射、偏振说明光具有波动性,光电效应现象、康普顿效应则证明光具有粒子性,因此,光具有波粒二象性,对于光子这样的微观粒子只有从波粒二象性出发,才能统一说明光的各种行为.(2)大量光子产生的效果显示出光的波动性,少数光子产生的效果显示出粒子性,且随着光的频率的增大,波动性越来越不显著,而粒子性却越来越显著.2.实物粒子(如:电子、质子等)都有一种波与之对应(物质波的波长λ=h p ,频率ν=εh ).3.物质波与光波一样都属于概率波.概率波的实质:是指粒子在空间分布的概率是受波动规律支配的.。
教科版高中物理选修3-5第四章光的波粒二象性课件
沿方向
运动,并且波长
(填“不变”“变短”或“变
长”).
类型一 类型二 类型三
点拨由于光子不仅具有能量,它还具有动量,因此我们可以根据能 量和动量的相关规律进行分析和解答. 解析:因光子与电子的碰撞过程动量守恒,所以碰撞之后光子和电 子的总动量的方向与光子碰撞前动量的方向一致,可见碰撞后光子 运动的方向可能沿1方向,不可能沿2或3方向;通过碰撞,光子将一部 分能量转移给电子,光子的能量减少,由ε=hν知,频率变小,再根据 c=λν知,波长变长. 答案:1 变长 题后反思:根据光子理论,用能量守恒和动量守恒解释康普顿效应, 理论与实验符合得很好,不仅有力地验证了光子理论,而且也证实 了微观领域的现象,也严格遵循能量守恒和动量守恒定律.
1.大量光子易显示波动性,而少 量光子易显示出粒子性.
性,E=hν=hc中,ν 和 λ 就是
λ
2.波长长(频率低)的光波动性 波的概念.
强,而波长短(频率高)的光粒子 2.波和粒子在宏观世界
性强
里是不能统一的,而在微
观世界里却是统一的
光既表现出波动性又表现出粒子性,很难用宏观世界的观念来认 识,必须从微观的角度建立起光的行为图景,认识光的波粒二象性, 需要明确的是:爱因斯坦光子说中的“粒子”和牛顿微粒说中的“粒 子”是两个完全不相同的概念;同样,麦克斯韦电磁理论中的“波”与 惠更斯波动说中的“波”也是不同理论领域中完全不同的概念,其本 质区别在于微观世界的认识论与宏观世界的认识论的区别.
2.关于光的波粒二象性 (1)光的波粒二象性:光既具有波动性,又具有粒子性,即光具有波 粒二象性. (2)光的粒子性的证明:光子和实物粒子一样,具有确定的能量和 动量. (3)光的波动性的证明:光能发生干涉、衍射、偏振等波动特有的 现象. (4)普朗克常量:普朗克常量h是连接粒子性与波动性之间的桥梁, 它的桥梁作用可以用下图表示.
高中物理第四章波粒二象性第1节量子概念的诞生教案教科版选修3_5
第一节量子概念的诞生课前自主学习一、热辐射问题、黑体与黑体辐射1.热辐射:周围的一切物体都在辐射电磁波,这种辐射的强度随波长如何分布都与物体的______相关,所以叫做热辐射.2.黑体:某物体能够______吸收外来电磁波而不发生反射,这种物体称为绝对黑体,简称黑体.3.黑体辐射:黑体表面向外辐射电磁波的强度按波长分布的情况与温度有关.二、普朗克提出的能量子概念和量子论诞生的历史意义1.能量子:普朗克认为,带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的_________即:能的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做__________2.能量子大小:ε=hν,其中ν是电磁波的频率,h称为普朗克常量.h=_____________J·s(一般取h=6.63×10-34J·s)3.能量子概念的引入,解决了黑体辐射问题,向人们展示了自然过程的非连续特性,标志着量子论的诞生.参考答案:一、1.温度 2.全部二、1.整数倍能量子 2. 6.63×10-34 js教学目标:1.通过阅读教材知道什么是热辐射及热辐射的特性,知道黑体与黑体辐射2.通过交流讨论认识黑体辐射的实验规律,理解黑体热辐射的强度与波长的关系3.通过自主学习知道能量子的概念,了解微观世界中的量子化现象。
