第十三讲 容斥原理
五年级下册数学讲义-第十三讲 容斥原理(解析版PDF)全国通用
一 13
12 二
25-12=13(人)(只做对第一部分人数)
19-13=6 (人)
二、三量容斥
B
花瓣
ABC 覆盖=A+B+C-AB 覆盖-AC 覆盖-BC 覆盖
花蕊
花蕊
花心
+ABC(重叠)(奇加偶减) C
A 花瓣 花蕊 花瓣
ABC 覆盖=花瓣-花蕊+花心方法:打√法
第1讲
70
[铺](1)某班参加兴趣小组,每人至少参加一项,参加自然小组 有 25 人,参加美术兴趣小组有 35 人,参加语文兴趣小组有 27 人, 参加语文和美术的有 12 人,参加自然美术的有 8 人,参加自然和 语文的有 9 人,三个都参加的有 4 人,则全班有多少人?
71
第1讲
三、容斥原理的应用
1、几何图形(打√法) 练 三个面积均为 50cm2 的圆放在桌面上,共同重叠的面积为 10 cm2, 三个圆盖住的面积为 100 cm2,则阴影部分面积为多少
50+50+50-100-10×2=30 (cm2)
2、数论
二量容斥在数论中的应用 取整号符[ ]
练
1 50 中,3 的倍数有多少个?
34+27-46=15(人)
(2)五年级 1 班有 48 名学生,写完语文作业的有 30 人,写完数 学作业的有 20 人,语数都没写的有 6 人,则语数都写的有多少人? 只写语文作业的有多少人?
8 数( 20)
语( 30)
48-6=42(人) 30+20-42=8(人) 30-8=22(人)
69
第1讲
50 3
=16
个
5 的倍数有多少个?
容斥原理问题公式
容斥原理问题公式嘿,朋友们!今天咱来聊聊容斥原理问题公式。
这玩意儿啊,就像是一把神奇的钥匙,能帮我们解开好多复杂问题的谜团呢!你想想看,生活中好多情况不就像一团乱麻嘛。
比如你去参加一个聚会,有的人喜欢吃蛋糕,有的人喜欢喝饮料,还有的人既喜欢吃蛋糕又喜欢喝饮料。
那怎么才能清楚知道到底有多少人有不同的喜好呢?这时候容斥原理问题公式就派上用场啦!它就好像是一个超级整理大师,能把那些重叠的、交叉的部分都给理清楚。
就好比整理一个杂乱的房间,把相同的东西放在一起,不同的东西区分开来。
咱说个具体的例子哈。
假设有一群小朋友,有的喜欢画画,有的喜欢唱歌,还有的既喜欢画画又喜欢唱歌。
如果我们只简单地把喜欢画画的人数和喜欢唱歌的人数加起来,那不就重复计算了那些既喜欢画画又喜欢唱歌的小朋友嘛。
这时候,容斥原理问题公式就能帮我们准确地算出真正的人数啦!它是不是很厉害?就像一个聪明的小助手,默默地帮我们把事情都处理得妥妥当当。
再比如,在一个班级里,有同学擅长数学,有同学擅长语文,还有同学两门都擅长。
我们要是想知道到底有多少同学在这两门学科上有特长,不用容斥原理问题公式可不行哦!不然可就糊涂啦。
这容斥原理问题公式啊,真的是无处不在呢。
它就像是我们生活中的小秘密武器,能让我们在面对各种复杂情况时都能游刃有余。
你说,要是没有它,我们得多头疼啊!好多问题都会变得像一团解不开的毛线球。
但有了它,就像找到了线头,能一点点把问题都解开。
容斥原理问题公式不就是这么神奇嘛!它让我们能更清楚地看到事物的本质,把那些看似混乱的局面变得清晰明了。
它真的是我们解决问题的好帮手啊!所以啊,大家可一定要好好掌握这个神奇的公式哦!。
容斥原理讲解
容斥原理讲解嘿,朋友们!今天咱来唠唠容斥原理。
你说这容斥原理啊,就像是一场奇妙的拼图游戏。
咱就打个比方吧,比如说你有一堆各种各样的糖果,有巧克力糖、水果糖、奶糖。
然后呢,你想知道总共有多少颗糖,但是这里面有些糖果它既是巧克力味又是水果味的呀,还有些可能既是奶糖又是巧克力糖。
这时候容斥原理就派上用场啦!它能帮你理清这些重复的部分,准确算出糖果的总数。
你想想看,在生活中不也经常会遇到这样类似的情况嘛。
比如说你参加了好几个兴趣小组,篮球小组、绘画小组、音乐小组。
那在统计参与人数的时候,可不能简单地把各个小组的人数一加就完事儿了,因为有些人可能同时参加了好几个小组呀,这就需要用容斥原理来好好算一算啦!再比如说班级里评选优秀学生,有的同学学习好,有的同学品德好,还有的同学文体好。
但也有同学是好几方面都好呀,那在统计优秀学生人数的时候,不就得考虑到这些重叠的部分嘛,不然可就不准确啦。
容斥原理不就是这样嘛,它让我们能更清楚、更准确地去理解和处理那些有重叠、有交叉的情况。
就像我们在生活中处理各种关系一样,朋友之间可能有共同的爱好,工作中可能有交叉的任务,都需要我们用智慧去分辨和处理呀。
它不是那种死板的理论,而是非常实用的工具呢!它能让我们在面对复杂的情况时不慌乱,能有条理地去分析和解决问题。
你说这容斥原理是不是很神奇呢?它就像是一把钥匙,能打开我们理解复杂世界的大门。
让我们能更清晰地看到各种事物之间的关系,避免重复计算或者遗漏重要信息。
所以啊,大家可别小瞧了这容斥原理,它在很多地方都能派上大用场呢!无论是在数学领域,还是在我们的日常生活中,它都能给我们带来很多帮助和启示。
我们要好好去理解它、运用它,让它为我们的生活增添更多的精彩和便利呀!这容斥原理,真的是很有意思的东西呢,大家难道不这么觉得吗?。
容斥原理讲义
容斥原理例题在很多计数问题中常用到数学上的一个包含与排除原理,也称为容斥原理。
为了说明这个原理,我们先介绍一些集合的初步知识。
在讨论问题时,常常需要把具有某种性质的同类事物放在一起考虑。
如:A={五〔1〕班全体同学}。
我们称一些事物的全体为一个集合。
A={五〔1〕班全体同学}就是一个集合。
例1. B={全体自然数}={1,2,3,4,…}是一个具体的有无限多个元素的集合。
例2. C={在1,2,3,…,100 中能被3 整除的数}={3,6,9,12,…,99}是一个具有有限多个元素的集合。
