2018高三大一轮复习数学(文)课件:第九章 平面解析几何 9-5

合集下载

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

1.椭圆的概念平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,两个定点F1,F2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M|MF1+MF2=2a},F1F2=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质【知识拓展】点P (x 0,y 0)和椭圆的关系(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1.(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1.(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到两个定点F 1,F 2的距离的和等于常数的点的轨迹叫做椭圆.( × )(2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( √ )(3)椭圆的离心率e 越大,椭圆就越圆.( × )(4)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( √ ) (5)y 2a 2+x 2b 2=1(a ≠b )表示焦点在y 轴上的椭圆.( × ) (6)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b 2=1(a >b >0)的焦距相等.( √ )1.(教材改编)椭圆x 210-m +y 2m -2=1的焦距为4,则m =________.答案 4或8 解析 由题意知⎩⎪⎨⎪⎧ 10-m >m -2>0,(10-m )-(m -2)=4或⎩⎪⎨⎪⎧m -2>10-m >0,(m -2)-(10-m )=4,解得m =4或m =8.2.(2016·苏州检测)在平面直角坐标系xOy 内,动点P 到定点F (-1,0)的距离与P 到定直线x =-4的距离的比值为12.则动点P 的轨迹C 的方程为______________.答案 x 24+y 23=1解析 设点P (x ,y ),由题意知(x +1)2+y 2|x +4|=12,化简得3x 2+4y 2=12,所以动点P 的轨迹C 的方程为x 24+y 23=1.3.(2016·全国乙卷改编)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为________.答案 12解析 如图,由题意得,BF =a ,OF =c ,OB =b , OD =14·2b =12b .在Rt △FOB 中,OF ·OB =BF ·OD ,即cb =a ·12b ,解得a =2c ,故椭圆离心率e =c a =12.4.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是________. 答案 (0,1)解析 将椭圆方程化为x 22+y 22k =1,因为焦点在y 轴上,则2k>2,即k <1,又k >0,所以0<k <1.5.(教材改编)已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为__________________. 答案 ⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1 解析 设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0),由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152,所以P 点坐标为⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1.题型一 椭圆的定义及标准方程 命题点1 利用定义求轨迹例1 (2016·徐州模拟)如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是________.答案 椭圆解析 由条件知PM =PF , ∴PO +PF =PO +PM =OM =R >OF . ∴P 点的轨迹是以O ,F 为焦点的椭圆. 命题点2 利用待定系数法求椭圆方程例2 (1)已知椭圆以坐标轴为对称轴,且长轴长是短轴长的3倍,并且过点P (3,0),则椭圆的方程为_________________________________.(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则椭圆的方程为________________________________________. 答案 (1)x 29+y 2=1或y 281+x 29=1(2)x 29+y 23=1 解析 (1)若焦点在x 轴上, 设方程为x 2a 2+y 2b2=1(a >b >0).∵椭圆过P (3,0),∴32a 2+02b 2=1,即a =3,又2a =3×2b ,∴b =1,∴椭圆方程为x 29+y 2=1.若焦点在y 轴上,设方程为y 2a 2+x 2b 2=1(a >b >0).∵椭圆过点P (3,0),∴02a 2+32b 2=1,即b =3.又2a =3×2b ,∴a =9,∴椭圆方程为y 281+x 29=1.∴所求椭圆的方程为x 29+y 2=1或y 281+x 29=1.(2)设椭圆方程为mx 2+ny 2=1(m >0,n >0且m ≠n ). ∵椭圆经过点P 1,P 2,∴点P 1,P 2的坐标适合椭圆方程.即⎩⎪⎨⎪⎧6m +n =1,①3m +2n =1,② ①②两式联立,解得⎩⎨⎧m =19,n =13.∴所求椭圆方程为x 29+y 23=1.命题点3 利用定义解决“焦点三角形”问题例3 已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________. 答案 3解析 设PF 1=r 1,PF 2=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2, 因为2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2, 又因为1221219,2PF F S rr b ===△ 所以b =3. 