2016-2017学年湖北省武汉市八年级(下)竞赛数学试卷

合集下载

2016-2017学年湖北省武汉市八年级(下)期中数学试卷含答案

2016-2017学年湖北省武汉市八年级(下)期中数学试卷含答案

2016-2017学年湖北省武汉市八年级(下)期中数学试卷含答案一、选择题(共10小题,每小题3分,共30分)1.使二次根式有意义的a的取值范围是()A.a≥0B.a≠5C.a≥5D.a≤52.下列二次根式中,是最简二次根式的是()A.B.C.D.3.下列计算正确的是()A.3﹣=3B.2+=2C.=﹣2D.=24.直角三角形两边长分别为为3和5,则另一边长为()A.4B.C.或4D.不确定5.下列四组数中不是勾股数的是()A.3,4,5B.2,3,4C.5,12,13D.8,15.176.下列条件中能判定四边形ABCD是平行四边形的是()A.∠A=∠B,∠C=∠D B.AB=AD,CB=CDC.AB=CD,AD=BC D.AB∥CD,AD=BC7.下列命题的逆命题成立的是()A.全等三角形的面积相等B.相等的两个实数的平方也相等C.等腰三角形的两个底角相等D.直角都相等8.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm9.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是()A.(1,1)B.(﹣1,﹣1)C.(﹣1,﹣2)D.(1,﹣2)10.已知菱形ABCD中,∠ADC=120°,N为DB延长线上一点,E为DA延长线上一点,且BN=DE,连CN、EN,点O为BD的中点,过O作OM⊥AB交EN于M,若OM=,AE=1,则AB的长度为()A.B.2C.D.+3二、填空题(共6小题,每小题3分,共18分)11.计算:=.12.如图,一根16厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=8厘米,且RP⊥PQ,则RQ=厘米.13.若顺次连接四边形ABCD各边中点所得四边形为矩形,则四边形ABCD的对角线AC、BD之间的关系为.14.对于两个实数a、b,定义运算@如下:a@b=,例如3@4=.那么15@x2=4,则x 等于.15.平行四边形ABCD中,AB=10,AD=8,若平行四边形ABCD的面积为48,则对角线BD的长为.16.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=1,分别以AB、BC、AC为边作正方ABED、BCFK、ACGH,再作Rt△PQR,使∠R=90°,点H在边QR上,点D、E在边PR上,点G、F在边PQ上,则PQ的长为.三、解答题(共8小题,共72分)17.(8分)计算:(1)(4﹣3)(2)+618.(8分)已知a=+2,b=2﹣,求下列各式的值:(1)a2+2ab+b2;(2)a2﹣b2.19.(8分)已知:如图,A、C是平行四边形DEBF的对角线EF所在直线上的两点,且AE=CF.求证:四边形ABCD是平行四边形.20.(8分)如图,四边形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD 的面积.21.(8分)在菱形ABCD中,AC与BD交于点O,过点O的直线MN分别交AB、CD于M,N.(1)求证:AM+DN=AD;(2)∠AOM=∠OBC,AC=2,BD=2,求MN的长度.22.(10分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P从点A出发,以2cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B 运动,规定其中一个动点到达端点时,另一个动点也随之停止运动,设运动的时间为t秒.(1)当t=4.8秒时,四边形PQCD是怎样的四边形?说明理由;(2)当PQ=17时,求t的值.23.(10分)在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE =AD,∠DAE+∠BAC=180°.(1)如图1,当点E落在AC上时,求∠ADE的度数(用α表示);(2)如图2,以AB,AE为边作平行四边形ABFE,若点F恰好落在ED的延长线上,EF交AC于点H,求的值;(3)若∠ADE=45°,BC=14,BD=6,连接CE,则CE=.24.(12分)已知矩形ABCD中,AB=3,BC=4,E为直线BC上一点.(1)如图1,当E在线段BC上,且DE=AD时,求BE的长;(2)如图2,点E为BC边延长线上一点,若BD=BE,连接DE,M为DE的中点,连接AM、CM,求证:AM⊥CM;(3)如图3,在(2)的条件下,P、Q为AD边上两个动点,且PQ=,连接P、B、M、Q,则四边形PBMQ周长的最小值为.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.使二次根式有意义的a的取值范围是()A.a≥0B.a≠5C.a≥5D.a≤5【分析】根据二次根式有意义,被开方数大于等于0列不等式求解即可.【解答】解:由题意得,5﹣a≥0,解得a≤5.故选:D.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.2.下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、=2,故不是最简二次根式,故此选项错误;B、,是最简二次根式,符合题意;C、=|a|,故不是最简二次根式,故此选项错误;D、=,故不是最简二次根式,故此选项错误;故选:B.【点评】此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.3.下列计算正确的是()A.3﹣=3B.2+=2C.=﹣2D.=2【分析】直接利用二次根式的性质分别化简计算即可.【解答】解:A、3﹣=2,故此选项错误;B、2+无法计算,故此选项错误;C、=2,故此选项错误;D、=2,正确.故选:D.【点评】此题主要考查了二次根式的hi额性质与化简,正确化简二次根式是解题关键.4.直角三角形两边长分别为为3和5,则另一边长为()A.4B.C.或4D.不确定【分析】由于此题没有明确斜边,应考虑两种情况:5是直角边或5是斜边,根据勾股定理进行计算.【解答】解:5是直角边时,则第三边==,5是斜边时,则第三边==4,故有两种情况或4.故选:C.【点评】此题关键是要考虑两种情况,熟练运用勾股定理.5.下列四组数中不是勾股数的是()A.3,4,5B.2,3,4C.5,12,13D.8,15.17【分析】求是否为勾股数,这里给出三个数,利用勾股定理,只要验证两小数的平方和等于最大数的平方即可.【解答】解:A、32+42=52,是勾股数的一组;B、22+32≠42,不是勾股数的一组;C、52+122=132,是勾股数的一组;D、82+152=172,是勾股数的一组.故选:B.【点评】考查了勾股数,理解勾股数的定义,并能够熟练运用.6.下列条件中能判定四边形ABCD是平行四边形的是()A.∠A=∠B,∠C=∠D B.AB=AD,CB=CDC.AB=CD,AD=BC D.AB∥CD,AD=BC【分析】根据平行四边形的判定定理(①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形)进行判断即可.【解答】解:A、∵∠A=∠B,∠C=∠D,∠A++∠B+∠C+∠D=360°,∴2∠B+2∠C=360°,∴∠B+∠C=180°,∴AB∥CD,但不能推出其它条件,即不能推出四边形ABCD是平行四边形,故本选项错误;B、根据AB=AD,CB=CD不能推出四边形ABCD是平行四边形,故本选项错误;C、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故本选项正确;D、由AB∥CD,AD=BC也可以推出四边形ABCD是等腰梯形,故本选项错误;故选:C.【点评】本题考查了对平行四边形的判定定理和等腰梯形的判定的应用,注意:平行四边形的判定定理有:①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形,等腰梯形的定义是两腰相等的梯形.7.下列命题的逆命题成立的是()A.全等三角形的面积相等B.相等的两个实数的平方也相等C.等腰三角形的两个底角相等D.直角都相等【分析】先写出各命题的逆命题,然后根据全等三角形的判定、等腰三角形的判定定理和直角的定义分别对各逆命题进行判断.【解答】解:A、全等三角形的面积相等的逆命题为面积相等的三角形为全等三角形,所以A选项错误;B、相等的两个实数的平方也相等的逆命题为平方相等的两个实数相等或相反,所以B选项错误;C、等腰三角形的两个底角相等的逆命题为有两个角相等的三角形为等腰三角形,所以C选项正确;D、直角都相等的逆命题为相等的角为直角,所以D选项错误.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.8.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选:D.【点评】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.9.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A →B→C→D→A的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是()A.(1,1)B.(﹣1,﹣1)C.(﹣1,﹣2)D.(1,﹣2)【分析】根据点A、B、C、D的坐标可得出AB、BC的长度以及四边形ABCD为矩形,进而可求出矩形ABCD的周长,根据细线的缠绕方向以及细线的长度即可得出细线的另一端所在位置,此题得解.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=CD=2,AD=BC=3,且四边形ABCD为矩形,=2(AB+BC)=10.∴矩形ABCD的周长C矩形ABCD∵2017=201×10+7,AB+BC+CD=7,∴细线的另一端落在点D上,即(1,﹣2).故选:D.【点评】本题考查了规律型中点的坐标、矩形的判定以及矩形的周长,根据矩形的周长结合细线的长度找出细线终点所在的位置是解题的关键.10.已知菱形ABCD中,∠ADC=120°,N为DB延长线上一点,E为DA延长线上一点,且BN=DE,连CN、EN,点O为BD的中点,过O作OM⊥AB交EN于M,若OM=,AE=1,则AB的长度为()A.B.2C.D.+3【分析】解法1:连接CM,CO,CE,判定△EDC≌△NBC,即可得到∠DCE=∠BCN,EC=NC,进而得出△ECN为等边三角形,依据∠CMO=∠CED,∠CDE=∠COM=120°,可得△CDE∽△COM,再根据相似三角形的性质,即可得到AD,AB的长.解法2:延长BD至F,使得DF=BN=DE,连接EF,延长CD交EF于G,利用三角形中位线定理可得EF的长,依据等腰三角形的性质,即可得到EG的长,再根据∠DEG=30°,即可得到DE 的长,进而得出AD的长.【解答】解:如图,连接CM,CO,CE,∵菱形ABCD中,∠ADC=120°,N为DB延长线上一点,∴∠ADC=∠NBC=120°,CD=CB,而DE=BN,∴△EDC≌△NBC(SAS),∴∠DCE=∠BCN,EC=NC,又∵∠DCE+∠ECB=60°,∴∠BCN+∠ECB=60°,∴∠ECN=60°,∴△ECN为等边三角形,∴∠CNM=60°,∴∠CNM+∠COM=180°,∴M,N,O,C四点共圆,∴∠CNB=∠CMO,又∵∠CNB=∠CED,∴∠CMO=∠CED,又∵∠CDE=∠COM=120°,∴△CDE∽△COM,∴,即,解得DE=1+,又∵AE=1,∴AD==AB,解法2:如图,延长BD至F,使得DF=BN=DE,连接EF,延长CD交EF于G,则∠EDG=180°﹣120°=60°,∠FDG=∠CDB=60°,∴DG平分∠EDF,∴DG⊥EF,∵OM⊥AB,EF⊥CD,AB∥CD,∴OM∥EF,又∵O是BD的中点,DF=BN,∴O是FN的中点,∴M是EN的中点,∴FE=2OM=3+,∴GE=,又∵∠DEG=30°,∴Rt△DEG中,DE==+1,∴AD=DE﹣AE=,∴AB=,故选:C.【点评】本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,三角形中位线定理以及菱形的性质的综合运用,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.二、填空题(共6小题,每小题3分,共18分)11.计算:=.【分析】根据二次根式的除法法则计算可得.【解答】解:原式===,故答案为:.【点评】本题主要考查二次根式的乘除法,解题的关键是熟练掌握二次根式的乘除运算法则.12.如图,一根16厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=8厘米,且RP⊥PQ,则RQ=10厘米.【分析】根据题意可知△PRQ为直角三角形,利用勾股定理即可解答.【解答】解:设RQ=x,则RP=16﹣x,∵RP⊥PQ∴△PRQ为直角三角形因为PQ=8厘米,RQ=x,RP=16﹣x,由勾股定理得PQ2+RP2=RQ2即82+(16﹣x)2=x2解得x=10,即RQ=10厘米.故答案为:10.【点评】本题考查的是勾股定理在实际中的应用,需要同学们结合实际掌握勾股定理.13.若顺次连接四边形ABCD各边中点所得四边形为矩形,则四边形ABCD的对角线AC、BD之间的关系为AC⊥BD.【分析】这个四边形ABCD的对角线AC和BD的关系是互相垂直.理由为:根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF 为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【解答】证明:∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB、各边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故答案为:AC⊥BD.【点评】此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.这类题的一般解法是:借助图形,充分抓住已知条件,找准问题的突破口,由浅入深多角度,多侧面探寻,联想符合题设的有关知识,合理组合发现的新结论,围绕所探结论环环相加,步步逼近,所探结论便会被“逼出来”.14.对于两个实数a、b,定义运算@如下:a@b=,例如3@4=.那么15@x2=4,则x 等于±4.【分析】直接利用已知将原式变形进而得出答案.【解答】解:∵15@x2=4,∴=4,则=4,解得:x=±4.故答案为:±4.【点评】此题主要考查了实数运算,正确理解题意是解题关键.15.平行四边形ABCD中,AB=10,AD=8,若平行四边形ABCD的面积为48,则对角线BD的长为2.【分析】连接AC、BD交于点O,作AH⊥BC与H.首先证明点H与点C重合,再利用勾股定理求出OB即可.【解答】解:连接AC、BD交于点O,作AH⊥BC与H.∵四边形ABCD是平行四边形,∴BC=AD=8OA=OC,OB=OD,∵S=48,平行四边形ABCD∴BC•AH=48,∴AH=6,∴BH==8∴BC=BH,∴点H与点C重合,∴OC=OA=3,OB==,∴BD=2OB=2.【点评】本题考查平行四边形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.16.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=1,分别以AB、BC、AC为边作正方ABED、BCFK、ACGH,再作Rt△PQR,使∠R=90°,点H在边QR上,点D、E在边PR上,点G、F在边PQ上,则PQ的长为2+7.【分析】首先证明△ABC≌△GFC(SAS),利用全等三角形的性质可得:∠CGF=∠BAC=30°,在直角△ABC中,根据三角函数即可求得AC,进而由等边三角形的性质和正方形的性质及三角函数就可求得QR的长,在直角△QRP中运用三角函数即可得到RP、进而可求出PQ的长.【解答】解:延长BA交QR于点M,连接AR,AP.在△ABC和△GFC中,∴△ABC≌△GFC(SAS),∴∠CGF=∠BAC=30°,∴∠HGQ=60°,∵∠HAC=∠BAD=90°,∴∠BAC+∠DAH=180°,又∵AD∥QR,∴∠RHA+∠DAH=180°,∴∠RHA=∠BAC=30°,∴∠QHG=60°,∴∠Q=∠QHG=∠QGH=60°,∴△QHG是等边三角形.AC=BC•tan60°=,则QH=HA=HG=AC=,在直角△HMA中,HM=AH•sin60°=×=,AM=HA•cos60°=,在直角△AMR中,MR=AD=AB=2.∴QR=++2=+,∴QP=2QR=2+7.故答案为:2+7.【点评】本题考查了勾股定理和含30度角的直角三角形以及全等三角形的判定和性质,题目的综合性较强,难度较大,正确运用三角函数以及勾股定理是解决本题的关键.三、解答题(共8小题,共72分)17.(8分)计算:(1)(4﹣3)(2)+6【分析】(1)利用二次根式的除法法则运算;(2)先把各二次根式化简为最简二次根式,然后合并即可.【解答】解:(1)原式=2﹣;(2)原式=2+3=5.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(8分)已知a=+2,b=2﹣,求下列各式的值:(1)a2+2ab+b2;(2)a2﹣b2.【分析】根据a,b的值求出a+b和a﹣b的值,(1)根据完全平方公式和(2)根据平方差公式对要求的式子进行变形,然后代值计算即可得出答案.【解答】解:∵a=+2,b=2﹣,∴a+b=4,a﹣b=2,(1)a2+2ab+b2=(a+b)2=42=16;(2)a2﹣b2=(a+b)(a﹣b)=4×2=8.【点评】此题考查了二次根式的化简求值,用到的知识点是平方差公式和完全平方公式,根据a,b 的值求出a+b和a﹣b的值是解题的关键.19.(8分)已知:如图,A、C是平行四边形DEBF的对角线EF所在直线上的两点,且AE=CF.求证:四边形ABCD是平行四边形.【分析】连接BD,交AC于点O,欲证明证明四边形ABCD是平行四边形,只需证得AO=CO,DO=BO .【解答】证明:如图,连接BD ,交AC 于点O .∵四边形DEBF 是平行四边形,∴OD =OB ,OE =OF .又∵AE =CF ,∴AE +OE =CF +OF ,即OA =OC ,∴四边形ABCD 是平行四边形【点评】本题考查了平行四边的判定与性质,解题的关键是学会添加常用辅助线,熟练掌握平行四边形的判定方法,属于中考常考题型.20.(8分)如图,四边形ABCD 中,AB =10,BC =13,CD =12,AD =5,AD ⊥CD ,求四边形ABCD 的面积.【分析】连接AC ,过点C 作CE ⊥AB 于点E ,在Rt △ACD 中根据勾股定理求出AC 的长,由等腰三角形的性质得出AE =BE =AB ,在Rt △CAE 中根据勾股定理求出CE 的长,再由S 四边形ABCD =S △DAC +S △ABC 即可得出结论.【解答】解:连接AC ,过点C 作CE ⊥AB 于点E .∵AD ⊥CD ,∴∠D =90°.在Rt △ACD 中,AD =5,CD =12,AC ===13.∵BC =13,∴AC =BC .∵CE ⊥AB ,AB =10,∴AE =BE =AB =×10=5.在Rt △CAE 中,CE ===12.∴S 四边形ABCD =S △DAC +S △ABC =×5×12+×10×12=30+60=90.【点评】本题考查的是勾股定理及三角形的面积公式,等腰三角形的判定和性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.21.(8分)在菱形ABCD 中,AC 与BD 交于点O ,过点O 的直线MN 分别交AB 、CD 于M ,N . (1)求证:AM +DN =AD ;(2)∠AOM =∠OBC ,AC =2,BD =2,求MN 的长度.【分析】(1)证明△AOM ≌△CON ,可得结论;(2)证明△AOM ∽△ABO ,列比例式:,可得OM 的长,由(1)中的全等可得:MN =2OM ,代入可得MN 的长.【解答】(1)证明:∵四边形ABCD 是菱形,∴AO =OC ,AB ∥CD ,AD =CD ,∴∠MAC =∠NCA ,∵∠AOM =∠CON ,∴△AOM ≌△CON ,∴AM=CN,∴DC=DN+CN=DN+AM,∴AD=AM+DN;(2)解:∵四边形ABCD是菱形,∴∠ABO=∠OBC,AC⊥BD∵AC=2,BD=2,∴AO=,OB=,由勾股定理得:AB==3,∵∠AOM=∠OBC,∴∠ABO=∠AOM,∵∠BAO=∠MAO,∴△AOM∽△ABO,∴,∴,∴OM=,∴MN=2OM=2.【点评】本题主要考查了相似三角形的判定与性质,菱形的性质,勾股定理以及全等三角形的判定与性质的综合应用,解决问题的关键是熟练掌握菱形的性质,利用相似三角形的对应边成比例得到线段的长.22.(10分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P从点A出发,以2cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B 运动,规定其中一个动点到达端点时,另一个动点也随之停止运动,设运动的时间为t秒.(1)当t=4.8秒时,四边形PQCD是怎样的四边形?说明理由;(2)当PQ=17时,求t的值.【分析】(1)分别根据时间和速度得PD和CQ的长,根据平行四边形的判定可得结论;(2)先计算t的时间:0≤t≤,分两种情况:图1和图2,根据勾股定理可计算t的值.【解答】解:(1)四边形PQCD为平行四边形,理由是:根据题意得:PA=2t,CQ=3t,则PD=AD﹣PA=24﹣2t.当t=4.8时,PD=24﹣2×4.8=14.4,CQ=3t=3×4.8=14.4,∴PD=CQ,∵AD∥BC,即PQ∥CD,∴四边形PQCD为平行四边形;(2)有两种情况:①如图1,过A作AE∥PQ,交BC于E,∵AP∥EQ,∴四边形AEQP是平行四边形,∴AP=EQ=2t,∴BE=26﹣5t,Rt△ABE中,AB2+BE2=AE2,82+BE2=172,∴BE=15,即26﹣5t=15,解得:t=②如图2,过B作BE∥PQ,交AD于E,同理得AE=15,即2t﹣(26﹣3t)=15,t=,∵P运动的总时间为24÷2=12,Q运动的总时间为:26÷3=>,∴0≤t≤,综上,当PQ=17时,t的值为秒或秒.【点评】此题考查了直角梯形的性质、平行四边形的判定、勾股定理及动点运动问题,本题难度适中,注意掌握数形结合思想与方程思想的应用.23.(10分)在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE =AD,∠DAE+∠BAC=180°.(1)如图1,当点E落在AC上时,求∠ADE的度数(用α表示);(2)如图2,以AB,AE为边作平行四边形ABFE,若点F恰好落在ED的延长线上,EF交AC于点H,求的值;(3)若∠ADE=45°,BC=14,BD=6,连接CE,则CE=6.【分析】(1)由在△ABC中,AB=AC,∠ABC=α,可求得∠BAC=180°﹣2α,又由AE=AD,∠DAE+∠BAC=180°,可求得∠DAE=2α,继而求得∠ADE的度数;(2)由四边形ABFE是平行四边形,易得∠EDC=∠ABC=α,则可得∠ADC=∠ADE+∠EDC=90°,证得AD⊥BC,又由AB=AC,根据三线合一的性质知BD=CD,从而知DH是三角形的中位线,即DH=HC=AB,结合HE+DF=EF﹣DH=AB﹣AB=AB可得答案;(3)由∠ADE=45°知∠B=∠C=∠ADE=∠AED=45°、∠BAC=∠DAE=90°,从而得∠BAD =∠CAE,再证△BAD≌△CAE即可得.【解答】解:(1)∵AB=AC,∠ABC=α,∴∠B=∠C=α,则∠BAC=180°﹣2α,∵∠DAE+∠BAC=180°,∴∠DAE=180°﹣∠BAC=180°﹣(180°﹣2α)=2a,∵AD=AE,∴∠ADE==90°﹣α;(2)∵四边形ABFE是平行四边形,∴EF∥AB、EF=AB,∴∠HDC=∠B=∠C=α,∴HC=HD,∵∠ADE=90°﹣α,∴∠ADC=∠ADE+∠HDC=90°,即AD⊥BC,∵AB=AC,∴BD=CD,由DH∥AB知DH是△CAB的中位线,∴DH=AB,∴HC=AB,则HE+DF=EF﹣DH=AB﹣AB=AB,∴HC=HE+DF,∴=1;(3)当∠ADE=45°,即90°﹣α=45°时,α=45°,∴∠B=∠C=∠ADE=∠AED=45°,∴∠BAC=∠DAE=90°,即∠BAD+∠DAC=∠CAE+∠DAC,∴∠BAD=∠CAE,在△BAD和△CAE中,∵,∴△BAD≌△CAE(SAS),∴CE=BD=6,故答案为:6.【点评】本题主要考查四边形的综合问题,解题的关键是掌握等腰三角形的性质、平行四边形的性质、全等三角形的判定与性质等知识点.24.(12分)已知矩形ABCD中,AB=3,BC=4,E为直线BC上一点.(1)如图1,当E在线段BC上,且DE=AD时,求BE的长;(2)如图2,点E为BC边延长线上一点,若BD=BE,连接DE,M为DE的中点,连接AM、CM,求证:AM⊥CM;(3)如图3,在(2)的条件下,P、Q为AD边上两个动点,且PQ=,连接P、B、M、Q,则四边形PBMQ周长的最小值为=.【分析】(1)先求出DE=AD=4,最后用勾股定理即可得出结论;(2)先判断出∠BMD=90°,再判断出△ADM≌△BCM得出∠AMD=∠BMC,即可得出结论;(3)由于BM和PQ是定值,只要BP+QM最小,利用对称确定出MG'就是BP+QM的最小值,最后利用勾股定理即可得出结论.【解答】解:(1)∵四边形ABCD是矩形,∴∠C=90°,CD=AB=3,AD=BC=4,∴DE=AD=4,在Rt△CDE中,CE==,∴BE=BC﹣CE=4﹣;(2)如图2,连接BM,∵点M是DE的中点,∴DM=EM,∵BD=BE,∴BM⊥DE,∴∠BMD =90°,∵点M 是Rt △CDE 的斜边的中点,∴DM =CM ,∴∠CDM =∠DCM ,∴∠ADM =∠BCM在△ADM 和△BCM 中,,∴△ADM ≌△BCM .∴∠AMD =∠BMC ,∴∠AMC =∠AMB +∠BMC =∠AMB +∠AMD =∠BMD =90°,∴AM ⊥CM ;(3)如图,过点Q 作QG ∥BP 交BC 于G ,作点G 关于AD 的对称点G ',连接QG ',当点G ',Q ,M 在同一条线上时,QM +BP 最小,而PQ 和BM 是定值,∴此时,四边形PBMQ 周长最小,∵QG ∥PB ,PQ ∥BG ,∴四边形BPQG 是平行四边形,∴QG =BP ,BG =PQ =,∴CG =如图2,在Rt △BCD 中,CD =3,BC =4,∴BD =5,∴BE =5,∴BG =BE ﹣BG =,CE =BE ﹣BC =1,∴HM =+=2,HG =CD =,在Rt △MHG '中,HG '=3+=,HM =4,∴MG'==,在Rt△CDE中,DE==,∴ME=,在Rt△BME中,BM==,∴四边形PBMQ周长最小值为BP+PQ+MQ+BM=QG+PQ+QM+BM=MG'+PQ+PM=++=,故答案为:.【点评】此题是四边形综合题,主要考查了矩形的性质,勾股定理,全等三角形的判定和性质,等腰三角形的性质,对称性,确定出BP+QM的最小值是解本题的关键.。