例3. 通常集合用大写的英文字母A、B、C、…表示。
构成这个集合的事物称为这个集合的元素。
如上面例子中五〔1〕班的每一位同学均是集合A 的一个元素。
又如在例1 中任何一个自然数都是集合B 的元素。
像集合B 这种含有无限多个元素的集合称为无限集。
像集合C 这样含有有限多个元素的集合称为有限集。
有限集合所含元素的个数常用符合︱A︱、︱B︱、︱C︱、…表示。
例4. 记号A∪B 表示所有属于集合A 或属于集合B 的元素所组成的集合,就是下边示意图中两个圆所覆盖的部分。
集合A∪B 叫做集合A与的并集。
“∪”读作“并”,“A∪B”读例5. 设集合A={1,2,3,4},集合B={2,4,6,8},则A∪B={1,2,3,4,6,8}。
元素2,4 在集合A、B 中都有,在并集中只写一个。
记号A∩B 表示所有既属于集合A 也属于集合B 中的元素的全体。
就是上面图中阴影部分所表示的集合。
即是由集合A、B 的公共元素所组成的集合。
它称为集合A、B 的交集。
符号“∩”读作“交”,“A∩B”读作“A 交B”。
如例3 中的集合A、B,则A∩B={2,4}。
例6. 设集合I={1,3,5,7,9},集合A={3,5,7},A={属于集合,但不属于集合A 的全体元素}={1,9}。
我们称属于集合I 但不属于集合A 的元素的集合为集合A 在集合I 中的补集〔或余集〕,如下列图中阴影部分表示的集合〔整个长方形表示集合I〕,常记作A。
容斥原理的三个公式
容斥原理的三个公式容斥原理是数学中一个挺有意思的概念,它有三个重要的公式,今天咱们就来好好聊聊这三个公式。
我先跟您说啊,这容斥原理在解决集合相关的问题时,那可真是大显身手。
就拿咱们生活中的例子来说吧,比如说学校组织活动,有参加书法比赛的同学,有参加绘画比赛的同学,还有既参加书法又参加绘画比赛的同学。
那怎么算总共有多少同学参加了这两类比赛呢?这时候容斥原理就派上用场啦!咱们先来说说容斥原理的第一个公式。
这个公式可以表述为:两个集合 A 和 B 的并集的元素个数,等于 A 的元素个数加上 B 的元素个数,再减去 A 和 B 的交集的元素个数。
简单来说就是:|A∪B| = |A| + |B| -|A∩B| 。
举个例子哈,一个班级里,喜欢语文的有 20 个同学,喜欢数学的有 30 个同学,既喜欢语文又喜欢数学的有 10 个同学。
那喜欢语文或者喜欢数学的同学一共有多少个呢?咱们就可以用这个公式来算。
|A|就是喜欢语文的 20 个同学,|B|就是喜欢数学的 30 个同学,|A∩B|就是既喜欢语文又喜欢数学的 10 个同学。
把数字带进去,那就是 |A∪B| = 20 + 30 - 10 = 40 个同学。
您瞧,是不是很清楚明了?再来说说第二个公式。
如果是三个集合 A、B、C ,那它们的并集的元素个数就是:|A∪B∪C| = |A| + |B| + |C| - |A∩B| - |B∩C| - |C∩A| +|A∩B∩C| 。
咱们还是拿例子来说事儿。
比如说在一个班级里,喜欢体育的有 25 个同学,喜欢音乐的有 15 个同学,喜欢美术的有 20 个同学,既喜欢体育又喜欢音乐的有8 个同学,既喜欢音乐又喜欢美术的有6 个同学,既喜欢体育又喜欢美术的有 9 个同学,三个都喜欢的有 3 个同学。
那喜欢体育或者音乐或者美术的同学一共有多少个呢?咱们就把数字往公式里带:|A|是 25 ,|B|是 15 ,|C|是 20 ,|A∩B|是 8 ,|B∩C|是 6 ,|C∩A|是 9 ,|A∩B∩C|是 3 。
容斥问题公式及运用
容斥问题公式及运用在计数时,必须注意无一重复,无一遗漏。
为了使重叠部分不被重复计算,研究出一种新的计数方法。
这种方法的基本思路是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
一、容斥原理1:两个集合的容斥原理如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。
如下图所示。
【示例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?解:数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。
A∪B=15+12-4=23,共有23人至少有一门得满分。
二、容斥原理2:三个集合的容斥原理如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。
如下图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B ∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A ∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。
即得到:【示例2】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人?解:参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B ∩C,三项都参加的→A∩B∩C。
初一数学竞赛系列讲座(13)容斥原理
初一数学竞赛系列讲座(13)容斥原理一、知识要点1、容斥原理在计数时,常常遇到这样的情况,作合并运算时会把重复的部分多算,需要减去;作排除运算时会把重复部分多减,需要加上,这就是容斥原理。
它的基本形式是: 记A 、B 是两个集合,属于集合A 的东西有A个,属于集合B 的东西有B个,既属于集合A 又属于集合B 的东西记为B A ,有BA 个;属于集合A 或属于集合B 的东西记为B A ,有BA 个,则有:B A =A +B -BA容斥原理可以用一个直观的图形来解释。
