全等三角形中考真题汇编[解析版]
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当DA=DB时,则∠ABD=∠A=25°,
∴∠BDA=180°-25°×2=130°.
故答案为:130°;
(2)①如图1,∵AB=AC,当BD=AD,CD=AD,
∴∠B=∠C=∠BAD=∠CAD,
∵∠BAC+∠B+∠C=180°,
∴4∠B=180°,
∴∠BAC=90°.
②如图2,∵AB=AC,当AD=BD,AC=CD,
【答案】①②③⑤
【解析】
【分析】
易证△ABE≌△DBC,则有∠BAE=∠BDC,AE=CD,从而可证到△ABF≌△DBG,则有AF=DG,BF=BG,由∠FBG=60°可得△BFG是等边三角形,证得∠BFG=∠DBA=60°,则有FG∥AC,由∠CDB≠30°,可判断AD与CD的位置关系.
【详解】
∵△ABD和△BCE都是等边三角形,∴BD=BA=AD,BE=BC=EC,∠ABD=∠CBE=60°.
【答案】2 .
【解析】
【分析】
【详解】
过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,
∵∠B=60°,BE=BD=4,
∴△BDE是等边三角形,
∵△B′DE≌△BDE,
∴B′F= B′E=BE=2,DF=2 ,
∴GD=B′F=2,
∴B′G=DF=2 ,
∵AB=10,
∴AG=10﹣6=4,
∴AB′=2 .
全等三角形中考真题汇编[解析版]
一、八年级数学轴对称三角形填空题(难)
1.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.
【答案】4
【解析】
7.如图,在平面直角坐标系中,点A,B的坐标分别是(1,5)、(5,1),若点C在x轴上,且A,B,C三点构成的三角形是等腰三角形,则这样的C点共有_____________个
【答案】5
【解析】
【分析】
分别以A、B为圆心,AB为半径画圆,及作AB的垂直平分线,数出在x轴上的点C的数量即可
【详解】
解:由图可知:点C在x轴上,且A,B,C三点构成的三角形是等腰三角形,则这样的C点共有5个
∵h₁=1
∴AA₁=2,
∴
同理: ;
;
…
∴经过n次操作后得到的折痕Dn-1En-1到BC的距离
∴
【点睛】
本题考查了中点性质和折叠的性质,本题难度较大,要从每次折叠发现规律,求得规律的过程是难点.
5.如图,点A,B,C在同一直线上,△ABD和△BCE都是等边三角形,AE,CD分别与BD,BE交于点F,G,连接FG,有如下结论:①AE=CD ②∠BFG= 60°;③EF=CG;④AD⊥CD⑤FG ∥AC其中,正确的结论有__________________. (填序号)
【详解】
解:如图连接AA₁,由折叠的性质可得:AA₁⊥DE, DA= DA₁,A₂、A₃…均在AA₁上
又∵D是AB中点,∴DA= DB ,
∵DB= DA₁,
∴∠BA₁D=∠B ,
∴∠ADA₁=∠B +∠BA₁D=2∠B,
又∵∠ADA₁=2∠ADE ,
∴∠ADE=∠B
∵DE//BC,
∴AA₁⊥BC ,
6.如图,在直角坐标系中,点 ,点 ,若动点 从坐标原点出发,沿 轴正方向匀速运动,运动速度为 ,设点 运动时间为 秒,当 是以 为腰的等腰三角形时,直接写出 的所有值__________________.
【答案】 秒或 秒或 秒
【解析】
【分析】
分两种情况: 为腰或 为腰.分别作出符合条件的图形,计算出OP的长度,即可求出t的值.
∵点A、B、C在同一直线上,∴∠DBE=180°﹣60°﹣60°=60°,∴∠ABE=∠DBC=120°.
在△ABE和△DBC中,∵ ,∴△ABE≌△DBC,∴∠BAE=∠BDC,∴AE=CD,∴①正确;
在△ABF和△DBG中, ,∴△ABF≌△DBG,∴AF=DG,BF=BG.