2016-2017学年湖北省武汉市新洲区八年级(下)期末数学试卷

2016-2017学年湖北省武汉市新洲区八年级(下)期末数学试卷

2016-2017学年湖北省武汉市新洲区八年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)化简的结果是()A.﹣2 B.2 C.±2 D.42.(3分)若二次根式有意义,则a的取值范围是()A.a>3 B.a≥3 C.a≤3 D.a≠33.(3分)下列函数中,表示y是x的正比例函数的是()A.y=﹣0.1x B.y=2x2C.y2=4x D.y=2x+14.(3分)如果四边形ABCD是平行四边形,AB=6,且AB的长是四边形ABCD 周长的,那么BC的长是()A.6 B.8 C.10 D.165.(3分)若平行四边形中两个内角的度数比为1:2,则其中较小的内角是()A.90°B.60°C.120° D.45°6.(3分)为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,统计结果如图所示,则在一次充电后行驶的里程数这组数据中,众数和中位数分别是()A.220,220 B.220,210 C.200,220 D.230,2107.(3分)某校在开展“节约每一滴水”的活动中,从八年级的100名同学中任选20名同学汇总了各自家庭一个月的节水情况,将有关数据(每人上报节水量都是整数)整理如表:请你估计这100名同学的家庭一个月节约用水的总量大约是()A.180t B.230t C.250t D.300t8.(3分)甲、乙两艘客轮同时离开港口,航行的速度都是40m/min,甲客轮用15min到达点A,乙客轮用20min到达点B,若A,B两点的直线距离为1000m,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是()A.北偏西30°B.南偏西30°C.南偏东60°D.南偏西60°9.(3分)如图,在锐角三角形ABC中,AB=,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.5 C.6 D.1010.(3分)如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是()A.1<x<2 B.0<x<2 C.0<x<1 D.1<x二、填空题(每小题3分,共18分)11.(3分)计算:2﹣6=.12.(3分)一组数据:25,29,20,x,14,它的中位数是24,则这组数据的平均数为.13.(3分)如图,从电线杆离地面12m处向地面拉一条长为13m的钢缆,则地面钢缆固定点A到电线杆底部B的距离为.14.(3分)如图,在矩形ABCD中,E是AB边上的中点,将△BCE沿CE翻折得到△FCE,连接AF.若∠EAF=75°,那么∠BCF的度数为.15.(3分)如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这10个正方形分成面积相等的两部分,则该直线l的解析式为.16.(3分)已知,如图,矩形ABCD边AB=6,BC=8,再沿EF折叠,使D点与B 点重合,C点的对应点为G,将△BEF绕着点B顺时针旋转,旋转角为a(0°<a <180°),记旋转这程中的三角形为△BE′F′,在旋转过程中设直线E′F′与射钱EF、射线ED分别交于点M、N,当EN=MN时,则FM的长为.三、解答题(共8小题,共72分)17.(8分)计算:5÷﹣3+2.18.(8分)已知一次函数的图象过点(3,5)与点(﹣4,﹣9),求这个一次函数的解析式.19.(8分)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.20.(8分)某校240名学生参加植树活动,要求每人植树4~7棵,活动结束后抽查了20名学生每人的植树量,并分为四类:A类4棵、B类5棵、C类6棵、D类7棵,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数和中位数;(3)估计这240名学生共植树多少棵?21.(8分)如图,在平面直角坐标系xOy中,直线y=﹣x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式.22.(10分)某经销商从市场得知如下信息:他计划用4万元资金一次性购进这两种品牌计算器共100台,设该经销商购进A 品牌计算器x台,这两种品牌计算器全部销售完后获得利润为y元.(1)求y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案?(3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元?23.(10分)如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP于E,点F 在DP的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC.(1)求证:△AEG是等腰直角三角形;(2)求证:AG+CG=DG.24.(12分)已知:如图,平面直角坐标系中,A(0,4),B(0,2),点C是x 轴上一点,点D为OC的中点.(1)求证:BD∥AC;(2)若点C在x轴正半轴上,且BD与AC的距离等于1,求点C的坐标;(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.2016-2017学年湖北省武汉市新洲区八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)化简的结果是()A.﹣2 B.2 C.±2 D.4【分析】由于表示4的算术平方根,根据算术平方根的定义即可求出结果.【解答】解:∵2的平方是4,∴4算术平方根为2.故选:B.【点评】此题主要考查了算术平方根的定义,解题时注意算术平方根的概念易与平方根的概念混淆而导致错误.规律总结:弄清概念是解决本题的关键.2.(3分)若二次根式有意义,则a的取值范围是()A.a>3 B.a≥3 C.a≤3 D.a≠3【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得3﹣a≥0,解得a≤3,故选:C.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.3.(3分)下列函数中,表示y是x的正比例函数的是()A.y=﹣0.1x B.y=2x2C.y2=4x D.y=2x+1【分析】根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,判断各选项,即可得出答案.【解答】解:A、y=﹣0.1x,符合正比例函数的含义,故本选项正确.B、y=2x2,自变量次数不为1,故本选项错误;C、y2=4x是x表示y的二次函数,故本选项错误;D、y=2x+1是一次函数,故本选项错误;故选:A.【点评】本题主要考查了正比例函数的定义,难度不大,注意基础概念的掌握.4.(3分)如果四边形ABCD是平行四边形,AB=6,且AB的长是四边形ABCD 周长的,那么BC的长是()A.6 B.8 C.10 D.16【分析】由AB=6,且AB的长是四边形ABCD周长的,即可求得四边形ABCD 周长,又由四边形ABCD是平行四边形,根据平行四边形的对边相等,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵AB=6,且AB的长是四边形ABCD周长的,∴四边形ABCD周长为:6÷=32,∴AB+BC=×32=16,∴BC=10.故选:C.【点评】此题考查了平行四边形的性质.熟记平行四边形的各种性质定理是解此题的关键.5.(3分)若平行四边形中两个内角的度数比为1:2,则其中较小的内角是()A.90°B.60°C.120° D.45°【分析】根据平行四边形的性质得出AB∥CD,推出∠B+∠C=180°,根据∠B:∠C=1:2,求出∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B:∠C=1:2,∴∠B=×180°=60°,故选:B.【点评】本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.6.(3分)为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,统计结果如图所示,则在一次充电后行驶的里程数这组数据中,众数和中位数分别是()A.220,220 B.220,210 C.200,220 D.230,210【分析】根据众数与中位数的定义,找出出现次数最多的数,把这组数据从小到大排列,求出最中间两个数的平均数即可.【解答】解:数据220出现了4次,最多,故众数为220,共1+2+3+4=10个数,排序后位于第5和第6位的数均为220,故中位数为220,故选:A.【点评】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.(3分)某校在开展“节约每一滴水”的活动中,从八年级的100名同学中任选20名同学汇总了各自家庭一个月的节水情况,将有关数据(每人上报节水量都是整数)整理如表:请你估计这100名同学的家庭一个月节约用水的总量大约是()A.180t B.230t C.250t D.300t【分析】利用组中值求样本平均数,即可解决问题.【解答】解:利用组中值求平均数可得:选出20名同学家的平均一个月节约用水量==2.3,∴估计这100名同学的家庭一个月节约用水的总量大约是=2.3×100=230t.故选:B.【点评】本题考查样本平均数、组中值等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(3分)甲、乙两艘客轮同时离开港口,航行的速度都是40m/min,甲客轮用15min到达点A,乙客轮用20min到达点B,若A,B两点的直线距离为1000m,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是()A.北偏西30°B.南偏西30°C.南偏东60°D.南偏西60°【分析】首先根据速度和时间计算出行驶路程,再根据勾股定理逆定理结合路程可判断出甲和乙两艘轮船的行驶路线呈垂直关系,进而可得答案.【解答】解:甲的路程:40×15=600m,乙的路程:20×40=800m,∵6002+8002=10002,∴甲和乙两艘轮船的行驶路线呈垂直关系,∵甲客轮沿着北偏东30°,∴乙客轮的航行方向可能是南偏东60°,故选:C.【点评】此题主要考查了勾股定理逆定理的应用,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.9.(3分)如图,在锐角三角形ABC中,AB=,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.5 C.6 D.10【分析】因为AD平分∠CAB,所以点B关于AD的对称点B′在线段AC上,作B′N′⊥AB于N′交AD于M′.由BM+MN=B′M+MN,推出当M与M′重合,N与N′重合时,BM+MN的值最小,最小值为B′N′,只要证明△AB′N′是等腰直角三角形即可解决问题.【解答】解:∵AD平分∠CAB,∴点B关于AD的对称点B′在线段AC上,作B′N′⊥AB于N′交AD于M′.∵BM+MN=B′M+MN,∴当M与M′重合,N与N′重合时,BM+MN的值最小,最小值为B′N′,∵AD垂直平分BB′,∴AB′=AB=5,∵∠B′AN′=45°,∴△AB′N′是等腰直角三角形,∴B′N′=5∴BM+MN的最小值为5.故选:B.【点评】本题考查轴对称﹣最短问题、垂线段最短、等腰直角三角形的判定和性质等知识,解题的关键是学会利用对称解决最短问题,属于中考常考题型.10.(3分)如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是()A.1<x<2 B.0<x<2 C.0<x<1 D.1<x【分析】由于一次函数y1同时经过A、P两点,可将它们的坐标分别代入y1的解析式中,即可求得k、b与m的关系,将其代入所求不等式组中,即可求得不等式的解集.【解答】解:由于直线y1=kx+b过点A(0,2),P(1,m),则有:,解得.∴直线y1=(m﹣2)x+2.故所求不等式组可化为:mx>(m﹣2)x+2>mx﹣2,不等号两边同时减去mx得,0>﹣2x+2>﹣2,解得:1<x<2,故选:A.【点评】本题主要考查了根据图形确定k、b与m的关系,从而通过解不等式组得到其解集,难度适中.二、填空题(每小题3分,共18分)11.(3分)计算:2﹣6=﹣4.【分析】合并同类二次根式即可.【解答】解:2﹣6=(2﹣6)=﹣4,故答案为:﹣4.【点评】本题考查的是二次根式的加减法,掌握合并同类二次根式的法则是解题的关键.12.(3分)一组数据:25,29,20,x,14,它的中位数是24,则这组数据的平均数为22.4.【分析】因为一组数据:25,29,20,x,14,它的中位数是24,则这组数据为14,20,23,25,29,所以其平均数可求.【解答】解:∵一组数据:25,29,20,x,14,它的中位数是24,所以x=24,∴这组数据为14,20,24,25,29,∴平均数=(14+20+24+25+29)÷5=22.4.故答案是:22.4.【点评】本题考查了中位数,算术平均数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.13.(3分)如图,从电线杆离地面12m处向地面拉一条长为13m的钢缆,则地面钢缆固定点A到电线杆底部B的距离为5m.【分析】根据勾股定理求出即可.【解答】解:由勾股定理得:AB==5(m),故答案为:5m.【点评】本题考查了勾股定理的应用,能熟记勾股定理的内容是解此题的关键.14.(3分)如图,在矩形ABCD中,E是AB边上的中点,将△BCE沿CE翻折得到△FCE,连接AF.若∠EAF=75°,那么∠BCF的度数为30°.【分析】由矩形的性质得出∠B=90°,由折叠的性质得出∠EFC=∠B=90°,∠FEC=∠CEB,∠FCE=∠BCE,FE=BE,证出AE=FE,由等腰三角形的性质得出∠EFA=∠EAF=75°,由三角形的外角性质求出∠BEF=∠EAF+∠EFA=150°,得出∠CEB=∠FEC=75°,由直角三角形的性质得出∠FCE=∠BCE=15°,即可得出∠BCF的度数.【解答】解:∵四边形ABCD是矩形,∴∠B=90°,∵E为边AB的中点,∴AE=BE,由折叠的性质可得:∠EFC=∠B=90°,∠FEC=∠CEB,∠FCE=∠BCE,FE=BE,∴AE=FE,∴∠EFA=∠EAF=75°,∴∠BEF=∠EAF+∠EFA=150°,∴∠CEB=∠FEC=75°,∴∠FCE=∠BCE=90°﹣75°=15°,∴∠BCF=30°,故答案为:30°.【点评】本题考查了翻折变换的性质、矩形的性质、等腰三角形的性质、直角三角形的性质以及三角形的外角性质;熟练掌握翻折变换和矩形的性质是解决问题的关键.15.(3分)如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这10个正方形分成面积相等的两部分,则该直线l的解析式为y=x.【分析】设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,B过A 作AC⊥OC于C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标即可得到该直线l的解析式.【解答】解:设直线l和10个正方形的最上面交点为A,过A作AB⊥OB于B,过A作AC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这10个正方形分成面积相等的两部分,∴两边分别是5,∴三角形ABO面积是7,∴OB•AB=7,∴AB=,∴OC=AB=,由此可知直线l经过(,3),设直线方程为y=kx(k≠0),则3=k,解得k=∴直线l解析式为y=x.故答案为:y=x.【点评】此题考查的是用待定系数法求一次函数的解析式,了面积相等问题及正方形的性质,此题难度较大,解题的关键是作AB⊥y轴,作AC⊥x轴,根据题意即得到:直角三角形ABO,利用三角形的面积公式求出AB的长.16.(3分)已知,如图,矩形ABCD边AB=6,BC=8,再沿EF折叠,使D点与B 点重合,C点的对应点为G,将△BEF绕着点B顺时针旋转,旋转角为a(0°<a <180°),记旋转这程中的三角形为△BE′F′,在旋转过程中设直线E′F′与射钱EF、射线ED分别交于点M、N,当EN=MN时,则FM的长为.【分析】设AE=x=FC=FG,则BE=ED=8﹣x,由勾股定理得:AB2+AE2=BE2,即62+x2=(8﹣x)2,解得:x=,BE=,EF=,由折叠性质得:∠BEF=∠DEF=∠BFE,得出∠DEF=∠NME=∠F′,证得四边形BEMF′为平行四边形,由BE=BF′,证得平行四边形BEMF′为菱形,得出EM=BE=,即可得出结果.【解答】解:如图所示:由折叠性质得:设AE=x=FC=FG,则BE=ED=8﹣x,在Rt△ABE中,由勾股定理得:AB2+AE2=BE2,即62+x2=(8﹣x)2,解得:x=,∴BE=8﹣=,EF===,由折叠性质得:∠BEF=∠DEF=∠BFE,∵EN=NM,∴∠DEF=∠NME=∠F′,∴EM∥BF′,BE∥E′F′,∴四边形BEMF′为平行四边形,由旋转性质得:BF′=BF=8﹣x,∴BE=BF′,∴平行四边形BEMF′为菱形,∴EM=BE=,∴FM=EF﹣EM=﹣=.故答案为:.【点评】本题考查了旋转的性质、勾股定理、矩形的性质、菱形的判定、平行四边形的判定等知识;本题综合性强,有一定难度,证出四边形BEMF′是菱形是解决问题的关键.三、解答题(共8小题,共72分)17.(8分)计算:5÷﹣3+2.【分析】根据二次根式的除法和加减法可以解答本题.【解答】解:5÷﹣3+2=﹣+4=8.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.18.(8分)已知一次函数的图象过点(3,5)与点(﹣4,﹣9),求这个一次函数的解析式.【分析】一次函数解析式为y=kx+b,把两个已知点的坐标代入得到b、c的方程组,然后解方程组即可.【解答】解:设一次函数解析式为y=kx+b,根据题意得,解得,所以一次函数的解析式为y=2x﹣1.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.19.(8分)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.【分析】(1)根据AB=CD,BE=DF,利用HL即可证明.(2)只要证明四边形ABCD是平行四边形即可解决问题.【解答】证明:(1)∵BF=DE,∴BF﹣EF=DE﹣EF,即BE=DF.∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵AB=CD,BE=DF,∴Rt△ABE≌Rt△CDF(HL).(2)∵△ABE≌△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∴AO=CO.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,利用特殊四边形的性质解决问题.20.(8分)某校240名学生参加植树活动,要求每人植树4~7棵,活动结束后抽查了20名学生每人的植树量,并分为四类:A类4棵、B类5棵、C类6棵、D类7棵,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数和中位数;(3)估计这240名学生共植树多少棵?【分析】(1)根据抽查人数减去A、B、C类人数,求出D类的人数,然后补全统计图即可;(2)根据众数的定义解答,根据中位数的定义,找出第10人和第11人植树的平均棵树,然后解答即可;(3)求出20人植树的平均棵树,然后乘以总人数240计算即可得解.【解答】解:(1)D类的人数为:20﹣4﹣8﹣6=20﹣18=2人,补全统计图如图所示:;(2)由图可知,植树5棵的人数最多,是8人,所以,众数为5,按照植树的棵树从少到多排列,第10人与第11人都是植5棵数,所以,中位数是5;(3)==5.3(棵),240×5.3=1272(棵).答:估计这240名学生共植树1272棵.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.(8分)如图,在平面直角坐标系xOy中,直线y=﹣x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式.【分析】(1)先根据A、B两点是直线与两坐标轴的交点求出两点坐标,再由勾股定理求出AB的长,由图形翻折变换的性质得出AC=AB,故可得出C点坐标;(2)设点D的坐标为D(0,y),由图形翻折变换的性质可知CD=BD,在Rt△OCD中由勾股定理可求出y的值,进而得出D点坐标,利用待定系数法即可求出直线CD的解析式.【解答】解:(1)∵直线y=﹣x+8与x轴,y轴分别交于点A,点B,∴A(6,0),B(0,8),在Rt△OAB中,∠AOB=90°,OA=6,OB=8,∴AB==10,∵△DAB沿直线AD折叠后的对应三角形为△DAC,∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上,∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0),由题意可知CD=BD,CD2=BD2,在Rt△OCD中,由勾股定理得162+y2=(8﹣y)2,解得y=﹣12.∴点D的坐标为D(0,﹣12),可设直线CD的解析式为y=kx﹣12(k≠0)∵点C(16,0)在直线y=kx﹣12上,∴16k﹣12=0,解得k=,∴直线CD的解析式为y=x﹣12.【点评】本题考查的是一次函数综合题,涉及到图形翻折变换的性质、勾股定理及用待定系数法求一次函数的解析式,难度适中.22.(10分)某经销商从市场得知如下信息:他计划用4万元资金一次性购进这两种品牌计算器共100台,设该经销商购进A 品牌计算器x台,这两种品牌计算器全部销售完后获得利润为y元.(1)求y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案?(3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元?【分析】(1)根据利润y=(A售价﹣A进价)×A手表的数量+(B售价﹣B进价)×B手表的数量,根据总资金不超过4万元得出x的取值范围,列式整理即可;(2)全部销售后利润不少于1.26万元.得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.【解答】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000,其中700x+100(100﹣x)≤40000,得x≤50,即y=140x+6000,(0<x≤50);(2)令y≥12600,则140x+6000≥12600,∴x≥47.1,又∵x≤50,∴47.1≤x≤50∴经销商有以下三种进货方案:(3)∵y=140x+6000,140>0,∴y随x的增大而增大,∴x=50时,y取得最大值,又∵140×50+6000=13000,∴选择方案③进货时,经销商可获利最大,最大利润是13000元.【点评】本题主要考查了一次函数和一元一次不等式组的实际应用,难度适中,得出商场获得的利润y与购进空调x的函数关系式是解题的关键.在解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.23.(10分)如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP于E,点F 在DP的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC.(1)求证:△AEG是等腰直角三角形;(2)求证:AG+CG=DG.【分析】(1)根据线段垂直平分线的定义得到AF=AD,根据等腰三角形的性质、角平分线的定义证明即可;(2)作CH⊥DP,交DP于H点,证明△ADE≌△DCH(AAS),得到CH=DE,DH=AE=EG,证明CG=GH,AG=DH,计算即可.【解答】(1)证明:∵DE=EF,AE⊥DP,∴AF=AD,∴∠AFD=∠ADF,∵∠ADF+∠DAE=∠PAE+∠DAE=90°,∴∠AFD=∠PAE,∵AG平分∠BAF,∴∠FAG=∠GAP.∵∠AFD+∠FAE=90°,∴∠AFD+∠PAE+∠FAP=90°∴2∠GAP+2∠PAE=90°,即∠GAE=45°,∴△AGE为等腰直角三角形;(2)证明:作CH⊥DP,交DP于H点,∴∠DHC=90°.∵AE⊥DP,∴∠AED=90°,∴∠AED=∠DHC.∵∠ADE+∠CDH=90°,∠CDH+∠DCH=90°,∴∠ADE=∠DCH.∵在△ADE和△DCH中,,∴△ADE≌△DCH(AAS),∴CH=DE,DH=AE=EG.∴EH+EG=EH+HD,即GH=ED,∴GH=CH.∴CG=GH.∵AG=EG,∴AG=DH,∴CG+AG=GH+HD,∴CG+AG=(GH+HD),即CG+AG=DG.【点评】本题考查的是正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质,掌握正方形的性质、全等三角形的判定定理和性质定理是解题的关键.24.(12分)已知:如图,平面直角坐标系中,A(0,4),B(0,2),点C是x 轴上一点,点D为OC的中点.(1)求证:BD∥AC;(2)若点C在x轴正半轴上,且BD与AC的距离等于1,求点C的坐标;(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.【分析】(1)由A与B的坐标求出OA与OB的长,进而得到B为OA的中点,而D为OC的中点,利用中位线定理即可得证;(2)如图1,作BF⊥AC于点F,取AB的中点G,确定出G坐标,由平行线间的距离相等求出BF的长,在直角三角形ABF中,利用斜边上的中线等于斜边的一半求出FG的长,进而确定出三角形BFG为等边三角形,即∠BAC=30°,设OC=x,则有AC=2x,利用勾股定理表示出OA,根据OA的长求出x的值,即可确定出C 坐标;(3)如图2,当四边形ABDE为平行四边形时,AB∥DE,进而得到DE垂直于OC,再由D为OC中点,得到OE=CE,再由OE垂直于AC,得到三角形AOC为等腰直角三角形,求出OC的长,确定出C坐标,设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,即可确定出AC解析式.【解答】解:(1)∵A(0,4),B(0,2),∴OA=4,OB=2,点B为线段OA的中点,又点D为OC的中点,即BD为△AOC的中位线,∴BD∥AC;(2)如图1,作BF⊥AC于点F,取AB的中点G,则G(0,3),∵BD∥AC,BD与AC的距离等于1,∴BF=1,∵在Rt△ABF中,∠AFB=90°,AB=2,点G为AB的中点,∴FG=BG=AB=1,∴△BFG是等边三角形,∠ABF=60°.∴∠BAC=30°,设OC=x,则AC=2x,根据勾股定理得:OA==x,∵OA=4,∴x=∵点C在x轴的正半轴上,∴点C的坐标为(,0);(3)如图2,当四边形ABDE为平行四边形时,AB∥DE,∴DE⊥OC,∵点D为OC的中点,∴OE=EC,∵OE⊥AC,∴∠OCA=45°,∴OC=OA=4,∵点C在x轴的正半轴上,∴点C的坐标为(4,0),设直线AC的解析式为y=kx+b(k≠0).将A(0,4),C(4,0)代入AC的解析式得:解得:∴直线AC的解析式为y=﹣x+4.【点评】此题属于一次函数综合题,涉及的知识有:三角形中位线定理,坐标与图形性质,待定系数法求一次函数解析式,平行四边形的性质,等边三角形的性质,勾股定理,含30度直角三角形的性质,熟练掌握定理及性质是解本题的关键.。

2019-2020学年湖北省武汉市部分学校八年级(下)期中数学试卷

2019-2020学年湖北省武汉市部分学校八年级(下)期中数学试卷

(3)把图②中的正方形都换成菱形,且∠BAD=∠GAE=60°,如图③,直接写出 DG:
CF=

24.如图 1,在矩形 ABCD 中,AB=a,BC=3,动点 P 从 B 出发,以每秒 1 个单位的速度 沿射线 BC 方向移动,作△PAB 关于直线 PA 的对称△PAB',设点 P 的运动时间为 t(s).
A.4 个
B.3 个
C.2 个
D.1 个
二、填空题(每小题 3 分,共 18 分)
11.(3 分)已知四边形 ABCD 是周长为 32 的平行四边形,若 AB=6,则 BC=

12.(3 分)若 x= +1,y= ﹣1,则(x+y)2=

13.(3 分)如图,在菱形 ABCD 中,M,N 分别在 AB,CD 上,且 AM=CN,MN 与 AC 交
2019-2020 学年湖北省武汉市部分学校八年级(下)期中数学试

一、选择题(每小题 3 分,共 36 分)
1.(3 分)函数 y=
的自变量取值范围是( )
A.x
B.x
C.x
D.x
2.(3 分)下列各组中的三条线段,能构成直角三角形的是( )
A.7,20,24
B.4,5,6
C. , ,
D.3,4,5
上一动点(不与点 A 重合),延长 ME 交射线 CD 于点 N,连接 MD,AN.
(1)求证:四边形 AMDN 是平行四边形;
(2)填空:
①当 AM 的值为
时,四边形 AMDN 是矩形;
②当 AM 的值为
时,四边形 AMDN 是菱形.
21.如图,在每个小正方形的边长均为 1 的网格中,点 A,B,C,D 均在格点上,请在此 网格中仅用无刻度的直尺画图(保留连线痕迹). (1)画出线段 BE,使 BE∥AC,且 BE=AC; (2)画出以 AC 为边的正方形 ACMN; (3)在(1)的条件下,画出直线 PQ,使 PQ 平分四边形 ABED 的面积(作出一条即可).