如图,左圆表示集合A ,右圆表示集合B ,两圆的公共部分表示B A ,两圆合起来的部分表示B A , 由图可知:B A =A+B -BA容斥原理又被称作包含排除原理或逐步淘汰原则。
二、例题精讲例1 在1到200的整数中,既不能被2整除,又不能被3整除的整数有多少个?例2 求1到100的自然数中,所有既不是2的倍数又不是3的倍数的整数之和S 。
例3求不大于500而至少能被2、3、5中一个整除的自然数的个数。
例4 求前200个正整数中,所有非2、非3、非5的倍数的数之和。
例5 某班的全体学生进行了短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目都没有达到优秀,其余每人至少有一个项目达到优秀,这部分学生达到优秀的项目、人数如下表:短跑游泳篮球短跑、游泳游泳、篮球篮球、短跑短跑、游泳、篮球17 18 15 6 6 5 2求这个班的学生数。
(第三届华杯赛复赛试题)例6 从1到1000000这一百万个自然数中,能被11整除而不能被13整除的数多还是能被13整除而不能被11整除的数多?(第20届全俄九年级试题)例7 50名学生面向老师站成一行,老师先让大家从左到右按1,2,3,…依次报数,再让报数是4的倍数的同学向后转,接着又让报数是6的倍数同学向后转,问此时还有多少同学面向老师?(1995年华杯赛试题)例8 已知某校共有学生900名,其中男生528人,高中学生312人,团员670人,高中男生192人,男团员336人,高中团员247人,高中男团员175人,试问这些数据统计有无错误?例9 从自然数序列:1,2,3,4,…中依次划去3的倍数和4的倍数,但其中5的倍数均保留。
什么是容斥原理
什么是容斥原理容斥原理是组合数学中的一种重要方法,它常常被用来解决计算某种特定情况下的元素个数的问题。
容斥原理的核心思想是通过排除重复计数的方法,来计算不同集合的交集和并集的元素个数。
在实际应用中,容斥原理常常被用来解决排列组合、概率统计等问题,具有广泛的应用价值。
首先,我们来看一个简单的例子来理解容斥原理的基本思想。
假设有三个集合A、B、C,我们需要计算它们的并集的元素个数。
根据容斥原理,我们可以通过如下的公式来计算,|A∪B∪C| = |A| + |B| + |C| |A∩B| |A∩C| |B∩C| + |A∩B∩C|。
这个公式的意义是,先将A、B、C三个集合的元素个数相加,然后减去它们两两交集的元素个数,最后再加上它们三个集合的交集的元素个数。
这样计算得到的结果,就是A、B、C三个集合并集的元素个数。
通过这个简单的例子,我们可以看到容斥原理的核心思想是通过加减交替的方式,来排除重复计数,最终得到不重复的元素个数。
在实际应用中,容斥原理常常被用来解决各种组合数学问题。
例如,在排列组合中,我们常常需要计算满足某种条件的排列或组合的个数,这时就可以运用容斥原理来进行计算。
在概率统计中,容斥原理也常常被用来计算事件的概率,特别是在计算事件的互斥和独立性方面,容斥原理能够提供简洁而有效的计算方法。
除了上面提到的例子,容斥原理还可以应用于更加复杂的情况。
例如,在计算某个集合的补集元素个数时,容斥原理同样可以提供便利的计算方法。
在实际问题中,我们常常需要计算满足一定条件的集合的补集的元素个数,这时就可以利用容斥原理来简化计算过程,提高计算效率。
总的来说,容斥原理是组合数学中一种非常重要的计数方法,它通过排除重复计数的方式,来计算不同集合的交集和并集的元素个数。
在实际应用中,容斥原理常常被用来解决排列组合、概率统计等问题,具有广泛的应用价值。
通过深入理解和灵活运用容斥原理,我们可以更加高效地解决各种计数问题,提高数学问题的解决能力。
部编版数学五年级暑假第13讲.容斥原理.超常体系
第13讲四年级春季排列组合初步五年级暑假枚举法进阶五年级暑假容斥原理五年级秋季排列组合进阶五年级秋季几何计数进阶两量容斥原理,三量容斥原理,容斥原理中的最值问题漫画释义知识站牌容斥,从字面上理解就是“包容”与“排斥”。
为了计算几种物体的总个数,首先计算所有包容了的物体个数,但包含多了(出现重叠对象),又要排斥某些物体,当排斥多了,又要包容若干物体……,如此继续下去,最终就可以得到我们所要求的物体个数。
容斥原理所体现的这种数学思想就是一种“多退少补,逐步淘汰”的取舍思想。
也许这样说比较枯燥,如果用图形和符号来研究这些问题就比较直观了,那么我们就用图形和符号这两个“拐杖”来学习容斥原理,借用教育家苏荷姆林斯基的一句名言来说:“用直观来照亮我们认识的路途!”1.熟练掌握两量容斥原理并处理两量最值问题;2.会利用容斥原理处理三量重叠及最值问题;3.会利用方程解决较复杂的容斥问题.容斥原理容斥原理I :两量重叠问题A B A B A B =+- (其中符号“ ”读作“并”,相当于中文“和”或者“或”的意思;符号“ ”读作“交”,相当于中文“且"的意思.)图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即容斥原理II :三量重叠问题A B C A B C A B B C A C A B C=++---+ 图示如下:经典精讲课堂引入教学目标第13讲C A B AC B BA C 模块1:两量的容斥例1-3例1:两量容斥例2:容斥最值(利用线段图)例3:容斥最值(需要判断)模块2:三量容斥例4:截长度例5:开关灯例6:容斥最值(浇花,答题)模块3:容斥综合例7:普通方程解容斥例8:不定方程解容斥在游艺会上,有100名同学抽到了标签分别为1至100的奖券.