比较宏观物体和微观粒子的能量变化特点。
体会量子论的建立深化了人们对于物质世界的认识。
4通过对教材和资料的查阅.领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。
教学重点:黑体辐射的实验规律以及能量子的概念教学难点:黑体辐射的实验规律设计思想:本节课内容比较抽象,也不能通过实验等让学生感知。
通过学生自主阅读教材,并进行交流讨论后概括总结本节的内容。
培养学生概括总结能力,让学生自己总结所学内容,允许内容的顺序不同,从而构建他们自己的知识框架。
(必考题)高中物理选修三第四章《原子结构和波粒二象性》测试(答案解析)(5)
一、选择题1.(0分)[ID :130647]氢原子能级的示意图如图所示,大量氢原子从n =4的能级向n =2的能级跃迁时辐射出可见光a ,从n =3的能级向n =2的能级跃迁时辐射出可见光b ,则( )A .a 光的光子能量大于b 光的光子能量B .氢原子从n =4的能级向n =3的能级跃迁时会辐射出紫外线C .处于能级n =4的电子的动能大于能级n =2的动能D .在真空中传播时,b 光的波长较短2.(0分)[ID :130645]如图所示为研究光电效应规律的实验电路,电源的两个电极分别与接线柱c 、d 连接。
用一定频率的单色光a 照射光电管时,灵敏电流计G 的指针会发生偏转,而用另一频率的单色光b 照射该光电管时,灵敏电流计G 的指针不偏转。
下列说法不正确的是( )A .a 光的频率一定大于b 光的频率B .用b 光照射光电管时,一定没有发生光电效应C .电源正极可能与c 接线柱连接D .若灵敏电流计的指针发生偏转,则电流方向一定是由d →G →f3.(0分)[ID :130629]如图,是氢原子的能级图,各能级能量关系为12n E E n=,其中E 1为基态能量,n 为量子数。
当原子从5n =能级跃迁到3n =能级时,释放出的一个光子能量为E ,下列说法正确的是( )A .一个处于5n =的氢原子向低能级跃迁时,最多能辐射出10种不同频率的光子B .从5n =能级向低能级跃迁,跃迁到4n =能级辐射的光波长最短C .处于3n =的氢原子跃迁到基态吸收光子能量为12.5ED .某金属的逸出功为E ,用4n =跃迁到2n =辐射的光子照射该金属,逸出光电子的最大初动能为419256E 4.(0分)[ID :130614]某金属发生光电效应,光电子的最大初动能E k 与入射光频率ν之间的关系如图所示。
已知h 为普朗克常量,e 为电子电荷量的绝对值,结合图像所给信息,下列说法正确的是( )A .频率大于0ν的入射光不可能使该金属发生光电效应现象 B .该金属的逸出功等于0h νC .仅增加照射光的强度,光电子的最大初动能会增加D .遏止电压随入射光的频率增大而减小5.(0分)[ID :130607]在光电效应实验中,某同学用同一光电管在不同实验条件下得到了三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图所示.则可判断出( )A .丙光的频率大于乙光的频率B .甲光的频率大于乙光的频率C .乙光对应的截止频率大于丙光的截止频率D .甲光对应的光电子最大初动能大于丙光的光电子最大初动能6.(0分)[ID :130604]如图所示,用绿光照射一光电管,能产生光电效应。
教科版高中物理教材目录