2016-2017学年湖北省武汉市洪山区八年级(下)期末数学试卷(含解析)

2016-2017学年湖北省武汉市洪山区八年级(下)期末数学试卷(含解析)

2016-2017学年湖北省武汉市洪山区八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3.00分)一次函数y=﹣2x+1的图象不经过()象限.A.第一B.第二C.第三D.第四2.(3.00分)下列计算错误的是()A.B.C.D.3.(3.00分)男子跳高的15名运动员的成绩如下表所示:根据表中信息可以判断这些运动员成绩的中位数、众数分别为()A.1.70、1.75 B.1.70、1.80 C.1.65、1.75 D.1.65、1.804.(3.00分)已知A(﹣),B(﹣),C(1,y3)是一次函数y=b ﹣3x的图象上三点,则y1、y2、y3的大小关系为()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y1<y35.(3.00分)如图,在矩形ABCD中,E为边AB的中点,将△CBE沿CE翻折得到△CFE,连接AF,若DAF=25°,那么∠BCF=()A.40°B.50°C.60°D.75°6.(3.00分)将函数y=﹣3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=﹣3x+2 B.y=﹣3x﹣2 C.y=﹣3(x+2)D.y=﹣3(x﹣2)7.(3.00分)在5×5的正方形网格中,每个小正方形的边长为1,用四边形(顶点在格点上)覆盖如图所示,被覆盖的网格线中,竖直部分的线段的长度之和记作m,水平部分的线段的长度之和记作n,则m+n=()A.30 B.27 C.25 D.208.(3.00分)某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个,随机抽取了部分学生的听写结果,绘制成如下的图表:根据表中信息可以判断这些学生听写的正确字数的中位数落在()A.B组 B.C组 C.D组D.C组或D组9.(3.00分)如图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则选项图象能大致反映y与x的函数关系的是()A.B.C.D.10.(3.00分)将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方,所得的折线是函数y=|2x+b|(b为常数)的图象,若该图象在直线y=1下方的点的横坐标x满足0<x<2,则b的取值范围为()A.﹣4<b<﹣2 B.﹣3<b<﹣1 C.﹣2<b<0 D.﹣3<b<0二、填空题(共6小题,每小题3分,共18分)11.(3.00分)某班科技小组的6名学生参加科技小组活动的次数分别是15、18、20、20、22、25,那么这组数据的众数是.12.(3.00分)如图,一次函数y=kx+b与y=x+5的图象的交点坐标为(2,3),则关于x的不等式5>﹣x+5>kx+b的解集为.13.(3.00分)如图,菱形ABCD的对角线AC、BC相交于点O,E、F分别是AB、BC边上的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为.14.(3.00分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则8min 时器内的水量为L.15.(3.00分)有一个如图所示的凹槽,各部分长度如图中所标.一只蜗牛从A 点经过凹槽内壁爬到B点取食,最短的路径长是m.16.(3.00分)已知四边形ABCD,∠ABC=45°,∠C=∠D=90°,含30°角(∠P=30°)的直角三角板PMN(如图)在图中平移,直角边NN⊥BC,顶点M、N分别在边AD、BC上,延长NM到点Q,使QM=PB.若BC=10,CD=4,则当点M从点A 平移到点D的过程中,点Q的运动路径长为.三、解答题(共8小题,共72分)17.(8.00分)解答下列各题①一次函数图象过点(0,﹣2)且与直线y=2﹣3x平行,此一次函数解析式是.②已知一次函数y=kx+b的图象经过点(3,5)与(﹣4,﹣9),则一次函数的解析式是.18.(8.00分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生人,并将条形图补充完整;(2)捐款金额的众数是,平均数是;(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?19.(8.00分)如图,在平行四边形ABCD中,AB=6,BC=10,对角线AC⊥AB,点E、F分别是BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)当BE长度为时,四边形AECF是菱形.20.(8.00分)(1)将直线y=﹣3x﹣1向右平移2个单位长度后的解析式为;(2)在平面直角坐标中,A(﹣1,3),B(3,1),在x轴上求一点C,使CA+CB 最小,则C点坐标为:.21.(8.00分)2017年五一放假期间,某学校计划租用6辆客车送240名师生参加社会实践活动,现有甲、乙两种客车,它们的载客量和租金如表,设租用甲种客车x辆,租车总费有为y元.(1)求出y(元)与x(辆)之间函数关系式;(2)求出自变量的取值范围;(3)选择怎样的租车方案所需的费用最低?最低费用多少元?22.(10.00分)如图,已知直线AB的函数解析式为y=2x+10,与y轴交于点A,与x轴交于点B.(1)直接写出A点的坐标,B点的坐标;(2)若点P(a,b)为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,问:①若△PB0的面积为S,求S关于a的函数关系式;②直接写出EF的最小值.23.(10.00分)如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A,B,且点A坐标为(8,0),点C为AB的中点.(1)求点B的坐标.(2)点P为直线AB上的一个动点,过点P作x轴的垂线,与直线OC交于点Q,设点P的横坐标为m,线段PQ的长度为d,求d与m的函数解析式(请直接写出自变量m的取值范围)(3)当点P在线段AB(点M不与A,B重合)上运动时,在坐标系第一象限内是否存在一点N,使得以O,B,P,N为顶点的四边形为菱形,存在求出N点坐标,不存在说明理由.24.(12.00分)如图1,将矩形ABCD置于平面直角坐标系中,其中AD边在x 轴上,AB=4,直线MN:y=x﹣8沿x轴的负方向以每秒2个单位的长度平移,设在平移过程中该直线被矩形ABCD的边截得的线段长度为m,平移时间为t,m 与t的函数图象如图2所示:(1)点A的坐标为,矩形ABCD的面积为;(2)求a、b的值;(3)在平移过程中,求直线MN扫过矩形ABCD的面积S与t的函数关系式,并写出自变量t的取值范围.2016-2017学年湖北省武汉市洪山区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3.00分)一次函数y=﹣2x+1的图象不经过()象限.A.第一B.第二C.第三D.第四【解答】解:对于一次函数y=﹣2x+1,∵k=﹣2<0,∴图象经过第二、四象限;又∵b=1>0,∴一次函数的图象与y轴的交点在x轴上方,即函数图象还经过第一象限,∴一次函数y=﹣2x+1的图象不经过第三象限.故选:C.2.(3.00分)下列计算错误的是()A.B.C.D.【解答】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.3.(3.00分)男子跳高的15名运动员的成绩如下表所示:根据表中信息可以判断这些运动员成绩的中位数、众数分别为()A.1.70、1.75 B.1.70、1.80 C.1.65、1.75 D.1.65、1.80【解答】解:∵这组数据中1.75出现的次数最多,∴这些运动员成绩的众数是1.75;这些运动员成绩的中位数是1.70,∴这些运动员成绩的中位数、众数分别为1.70、1.75.故选:A.4.(3.00分)已知A(﹣),B(﹣),C(1,y3)是一次函数y=b ﹣3x的图象上三点,则y1、y2、y3的大小关系为()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y1<y3【解答】解:当x=﹣时,y1=b+1;当x=﹣时,y2=b+1.5;当x=1时,y3=b﹣3,所以y3<y1<y2.故选:A.5.(3.00分)如图,在矩形ABCD中,E为边AB的中点,将△CBE沿CE翻折得到△CFE,连接AF,若DAF=25°,那么∠BCF=()A.40°B.50°C.60°D.75°【解答】解:∵四边形ABCD是矩形,∴∠B=∠BAD=90°,∵∠DAF=25°,∴∠BAF=65°,∵E为边AB的中点,∴AE=BE,由折叠的性质可得:∠EFC=∠B=90°,∠FEC=∠CEB,∠FCE=∠BCE,FE=BE,∴AE=FE,∴∠EFA=∠EAF=65°,∴∠BEF=∠EAF+∠EFA=130°,∴∠CEB=∠FEC=65°,∴∠FCE=∠BCE=90°﹣65°=25°,∴∠BCF=25°+25°=50°;故选:B.6.(3.00分)将函数y=﹣3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=﹣3x+2 B.y=﹣3x﹣2 C.y=﹣3(x+2)D.y=﹣3(x﹣2)【解答】解:根据平移的规律可知:平移后的函数关系式为y=﹣3x+2.故选:A.7.(3.00分)在5×5的正方形网格中,每个小正方形的边长为1,用四边形(顶点在格点上)覆盖如图所示,被覆盖的网格线中,竖直部分的线段的长度之和记作m,水平部分的线段的长度之和记作n,则m+n=()A.30 B.27 C.25 D.20【解答】解:如图在△ACD中,易知DF=3,PM=DF=,又∵PM=(EG+QT),∴EG+QT=3,∴EG+PM+QT+FD=,易知MN=AC,GH=AC,∴AC+GH+MN=10,用此方法可得m=,n=,∴m+n=25.故选:C.8.(3.00分)某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个,随机抽取了部分学生的听写结果,绘制成如下的图表:根据表中信息可以判断这些学生听写的正确字数的中位数落在()A.B组 B.C组 C.D组D.C组或D组【解答】解:由题意可得,这次调查的学生有:15÷12%=125(人),m=125×40%=50,∴这组数据的中位数是第(125+1)÷2=63个数据,由表格可知,中位数落在D组,故选:C.9.(3.00分)如图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则选项图象能大致反映y与x的函数关系的是()A.B.C.D.【解答】解:由题意可得,点P到A→B的过程中,y=0(0≤x≤2),故选项C错误;点P到B→C的过程中,y==x﹣2(2<x≤6),故选项A错误;点P到C→D的过程中,y==4(6<x≤8),故选项D错误;点P到D→A的过程中,y==12﹣x,由以上各段函数解析式可知,选项B正确,故选:B.10.(3.00分)将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方,所得的折线是函数y=|2x+b|(b为常数)的图象,若该图象在直线y=1下方的点的横坐标x满足0<x<2,则b的取值范围为()A.﹣4<b<﹣2 B.﹣3<b<﹣1 C.﹣2<b<0 D.﹣3<b<0【解答】解:∵y=2x+b,∴当y<1时,2x+b<1,解得x<;∵函数y=2x+b沿x轴翻折后的解析式为﹣y=2x+b,即y=﹣2x﹣b,∴当y<1时,﹣2x﹣b<1,解得x>﹣;∴﹣<x<,∵x满足0<x<2,∴﹣=0,=2,∴b=﹣1,b=﹣3,∴b的取值范围为﹣3<b<﹣1.故选:B.二、填空题(共6小题,每小题3分,共18分)11.(3.00分)某班科技小组的6名学生参加科技小组活动的次数分别是15、18、20、20、22、25,那么这组数据的众数是20.【解答】解:∵该组数据中20出现次数最多,有2次,∴这组数据的众数为20,故答案为:20.12.(3.00分)如图,一次函数y=kx+b与y=x+5的图象的交点坐标为(2,3),则关于x的不等式5>﹣x+5>kx+b的解集为0<x<2.【解答】解:直线y=x+5的图象与y轴的交点坐标为(0,5).当0<x<2时,直线y=﹣x+5在直线y=5的下方且在直线y=kx+b的上方,所以关于x的不等式5>﹣x+5>kx+b的解集为0<x<2.故答案为:0<x<2.13.(3.00分)如图,菱形ABCD的对角线AC、BC相交于点O,E、F分别是AB、BC边上的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为4.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,OA=AC,OB=BD=2,∴∠AOB=90°,∵E、F分别是AB、BC边上的中点,∴EF是△ABC的中位线,∴AC=2EF=2,∴OA=,∴AB===,∴菱形ABCD的周长=4AB=4;故答案为:4.14.(3.00分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则8min 时器内的水量为25L.【解答】根据题意知:后8分钟水量y(单位:L)与时间x(单位:min)之间的关系满足一次函数关系设y=kx+b当x=4,y=20当x=12,y=30∴20=4k+b30=12k+b∴k=1.25,b=15∴后8分钟水量y(单位:L)与时间x(单位:min)之间的关系满足一次函数关系y=1.25x+15当x=8时,y=25故答案是25.15.(3.00分)有一个如图所示的凹槽,各部分长度如图中所标.一只蜗牛从A 点经过凹槽内壁爬到B点取食,最短的路径长是2m.【解答】解:如图,∵AC=1+2+1=4m,BC=10m,∴AB==2,∴最短的路径长是2.故答案为:2.16.(3.00分)已知四边形ABCD,∠ABC=45°,∠C=∠D=90°,含30°角(∠P=30°)的直角三角板PMN(如图)在图中平移,直角边NN⊥BC,顶点M、N分别在边AD、BC上,延长NM到点Q,使QM=PB.若BC=10,CD=4,则当点M从点A 平移到点D的过程中,点Q的运动路径长为6.【解答】解:如图,当点M与A重合时,PN=MN=4,BN=MN=4,∴此时PB=4﹣4,当点M′与D重合时,P′B=10﹣4,观察图象可知:则当点M从点A平移到点D的过程中,点Q的运动路径长为PB+BP′=4﹣4+10﹣4=6,故答案为6.三、解答题(共8小题,共72分)17.(8.00分)解答下列各题①一次函数图象过点(0,﹣2)且与直线y=2﹣3x平行,此一次函数解析式是y=﹣3x﹣2.②已知一次函数y=kx+b的图象经过点(3,5)与(﹣4,﹣9),则一次函数的解析式是y=2x﹣1.【解答】解:(1)设一次函数解析式为y=kx+b,把(0,﹣2代入得b=﹣2,∵直线y=kx+b与直线y=2﹣3x平行,∴k=﹣3,∴一次函数解析式为y=﹣3x﹣2;(2)设一次函数解析式为y=kx+b,根据题意得,解得,所以一次函数解析式为y=2x﹣1.故答案为:y=﹣3x﹣2;y=2x﹣1.18.(8.00分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生50人,并将条形图补充完整;(2)捐款金额的众数是10,平均数是13.1;(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?【解答】解:(1)本次抽查的学生有:14÷28%=50(人),则捐款10元的有50﹣9﹣14﹣7﹣4=16(人),补全条形统计图图形如下:(2)由条形图可知,捐款10元人数最多,故众数是10;这组数据的平均数为:=13.1;(3)捐款20元及以上(含20元)的学生有:(人);故答案为:(1)50,(2)10,13.1.19.(8.00分)如图,在平行四边形ABCD中,AB=6,BC=10,对角线AC⊥AB,点E、F分别是BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)当BE长度为5时,四边形AECF是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形;(2)∵四边形AECF是菱形,∴AE=CE,∴∠EAC=∠ECA,∵AC⊥AB,∴∠BAC=90°,∴∠B+∠ECA=90°,∠BAE+∠EAC=90°,∴∠B=∠BAE,∴AE=BE,∴BE=CE=BC=5;故答案为:520.(8.00分)(1)将直线y=﹣3x﹣1向右平移2个单位长度后的解析式为y=﹣3x﹣7;(2)在平面直角坐标中,A(﹣1,3),B(3,1),在x轴上求一点C,使CA+CB 最小,则C点坐标为:(2,0).【解答】解:(1)将直线y=﹣3x﹣1向右平移2个单位长度后的解析式为y=﹣1﹣3(x+2)=﹣1﹣3x﹣6=﹣3x﹣7;(2)∵点A(﹣1,3),∴点A关于x轴的对称点的坐标为(﹣1,﹣3),设直线A′B的解析式为y=kx+b,则,解得k=1,b=﹣2,∴y=x﹣2,∴C的坐标为(2,0)故答案为:y=﹣3x﹣7;(2,0)21.(8.00分)2017年五一放假期间,某学校计划租用6辆客车送240名师生参加社会实践活动,现有甲、乙两种客车,它们的载客量和租金如表,设租用甲种客车x辆,租车总费有为y元.(1)求出y(元)与x(辆)之间函数关系式;(2)求出自变量的取值范围;(3)选择怎样的租车方案所需的费用最低?最低费用多少元?【解答】解:(1)设租用甲种客车x辆,则租用乙种客车(6﹣x)辆,由题意可得出:y=280x+200(6﹣x)=80x+1200(2)由得:0≤x≤6.(3)由题意知45x+30(6﹣x)≥240解不等式得x≥4∵x取整数∴x取4或5或6∵y=80x+1200中k=80>0∴y随x的增大而增大∴当x=4时,y的值最小.其最小值y=4×80+1200=1520元.则租用甲种客车4辆,租用乙种客车2辆,所需的费用最低,最低费用1520元.22.(10.00分)如图,已知直线AB的函数解析式为y=2x+10,与y轴交于点A,与x轴交于点B.(1)直接写出A点的坐标(0,10),B点的坐标(﹣5,0);(2)若点P(a,b)为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,问:①若△PB0的面积为S,求S关于a的函数关系式;②直接写出EF的最小值2.【解答】解:(1)对于直线AB解析式y=2x+10,令x=0,得到y=10;令y=0,得到x=﹣5,则A(0,10),B(﹣5,0);(2)连接OP,如图所示,①∵P(a,b)在线段AB上,∴b=2a+10,由0≤2a+10≤10,得到﹣5≤a≤0,由(1)得:OB=5,=OB•(2a+10),∴S△PBO则S=(2a+10)=5a+25(﹣5≤a≤0);②∵∠PFO=∠FOE=∠OEP=90°,∴四边形PFOE为矩形,∴EF=PO,∵O为定点,P在线段AB上运动,∴当OP⊥AB时,OP取得最小值,∵AB•OP=OB•OA,∴•OP=50,∴EF=OP=2,综上,存在点P使得EF的值最小,最小值为2.故答案为:(0,10);(﹣5,0);223.(10.00分)如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A,B,且点A坐标为(8,0),点C为AB的中点.(1)求点B的坐标.(2)点P为直线AB上的一个动点,过点P作x轴的垂线,与直线OC交于点Q,设点P的横坐标为m,线段PQ的长度为d,求d与m的函数解析式(请直接写出自变量m的取值范围)(3)当点P在线段AB(点M不与A,B重合)上运动时,在坐标系第一象限内是否存在一点N,使得以O,B,P,N为顶点的四边形为菱形,存在求出N点坐标,不存在说明理由.【解答】解:(1)∵直线y=﹣x+b过点A(8,0),∴0=﹣6+b,解得:b=6,∴直线AB的解析式为y=﹣x+6.令y=﹣x+6中x=0,则y=6,∴点B的坐标为(0,6).(2)依照题意画出图形,如图3所示.∵A(8,0),B(0,6),且点C为AB的中点,∴C(4,3).设直线OC的解析式为y=kx(k≠0),则有3=4k,解得:k=,∴直线OC的解析式为y=x.∵点P在直线AB上,点Q在直线OC上,点P的横坐标为m,PQ⊥x轴,∴P(m,﹣m+6),Q(m,m).当m<4时,d=﹣m+6﹣m=﹣m+6;当m>4时,d=m﹣(﹣m+6)=m﹣6.故d与m的函数解析式为d=,(3)假设存在,设点P的坐标为(n,﹣n+6)(0<n<8).∵点P在第一象限,∴以O,B,P,N为顶点的四边形为菱形有两种情况:①以BP为对角线时,如图4所示.∵四边形OPNB为菱形,B(0,6),∴OP=OB=6=,解得:n=或n=0(舍去),∴点P(,),∴点N(+0﹣0,6+﹣0),即(,);②以OP为对角线时,如图5所示.此时点P在第一象限,但点N在第四象限,故此种情况不合适.综上得:当点P在线段AB(点M不与A,B重合)上运动时,在坐标系第一象限内存在一点N,使得以O,B,P,N为顶点的四边形为菱形,N点坐标为(,).24.(12.00分)如图1,将矩形ABCD置于平面直角坐标系中,其中AD边在x 轴上,AB=4,直线MN:y=x﹣8沿x轴的负方向以每秒2个单位的长度平移,设在平移过程中该直线被矩形ABCD的边截得的线段长度为m,平移时间为t,m 与t的函数图象如图2所示:(1)点A的坐标为(2,0),矩形ABCD的面积为32;(2)求a、b的值;(3)在平移过程中,求直线MN扫过矩形ABCD的面积S与t的函数关系式,并写出自变量t的取值范围.【解答】解:(1)∵直线MN:y=x﹣8,∴M(8,0),∴OM=8,由图1,图2,知,运动3秒钟,直线MN过点A,∴AM=2×3=6,∴OA=OM﹣AM=2,∴A(2,0);直线MN从过点F到过点D这段时间内,该直线被矩形ABCD的边截得的线段长度不变,∴直线MN过点D时,运动了7秒,∴MD=2×7=14,∴OD=DM﹣OM=14﹣8=6,∴AD=OA+OD=8,∴S=4×8=32,矩形ABCD故答案为(2,0),32;(2)如图3,由(1)知,OA=2,∴B(2,4),当直线MN平移过点B时,即:此时直线M'N'的解析式为y=x+2,此时M'(﹣2,0),∴BM'==4∴a=4,∴b﹣7=5﹣3=2,∴b=9,即:a=5,b=9;(3)如图3,当3≤t<5时,如图3,MN平移在l1的位置,S=(2t﹣6)2=2(t﹣3)2,当5≤t<7时,如图3,MN平移在l2的位置,S=(2t﹣6+2t﹣10)×4=8t﹣32,当7≤t<9时,如图3,MN平移在l3的位置,S=32﹣(22﹣2t)2=﹣2(t﹣11)2+32.。

2016-2017学年度下学期期末考试八年级数学试卷(含答案)

2016-2017学年度下学期期末考试八年级数学试卷(含答案)

2016-2017学年度下学期期末考试八年级数学试卷一、选择题(3分×10)1.下列二次根式中,是最简二次根式的是()A.2.0B.12C.3D.18 2.下列各式中,正确的是()A.2<15<3B.3<15<4C.4<15<5D.14<15<16 3.以下列长度(单位:cm )为边长的三角形是直角三角形的是() A.5,6,7 B.7,8,9 C.6,8,10 D.5,7,9 4.一次函数y=-2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限 5.能判定四边形ABCD 为平行四边形的条件是() A.AB ∥CD,AD=BC; B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC; D.AB=AD,CB=CD6.8名学生的平均成绩是x ,如果另外2名学生每人得84分,那么整个组的平均成绩是() A.284x + B.101688+ C.1084x 8+ D.10168x 8+ 7.已知一个直角三角形的两边长分别为3和4,则第三边长为() A.5 B.7 C.7 D.7或5 8.如图,菱形ABCD 的对角线AC 、BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF.若EF=3,BD=4,则菱形ABCD 的周长为() A.4 B.64 C.47 D.289.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中21l l 和分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地,其中正确的个数是() A.4 B.3 C.2 D.110.如图,点A 、B 、C 在一次函数y=-2x+m 的图像上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m —1)D.23(m —1)二、填空题(3分×6)11.函数y=1-x 中,自变量x 的取值范围是 。

