【数学】人教版六年级数学圆柱与圆锥测试卷附答案
人教版六年级数学下册第三单元《圆柱与圆锥》测试卷(含答案)
人教版六年级数学下册 第三单元《圆柱与圆锥》测试卷(全卷共6页,满分100分,80分钟完成)题号 一 二 三 四 五 总分 分数一、认真填一填。
(每空2分,共28分)1.一个圆柱的底面半径为5厘米,侧面展开后正好是一个正方形,圆柱的体积是( )立方厘米。
2.把一个高为5厘米的圆柱沿着底面直径往下切,表面积增加40平方厘米,这个圆柱的表面积是( )平方厘米。
3.如右图所示,将底面直径是8cm 的圆柱若干等分,拼成一个近似的长方体,表面积增加了80cm 2,拼成的长方体的体积是( ) cm 3。
4.一根圆柱形木料底面直径20厘米,长1.8米。
把它截成3段,使每一段都是圆柱形,截开后表面积增加了( )平方厘米。
5.爷爷有一只玻璃茶杯(如图),为了防止烫手,妈妈制作了这个杯子的布套,布套的高是茶杯的12,做这个布套至少要用布( )平方厘米。
(结果保留整数)6.一个长方体水池,长15米,宽8米,深1.57米,池底有根内径为2分米的出水管.放水时,水流速度平均每秒2米.放完池中的水需要( )分钟。
7.把长2.4米的圆柱形钢材按1∶2∶3截成三段,表面积比原来增加56平方厘米,这三 段圆钢材中最长的一段比最短的一段体积多( )立方厘米。
8.一个圆柱形状的容器装满水(如右图)。
将一个底面半径为0.5dm,高为2.4dm的圆柱形状的石柱竖直放入容器中(石柱的底面与容器完全接触),容器中的水溢出()dm3。
9.一个药瓶,它的瓶身呈圆柱形(不包括瓶颈),如右图所示,瓶内药水的体积为25.2cm3。
瓶子正放时,瓶内药水液面高7cm,瓶子倒放时,空余部分高2cm。
这个瓶子的容积是()cm3。
10.一个等腰直角三角形的直角边为6cm,以一条直角边为轴旋转一周,得到一个圆锥,则这个圆锥的高、底面直径和体积分别是()cm、()cm、()立方厘米。
11.一个圆柱体木块,削去38立方分米后,正好削成一个最大的圆锥,这个木块原来的体积是()。
小学人教版六年级下册数学(第三单元《圆柱与圆锥》达标测试卷(含参考答案)
小学人教版六年级下册数学第三单元《圆柱与圆锥》达标测试卷一、用心思考,我会选。
(每题2分,共10分)1. 下面各图不是圆柱的平面展开图的是()。
2. 底面周长和高相等的圆柱,侧面沿高展开后得到()。
A.长方形B.平行四边形C.正方形3. 把一根圆柱形木料削成与它等底、等高的圆锥,削去部分的体积是圆锥体积的()。
2A.3倍B.2倍C.34. 王老师做了一个圆柱形容器和几个圆锥形容器,尺寸如下图所示(单位:cm),将圆柱内的水倒入()圆锥内,正好倒满。
5. 一个密封的瓶子里装着一些水(如图所示),已知瓶子的底面积是10cm2,水深15cm,请你根据图中标明的数据,计算瓶子的容积是()cm³。
A.150B.250C.100二、判断。
(每题2分,共10分)1. 圆柱的高不变,圆柱的底面积越大,它的体积就越大。
()2. 等底、等高的圆柱与长方体体积相等。
()3. 如果两个圆柱的侧面积相等,它们的体积就相等。
()4. 一个直角三角形,以它的斜边为轴旋转一周,可以得到一个圆锥。
()5. 一个圆柱与圆锥的体积和高分别相等,那么圆锥的底面积与圆柱的底面积的比是3∶1。
()三、填空。
(每空1分,共21分)1. 把一个底面周长是12.56cm、高是6cm的圆柱的侧面沿高竖着剪开得到一个长方形,这个长方形的长是()cm,宽是()cm。
这个长方形的面积是()。
2. 一个圆柱高是 8cm,侧面积是100.48cm2,它的底面积是()cm²,表面积是()cm²。
3. 把一个圆柱的底面分成许多相等的扇形,然后竖直切开拼成一个长方体,长方体的底面积等于圆柱的(),高等于圆柱的(),因为长方体的体积=()×(),所以圆柱的体积=()×()。
4. 把一个底面直径为12cm、高是20cm的圆柱,沿底面直径切割成同样大小的两半,表面积增加()cm²,体积是()cm³。
人教版六年级下册数学第三单元《圆柱与圆锥》测试卷含答案(能力提升)
人教版六年级下册数学第三单元《圆柱与圆锥》测试卷一.选择题(共6题, 共12分)1.圆柱的侧面沿直线剪开, 在下列的图形中, 不可能出现()。
A.长方形或正方形B.三角形C.平行四边形2.一个圆柱形橡皮泥, 底面积是12平方厘米, 高15厘米。
如果把它捏成同样底面大小的圆锥, 这个圆锥的高是()厘米。
A.15B.45C.53.一个圆柱与一个长6分米, 宽5分米, 高2分米的长方体体积相等, 已知圆柱的底面积是10平方分米, 它的高是()。
A.6分米B.8分米C.16分米D.3分米4.圆柱的底面半径扩大到原来的3倍, 高不变, 圆柱的侧面积扩大到原来的()倍。
A.3B.9C.65.把一张长20厘米、宽16厘米的长方形纸围成一个圆柱, 有两种围法。
第一种是长为底面周长, 宽为高;第二种是宽为底面周长, 长为高。
这两种围成的圆柱的侧面积相比较()。
A.第一种大B.第二种大C.相等6.如图, 圆柱体的表面积是()。
A.235.5平方厘米B.263.76平方厘米C.307.24平方厘米 D.207.24平方厘米二.判断题(共6题, 共12分)1.等底等高的圆柱和圆锥, 圆锥的体积比圆柱的体积少/。
()2.圆柱体的侧面展开一定是个长方形。
()3.圆柱的底面半径扩大到原来的2倍, 高缩小到原来的二分之一, 它的体积不变。
()4.圆柱体积是圆锥体积的3倍, 这两者一定是等底等高。
()5.圆锥体积等于和它等底等高的圆柱体积的。
()6.圆柱体的侧面积与两个底面积的和, 就是圆柱体的表面积。
()三.填空题(共6题, 共11分)1.把一个底面积是15.7cm2的圆柱, 切成两个同样大小的圆柱, 表面积增加了()cm2。
2.如图把这个圆柱的侧面展开可以得到一个长方形, 这个长方形的面积是()。
3.从正面看到的图形是()形, 从左面看是()形, 从上面看是()形。
4.一个圆柱的底面周长6.28厘米, 高是3厘米, 它的体积是()立方厘米。
人教版六年级下册《圆柱圆锥》小学数学-有答案-单元测试卷
人教版六年级下册《圆柱圆锥》小学数学-有答案-单元测试卷一、圆柱和圆锥1. 一个圆柱形蓄水池,直径10米,深2米。
这个蓄水池的占地面积是多少?在池的一周及池底抹上水泥,抹水泥的面积是多少?2. 做十节长2米,直径8厘米的圆柱形铁皮烟囱,需要铁皮多少平方米?3. 压路机的滚筒是圆柱体,它的长是2米,滚筒横截面的半径是0.6米。
如果每分转动5周,每分可以压多大的路面?4. 大厅里有10根圆柱,圆柱底面直径1米,高8米。