教科版高中物理教材目次【2 】高中物理必修1第一章活动的描写1.质点参考点空间时光2.地位变化的描写位移3.直线活动中位移随时光变化的图像4.活动快慢与偏向的描写速度5.直线活动中速度随时光变化的图像6.速度变化快慢的描写加快度7.匀变速直线活动的纪律8.匀变速直线活动纪律的运用9.匀变速直线活动的加快度测定第二章力1.力2.重力3.弹力4.摩擦力5.力的合成6.力的分化第三章牛顿活动定律1.亚里士多德到伽利略2.牛顿第必定律3.牛顿第二定律4.牛顿第三定律5.牛顿活动定律的运用6.自由落体活动7.超重与掉重8.汽车安全运行与牛顿活动第四章物体的均衡1.共点力感化下物体的均衡2.共点力均衡前提的运用3.均衡的稳固性高中物理必修二第一章抛体的活动1.曲线活动2.活动的合成与分化3.平抛活动4.斜抛活动第二章圆周活动1.描写圆周活动2.圆周活动的向心力3.匀速圆周活动的实例剖析4.圆周活动与人类文明第三章万有引力定律1.天体活动2.万有引力定律3.万有引力定律的运用4.人造卫星宇宙速度第四章机械能和能源1.功2.功率3.动能与势能4.动能的定理5.机械能守恒定律6.能源的开辟与运用第五章经典力学的成就与局限性1.经典力学的成就与局限性2.懂得相对论3.初识量子论选修3-1第一章电场1.电荷电荷守恒定律2.库仑定律3.电场电场强度和电场线4.电势差5.电势差与电场强度的关系6.电容器和电容7.静电的运用及伤害第二章直流电路1.欧姆定律2.电阻定律3.焦耳定律4.电阻的串联.并联及其运用5.伏安法测电阻6.电源的电动势和内阻7.闭合电路的欧姆定律8.欧姆表.多用电表9.逻辑电路和掌握电路第三章磁场1.磁现象磁场2.磁感应强度磁通量3.磁场对电流的感化——安培力4.磁场对活动电荷的感化——洛伦兹力5.洛伦兹力的运用选修3-2第一章电磁感应1.电磁感应现象的发明2.感应电流产生的前提3.法拉第电磁感应定律4.楞次定律5.电磁感应中的能量转化守恒6.自感日光灯7.涡流第二章交变电流1.交变电流2.描写正弦交换电的物理量3.试验:演习运用示波器4.电容器在交换电路中的感化5.电感器在交换电路中的感化6.变压器7.电能的输送第三章传感器1.传感器2.温度传感器和光电式传感器3.生涯中的传感器4.试验探讨:简略的光控和温控电路选修3-3第一章分子动理论与统计思惟1.物体是由大量分子构成的2.分子的热活动3.分子间的互相感化力4.统计纪律分子活动速度散布5.温度内能气体的压强6.试验探讨:用油膜法估测油酸分子的大小第二章固体和液体1.晶体和非晶体2.半导体3.液体的表面张力4.液晶第三章气体1.气体试验定律2.气体试验定律的微不雅说明及图像表示3.幻想气体4.饱和汽与未饱和汽5.空气的温度第四章能量守恒与热力学定律1.能量守恒定律的发明2.热力学第必定律3.宏不雅热进程的偏向性4.热力学第二定律5.熵概念初步第五章能源与可中断成长1.能源与人类生计的关系2.能源运用与情况问题3.可中断成长计谋选修3-4第一章机械振动1.简谐活动2.单摆3.简谐活动的图像和公式4.阻尼振动受迫振动5.试验探讨:用单摆测定重力加快度第二章机械波1.机械波的形成和传播2.横波的图像3.波的频率和波速4.惠更新道理波的反射与折射5.波的干射衍射6.多普勒效应第三章电磁振荡电磁波1.电磁振荡2.电磁场和电磁波3.电磁波谱电磁波的运用4.无线电波的发射.传播和吸收第四章光的折射1.光的折射定律2.试验探讨:测定玻璃的折射率3.光的全反射第五章光的波动性1.光的干预2.试验探讨:用双缝干预油光的波长3.光的衍射与偏振4.激光第六章相对论1.经典时空不雅2.狭义相对论的两个根本假设3.相对论时空不雅4.相对论的速度变换定律质量和能量的关系5.广义相对论选修3-5第一章碰撞与动量守恒1.碰撞2.动量3.动量守恒定律4.动量守恒定律的运用第二章原子构造1.电子2.原子的核式构造模子3.光谱氢原子光谱4.玻尔的原子模子能级第三章原子核1.原子核的构成与核力2.放射性衰变3.放射性的运用.伤害与防护4.原子核的联合能5.核裂变6.核聚变7.粒子物理学简介第四章波粒二象性1.量子概念的诞生2.光电效应与光量子假说3.光的波粒二象性4.什物粒子的波粒二象性5.不肯定关系。