引申探究1.在例3中,若增加条件“△PF 1F 2的周长为18”,其他条件不变,求该椭圆的方程. 解 由原题得b 2=a 2-c 2=9, 又2a +2c =18,所以a -c =1,解得a =5, 故椭圆方程为x 225+y 29=1.2.在例3中,若将条件“PF 1→⊥PF 2→”“△PF 1F 2的面积为9”分别改为“∠F 1PF 2=60°”“12PF F S =△,结果如何?解 PF 1+PF 2=2a ,又∠F 1PF 2=60°,所以PF 21+PF 22-2PF 1·PF 2cos 60°=F 1F 22,即(PF 1+PF 2)2-3PF 1·PF 2=4c 2, 所以3PF 1·PF 2=4a 2-4c 2=4b 2, 所以PF 1·PF 2=43b 2,又因为12121··sin 602PF F S PF PF =︒△ =12·43b 2·32 =33b 2=33, 所以b =3.思维升华 (1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a >F 1F 2这一条件.(2)求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx 2+ny 2=1(m >0,n >0,m ≠n )的形式. (3)当P 在椭圆上时,与椭圆的两焦点F 1,F 2组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求PF 1·PF 2;通过整体代入可求其面积等.(1)(2016·盐城模拟)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为________________. (2)(2016·镇江模拟)设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP→+OF 2→)·PF 2→=0(O 为坐标原点),则△F 1PF 2的面积是______. 答案 (1)x 264+y 248=1 (2)1解析 (1)设圆M 的半径为r ,则MC 1+MC 2=(13-r )+(3+r )=16>8=C 1C 2, 所以M 的轨迹是以C 1,C 2为焦点的椭圆, 且 2a =16,2c =8,故所求的轨迹方程为x 264+y 248=1.(2)∵(OP →+OF 2→)·PF 2→=(OP →+F 1O →)·PF 2→=F 1P →·PF 2→=0, ∴PF 1⊥PF 2,∠F 1PF 2=90°. 设PF 1=m ,PF 2=n ,则m +n =4,m 2+n 2=12,2mn =4,121= 1.2F PF S mn ∴=△题型二 椭圆的几何性质例4 (1)已知点F 1,F 2是椭圆x 2+2y 2=2的左,右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是________.(2)(2016·全国丙卷改编)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为椭圆C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为________. 答案 (1)2 (2)13解析 (1)设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0), PF 2→=(1-x 0,-y 0),∴PF 1→+PF 2→=(-2x 0,-2y 0), ∴|PF 1→+PF 2→|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.∵点P 在椭圆上,∴0≤y 20≤1, ∴当y 20=1时,|PF 1→+PF 2→|取最小值2.(2)设M (-c ,m ),则E ⎝⎛⎭⎫0,am a -c ,OE 的中点为D ,则D ⎝⎛⎭⎫0,am2(a -c ),又B ,D ,M 三点共线,所以m 2(a -c )=m a +c,a =3c ,e =13.思维升华 (1)利用椭圆几何性质的注意点及技巧 ①注意椭圆几何性质中的不等关系在求与椭圆有关的一些量的范围,或者最大值、最小值时,经常用到椭圆标准方程中x ,y 的范围,离心率的范围等不等关系. ②利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系. (2)求椭圆的离心率问题的一般思路求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式或不等式,利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围.(2016·江苏)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.答案63解析 联立方程组⎩⎨⎧x 2a 2+y 2b 2=1,y =b2,解得B ,C 两点坐标为B ⎝⎛⎭⎫-32a ,b 2,C ⎝⎛⎫32a ,b 2,又F (c,0),则FB →=⎝⎛⎭⎫-32a -c ,b 2,FC →=⎝⎛⎭⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得 c 2-34a 2+b 24=0,①又因为b 2=a 2-c 2.代入①式可化简为c 2a 2=23,则椭圆离心率为e =c a =23=63. 题型三 直线与椭圆例5 (2016·天津)设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1OF +1OA =3eF A ,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围. 解 (1)设F (c,0),由1OF +1OA =3eF A ,即1c +1a =3c a (a -c ),可得a 2-c 2=3c 2. 又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4. 所以椭圆的方程为x 24+y 23=1.(2)设直线l 的斜率为k (k ≠0), 则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0, 解得x =2或x =8k 2-64k 2+3.由题意,得x B =8k 2-64k 2+3,从而y B =-12k4k 2+3.