在这些圆柱的侧面涂油漆,平均每平方米用油漆0.8千克,共需油漆多少千克?5. 一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,它的表面积是多少?6. 把两个底面直径都是4厘米、长都是3分米圆柱形钢材焊接成一个大的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?7. 将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体,这个物体的表面积是多少平方米?8. 一个蓄水池是圆柱形的,底面面积为31.4平方分米,高2.8分米,这个水池最多能容多少升水?9. 一个圆柱体的高是37.68厘米,它的侧面展开后恰好是正方形,这个圆柱体的体积是多少?(保留整数)10. 一个圆柱形水桶的体积是24立方分米,底面积是6平方分米,桶的装满了水,求水面高是多少分米?11. 一个圆柱形量筒,底面半径是5cm,把一块圆锥形铁块从量筒里取出后水面下降3cm.这块铁块的体积是多少立方厘米?12. 把一根长1.5米的圆柱形钢材截成三段后,表面积比原来增加9.6平方分米,这根钢材原来的体积是多少?13. 把一段长20分米的圆柱形木头沿着底面直径劈开,表面积增加80平方分米,原来这段圆柱形木头的表面积是多少?14. 砌一个圆柱形水池,底面周长是25.12米,深2米,要在它的底面和四周抹上水泥,如果每平方米用水泥10千克,共需水泥多少千克?15. 一堆圆锥形黄沙,底面周长是25.12m,高是1.5m,每立方米黄沙重1.5吨,这椎黄沙重多少吨?16. 一个无盖的圆柱形水桶,底面直径10厘米,高20厘米,制造这样一对水桶,至少要多少铁皮?如果用这对水桶盛水,能盛多少千克?(每升水重1千克,得数保留整千克)17. 大厅内有8根同样的圆柱形木柱,每根高5米,底面周长是3.2米,如果每千克油漆可漆4.5平方米,漆这些木柱需油漆多少千克?18. 一个圆锥形沙堆,底面周长是12.56米,高6米,将这些沙铺在宽10米的道路上铺0.04米厚,可以铺多少米长?19. 一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24立方厘米。
人教版六年级下册数学第三单元《圆柱与圆锥》单元测试卷及答案
人教版六年级下册数学第三单元《圆柱与圆锥》测试卷班级:姓名:一、细心读题,谨慎填空。
(每空1分,共26分)1. 3.5m3=( )dm3 107cm3=( )mL5.65L=( )mL 2m3820dm3=( )m32.右图是圆柱的侧面展开图。
(1)请在展开图中填上相应的数据。
(2)这个圆柱的底面积是( )cm2。
(3)这个圆柱的侧面积是( )cm2。
(4)这个圆柱的表面积是( )cm2。
(5)这个圆柱的体积是( )cm3。
3.李师傅把一个体积为120dm3的圆柱形木料,加工成一个最大的圆锥,这个最大圆维的体积是( ) dm3,削去部分的体积是( ) dm3。
4.一个圆锥形零件的底面积是30cm2,高是8cm,它的体积是( )cm3。
5.如右图,小霞将甲容器装满水全部倒人乙容器,这时乙容器,水的高度是( )cm。
6.小海用一张长18.84cm、宽12.56cm的长方形硬纸片卷成圆柱形小笔筒,再给这个笔筒配一个底,这个底最少需要( )cm2的硬纸片。
(得数保留整数)7.一个圆柱和一个圆锥等底等高,它们的体积相差36cm3。
圆柱的体积是( )cm3,圆锥的体积是( )cm3。
8.把10个相同的金币叠起来完全浸没在装水的长方体容器内,如左下图。
水面升高了1.6cm,每个金币的体积是( )立方厘米。
9.一种圆柱形饮料罐,底面直径为6cm,高为12cm,将24罐这种饮料按上图的方式放人纸箱中。
(纸箱厚度忽略不计)(1)这个纸箱的长是( )cm,宽是( )cm,高是( )cm。
10.一个无盖的圆柱形水杯,从上面和侧面看到的形状如左下图所示,这个水杯的侧面积是( )cm2,体积是( )cm3。
11.王叔叔把一段长9dm、底面直径2dm的圆柱形木材,横截成3个相同的小圆柱后,用掉其中的一个小圆柱(如右上图)。
剩下的两个小圆柱表面积的总和比原来圆柱的表面积( )(填“增加”或“减少”)了( )dm2。
二、反复比较,择优录取。
人教版小学六年级数学下册第三单元《圆柱与圆锥》测试卷(附答案)
人教版六年级下册第三单元《圆柱与圆锥》测试卷学校:___________姓名:___________班级:___________等级:___________一、选择题(将正确答案的序号填在括号里)(10分)1.(2分)把一个圆柱形木头截成相等的三段,表面积()A.不变B.增加2个底面C.增加3个底面D.增加4个底面2.(2分)将一个圆柱体削制成一个圆锥体,削去部分的体积是圆柱体积的()A.B.C.2倍D.不能确定3.(2分)下面图形中,以某一边为轴旋转一周,可以得到圆柱体的是( )。
A.B. C.D.4.(2分)一个圆柱和一个圆锥的体积和底面积相等,圆柱的高是9厘米,圆锥的高是()A.9cm B.3cm C.27cm5.(2分)制作一个圆柱形油桶,至少需要多少平方米的材料,是求圆柱的()。
A.侧面积B.表面积C.容积D.体积二、填空题(共22分)6.(4分)圆柱的上、下底面是两个面积相等的_____形.圆柱的侧面是一个_____,沿着高展开后可能是一个_____形,也可能是一个_____形.7.(1分)计算做一个圆柱形的烟囱要用多少铁皮,要计算圆柱的______。
8.(1分)等底和等高的圆柱和圆锥,它们的体积之比是_________。
9.(2分)如下图,把圆柱切开拼成一个长方体,已知长方体的长是3.14米,高是2米。
这个圆柱体的底面半径是________米,体积是__________立方米。
10.(1分)一个圆柱的体积比与它等底等高的圆锥的体积大50.24 dm3,已知圆锥的底面半径是20cm,圆锥的高是_________dm。
11.(1分)一个圆锥形的沙堆,底面周长是62.8平方米,高是6米,这堆沙子______立方米。
12.(3分)一个圆柱的底面半径是3cm,高是10cm,侧面积是________cm2,表面积是________cm2,体积是________cm3。
13.(2分)一个圆锥的底面面积是62.8平方分米,高是6分米,它的体积是_____立方分米,与它等底等高的圆柱体的体积是_______。
六年级数学下册第三单元《圆柱与圆锥》测试卷-人教版(含答案)
17.沿着圆柱的高展开,侧面得到一个长方形,这个长方形的长等于圆柱的,宽等于圆柱的,当圆柱的底面周长和高相等时,侧面展开的图形是.
18.一个无盖的圆柱形水桶,底面直径是40厘米,高50厘米,做这个水桶至少需要平方米铁皮.
33.
六年级数学下册第三单元《圆柱与圆锥》测试卷-人教版(含答案)
一、选择题
1.一个圆柱体水桶的容积()圆锥体积.
A.相等 B.大于 C.小于 D.无法确定
2.一个圆柱的高是底面直径的π倍,这个圆柱侧面的展开图是一个( )
A.平行四边形 B.正方形C.长方形 D.圆形
3.一个圆柱形杯子盛满2.1升水,把与它等底等高的圆锥形铁块完全浸入水中,杯中还有()水。
A.3B.9C.27
7.将一个圆柱体削成一个最大的圆锥体.说法不正确的是( )
A.削去的体积是圆柱体积的
B.削去的体积是圆柱体积的
C.削去的体积是圆锥体积的2倍
8.一个圆柱体、底面直径扩大3倍,体积就扩大了( )
A.3倍B.6倍C.9倍
9.将长为3米,体积为12立方米的圆柱体据成两段,它的表面积增加了( )平方米.
14.6.25
15.6
16.3
17.底面周长,高,正方形
18.0.7536
19.1.35.