2021年高中物理选修三第四章《原子结构和波粒二象性》测试(答案解析)
一、选择题1.彩虹是由阳光射入雨滴(视为球形)时,经一次反射和两次折射而产生色散形成的。
现有白光束由图示方向射入雨滴,a、b是经反射和折射后的其中两条出射光线,如图所示,下列说法正确的是()A.光线a在雨滴中传播时的波长较长B.光线a在雨滴中的折射率较大C.光线a在雨滴中的传播速度较大D.若分别让a、b两色光分别照射同一光电管,若a光能引起光电效应,则b光一定也能2.对图中的甲、乙、丙、丁图,下列说法中正确的是()A.图甲中,卢瑟福通过分析α粒子散射实验结果,发现了质子和中子B.图乙是一束单色光进入平行玻璃砖后传播的示意图,当入射角i逐渐增大到某一值后不会再有光线从bb′面射出C.图丙是用干涉法检测工件表面平整程度时得到的干涉图样,弯曲的干涉条纹说明被检测的平面在此处是凸起的D.图丁中的M、N是偏振片,P是光屏,当M固定不动缓慢转动N时,光屏P上的光亮度将发生变化,此现象表明光是横波3.如图所示,在研究光电效应的实验中,用波长一定的光照到阴极K上时,灵敏电流计G 有示数,则下列判断正确的是()A.流经电流计的电流方向为自a向bB.若将滑片向右移,电路中光电流一定增大C.若将电源极性反接,电流计读数一定增大D.若换用波长更长的光照射K,电流计读数一定增大4.处于基态的氢原子吸收一个光子后,则下列说法正确的是()A.氢原子的总能量增加B.电子的动能增加C.氢原子的电势能减小D.电子绕核旋转半径减小5.在光电效应实验中,先后用两束光照射同一个光电管。
若实验a中光束的入射光的强度和频率分别大于b实验中光束的入射光的强度和频率,a、b两实验中所得光电流I与光电管两端所加电压U间的关系曲线分别以a、b表示,则下列图中正确的是()A.B.C.D.6.关于下列四幅图的说法正确的是()A .甲图中A 处能观察到少量的闪光点B .乙图中用弧光灯照射原来就带电的锌板时,发现验电器的张角变大,则锌板原来带负电C .丙图中的泊松亮斑说明光具有波动性D .丁图,当两分子间距由等于r 0开始增大,它们间的分子力先减小后增大7.如图所示,圆心为O 的半圆形某透明玻璃砖置于水平桌面上,一束复色光从P 点入射玻璃砖(法线如图虚线所示),在玻璃砖中分为两束单色光a 、b ,其中a 光与法线夹角为α,且在A 处恰好发生全反射,b 光入射到B 点。
高中物理选修三第四章《原子结构和波粒二象性》测试(含答案解析)
一、选择题1.(0分)[ID :130641]图甲是研究光电效应的电路图,图乙是用a 、b 、c 光照射光电管得到的I U -图线,1c U 、2c U 表示遏止电压,下列说法正确的是( )A .在光照条件不变的情况下,随着所加电压的增大,光电流一直会增加B .a 光的频率小于b 光的频率C .光电子的能量只与入射光的强弱有关,而与入射光的频率无关D .c 光照射光电管发出光电子的初动能一定小于b 光照射光电管发出光电子的初动能 2.(0分)[ID :130635]如图所示,圆心为O 的半圆形某透明玻璃砖置于水平桌面上,一束复色光从P 点入射玻璃砖(法线如图虚线所示),在玻璃砖中分为两束单色光a 、b ,其中a 光与法线夹角为α,且在A 处恰好发生全反射,b 光入射到B 点。
则下列说法正确的是( )A .a 光的光子能量小于b 光的光子能量B .玻璃砖对b 光的折射率大于1cos αC .a 光从P 到A 的传播时间小于b 光从P 到B 的传播时间D .a 光从P 到A 的传播时间等于b 光从P 到B 的传播时间3.(0分)[ID :130623]如图甲所示为氢原子的能级图,图乙为氢原子的光谱.已知谱线a 是氢原子从n =4的能级跃迁,到n =2的能级时的辐射光,则谱线b 是氢原子A.从n=3的能级跃迁到n=2的能级时的辐射光B.从n=5的能级跃迁到n=3的能级时的辐射光C.从n=4的能级跃迁到n=3的能级时的辐射光D.