按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔.那么游艺会为该项活动准备的奖品铅笔共有多少支?【分析】1~100,2的倍数有1002⎡⎤⎢⎥⎣⎦=50,3的倍数有1003⎡⎤⎢⎣⎦=33个,因为既是2的倍数,又是3的倍数的数一定是6的倍数,所以标签为这样的数有1006⎡⎤⎢⎥⎣⎦=16个.于是,既不是2的倍数,例题思路又不是3的倍数的数在1~100中有100-50-33+16=33.所以,游艺会为该项活动准备的奖品铅笔共有:50×2+33×3+33×1=232支.(1)有100种食品.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是____、_____.(2)某班共有学生48人,其中27人会游泳,33人会骑自行车,40人会打乒乓球.那么,这个班三项运动都会的人数的最大值和最小值分别是____、_____.(3)某班有46人,其中有40人会骑自行车,38人会打乒乓球,35人会打羽毛球,27人会游泳,那么,这个班四项运动都会的人数的最大值和最小值分别是____、_____.(4)在阳光明媚的一天下午,甲、乙、丙、丁四人给100盆花浇水,已知甲浇了30盆,乙浇了75盆,丙浇了80盆,丁浇了90盆,那么,恰好被3个人浇过的花最少有____盆.(5)60人中有23的人会打乒乓球,34的人会打羽毛球,45的人会打排球,这三项运动都会的人有22人,那么,这三项运动都不会的最多有___人.(6)甲、乙、丙都在读同一本故事书,书中有100个故事.每个人都从某一个故事开始,按顺序往后读.已知甲读了75个故事,乙读了60个故事,丙读了52个故事.那么,甲、乙、丙3人共同读过的故事最少有____个.【分析】最大值不能超过几类中的最小值;而求最小值,则应该让次数平均分配.(1)最大值就是含铁的有43种.根据容斥原理最小值68+43-100=11,最小值可以用下图表示:(2)最大值为27.三项都会的最少,那么两项都会的应该最多.因此可以先让所有人都会两项.剩下的就是三项都会的最小值.27+33+40-48×2=4(3)同上分析:最大值为27,最小值为40+38+35+27-46×3=140-138=2人(4)为了恰好被3个人浇过的花盆数量最少,那么被四个人浇过的花、两个人浇过的花数量都要尽量多,那么应该可以知道被四个人浇过的花数量最多是30盆,那么接下来就变成乙浇了45盆,丙浇了50盆,丁浇60盆了,这时共有1003070-=盆花,我们要让这70盆中恰好被3个人浇过的花最少,这就是简单的容斥原理了,恰好被3个人浇过的花最少有45506070215++-⨯=盆.(5)2346040;6045;6048345⨯=⨯=⨯=.此题中有22人三项全会,要让都不会的最多,那么会两项的就应该最多.(40+45+48-22×3)÷2=33…1.因此除了22人外,至少还有34人会2项或1项运动.都不会的最多有60-22-34=4人.(6)考虑甲乙两人情况,有甲乙都读过的最少为:75+60-100=35个,此时甲单独读过的为75-35=40个,乙单独读过的为60-35=25个;欲使甲、乙、丙三人都读过的书最少时,应将丙读过的书尽量分散在某端,于是三者都读过书最少为52-40=12个.第13讲(1)参加语文竞赛的有8人,参加数学竞赛的有9人,参加英语竞赛的有11人,每人最多参加两科,那么至少有人参加这次竞赛.(2)某班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有23人,参加英语竞赛的有20人,每人最多参加两科,那么参加两科的最多有人.(3)参加语文竞赛的有8人,参加数学竞赛的有9人,参加英语竞赛的有21人,每人最多参加两科,那么至少有人参加这次竞赛.【分析】此类问题算出最值后,一定要检验是否能办到.原因可见(3)小题.(1)由于每人最多参加2科,也就是说有参加2科的,有参加1科的,要求参加的人最少,那么尽可能让每人都参加2科,所以理论上至少有(8911)214++÷=人参加竞赛,1495-=,14113-=,参加语文和英语竞赛的有5人,参加语文和数学竞赛的有3人,参加数学和英语竞赛的有6人,符合题意,因此至少有14人参加竞赛(2)根据题意可知,该班参加竞赛的共有28232071++=人次.由于每人最多参加2科,也就是说有参加2科的,有参加1科的,也有不参加的,共是71人次.要求参加2科的人数最多,则让这71人次尽可能多地重复,而712351÷= ,所以至多有35人参加2科,此时还有1人参加1科.那么是否存在35人参加两科的情况呢?由于此时还有1人是只参加一科的,假设这个人只参加数学一科,那么可知此时参加语文、数学两科的共有(282220)215+-÷=人,参加语文、英语两科的共有281513-=人,参加数学、英语两科的共有20137-=人.也就是说,此时全班有15人参加语文、数学两科,13人参加语文、英语两科,7人参加数学、英语2科,1人只参加数学1科,还有14人不参加.检验可知符合题设条件.所以35人是可以达到的,则参加2科的最多有35人.(当然本题中也可以假设只参加一科的参加的是语文或英语)(3)由于每人最多参加2科,也就是说有参加2科的,有参加1科的,要求参加的人最少,那么尽可能让每人都参加2科,所以理论上至少有(8921)219++÷=人参加竞赛,但参加英语竞赛的有21人,因此至少应该有21人参加竞赛.一根1001厘米长的木棒,从同一端开始,第一次每隔7厘米画一个刻度,第二次每隔11厘米画一个刻度,第三次每隔13厘米画一个刻度,如果按刻度把木棒截断,那么可以截出多少段?