20.36
21.4.71立方分米
22.√
23.√
24.×
25.√Байду номын сангаас
26.×
27.803.84立方厘米
28.1695.6立方厘米
29.50.24;37.68;不能
30.1978.2千克
人教版数学六年级下册第三单元《圆柱与圆锥》单元卷附解析教师版
人教版数学六年级下册第三单元《圆柱与圆锥》单元卷附解析教师版一、单选题(共9题;共18分)1.(2分)做一个圆柱形通风管要用多少铁皮是求通风筒的()A.容积B.表面积C.侧面积D.体积【答案】C【解析】【解答】解:做一个圆柱形通风管要用多少铁皮是求通风筒的侧面积。
故答案为:C。
【分析】通风管没有底面,所以做一个圆柱形通风管要用多少铁皮是求通风筒的侧面积。
2.(2分)下面()图形是圆柱的展开图。
(单位:cm)A.B.C.【答案】A【解析】【解答】解:A、3.14×3=9.42(cm),底面周长与长方形的长相等,是圆柱的展开图;B、3.14×3=9.42(cm),底面周长与长方形的长不相等,不是圆柱的展开图;C、底面周长与长方形的长不相等,不是圆柱的展开图。
故答案为:A。
【分析】圆柱的侧面积沿着一条高展开后是一个长方形,长方形的长与圆柱的底面周长相等,计算出底面周长再与长方形的长比较后即可判断。
3.(2分)一根圆柱形烟囱是用铁皮制成的,求用了多少铁皮,就是求圆柱的()。
A.体积B.表面积C.侧面积D.1个底面积+侧面积【答案】C【解析】【解答】解:一根圆柱形烟囱是用铁皮制成的,求用了多少铁皮,就是求圆柱的侧面积。
故答案为:C。
【分析】烟囱是圆柱形,但是烟囱没有底面,所以求制造烟囱需要铁皮的面积实际就是圆柱的侧面积。
4.(2分)制作一个长是20分米、底面直径是6分米的圆柱形通风管,至少需要铁皮()平方分米。
A.376.8B.565.2C.753.6D.2260.8【答案】A【解析】【解答】解:3.14×6×20=3.14×120=376.8(平方分米)故答案为:A。
【分析】圆柱的底面周长=π×底面直径,圆柱的侧面积=底面周长×高。
5.(2分)一个圆柱,底面周长是25.12厘米,高是8厘米,如果沿底面直径垂直切开,它的截面是()。
A.长方形B.正方形C.三角形D.圆【答案】B【解析】【解答】25.12÷3.14=8(厘米)底面直径和高相等,如果沿底面直径垂直切开,它的截面是正方形。
人教版六年级下册数学第三单元《圆柱与圆锥》测试卷(含答案)
人教版六年级下册数学第三单元《圆柱与圆锥》测试卷(含答案)一、认真审题,填一填。
(第1小题4分,其余每小题3分,共28分)1.6.56 m2=( )dm2 3 m2 20 dm2=( )m28 L 50 mL=( )L 5 m325 dm3=( )m32.一个圆锥的体积是18.84 dm3,底面积是9.42 dm2,高是( ) dm,与它等底等高的圆柱的体积是( )dm3。
3.如图,一个圆柱形蛋糕盒的底面半径是10 cm,高是15 cm。
用彩带包扎这个蛋糕盒,至少需要彩带( )cm。
(打结处长20 cm)4.一个底面直径为20 cm,长为50 cm的圆柱形通风管,沿着地面滚动一周,滚过的面积是( )cm2。
5.一个近似于圆锥形状的野营帐篷,它的底面半径是3米,高是2.4米。
帐篷的占地面积是( )平方米,所容纳的空间是( )。
6.两个完全一样的圆柱,能拼成一个高4 dm的圆柱(如图),但表面积减少了25.12 dm2。
原来一个圆柱的体积是( )dm3。
(第6题图) (第7题图) (第8题图)7.如图所示,把底面直径为8 cm的圆柱切成若干等份,拼成一个近似的长方体。
这个长方体的表面积比原来增加了80 cm2,那么长方体的体积是( )cm3。
8.如图,把一个底面半径为4 cm的圆锥形木块,从顶点处垂直底面切成两个完全相同的木块,这时表面积增加48 cm2,这个圆锥的体积是( )cm3。
9.动手操作可以使抽象的数学知识形象化。
天天在数学课上用橡皮泥做了一个圆柱形学具,底面半径是4厘米,高是6厘米。
如果再用硬纸做成一个长方体纸盒,使圆柱形学具正好装进去,这个长方体纸盒的容积是( )立方厘米。
二、仔细推敲,选一选。
(将正确答案的序号填在括号里)(每小题3分,共15分)1.如下图,饮料罐底面积与锥形杯口的面积相等,将罐中的饮料倒入杯中,能倒满( )杯。
A.2B.6C.8D.92.一个长方形长为a,宽为b。
分别以长为轴、宽为轴旋转,产生了两个圆柱甲、乙。
人教版六年级下册数学第三单元 《圆柱与圆锥》达标测试卷(含参考答案)
人教版六年级下册数学第三单元《圆柱与圆锥》达标测试卷一、单选题(共15分)1.下面四幅图中,不可能是圆柱侧面展开图的是()。
A. B. C. D.2.用一张长方形纸片,以直线l为轴旋转一周,()形成的圆柱体积最大。
A.B.C.D.3.如图,圆锥形玻璃容器内装满水,将这些水倒入()号圆柱形容器中正好装满。
( 单位:cm,容器厚度忽略不计)A. B. C. D.4.一个圆柱的底面直径是2 dm,高是5 dm,如果沿着与底面平行的方向把它平均锯成四段,表面积比原来增加了() dm2A.6.28 B.12.56 C.18.84 D.25.125.甲圆柱的底面直径是6 cm,高是10 cm;乙圆柱的底面直径是10 cm,高是6 cm。
那么它们的表面积相比较,()。
A.甲>乙B.甲=乙C.甲<乙D.无法确定二、判断题(共15分)6.一个圆锥的底面积不变,如果高扩大到原来的3倍,体积也扩大到原来的3倍。
()7.等底等高的圆柱、长方体和正方体的体积一定相等。
()8.计算长方体、正方体和圆柱的体积时,都能用“底面积×高”来计算。
()9.一个圆柱的底面直径与高相等,它的侧面沿高展开图是正方形。
()10.一个物体上、下两个面是相等的圆面,那么,它一定是圆柱形物体。
()三、填空题(共15分)11.如图是一个圆柱的表面展开图,这个圆柱的侧面积是cm2,表面积是cm2。
12.如图是一个水杯,现在制作一个有盖的圆柱形纸盒来包装它。
制作这个纸盒至少需要cm2的纸板。
(接口处忽略不计)13.如图,在一个装满水的容器中放入1个圆柱形铁块和2个与它等底等高的圆锥形零件,溢出了部分水,则每个圆锥形零件的体积是cm314.在校实践活动课上,老师要求把完全一样的圆柱形橡皮泥切割成相同的两块,且切成的不是圆柱。
下面是明明和亮亮按要求切去一半后的形状,原来圆柱形橡皮泥的体积是cm。
15.一个圆锥的底面直径与高相等,它的底面周长是9.42 dm。
人教版数学六年级下册:第3单元《圆柱圆锥》单元测试卷(含答案解析)
人教版数学六年级下册:第3单元《圆柱圆锥》单元测试卷(含答案解析)第3单元《圆柱圆锥》单元测试卷一、填空题(共9题;共20分)1.圆柱的两个底面是两个大小________的圆,如果一个圆柱的底面周长和高相等,那么它的侧面展开是一个________。
2.圆柱的侧面展开图是________形,圆锥的侧面展开图是________形。