从n=5的能级跃迁到n=2的能级时的辐射光4.(0分)[ID:130615]下列四幅图涉及不同的物理知识,其中说法不正确的是()A.原子中的电子绕原子核高速运转时,运行轨道的半径是任意的B.光电效应实验说明了光具有粒子性C.电子束穿过铝箔后的衍射图样证实了电子具有波动性D.极少数α粒子发生大角度偏转,说明原子的质量绝大部分集中在很小空间5.(0分)[ID:130609]如图是氢原子能级示意图的一部分则()A.电子在各能级出现的概率是一样的B.一个氢原子从n=4 的能级向低能级跃迁时最多发出 3 种频率的光C.一个动能是 13.6eV 的原子撞击处于基态的氢原子,一定能使它电离D.一个氢原子从 n=4 的能级向低能级跃迁时,能辐射出的光子中,波长最长的是从 n=4 到 n=1 的轨道跃迁时放出的光子6.(0分)[ID:130608]下列说法正确的是()A.布朗运动证明了花粉分子的无规则热运动B.光电效应彻底否定了光的波动说,证明了光具有粒子性C.α粒子的散射实验说明了原子核很小且质量很大D.温度升高物体内分子的动能一定增大7.(0分)[ID:130598]关于光电效应,以下说法正确的是()A.光电效应证明了光的波动性B.金属的极限频率与照射光的强弱及频率无关C.同种金属分别用不同频率的光照射,遏止电压相同D.光电子的最大初动能与入射光的频率成正比8.(0分)[ID:130597]有关卢瑟福α粒子散射实验的说法,以下正确的是()A.α粒子散射实验说明原子核具有复杂结构B.在α粒子散射实验中观察到大多数粒子发生了较大幅度的偏转C.通过α粒子散射实验,可以得出正电荷均匀分布在整个原子中D.通过α粒子散射实验,可以估算出原子核的大小9.(0分)[ID:130582]如图所示,是波尔为解释氢原子光谱画出的氢原子能级示意图,一群氢原子处于n=4的激发态,当它们自发地跃迁到较低能级时,以下说法正确的是()A.所辐射的光子的频率最多有6种B.由n=4跃迁到n=1时发出光子的频率最小C.从高能级向低能级跃迁时电子的动能减小、原子的势能增加、原子的总能量减小D.金属钾的逸出功为2.21eV,能使金属钾发生光电效应的光谱线有2条10.(0分)[ID:130572]如图a为氢原子的能级图,大量处于n=2激发态的氢原子吸收一定频率的光子后跃迁到较高的能级,之后再向低能级跃迁时辐射出10种不同频率的光子。
高中物理第四章波粒二象性1量子概念的诞生练习教科版选修3_5
第四章波粒二象性1 量子概念的诞生对黑体辐射规律的理解1.下列叙述正确的是( ) A.一切物体都在辐射电磁波B.一般物体辐射电磁波的情况只与温度有关C.黑体辐射电磁波的强度按波长的分布只与黑体温度有关D.黑体能够完全吸收入射的各种波长的电磁波答案ACD解析根据热辐射定义知A对;根据热辐射和黑体辐射的特点知一般物体辐射电磁波的情况除与温度有关外,还与材料种类和表面状况有关,而黑体辐射只与黑体温度有关,B 错、C对;根据黑体定义知D对.2.下列关于黑体辐射的实验规律叙述正确的是( ) A.随着温度的升高,各种波长的辐射强度都有所增加B.随着温度的升高,辐射强度的极大值向波长较短的方向移动C.黑体热辐射的强度与波长无关D.黑体辐射无任何规律答案AB解析黑体辐射的规律为随着温度的升高各种波长的辐射强度都增加,同时辐射强度的极大值向波长较短的方向移动.故A、B对.能量子的理解及ε=hν的应用3.二氧化碳能强烈吸收红外长波辐射,这种长波辐射的波长范围约是1.4 10-3~1.610-3m,相应的频率范围是________,相应的光子能量的范围是________,(已知普朗克常量h=6.610-34 J·s,真空中的光速c=3.0108 m/s.结果取两位有效数字) 答案 1.91011~2.11011 Hz 1.310-22~1.410-22 J解析由c=λν得ν=cλ.则求得频率范围为1.91011~2.11011 Hz.