湖北省武汉市武昌区2018-2019学年八年级第二学期期末数学试卷解析版

湖北省武汉市武昌区2018-2019学年八年级第二学期期末数学试卷解析版

湖北省武汉市武昌区2018-2019学年八年级第二学期期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卷上将正确答案的代号涂黑.1.若在实数范围内有意义,则x的取值范围()A.x≥2B.x≤2C.x>2D.x<22.下列二次根式是最简二次根式的是()A.B.C.D.3.点A(1,3)在一次函数y=2x+m的图象上,则m等于()A.﹣5B.5C.﹣1D.14.下表是校女子排球队12名队员的年龄分布:则关于这12名队员的年龄的说法正确的是()A.中位数是14B.中位数是14.5C.众数是15D.众数是55.下列计算正确的是()A.B.3C.D.=6.已知一个直角三角形的两边长分别为3和5,则第三边长为()A.4B.4或34C.16或34D.4或7.学校准备从甲、乙、丙、丁四名同学中选择一名同学参加市里举办的“汉字听写大赛”,下表是四位同学几次测试成绩的平均分和方差的统计结果,如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是()A.甲B.乙C.丙D.丁8.已知一次函数y=kx+b的图象与x轴交于点(2,0),且y随自变量x的增大而减小,则关于x的不等式kx+b≥0的解集是()A.x≥2B.x≤2C.x>2D.x<29.如图,在平面直角坐标系xOy中,一次函数y=﹣的图象与x轴、y轴分别相交于点A,B,点P的坐标为(m+1,m﹣1),且点P在△ABO的内部,则m的取值范围是()A.1<m<3B.1<m<5C.1≤m≤5D.m>1或m<310.如图,∠MON=90°,矩形ABCD在∠MON的内部,顶点A,B分别在射线OM,ON上,AB =4,BC=2,则点D到点O的最大距离是()A.2﹣2B.2+2C.2﹣2D.二、填空题(本题共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卷指定位置.11.计算:=.12.直线y=﹣3x+1与x轴的交点坐标为.13.函数y=kx与y=6﹣x的图象如图所示,则k=.14.某公司招聘一名公关人员甲,对甲进行了笔试和面试,其面试和笔试的成绩分别为86分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为分.15.将菱形ABCD以点E为中心,按顺时针方向分别旋转90°,180°,270°后形成如图所示的图形,若∠BCD=120°,AB=2,则图中阴影部分的面积为.16.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,AB=OB,点E,F分别是OA,OD的中点,连接EF,EM⊥BC于点M,EM交BD于点N,若∠CEF=45°,FN=5,则线段BC的长为.三、解答题(共8个小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)计算:(1);(2)(2﹣3)().18.(8分)如图,在▱ABCD中,点E,F分别在AB,CD上,且AE=CF,求证:四边形AECF 是平行四边形.19.(8分)国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“每天在校体育活动时间”的问题随机抽样调查了321名初中学生.根据调查结果将学生每天在校体育活动时间t(小时)分成A,B,C,D四组,并绘制了统计图(部分).A组:t<0.5B组:0.5≤t<1C组:1≤t<1.5D组:t≥1.5请根据上述信息解答下列问题:(1)C组的人数是;(2)本次调查数据的中位数落在组内;(3)若该市约有12840名初中学生,请你估算其中达到国家规定体育活动时间的人数大约有多少.20.(8分)如图,在四边形ABCD中,∠B=∠C=90°,点E在BC上,AB=BE=1,ED=2,AD=.(1)求∠BED的度数;(2)直接写出四边形ABCD的面积为.21.(8分)如图,直线y=﹣x+b与x轴,y轴分别交于点A,点B,与函数y=kx的图象交于点M(1,2).(1)直接写出k,b的值和不等式0的解集;(2)在x轴上有一点P,过点P作x轴的垂线,分别交函数y=﹣x+b和y=kx的图象于点C,点D.若2CD=OB,求点P的坐标.22.(10分)某服装店准备购进甲、乙两种服装出售,甲种每件售价120元,乙种每件售价90元.每件甲服装的进价比乙服装的进价贵20元,购进3件甲服装的费用和购进4件乙服装的费用相等,现计划购进两种服装共100件,其中甲种服装不少于65件.(1)甲种服装进价为元/件,乙种服装进价为元/件;(2)若购进这100件服装的费用不得超过7500元.①求甲种服装最多购进多少件?②该服装店对甲种服装每件降价a(0<a<20)元,乙种服装价格不变,如果这100件服装都可售完,那么该服装店如何进货才能获得最大利润?23.(10分)在矩形ABCD中,AB=6,AD=8,E是边BC上一点,以点E为直角顶点,在AE的右侧作等腰直角△AEF.(1)如图1,当点F在CD边上时,求BE的长;(2)如图2,若EF⊥DF,求BE的长;(3)如图3,若动点E从点B出发,沿边BC向右运动,运动到点C停止,直接写出线段AF的中点Q的运动路径长.24.(12分)如图,在平面直角坐标系xoy中,直线y=﹣2x+4交y轴于点A,交x轴于点B.点C 在y轴的负半轴上,且△ABC的面积为8,直线y=x和直线BC相交于点D.(1)求直线BC的解析式;(2)在线段OA上找一点F,使得∠AFD=∠ABO,线段DF与AB相交于点E.①求点E的坐标;②点P在y轴上,且∠PDF=45°,直接写出OP的长为.参考答案一、选择题(本大题共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卷上将正确答案的代号涂黑.1.解:∵在实数范围内有意义,∴x﹣2≥0,解得x≥2.故选:A.2.解:不是最简二次根式;=2不是最简二次根式;是最简二次根式;不是最简二次根式;故选:C.3.解:∵一次函数y=2x+m的图象经过点A(1,3)∴3=2+m,解得:m=1,故选:D.4.解:观察图表可知:人数最多的是5人,年龄是15岁,故众数是15.共12人,中位数是第6,7个人平均年龄,因而中位数是15.故选:C.5.解:A、原式=+3,所以A选项错误;B、原式=2,所以B选项正确;C、原式=2,所以C选项错误;D、原式=1,所以D选项错误.故选:B.6.解:∵个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x,则由勾股定理得到:x==4;②当5是此直角三角形的直角边时,设另一直角边为x,则由勾股定理得到:x==.故选:D.7.解:∵乙、丙同学的平均数比甲、丁同学的平均数大,∴应从乙和丙同学中选,∵丙同学的方差比乙同学的小,∴丙同学的成绩较好且状态稳定,应选的是丙同学;故选:C.8.解:∵y随自变量x的增大而减小,∴当x≤2时,y≥0,即关于x的不等式kx+b≥0的解集是x≤2.故选:B.9.解:∵函数y=﹣,∴A(8,0),B(0,4),∵点P在△AOB的内部,∴0<m+1<8,0<m﹣1<4,m﹣1<﹣(m+1)+4∴1<m<3.故选:A.10.解:取AB中点E,连接OE、DE、OD,∵∠MON=90°,∴OE=AB=2.在Rt△DAE中,利用勾股定理可得DE=2.在△ODE中,根据三角形三边关系可知DE+OE>OD,∴当O、E、D三点共线时,OD最大为OE+DE=2+2.故选:B.二、填空题(本题共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卷指定位置.11.解:∵52=25,∴=5.故答案为:5. 12.解:∵y =﹣3x +1,∴当y =0时,0=﹣3x +1,得x =,即直线y =﹣3x +1与x 轴的交点坐标为:(,0),故答案为:(,0)13.解:∵一次函数y =6﹣x 与y =kx 图象的交点横坐标为2, ∴4=6﹣2, 解得:y =4,∴交点坐标为(2,4), 代入y =kx ,2k =4,解得k =2. 故答案为:214.解:∵面试和笔试的成绩分别为86分和90分,面试成绩和笔试成绩的权分别是6和4,∴甲的平均成绩为:86×+90×=87.6(分).故答案为:87.6.15.解:连接BD ,AC 交于点O ,BE ,DE∵四边形ABCD 是菱形,∠BCD =120°∴BO =DO ,AO =CO ,AC ⊥BD ,∠CAD =∠BCD =60°,且AB =AD =2∴AO =CO =1,DO =BO =AO =∴BD =2∵将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形 ∴∠BED =90°,BE =DE∴BE =DE =∵S 四边形DABE =S △DBE ﹣S △ABD=﹣×1=3﹣∴S四边形DABE=4(3﹣)=12﹣4∴∴S阴影部分故答案为:12﹣416.解:设EF=x,∵点E、点F分别是OA、OD的中点,∴EF是△OAD的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2x,∴∠ACB=∠CAD=45°,∵EM⊥BC,∴∠EMC=90°,∴△EMC是等腰直角三角形,∴∠CEM=45°,连接BE,∵AB=OB,AE=OE∴BE⊥AO∴∠BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ENF≌△MNB,∴EN=MN=x,BN=FN=5,Rt△BNM中,由勾股定理得:BN2=BM2+MN2,即,解得,x=2,∴BC=2x=4.故答案为:4.三、解答题(共8个小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、演算步骤或画出图形.17.解:(1)原式=2﹣+2=+2;(2)原式=4+10﹣3﹣15=﹣11+7.18.证明:∵四边形ABCD是平行四边形,∴AD∥BC∴AF∥CE.又∵AF=CE,∴四边形AECF是平行四边形.19.解:(1)C组人数为321﹣(20+100+60)=141(人),故答案为:141;(2)本次调查数据的中位数是第161个数据,而第161个数据落在C组,所以本次调查数据的中位数落在C组内,故答案为:C.(3)估算其中达到国家规定体育活动时间的人数大约有12840×=8040(人).20.解:(1)连接AE,如图所示:∵∠B=90°,AB=BC=1,∴∠AEB=45°,AE=AB=,在△ADE中,AE2+DE2=()2+(2)2=10,AD2=10,∴AE2+DE2=AD2,∴∠AED=90°,∴∠BED=∠AEB+∠AED=135°;(2)∵∠CED=180°﹣∠BED=45°,∠C=90°,∴△CDE是等腰直角三角形,∴CE=CD=ED=2,∴BC=BE+CE=3,∵∠B=∠C=90°,∴∠B+∠C=180°,∴AB∥CD,∴四边形ABCD是直角梯形,∴四边形ABCD的面积=(AB+CD)×BC=×3×3=;故答案为:.21.解:(1)把M(1,2)代入y=kx得k=2;把M(1,2)代入y=﹣x+b得1=﹣+b,解得b=;当y=时,﹣x+=0,解得x=5,则A(5,0),所以不等式0的解集为1≤x≤5;(2)当y=0时,y=﹣x+=,则B(0,),∴OB=,设P(m,0),则C(m,﹣m+),D(m,2m),∵2CD=OB,∴2|﹣m+﹣2m|=,解得m=或,∴点P的坐标为P(,0)或(,0).22.解:(1)设乙服装的进价x元/件,则甲种服装进价为(x+20)元/件,根据题意得:3(x+20)=4x,解得x=60,即甲种服装进价为80元/件,乙种服装进价为60元/件;故答案为:80;60;(2)①设计划购买x件甲种服装,则购买(100﹣x)件乙种服装,根据题意得,解得65≤x≤75,∴甲种服装最多购进75件;②设总利润为w元,购进甲种服装x件.则w=(120﹣80﹣a)x+(90﹣60)(100﹣x)=(10﹣a)x+3000,且65≤x≤75,当0<a<10时,10﹣a>0,w随x的增大而增大,故当x=75时,w有最大值,即购进甲种服装75件,乙种服装25件;当a=10时,所有进货方案获利相同;当10<a<20时,10﹣a<0,w随x的增大而减少,故当x=65时,w有最大值,即购进甲种服装65件,乙种服装35件.23.解:(1)如图1中,∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥AE,∠AEF=90°,∴∠AEB=∠EFC,∵EF=AE,∴△ABE≌△ECF(AAS),∴CE=AB=6,∴BE=BC﹣CE=2.(2)如图2中,延长DF,BC交于点N,过点F作FM⊥BC于点M.同理可证△ABE≌△EMF,设BE=x,则EM=AB=6,FM=BE=xEC=8﹣x,∵EF⊥DF,∴∠DFE=∠DCB=90°,∴∠FEC=∠CDF,CD=AB=EM∴△EFM≌△DNC(AAS),∴NC=FM=x,EN=EC+NC=8,NM=EN﹣EM=2,即在Rt△FMN中,FN2=x2+22,在Rt△EFM中,EF2=x2+62,在Rt△EFN中,FN2+EF2=EN2,即x2+22+x2+62=82,解得x=2或﹣2(舍弃),即BE=2,(3)如图3中,在BC上截取BM=BA,连接AM,MF,取AM的中点H,连接HQ.∵∠BAM=∠EAF=45°,∴∠BAE=∠MAF,∵==,∴△ABE∽△AMF,∴∠AMF=∠ABE=90°,==,∵AQ=FQ,AH=MH,∴HQ=FM,HQ∥FM,∴∠AHQ=90°,∴点Q的运动轨迹是线段HQ,当点E从点B运动到点C时,BE=8,∴MF=8,∴HQ=MF=4,∴线段AF的中点Q的运动路径长为4.24.解:(1)∵直线y=﹣2x+4交y轴于点A,交x轴于点B,∴A(0,4),B(2,0),∵点C在y轴的负半轴上,且△ABC的面积为8,∴×AC×OB=8,∴AC=8,则C(0,﹣4),设直线BC的解析式为y=kx+b即,解得,故直线BC的解析式为y=2x﹣4.(2)①连接AD.∵点D是直线BC和直线y=x的交点,故联立,解得,即D(4,4).∵A(0,4),故AD=AO,且∠DAO=90°,∴∠DAO=∠AOB=90°,∠AFD=∠ABO,∴△DAF≌△AOB(AAS),∴AF=OB=2,OF=2,即F(0,2),可求直线DF的解析式为y=x+2,∵点E是直线AB和直线DF的交点,故联立,解得,即E(,).②如图1中,将线段FD绕点F顺时针旋转90°得到FG,作DE⊥y轴于E,GH⊥y轴于F.则△DEF≌△FGH(AAS),∴EF=GH=2,DE=FH=4,∴G(2,﹣2),∵D(4,4),∴直线DG的解析式为y=3x﹣8,设直线DG交y轴于P,则∠PDF=45°,∴P(0,﹣8),∴OP=8.作DP′⊥DP,则∠P′DF=45°,可得直线P′D的解析式为y=﹣x+,∴P′(0,),∴OP′=,综上所述,满足条件的OP的值为8或.。

2016-2017学年湖北省武汉市新洲区八年级(下)期末数学试卷(解析版)

2016-2017学年湖北省武汉市新洲区八年级(下)期末数学试卷(解析版)

22. (10 分)某经销商从市场得知如下信息: A 品牌计算器 进价(元/台) 售价(元/台) 700 900 B 品牌计算器 100 160
他计划用 4 万元资金一次性购进这两种品牌计算器共 100 台,设该经销商购进 A 品牌计算 器 x 台,这两种品牌计算器全部销售完后获得利润为 y 元.
第 4 页(共 17 页)
21. (8 分)如图,在平面直角坐标系 xOy 中,直线 y=﹣ x+8 与 x 轴,y 轴分别交于点 A, 点 B,点 D 在 y 轴的负半轴上,若将△DAB 沿直线 AD 折叠,点 B 恰好落在 x 轴正半轴 上的点 C 处. (1)求 AB 的长和点 C 的坐标; (2)求直线 CD 的解析式.
14. (3 分) 如图, 在矩形 ABCD 中, E 是 AB 边上的中点, 将△BCE 沿 CE 翻折得到△FCE, 连接 AF.若∠EAF=75°,那么∠BCF 的度数为
第 2 页(共 17 页)

15. (3 分)如图,10 个边长为 1 的正方形如图摆放在平面直角坐标系中,经过原点的一条 直线 l 将这 10 个正方形分成面积相等的两部分,则该直线 l 的解析式为 .
2016-2017 学年湖北省武汉市新洲区八年级(下)期末数学试卷
一、选择题(每小题 3 分,共 30 分) 1. (3 分)化简 A.﹣2 2. (3 分)若二次根式 A.a>3 的结果是( B.2 ) C.±2 ) D.a≠3 ) D.y=2x+1 , D.4
Hale Waihona Puke 有意义,则 a 的取值范围是( B.a≥3 C.a≤3
第 3 页(共 17 页)
20. (8 分)某校 240 名学生参加植树活动,要求每人植树 4~7 棵,活动结束后抽查了 20 名学生每人的植树量,并分为四类:A 类 4 棵、B 类 5 棵、C 类 6 棵、D 类 7 棵,将各类 的人数绘制成如图所示不完整的条形统计图,回答下列问题: (1)补全条形图; (2)写出这 20 名学生每人植树量的众数和中位数; (3)估计这 240 名学生共植树多少棵?

2016-2017学年湖北省武汉市江夏区八年级(下)期末数学试卷(解析版)

2016-2017学年湖北省武汉市江夏区八年级(下)期末数学试卷(解析版)

A.众数是 6
B.中位数是 6
C.平均数是 6
D.方差是 4
9.(3 分)如图,直线 y=﹣x+m 与 y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于 x 的
第 1 页(共 18 页)
不等式﹣x+m>nx+4n>0 的整数解为( )
A.﹣1
B.﹣3
C.﹣4
D.﹣5
10.(3 分)如图,矩形 ABCD 中,O 为 AC 中点,过点 O 的直线分别与 AB,CD 交于点 E,
;图(2)选项
C 的圆心角度数为

(2)在图中将选项 B 的部分补充完整.
(3)若该校有 3000 名学生,你估计该校可能有多少名学生平均每天参加体育活动的时间在
0.5 小时以下.
21.(8 分)如图,Rt△ABC 中,分别以 AB、AC 为斜边,向△ABC 的内侧作等腰 Rt△ABE、
Rt△ACD,点 M 是 BC 的中点,连接 MD、ME.
F,连接 BF 交 AC 于点 M,连接 DE,BO.若∠COB=60°,FO=FC,则下列结论:
①FB⊥OC,OM=CM;
②△EOB≌△CMB;
③四边形 EBFD 是菱形;
④MB:OE=3:2.
其中正确结论的个数是( )
A.1
B.2
C.3
D.4
二.填空题(每小题 3 分,共 18 分)
11.(3 分)若二次根式
20.(8 分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个 问题是“你平均每天参加体育活动的时间是多少”,共有 4 个选项:A、1.5 小时以上;B、 1~1.5 小时;C、0.5~1 小时;D、0.5 小时以下.

湖北省武汉市2016年中考数学试题含答案

湖北省武汉市2016年中考数学试题含答案

2016年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.实数2的值在()A .0和1之间B .1和2之间C .2和3之间D .3和4之间2.若代数式在31 x 实数范围内有意义,则实数x 的取值范围是()A .x <3B .x >3C .x ≠3D .x =33.下列计算中正确的是()4.不透明的袋子中装有性状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球5.运用乘法公式计算(x +3)2的结果是()A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +96.已知点A (a ,1)与点A ′(5,b )关于坐标原点对称,则实数a 、b 的值是()A .a =5,b =1B .a =-5,b =1C .a =5,b =-1D .a =-5,b =-17.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()8.某车间20名工人日加工零件数如下表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A .5、6、5B .5、5、6C .6、5、6D .5、6、69.如图,在等腰Rt △ABC 中,AC =BC =22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是()A .π2B .πC .22D .210.平面直角坐标系中,已知A (2,2)、B (4,0).若在坐标轴上取点C ,使△ABC为等腰三角形,则满足条件的点C 的个数是()A .5B .6C .7D .8二、填空题(本大题共6个小题,每小题3分,共18分)11.计算5+(-3)的结果为___________12.某市2016年初中毕业生人数约为63000,数63000用科学记数法表示为___________13.一个质地均匀的小正方体,6个面分别标有数字1、1、2、4、5、5.若随机投掷一次小正方体,则朝上一面的数字是5的概率为___________14.如图,在□ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD ′E 处,AD ′与CE 交于点F .若∠B =52°,∠DAE =20°,则∠FED ′的大小为___________15.将函数y =2x +b (b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y =|2x +b |(b 为常数)的图象.若该图象在直线y =2下方的点的横坐标x 满足0<x <3,则b 的取值范围为___________16.如图,在四边形ABCD 中,∠ABC =90°,AB =3,BC =4,CD =10,DA =55,则BD 的长为___________三、解答题(共8题,共72分)17.(本题8分)解方程:5x+2=3(x+2)18.(本题8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE19.(本题8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图请你根据以上的信息,回答下列问题:(1)本次共调查了__________名学生,其中最喜爱戏曲的有__________人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是__________(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数20.(本题8分)已知反比例函数xy 4=(1)若该反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,求k 的值(2)如图,反比例函数xy 4=(1≤x ≤4)的图象记为曲线C 1,将C 1向左平移2个单位长度,得曲线C 2,请在图中画出C 2,并直接写出C 1平移至C 2处所扫过的面积21.(本题8分)如图,点C 在以AB 为直径的⊙O 上,AD 与过点C 的切线垂直,垂足为点D ,AD 交⊙O 于点E (1)求证:AC 平分∠DAB(2)连接BE 交AC 于点F ,若cos ∠CAD =54,求FCAF 的值22.(本题10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如下表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲6a 20200乙201040+0.05x 280其中a 为常数,且3≤a ≤5(1)若产销甲乙两种产品的年利润分别为y 1万元、y 2万元,直接写出y 1、y 2与x 的函数关系式(2)分别求出产销两种产品的最大年利润(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由23.(本题10分)在△ABC 中,P 为边AB 上一点(1)如图,若∠ACP =∠B ,求证:AC 2=AP ·AB(2)若M 为CP 的中点,AC =2①如图2,若∠PBM =∠ACP ,AB =3,求BP 的长②如图3,若∠ABC =45°,∠A =∠BMP =60°,直接写出BP 的长24.(本题12分)抛物线y =ax 2+c 与x 轴交于A 、B 两点,顶点为C ,点P 为抛物线上,且位于x 轴下方(1)如图1,若P (1,-3)、B (4,0)①求该抛物线的解析式②若D 是抛物线上一点,满足∠DPO =∠POB ,求点D 的坐标(2)如图2,已知直线PA 、PB 与y 轴分别交于E 、F 两点.当点P 运动时,OCOF OE 是否为定值?若是,试求出该定值;若不是,请说明理由参考答案。