3.圆柱有________条高,圆锥有________高.4.一个圆锥的体积是m3.与它等底等高的圆柱的体积是________ m3;如果圆锥的高是m,那么它的底面积是________ m2。
5.把一个圆柱削成一个最大的圆锥体,已知削去的部分是6立方分米,这个圆柱体的体积是________。
6.一个圆柱体和一个圆锥体的底面积相等,它们的体积比是4 :3,它们的高度比是________。
7.一个圆锥体的体积是15立方米,高是6米,它的底面积是________平方米。
8.把一个圆柱的底面半径扩大3倍,高不变,它的侧面积扩大________倍。
9.如图是一个圆柱体的侧面展开图,原来这个圆柱的体积可能是________或________ cm3.二、单选题(共5题;共10分)1.下面图形绕轴旋转一周,形成圆锥的是( )。
A. B. C. D.2.下图不能用“底面积×高”计算体积的是( )。
A. B. C. D.3.把圆柱体的侧面展开.不可能得到( )。
A. 平行四边形B. 长方形C. 正方形D. 梯形4.一个圆锥的底面半径扩大到原来的2倍,高也扩大到原来的2倍,它的体积扩大到原来的( )倍。
A. 8B. 6C. 45.压路机滚筒滚动一周能压多少路面是求滚筒的()。
A. 表面积B. 侧面积C. 体积D. 容积三、判断题(共5题;共10分)1.圆柱和圆锥都有无数条高。
( )2.一个圆柱的底面半径是r,高是2πr,那么它的侧面沿高展开是正方形。
()3.从一个圆锥高的处切下一个圆锥,这个圆锥的体积是原来体积的。
人教版六年级下册数学第三单元《圆柱与圆锥》测试卷带答案(完整版)
人教版六年级下册数学第三单元《圆柱与圆锥》测试卷一.选择题(共6题, 共12分)1.边长是1厘米的正方形卷成一个圆柱体, 它的体积是()。
A.立方厘米B.立方厘米C.立方厘米D.立方厘米2.一个圆柱体的侧面展开图是正方形, 这个圆柱体的底面直径与高的比是()。
A.1∶πB.π∶1C.1∶2π3.它是由()。
A.两个大小不同的圆和曲面围成的圆柱B.由直角梯形旋转而得到的C.由半圆旋转而得到的4.圆柱的底面半径扩大3倍, 高不变, 体积扩大()。
A.3倍B.9倍C.6倍5.一个圆柱形容器内注有水, 它的底面半径是r厘米, 把一个圆锥形铜锤浸在水中, 水面上升h厘米, 这个圆锥形铜锤的体积是()。
6.圆锥的体积一定, 圆锥的底面积与高成()比例。
A.正B.反C.不成二.判断题(共6题, 共12分)1.如下图, 圆柱的底面是椭圆形。
()2.圆柱的侧面沿着高展开后会得到一个长方形或者正方形。
()3.圆锥的底面积扩大2倍, 体积也扩大2倍。
()4.圆锥的体积等于圆柱体积的。
()5.圆锥的侧面展开图是圆形。
()6.如果一个正方体和一个圆柱的底面积和高都相等, 那么它们的体积也相等。
()三.填空题(共6题, 共12分)1.一个直角三角形的两条直角边分别长6cm、8cm, 以8cm的直角边为轴旋转一周, 得到的立体图形是(), 它的体积是()cm3。
2.圆柱的两个底面是两个大小()的圆, 如果一个圆柱的底面周长和高相等, 那么它的侧面展开是一个()。
3.如右图所示, 把高是10厘米的圆柱切成若干等份, 拼成一个近似的长方体。
这个长方体的表面积比原来增加80cm2, 那么原来圆柱底面积半径是()厘米, 体积是()cm3。
4.一个圆锥体的体积是31.4立方分米, 高是5分米, 它的底面积是()平方分米。
5.有等底等高的圆柱和圆锥容器各一个, 将圆柱容器内装满水后, 倒入圆锥容器内。
当圆柱容器里的水全部倒光时, 溢出了36.2毫升, 这时圆锥容器里有水()升。
人教版小学数学六年级《圆柱与圆锥》练习题(有答案)
圆柱与圆锥立体图形表面积体积h r圆柱222π2πS rh r =+=+圆柱侧面积个底面积 2πV r h =圆柱h r圆锥22ππ360nS l r =+=+圆锥侧面积底面积 注:l 是母线,即从顶点到底面圆上的线段长21π3V r h =圆锥体【基础练习】一、选一选。
(将正确答案的序号填在括号里) 1、下面物体中,( )的形状是圆柱。
A 、B 、C 、D 、2、一个圆锥的体积是36dm 3,它的底面积是18dm 2,它的高是( )dm 。
A 、23 B 、2 C 、6 D 、183、下面( )图形是圆柱的展开图。
(单位:cm )4、下面( )杯中的饮料最多。
5、一个圆锥有( )条高,一个圆柱有( )条高。
A 、一 B 、二 C 、三 D 、无数条6、如右图:这个杯子( )装下3000ml 牛奶。
A 、能B 、不能C 、无法判断二、判断对错。
()1、圆柱的体积一般比它的表面积大。
()2、底面积相等的两个圆锥,体积也相等。
()3、圆柱的体积等于和它等底等高的圆锥体积的3倍。
()4、“做圆柱形通风管需要多少铁皮”是求这个圆柱的侧面积。
()5、把圆锥的侧面展开,得到的是一个长方形。
三、想一想,连一连。
四、填一填。
1、2.8立方米=()立方分米6000毫升=()3060立方厘米=()立方分米5平方米40平方分米=()平方米2、一个圆柱的底面半径是5cm,高是10cm,它的底面积是()cm2,侧面积是()cm2,体积是()cm3。
3、用一张长分米,宽分米的长方形铁皮制成一个圆柱,这个圆柱的侧面积最多是()平方分米。
(接口处不计)4、一个圆锥和一个圆柱等底等高,圆锥的体积是76cm3,圆柱的体积是()cm3。
5、一个圆锥的底面直径和高都是6cm,它的体积是( )cm3。
五、求下面图形的体积。
(单位:厘米)六、解决问题。
1、⑴制作这个薯片筒的侧面标签,需要多大面积的纸?⑵这个薯片筒的体积是多少?2、在建筑工地上有一个近似于圆锥形状的沙堆,测得底面直径4米,高米。
六年级下册数学试题 第三章《圆柱和圆锥》 人教版 含答案
第三章《圆柱和圆锥》一.选择题1.(2020•灯塔市)将圆柱体的侧面展开,将得不到()A.长方形B.正方形C.平行四边形D.梯形2.(2019春•沙雅县期末)把一个圆柱体削成一个与它等底的圆锥体,高将()A.扩大3倍B.缩小3倍C.无法判断3.(2019•长沙模拟)圆柱底面半径扩大2倍,高也扩大2倍,这个圆柱的体积就扩大()A.2倍B.4倍C.8倍D.16倍4.(2019•亳州模拟)一个圆锥与一个圆柱的体积和高都相等,那么圆柱与圆锥()A.底面半径的比是1:3 B.底面直径的比是3:1C.底面周长的比是3:1 D.底面积的比是1:35.(2020•渭滨区)圆柱体的侧面展开,不可能得到()A.长方形B.正方形C.梯形D.平行四边形6.(2019春•武侯区期中)一个圆柱体杯中盛满15升水,把一个与它等底等高的铁圆锥倒放入水中,杯中还有()水.A.5升B.7.5升C.10升7.(2019•株洲模拟)从圆柱的正面看,看到的轮廓是一个正方形,说明圆柱的()相等.A.底半径和高B.底面直径和高C.底周长和高二.填空题8.(2020•许昌)如图,瓶底的面积和锥形杯口的面积相等,将瓶子中的液体倒入锥形杯子中,能倒满杯.9.(2020•顺义区)一个圆锥体的体积是12立方分米,底面积是3平方分米,高是分米.10.