(学案对应:超常1,带号1)【分析】要求出截出的段数,应当先求出木棒上的刻度数,而木棒上的刻度数,相当于1、2、3、…、1000、1001这1001个自然数中7或11或13的倍数的个数,为:100110011001100110011001100128171113711713111371113⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤++---+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎢⎥⨯⨯⨯⨯⨯⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,故木棒上共有281个刻度,可以截出281段.(注:此题中1001恰好是7,11,13的倍数,因此最后一个刻度不需要截.若是1002,那么刻度还是281个,但截成的是282段.)有2000盏亮着的电灯,各有一个拉线开关控制着,现按其顺序编号为1,2,3,…,2000,然后将编号为2的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,最后将编号为5的倍数的灯线拉一下,三次拉完后,亮着的灯有多少盏?棣莫弗的传奇容斥原理有一个有趣的历史,该原理最早的数学表述是有法国数学家棣莫弗在他关于概率论的教材——《机会的学说》中提出的。
容斥原理4个集合公式
容斥原理4个集合公式容斥原理是概率论中非常重要的一个工具,用于求解复杂问题中的概率。
容斥原理有4个集合公式,它们在求解问题时起到了重要的作用。
首先,我们来介绍容斥原理的第一个公式。
假设有两个集合,分别记作A和B,那么它们的并集的概率可以用下面的公式来表示:P(A∪B) = P(A) + P(B) - P(A∩B)。
这个公式的意思是,将集合A和集合B的概率相加,然后再减去它们的交集的概率,就可以得到它们的并集的概率。
接下来,我们来介绍容斥原理的第二个公式。
假设有三个集合,分别记作A、B和C,那么它们的并集的概率可以用下面的公式来表示:P(A∪B∪C) = P(A) + P(B) + P(C) - P(A∩B) - P(A∩C) - P(B∩C) + P(A∩B∩C)。
这个公式的意思是,将集合A、集合B和集合C的概率相加,然后减去它们两两相交的部分的概率,再加上它们三个都相交的部分的概率,就可以得到它们的并集的概率。
然后,我们来介绍容斥原理的第三个公式。
假设有四个集合,分别记作A、B、C和D,那么它们的并集的概率可以用下面的公式来表示:P(A∪B∪C∪D) = P(A) + P(B) + P(C) + P(D) - P(A∩B) - P(A∩C) - P(A∩D) - P(B∩C) - P(B∩D) - P(C∩D) + P(A∩B∩C) +P(A∩B∩D) + P(A∩C∩D) + P(B∩C∩D) - P(A∩B∩C∩D)。
这个公式的意思是,将集合A、集合B、集合C和集合D的概率相加,然后减去它们两两相交的部分的概率,再加上它们三个相交的部分的概率,最后再减去它们四个都相交的部分的概率,就可以得到它们的并集的概率。
最后,我们来介绍容斥原理的第四个公式,即n个集合的并集的概率。
假设有n个集合,分别记作A1、A2、...、An,那么它们的并集的概率可以用下面的公式来表示:P(A1∪A2∪...∪An) = ΣP(Ai) -ΣP(Ai∩Aj) + ΣP(Ai∩Aj∩Ak) - ... + (-1)^(n-1) *P(A1∩A2∩...∩An),其中Σ表示求和,Ai表示第i个集合,Ai∩Aj 表示第i个集合与第j个集合的交集,以此类推。
容斥原理总结
容斥原理习题总结首先讲一下有关这个问题的核心公式:(1)两个集合的容斥关系公式:A+B=A∪B+A∩B(2)三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C题型一:逆向思维题1、在一次展览会上展品中有366部手机不是A公司的,有276部手机不是B公司的,两公司的展品共有378部,问B公司有多少部手机参展?2、学校展览每个年级的书画作品,其中28副不是五年级的,24副不是六年级的,五六年级的展览作品共有20副。
一二年级的参展作品比三四年级总数少4副。
问一二年级的参赛作品有几幅?解:第一题中问B公司的手机有几部,设为X部。
X+276即为所有展品的数量。
X+276=366+378-X。
(等式右边是以A公司的展品表示的所有展品数量)第二题中设五年级的作品有X副,X+28=24+20-X,求得X=6.则共有作品8+28=36副。
一二三四年级加起来有16副。
X+Y=16X-Y=4 因此一二年级有展品6副。
题型二:需要列表的题(较复杂)1、某班有少先队员35人,这个班有男生23人,问女生少先队员比男生非少先队员多几人。
少先队员非少先队员男X 23-X 23女35-X容易得到答案为12.2、某校参加数学奖赛的有男生120人,女生80人,而参加语文竞赛的男生有80人,女生有120人。
已知共有260人参赛了,75名男生两科都参加了,问只参加数学竞赛而没参加语文竞赛的女生有几人?解:语文数学男120 80 200女80 120 200200 200400=260+75+X,求得参加两科的女生有65人。
80-65=15人。
题型三:分数题结合整除特性来做1、一次数学考试,小王做对的题占全部题目的2/3,小李做错了5道题,两人都做错的占全部的1/4,问小王做对了几道题?解:全部题目能被12整除,两人都做错的题目数≤5,全部题目数≤20,在≤20范围内能被12整除的只有12.所以8道题为答案。
第十三讲 容斥原理
第十三讲容斥原理(包含与排除)【例题选讲】例题1某班同学今天至少都完成了一门语文或数学作业,已知做完语文作业的有40人,做完数学作业的有45人,两门作业都做完的有36人。