又由ε=h ν得能量范围为1.310-22~1.410-22 J.4.神光“Ⅱ”装置是我国规模最大的高功率固体激光系统,利用它可获得能量为2 400 J 、波长λ=0.35 μm 的紫外激光.已知普朗克常量h =6.6310-34 J ·s ,则该紫外激光所含光子数为多少?答案 4.231021(个)解析 紫外激光的波长已知,由此可求得紫外激光能量子的值,再根据紫外激光发射的总能量为2 400 J ,即可求得紫外激光所含光子数.紫外激光能量子的值为ε0=hc λ=6.63×10-34×3×1080.35×10-6 J =5.6810-19 J .则该紫外激光所含光子数n =E ε0= 2 4005.68×10-19=4.231021(个).。
高中物理第四章波粒二象性第12节量子概念的诞生光电效应与光的量子说教学案教科版选修3_5
第1、2节量子概念的诞生光电效应与光的量子说(对应学生用书页码P53)一、黑体与黑体辐射1.热辐射周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫做热辐射。
2.黑体是指能够完全吸收入射的各种波长的电磁波而不发生反射的物体。
3.黑体辐射的实验图线(1)图线如图411所示。
图411(2)两类公式:①维恩公式:短波部分与实验相符。
②瑞利公式:长波部分与实验相符。
二、普朗克提出的能量子概念1.量子化假设黑体的空腔壁由大量带电谐振子组成,其能量只能是某一最小能量值ε的整数倍,并以这个最小能量值为单位一份一份地辐射或吸收能量。
2.能量子(1)定义:不可再分的最小能量值ε。
(2)关系式:ε=hν,ν是电磁波频率;h是普朗克常量,h=6.63×10-34_J·s。
三、光电效应1.光电效应在光的照射下物体发射电子的现象,叫做光电效应,发射出来的电子叫做光电子。
实质:光现象转化为电现象。
2.实验规律实验规律之一:在光照条件不变的情况下,随着所加电压增大,光电流趋于一个饱和值,也就是说,在电流较小时,电流随着电压的增大而增大;但当电流增大到一定值之后,即使电压再增大,电流也不会增大了。
(如图412所示)图412实验规律之二:对光电管加反向电压,光电流可以减小到零,使光电流恰好减小为零的反向电压称为遏止电压。
不同频率的光照射金属产生光电效应,遏止电压是不同的。
实验规律之三:使金属恰好产生光电效应的光的频率称为截止频率或极限频率,当入射光的频率大于截止频率时,无论入射光怎样微弱,立刻就能产生光电效应。
[提别提醒](1)光电效应中的光可以是不可见光。
(2)光电效应的实质:光现象转化为电现象。
三、光电效应方程1.光子说 光不仅具有波动性,还有粒子性,爱因斯坦把能量子概念推广到光电效应中,提出光量子概念,简称光子。
2016-2017学年高中物理 第4章 波粒二象性 1 量子概念的诞生自我小测 教科版选修3-5
量子概念的诞生1下列关于光的说法中正确的是( )A.在真空中红光波长比紫光波长短B.红光的能量子比紫光的能量子能量大C.红光和紫光相遇时能产生干涉现象D.红光的能量子比紫光的能量子能量小2以下概念,哪些是“量子化”的( )A.木棒的长度 B.物体的质量C.物体的动量 D.学生的个数3氦—氖激光器发出波长为633 nm的激光,当激光器的输出功率为1 mW时,每秒发出的能量子的个数为多少?4介质中某种光的能量子能量大小是E,波长是λ,则此介质的折射率是多大?5一束波长为λ1=0.70 μm的单色光,每秒有n1=3×1015个能量子通过一个与光线方向垂直的平面,另一束光,它传输相同的能量,但波长只有λ2=0.40 μm,这束光每秒通过垂直光线方向的平面的能量子数n2是多少?6某种电磁波的能量子能量值为1.06×10-27J,则该电磁波的频率是多少?