(2019•郴州模拟)一个圆柱形容器和圆锥形容器的底面积相等.将圆锥容器装满水后倒入圆柱形容器,刚好倒满.如果圆柱的高是12厘米,圆锥的高是厘米.11.(2019春•东海县月考)一个圆锥的体积是96立方分米,底面积是8平方分米,它的高是分米.12.(2019春•枣庄期中)等底等高的圆柱和圆锥的体积相差18立方米,这个圆柱的体积是立方米,圆锥的体积是立方米.三.判断题13.(2020•保定)圆柱的侧面展开图一定是长方形或正方形..(判断对错)14.(2020•路北区)圆锥的体积等于圆柱体积的..(判断对错)15.(2019春•沛县月考)一个圆锥的底面积扩大5倍,高不变,体积也扩大5倍..(判断对错)16.(2019春•镇康县校级月考)圆锥的高有无数条..(判断对错)四.计算题17.(2019•郑州模拟)求如图的表面积和体积.单位(dm)18.(2015春•武功县校级期中)计算下面图形的体积,并求出圆柱的表面积.五.应用题19.(2018春•单县期末)一根圆柱形钢材,截下2米,量得它的横截面面积是12平方厘米,如果每立方厘米的钢重7.8克,截下的这段钢材重多少千克?(得数保留整千克数)20.(2018•萧山区模拟)把一个底面直径12厘米的圆锥形金属铸件浸没在棱长1.5分米的正方体容器中,水面比原来升高1.2厘米,求这个圆锥的体积.21.孔师傅用一块长方形铁皮做一个铁皮筒,如下图进行裁剪,这个铁皮筒用铁皮多少平方分米?22.(2012•成都)一个侧面贴有商标纸的罐头盒,底面半径是8厘米,高是10厘米,商标纸的面积是多少平方厘米?(接头处不计)六.解答题23.(2015春•德江县期中)求圆柱的表面积和体积.(单位:cm)24.(2015秋•惠民县校级月考)(1)计算下面圆柱的表面积和体积.(单位:厘米)(2)计算下面圆锥体的体积.(单位:厘米)25.(2018•兴化市)一个长方体钢锭长5分米,宽4分米,高3.14分米,将它熔铸加工成底面半径是2分米的圆柱形部件,圆柱的高是多少分米?26.(2019•长沙模拟)有一个高为6.28分米的圆柱体机件,它的侧面展开正好是一个正方形,求这个机件的体积.27.(2019春•江宁区月考)一个圆锥的底面周长是15.7厘米,高是3厘米.从圆锥的顶点沿着高将它切成两半后,表面积之和比原圆锥的表面积增加了多少平方厘米?28.(2018春•保定期末)红星广场有一个圆锥形玻璃罩,底面周长31.4米,高15米,这个玻璃罩的容积是多少立方米?(玻璃厚度忽略不计)29.(2017春•陕西期末)一个圆柱,如果高减少2厘米,表面积就减少25.12平方厘米,体积减少.这个圆柱原来的体积是多少立方厘米?参考答案与试题解析一.选择题1.【分析】根据对圆柱的认识和圆柱的侧面展开图及实际操作进行选择即可.【解答】解:围成圆柱的侧面的是一个圆筒,沿高线剪开,会得到长方形或正方形,沿斜直线剪开会得到平行四边形.但是无论怎么直线剪开,都不会得到梯形.故选:D.【点评】此题考查圆柱的侧面展开图,要明确:沿高线剪开,圆柱的侧面展开后是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高.2.【分析】根据圆柱的体积公式:V=Sh,以及圆锥的体积公式:V=Sh可知,把一个圆柱体削成一个与它等底的圆锥体,高的长度不能确定,据此选择.【解答】解:把一个圆柱体削成一个与它等底的圆锥体,高将无法确定.故选:C.【点评】本题主要考查圆柱和圆锥的体积,关键利用圆柱和圆锥的体积公式做题.3.【分析】根据圆柱的底面积=πr2和圆柱的体积=底面积×高,利用积的变化规律即可解答.【解答】解:圆柱的底面积=πr2,所以底面半径扩大2倍,则它的底面积就扩大2×2=4倍,圆柱的体积=底面积×高,底面积扩大4倍,高同时扩大2倍,则它的体积就扩大4×2=8倍,所以圆柱底面半径扩大2倍,高也扩大2倍,这个圆柱的体积就扩大8倍.故选:C.【点评】此题考查了积的变化规律在圆柱的体积公式中的灵活应用.4.【分析】根据圆柱的体积:V=S圆柱h,圆锥的体积:V=s圆锥h,可分别表示出圆柱的底面积和圆锥的底面积,然后再用圆柱的底面积比圆锥的底面积,最后进行化简比即可.【解答】解:圆柱的体积:V=S圆柱h,圆锥的体积:V=s圆锥h,S圆柱:s圆锥,=:,=1:3.答:一个圆锥与一个圆柱的体积和高都相等,那么圆柱与圆锥底面积比是1:3.故选:D.【点评】此题主要考查的是圆柱、圆锥体积公式的灵活应用.5.【分析】根据圆柱的特征,圆柱的侧面是一个曲面,侧面沿高展开是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,特殊情况当圆柱的底面周长和高相等时,侧面沿高展开是一个正方形,如果沿斜线展开,得到的是一个平行四边形.侧面无论怎样展开绝对不是梯形.由此做出选择.【解答】解:圆柱的侧面沿高展开是长方形或正方形,如果沿斜线展开得到的图形是一个平行四边形,侧面无论怎样展开绝对不是梯形;故选:C.【点评】此题主要考查圆柱的特征和侧面展开图的形状,圆柱的侧面沿高展开是长方形或正方形,如果沿斜线展开得到的图形是一个平行四边形.6.【分析】由条件“一个与它等底等高的铁圆锥”可知,圆锥的体积是圆柱体积的,也就是15升的;把铁圆锥倒放入水中后,铁圆锥会排出与它等体积的水,所以杯中剩下的水的体积就是圆柱体积的(1﹣),也就是15升的(1﹣),可用乘法列式求得.【解答】解:15×(1﹣)=15×=10(升);答:杯中还有10升水.故选:C.【点评】此题是考查圆柱、圆锥的关系,要注意圆柱和圆锥只有在等底等高的条件下才有3倍或的关系.7.【分析】从圆柱的正面看,看到的是一个长方形,长为圆柱的底面直径,宽为圆柱的高;当看到的轮廓是一个正方形,说明圆柱的圆柱的底面直径和高相等.据此解答.【解答】解:从圆柱的正面看,看到的轮廓是一个正方形,说明圆柱的圆柱的底面直径和高相等.故选:B.【点评】解答此题应明确:从圆柱的正面看,看到的是一个长方形,长为圆柱的底面直径,宽为圆柱的高.二.填空题8.【分析】根据题意知道瓶底的面积和锥形杯口的面积相等,设瓶底的面积为S,瓶子内水的高度为2h,则锥形杯子的高度为h,先根据圆柱的体积公式求出圆柱形瓶内水的体积,再算出圆锥形杯子的体积,进而得出答案.【解答】解:圆柱形瓶内水的体积:S×2h=2Sh,圆锥形杯子的体积:×S×h=Sh,倒满杯子的个数:2Sh÷Sh=6(杯);答:能倒满6杯.故答案为:6.【点评】此题虽然没有给出具体的数,但可以用字母表示未知数,找出各个量之间的关系,再利用相应的公式解决问题.9.【分析】根据圆锥的体积公式,代入体积和底面积,求出解即可.【解答】解:由题意知,V锥=Sh,得:h=3V锥÷S,=3×12÷3,=12(分米);故答案为:12分米.【点评】此题考查了已知圆锥的体积和底面积求高.10.【分析】因为“将圆锥容器装满水后倒入圆柱形容器,刚好倒满.”,说明圆锥和圆柱的容积相等;设底面积是S平方厘米,先表示出圆柱的容积,再根据圆锥的体积公式求出圆锥的高即可.