由(1)知,F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k24k 2+3,12k 4k 2+3.由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k .因此直线MH 的方程为y =-1k x +9-4k212k.设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k (x -2),y =-1k x +9-4k 212k 消去y ,解得x M =20k 2+912(k 2+1).在△MAO 中,∠MOA ≤∠MAO ⇔MA ≤MO ,即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1,即20k 2+912(k 2+1)≥1,解得k ≤-64或k ≥64. 所以直线l 的斜率的取值范围为⎝⎛⎦⎤-∞,-64∪⎣⎡⎭⎫64,+∞. 思维升华 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题时用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则AB =(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+1k2)[(y 1+y 2)2-4y 1y 2](k 为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.如图,已知椭圆O :x 24+y 2=1的右焦点为F ,B ,C 分别为椭圆O 的上,下顶点,P 是直线l :y =-2上的一个动点(与y 轴交点除外),直线PC 交椭圆O 于另一点M.(1)当直线PM 过椭圆的右焦点F 时,求△FBM 的面积; (2)①记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1·k 2为定值; ②求PB →·PM →的取值范围.(1)解 由题意知B (0,1),C (0,-1),焦点F (3,0),当直线PM 过椭圆O 的右焦点F 时,直线PM 的方程为x 3+y -1=1,即y =33x -1.联立⎩⎨⎧x 24+y 2=1,y =33x -1,解得⎩⎨⎧x =837,y =17或⎩⎪⎨⎪⎧x =0,y =-1(舍去),即点M 的坐标为(837,17).连结BF ,则直线BF 的方程为x 3+y1=1, 即x +3y -3=0.又BF =a =2, 点M 到直线BF 的距离为d =|837+3×17-3|12+(3)2=2372=37, 故△FBM 的面积为S △MBF =12·BF ·d =12×2×37=37.(2)方法一 ①证明 设P (m ,-2),且m ≠0,则直线PM 的斜率为k =-1-(-2)0-m =-1m ,则直线PM 的方程为y =-1mx -1.联立⎩⎨⎧y =-1mx -1,x24+y 2=1,消去y ,得(1+4m 2)x 2+8mx =0,解得点M 的坐标为(-8mm 2+4,4-m 2m 2+4),所以k 1=4-m 2m 2+4-1-8m m 2+4=-2m 2-8m =14m ,k 2=1-(-2)0-m=-3m ,所以k 1·k 2=-3m ·14m =-34为定值.②解 由①知,PB →=(-m,3), PM →=(-8m m 2+4-m ,4-m 2m 2+4+2)=(-m 3-12m m 2+4,m 2+12m 2+4),所以PB →·PM →=(-m,3)·(-m 3+12m m 2+4,m 2+12m 2+4)=(m 2+12)(m 2+3)m 2+4.令m 2+4=t >4, 则PB →·PM →=(t +8)(t -1)t=t 2+7t -8t =t -8t+7.因为y =t -8t +7在t ∈(4,+∞)上单调递增,所以PB →·PM →=t -8t +7>4-84+7=9,故PB →·PM →的取值范围为(9,+∞).方法二 ①证明 设点M 的坐标为(x 0,y 0)(x 0≠0), 则直线PM 的方程为y =y 0+1x 0x -1,令y =-2,得点P 的坐标为(-x 0y 0+1,-2),所以k 1=y 0-1x 0,k 2=-2-1-x 0y 0+1=3(y 0+1)x 0,所以k 1·k 2=y 0-1x 0·3(y 0+1)x 0=3(y 20-1)x 20=3(y 20-1)4(1-y 20)=-34为定值. ②解 由①知,PB →=(x 0y 0+1,3),PM →=(x 0+x 0y 0+1,y 0+2),所以PB →·PM →=x 0y 0+1(x 0+x 0y 0+1)+3(y 0+2)=x 20(y 0+2)(y 0+1)2+3(y 0+2) =4(1-y 20)(y 0+2)(y 0+1)2+3(y 0+2)=(7-y 0)(y 0+2)y 0+1.令t =y 0+1∈(0,2),则PB →·PM →=(8-t )(t +1)t =-t +8t +7.因为y =-t +8t +7在t ∈(0,2)上单调递减,所以PB →·PM →=-t +8t +7>-2+82+7=9,故PB →·PM →的取值范围为(9,+∞).8.高考中求椭圆的离心率问题考点分析 离心率是椭圆的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求椭圆的离心率;另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法.典例1 (2015·福建改编)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若AF +BF =4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是__________.解析 左焦点F 0,连结F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵AF +BF =4, ∴AF +AF 0=4, ∴a =2.设M (0,b ),则4b 5≥45,∴1≤b <2.离心率e =ca =c 2a 2= a 2-b 2a 2= 4-b 24∈⎝⎛⎦⎤0,32. 答案 ⎝⎛⎦⎤0,32典例2 (14分)(2016·浙江)如图,设椭圆x 2a2+y 2=1(a >1).(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围. 