学八级(下)期中数学试卷两套汇编三附答案解析

学八级(下)期中数学试卷两套汇编三附答案解析

2016-2017学年八年级(下)期中数学试卷两套汇编三附答案解析八年级(下)期中数学试卷一、选择题(本大题12个小题,每小题4分,共48分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.2.二次根式有意义的条件是()A.x>3 B.x>﹣3C.x≥﹣3 D.x≥33.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=54.已知一次函数y=﹣x+b,过点(﹣8,﹣2),那么一次函数的解析式为()A.y=﹣x﹣2 B.y=﹣x﹣6C.y=﹣x﹣10 D.y=﹣x﹣15.如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC等于()A.1 B.2C.3 D.46.已知函数y=(a﹣1)x的图象过一、三象限,那么a的取值范围是()A.a>1 B.a<1C.a>0 D.a<07.菱形ABCD的两条对角线相交于O,若AC=6,BD=8,则菱形ABCD的周长是()A.B.20C.24 D.8.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()A. B.C.D.9.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<3 B.C.x<D.x>310.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在D′处,则重叠部分△AFC的面积是()A.8 B.10C.20 D.3211.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3 D.无法确定12.如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:①OH∥BF,②GH= BC,③OD=BF,④∠CHF=45°.正确结论的个数为()A.4个B.3个C.2个D.1个二、填空(本大题6个小题,每题4分,共24分)13.计算﹣=.14.函数y=﹣2x+3的图象经不过第象限.15.矩形的两条对角线所夹的锐角为60°,较短的边长为12,则对角线长为.16.如图由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是m.17.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为.18.=2, =3, =4,…观察下列各式:请你找出其中规律,并将第n (n≥1)个等式写出来.三、解答题(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤19.计算:.20.如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;(2)直接判断以A,B,A1,B1为顶点的四边形的形状.四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤.21.化简求值:.22.如图,已知ABCD是平行四边形,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.23.如图,一次函数y=kx+b的图象经过点A和点B.(1)求该一次函数的解析式;(2)求该函数与两坐标轴所围成的直角三角形的面积.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线m∥AB,D为AB边上一点,过点D作DE⊥BC,交直线m于点E,垂足为点F,连接CD,BE.(1)求证:CE=AD;(2)当点D是AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)当∠A的大小满足什么条件时,四边形BECD是正方形?(不需要证明)五、解答题:(本大题共2个小题,每小题12分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤.25.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?26.如图,在正方形ABCD中,点E是AB中点,点F是AD上一点,且DE=CF,ED、FC交于点G,连接BG,BH平分∠GBC交FC于H,连接DH.(1)若DE=10,求线段AB的长;(2)求证:DE﹣HG=EG.参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含分母,故A错误;B、被开方数含分母,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.【点评】本题考查最简二次根式的定义,被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.二次根式有意义的条件是()A.x>3 B.x>﹣3C.x≥﹣3 D.x≥3【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件求出x+3≥0,求出即可.【解答】解:∵要使有意义,必须x+3≥0,∴x≥﹣3,故选C.【点评】本题考查了二次根式有意义的条件的应用,注意:要使有意义,必须a≥0.3.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=5【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:A、∵1.52+22≠32,∴该三角形不是直角三角形,故A选项符合题意;B、∵72+242=252,∴该三角形是直角三角形,故B选项不符合题意;C、∵62+82=102,∴该三角形是直角三角形,故C选项不符合题意;D、∵32+42=52,∴该三角形不是直角三角形,故D选项不符合题意.故选:A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.已知一次函数y=﹣x+b,过点(﹣8,﹣2),那么一次函数的解析式为()A.y=﹣x﹣2 B.y=﹣x﹣6C.y=﹣x﹣10 D.y=﹣x﹣1【考点】待定系数法求一次函数解析式.【专题】计算题;整式.【分析】把已知点坐标代入一次函数解析式求出b的值,即可确定出一次函数解析式.【解答】解:把(﹣8,﹣2)代入y=﹣x+b得:﹣2=8+b,解得:b=﹣10,则一次函数解析式为y=﹣x﹣10,故选C【点评】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.5.如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC等于()A.1 B.2C.3 D.4【考点】平行四边形的性质.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的值.【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.【点评】本题主要考查了平行四边形的性质,等腰三角形的判定;在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.6.已知函数y=(a﹣1)x的图象过一、三象限,那么a的取值范围是()A.a>1 B.a<1C.a>0 D.a<0【考点】正比例函数的性质.【分析】根据正比例函数y=(a﹣1)x的图象经过第一、三象限列出关于a的不等式a﹣1>0,通过解该不等式即可求得a的取值范围.【解答】解:∵正比例函数y=(a﹣1)x的图象经过第一、三象限,∴a﹣1>0,∴a>1,故选A【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.7.菱形ABCD的两条对角线相交于O,若AC=6,BD=8,则菱形ABCD的周长是()A.B.20C.24 D.【考点】菱形的性质.【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【解答】解:∵菱形ABCD的两条对角线相交于O,AC=6,BD=8,由菱形对角线互相垂直平分,∴BO=OD=4,AO=OC=3,∴AB==5,故菱形的周长为20,故选:B.【点评】本题考查了勾股定理在直角三角形中的运用,以与菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.8.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()A. B.C.D.【考点】一次函数的图象;正比例函数的性质.【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=x+k的图象经过一、二、三象限,故选A【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b >0时函数的图象在一、二、三象限.9.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<3 B.C.x<D.x>3【考点】一次函数与一元一次不等式.【分析】观察图象,写出直线y=2x在直线y=ax+4的下方所对应的自变量的范围即可.【解答】解:把x=m,y=3代入y=2x,解得:m=1.5,当x<1.5时,2x<ax+4,即不等式2x<ax+4的解集为x<1.5.故选C【点评】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在D′处,则重叠部分△AFC的面积是()A.8 B.10C.20 D.32【考点】翻折变换(折叠问题).【分析】解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.【解答】解:重叠部分△AFC的面积是矩形ABCD的面积减去△FBC与△AFD’的面积再除以2,矩形的面积是32,∵AB∥CD,∴∠ACD=∠CAB,∵△ACD′由△ACD翻折而成,∴∠ACD=∠ACD′,∴∠ACD′=∠CAB,∴AF=CF,∵BF=AB﹣AF=8﹣AF,∴CF2=BF2+BC2∴AF2=(8﹣AF)2+42∴AF=5,BF=3∴S△AFC=S△ABC﹣S△BFC=10.故选B.【点评】本题通过折叠变换考查学生的逻辑思维能力.11.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3 D.无法确定【考点】一次函数图象上点的坐标特征.【分析】分别把各点代入一次函数y=﹣1.5x+3,求出y1,y2,y3的值,再比较出其大小即可.【解答】解:∵点(﹣3,y1)、(﹣1,y2)、(2,y3)在一次函数y=﹣1.5x+3的图象上,∴y1=﹣1.5×(﹣3)+3=7.5;y2=﹣1.5×(﹣1)+3=1.5;y3=﹣1.5×2+3=0,∵7.5>1.5>0,∴y1>y2>y3.故选A.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:①OH∥BF,②GH= BC,③OD=BF,④∠CHF=45°.正确结论的个数为()A.4个B.3个C.2个D.1个【考点】正方形的性质.【分析】根据已知对各个结论进行分析,从而确定正确的个数.①作EJ⊥BD于J,连接EF,由全等三角形的判定定理可得△DJE≌△ECF,再由平行线的性质得出OH是△DBF的中位线即可得出结论;②根据OH是△BFD的中位线,得出GH=CF,由GH<BC,可得出结论;③易证得△ODH是等腰三角形,继而证得OD=BF;④根据四边形ABCD是正方形,BE是∠DBC的平分线可求出Rt△BCE≌Rt△DCF,再由∠EBC=22.5°即可求出结论.【解答】解:作EJ⊥BD于J,连接EF∵BE平分∠DBC∴EC=EJ,∴△DJE≌△ECF∴DE=FE∴∠HEF=45°+22.5°=67.5°∴∠HFE==22.5°∴∠EHF=180°﹣67.5°﹣22.5°=90°∵DH=HF,OH是△DBF的中位线∴OH∥BF;故①正确;∴OH=BF,∠DOH=∠CBD=45°,∵OH是△BFD的中位线,∴DG=CG=BC,GH=CF,∵CE=CF,∴GH=CF=CE∵CE<CG=BC,∴GH<BC,故②错误.∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,∵CE=CF,∴Rt△BCE≌Rt△DCF,∴∠EBC=∠CDF=22.5°,∴∠BFH=90°﹣∠CDF=90°﹣22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,∴∠HCF=90°﹣∠DCH=90°﹣22.5°=67.5°,∴∠CHF=180°﹣∠HCF﹣∠BFH=180°﹣67.5°﹣67.5°=45°,故④正确;∴∠ODH=∠BDC+∠CDF=67.5°,∴∠OHD=180°﹣∠ODH﹣∠DOH=67.5°,∴∠ODH=∠OHD,∴OD=OH=BF;故③正确.故选B.【点评】此题考查了全等三角形的判定和性质、等腰三角形的判定与性质以与正方形的性质.解答此题的关键是作出辅助线,构造等腰直角三角形,利用等腰直角三角形的性质结合角平分线的性质逐步解答.二、填空(本大题6个小题,每题4分,共24分)13.计算﹣=.【考点】二次根式的加减法.【分析】先进行二次根式的化简,然后合并.【解答】解:原式=3﹣=.故答案为:.【点评】本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以与同类二次根式的合并.14.函数y=﹣2x+3的图象经不过第一二四象限.【考点】一次函数的性质.【分析】根据一次函数的性质解答即可.【解答】解:∵一次函数y=﹣2x+3中,k=﹣2<0,b=3>0,∴此函数的图象经过第一二四象限.故答案为:一二四.【点评】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.15.矩形的两条对角线所夹的锐角为60°,较短的边长为12,则对角线长为24 .【考点】矩形的性质.【分析】由矩形的性质得出OA=OB,证明△AOB是等边三角形,得出OA=OB=AB=12,即可得出对角线的长.【解答】解:如图所示:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=12,∴AC=BD=24.故答案为:24.【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,并能进行推理论证与计算是解决问题的关键.16.如图由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是16 m.【考点】勾股定理的应用.【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【解答】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB==10(米).所以大树的高度是10+6=16(米).故答案为:16.【点评】本题主要考查了勾股定理的应用,关键是熟练掌握勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.17.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为.【考点】勾股定理;直角三角形斜边上的中线;勾股定理的逆定理.【分析】本题考查勾股定理的逆定理和直角三角形的性质,利用了勾股定理的逆定理和直角三角形的性质求解.【解答】解:观察图形AB==,AC==3,BC==2∴AC2+BC2=AB2,∴三角形为直角三角形,∵直角三角形中斜边上的中线等于斜边的一半∴CD=.【点评】解决此类题目要熟记斜边上的中线等于斜边的一半.注意勾股定理的应用.18.=2, =3, =4,…观察下列各式:请你找出其中规律,并将第n (n≥1)个等式写出来=(n+1).【考点】二次根式的性质与化简.【专题】规律型.【分析】根据观察,可发现规律,根据规律,可得答案.【解答】解:由=2, =3, =4,…得=(n+1),故答案为: =(n+1).【点评】本题考查了二次根式的性质与化简,观察发现规律是解题关键.三、解答题(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤19.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】根据实数的运算顺序,首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=﹣1+1﹣3=3﹣4+2+1﹣3=﹣【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.20.如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;(2)直接判断以A,B,A1,B1为顶点的四边形的形状.【考点】作图-旋转变换.【分析】(1)由于△OAB绕O点旋转180°得到△OA1B1,利用关于原点中心对称的点的坐标特征得到A1,B1的坐标,然后描点,再连结OB1、OA1和A1B1即可;(2)根据中心对称的性质得OA=OA1,OB=OB1,则利用对角线互相平分得四边形为平行四边形可判断四边形ABA1B1为平行四边形.【解答】解:(1)如图,A1(3,4),B1(0,2);(2)以A,B,A1,B1为顶点的四边形为平行四边形,理由如下:∵△OAB绕O点旋转180°得到△OA1B1,∴点A与点A1关于原点对称,点B与点B1关于原点对称,∴OA=OA1,OB=OB1,∴四边形ABA1B1为平行四边形.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平行四边形的判定.四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤.21.化简求值:.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把x、y的值代入进行计算即可.【解答】解:原式=x2?=x2??=﹣.当x=1+,y=1﹣时,原式=﹣3﹣2.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.22.如图,已知ABCD是平行四边形,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.【考点】平行四边形的性质.【专题】证明题.【分析】由四边形ABCD是平行四边形,AE平分∠BAD,CF平分∠BCD,易证得△ABE≌△CDF(ASA),即可得BE=DF,又由AD=BC,即可得AF=CE.【解答】证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AD=BC,AB=CD,∠BAD=∠BCD,∵AE平分∠BAD,CF平分∠BCD,∴∠EAB=∠BAD,∠FCD=∠BCD,∴∠EAB=∠FCD,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴BE=DF.∵AD=BC,∴AF=EC.【点评】此题考查了平行四边形的性质以与全等三角形的判定与性质.注意证得△ABE≌△CDF是关键.23.如图,一次函数y=kx+b的图象经过点A和点B.(1)求该一次函数的解析式;(2)求该函数与两坐标轴所围成的直角三角形的面积.【考点】待定系数法求一次函数解析式.【分析】(1)把点A、B的坐标代入一次函数解析式,列出关于k、b的方程组,通过解方程组求得它们的值;(2)结合一次函数解析式求得该直线与坐标轴的交点,然后由三角形的面积公式进行解答.【解答】解:(1)将A与B代入一次函数解析式得:,解得:,则一次函数解析式为:y=﹣2x+1;(2)由(1)得到一次函数解析式为:y=﹣2x+1,所以该直线与坐标轴的交点坐标是(0,1),(,0),所以该函数与两坐标轴所围成的直角三角形的面积为:×1×=.【点评】本题考查了待定系数法求一次函数解析式,坐标与图形的性质,属于基础题,不过需要学生具备一定的读图能力.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线m∥AB,D为AB边上一点,过点D作DE⊥BC,交直线m于点E,垂足为点F,连接CD,BE.(1)求证:CE=AD;(2)当点D是AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)当∠A的大小满足什么条件时,四边形BECD是正方形?(不需要证明)【考点】四边形综合题.【分析】(1)由BC⊥AC,DE⊥BC,得到DE∥AC,从而判断出四边形ADEC是平行四边形.即可,(2)先判断出△BFD≌△CFE,再判断出BC和DE垂直且互相平分,得到四边形BECD是菱形.(3)先判断出∠CDB=90°,从而得到有一个角是直角的菱形是正方形.【解答】(1)证明:∵直线m∥AB,∴EC∥AD.又∵∠ACB=90°,∴BC⊥AC.又∵DE⊥BC,∴DE∥AC.∵EC∥AD,DE∥AC,∴四边形ADEC是平行四边形.∴CE=AD.(2)当点D是AB中点时,四边形BECD是菱形.证明:∵D是AB中点,DE∥AC(已证),∴F为BC中点,∴BF=CF.∵直线m∥AB,∴∠ECF=∠DBF.∵∠BFD=∠CFE,∴△BFD≌△CFE.∴DF=EF.∵DE⊥BC,∴BC和DE垂直且互相平分.∴四边形BECD是菱形.(3)当∠A的大小是45°时,四边形BECD是正方形.理由是:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴四边形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.【点评】此题是四边形综合题,主要考查了全等三角形的性质和判定,平行四边形的性质和判定,菱形的判定,正方形的判定,解本题的关键是四边形BECD是菱形.五、解答题:(本大题共2个小题,每小题12分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤.25.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= m2+3n2,b= 2mn ;(2)利用所探索的结论,找一组正整数a、b、m、n填空: 4 + 2 =( 1 + 1 )2;(3)若a+4=,且a、m、n均为正整数,求a的值?【考点】二次根式的混合运算.【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.【点评】本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.26.(2013?永川区校级二模)如图,在正方形ABCD中,点E是AB中点,点F是AD上一点,且DE=CF,ED、FC交于点G,连接BG,BH平分∠GBC交FC于H,连接DH.(1)若DE=10,求线段AB的长;(2)求证:DE﹣HG=EG.【考点】正方形的性质;全等三角形的判定与性质;线段垂直平分线的性质;等腰直角三角形;圆周角定理.【分析】(1)设AE=x,则AD=2x,在直角三角形AED中利用勾股定理即可求出x的值,进而求出AB的长;(2)利用已知得出B、C、G、E四点共圆,得出BG=BC,进而得到BH是GC的中垂线,再利用△BHC ≌△CGD,得出GH=DG即可证明DE﹣HG=EG.【解答】(1)解:设AE=x,则AD=2x,∵四边形ABCD是正方形,∴∠A=90°,∴x2+(2x)2=102,∴x=2,∴AB=2AE=4;(2)证明:在正方形ABCD中,易证RT△CDF≌RT△DAE,∴∠FCD=∠ADE,∴∠GDC+∠DCF=90°,∴∠DGC=∠CGE=90°,∴∠EGC=∠EBC=90°,∴∠EGC+∠EBC=180°,∴B、C、G、E四点共圆,∠AED=∠BCG,连EC,∴∠BGC=∠BEC,∵BE=EA,BC=AD,∴RT△BCE≌RT△ADE,∴∠AED=∠BEC,∴∠BGC=∠AED,∴∠BGC=∠BCG,∴BG=BC,又∵BH平分∠GBC,∴BH是GC的中垂线,∴GH=HC,∴GH=DG,∴△DGH是等腰直角三角形,即:DE﹣HG=EG.【点评】此题主要考查了全等三角形的判定与四点共圆的性质与判定,根据已知得出B、C、G、E四点共圆,以与BG是GC的中垂线是解题关键.八年级(下)期中数学试卷一、选择题(本题共12个小题.在每题所列四个选项中,只有一个符合题意,把符合题意的选项所对应的字母代号写在答题纸中各题对应的方格里).1.若有意义,则x的取值范围()A.x>2 B.x≤C.x≠D.x≤22.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25 B.7C.5和7 D.25或73.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.7,24,25C.6,8,10 D.9,12,154.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC5.已知二次根式中最简二次根式共有()A.1个B.2个C.3个D.4个6.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm7.如图,平行四边形ABCD的对角线交于点O,且AB=6,△OCD的周长为16,则AC与BD的和是()A.10 B.16C.20 D.228.如图字母B所代表的正方形的面积是()A.12 B.13C.144 D.1949.如果最简根式与是同类二次根式,那么使有意义的x的取值范围是()A.x≤10 B.x≥10C.x<10 D.x>1010.如图所示,在菱形ABCD中,AC、BD相交于点O,E为AB中点,若OE=3,则菱形ABCD的周长是()A.12 B.18C.24 D.3011.矩形一个内角的平分线把矩形的一边分成3cm和5cm,则矩形的周长为()A.16cm B.22cm或26cm C.26cm D.以上都不对12.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7C.2a﹣15 D.无法确定二、填空题(本题共6个小题.请把最终结果填写在答题纸中各题对应的横线上).13.已知平行四边形ABCD中,∠B=70°,则∠A=,∠D=.14.若直角三角形的两直角边的长分别为a、b,且满足+(b﹣4)2=0,则该直角三角形的斜边长为.15.若a=++2,则a=,b=.16.小玲要求△ABC最长边上的高,测得AB=8cm,AC=6cm,BC=10cm,则最长边上的高为cm.17.如图,将一个边长分别为4cm、8cm的矩形纸片ABCD折叠,使C点与A点重合,则EB的长是.18.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么12※4=.三、解答题(请在答题纸中各题对应的空间写出必要的过程).19.计算:(1).(2)(3)先化简,再求值:,其中x=.20.如图,墙A处需要维修,A处距离墙脚C处8米,墙下是一条宽BC为6米的小河,现要架一架梯子维修A处的墙体,现有一架12米长的梯子,问这架梯子能否到达墙的A处?NN#21.已知a、b、c满足(a﹣3)2++|c﹣5|=0.求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.22.如图所示,在?ABCD中,点E,F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已知标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连接;(2)猜想:=;(3)证明.23.已知:如图,?ABCD中,E、F分别是边AB、CD的中点.(1)求证:四边形EBFD是平行四边形;(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.24.阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但是由于1<<2,所以的整数部分为1,将减去其整数部分1,差就是小数部分﹣1,根据以上的内容,解答下面的问题:(1)的整数部分是,小数部分是;(2)1+的整数部分是,小数部分是;(3)若设2+整数部分是x,小数部分是y,求x﹣y的值.。

2016-2017学年武汉市八年级下数学期中考试各区压轴题

2016-2017学年武汉市八年级下数学期中考试各区压轴题

1、如图,△ABC 为等腰直角三角形,∠C =90°,点P 为△ABC 外一点,CP =2,BP =3,AP 的最大值是( ) A .32+B .4C .5D .232、在平行四边形ABCD 中,已知∠B =30°,将△ABC 沿AC 翻折至△AB ′C ,连接B ′D (1) 如图1,若AB =3,∠AB ′D =75°,则∠ACB =__________° (2) 如图2,AB =32,BC =1,AB ′与CD 相交于点E ,求△AEC 的面积 (3) 已知AB =32,当BC 的长为多少时,△AB ′D 是直角三角形?3、已知直线AB 分别交x 、y 轴于A (a ,0)、B 两点,C (c ,4)为直线AB 上且在第二象限内一点,若a a c 8161622=++-(1) 如图1,求A 、C 点的坐标(2) 如图2,直线OM 经过O 点,过C 作CM ⊥OM 于M ,CN ⊥y 轴于点N ,连MN ,求MNMCMO +的值(3) 如图3,过C 作CN ⊥y 轴于点N ,G 为第一象限内一点,且∠NGO =45°,试探究GC 、GN 、GO 之间的数量关系并说明理由4、如图,∠MON =15°,点P 是∠MON 内部一定点,且OP =10,点E 、F 分别是OM 、ON 上两动点,则△PEF 的周长的最小值是( )A .10B .35C .)26(5-D .3105、已知在△ABC 中,AF 、BE 分别是中线,且相交于点P ,记AB =c ,BC =a ,AC =b ,如图 (1) 求证:AP =2PF ,BP =2PE(2) 如图(2),若AF ⊥BE 于P ,试探究a 、b 、c 之间的数量关系(3) 如图(3),在平行四边形ABCD 中,点E 、F 、G 分别是AD 、BC 、CD 的中点,BE ⊥EG ,AD =45,AB =6,求AF 的长6、如图,四边形OABC 的位置在平面直角坐标系中如图所示,且A (0,a ),B (b ,a ),C (b ,0),又a 、b 满足08422144=+++---b b a a .点P 在x 轴上且横坐标大于b ,射线OD 是第一象限的角平分线,点Q 在射线OD 上,BP =PQ ,并连接BQ 交y 轴上于点M (1) 求点B 的坐标 (2) 求证:BP ⊥PQ(3) 若点P 在x 轴的正半轴上,且OP =3AM ,试求点M 的坐标7、如图,△ABC 中,3AD=1, 则BD ·DC=__ 28、如图,正方形ABCD 中,AB=8,M 在DC 上,DM=2,NNM D CB A DCBA是AC 上一动点,则DN+MN 的最小值为_______10_____9、已知,四边形ABCD 中,AB=8,BC=2,CD=6, DA=2,M 、N 分别为AD 、BC 的中点,当MN 取得最大值时,∠D=_____ 120°_______10、平面直角坐标系中,正方形OEFG 的顶点在坐标原点。

2016-2017学年湖北省武汉市武昌区八年级(下)期末数学试卷(解析版)

2016-2017学年湖北省武汉市武昌区八年级(下)期末数学试卷(解析版)

2016-2017学年湖北省武汉市武昌区八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)若式子在实数范围内有意义,则a的取值范围是()A.a>3B.a≥3C.a<3D.a≤32.(3分)下列二次根式是最简二次根式的是()A.B.C.D.3.(3分)一次函数y=3x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)为了参加中学生篮球运动会,一支篮球队准备购买10双运动鞋,各种尺码统计如下表:则这10双运动鞋尺码的众数和中位数分别为()A.40.5、41B.41、41C.40.5、40.5D.41、40.55.(3分)下列计算正确的是()A.B.C.D.6.(3分)下列各组数中不能作为直角三角形的三边长的是()A.2、2、3B.9、12、15C.6、8、10D.7、24、25 7.(3分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相等;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是()A.①②③B.①②C.①③D.②③8.(3分)如果直线y=k1x+b1和直线y=k2x+b2(k1>k2>0)的交点坐标为(a,b),则不等式k1x+b1<k2x+b2的解集是()A.x>a B.x<a C.x>b D.x<b9.(3分)如图,▱ABCD中,过对角线BD上一点作EF∥BC,GH∥AB,图中面积相等的平行四边形有()A.2对B.3对C.4对D.5对10.(3分)已知函数y=|x﹣a|(a为常数),当1≤x≤3时,y有最小值为4,则a的值为()A.a=﹣3或a=5B.a=﹣1或a=7C.a=﹣3或a=7D.a=﹣1或a=5二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)=.12.(3分)数据2、3、5、5、4的众数是.13.(3分)直线y=3x﹣1与x轴的交点坐标为14.(3分)若菱形的周长为8,高为,则菱形较长的对角线的长为15.(3分)一个有进水管与出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后8分钟内既进水又出水,每分钟的进水量和出水量是两个常数.容器内的水量y(单位:升)与时间x(单位:分钟)之间的关系如图所示,则每分钟出水16.(3分)如图,四边形ABCD中,已知AB=,BC=5﹣,CD=6,∠ABC=135°和∠BCD=120°,那么AD的长为.三、解答题(共8题,共72分)17.(8分)计算:(1)2(2)(2)(2)18.(8分)已知:如图,四边形ABCD中,AB⊥BC,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.19.(8分)某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如表所示.(1)若公司认为面试和笔试成绩同等重要,从他们的成绩看,谁将被录取?(2)若公司分别赋予面试成绩和笔试成绩6和4的权,从甲、乙两人的加权平均成绩看,谁将被录取?20.(8分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.21.(8分)已知一次函数y=kx+b的图象过点A(﹣4,﹣2)和点B(2,4)(1)求直线AB的解析式;(2)将直线AB平移,使其经过原点O,则线段AB扫过的面积为.22.(10分)A、B两个山村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨.现将这些柑桔运到C、D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两厂的费用分别为每吨20元和25元,从B村运往C、D两厂的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨,A、B两村运往两仓库的柑桔运输费用分别y A元和y B元(1)根据题意填写下表:(2)求y A、y B与x之间的函数关系式;(3)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元.在这种情况下,请问怎样调运可使两村总运费最少?并求出最少总运费.23.(10分)已知四边形ABCD是矩形(1)如图1,对角线AC、BD相交于点O,且DE∥AC,CE∥BD,求证:四边形OCED是菱形(2)如图2,对角线AC、BD相交于点O,∠BAD的平分线交BC于点F,且∠CAF=15°,求AF:FC的值(3)如图3,点P在矩形ABCD内部.若P A=3,PD=4,PC=5,则PB=.24.(12分)在平面直角坐标系中,A(0,8)、C(8,0),四边形AOCB是正方形,点D(a,0)是x轴正半轴上一动点,∠ADE=90°,DE交正方形AOCB外角的平分线CE 于点E.(1)如图1,当点D是OC的中点时,求证:AD=DE;(2)点D(a,0)在x轴正半轴上运动,点P在y轴上.若四边形PDEB为菱形,求直线PB的解析式.(3)连AE,点F是AE的中点,当点D在x轴正半轴上运动时,点F随之而运动,点F 到CE的距离是否为定值?若为定值,求出这个值;若不是定值,请说明理由.2016-2017学年湖北省武汉市武昌区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【解答】解:由题意得,a﹣3≥0,解得a≥3.故选:B.2.【解答】解:A、不是最简二次根式,错误;B、是最简二次根式,正确;C、不是最简二次根式,错误;D、不是最简二次根式,错误;故选:B.3.【解答】解:∵y=3x+1,∴k>0,b>0,故直线经过第一、二、三象限.不经过第四象限.故选:D.4.【解答】解:数据41出现了3次最多,这组数据的众数是41,共10个数据,从小到大排列此数据处在第5、6位的数都为41,故中位数是41.故选:B.5.【解答】解:A、原式不能合并,不符合题意;B、原式=2,不符合题意;C、原式不能合并,不符合题意;D、原式=2÷=2,符合题意,故选:D.6.【解答】解:A、∵22+22≠32,∴2,2,3不能构成直角三角形.B、∵92+122=152,∴9,12,15能构成直角三角形;C、∵62+82=102,∴6,8,10能构成直角三角形;D、∵72+242=252,∴7,24,25能构成直角三角形.故选:A.7.【解答】解:从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.8.【解答】解:不等式k1x+b1<k2x+b2的解集是x<a,故选:B.9.【解答】解:∵四边形ABCD是平行四边形,∴S△ABD=S△CBD.∵BP是平行四边形BEPG的对角线,∴S△BEP=S△BGP,∵PD是平行四边形HPFD的对角线,∴S△HPD=S△FPD.∴S△ABD﹣S△BEP﹣S△HPD=S△BCD﹣S△BGP﹣S△PFD,即S▱AEPH=S▱GCFP,∴S▱ABGH=S▱BCFE,同理S▱AEFD=S▱GCDH.即:S▱ABGH=S▱BCFE,S▱AHPE=S▱GCFP,S▱AEFD=S▱GCDH.故选:B.10.【解答】解:分两种情况:①当x≥a时,y=x﹣a,∵1>0,∴当1≤x≤3时,y随x的增大而增大,即当x=1时,y=4,则4=1﹣a,a=﹣3;②当x<a时,y=﹣x+a,∵﹣1<0,∴当1≤x≤3时,y随x的增大而减小,即当x=3时,y=4,则4=﹣3+a,a=7,∴a=﹣3或7,故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11.【解答】解:=5,故答案为:5.12.【解答】解:数据2、3、5、5、4中,5出现的次数最多,所以这组数据的众数为5,故答案为5.13.【解答】解:∵y=3x﹣1,∴当y=0时,0=3x﹣1,得x=,即直线y=3x﹣1与x轴的交点坐标为:(,0),故答案为:(,0).14.【解答】解:如图所示,∵四边形ABCD是菱形,菱形的周长为8,∴AB=BC=CD=DA=2,∵AE=,AE⊥BC,∴sin B=,∴∠ABC=60°,∵AB=BC,∴△ABC是等边三角形,∴AC=AB=2,∴OB=OD=AB•sin60°=,∴BD=2,故答案为215.【解答】解:根据图象知道:每分钟出水[(12﹣4)×5﹣(30﹣20)]÷(12﹣4)=升;故答案为:升16.【解答】解:作AE⊥BC,DF⊥BC,AG⊥DF,则四边形AEFG四个内角均为直角,∴四边形AEFG为矩形,AE=FG.EF=AG∠ABE=180°﹣135°=45°,∠DCF=180°﹣120°=60°,∴AE=EB=×=,CF=×CD=3,FD=CF=3 ,∴AG=EF=8,DG=DF﹣AE=2 ,∴AD==.故答案为.三、解答题(共8题,共72分)17.【解答】解:(1)原式=4+3=7;(2)原式=(2)2﹣()2=12﹣6=6.18.【解答】解:连结AC,在△ABC中,∵∠B=90°,AB=3,BC=4,∴AC==5,S△ABC=AB•BC=×3×4=6,在△ACD中,∵AD=13,AC=5,CD=12,∴CD2+AC2=AD2,∴△ACD是直角三角形,∴S△ACD=AC•CD=×5×12=30.∴四边形ABCD的面积=S△ABC+S△ACD=6+30=36.19.【解答】解:(1)==89(分),==87.5(分),因为>,所以认为面试和笔试成绩同等重要,从他们的成绩看,甲将被录取;(2)甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),因为乙的平均分数较高,所以乙将被录取.20.【解答】(1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四边形BCEF是平行四边形.(2)解:连接BE,交CF于点G,∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形,∵∠ABC=90°,AB=4,BC=3,∴AC==5,∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC,∴=,即=,∴CG=,∵FG=CG,∴FC=2CG=,∴AF=AC﹣FC=5﹣=,∴当AF=时,四边形BCEF是菱形.21.【解答】解:(1)∵一次函数y=kx+b的图象过点A(﹣4,﹣2)和点B(2,4),∴,解得,∴直线AB的解析式为y=x+2;(2)设直线AB平移后的解析式为y=x+n,将原点(0,0)代入,得n=0,∴直线AB平移后的解析式为y=x,∴将直线AB向下平移2个单位得到直线A′B′,如图,则A′(﹣4,﹣4),B′(2,2),∴平行四边形AA′B′B的面积=2×(4+2)=12.即线段AB扫过的面积为12.故答案为12.22.【解答】(1)解:填表如下:故答案为:(200﹣x)吨、(240﹣x)吨、(60+x)吨.(2)解:根据题意得:y A=20x+25(200﹣x)=5000﹣5x,y B=15(240﹣x)+18(60+x)=3x+4680,x的取值范围是:0≤x≤200,答:y A、y B与x之间的函数关系式分别是y A=5000﹣5x,y B=3x+4680,自变量x的取值范围是0≤x≤200.(3)解:由y B≤4830,得3x+4680≤4830,解得x≤50,设A、B两村运费之和为y,则y=y A+y B=5000﹣5x+3x+4680=﹣2x+9680,∵﹣2<0,∴y随着x的增大而减小,又0≤x≤50,∴当x=50时,y有最小值,最小值是y=﹣2×50+9680=9580(元),200﹣50=150,240﹣50=190,60+50=110.答:若B村的柑桔运费不得超过4830元,在这种情况下,从A村运往C仓库的柑桔重量为50吨,运往D仓库的柑桔重量为150吨,从B村运往C仓库的柑桔重量为190吨,运往D仓库的柑桔重量为110吨才能使两村所花运费之和最小,最少总运费是9580元.23.【解答】(1)证明:∵四边形ABCD是矩形,AC=BD,OD=BD,OC=AC,∴OD=OC,∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∴OCED是菱形;(2)解:∵四边形ABCD是矩形,∴∠BAD=∠ABF=90°,∵AF是∠BAD的平分线,∴∠BAF=45°,∴BA=BF,∴AF=AB,∵∠CAF=15°,∴∠BAC=60°,∴BC=AB×tan∠BAC=AB,∴BC=BF,∴FC=BC﹣BF=(﹣1)AB,∴AF:FC==;(3)作PM⊥AB于M,PN⊥CD于N,∵AB∥BC,∴M、P、N在同一条直线上,∴四边形AMND,MBCN是矩形,∴AM=DN,BM=CN,在Rt△AMP中,AP2=AM2+PM2,同理,DP2=DN2+PN2,CP2=CN2+PN2,∴AP2+CP2﹣PD2=CN2+PM2=BM2+PM2=18,在Rt△BMP中,BP2=PM2+BM2=18,∴PB=3,故答案为:3.24.【解答】解:(1)如图1中,取OA的中点M,连接DM.∵CE为正方形的外角平分线,∴∠BCE=45°,∴∠DCE=90°+45°=135°,∵D、M分别为OC、OA的中点,∴OM=OD=AM=CD,∴△OMD是等腰直角三角形,∴∠OMD=45°,∴∠AMD=45°,∴∠AMD=135°=∠DCE,∵∠EDC+∠ADO=90°,∠ADO+∠DAO=90°,∴∠EDC=∠DAM,∴△AMD≌△DCE,∴AD=DE.(2)如图2中,作BP⊥AD交y作于P,则PD∥DE,由四边形AOBC是正方形,可证△AOD≌△BAP,∴AD=BP,∴DE=BP,∴四边形PDEB是平行四边形,当D点在边OC上时,P点在OA上,DP<DA(DE),∴四边形PDEB不可能是菱形,∴点D在点C的右侧,如图3中,∵四边形PDEB是菱形,∴PD=DE,∵AD=DE,∵OD⊥AP,∴OP=OA=8,∴P(0,﹣8),设直线PB的解析式为y=kx+b,则有,解得,∴直线PB的解析式为y=2x﹣8.(3)如图4或5,连接FC,AC.∵∠ACB=45°,∠BCE=45°,∴∠ACE=90°,∵F是AE中点,∴F A=FC=FE,∴点F在AC的垂直平分线上,∵OB垂直平分AC,∴点F在直线OB上,∵AC⊥CE,AC⊥OB,∴OB∥CE,∴点F到CE的距离为定值且等于平行线OB、CE之间的距离,∴点F到CE的距离d=CT=AC=4.。