波长是多少?7结合生活和本节课所学的知识,思考一下普朗克引入的能量量子假说对物理的发展有什么作用和意义?8在一杯水中放入一支温度计,开始静置室内,可以看到开水的温度是逐渐降低的,既然从微观的角度来看开水的能量是一份一份向外辐射的,为什么它的温度不是一段一段的降低呢?9两个相同的物体,只是颜色不同,一个黑色,另一个白色,把它们放在温度较高的火炉旁边,哪一个温度升高得较快?如果在它们温度相同的情况下(室温),把它们转移到温度较低的环境中,哪一个温度降低得较快?10太阳光垂直照射到地面上时,地面上1 m2接收的太阳光的功率为P0=1.4 kW,其中可见光部分约占45%.(1)假如认为可见光的平均波长为0.55 μm,日地间的距离R=1.5×1011 m,普朗克常数h=6.626×10-34J·s,估算太阳每秒辐射出的可见光的能量子数为多少?(2)若地球的半径为r=6.4×106 m,估算地球接收太阳光的总功率.参考答案1解析:由光谱知,在真空中红光的波长比紫光大,但频率比紫光小,又能量子的能量为hν,所以紫光的能量子能量大,两种光频率不相等,不能够发生干涉现象.答案:D2解析:所谓的量子化即为不连续,不管是长度、质量还是动量,都是可以连续变化的,但个数只能是自然数,是不连续的,故选D.答案:D3解析:激光器每秒输出的能量为W=Pt=1×10-3J,该激光的频率为ν=cλ=1211×1017Hz,所以n=Whν=3.2×1015个.答案:3.2×10154解析:由E=hν得:ν=Eh,又v=λν,所以折射率为n=cv=hcλE.答案:hcλE5解析:两束光传输的能量相等,则:n1hν1=n2hν2,而ν=cλ,所以n2=n1ν1ν2=n1λ2λ1=1.71×1015个.答案:1.71×1015个6解析:由E=hν得:ν=Eh=1.6×106 Hz,所以波长λ=cν=187.5 m.答案:1.6×106 Hz 187.5 m7解答:经典物理学的原理之一是一切过程都是连续的.但是,普朗克在1900年从理论上推导出和实验事实符合很好的黑体辐射公式时,引入了能量不连续性概念,突破了经典物理学的连续性原理,并启发物理学家们思考——构成物质的粒子是否也应该具有量子性呢?在此基础上,物理学家们最后建立了量子物理学.8解答:开水向外辐射的能量是一份一份的,但每一份能量都是十分微小的(微观量),而水的温度要降低1 ℃需要释放的能量是非常大的(宏观量),由于温度计的精确度不够,所以观察到的温度计的温度不是一段一段的下降的.9解答:在火炉旁,它们吸收的辐射能大于发射的辐射能,温度都升高,但黑色物体吸收系数大,所以温度升高得快.当环境温度低于物体温度时,物体在相同时间内发射的辐射能大于吸收的辐射能,而黑色物体发射本领大,所以温度降低得也快.10解析:(1)因为地面上单位面积接收的太阳光的功率为P0,所以太阳辐射的可见光总功率为P=4πR2P0×45%,则每秒太阳辐射出的可见光的能量为W=Pt,所以辐射出的可见光的能量子数为n=Whν=4πR2P0t×45%hcλ=4.9×1044个.(2)太阳辐射出的能量均匀分布在以太阳为球心的球面上,地球朝向太阳的一面接收太阳辐射,所以地球接收到的太阳光的功率为P′=P·πr24πR2=P0πr2=1.8×1017 W. 答案:(1)4.9×1044个(2)1.8×1017 W。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子概念的诞生
1下列关于光的说法中正确的是( )
A.在真空中红光波长比紫光波长短
B.红光的能量子比紫光的能量子能量大
C.红光和紫光相遇时能产生干涉现象
D.红光的能量子比紫光的能量子能量小
2以下概念,哪些是“量子化”的( )
A.木棒的长度 B.物体的质量
C.物体的动量 D.学生的个数
3氦—氖激光器发出波长为633 nm的激光,当激光器的输出功率为1 mW时,每秒发出的能量子的个数为多少?
4介质中某种光的能量子能量大小是E,波长是λ,则此介质的折射率是多大?