【解答】解:设底面积都是S平方厘米,则圆柱的容积:12S立方厘米;圆锥的高:12S×3÷S=36(厘米).故答案为:36.【点评】此题是运用圆锥、圆柱的关系来求体积,当圆锥和圆柱等底等体积时,它们的高有3倍或的关系.11.【分析】根据圆锥的体积公式:v=sh,那么h=v÷s,把数据代入公式解答即可.【解答】解:96÷÷8=96×3÷8=36(分米),答:它的高是36分米.故答案为:12.【点评】此题主要考查圆锥体积公式的灵活运用,关键是熟记公式.12.【分析】根据“等底等高的圆柱和圆锥,圆柱的体积是圆锥体积的3倍”,也就是说,圆锥的体积是1份,圆柱的体积是3份,那么它们的体积就相差2份;已知它们的体积相差18立方米,用18除以2就是圆锥的体积,再用圆锥的体积乘3就是圆柱的体积.【解答】解:18÷(3﹣1)=9(立方米);9×3=27(立方米);答:这个圆柱的体积是27立方米,圆锥的体积是9立方米.故答案为:27,9.【点评】此题是考查体积的计算,可利用“等底等高的圆柱和圆锥,圆柱的体积是圆锥体积的3倍”来解答.三.判断题13.【分析】根据圆柱体的特征,它的上下底面是完全相同的两个圆,侧面是曲面,沿高展开得到长方形,这个长方形的长等于圆柱体的底面周长,宽等于圆柱体的高;圆柱体的底面周长和高相等,侧面沿高展开就是正方形;如果不沿高,而是从上底到下底斜着展开得到的是平行四边形;由此解答.【解答】解:圆柱体的侧面沿高展开得到的图形是长方形或正方形,如果不沿高,而是从上底到下底斜着展开得到的是平行四边形;因此,圆柱的侧面展开图一定是长方形或正方形.此说法错误.故答案为:×.【点评】此题主要考查圆柱体的特征和侧展开图的形状,侧面沿高展开得到的是长方形或正方形,如果不是沿高展开得到的就不是长方形或正方形;由此解决问题.14.【分析】因为圆柱和圆锥只有在“等底等高”的条件下,圆锥的体积才是圆柱体积的,所以原题说法是错误的.【解答】解:圆锥的体积是与它等底等高的圆柱体积的,原题没有“等底等高”的条件是不成立的;故答案为:×.【点评】此题是考查圆柱、圆锥的关系,要注意圆柱和圆锥只有在等底等高的条件下才有3倍或的关系.15.【分析】圆锥的体积=×底面积×高,是一个不变的值,若高不变,也就是×高的值不变,底面积扩大5倍,依据积与因数的变化规律:一个因数不变,另一个因数扩大5倍,那么积也扩大5倍即可解答.【解答】解:依据分析可得:一个圆锥的底面积扩大5倍,高不变,体积也扩大5倍,所以原题说法正确.故答案为:√.【点评】本题解答的依据是:圆锥体积的计算方法以及积与因数的变化规律.16.【分析】紧扣圆锥的特征:从圆锥的顶点到底面圆心的距离是圆锥的高;可知:圆锥只有一条高;据此判断即可.【解答】解:由圆锥高的含义可知:圆锥的高有无数条,说法错误;故答案为:×.【点评】此题考查了圆锥的特征,应注意基础知识的积累.四.计算题17.【分析】根据图示可知,这个组合图形的表面积就是外面正方体的表面积加上里面圆柱的侧面积,利用正方体和圆柱表面积公式进行计算即可;组合图形的体积等于正方体体积减去圆柱的体积,利用公式把数代入计算即可.【解答】解:10×10×6+3.14×4×6=600+75.36=675.36(平方分米)10×10×10﹣3.14×(4÷2)2×6=1000﹣75.36=924.64(立方分米)答:这个图形的表面积为675.36平方分米,体积为924.64立方分米.【点评】本题主要考查组合图形的体积和表面积的计算,关键把不规则图形转化为规则图形,再计算.18.【分析】(1)圆柱的体积=底面积×高,用字母表示:V=π(d÷2)2h.圆柱的表面积=侧面积+2个底面积=πdh+2πr2,圆柱的底面直径和高已知,代入公式即可求解.(2)圆锥的体积=×底面积×高=π(d÷2)2h,圆锥的底面直径径和高已知,代入数据即可解答.【解答】解:(1)3.14×(16÷2)2×18=200.96×18=3617.28(立方厘米)3.14×16×18+3.14×(16÷2)2×2=904.32+401.92=1306.24(平方厘米)答:圆柱的体积是3617.28立方厘米,表面积是1306.24平方厘米.(2)×3.14×92×21=3.14×81×7=1780.38(立方厘米)答:圆锥的体积是1780.38立方厘米.【点评】此题考查了圆柱的体积表面积公式和圆锥的体积公式的计算应用,熟记公式即可解答.五.应用题19.【分析】先利用圆柱的体积公式V=Sh求出它的体积,再求出这段钢材重多少千克即可.【解答】解:2米=200厘米,12×200×7.8=2400×7.8=18720(克);18720克≈19千克;答:截下的这段钢材重19千克.【点评】此题是考查圆柱的体积计算,在利用体积公式V=Sh求体积的过程中注意统一单位.20.【分析】由题意得圆锥铸件的体积等于上升的水的体积,上升的水的体积等于高为1.2厘米的长方体的体积,根据长方体体积=长×宽×高计算即可.【解答】解:15×15×1.2=225×1.2=270(立方厘米)答:这个圆锥铸件的体积是270立方厘米.【点评】解决本题的关键是明确圆锥铸件的体积等于上升的水的体积,直径是12厘米是无关条件.21.【分析】沿着圆柱的高剪开,圆柱的侧面展开是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,由图形可知:圆柱的底面直径是(6÷2)分米,圆柱的高是6分米,根据圆柱的侧面积公式:圆柱的侧面积=底面周长×高,把数据代入进行解答.【解答】解:3.14×(6÷2)×6=9.42×6=56.52(平方分米)答:这个铁皮筒用铁皮56.52平方分米.【点评】此题主要考查圆柱的侧面积公式的灵活运用.22.【分析】根据题意,商标纸的面积就是这个圆柱形罐头盒的侧面积,根据圆柱的侧面积=底面周长×高进行计算即可得到答案.【解答】解:3.14×8×2×10=502.4(平方厘米),答:商标纸的面积有502.4平方厘米.【点评】此题主要考查的是圆柱的侧面积公式的灵活应用.六.解答题23.【分析】圆柱的体积=底面积×高,圆柱的表面积=侧面积+底面积×2,将所给数据分别代入相应的公式,即可求出圆柱的表面积和体积.【解答】解:圆柱的体积:3.14×(6÷2)2×5=3.14×9×5=3.14×45=141.3(立方厘米);圆柱的表面积:3.14×6×5+3.14×(6÷2)2×2=3.14×30+3.14×9×2=94.2+3.14×18=94.2+56.52=150.72(平方厘米).【点评】此题主要考查圆柱的表面积和体积的计算方法.24.【分析】(1)圆柱的表面积等于侧面积+2个底面积,由此根据侧面积公式S=ch=πdh与圆的面积公式S=πr2列式解答即可;根据圆柱的体积公式V=sh=πr2h,代入数据列式解答即可.(2)根据圆锥的体积公式V=sh=πr2h,代入数据列式解答即可.