2016-2017学年武汉市硚口区八年级下期中数学试卷(有答案)-精品

2016-2017学年武汉市硚口区八年级下期中数学试卷(有答案)-精品

2016-2017学年湖北省武汉市硚口区八年级(下)期中数学试卷一、选择題(共10小题,每小题3分,共30分下列各题均有四个备选选项,其中有且只有一个正确,请在答题卡上将正确答案的字母涂黑.1.若式子在实数范围内有意义,则a的取值范围是()A.a>3 B.a≥3 C.a<3 D.a≤32.若=4﹣b,则b满足的条件是()A.b>4 B.b<4 C.b≥4 D.b≤43.以下列长度的线段为边,不能构成直角三角形的是()A.2,3,4 B.1,1,C.D.5,12,134.在平行四边形ABCD中,已知∠A=60°,则∠D的度数是()A.60°B.90°C.120°D.30°5.下列计算正确的是()A.B.C.D.6.如图,一竖直的木杆在离地面4米处折断,木頂端落在地面离木杆底端3米处,木杆折断之前的高度为()A.7米B.8米C.9米D.12米7.如图,▱ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(5,2),则点D的坐标为()A.(5,5)B.(5,6)C.(6,6)D.(5,4)8.如图,A(0,1),B(3,2),点P为x轴上任意一点,则PA+PB的最小值为()A.3 B.C.D.9.如图,在正方形网格中用没有刻度的直尺作一组对边长度为的平行四边形.在1×3的正方形网格中最多作2个,在1×4的正方形网格中最多作6个,在1×5的正方形网格中最多作12个,则在1×8的正方形网格中最多可以作()A.28个B.42个C.21个D.56个10.如图,正方形ABCD中,点O为对角线的交点,直线EF过点O分别交AB、CD于E、F两点(BE >EA),若过点O作直线与正方形的一组对边分別交于G、H两点,满足GH=EF,则这样的直线GH(不同于直线EF)的条数共有()A.1条B.2条C.3条D.无数条二、填空题(每小题3分,共18分11.16的平方根是.12.计算:÷=.13.已知等边三角形的边长为6,则面积为.14.如图,菱形ABCD的周长为8,对角线BD=2,则对角线AC为.15.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点E的坐标.16.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=5,DA=5,则BD的长为.三、解答题(共8小題,共72分)17.(8分)计算:①;②.18.(8分)计算:①②19.(8分)一根直立于水中的芦节(BD)高出水面(AC)2米,一阵风吹来,芦苇的顶端D恰好到达水面的C处,且C到BD的距离AC=6米,求水的深度(AB)为多少米?20.(8分)如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.求证:四边形ABCD是菱形.21.(8分)如图,在4×4的正方形网格中,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求证:∠ABC=90°;(3)若点P为直线AC上任意一点,则线段BP的最小值为.22.(10分)如图1,点D、E、F、G分别为线段AB、OB、OC、AC的中点.(1)求证:四边形DEFG是平行四边形;(2)如图2,若点M为EF的中点,BE:CF:DG=2:3:,求证:∠MOF=∠EFO.23.(10分)已知点A为正方形BCDE内一动点,满足∠DAC=135°,且b=+5.(1)求a、b的值;(2)如图1,若线段AB=b,AC=a,求线段AD的长;(3)如图2,设线段AB=m,AC=n,AD=h,请探究并直接写出三个量m2、n2、h2之间满足的数量关系.24.(12分)在正方形ABCD中,点E为边BC(不含B点)上的一动点,AE⊥EF,且AE=EF,FG ⊥BC的延长线于点G.(1)如图1,求证:BE=FG;(2)如图2,连接BD,过点F作FH∥BC交BD于点H,连接HE,判断四边形EGFH的形状,并给出证明;(3)如图3,点P、Q为正方形ABCD内两点,AB=BQ,且∠ABQ=30°,BP平分∠QBC,BP=DP,若BC=+1,求线段PQ的长.2016-2017学年湖北省武汉市硚口区八年级(下)期中数学试卷参考答案与试题解析一、选择題(共10小题,每小题3分,共30分下列各题均有四个备选选项,其中有且只有一个正确,请在答题卡上将正确答案的字母涂黑.1.若式子在实数范围内有意义,则a的取值范围是()A.a>3 B.a≥3 C.a<3 D.a≤3【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,a﹣3≥0,解得a≥3.故选:B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.若=4﹣b,则b满足的条件是()A.b>4 B.b<4 C.b≥4 D.b≤4【分析】根据二次根式的性质列出不等式,解不等式即可.【解答】解:∵=4﹣b,∴4﹣b≥0,解得,b≤4,故选:D.【点评】本题考查的是二次根式的化简,掌握二次根式的性质:=|a|是解题的关键.3.以下列长度的线段为边,不能构成直角三角形的是()A.2,3,4 B.1,1,C.D.5,12,13【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【解答】解:A、∵22+32=13≠42,∴不能构成直角三角形,故本选项符合要求;B、∵12+12=()2,∴能构成直角三角形,故本选项不符合要求;C、∵()2+()2=()2,∴能构成直角三角形,故本选项不符合要求;D、∵52+122=132,∴能构成直角三角形,故本选项不符合要求.故选:A.【点评】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.在平行四边形ABCD中,已知∠A=60°,则∠D的度数是()A.60°B.90°C.120°D.30°【分析】根据平行四边形邻角互补的性质即可求解.【解答】解:∵在平行四边形ABCD中,∠A=60°,∴∠D=180°﹣60°=120°.故选:C.【点评】此题主要考查了平行四边形的性质,关键是熟练掌握平行四边形邻角互补的知识点.5.下列计算正确的是()A.B.C.D.【分析】根据二次根式的性质与同类二次根式的定义逐一计算可得.【解答】解:A、与不是同类二次根式,不能合并,此选项错误;B、4﹣3=3,此选项错误;C、×=,此选项正确;D、(3)2=18,此选项错误;故选:C.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的性质和二次根数混合运算顺序及其法则.6.如图,一竖直的木杆在离地面4米处折断,木頂端落在地面离木杆底端3米处,木杆折断之前的高度为()A.7米B.8米C.9米D.12米【分析】由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这棵树折断之前的高度.【解答】解:∵一竖直的木杆在离地面4米处折断,頂端落在地面离木杆底端3米处,∴折断的部分长为=5(米),∴折断前高度为5+4=9(米).故选:C.【点评】此题考查了勾股定理的应用,主要考查学生对勾股定理在实际生活中的运用能力.7.如图,▱ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(5,2),则点D的坐标为()A.(5,5)B.(5,6)C.(6,6)D.(5,4)【分析】由四边形ABCD是平行四边形,可得AB∥CD,AB=CD,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵A(1,4)、B(1,1)、C(5,2),∴AB=3,∴点D的坐标为(5,5).故选:A.【点评】此题考查了平行四边形的性质.注意平行四边形的对边平行且相等.8.如图,A(0,1),B(3,2),点P为x轴上任意一点,则PA+PB的最小值为()A.3 B.C.D.【分析】作点A关于x轴的对称点A′.连接BA′交x轴于点P,此时PA+PB的值最小.根据勾股定理求出BA′即可;【解答】解:作点A关于x轴的对称点A′.连接BA′交x轴于点P,此时PA+PB的值最小.PA+PB的最小值=BA′==3,故选:B.【点评】本题考查轴对称﹣最短问题,坐标用图形的性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.9.如图,在正方形网格中用没有刻度的直尺作一组对边长度为的平行四边形.在1×3的正方形网格中最多作2个,在1×4的正方形网格中最多作6个,在1×5的正方形网格中最多作12个,则在1×8的正方形网格中最多可以作()A.28个B.42个C.21个D.56个【分析】根据已知图形的出在1×n的正方形网格中最多作2×(1+2+3+…+n﹣2)个,据此可得.【解答】解:∵在1×3的正方形网格中最多作2=2×1个,在1×4的正方形网格中最多作6=2×(1+2)个,在1×5的正方形网格中最多作12=2×(1+2+3)个,……∴在1×8的正方形网格中最多作2×(1+2+3+4+5+6)=42个,故选:B.【点评】本题主要考查图形的变化规律,解题的关键是根据题意得出在1×n的正方形网格中最多作2×(1+2+3+…+n﹣2)个.10.如图,正方形ABCD中,点O为对角线的交点,直线EF过点O分别交AB、CD于E、F两点(BE >EA),若过点O作直线与正方形的一组对边分別交于G、H两点,满足GH=EF,则这样的直线GH(不同于直线EF)的条数共有()A.1条B.2条C.3条D.无数条【分析】根据对称性以及旋转变换的性质,画出图形即可解决问题,如图所示;【解答】解:根据对称性以及旋转变换的性质可知满足条件的线段有3条,如图所示;故选:C.【点评】本题考查正方形的性质、旋转变换等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(每小题3分,共18分11.16的平方根是±4 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.计算:÷=3.【分析】根据二次根式是除法法则进行计算.【解答】解:原式====3.故答案是:3.【点评】本题考查了二次根式的乘除法.二次根式的除法法则:÷=(a≥0,b>0).13.已知等边三角形的边长为6,则面积为9.【分析】根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.【解答】解:等边三角形高线即中线,故D为BC中点,∵AB=6,∴BD=3,∴AD==3,∴等边△ABC的面积=BC•AD=×6×3=9.故答案为:9.【点评】本题考查了勾股定理在直角三角形中的运用,等边三角形面积的计算,本题中根据勾股定理计算AD的值是解题的关键.14.如图,菱形ABCD的周长为8,对角线BD=2,则对角线AC为2.【分析】设菱形的对角线相交于O,根据菱形性质得出AB=BC=CD=AD,AC⊥BD,BO=OD,AO=OC,求出OB,根据勾股定理求出OA,即可求出AC.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,BO=OD,AO=OC,∵菱形的周长是8,∴DC=×8=2,∵BD=2,∴OD=1,在Rt△DOC中,OC==,∴AC=2OC=2,故答案为:2.【点评】本题考查了菱形的性质和勾股定理,注意:菱形的对角线互相垂直平分,菱形的四条边相等.15.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点E的坐标(0,).【分析】先证明EA=EC(设为x);根据勾股定理列出x2=12+(3﹣x)2,求得x=,即可解决问题.【解答】解:由题意知:∠BAC=∠DAC,AB∥OC,∴∠ECA=∠BAC,∴∠ECA=∠DAC,∴EA=EC(设为x);由题意得:OA=1,OC=AB=3;由勾股定理得:x2=12+(3﹣x)2,解得:x=,∴OE=3﹣=,∴E点的坐标为(0,).故答案为:(0,).【点评】该题主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答;对综合的分析问题解决问题的能力提出了较高的要求.16.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=5,DA=5,则BD的长为.【分析】作DM⊥BC,交BC延长线于M,由勾股定理得出AC2=AB2+BC2=25,求出AC2+CD2=AD2,由勾股定理的逆定理得出△ACD是直角三角形,∠ACD=90°,证出∠ACB=∠CDM,得出△ABC≌△CMD,由全等三角形的性质求出CM=AB=3,DM=BC=4,得出BM=BC+CM=7,再由勾股定理求出BD即可.【解答】解:作DM⊥BC,交BC延长线于M,如图所示:则∠M=90°,∴∠DCM+∠CDM=90°,∵∠ABC=90°,AB=3,BC=4,∴AC2=AB2+BC2=25,∴AC=5,∵AD =5,CD =5,∴AC 2+CD 2=AD 2,∴△ACD 是直角三角形,∠ACD =90°,∴∠ACB +∠DCM =90°,∴∠ACB =∠CDM ,∵∠ABC =∠M =90°,在△ABC 和△CMD 中∴△ABC ≌△CMD ,∴CM =AB =3,DM =BC =4,∴BM =BC +CM =7,∴BD ===,故答案为:. 【点评】本题考查了全等三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握全等三角形的判定与性质,由勾股定理的逆定理证出△ACD 是直角三角形是解决问题的关键.三、解答题(共8小題,共72分)17.(8分)计算:①;②. 【分析】①先化简各二次根式,再合并同类二次根式即可得;②根据二次根式的乘法运算法则计算可得.【解答】解:①原式=3﹣4+2=;②原式===3. 【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的性质和二次根数混合运算顺序及其法则.18.(8分)计算:①②【分析】①先利用完全平方公式和平方差公式计算乘法和乘方,再合并同类二次根式即可得;②先化简各二次根式,再计算乘法,继而合并同类二次根式即可得.【解答】解:①原式=2+6+4+3﹣6=5+4;②原式=6×﹣×6=3﹣15=﹣12.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的性质及二次根式混合运算顺序和运算法则.19.(8分)一根直立于水中的芦节(BD)高出水面(AC)2米,一阵风吹来,芦苇的顶端D恰好到达水面的C处,且C到BD的距离AC=6米,求水的深度(AB)为多少米?【分析】先设水深为x,则AB=x,求出x的长,再由勾股定理即可得出结论.【解答】解:∵先设水深为x,则AB=x,BC=(x+2),∵AC=6米,在△ABC中,AB2+AC2=BC2,即62+x2=(x+2)2,解得x=8(米).答:水深AB为8米.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.20.(8分)如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.求证:四边形ABCD是菱形.【分析】根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC =AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出答案.【解答】证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.【点评】本题考查了等腰三角形的性质,平行四边形的判定,菱形的判定的应用,能得出四边形ABCD是平行四边形是解此题的关键.21.(8分)如图,在4×4的正方形网格中,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求证:∠ABC=90°;(3)若点P为直线AC上任意一点,则线段BP的最小值为 2 .【分析】(1)运用勾股定理求得AB,BC及AC的长,即可求出△ABC的周长.(2)运用勾股定理的逆定理求得AC2=AB2+BC2,得出∠ABC=90°.(3)过B作BP⊥AC,解答即可.【解答】解:(1)AB=,BC=,AC=,△ABC的周长=2++5=3+5,(2)∵AC2=25,AB2=20,BC2=5,∴AC2=AB2+BC2,∴∠ABC=90°.(3)过B作BP⊥AC,∵△ABC的面积=,即,解得BP=2,故答案为:2【点评】本题主要考查了勾股定理及勾股定理的逆定理,熟记勾股定理是解题的关键.22.(10分)如图1,点D、E、F、G分别为线段AB、OB、OC、AC的中点.(1)求证:四边形DEFG是平行四边形;(2)如图2,若点M为EF的中点,BE:CF:DG=2:3:,求证:∠MOF=∠EFO.【分析】(1)根据中位线定理得:DG∥BC,DG=BC,EF∥BC,EF=BC,则DG=BC,DE∥BC,根据一组对边平行且相等的四边形是平行四边形可得:四边形DEFG是平行四边形;(2)先根据已知的比的关系设未知数:设BE=2x,CF=3x,DG=x,根据勾股定理的逆定理得:∠EOF=90°,最后利用直角三角形斜边中线的性质可得OM=FM,由等边对等角可得结论.【解答】证明:(1)∵D是AB的中点,G是AC的中点,∴DG是△ABC的中位线,∴DG∥BC,DG=BC,同理得:EF是△OBC的中位线,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵BE:CF:DG=2:3:,∴设BE=2x,CF=3x,DG=x,∴OE=2x,OF=3x,∵四边形DEFG是平行四边形,∴DG=EF=x,∴OE2+OF2=EF2,∴∠EOF=90°,∵点M为EF的中点,∴OM=MF,∴∠MOF=∠EFO.【点评】本题考查的是三角形中位线定理、平行四边形的判定、勾股定理的逆定理,掌握三角形中位线定理是解题的关键.23.(10分)已知点A为正方形BCDE内一动点,满足∠DAC=135°,且b=+5.(1)求a、b的值;(2)如图1,若线段AB=b,AC=a,求线段AD的长;(3)如图2,设线段AB=m,AC=n,AD=h,请探究并直接写出三个量m2、n2、h2之间满足的数量关系.【分析】(1)根据二次根式有意义的条件列出不等式,解不等式得到答案;(2)把△CAD旋转90°得到△CA′B,根据勾股定理求出AA′,求出∠AA′B=90°,根据勾股定理计算即可;(3)仿照(2)的计算方法解答.【解答】解:(1)由二次根式有意义的条件可知,a﹣3≥0,3﹣a≥0,∴a=3,b=5;(2)把△CAD旋转90°得到△CA′B,则AC=A′C,∠A′CB=∠ACD,AD=A′B,∴∠ACA′=90°,∴∠AA′C=45°,AA′==3,∴∠AA′B=90°,∴A′B==,∴AD=A′B=;(3)由(2)得,AA′==n,∴m2﹣2n2=h2.【点评】本题考查的是二次根式有意义的条件、旋转变换的性质、勾股定理的应用,掌握二次根式的被开方数是非负数、旋转变换的性质是解题的关键.24.(12分)在正方形ABCD中,点E为边BC(不含B点)上的一动点,AE⊥EF,且AE=EF,FG ⊥BC的延长线于点G.(1)如图1,求证:BE=FG;(2)如图2,连接BD,过点F作FH∥BC交BD于点H,连接HE,判断四边形EGFH的形状,并给出证明;(3)如图3,点P、Q为正方形ABCD内两点,AB=BQ,且∠ABQ=30°,BP平分∠QBC,BP=DP,若BC=+1,求线段PQ的长.【分析】(1)欲证明BE=FG,只要证明△ABE≌△EGF,即可解决问题;(2)四边形EGFH是矩形.首先证明四边形ECMH是矩形,可得∠FHE=∠HEG=∠EGF=90°,推出四边形EGFH是矩形;(3)如图3中,连接PC,作PE⊥BC于E,PF⊥BQ于F.∴由PCB≌△PCD,推出∠PCB=∠PCD=45°,可证PE=EC,设PE=EC=a,在Rt△PEB中,由∠PBE=30°,推出PB=2PE,BE=a,由BC=+1,可得a+a=+1,推出a=1,再求出FQ、FP即可解决问题;【解答】解:(1)如图1中,∵FG⊥EG,AE⊥EF,四边形ABCD是正方形,∴∠B=∠AEF=∠G=90°,∴∠BAE+∠AEB=90°,∠AEB+∠FEG=90°,∴∠BAE=∠FEG,∵AE=EF,∴△ABE≌△EGF,∴BE=FG.(2)结论:四边形EGFH是矩形.理由:如图2中,设FH交CD于M.∵△ABE≌△EGF,∴AB=EG=BC,∴BE=CG=FG,∵FM∥CG,FG∥CM,∴四边形CMFG是平行四边形,∵GC=FG,∠MCG=90°,∴四边形CMFG是正方形,∴CM=CG=BE,∵BC=CD,∴CE=DM,∵FH∥BC,∴∠DMH=∠DCB=90°,∵∠MDH=45°,∴∠MDH=∠MHD=45°,∴DM=HM=EC,∵HM∥EC,∴四边形CEHM是平行四边形,∵∠ECM=90°,∴四边形ECMH是矩形,∴∠FHE=∠HEG=∠EGF=90°,∴四边形EGFH是矩形.(3)如图3中,连接PC,作PE⊥BC于E,PF⊥BQ于F.∵PB=PD,PC=PC,BC=CD,∴△PCB≌△PCD,∴∠PCB=∠PCD=45°,∵PE⊥EC,∴∠PCE=∠EPC=45°,∴PE=EC,设PE=EC=a,在Rt△PEB中,∵∠PBE=30°,∴PB=2PE,BE=a,∵BC=+1,∴a+a=+1,∴a=1,∴PB=2在Rt△PFB中,∵∠PBF=30°,∴PF=1,BF=,∵BQ=BQ=BC=+1,∴FQ=1,∴PQ==.【点评】本题考查四边形综合题、正方形的性质、全等三角形的判定和性质、矩形的判定和性质、勾股定理、直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.。

2016-2017学年湖北省武汉市洪山区八年级(下)期末数学试卷(解析版)

2016-2017学年湖北省武汉市洪山区八年级(下)期末数学试卷(解析版)