5一束波长为λ1=0.70 μm的单色光,每秒有n1=3×1015个能量子通过一个与光线方向垂直的平面,另一束光,它传输相同的能量,但波长只有λ2=0.40 μm,这束光每秒通过垂直光线方向的平面的能量子数n2是多少?
6某种电磁波的能量子能量值为1.06×10-27J,则该电磁波的频率是多少?波长是多少?
7结合生活和本节课所学的知识,思考一下普朗克引入的能量量子假说对物理的发展有什么作用和意义?
8在一杯水中放入一支温度计,开始静置室内,可以看到开水的温度是逐渐降低的,既然从微观的角度来看开水的能量是一份一份向外辐射的,为什么它的温度不是一段一段的降低呢?
9两个相同的物体,只是颜色不同,一个黑色,另一个白色,把它们放在温度较高的火炉旁边,哪一个温度升高得较快?如果在它们温度相同的情况下(室温),把它们转移到温度较低的环境中,哪一个温度降低得较快?
10太阳光垂直照射到地面上时,地面上1 m2接收的太阳光的功率为P0=1.4 kW,其中可见光部分约占45%.
(1)假如认为可见光的平均波长为0.55 μm,日地间的距离R=1.5×1011 m,普朗克常数h=6.626×10-34J·s,估算太阳每秒辐射出的可见光的能量子数为多少?
(2)若地球的半径为r=6.4×106 m,估算地球接收太阳光的总功率.
参考答案
1解析:由光谱知,在真空中红光的波长比紫光大,但频率比紫光小,又能量子的能量为hν,所以紫光的能量子能量大,两种光频率不相等,不能够发生干涉现象.答案:D
2解析:所谓的量子化即为不连续,不管是长度、质量还是动量,都是可以连续变化的,但个数只能是自然数,是不连续的,故选D.
答案:D
3解析:激光器每秒输出的能量为W=Pt=1×10-3J,该激光的频率为ν=c
λ=
1
211
×1017
Hz,所以n=W
hν
=3.2×1015个.答案:3.2×1015
4解析:由E=hν得:ν=E
h
,又v=λν,所以折射率为n=
c
v
=
hc
λE
.
答案:hc
λE
5解析:两束光传输的能量相等,则:n1hν1=n2hν2,而ν=c
λ,所以n2=
n1ν1
ν2
=
n1λ2
λ1
=
1.71×1015个.
答案:1.71×1015个
6解析:由E=hν得:ν=E
h
=1.6×106 Hz,所以波长λ=
c
ν
=187.5 m.
答案:1.6×106 Hz 187.5 m
7解答:经典物理学的原理之一是一切过程都是连续的.但是,普朗克在1900年从理论上推导出和实验事实符合很好的黑体辐射公式时,引入了能量不连续性概念,突破了经典物理学的连续性原理,并启发物理学家们思考——构成物质的粒子是否也应该具有量子性呢?在此基础上,物理学家们最后建立了量子物理学.
8解答:开水向外辐射的能量是一份一份的,但每一份能量都是十分微小的(微观量),而水的温度要降低1 ℃需要释放的能量是非常大的(宏观量),由于温度计的精确度不够,所以观察到的温度计的温度不是一段一段的下降的.
9解答:在火炉旁,它们吸收的辐射能大于发射的辐射能,温度都升高,但黑色物体吸收系数大,所以温度升高得快.当环境温度低于物体温度时,物体在相同时间内发射的辐射能大于吸收的辐射能,而黑色物体发射本领大,所以温度降低得也快.
10解析:(1)因为地面上单位面积接收的太阳光的功率为P0,所以太阳辐射的可见光总功率为P=4πR2P0×45%,则每秒太阳辐射出的可见光的能量为W=Pt,所以辐射出的可见光的
能量子数为n=W
hν=
4πR2P0t×45%
h
c
λ
=4.9×1044个.
(2)太阳辐射出的能量均匀分布在以太阳为球心的球面上,地球朝向太阳的一面接收太阳辐射,所以地球接收到的太阳光的功率为
P′=P·πr2
4πR2
=P0πr2=1.8×1017 W. 答案:(1)4.9×1044个(2)1.8×1017 W。