规范解答解 (1)设直线y =kx +1被椭圆截得的线段为AM , 由⎩⎪⎨⎪⎧y =kx +1,x 2a 2+y 2=1,得(1+a 2k 2)x 2+2a 2kx =0, 故x 1=0,x 2=-2a 2k 1+a 2k 2,因此AM =1+k 2|x 1-x 2|=2a 2|k |1+a 2k2·1+k 2. [6分](2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足AP =AQ .记直线AP ,AQ 的斜率分别为k 1,k 2, 且k 1,k 2>0,k 1≠k 2.[8分]由(1)知AP =2a 2|k 1|1+k 211+a 2k 21,AQ =2a 2|k 2|1+k 221+a 2k 22, 故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22,所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0.由k 1≠k 2,k 1,k 2>0,得1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝⎛⎭⎫1k 21+1⎝⎛⎭⎫1k 22+1=1+a 2(a 2-2), ①因为①式关于k 1,k 2的方程有解的充要条件是1+a 2(a 2-2)>1,所以a > 2. [12分] 因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤2, 由e =c a =a 2-1a ,得0<e ≤22.所以离心率的取值范围是(0,22].[14分]1.(2016·苏北四市联考)已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为____________. 答案 x 24+y 23=1解析 依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1.2.(2016·苏北四市一模)已知椭圆x 2a 2+y 2b 2=1(a >b >0),点A 、B 1、B 2、F 依次为其左顶点、下顶点、上顶点和右焦点.若直线AB 2与直线B 1F 的交点恰在直线x =a 2c 上,则椭圆的离心率为________. 答案 12解析 由题意知直线AB 2:-x a +y b =1,直线B 1F :x c -y b =1,联立解得x =2aca -c ,若交点在椭圆的右准线上,则2ac a -c =a 2c,即2c 2+ac -a 2=0,所以2e 2+e -1=0,解得e =12.3.(2017·青岛月考)已知A 1,A 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,P 是椭圆C上异于A 1,A 2的任意一点,若直线P A 1,P A 2的斜率的乘积为-49,则椭圆C 的离心率为________.答案53解析 设P (x 0,y 0),则y 0x 0+a ·y 0x 0-a=-49,化简得x 20a 2+y 204a29=1,则b 2a 2=49,e = 1-(b a )2=1-49=53. 4.(2016·南昌模拟)已知椭圆:y 29+x 2=1,过点P (12,12)的直线与椭圆相交于A ,B 两点,且弦AB 被点P 平分,则直线AB 的方程为________________. 答案 9x +y -5=0解析 设A (x 1,y 1),B (x 2,y 2),因为A ,B 在椭圆y 29+x 2=1上,所以⎩⎨⎧y 219+x 21=1,y 229+x 22=1,两式相减,得y 21-y 229+x 21-x 22=0, 即(y 1-y 2)(y 1+y 2)9+(x 1-x 2)(x 1+x 2)=0,又弦AB 被点P (12,12)平分,所以x 1+x 2=1,y 1+y 2=1,将其代入上式,得y 1-y 29+x 1-x 2=0,得y 1-y 2x 1-x 2=-9, 即直线AB 的斜率为-9,所以直线AB 的方程为 y -12=-9(x -12), 即9x +y -5=0.5.(2016·宿迁模拟)已知F 1、F 2是椭圆x 24+y 2=1的两个焦点,P 为椭圆上一动点,则使PF 1·PF 2取得最大值的点P 为__________. 答案 (0,1)或(0,-1)解析 由椭圆定义得PF 1+PF 2=2a =4, ∴PF 1·PF 2≤(PF 1+PF 22)2=4,当且仅当PF 1=PF 2=2,即P (0,-1)或(0,1)时,PF 1·PF 2取得最大值.*6.(2016·苏州质检)设A 1,A 2为椭圆x 2a 2+y 2b2=1(a >b >0)的左,右顶点,若在椭圆上存在异于A 1,A 2的点P ,使得PO →·P A 2→=0,其中O 为坐标原点,则椭圆的离心率e 的取值范围是____________. 答案 (22,1) 解析 A 1(-a,0),A 2(a,0),设P (x ,y ),则PO →=(-x ,-y ),P A 2→=(a -x ,-y ), ∵PO →·P A 2→=0,∴(a -x )(-x )+(-y )(-y )=0, ∴y 2=ax -x 2>0,∴0<x <a . 将y 2=ax -x 2代入x 2a 2+y 2b2=1,整理得(b 2-a 2)x 2+a 3x -a 2b 2=0,其在(0,a )上有解, 令f (x )=(b 2-a 2)x 2+a 3x -a 2b 2, ∵f (0)=-a 2b 2<0,f (a )=0, 如图,Δ=(a 3)2-4(b 2-a 2)·(-a 2b 2) =a 2(a 4-4a 2b 2+4b 4) =a 2(a 2-2b 2)2≥0,∴对称轴满足0<-a 32(b 2-a 2)<a ,即0<a 32(a 2-b 2)<a ,∴a 22c 2<1,∴c 2a 2>12. 又0<c a <1,∴22<c a<1.7.若椭圆x 2a 2+y 2b 2=1(a >0,b >0)的焦点在x 轴上,过点(2,1)作圆x 2+y 2=4的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程为________________. 答案 x 220+y 216=1解析 设切点坐标为(m ,n ), 则n -1m -2·nm=-1,即m 2+n 2-n -2m =0.∵m 2+n 2=4,∴2m +n -4=0, 即直线AB 的方程为2x +y -4=0.