【解答】解:(1)3.14×6×6+3.14×(6÷2)2×2,=18.84×6+3.14×9×2,=113.04+56.52,=169.56(平方厘米),3.14×(6÷2)2×6,=3.14×9×6,=169.56(立方厘米);(2)×3.14×22×6,=×3.14×24,=3.14×8,答:圆柱的表面积是169.56平方厘米,体积是169.56立方厘米;圆锥体的体积是25.12立方厘米.【点评】本题主要考查了圆柱的表面积与体积及圆锥的体积的计算方法.25.【分析】根据题意,长方体的体积等于熔铸成的圆柱的体积,可利用长方体的体积公式公式确定长方体的体积,然后再除以圆柱的底面积即可得到圆柱的高.【解答】解:5×4×3.14÷(3.14×22)=5×4×3.14÷3.14÷4=5(分米)答:圆柱的高是5分米.【点评】此题主要考查的是:长方体的体积公式V=长×宽×高,圆柱的体积V=底面积×高.26.【分析】根据“一个圆柱体的侧面展开得到一个边长6.28分米的正方形,”知道圆柱的底面周长是6.28分米,高是6.28分米,由此根据圆柱的体积公式,即可算出机件的体积.【解答】解:3.14×(6.28÷3.14÷2)2×6.28,=3.14×1×6.28,=19.7192(立方分米);答:机件的体积是19.7192立方分米;【点评】解答此题的关键是,能根据圆柱的侧面展开图与圆柱的关系,找出对应量,再根据圆柱的体积公式,列式解答即可.27.【分析】从圆锥的顶点沿着高把他切成两半后,表面积比原来圆锥的表面积增加了2个以圆锥的底面直径为底,以圆锥的高为高的三角形的面积,由此利用圆锥的底面周长15.7厘米求出它的底面直径即可解决问题.【解答】解:圆锥的底面直径为:15.7÷3.14=5(厘米);则切割后表面积增加了:5×3÷2×2=15(平方厘米);答:表面积之和比原来圆锥表面积增加15平方厘米.【点评】抓住圆锥的切割特点,得出增加部分的面积是2个以底面直径为底,以圆锥的高为高的三角形的面积是解决此类问题的关键.28.【分析】玻璃罩的形状是圆锥形的,利用圆锥的体积计算公式求得容积,问题得解.【解答】解:×3.14×(31.4÷3.14÷2)2×15,=3.14×52×5,答:这个玻璃罩的容积是392.5立方米.【点评】此题主要考查圆锥的体积计算公式V=πr2h,运用公式计算时不要漏乘.29.【分析】根据题干,高减少2厘米,表面积就减少25.12平方厘米,减少部分就是高2厘米的圆柱的侧面积,利用侧面积公式即可求得这个圆柱的底面周长,从而求得这个圆柱的底面半径,再根据圆柱的体积公式求得减少部分的体积,根据减少部分的体积是原来圆柱体积的,利用分数除法计算即可求得这个圆柱原来的体积.【解答】解:圆柱的底面半径为:25.12÷2÷3.14÷2=2(厘米)减少部分的体积为:3.14×22×2=25.12(立方厘米)原来圆柱的体积为:25.12÷=125.6(立方厘米)答:这个圆柱原来的体积为125.6立方厘米.【点评】抓住高减少2厘米时,表面积减少25.12平方厘米,从而求得这个圆柱的底面半径是解决本题的关键.。
人教版六年级下册数学第三单元《圆柱与圆锥》测试卷及参考答案【最新】
人教版六年级下册数学第三单元《圆柱与圆锥》测试卷一.选择题(共6题, 共12分)1.下面图()恰好可以围成圆柱体。
(接头忽略不计, 单位:厘米)A. B.C. D.2.压路机的前轮转动一周能压多少路面就是求压路机前轮的()。
A.表面积B.侧面积C.体积3.长方形围绕一条边旋转一周得到了:( )A. B. C.4.圆柱的底面直径是10厘米, 高8厘米,它的表面积是()。
A.408.2cm2B.251.2cm2C.157cm2D.517cm25.压路机的前轮转动一周能压多少路面是指()。
A.前轮的体积B.前轮的表面积C.前轮的侧面积 D.前轮一个侧面积和一个底面积6.在半径为50cm的圆形铁皮上剪去一块扇形铁皮, 用剩余部分制作成一个底面直径为80cm, 母线长为50cm的圆锥形烟囱帽, 则剪去的扇形的圆心角度数为()。
A.228°B.144°C.72°D.36°二.判断题(共6题, 共12分)1.如果一个圆锥的体积是一个圆柱体积的3倍, 它们的底面积相等, 那么圆锥的高一定是圆柱高的9倍。
()2.一个圆柱的直径和高相等, 则圆柱体的侧面展开图是正方形。
()3.一个圆柱的侧面沿高展开是一个正方形, 则圆柱的高和底面直径相等。
()4.圆柱体的底面周长和高相等时, 沿着它的一条高剪开, 侧面展开是一个正方形。
()5.一个圆锥的体积是15立方分米, 高是3分米, 底面积是5平方分米。
()6.圆柱的体积是圆锥体积的3倍。
()三.填空题(共6题, 共12分)1.如图是一个直角三角形, 以6cm的直角边所在直线为轴旋转一周, 所得到的图形是(), 它的体积是()cm3。
2.如图, 以长方形10 cm长的边所在直线为轴旋转一周, 会得到一个(), 它的表面积是()cm2, 体积是()cm3。
3.一个直角三角形的两条直角边分别长6cm、8cm, 以8cm的直角边为轴旋转一周, 得到的立体图形是(), 它的体积是()cm3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【数学】人教版六年级数学圆柱与圆锥测试卷附答案一、圆柱与圆锥1.将一根长16分米的圆柱形钢材截成三段较短的圆柱形,其表面积增加了24 平方分米,这根钢材原来的体积是多少?【答案】解:24÷4=6(平方分米)16×6=96(立方分米)答:这根钢材原来的体积是96立方分米。
【解析】【分析】将一根圆柱形钢材截成三段,增加了四个底面积,据此求出圆柱形钢材的底面积,再用底面积乘高即可求出这根钢材的体积。
2.求圆柱的表面积和圆锥的体积。
(1)(2)【答案】(1)解:2×3.14×3×4+2×3.14×32=103.62(cm2)(2)解:【解析】【分析】(1)圆柱的表面积=圆柱的底面积×2+圆柱的侧面积,圆柱的底面积=πr2,圆柱的侧面积=圆柱的底面周长×高,圆柱的底面周长=2πr;(2)圆锥的体积=πr2h。
3.我们熟悉的圆柱、长方体、正方体等立体的图形都称作直柱体,如图所示的三棱柱也是直柱体。
(1)通过比较,请你说说这类立体图形有什么样的共同特征呢?(至少写出3点)(2)我们已经学过圆柱、长方体、正方体的体积计算方法,请你大胆猜测一下,三棱柱的体积如何计算?若这个三棱柱的底面是一个直角三角形,两条直角边分别为2cm、3cm,高为5cm,请你计算出它的体积。
【答案】(1)答:①上下两个底面的大小和形状完全相同,并且它们相互平行。
②侧面与底面垂直,两个底面之间的距离就是直柱体的高。
③直柱体的侧面展开图是长方形。
④当底面周长与高相等时,侧面展开图是正方形。
(2)答:我们学过的长方体,正方体和圆柱体的体积都可以用“底面积×高”来计算.因为三棱柱也是直柱体,所以我精测,三棱柱的体积计算方法也可以用“底面积x高”来计算。