2016-2017学年湖北省武汉市洪山区八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)一次函数y=﹣2x+1的图象不经过()象限.A.第一B.第二C.第三D.第四2.(3分)下列计算错误的是()A.B.C.D.3.(3分)男子跳高的15名运动员的成绩如下表所示:根据表中信息可以判断这些运动员成绩的中位数、众数分别为()A.1.70、1.75B.1.70、1.80C.1.65、1.75D.1.65、1.80 4.(3分)已知A(﹣),B(﹣),C(1,y3)是一次函数y=b﹣3x的图象上三点,则y1、y2、y3的大小关系为()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y1<y3 5.(3分)如图,在矩形ABCD中,E为边AB的中点,将△CBE沿CE翻折得到△CFE,连接AF,若DAF=25°,那么∠BCF=()A.40°B.50°C.60°D.75°6.(3分)将函数y=﹣3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=﹣3x+2B.y=﹣3x﹣2C.y=﹣3(x+2)D.y=﹣3(x﹣2)7.(3分)在5×5的正方形网格中,每个小正方形的边长为1,用四边形(顶点在格点上)覆盖如图所示,被覆盖的网格线中,竖直部分的线段的长度之和记作m,水平部分的线段的长度之和记作n,则m+n=()A.30B.27C.25D.208.(3分)某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个,随机抽取了部分学生的听写结果,绘制成如下的图表:根据表中信息可以判断这些学生听写的正确字数的中位数落在()A.B组B.C组C.D组D.C组或D组9.(3分)如图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A →B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则选项图象能大致反映y与x的函数关系的是()A.B.C.D.10.(3分)将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方,所得的折线是函数y=|2x+b|(b为常数)的图象,若该图象在直线y=1下方的点的横坐标x满足0<x<2,则b的取值范围为()A.﹣4<b<﹣2B.﹣3<b<﹣1C.﹣2<b<0D.﹣3<b<0二、填空题(共6小题,每小题3分,共18分)11.(3分)某班科技小组的6名学生参加科技小组活动的次数分别是15、18、20、20、22、25,那么这组数据的众数是.12.(3分)如图,一次函数y=kx+b与y=﹣x+5的图象的交点坐标为(2,3),则关于x 的不等式5>﹣x+5>kx+b的解集为.13.(3分)如图,菱形ABCD的对角线AC、BC相交于点O,E、F分别是AB、BC边上的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为.14.(3分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则8min时器内的水量为L.15.(3分)有一个如图所示的凹槽,各部分长度如图中所标.一只蜗牛从A点经过凹槽内壁爬到B点取食,最短的路径长是m.16.(3分)已知四边形ABCD,∠ABC=45°,∠C=∠D=90°,含30°角(∠P=30°)的直角三角板PMN(如图)在图中平移,直角边NN⊥BC,顶点M、N分别在边AD、BC上,延长NM到点Q,使QM=PB.若BC=10,CD=4,则当点M从点A平移到点D的过程中,点Q的运动路径长为.三、解答题(共8小题,共72分)17.(8分)解答下列各题①一次函数图象过点(0,﹣2)且与直线y=2﹣3x平行,此一次函数解析式是.②已知一次函数y=kx+b的图象经过点(3,5)与(﹣4,﹣9),则一次函数的解析式是.18.(8分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生人,并将条形图补充完整;(2)捐款金额的众数是,平均数是;(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?19.(8分)如图,在平行四边形ABCD中,AB=6,BC=10,对角线AC⊥AB,点E、F分别是BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)当BE长度为时,四边形AECF是菱形.20.(8分)(1)将直线y=﹣3x﹣1向右平移2个单位长度后的解析式为;(2)在平面直角坐标中,A(﹣1,3),B(3,1),在x轴上求一点C,使CA+CB最小,则C点坐标为:.21.(8分)2017年五一放假期间,某学校计划租用6辆客车送240名师生参加社会实践活动,现有甲、乙两种客车,它们的载客量和租金如表,设租用甲种客车x辆,租车总费有为y元.(1)求出y(元)与x(辆)之间函数关系式;(2)求出自变量的取值范围;(3)选择怎样的租车方案所需的费用最低?最低费用多少元?22.(10分)如图,已知直线AB的函数解析式为y=2x+10,与y轴交于点A,与x轴交于点B.(1)直接写出A点的坐标,B点的坐标;(2)若点P(a,b)为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,问:①若△PBO的面积为S,求S关于a的函数关系式;②直接写出EF的最小值.23.(10分)如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A,B,且点A坐标为(8,0),点C为AB的中点.(1)求点B的坐标.(2)点P为直线AB上的一个动点,过点P作x轴的垂线,与直线OC交于点Q,设点P 的横坐标为m,线段PQ的长度为d,求d与m的函数解析式(请直接写出自变量m的取值范围)(3)当点P在线段AB(点M不与A,B重合)上运动时,在坐标系第一象限内是否存在一点N,使得以O,B,P,N为顶点的四边形为菱形,存在求出N点坐标,不存在说明理由.24.(12分)如图1,将矩形ABCD置于平面直角坐标系中,其中AD边在x轴上,AB=4,直线MN:y=x﹣8沿x轴的负方向以每秒2个单位的长度平移,设在平移过程中该直线被矩形ABCD的边截得的线段长度为m,平移时间为t,m与t的函数图象如图2所示:(1)点A的坐标为,矩形ABCD的面积为;(2)求a、b的值;(3)在平移过程中,求直线MN扫过矩形ABCD的面积S与t的函数关系式,并写出自变量t的取值范围.2016-2017学年湖北省武汉市洪山区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【解答】解:对于一次函数y=﹣2x+1,∵k=﹣2<0,∴图象经过第二、四象限;又∵b=1>0,∴一次函数的图象与y轴的交点在x轴上方,即函数图象还经过第一象限,∴一次函数y=﹣2x+1的图象不经过第三象限.故选:C.2.【解答】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.3.【解答】解:∵这组数据中1.75出现的次数最多,∴这些运动员成绩的众数是1.75;这些运动员成绩的中位数是1.70,∴这些运动员成绩的中位数、众数分别为1.70、1.75.故选:A.4.【解答】解:当x=﹣时,y1=b+1;当x=﹣时,y2=b+1.5;当x=1时,y3=b﹣3,所以y3<y1<y2.故选:A.5.【解答】解:∵四边形ABCD是矩形,∴∠B=∠BAD=90°,∵∠DAF=25°,∴∠BAF=65°,∵E为边AB的中点,∴AE=BE,由折叠的性质可得:∠EFC=∠B=90°,∠FEC=∠CEB,∠FCE=∠BCE,FE=BE,∴AE=FE,∴∠EF A=∠EAF=65°,∴∠BEF=∠EAF+∠EF A=130°,∴∠CEB=∠FEC=65°,∴∠FCE=∠BCE=90°﹣65°=25°,∴∠BCF=25°+25°=50°;故选:B.6.【解答】解:根据平移的规律可知:平移后的函数关系式为y=﹣3x+2.故选:A.7.【解答】解:如图在△ACD中,易知DF=3,PM=DF=,又∵PM=(EG+QT),∴EG+QT=3,∴EG+PM+QT+FD=,易知MN=AC,GH=AC,∴AC+GH+MN=10,用此方法可得m=,n=,∴m+n=25.故选:C.8.【解答】解:由题意可得,这次调查的学生有:15÷12%=125(人),m=125×40%=50,∴这组数据的中位数是第(125+1)÷2=63个数据,由表格可知,中位数落在D组,故选:C.9.【解答】解:由题意可得,点P到A→B的过程中,y=0(0≤x≤2),故选项C错误;点P到B→C的过程中,y==x﹣2(2<x≤6),故选项A错误;点P到C→D的过程中,y==4(6<x≤8),故选项D错误;点P到D→A的过程中,y==12﹣x,由以上各段函数解析式可知,选项B正确,故选:B.10.【解答】解:∵y=2x+b,∴当y<1时,2x+b<1,解得x<;∵函数y=2x+b沿x轴翻折后的解析式为﹣y=2x+b,即y=﹣2x﹣b,∴当y<1时,﹣2x﹣b<1,解得x>﹣;∴﹣<x<,∵x满足0<x<2,∴﹣=0,=2,∴b=﹣1,b=﹣3,∴b的取值范围为﹣3<b<﹣1.故选:B.二、填空题(共6小题,每小题3分,共18分)11.【解答】解:∵该组数据中20出现次数最多,有2次,∴这组数据的众数为20,故答案为:20.12.【解答】解:直线y=﹣x+5的图象与y轴的交点坐标为(0,5).当0<x<2时,直线y=﹣x+5在直线y=5的下方且在直线y=kx+b的上方,所以关于x的不等式5>﹣x+5>kx+b的解集为0<x<2.故答案为:0<x<2.13.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,OA=AC,OB=BD=2,∴∠AOB=90°,∵E、F分别是AB、BC边上的中点,∴EF是△ABC的中位线,∴AC=2EF=2,∴OA=,∴AB===,∴菱形ABCD的周长=4AB=4;故答案为:4.14.【解答】根据题意知:后8分钟水量y(单位:L)与时间x(单位:min)之间的关系满足一次函数关系设y=kx+b当x=4,y=20当x=12,y=30∴20=4k+b30=12k+b∴k=1.25,b=15∴后8分钟水量y(单位:L)与时间x(单位:min)之间的关系满足一次函数关系y=1.25x+15当x=8时,y=25故答案是25.15.【解答】解:如图,∵AC=1+2+1=4m,BC=10m,∴AB==2,∴最短的路径长是2.故答案为:2.16.【解答】解:如图当点M与A重合时,PN=MN=4,BN=MN=4,∴此时PB=4﹣4,当点M′与D重合时,P′B=10﹣4,观察图象可知:则当点M从点A平移到点D的过程中,点Q的运动路径长为QK+KQ′QK=AQ=4﹣4,KQ′==10﹣4,∴QK+KQ′=6故答案为6.三、解答题(共8小题,共72分)17.【解答】解:(1)设一次函数解析式为y=kx+b,把(0,﹣2代入得b=﹣2,∵直线y=kx+b与直线y=2﹣3x平行,∴k=﹣3,∴一次函数解析式为y=﹣3x﹣2;(2)设一次函数解析式为y=kx+b,根据题意得,解得,所以一次函数解析式为y=2x﹣1.故答案为:y=﹣3x﹣2;y=2x﹣1.18.【解答】解:(1)本次抽查的学生有:14÷28%=50(人),则捐款10元的有50﹣9﹣14﹣7﹣4=16(人),补全条形统计图图形如下:(2)由条形图可知,捐款10元人数最多,故众数是10;这组数据的平均数为:=13.1;(3)捐款20元及以上(含20元)的学生有:(人);故答案为:(1)50,(2)10,13.1.19.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形;(2)∵四边形AECF是菱形,∴AE=CE,∴∠EAC=∠ECA,∵AC⊥AB,∴∠BAC=90°,∴∠B+∠ECA=90°,∠BAE+∠EAC=90°,∴∠B=∠BAE,∴AE=BE,∴BE=CE=BC=5;故答案为:520.【解答】解:(1)将直线y=﹣3x﹣1向右平移2个单位长度后的解析式为y=﹣1﹣3(x ﹣2)=﹣1﹣3x+6=﹣3x+5;(2)∵点A(﹣1,3),∴点A关于x轴的对称点的坐标为(﹣1,﹣3),设直线A′B的解析式为y=kx+b,则,解得k=1,b=﹣2,∴y=x﹣2,∴C的坐标为(2,0)故答案为:y=﹣3x+5;(2,0)21.【解答】解:(1)设租用甲种客车x辆,则租用乙种客车(6﹣x)辆,由题意可得出:y=280x+200(6﹣x)=80x+1200(2)由得:0≤x≤6.(3)由题意知45x+30(6﹣x)≥240解不等式得x≥4∵x取整数∴x取4或5或6∵y=80x+1200中k=80>0∴y随x的增大而增大∴当x=4时,y的值最小.其最小值y=4×80+1200=1520元.则租用甲种客车4辆,租用乙种客车2辆,所需的费用最低,最低费用1520元.22.【解答】解:(1)对于直线AB解析式y=2x+10,令x=0,得到y=10;令y=0,得到x=﹣5,则A(0,10),B(﹣5,0);(2)连接OP,如图所示,①∵P(a,b)在线段AB上,∴b=2a+10,由0≤2a+10≤10,得到﹣5≤a≤0,由(1)得:OB=5,∴S△PBO=OB•(2a+10),则S=(2a+10)=5a+25(﹣5≤a≤0);②∵∠PFO=∠FOE=∠OEP=90°,∴四边形PFOE为矩形,∴EF=PO,∵O为定点,P在线段AB上运动,∴当OP⊥AB时,OP取得最小值,∵AB•OP=OB•OA,∴•OP=50,∴EF=OP=2,综上,存在点P使得EF的值最小,最小值为2.故答案为:(0,10);(﹣5,0);223.【解答】解:(1)∵直线y=﹣x+b过点A(8,0),∴0=﹣6+b,解得:b=6,∴直线AB的解析式为y=﹣x+6.令y=﹣x+6中x=0,则y=6,∴点B的坐标为(0,6).(2)依照题意画出图形,如图3所示.∵A(8,0),B(0,6),且点C为AB的中点,∴C(4,3).设直线OC的解析式为y=kx(k≠0),则有3=4k,解得:k=,∴直线OC的解析式为y=x.∵点P在直线AB上,点Q在直线OC上,点P的横坐标为m,PQ⊥x轴,∴P(m,﹣m+6),Q(m,m).当m<4时,d=﹣m+6﹣m=﹣m+6;当m>4时,d=m﹣(﹣m+6)=m﹣6.故d与m的函数解析式为d=,(3)假设存在,设点P的坐标为(n,﹣n+6)(0<n<8).∵点P在第一象限,∴以O,B,P,N为顶点的四边形为菱形有两种情况:①以BP为对角线时,如图4所示.∵四边形OPNB为菱形,B(0,6),∴OP=OB=6=,解得:n=或n=0(舍去),∴点P(,),∴点N(+0﹣0,6+﹣0),即(,);②以OP为对角线时,如图5所示.此时点P在第一象限,但点N在第四象限,故此种情况不合适.综上得:当点P在线段AB(点M不与A,B重合)上运动时,在坐标系第一象限内存在一点N,使得以O,B,P,N为顶点的四边形为菱形,N点坐标为(,).24.【解答】解:(1)∵直线MN:y=x﹣8,∴M(8,0),∴OM=8,由图1,图2,知,运动3秒钟,直线MN过点A,∴AM=2×3=6,∴OA=OM﹣AM=2,∴A(2,0);直线MN从过点F到过点D这段时间内,该直线被矩形ABCD的边截得的线段长度不变,∴直线MN过点D时,运动了7秒,∴MD=2×7=14,∴OD=DM﹣OM=14﹣8=6,∴AD=OA+OD=8,∴S矩形ABCD=4×8=32,故答案为(2,0),32;(2)如图3,由(1)知,OA=2,∴B(2,4),当直线MN平移过点B时,即:此时直线M'N'的解析式为y=x+2,此时M'(﹣2,0),∴BM'==4∴a=4,∴b﹣7=5﹣3=2,∴b=9,即:a=5,b=9;(3)如图3,当3≤t<5时,如图3,MN平移在l1的位置,S=(2t﹣6)2=2(t﹣3)2,当5≤t<7时,如图3,MN平移在l2的位置,S=(2t﹣6+2t﹣10)×4=8t﹣32,当7≤t<9时,如图3,MN平移在l3的位置,S=32﹣(22﹣2t)2=﹣2(t﹣11)2+32.。

武汉市2016-2017学年八年级下竞赛数学试卷含答案解析

武汉市2016-2017学年八年级下竞赛数学试卷含答案解析

2016-2017学年湖北省武汉市八年级(下)竞赛数学试卷一、选择题(每小题7分,共56分)以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内.1.a、b、c是正整数,a>b,且a2﹣ab﹣ac+bc=7,则a﹣c等于()A.﹣1 B.﹣1或﹣7 C.1 D.1或72.用数码2、4、5、7组成的四位数中,每个数码只出现一次.将所有这些四位数从小到大排列,则排在第13个的四位数是()A.4527 B.5247 C.5742 D.72453.1989年,我国的GDP(国民生产总值)只相当于英国的53.3%,目前已相当于英国的81%,如果英国目前的GDP是1989年的m倍,那么我国目前的GDP约为1989年的()A.1.5倍B.1.5m倍 C.27.5倍 D.m倍4.若取整数,则使分式的值为整数的值有()A.3个B.4个C.6个D.8个5.已知a为整数,关于的方程a2﹣20=0的根是质数,且满足|a﹣7|>a2,则a等于()A.2 B.2或5 C.土2 D.﹣26.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有()A.2个B.4个C.6个D.8个7.边长分别是3、5、8的三个正方体被粘合在一起,在这些用各种方式粘合在一起的立体中,表面积最小的那个立体的表面积是()A.570 B.502 C.530 D.5388.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定二、填空题(每小题7分,共84分)9.多项式2+y2﹣6+8y+7的最小值为.10.已知=1,则的值等于.11.如图是一块电脑主板,每一个转角处都是直角,数据如图所示,单位是mm,则该主板的周长为mm.12.某学校建了一个无盖的长方体水箱,现在用一个半径为r的圆形砂轮打磨内壁和箱底,则砂轮磨不到的部分的面积为为.13.α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算(α+β+γ)的值时,有三位同学分别算出了23°、24°、25°这三个不同的结果,其中只有一个是正确的答案,则α+β+γ= °.14.设a为常数,多项式3+a2+1除以2﹣1所得的余式为+3,则a= .15.在△ABC中,高BD和CE所在直线相交于O点,若△ABC不是直角三角形,且∠A=60°,则∠BOC= .16.小王的学校举行了一次年级考试,考了若干门课程,后加试了一门,小王考得98分,这时小王的平均成绩比最初的平均成绩提高了1分.后又加试了一门,小王考得70分,这时小王的平均成绩比最初的平均成绩下降了1分,则小王共考了(含加试的两门)门课程,最后平均成绩为分.17.已知a+b+c=0,a>b>c,则的取值范围是.18.计算器上有一个倒数键,能求出输入的不为零的数的倒数(注:有时需先按或键,才能实现此功能,下面不再说明).例如,输入2,按下键,则得0.5.现在计算器上输入某数,再依下列顺序按键:,在显示屏上的结果是﹣0.75,则原输入的某数是.19.有A、B、C三种不同型号的电池,它们的价格各不相同.有一笔钱可买A型4只,B型18只,C 型16只;或A型2只,B型15只,C型24只;或A型6只,B型12只,C型20只.如果将这笔钱全部用购买C型号的电池,则能买只.20.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为.2016-2017学年湖北省武汉市八年级(下)竞赛数学试卷参考答案与试题解析一、选择题(每小题7分,共56分)以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内.1.a、b、c是正整数,a>b,且a2﹣ab﹣ac+bc=7,则a﹣c等于()A.﹣1 B.﹣1或﹣7 C.1 D.1或7【考点】因式分解的应用;因式分解﹣分组分解法.【分析】此题先把a2﹣ab﹣ac+bc因式分解,再结合a、b、c是正整数和a>b探究它们的可能值,从而求解.【解答】解:根据已知a2﹣ab﹣ac+bc=7,即a(a﹣b)﹣c(a﹣b)=7,(a﹣b)(a﹣c)=7,∵a>b,∴a﹣b>0,∴a﹣c>0,∵a、b、c是正整数,∴a﹣c=1或a﹣c=7故选D.2.用数码2、4、5、7组成的四位数中,每个数码只出现一次.将所有这些四位数从小到大排列,则排在第13个的四位数是()A.4527 B.5247 C.5742 D.7245【考点】排列与组合问题.【分析】首先找到以2开头的四位数的个数,然后再找到以4开头的四位数的个数,这些数共有12个,则第13个数从5开头,找出这个最小的四位数即可.【解答】解:千位上是2的四位数的个数有3×2×1=6个,千位上是4的四位数的个数有3×2×1=6个,即可知排在第13个四位数是千位上是5,又知这些从小到大排列,第13个数为5247,故选B.3.1989年,我国的GDP(国民生产总值)只相当于英国的53.3%,目前已相当于英国的81%,如果英国目前的GDP是1989年的m倍,那么我国目前的GDP约为1989年的()A.1.5倍B.1.5m倍 C.27.5倍 D.m倍【考点】列代数式.【分析】可以把英国1989年的GDP看作单位1,然后分别表示我国目前的GDP和1989年的GDP,求比即可.【解答】解:根据题意得:我国目前的GDP约为1989年的m≈1.5m倍.故选B.4.若取整数,则使分式的值为整数的值有()A.3个B.4个C.6个D.8个【考点】分式的值;整式的除法.【分析】首先把分式转化为3+,则原式的值是整数,即可转化为讨论的整数值有几个的问题.【解答】解: ==3+当2﹣1=±6或±3或±2或±1时,是整数,即原式是整数.当2﹣1=±6或±2时,的值不是整数,当等于±3或±1是满足条件.故使分式的值为整数的值有4个,是2,0和±1.故选B.5.已知a为整数,关于的方程a2﹣20=0的根是质数,且满足|a﹣7|>a2,则a等于()A.2 B.2或5 C.土2 D.﹣2【考点】一元二次方程的解;一元二次方程的定义.【分析】本题是道选择题,可用排除法进行选择.【解答】解:当a=2时,=5是质数,但|a﹣7|=|2×5﹣7|=3<4,所以不选A,C.当a=5时,=不是质数,所以不选B.当a=﹣2时,=5是质数,同时满足|a﹣7|=|﹣2×5﹣7|=17>4,所以选D.故选D.6.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有()A.2个B.4个C.6个D.8个【考点】等腰三角形的判定;坐标与图形性质.【分析】本题是开放性试题,根据题意,画出图形结合求解.【解答】解:第1个点在AC上,作线段AB的垂直平分线,交AC于点P,则有PA=PB;第2个点是以A为圆心,以AB长为半径截取AP=AB,交AC延长线上于点P;第3个点是以A为圆心,以AB长为半径截取AP=AB,在上边于CA延长线上交于点P;第4个点是以B为圆心,以BA长为半径截取BP=BA,与AC的延长线交于点P;第5个点是以B为圆心,以BA长为半径截取BP=BA,与BC在左边交于点P;第6个点是以A为圆心,以AB长为半径截取AP=AB,与BC在右边交于点P;∴符合条件的点P有6个点.故选C.7.边长分别是3、5、8的三个正方体被粘合在一起,在这些用各种方式粘合在一起的立体中,表面积最小的那个立体的表面积是()A.570 B.502 C.530 D.538【考点】几何体的表面积.【分析】先求出边长分别是3、5、8的三个正方体的表面积的和,再减去边长是3的两个正方形的面积和的4倍、边长是5的两个正方形的面积和的2倍,即为所求.【解答】解:(3×3+5×5+8×8)×6﹣(3×3)×4﹣(5×5)×2=98×6﹣9×4﹣25×2=588﹣36﹣50=502.故选B.8.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定【考点】全等三角形的判定与性质;三角形三边关系.【分析】在AB上截取AE=AD,则易得△AEC≌△ADC,则AE=AD,CE=CD,则AB﹣AD=BE,放在△BCE 中,根据三边之间的关系解答即可.【解答】解:如图,在AB上截取AE=AD,连接CE.∵AC平分∠BAD,∴∠BAC=∠DAC,又AC是公共边,∴△AEC≌△ADC(SAS),∴AE=AD,CE=CD,∴AB﹣AD=AB﹣AE=BE,BC﹣CD=BC﹣CE,∵在△BCE中,BE>BC﹣CE,∴AB﹣AD>CB﹣CD.故选A.二、填空题(每小题7分,共84分)9.多项式2+y2﹣6+8y+7的最小值为﹣18 .【考点】完全平方式;非负数的性质:偶次方.【分析】将原式配成(﹣3)2+(y+4)2﹣18的形式,然后根据完全平方的非负性即可解答.【解答】解:原式=(﹣3)2+(y+4)2﹣18,当两完全平方式都取0时原式取得最小值=﹣18.故答案为:﹣18.10.已知=1,则的值等于0 .【考点】分式的化简求值.【分析】先根据已知条件可求出a﹣b=﹣ab,再把a﹣b的值整体代入所求式子计算即可.【解答】解:∵=1,∴b﹣a=ab,∴a﹣b=﹣ab,∴==0.故答案是0.11.如图是一块电脑主板,每一个转角处都是直角,数据如图所示,单位是mm,则该主板的周长为96 mm.【考点】矩形的性质.【分析】题目中是一个多边形,求周长应把图中的多边形分成各个矩形求解或把多边形变为整体一个矩形求解即可.【解答】解:如图:矩形的长为24mm,AB+CD+GH+EF+4=24.∵GD=HE=4.∴矩形的周长为24+GD+HE+20+24+16+4=96mm.故答案为:96.12.某学校建了一个无盖的长方体水箱,现在用一个半径为r的圆形砂轮打磨内壁和箱底,则砂轮磨不到的部分的面积为为12r2﹣3πr2..【考点】面积及等积变换.【分析】首先理解题意,求出(1)的面积,根据砂轮磨不到的部分的面积为12个图(1)的面积,计算即可得出答案.【解答】解:如图,连接OA、OC,则OA⊥AB、OC⊥BC,OA=OC,∵∠ABC=90°,∴四边形OABC是正方形,且OA=r,∴图形(1)的面积是r•r﹣πr2,∴砂轮磨不到的部分的面积为 12(r•r﹣πr2)=12r2﹣3πr2.故答案为:12r2﹣3πr2.13.α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算(α+β+γ)的值时,有三位同学分别算出了23°、24°、25°这三个不同的结果,其中只有一个是正确的答案,则α+β+γ= 345 °.【考点】角的计算.【分析】分别计算15×23°=345°,15×24°=360°,15×25°=375°,则345°、360°、375°三个数值其中一个是α、β、γ三个角的和,由于三角中,有两个锐角,一个钝角,根据锐角和钝角的定义知,α+β+γ<360°,所以345°是正确的.【解答】解:∵α、β、γ中有两个锐角和一个钝角,∴0°<α<90°,0°<β<90°,90°<γ<180°,∴α+β+γ<360°,∵15×23°=345°,15×24°=360°,15×25°=375°,∴α+β+γ=345°.故答案是345°14.设a为常数,多项式3+a2+1除以2﹣1所得的余式为+3,则a= 2 .【考点】余式定理.【分析】首先由多项式3+a2+1除以2﹣1所得的余式为+3,根据余式定理可设3+a2+1﹣(+3)=(2﹣1)(+b),然后分别整理等式的左右两边,再根据多项式相等时对应系数相等,即可得方程,则可求得a的值.【解答】解:∵多项式3+a2+1除以2﹣1所得的余式为+3,∴可设3+a2+1﹣(+3)=(2﹣1)(+b),整理可得:3+a2﹣﹣2=3+b2﹣﹣b,∴,∴a=2.故答案为:2.15.在△ABC中,高BD和CE所在直线相交于O点,若△ABC不是直角三角形,且∠A=60°,则∠BOC= 120°或60°.【考点】三角形的外角性质;三角形内角和定理.【分析】根据三角形外角的性质及三角形的内角和定理.分∠BOC在△ABC内,及∠BOC在△ABC外两种情况讨论.【解答】解:若∠BOC在△ABC内,如下图:∵BD、CE是△ABC的高,∴∠BOC=360°﹣∠A﹣∠ADO﹣∠AEO=120°;若∠BOC在△ABC外,如下图:∵BD、CE是△ABC的高,∴∠BOC=90°﹣∠DCO=90°﹣∠ACE=∠A=60°.故答案为:120°或60°.16.小王的学校举行了一次年级考试,考了若干门课程,后加试了一门,小王考得98分,这时小王的平均成绩比最初的平均成绩提高了1分.后又加试了一门,小王考得70分,这时小王的平均成绩比最初的平均成绩下降了1分,则小王共考了(含加试的两门)10 门课程,最后平均成绩为88 分.【考点】二元一次方程组的应用;加权平均数.【分析】可以设小王前面共考了门课程,平均成绩为y分.根据加试了一门比最初的平均成绩提高了1分.加试了二门比最初的平均成绩下降了1分.可以分别列方程,解方程组即可.【解答】解:小王前面共考了门课程,平均成绩为y分,根据题意得:,解得:.即小王共考了(含加试的两门) 8+2=10门课程,最后平均成绩为 89﹣1=88分.故答案为:10,88.17.已知a+b+c=0,a>b>c,则的取值范围是﹣2<<﹣.【考点】一元一次不等式的应用.【分析】首先将a+b+c=0变形为b=﹣a﹣c.再将b=﹣a﹣c代入不等式a>b,b>c,解这两个不等式,即可求得a与c的比值关系,联立求得的取值范围.【解答】解:∵a+b+c=0,∴a>0,c<0 ①∴b=﹣a﹣c,且a>0,c<0∵a>b>c∴﹣a﹣c<a,即2a>﹣c ②解得>﹣2,将b=﹣a﹣c代入b>c,得﹣a﹣c>c,即a<﹣2c ③解得<﹣,∴﹣2<<﹣.故答案为:﹣2<<﹣.18.计算器上有一个倒数键,能求出输入的不为零的数的倒数(注:有时需先按或键,才能实现此功能,下面不再说明).例如,输入2,按下键,则得0.5.现在计算器上输入某数,再依下列顺序按键:,在显示屏上的结果是﹣0.75,则原输入的某数是 5 .【考点】计算器—有理数;倒数.【分析】设原输入的数为a,根据题意列出方程﹣1=﹣0.75,解之可得答案.【解答】解:设原输入的数为a,根据题意,得:﹣1=﹣0.75,解得:a=5,经检验:a=5是分式方程的解,∴原输入的某数是5,故答案为:5.19.有A、B、C三种不同型号的电池,它们的价格各不相同.有一笔钱可买A型4只,B型18只,C 型16只;或A型2只,B型15只,C型24只;或A型6只,B型12只,C型20只.如果将这笔钱全部用购买C型号的电池,则能买48 只.【考点】三元一次方程组的应用.【分析】先设买一只A型的价格是元,买一只B型的价格是y元,买一只C型的价格是元,能买C 型W只根据题意列出方程组,求出方程组的解即可.【解答】解:设买一只A型的价格是元,买一只B型的价格是y元,买一只C型的价格是元,能买C 型W只,根据题意得:,解得:代入4+18y+16=W 得:W=48. 故答案为:48.20.如图,已知五边形ABCDE 中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE 的面积为 4 .【考点】全等三角形的判定与性质.【分析】可延长DE 至F ,使EF=BC ,可得△ABC ≌△AEF ,连AC ,AD ,AF ,可将五边形ABCDE 的面积转化为两个△ADF 的面积,进而求出结论.【解答】解:延长DE 至F ,使EF=BC ,连AC ,AD ,AF ,∵AB=CD=AE=BC+DE ,∠ABC=∠AED=90°,由题中条件可得Rt △ABC ≌Rt △AEF ,△ACD ≌△AFD ,∴S ABCDE =2S △ADF =2וDF•AE=2××2×2=4.故答案为:4.2017年5月4日。