请问:这个班有多少个同学?练习13 -1六(4)班同学在《少年报》和《儿童世界》两种报刊中至少要订阅一份。
其中订阅《少年报》的25人,订阅《儿童世界》的有31人,两种报刊都订阅的有4人,求六(4)有多少学生?例题2某班有学生48人,其中21人参加数学竞赛,1 3人参加作文竞赛,有7人即参加数学竞赛又参加作文竞赛,那么,①只参加数学竞赛的有多少人?②参加竞赛的一共有多少人?③没有参加竞赛的一共有多少人?练习13 -2某班中有30人参加足球与排球活动,参加足球活动的有16人,参加排球活动的有21人。
①求两项活动都参加的共有多少人?②只参加足球活动的有多少人?③只参加排球活动的有多少人?例题3在1 00个学生中,音乐爱好者有56人,体育爱好者有75人。
那么既爱好音乐又爱好体育的人最少有多少人?最多有多人?练习13 -4外语学校共有英语、法语、日语教师共2 7人,其中只能教英语的有8人,只能教日语的有6人,能教英、日语的有5人,能教法、日语的有3人,能教英、法语的有4人,三种语言都能教的有2人,问只能教法语的有多少人?例题5如图13 -5所示,桌面上放置三个两两重叠,形状相同的圆形纸片,它们的面积都是100平方厘米,盖住桌面的总面积是144平方厘米,三张纸片共同重叠的面积是42平方厘米,那么,图中阴影部分面积的总和等于多少平方厘米?练习13-5图13-6中,A、B、C分别代表面积为10、11、13的三张不同形状的纸片,它们重叠放在一起,盖住桌面的面积是22,且A与B,B与C,C与A公共部分的面积分别是6,4,5,求A、B、C三个图形公共部分(即阴影部分)的面积?例题6某班学生中78%喜欢游泳,80%喜欢玩游戏机,84%喜欢下棋,88%喜欢看小说,该班学生中同时有四种爱好的学生所占的最小百分比应是多少?练习13 -6某大学有外语教师130人,其中教英语的有60人,教日语的有55人,教法语的有50人,既教英语又教日语的有20人,既教英语又教法语的有15人,既教日语又教法语的有13人,有7人英语、日语和法语三门课都会教,则不会教这三门课的外语教师有多少人?《容斥原理》自我检测1.某班学生在一次期末语文和数学考试中,语文得优的有15人,数学得优的有24人,其中语文、数学都得优的有12人,全班得优的共有多少人?2.某班共50人,参加书法兴趣小组的32人,参加绘画兴趣小组的28人,两种兴趣小组都参加的有1 5人,这个班级还有多少人没有参加这两项兴趣小组?3.育苗小学四年级学生到野外采集标本,采集昆虫标本的有32人,采集植物标本的有27人,两种标本都采集的有7人,全班学生共有多少人?4.工厂有一批工人,每人至少会一门技术,其中会开车床的有235人,会开铣床的有218人,会开刨床的有207人,既会开车床又会开铣床的有112人,既会开车床又会开刨床的有71人,既会开铣床又会开刨床的有63人;三种机床都会开的有19人,求全厂共有多少名工人?5.某小学举行数学、语文、常识三科竞赛,学生中至少参加一科的:数学203人,语文179人,常识165人。
容斥原理三大公式
容斥原理三大公式容斥原理是数学中一个非常实用的工具,它能帮助我们在解决一些集合问题时更加得心应手。
容斥原理主要有三大公式,接下来咱们就好好唠唠这三个公式。
咱们先来说说这第一个公式。
假设咱们有两个集合 A 和 B,那么 A 和 B 的并集元素个数就等于 A 的元素个数加上 B 的元素个数,再减去A 和B 的交集元素个数。
用数学式子表示就是:|A∪B| = |A| + |B| -|A∩B| 。
我给您举个例子哈,就说咱们班同学,喜欢数学的有 20 人,喜欢语文的有 15 人,既喜欢数学又喜欢语文的有 5 人。
那喜欢数学或者语文的同学一共有多少人呢?咱们就用这个公式来算算。
|A| 就是喜欢数学的 20 人,|B| 是喜欢语文的 15 人,|A∩B| 是既喜欢数学又喜欢语文的 5 人。
所以喜欢数学或者语文的同学一共有 20 + 15 - 5 = 30 人。
再来说说第二个公式。
要是有三个集合 A、B、C,那么它们的并集元素个数就是 A 的元素个数加上 B 的元素个数加上 C 的元素个数,然后减去 A 和 B 的交集元素个数,减去 A 和 C 的交集元素个数,减去 B 和 C 的交集元素个数,最后再加上 A、B、C 三个集合的交集元素个数。
式子就是:|A∪B∪C| = |A| + |B| + |C| - |A∩B| - |A∩C| - |B∩C| +|A∩B∩C| 。
比如说,咱们学校组织兴趣小组,参加绘画小组的有 12 人,参加音乐小组的有 8 人,参加体育小组的有 10 人。
参加绘画和音乐小组的有 3 人,参加绘画和体育小组的有 4 人,参加音乐和体育小组的有 2 人,三个小组都参加的有 1 人。
那参加兴趣小组的一共有多少人呢?咱们照样用公式来算,|A| 是绘画小组的 12 人,|B| 是音乐小组的 8 人,|C| 是体育小组的 10 人,|A∩B| 是 3 人,|A∩C| 是 4 人,|B∩C| 是 2 人,|A∩B∩C| 是 1 人。
五年级奥数-容斥原理最新解读
例如:一次期末考试,某班有15人数学得满分,有12 人语文得满分,并且有4人语、数都是满分,那么这个 班至少有一门得满分的同学有多少人? 分析:依题意,被计数的事物有语、数得满分两类, “数学得满分”称为“A类元素”,“语文得满分” 称为“B类元素”,“语、数都是满分”称为“既是A 类又是B类的元素”,“至少有一门得满分的同学” 称为“A类和B类元素个数”的总和。为15+12-4=23。
练1.C班的同学都至少喜欢一项运动,有37人喜欢 乒乓球,26人喜欢篮球,21人两种球都喜欢, 问C班有多少人? 解: 练2.自然数1,2,3…,99,100当中,能被3整除或能被4整除的 数共有几个?