∵直线AB 恰好经过椭圆的右焦点和上顶点, ∴2c -4=0,b -4=0,解得c =2,b =4, ∴a 2=b 2+c 2=20, ∴椭圆方程为x 220+y 216=1.8.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则PM +PN 的最小值为________. 答案 7解析 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且PF 1+PF 2=10,从而PM +PN 的最小值为PF 1+PF 2-1-2=7.9.(2017·连云港质检)椭圆x 24+y 2=1的左,右焦点分别为F 1,F 2,点P 为椭圆上一动点,若∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________________. 答案 (-263,263)解析 设椭圆上一点P 的坐标为(x ,y ), 则F 1P →=(x +3,y ),F 2P →=(x -3,y ). ∵∠F 1PF 2为钝角,∴F 1P →·F 2P →<0, 即x 2-3+y 2<0,①∵y 2=1-x 24,代入①,得x 2-3+1-x 24<0,34x 2<2,∴x 2<83. 解得-263<x <263,∴x ∈(-263,263).10.已知过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A (-a ,0)作直线l 交y 轴于点P ,交椭圆于点Q ,若△AOP 是等腰三角形,且PQ →=2QA →,则椭圆的离心率为________. 答案255解析 ∵△AOP 是等腰三角形,A (-a,0),∴P (0,a ). 设Q (x 0,y 0),∵PQ →=2QA →,∴(x 0,y 0-a )=2(-a -x 0,-y 0).∴⎩⎪⎨⎪⎧x 0=-2a -2x 0,y 0-a =-2y 0,解得⎩⎨⎧x 0=-23a ,y 0=a3,代入椭圆方程化简,可得b 2a 2=15,∴e =1-b 2a 2=255. 11.(2016·南京模拟)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点,上顶点分别为A ,B ,且AB =52BF . (1)求椭圆C 的离心率;(2)若斜率为2的直线l 过点(0,2),且l 交椭圆C 于P ,Q 两点,OP ⊥OQ ,求直线l 的方程及椭圆C 的方程.解 (1)由已知AB =52BF , 即a 2+b 2=52a , 4a 2+4b 2=5a 2,4a 2+4(a 2-c 2)=5a 2, ∴e =c a =32.(2)由(1)知a 2=4b 2,∴椭圆C :x 24b 2+y 2b2=1.设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为y -2=2(x -0),即2x -y +2=0. 由⎩⎪⎨⎪⎧2x -y +2=0,x 24b 2+y 2b 2=1消去y , 得x 2+4(2x +2)2-4b 2=0, 即17x 2+32x +16-4b 2=0.Δ=322+16×17(b 2-4)>0,解得b >21717.x 1+x 2=-3217,x 1x 2=16-4b 217.∵OP ⊥OQ ,∴OP →·OQ →=0,即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0, 5x 1x 2+4(x 1+x 2)+4=0. 从而5(16-4b 2)17-12817+4=0,解得b =1,满足b >21717.∴椭圆C 的方程为x 24+y 2=1.12.(2015·安徽)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足BM =2MA ,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.解 (1)由题设条件知,点M 的坐标为⎝⎛⎭⎫23a ,13b , 又k OM =510,从而b 2a =510, 进而得a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)由题设条件和(1)的计算结果可得,直线AB 的方程为x 5b +yb=1,点N 的坐标为⎝⎛⎭⎫52b ,-12b .设点N 关于直线AB 的对称点S 的坐标为⎝⎛⎭⎫x 1,72, 则线段NS 的中点T 的坐标为⎝⎛⎭⎫54b +x 12,-14b +74.又点T 在直线AB 上,且k NS ·k AB =-1,从而有⎩⎪⎨⎪⎧54b +x 125b+-14b +74b =1,72+12b x 1-52b = 5.解得b =3.所以a =35,故椭圆E 的方程为x 245+y 29=1.13.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,上顶点为B ,O 为坐标原点,M 为椭圆上任意一点.过F ,B ,A 三点的圆的圆心坐标为(p ,q ). (1)当p +q ≤0时,求椭圆的离心率的取值范围;(2)若点D (b +1,0),在(1)的条件下,当椭圆的离心率最小时,(MF →+OD →)·MO →的最小值为72,求椭圆的方程.解 (1)设椭圆半焦距为c .由题意AF ,AB 的中垂线方程分别为x =a -c 2,y -b 2=a b (x -a2),于是圆心坐标为(a -c 2,b 2-ac2b ).所以p +q =a -c 2+b 2-ac2b≤0,整理得ab -bc +b 2-ac ≤0,即(a +b )(b -c )≤0, 所以b ≤c ,于是b 2≤c 2,即a 2=b 2+c 2≤2c 2. 所以e 2=c 2a 2≥12,即22≤e <1.(2)当e =22时,a =2b =2c , 此时椭圆的方程为x 22c 2+y 2c 2=1,设M (x ,y ),则-2c ≤x ≤2c ,MF →=(-c -x ,-y ),OD →=(b +1,0),MO →=(-x ,-y ), 所以(MF →+OD →)·MO →=12x 2-x +c 2=12(x -1)2+c 2-12.当c ≥22时,上式的最小值为c 2-12,即c 2-12=72,得c =2; 当0<c <22时,上式的最小值为12(2c )2-2c +c 2, 即12(2c )2-2c +c 2=72, 解得c =2+304,不合题意,舍去. 综上所述,椭圆的方程为x 28+y 24=1.。