三棱柱的体积:2×3÷2×5=15cm3【解析】【分析】(1)根据每种直柱体的特征总结出它们共同的特征即可,例如:①它们的上下两个底面的大小和形状完全相同,并且它们相互平行;②它们的侧面与底面垂直,两个底面之间的距离就是直柱体的高;③它们的侧面展开图是长方形;④当底面周长与高相等时,侧面展开图是正方形;(2)长方体、正方体的体积都可以用“底面积×高”来计算,而三棱柱也是直柱体,所以三棱柱的体积也可以用“底面积×高”来计算,直角三角形的面积等于两条直角边乘积的一半,据此作答即可。
4.把三角形ABC以AB为轴旋转一周得到一个立体图形,计算如图所示立体图形的体积.(单位:cm)【答案】解: ×3.14×62×15=3.14×36×5=565.2(立方厘米)答:它的体积是565.2立方厘米.【解析】【分析】得到圆锥的底面半径是6cm,高是15cm,用底面积乘高再乘即可求出得到的立体图形的体积。
5.一堆圆锥形黄沙,底面周长是25.12米,高1.5米,每立方米的黄沙重2吨,这堆沙重多少吨?【答案】解:底面半径:25.12÷3.14÷2=8÷2=4(米)×3.14×42×1.5=×3.14×16×1.5=3.14×16×0.5=50.24×0.5=25.12(立方米)25.12×2=50.24(吨)答:这堆沙重50.24吨.【解析】【分析】已知圆锥的底面周长,求底面半径,用C÷π÷2=r,然后求出圆锥的体积,用公式:S=πr2h,据此列式计算,最后用黄沙的体积×每立方米黄沙的质量=这堆黄沙的总质量,据此列式解答.6.圆柱的底面半径和高都是2厘米,把它浸入一个均匀水槽内的水中,量得水位上升了4厘米.再把一个底面直径为6厘米的圆锥浸入水中,水位又上升了 4.5厘米.求圆锥的高.【答案】解:3.14×22×2÷4=3.14×4×2÷4=6.28(平方厘米)6.28×4.5×3÷[3.14×(6÷2)2]=3.14×27÷[3.14×9]=3(厘米)答:圆锥的高是3厘米。
【解析】【分析】将圆柱进入水中,水位上升了4厘米,那么据此可以计算出水槽的底面积,即水槽的底面积=圆柱的体积÷放入圆柱后水位上升的高度,圆柱的体积= πr2h,据此可以计算得出水槽的底面积,那么圆锥的体积=水槽的底面积×放入圆锥后水位上升的高度,然后根据圆锥的体积= πr2h,即可求得圆柱的高,据此代入数据作答即可。
7.把一个底面半径是6厘米,高10厘米的圆锥形容器里灌满水,然后倒入一个底面半径是5厘米的圆柱形容器里,求圆柱形容器里水面的高度。
【答案】解: ×3.14×62×10÷(3.14×52)=4.8(厘米)答:圆柱形容器里水面的高度4.8厘米。
【解析】【解答】×3.14×62×10÷(3.14×52)=×3.14×62×10÷(3.14×25)=×3.14×62×10÷78.5=3.14×12×10÷78.5=37.68×10÷78.5=376.8÷78.5=4.8(厘米)答:圆柱形容器里水面的高度4.8厘米。
【分析】根据题意可知,先求出圆锥形容器的容积,用公式:V=πr2h,然后除以圆柱的底面积,即可得到圆柱形容器里水面的高度,据此列式解答.8.养殖场要建一个圆柱形蓄水池,底面周长是25.12米,高是4米,沿着这个蓄水池的周围及底面抹水泥。
如果每平方米用水泥2千克,买400千克水泥够吗?【答案】解:25.12÷3.14÷2=4(米)3.14×4×4+25.12×4=150.72(平方米)150.72×2=301.44(千克)301.44<400答:买400千克水泥够了。
【解析】【分析】已知圆柱的底面周长,可以求出圆柱的底面半径,用公式:C÷π÷2=r,然后用圆柱的侧面积+底面积=这个圆柱形蓄水池抹水泥的面积,然后用每平方米用的水泥质量×抹水泥的面积=一共需要的水泥质量,最后与买的水泥的总重量对比,小于买的水泥总质量,就够,否则,不够,据此列式解答.9.一个底面直径为20厘米的圆柱形容器里,盛有一些水。
把一个底面半径为3厘米的圆锥形铅锤完全浸没在水中,水面上升0.3厘米,这个铅锤的高是多少厘米?【答案】解:3.14×(20÷2)2×0.3÷ ÷(3.14×32)=10(厘米)答:这个铅锤的高是10厘米。
【解析】【分析】圆锥的体积=上升的水面的体积,而上升的水面的形状是一个圆柱,故用圆柱的体积公式求出上升的水面的体积,公式为:V=πr²h。
最后求出这个铅锤的高:h=V÷÷S,或h=3V÷S(S是圆锥的底面积)。
10.如图,有一个圆柱形的零件,高是10cm,底面直径是6cm,零件的一端有一个圆柱形的孔,圆柱形孔的直径是4cm,孔深5cm,如果将这个零件接触空气的部分涂上防锈漆,一共需涂多少平方厘米?【答案】解:3.14×6×10+3.14×(6÷2)2×2+3.14×4×5=307.72(平方厘米)答:一共需涂307.72平方厘米。
【解析】【分析】涂防锈漆的面是圆柱形孔的侧面和一个底面;故根据圆柱的侧面积公式:S=πdh和圆柱的底面积公式即圆的面积公式:S=πr²,求出这两个面积;最后求和。
11.有一个圆锥形沙堆,底面半径是10米,高是4.8米,把这些沙子均匀地铺在一条宽20米,厚40厘米的通道上,可以铺多长?【答案】 40厘米=0.4米3.14×102×4.8÷3÷(20×0.4)=502.4÷8=62.8(米)答:可以铺62.8米。
【解析】【分析】可铺的米数=圆锥的底面积×高÷3÷(宽×厚)12.一个圆柱形水池底面直径8米,池深3米,如果在水池的底面和四周涂上水泥,涂水泥的面积是多少平方米?水池修好后最多能盛水多少立方米?【答案】解:涂水泥的面积为:3.14×8×3+3.14×(8÷2)2=25.12×3+3.14×42=75.36+50.24=125.6(平方米)这个水池可装水:3.14×(8÷2)2×3=50.24×3=150.72(立方米)答:涂水泥的面积是125.6平方米,水池修好后最多能盛水150.72立方米。
【解析】【分析】涂水泥的面积=水池的侧面积+水池的底面积,水池的侧面积=水池的底面周长×高,其中,水池的底面周长=πd;水池修好后最多能盛水的立方米数=水池的体积=π(d÷2)2h。
13.一个圆柱形的木料,底面直径是6dm,长2m。
(1)这根木料的表面积是________dm2,体积是________dm2。
(2)如果将它截成4段,这些木料的表面积比原木料增加了________。
(结果保留两位小数)【答案】(1)433.32;565.2(2)169.56dm2【解析】【解答】解:这根木料的底面半径是6÷2=3dm;2m=20dm;(1)这根木料的表面积是6×3.14×20+3×3×3.14×2=433.32dm2,体积是3×3×3.14×20=565.2dm3;(2)如果将它截成4段,就相当于把这个圆柱的表面积增加2×3=6个圆的面积,即6×3×3×3.14=169.56dm2。
故答案为:(1)433.32;565.2;(2)169.56dm2。
【分析】圆柱的底面半径=圆柱的底面直径÷2;(1)木料的表面积=木料的侧面积+木料的底面积×2,其中木料的侧面积=木料的底面周长×木料的长,木料的底面周长=木料的底面直径×π,木料的底面积=木料的底面半径2×π;(2)把一个圆柱截成4段,就是把这个圆柱切了3次,每切一次就增加2个底面,所以木料增加的表面积=切的次数×2×木料的底面积。