Байду номын сангаас
解: 练3.某校参加数学竞赛的有120名男生、80名女生,语文竞赛的有 120女生,80男生,总共参赛人数有260名,其中75名男生两科都 参加了,问,只参加数学没参加语文的女生有多少?
问题1.十月国庆节,学校门口挂了一行彩 旗。小张从前数起,红旗是第8面;从后数 起,红旗是第10面。这行彩旗共多少面?
问题2.同学们排队做操,每行人数同样多。小明的位 置从左数起是第4个,从右数起是第3个,从前数起是 第5个,从后数起是第6个。做操的同学共有多少个? 问题3.把两块一样长的木板像下图这样钉在一起成 了一块木板。如果这块钉在一起的木板长120厘米, 中间重叠部分是16厘米,这两块木板各长多少厘米?
例1. A班共有40人,同学们都喜欢打篮球或者打羽毛球。 喜欢打篮球的有26人,喜欢打羽毛球的有24人,问两 种球都喜欢的同学有多少人? 解:
原理1:既是A又是B的数量=A的数量+B的数量-A或B的数量。
A或B的数量=A的数量+B的数量-既是A又是B的数量
高中数学,容斥原理
容斥原理是一种常见的统计原理,它主要应用于多个集合的交集和并集的计算。
在高中数学中,容斥原理的应用非常广泛,尤其是在解决组合问题、排列问题、计数问题等方面。
下面我将从定义、应用和注意事项三个方面,详细介绍高中数学中的容斥原理。
一、容斥原理的定义容斥原理的基本思想是,当两个集合不重叠时,它们的并集的数量可以看作是两个集合数量的和,减去重叠数量的两倍。
具体来说,假设我们有两个集合A和B,它们的并集数量为N,重叠数量为K,那么A中元素属于B或B中元素属于A的数量为N-K。
同时,我们需要减去A和B完全重叠的元素数量,即K。
这个原理可以用公式表示为:(A∪B)个案数= A个案数+ B个案数- (A∩B)个案数。
二、容斥原理的应用1. 组合问题:在解决组合问题时,常常需要考虑多个事件同时发生的情况。
例如,从n个人中选出m个组成一个小组,需要考虑到每个人是否被选中。
这时,我们可以用容斥原理来计算选出小组的总人数和被选中的人数。
2. 排列问题:在解决排列问题时,也常常需要考虑多个事件同时发生的情况。
例如,将n 个元素按照一定的顺序排列,需要考虑元素之间的顺序关系。
这时,我们可以用容斥原理来计算所有可能的排列数和满足某种条件的排列数。
3. 计数问题:在解决计数问题时,需要考虑到一些条件对计数的影响。
例如,计算从n个元素中取出k个元素的方案数时,需要考虑k的取值范围和元素之间的相关性。
这时,我们可以用容斥原理来计算总的方案数和满足条件的方案数。
三、注意事项1. 容斥原理的前提条件是两个集合之间没有重叠。
如果两个集合之间有重叠,那么需要使用其他的方法来计算它们的并集数量和重叠数量。
2. 在使用容斥原理时,需要正确理解公式中的各个量所代表的含义,并且需要仔细考虑问题中的条件和限制。
3. 容斥原理的应用范围比较广泛,需要灵活运用公式和方法来解决不同类型的问题。
总之,容斥原理是高中数学中一个非常重要的统计原理,它可以帮助我们更好地理解和解决组合、排列、计数等问题。
什么是容斥原理
什么是容斥原理容斥原理是组合数学中的一种重要的计数方法,常常用于解决包含排列组合的问题。
容斥原理的核心思想是通过排除重复计数的方法,来求解包含多个集合的问题。
在实际问题中,容斥原理有着广泛的应用,特别是在概率统计、组合数学、计算机算法等领域。
首先,我们来了解一下容斥原理的基本概念。
假设有n个集合A1、A2、……、An,我们希望求解这些集合的并集的元素个数。
容斥原理告诉我们,这个并集的元素个数可以通过如下的公式来计算:|A1 ∪ A2 ∪……∪ An| = Σ|Ai| Σ|Ai ∩ Aj| + Σ|Ai ∩ Aj ∩ Ak| …… + (-1)^(n-1) |A1 ∩ A2 ∩……∩ An|。
其中,|A|表示集合A的元素个数,Σ表示求和运算。
公式右边的第一项是将所有集合的元素个数相加,第二项是将两两集合的交集的元素个数相减,第三项是将三个集合的交集的元素个数相加,以此类推。
最后一项是将所有集合的交集的元素个数相加,并且交替加减。
通过这个公式,我们可以清晰地看到容斥原理的核心思想,通过交替相加和相减集合的交集元素个数,来排除重复计数,最终得到并集的元素个数。
接下来,我们通过一个具体的例子来说明容斥原理的应用。
假设有一个集合包含了所有小于100的正整数中能被2、3或5整除的数,我们希望求解这个集合中元素的个数。
首先,我们分别求解能被2、3和5整除的数的个数,分别记为A2、A3和A5。
然后,我们求解能同时被2和3、2和5、3和5以及2、3和5整除的数的个数,分别记为A2∩3、A2∩5、A3∩5和A2∩3∩5。
最后,根据容斥原理的公式,我们可以得到集合中元素的个数:|A2 ∪ A3 ∪ A5| = |A2| + |A3| + |A5| |A2 ∩ A3| |A2 ∩ A5| |A3 ∩ A5| + |A2 ∩ A3 ∩ A5|。
通过具体的计算,我们可以得到最终的结果。
这个例子清晰地展现了容斥原理在实际问题中的应用,通过排除重复计数,我们可以准确地求解集合的并集元素个数。
高中数学竞赛讲义-容斥原理
§24容斥原理相对补集:称属于A而不属于B的全体元素,组成的集合为B对A的相对补集或差集,记作A-B。
容斥原理:以表示集合A中元素的数目,我们有,其中为n个集合称为A的阶。
n阶集合的全部子集数目为。
例题讲解1.对集合{1,2,…,n}及其每一个非空了集,定义一个唯一确定的“交替和”如下:按照递减的次序重新排列该子集,然后交替地减或加后继的数所得的结果,例如,集合的“交替和”是9-6+4-2+1=6.的“交替和”是6-5=1,的交替和是2。
那么,对于n=7。
求所有子集的“交替和”的总和。