2018版高考数学大一轮复习第九章解析几何9.5椭圆课件文新人教A版

2018版高考数学大一轮复习第九章解析几何9.5椭圆课件文新人教A版

y2
+ b 2 =1(a>b>0)
x2
-a≤x≤a -b≤y≤b 对称轴:坐标轴 A1(-a,0),A2(a,0) B1(0,-b),B2(0,b) 长轴 A1A2 的长为 为 2b |F1F2|= e=
������ ������
-b≤x≤b -a≤y≤a 对称中心:原点 A1(0,-a),A2(0,a) B1(-b,0),B2(b,0)
-11考点1 考点2 考点3
考点 1
椭圆的定义及其标准方程
������2 C:������2
例 1(1)已知 F1,F2 是椭圆
+
������2 ������
2 =1(a>b>0)的两个焦点,P

椭圆 C 上的一点,且������������1 ⊥ ������������2 .若△PF1F2 的面积为 9,则 b= . (2)(2016 山西孝义模拟)已知椭圆
+
������2 =1 5
D.以上答案都不对
关闭
C
答案
-7知识梳理 双基自测 自测点评
1 2 3 4 5
+
������2 ������
3.已知椭圆
√3
������2 C:������2
右焦点为 2 =1(a>b>0)的左、
F1,F2,离心率为
3
,过 F2 的直线 l 交 C 于 A,B 两点.若△AF1B 的周长为 4√3,则 C 的方 ) + +
2a
;短轴 B1B2 的长
2c
∈(0,1)
c2=a2-b2
-5知识梳理 双基自测 自测点评
1 2 3 4 5

2018版高考数学大一轮复习第九章平面解析几何9.8曲线与方程课件理新人教版

2018版高考数学大一轮复习第九章平面解析几何9.8曲线与方程课件理新人教版

=-2,求点M的轨迹方程. 解答 几何画板展示
题型三 相关点法求轨迹方程 例3 (2016·大连模拟)如图所示,抛物线C1:x2=4y,C2: x2=-2py(p>0).点M(x0,y0)在抛物线C2上,过M作C1的切线, 切点为A,B(M为原点O时,A,B重合于O).当x0=1- 2时, 切线MA的斜率为-1 .
思维升华
直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数 方程,要注意翻译的等价性.通常将步骤简记为建系设点、列式、代换、 化简、证明这五个步骤,但最后的证明可以省略,如果给出了直角坐 标系则可省去建系这一步,求出曲线的方程后还需注意检验方程的纯 粹性和完备性.
跟踪训练2 在平面直角坐标系xOy中,点P(a,b)为动点,F1,F2分别 为椭圆ax22+by22=1(a>b>0)的左,右焦点.已知△F1PF2为等腰三角形.
3.(2016·南昌模拟)已知A(-2,0),B(1,0)两点,动点P不在x轴上,且满足
∠APO=∠BPO,其中O为原点,则P点的轨迹方程是 答案 解析
A.(x+2)2+y2=4(y≠0)
几何画板展示
B.(x+1)2+y2=1(y≠0)
C.(x-2)2+y2=4(y≠0)
D.(x-1)2+y2=1(y≠0)
2.求动点的轨迹方程的基本步骤 任意 x,y
所求方程
知识拓展
1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程 f(x,y)=0的解”的充分不必要条件. 2.曲线的交点与方程组的关系: (1)两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组 成的方程组的实数解; (2)方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线 就没有交点.