2017东西湖区八年级(下)期中

2017东西湖区八年级(下)期中

2016-2017学年湖北省武汉市东西湖区八年级(下)期中数学试卷一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如果是任意实数,下列各式中一定有意义的是()A.B.C.D.2.(3分)在下列算式中:①+=;②5﹣2=3;③=+=4;④+=4,其中正确的是()A.①③B.②④C.③④D.①④3.(3分)如图,一棵高为8m的大树被台风刮断,若树在离地面3m点C处折断,则树顶端落在离树底部()处.A.4m B.5m C.6m D.7m4.(3分)如图,在△ABC中,D,E,F分别是AB,BC,CA的中点,以这些点为顶点,在图中能画平行四边形的个数是()A.2 B.3 C.4 D.55.(3分)实数a、b在数轴上的位置如图,则化简﹣﹣的结果是()A.﹣2b B.﹣2a C.2b﹣2a D.06.(3分)已知△ABC的三条边之比为1:1:,则它的三个角大小之比为()A.1:1:2 B.1:2:3 C.1:2:4 D.1:4:17.(3分)在四边形ABCD中,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD中任选两个使四边形ABCD为平行四边形的选法有()A.3 B.4 C.5 D.68.(3分)如图,将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠()A.2 B.3 C.4 D.59.(3分)已知直角三角形的一直角边长为,斜边上的高为2,则这个直角的斜边长为()A.3 B.4 C.5 D.10.(3分)如图,在▱ABCD中,AB=2,BC=4,∠D=60°,点P、Q分别是AC和BC上的动点,在点P和点Q运动的过程中,PB+PQ的最小值为()A.4 B.3 C.2 D.4二、填一填,看看谁仔细(本大题共6小题,每小题3分,共18分,请将你的答案写在“-”处)11.(3分)化简:=,﹣=,=.12.(3分)已知正方形ABCD的面积为8,则对角线AC=.13.(3分)矩形的两条对角线的一个夹角为120°,两条对角线的和为4cm,则这个矩形的一条较长边长为cm.14.(3分)在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为.15.(3分)如图,在△ABC中,∠BAC=90°,AB=AC=5,点D,E在BC上,且∠DAE=45°,若CD=,则DE=.16.(3分)已知平行四边形ABCD的周长为44,过点A作AE⊥直线BC于E,作AF⊥直线CD于点F,若AE=5,AF=6,则CE+CF的值为.三、解一解,试试谁更棒(本大题共8小题,共72分)17.(8分)(1)+(2)(+)﹣(﹣)18.(8分)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.19.(8分)如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O 的动直线交AB于E,交CD于F.求证:OE=OF.20.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为5的正方形.(2)①在图2中以格点为顶点画一个三角形,使三角形三边长分别为、2、,②求此三角形最长边上的高.21.(8分)如图,四边形ABCD中,AD∥BC,且∠B+∠C=90°,分别以AB、AD、DC为边向形外作正方形ABEF、正方形ADHG、正方形DCJI,且其面积依次记为S1、S2、S3,若S1+S3=4S2,求的值.22.(10分)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,∠ADC的平分线交AB 于点M,交AE于点N,连接DE(1)求证:BC=CE;(2)若BC=2,∠ABC=120°,求DE的长.23.(10分)如图,△ABC中,∠C=90°,BC=4,AC=4,点D从A出发沿AB 以每秒2个单位的速度向点B匀速运功,同时,点E从B出发沿BC以每秒1个长单位的速度向点C匀速运动,当一个点到达终点时,另一个点也停止运动,设点D、E运动的时间为t(t>0)作DF⊥AC于点F,连DE、EF.(1)求证:EB=DF;(2)当t为多少时,四边形BEFG为菱形?说明理由;(3)当t=时,△DEF为直角三角形.24.(12分)已知直线AB分别交x、y轴于A(a,0)、B两点,C(c,﹣2)为直线AB上一点且在第四象限内,若+a2+4=﹣4a.(1)如图1,求A、C点的坐标;(2)如图2,直线OM经过O点,过C作CM⊥OM于M,CN⊥y轴于点N,连接MN,求的值;(3)如图3,过C作CN⊥y轴于点N,G为第三象限内一点,且∠NGO=45°,试探究GO、GN、GC之间的有怎么的数量关系,并说明理由.2016-2017学年湖北省武汉市东西湖区八年级(下)期中数学试卷参考答案一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.C;2.B;3.A;4.B;5.A;6.A;7.B;8.A;9.C;10.C;二、填一填,看看谁仔细(本大题共6小题,每小题3分,共18分,请将你的答案写在“-”处)11.2;﹣;;12.4;13.;14.42或32;15.;16.2+或22+11.;三、解一解,试试谁更棒(本大题共8小题,共72分)17.;18.;19.;20.;21.;22.;23.t=2秒或秒;24.;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年湖北省武汉市八年级(下)竞赛数学试卷一、选择题(每小题7分,共56分)以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内.1.a、b、c是正整数,a>b,且a2﹣ab﹣ac+bc=7,则a﹣c等于()A.﹣1 B.﹣1或﹣7 C.1 D.1或72.用数码2、4、5、7组成的四位数中,每个数码只出现一次.将所有这些四位数从小到大排列,则排在第13个的四位数是()A.4527 B.5247 C.5742 D.72453.1989年,我国的GDP(国民生产总值)只相当于英国的53.3%,目前已相当于英国的81%,如果英国目前的GDP是1989年的m倍,那么我国目前的GDP约为1989年的()A.1.5倍B.1.5m倍C.27.5倍D.m倍4.若x取整数,则使分式的值为整数的x值有()A.3个 B.4个 C.6个 D.8个5.已知a为整数,关于x的方程a2x﹣20=0的根是质数,且满足|ax﹣7|>a2,则a等于()A.2 B.2或5 C.土2 D.﹣26.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有()A.2个 B.4个 C.6个 D.8个7.边长分别是3、5、8的三个正方体被粘合在一起,在这些用各种方式粘合在一起的立体中,表面积最小的那个立体的表面积是()A.570 B.502 C.530 D.5388.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定二、填空题(每小题7分,共84分)9.多项式x2+y2﹣6x+8y+7的最小值为.10.已知=1,则的值等于.11.如图是一块电脑主板,每一个转角处都是直角,数据如图所示,单位是mm,则该主板的周长为mm.12.某学校建了一个无盖的长方体水箱,现在用一个半径为r的圆形砂轮打磨内壁和箱底,则砂轮磨不到的部分的面积为为.13.α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算(α+β+γ)的值时,有三位同学分别算出了23°、24°、25°这三个不同的结果,其中只有一个是正确的答案,则α+β+γ=°.14.设a为常数,多项式x3+ax2+1除以x2﹣1所得的余式为x+3,则a=.15.在△ABC中,高BD和CE所在直线相交于O点,若△ABC不是直角三角形,且∠A=60°,则∠BOC=.16.小王的学校举行了一次年级考试,考了若干门课程,后加试了一门,小王考得98分,这时小王的平均成绩比最初的平均成绩提高了1分.后来又加试了一门,小王考得70分,这时小王的平均成绩比最初的平均成绩下降了1分,则小王共考了(含加试的两门)门课程,最后平均成绩为分.17.已知a+b+c=0,a>b>c,则的取值范围是.18.计算器上有一个倒数键,能求出输入的不为零的数的倒数(注:有时需先按或键,才能实现此功能,下面不再说明).例如,输入2,按下键,则得0.5.现在计算器上输入某数,再依下列顺序按键:,在显示屏上的结果是﹣0.75,则原来输入的某数是.19.有A、B、C三种不同型号的电池,它们的价格各不相同.有一笔钱可买A型4只,B型18只,C 型16只;或A型2只,B型15只,C型24只;或A型6只,B型12只,C型20只.如果将这笔钱全部用来购买C型号的电池,则能买只.20.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为.2016-2017学年湖北省武汉市八年级(下)竞赛数学试卷参考答案与试题解析一、选择题(每小题7分,共56分)以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内.1.a、b、c是正整数,a>b,且a2﹣ab﹣ac+bc=7,则a﹣c等于()A.﹣1 B.﹣1或﹣7 C.1 D.1或7【考点】因式分解的应用;因式分解﹣分组分解法.【分析】此题先把a2﹣ab﹣ac+bc因式分解,再结合a、b、c是正整数和a>b探究它们的可能值,从而求解.【解答】解:根据已知a2﹣ab﹣ac+bc=7,即a(a﹣b)﹣c(a﹣b)=7,(a﹣b)(a﹣c)=7,∵a>b,∴a﹣b>0,∴a﹣c>0,∵a、b、c是正整数,∴a﹣c=1或a﹣c=7故选D.2.用数码2、4、5、7组成的四位数中,每个数码只出现一次.将所有这些四位数从小到大排列,则排在第13个的四位数是()A.4527 B.5247 C.5742 D.7245【考点】排列与组合问题.【分析】首先找到以2开头的四位数的个数,然后再找到以4开头的四位数的个数,这些数共有12个,则第13个数从5开头,找出这个最小的四位数即可.【解答】解:千位上是2的四位数的个数有3×2×1=6个,千位上是4的四位数的个数有3×2×1=6个,即可知排在第13个四位数是千位上是5,又知这些从小到大排列,第13个数为5247,故选B.3.1989年,我国的GDP(国民生产总值)只相当于英国的53.3%,目前已相当于英国的81%,如果英国目前的GDP是1989年的m倍,那么我国目前的GDP约为1989年的()A.1.5倍B.1.5m倍C.27.5倍D.m倍【考点】列代数式.【分析】可以把英国1989年的GDP看作单位1,然后分别表示我国目前的GDP和1989年的GDP,求比即可.【解答】解:根据题意得:我国目前的GDP约为1989年的m≈1.5m倍.故选B.4.若x取整数,则使分式的值为整数的x值有()A.3个 B.4个 C.6个 D.8个【考点】分式的值;整式的除法.【分析】首先把分式转化为3+,则原式的值是整数,即可转化为讨论的整数值有几个的问题.【解答】解:==3+当2x﹣1=±6或±3或±2或±1时,是整数,即原式是整数.当2x﹣1=±6或±2时,x的值不是整数,当等于±3或±1是满足条件.故使分式的值为整数的x值有4个,是2,0和±1.故选B.5.已知a为整数,关于x的方程a2x﹣20=0的根是质数,且满足|ax﹣7|>a2,则a等于()A.2 B.2或5 C.土2 D.﹣2【考点】一元二次方程的解;一元二次方程的定义.【分析】本题是道选择题,可用排除法进行选择.【解答】解:当a=2时,x=5是质数,但|ax﹣7|=|2×5﹣7|=3<4,所以不选A,C.当a=5时,x=不是质数,所以不选B.当a=﹣2时,x=5是质数,同时满足|ax﹣7|=|﹣2×5﹣7|=17>4,所以选D.故选D.6.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有()A.2个 B.4个 C.6个 D.8个【考点】等腰三角形的判定;坐标与图形性质.【分析】本题是开放性试题,根据题意,画出图形结合求解.【解答】解:第1个点在AC上,作线段AB的垂直平分线,交AC于点P,则有PA=PB;第2个点是以A为圆心,以AB长为半径截取AP=AB,交AC延长线上于点P;第3个点是以A为圆心,以AB长为半径截取AP=AB,在上边于CA延长线上交于点P;第4个点是以B为圆心,以BA长为半径截取BP=BA,与AC的延长线交于点P;第5个点是以B为圆心,以BA长为半径截取BP=BA,与BC在左边交于点P;第6个点是以A为圆心,以AB长为半径截取AP=AB,与BC在右边交于点P;∴符合条件的点P有6个点.故选C.7.边长分别是3、5、8的三个正方体被粘合在一起,在这些用各种方式粘合在一起的立体中,表面积最小的那个立体的表面积是()A.570 B.502 C.530 D.538【考点】几何体的表面积.【分析】先求出边长分别是3、5、8的三个正方体的表面积的和,再减去边长是3的两个正方形的面积和的4倍、边长是5的两个正方形的面积和的2倍,即为所求.【解答】解:(3×3+5×5+8×8)×6﹣(3×3)×4﹣(5×5)×2=98×6﹣9×4﹣25×2=588﹣36﹣50=502.故选B.8.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定【考点】全等三角形的判定与性质;三角形三边关系.【分析】在AB上截取AE=AD,则易得△AEC≌△ADC,则AE=AD,CE=CD,则AB﹣AD=BE,放在△BCE 中,根据三边之间的关系解答即可.【解答】解:如图,在AB上截取AE=AD,连接CE.∵AC平分∠BAD,∴∠BAC=∠DAC,又AC是公共边,∴△AEC≌△ADC(SAS),∴AE=AD,CE=CD,∴AB﹣AD=AB﹣AE=BE,BC﹣CD=BC﹣CE,∵在△BCE中,BE>BC﹣CE,∴AB﹣AD>CB﹣CD.故选A.二、填空题(每小题7分,共84分)9.多项式x2+y2﹣6x+8y+7的最小值为﹣18.【考点】完全平方式;非负数的性质:偶次方.【分析】将原式配成(x﹣3)2+(y+4)2﹣18的形式,然后根据完全平方的非负性即可解答.【解答】解:原式=(x﹣3)2+(y+4)2﹣18,当两完全平方式都取0时原式取得最小值=﹣18.故答案为:﹣18.10.已知=1,则的值等于0.【考点】分式的化简求值.【分析】先根据已知条件可求出a﹣b=﹣ab,再把a﹣b的值整体代入所求式子计算即可.【解答】解:∵=1,∴b﹣a=ab,∴a﹣b=﹣ab,∴==0.故答案是0.11.如图是一块电脑主板,每一个转角处都是直角,数据如图所示,单位是mm,则该主板的周长为96mm.【考点】矩形的性质.【分析】题目中是一个多边形,求周长应把图中的多边形分成各个矩形求解或把多边形变为整体一个矩形求解即可.【解答】解:如图:矩形的长为24mm,AB+CD+GH+EF+4=24.∵GD=HE=4.∴矩形的周长为24+GD+HE+20+24+16+4=96mm.故答案为:96.12.某学校建了一个无盖的长方体水箱,现在用一个半径为r的圆形砂轮打磨内壁和箱底,则砂轮磨不到的部分的面积为为12r2﹣3πr2..【考点】面积及等积变换.【分析】首先理解题意,求出(1)的面积,根据砂轮磨不到的部分的面积为12个图(1)的面积,计算即可得出答案.【解答】解:如图,连接OA、OC,则OA⊥AB、OC⊥BC,OA=OC,∵∠ABC=90°,∴四边形OABC是正方形,且OA=r,∴图形(1)的面积是r•r﹣πr2,∴砂轮磨不到的部分的面积为12(r•r﹣πr2)=12r2﹣3πr2.故答案为:12r2﹣3πr2.13.α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算(α+β+γ)的值时,有三位同学分别算出了23°、24°、25°这三个不同的结果,其中只有一个是正确的答案,则α+β+γ=345°.【考点】角的计算.【分析】分别计算15×23°=345°,15×24°=360°,15×25°=375°,则345°、360°、375°三个数值其中一个是α、β、γ三个角的和,由于三角中,有两个锐角,一个钝角,根据锐角和钝角的定义知,α+β+γ<360°,所以345°是正确的.【解答】解:∵α、β、γ中有两个锐角和一个钝角,∴0°<α<90°,0°<β<90°,90°<γ<180°,∴α+β+γ<360°,∵15×23°=345°,15×24°=360°,15×25°=375°,∴α+β+γ=345°.故答案是345°14.设a为常数,多项式x3+ax2+1除以x2﹣1所得的余式为x+3,则a=2.【考点】余式定理.【分析】首先由多项式x3+ax2+1除以x2﹣1所得的余式为x+3,根据余式定理可设x3+ax2+1﹣(x+3)=(x2﹣1)(x+b),然后分别整理等式的左右两边,再根据多项式相等时对应系数相等,即可得方程,则可求得a的值.【解答】解:∵多项式x3+ax2+1除以x2﹣1所得的余式为x+3,∴可设x3+ax2+1﹣(x+3)=(x2﹣1)(x+b),整理可得:x3+ax2﹣x﹣2=x3+bx2﹣x﹣b,∴,∴a=2.故答案为:2.15.在△ABC中,高BD和CE所在直线相交于O点,若△ABC不是直角三角形,且∠A=60°,则∠BOC= 120°或60°.【考点】三角形的外角性质;三角形内角和定理.【分析】根据三角形外角的性质及三角形的内角和定理.分∠BOC在△ABC内,及∠BOC在△ABC外两种情况讨论.【解答】解:若∠BOC在△ABC内,如下图:∵BD、CE是△ABC的高,∴∠BOC=360°﹣∠A﹣∠ADO﹣∠AEO=120°;若∠BOC在△ABC外,如下图:∵BD、CE是△ABC的高,∴∠BOC=90°﹣∠DCO=90°﹣∠ACE=∠A=60°.故答案为:120°或60°.16.小王的学校举行了一次年级考试,考了若干门课程,后加试了一门,小王考得98分,这时小王的平均成绩比最初的平均成绩提高了1分.后来又加试了一门,小王考得70分,这时小王的平均成绩比最初的平均成绩下降了1分,则小王共考了(含加试的两门)10门课程,最后平均成绩为88分.【考点】二元一次方程组的应用;加权平均数.【分析】可以设小王前面共考了x门课程,平均成绩为y分.根据加试了一门比最初的平均成绩提高了1分.加试了二门比最初的平均成绩下降了1分.可以分别列方程,解方程组即可.【解答】解:小王前面共考了x门课程,平均成绩为y分,根据题意得:,解得:.即小王共考了(含加试的两门)8+2=10门课程,最后平均成绩为89﹣1=88分.故答案为:10,88.17.已知a+b+c=0,a>b>c,则的取值范围是﹣2<<﹣.【考点】一元一次不等式的应用.【分析】首先将a+b+c=0变形为b=﹣a﹣c.再将b=﹣a﹣c代入不等式a>b,b>c,解这两个不等式,即可求得a与c的比值关系,联立求得的取值范围.【解答】解:∵a+b+c=0,∴a>0,c<0 ①∴b=﹣a﹣c,且a>0,c<0∵a>b>c∴﹣a﹣c<a,即2a>﹣c ②解得>﹣2,将b=﹣a﹣c代入b>c,得﹣a﹣c>c,即a<﹣2c ③解得<﹣,∴﹣2<<﹣.故答案为:﹣2<<﹣.18.计算器上有一个倒数键,能求出输入的不为零的数的倒数(注:有时需先按或键,才能实现此功能,下面不再说明).例如,输入2,按下键,则得0.5.现在计算器上输入某数,再依下列顺序按键:,在显示屏上的结果是﹣0.75,则原来输入的某数是5.【考点】计算器—有理数;倒数.【分析】设原来输入的数为a,根据题意列出方程﹣1=﹣0.75,解之可得答案.【解答】解:设原来输入的数为a,根据题意,得:﹣1=﹣0.75,解得:a=5,经检验:a=5是分式方程的解,∴原来输入的某数是5,故答案为:5.19.有A、B、C三种不同型号的电池,它们的价格各不相同.有一笔钱可买A型4只,B型18只,C 型16只;或A型2只,B型15只,C型24只;或A型6只,B型12只,C型20只.如果将这笔钱全部用来购买C型号的电池,则能买48只.【考点】三元一次方程组的应用.【分析】先设买一只A型的价格是x元,买一只B型的价格是y元,买一只C型的价格是z元,能买C型W只根据题意列出方程组,求出方程组的解即可.【解答】解:设买一只A型的价格是x元,买一只B型的价格是y元,买一只C型的价格是z元,能买C型W只,根据题意得:,解得:代入4x+18y+16z=Wz得:W=48.故答案为:48.20.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为4.【考点】全等三角形的判定与性质.【分析】可延长DE至F,使EF=BC,可得△ABC≌△AEF,连AC,AD,AF,可将五边形ABCDE的面积转化为两个△ADF的面积,进而求出结论.【解答】解:延长DE至F,使EF=BC,连AC,AD,AF,∵AB=CD=AE=BC+DE,∠ABC=∠AED=90°,由题中条件可得Rt△ABC≌Rt△AEF,△ACD≌△AFD,∴S ABCDE=2S△ADF=2וDF•AE=2××2×2=4.故答案为:4.2017年5月4日。

相关文档
最新文档