2.某班对数学、物理、化学三科总评成绩统计如下:优秀的人数:数学21个,物理19个,化学20个,数学物理都优秀9人,物理化学都优秀7人。
化学数学都优秀8人。
这个班有5人任何一科都不优秀。
那么确定这个班人数以及仅有一科优秀的三科分别有多少个人。
3.计算不超过120的合数的个数4.1992位科学家,每人至少与1329人合作过,那么,其中一定有四位数学家两两合作过。
5.把个元素的集合分为若干个两两不交的子集,按照下述规则将某一个子集中某些元素挪到另一个子集:从前一子集挪到后一子集的元素个数等于后一子集的元素个数(前一子集的元素个数应不小于后一子集的元素个数),证明:可以经过有限次挪动,使得到的子集与原集合相重合。
6.给定1978个集合,每个集合都含有40个元素,已知其中任意两个集合都恰有一个公共元,证明:存在一个元素,它属于全部集合。
7.在个元素组成的集合中取个不同的三元子集。
证明:其中必有两个,它们恰有一个公共元。
例题答案:1.分析;n=7时,集合{7,6,5,4,3,2,1}的非空子集有个,虽然子集数目有限,但是逐一计算各自的“交替和”再相加,计算量仍然巨大,但是,根据“交替和”的定义,容易看到集合{1,2,3,4,5,6,7}与{1,2,3,4,5,6}的“交替和”是7;可以想到把一个不含7的集和A与的“交替和”之和应为7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三讲容斥问题
一、专题简析
容斥问题涉及到一个重要原理,包含与排除原理,也叫容斥原理。
即当两个计数部分有重复包含时,为了不重复的计数,应从它们的和中排除重复部分。
容拆原理:对n个事物,如果采用两种不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b的事物的个数=N a+N b-N ab.
N a N ab N b
二、典型题解
例1、一个班有48人,班主任在班会上问:“谁做完语文作业?请举手。
”
有37人举手。
又问:“谁做完数学作业?请举手!”有42人举手。
最后问:“谁语文、数学作业都没有做完?”没有人举手。
求这个班语文、数学作业都完成的人数。
例2、某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的人有23人,两题都答对的有15人。
问多少个同学两题都答得不对?
例3、某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?”
例4、在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?
例5、光明小学举办学生书法展览。
学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品共有10幅,其他年级参展的书法作品共有多少幅?
能力训练:
1、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优
秀成绩。
其中语文成绩优秀的有65人,数学优秀的有87人。
语文、数学都优秀的有多少人?
2、四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种
读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?
3、学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会
弹电子琴的有17人,其中两种乐器都会演奏的有8人。
这个文艺组一共有多少人?
4、五(l)班有40个学生,其中有25人参加数学小组,23人参加科技小
组,有19人两个小组都参加了。
那么,有多少人两个小组都没有参加?
5、一个班有 55名学生,订阅《小学生数学报》的有 32人,订阅《中国
少年报》的有29人,两种报纸都订阅的有25人。
两种报纸都没有订阅的有多少人?
6、某校选出 50名学生参加区作文比赛和数学比赛,结果 3人两项比赛都
获奖了,有27人两项比赛都没有获奖,已知作文比赛获奖的有14人,问数学比赛获奖的有多少人?
7、一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样
都不会的有4人,两样都会的有多少人?
8、一个俱乐部有103人,其中会下中国象棋的有69人,会下百国际象棋
的52人,这两种棋都不会下的有12人。
问这两种棋都会下的有多少人?
9、三年级一班参加合唱队的有40人,参加舞蹈队的有20人,既参加合唱
队又参加舞蹈队的有14人。
这两队都没有参加的有10人。
请算一算,这个班共有多少人?
10、在 1到200的全部自然数中,既不是5的倍数又不是8的倍数的数有
多少个?
11、在1到130的全部自然数中,既不是6的倍数又不是5的倍数的数有
多少个?
12、五(l)班做广播操,全班排成4行,每行的人数相等。
小华排的位置
是:从前面数第5个,从后面数第8个。
这个班共有多少个学生?
13、科技节那天,学校的科技室里展出了每个年级学生的科技作品,其中
有 110件不是一年级的,有100件不是二年级的,一、二年级参展的作品共有32件。
其它年级参展的作品共有多少件?
14、六(l)儿童节那天,学校的画廊里展出了每个年级学生的图画作品,
其中有25幅画不是三年级的,有19幅画不是四年级的,三、四年级参展的画共有8幅,其它年级参展的画共有多少幅?
15、实验小学举办学生书法展。
学校的橱窗里展出每个年级学生的书法作
品,其中有28幅不是五年级的,有24幅不是六年级的,五、六年级参展的书法作品共有20幅。
一、二年级参展的作品总数比三、四年级参展作品的总数少4幅。
一、二年级参展的书法作品共有多少幅?。