2018高考数学(文)(人教新课标)大一轮复习课件:第九章 平面解析几何 9.2

2018高考数学(文)(人教新课标)大一轮复习课件:第九章 平面解析几何 9.2

当 m=0 或 m=2 时两直线相交; A1 1 B1 m C 1 6 当 m≠0 且 m≠2 时,此时 = , = , = , A2 m-2 B2 3 C2 2m A1 B1 1 m 当 = 时,即 = ,解得 m=-1 或 m=3; A2 B2 m-2 3 A1 C 1 1 6 当 = 时,即 = ,解得 m=3. A2 C 2 m-2 2m A1 B1 (1)当 m≠-1 且 m≠3 时, ≠ ,方程组有唯一一组解.所以 l1 与 l2 相交. A2 B2 A1 B 1 A1 C 1 (2)当 m=-1 时, = 且 ≠ ,方程组无解.所以 l1 与 l2 平行. A2 B 2 A2 C 2 A1 B1 C 1 (3)当 m=3 时, = = ,方程组有无穷多组解.所以 l1 与 l2 重合. A2 B2 C 2
解:因为直线 l1:x+2y-1=0 与直线 l2:mx-y=0 平行, m -1 1 所以 = ≠0,解得 m=- .故选 A. 1 2 2
丽江月考)直线 mx+4y-2=0 与直线 2x-5y+n=0 垂 (2016· 直,垂足为(1,p),则 n 的值为( A.-12 B.-2 ) C.0 D.10
m 2 m 2 解:因为两直线的斜率分别为- 和 ,则- × =-1,所以 m 4 5 4 5 =10,则直线 mx+4y-2=0 可以写成 5x+2y-1=0,过点(1,p), 有 5+2p-1=0,则 p=-2,且点(1,-2)又在 2x-5y+n=0 上,则 2 +10+n=0,所以 n=-12.故选 A.
2 2 解:l1⊥l2,则 a×1+2×(a-1)=0,解得 a= .故填 . 3 3
类型一
Hale Waihona Puke 两条直线平行、重合或相交已知两条直线:l1:x+my+6=0,l2:(m-2)x+3y +2m=0,当 m 为何值时,l1 与 l2: (1)相交;(2)平行;(3)重合.

2018课标版文数一轮(9)第九章-平面解析几何(含答案)5-第五节 椭圆

2018课标版文数一轮(9)第九章-平面解析几何(含答案)5-第五节 椭圆

∵PF∥y轴,∴ = = , = = ,
栏目索引
(2)由| AM |=1,A(3,0),知点M在以A(3,0)为圆心,1为半径的圆上运动,∵
PM · PM |= AM =0,∴PM⊥AM,即PM为☉A的切线,连接PA(如图),则|



| PA |


2
PA |min=5-3=2时, | AM | = | PA | 1 ,又∵P在椭圆上运动,∴当|
栏目索引
1.如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点, 把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于 点P,则点P的轨迹是 ( )
A.椭圆 B.双曲线 C.抛物线 D.圆
答案 A 由折叠过程可知点M与点F关于直线CD对称,故|PM|=|PF|,所
以|PO|+|PF|=|PO|+|PM|=|OM|=r>|OF|(r为圆O的半径).故由椭圆的定义 可知,点P的轨迹为椭圆.
栏目索引
1-1 一个椭圆的中心在原点,焦点F1,F2在x轴上,P(2, 3 )是椭圆上一点,
且|PF1|,|F1F2|,|PF2|成等差数列,则椭圆的标准方程为 (
x2 y 2 A. + =1 8 6 x2 y 2 C. + =1 4 2 x2 y 2 B. + =1 16 6 x2 y 2 D. + =1 8 4


.
答案 (1)D (2)A (3)3
解析 (1)设圆M的半径为r,则|MC1|+|MC2|=(13-r)+(3+r)=16,又|C1C2|=8<
16,∴动圆圆心M的轨迹是以C1、C2为焦点的椭圆,且2a=16,2c=8,则a=8,c
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 3 b b → → BF=c+ a,- ,CF=c- a,- , 2 2 2 2
→· → =0, 由∠BFC=90° ,可得BF CF
所以 c-
2
b2 3 3 +-2 =0, a c + a 2 2
4 + 5 =1 D.以上答案都不对
解析:选 C.直线与坐标轴的交点为(0,1),(-2,0), 由题意知当焦点在 x 轴上时,c=2,b=1,
2 x ∴a2=5,所求椭圆的标准方程为 5 +y2=1.
当焦点在 y 轴上时,b=2,c=1,
2 2 y x ∴a2=5,所求椭圆标准方程为 5 + 4 =1.
【知识拓展】 点 P(x0,y0)和椭圆的关系
2 x0 y2 0 (1)点 P(x0,y0)在椭圆内⇔a2+b2<1. 2 x0 y2 0 (2)点 P(x0,y0)在椭圆上⇔a2+b2=1. 2 x0 y2 0 (3)点 P(x0,y0)在椭圆外⇔a2+b2>1.
【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)平面内与两个定点 F1,F2 的距离之和等于常数的点的轨迹 是椭圆.( )
(1)若 (2)若 (3)若
a>c a=c a<c
,则集合 P 为椭圆; ,则集合 P 为线段; ,则集合 P 为空集.
2.椭圆的标准方程和几何性质
标准方程 x2 y2 a2+b2=1 (a>b>0) y2 x2 a2+b2=1 (a>b>0)
图形
性 质
-a≤x≤a -b≤x≤b 范围 -b≤y≤b -a≤y≤a 对称性 对称轴:坐标轴 对称中心:原点 A1(-a,0),A2(a,0) A1(0,-a),A2(0,a) 顶点 B1(0,-b),B2(0,b) B1(-b,0),B2(b,0) 轴 长轴 A1A2 的长为 2a ;短轴 B1B2 的长为 2b 焦距 |F1F2|= 2c c 离心率 e=a∈(0,1) a,b,c a2=b2+c2 __________________ 的关系
x2 y2 2 . (2015· 高考广东卷 ) 已知椭圆 25 + m2 = 1(m>0) 的左焦点为 F1(-4,0),则 m 等于( A.2 C.4 ) B.3 D.9
解析:选 B.由题意知 25-m2=16,解得 m2=9,又 m>0,所 以 m=3.
x2 y2 3.已知椭圆 C:a2+b2=1(a>b>0)的左,右焦点为 F1,F2, 3 离心率为 3 ,过 F2 的直线 l 交 C 于 A、B 两点,若△AF1B 的周长 为 4 3,则 C 的方程为( x2 y2 A. 3 + 2 =1 x2 y2 C.12+ 8 =1 ) x2 2 B. 3 +y =1 x2 y 2 D.12+ 4 =1
基础 考点
知识导航 典例领航
学科培优
高频微考点
课时规范训练
§ 9.5


[知识梳理] 1.椭圆的概念 平面内到两个定点 F1,F2 的距离之和等于常数(大于|F1F2|)的 点的集合叫作 椭圆 .这两个定点 F1,F2 叫作椭圆的 点 F1,F2 间的距离叫作椭圆的 焦距 .
焦点
,两焦
集合 P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中 a>0,c>0, 且 a,c 为常数:
5.(2016· 高考江苏卷)如图,在平面直角坐标系 xOy 中,F 是椭 x2 y2 b 圆a2+b2=1(a>b>0)的右焦点,直线 y=2与椭圆交于 B,C 两点, 且∠BFC=90° ,则该椭圆的离心率是________.
解析:由已知条件易得
B -
3 3 b b , C a , a , 2 ,F(c,0),∴ 2 2 2
3 2 1 2 c -4a +4b =0,
即 4c2-3a2+(a2-c2)=0,亦即 3c2=2a2, c2 2 6 c 所以a2=3,则 e=a= 3 .
6 答案: 3
类型一 椭圆的定义及标准方程 题点 1 椭圆定义的应用 [例 1] (2017· 北京东城期末)过椭圆 4x2+y2=1 的一个焦点 F1 的直线与椭圆交于 A,B 两点,则 A 与 B 和椭圆的另一个焦点 F2 构成的△ABF2 的周长为( A.2 C.8 ) B.4 D.2 2
(2)椭圆上一点 P 与两焦点 F1,F2 构成△PF1F2 的周长为 2a+ 2c(其中 a 为椭圆的长半轴长,c 为椭圆的半焦距).( (3)椭圆的离心率 e 越大,椭圆就越圆.( ) )
(4) 方 程 mx2 + ny2 = 1(m>0 , n>0 , m≠n) 表 示 的 曲 线 是 椭 圆.( ) ) )
解析:选 A.∵△AF1B 的周长为 4 3,∴4a=4 3, 3 ∴a= 3,∵离心率为 3 ,∴c=1,
2 2 x y ∴b= a2-c2= 2,∴椭圆 C 的方程为 3 + 2 =1.故选 A.
x2 y2 4 4.已知椭圆 9 + =1 的离心率为5,则 k 的值为( 4-k A.-21 19 C.-25或 21 B.21 19 D.25或-21
)
解析:选 D.当 9>4-k>0,即 4>k>-5 时, 5+k 4 19 a=3,c =9-(4-k)=5+k,∴ 3 =5,解得 k=25.
2
当 9<4-k,即 k<-5 时,a= 4-k,c2=-k-5, -k-5 4 19 ∴ =5,解得 k=-21,所以 k 的值为25或-21. 4-k
y2 x2 (5)a2+b2=1(a≠b)表示焦点在 y 轴上的椭圆.(
x2 y2 y2 x2 (6)a2+b2=1(a>b>0)与a2+b2=1(a>b>0)的焦距相等.(
答案:(1)× (2)√ (3)× (4)√ (5)× (6)√
[基础自测] 1.若直线 x-2y+2=0 经过椭圆的一个焦点和一个顶点,则 该椭圆的标准方程为( x2 2 A. 5 +y =1 ) x2 y2 B. 4 + 5 =1
相关文档
最新文档