∵∠FBG=180°﹣60°﹣60°=60°,∴△BFG是等边三角形,∴∠BFG=60°,∴②正确;
【答案】
【解析】
【分析】
根据中点的性质及折叠的性质可得DA=DA₁=DB,从而可得∠ADA₁=2∠B,结合折叠的性质可得.,∠ADA₁=2∠ADE,可得∠ADE=∠B,继而判断DE// BC,得出DE是△ABC的中位线,证得AA₁⊥BC,AA₁=2,由此发现规律: 同理 …于是经过第n次操作后得到的折痕Dn-1 En-1到BC的距离 ,据此求得 的值.
2.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形
(1)如图,在 中, ,过 作一直线交 于 ,若 把 分割成两个等腰三角形,则 的度数是______.
(2)已知在 中, ,过顶点和顶点对Βιβλιοθήκη Baidu上一点的直线,把 分割成两个等腰三角形,则 的最小度数为________.
【分析】
延长AC至E,使CE=BM,连接DE.证明△BDM≌△CDE(SAS),得出MD=ED,∠MDB=∠EDC,证明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,进而得出答案.
【详解】
延长AC至E,使CE=BM,连接DE.
∵BD=CD,且∠BDC=140°,
∴∠DBC=∠DCB=20°,
【详解】
解:如图所示,过点B作BD⊥x轴于点D,作BE⊥y轴于点E,分别以点B和点C为圆心,以BC长为半径画弧交y轴正半轴于点F,点H和点G
∵点B(-8,8),点C(-2,0),
∴DC=6cm,BD=8cm,由勾股定理得:BC=10cm
∴在直角三角形COG中,OC=2cm,CG=BC=10cm,
∴OP=OG= ,
∴∠EDN=70°=∠MDN,
在△MDN和△EDN中,
∴△MDN≌△EDN(SAS),
∴MN=EN=CN+CE,
∴△AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;
故答案为:4.
【点睛】
本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键.
考点:1轴对称;2等边三角形.
4.如图,将 沿着过 中点 的直线折叠,使点 落在 边上的 处,称为第1次操作,折痕 到 的距离记为 ,还原纸片后,再将 沿着过 中点 的直线折叠,使点 落在 边上的 处,称为第2次操作,折痕 到 的距离记为 ,按上述方法不断操作下去…经过第2020次操作后得到的折痕 到 的距离记为 ,若 ,则 的值为______.
∵A1A2=A1D,∠BA1C是△A1A2D的外角,
∴∠DA2A1= ∠BA1C= ×80°;
同理可得∠EA3A2=( )2×80°,∠FA4A3=( )3×80°,
∴第n个三角形中以An为顶点的底角度数是( )n-1×80°.
∴第2017个三角形中以A2019为顶点的底角度数是( )2018×80°,
【详解】
解:如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,
则OC′=OC=2,OD′=OD=3 ,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,
∴CP+PM+MD=C′+PM+D′M≥C′D′,
当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,
故答案为:( )2018×80°.
【点睛】
本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.
10.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是_____.
∴∠ABC=∠C=2∠BAC,
∵∠BAC+∠ABC+∠C=180°,
∴5∠BAC=180°,
∴∠BAC=36°.
④如图4,∵AB=AC,当AD=BD,CD=BC,
∴∠ABC=∠C,∠BAC=∠ABD,∠CDB=∠CBD,
∵∠BDC=∠BAC+∠ABD=2∠BAC,
∴∠ABC=∠C=3∠BAC,
∵∠BAC+∠ABC+∠C=180°,
作C′T⊥D′O于点T,
则C′T=OT= ,
∴D′T=4 ,
∴C′D′= ,
∴CP+PM+DM的最小值是 .
故答案为: .
【点睛】
本题考查了最短路径问题,掌握作轴对称点是解题的关键.
9.如图,在第1个△A1BC中,∠B=20°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,按此做法继续下去,第2019个等腰三角形的底角度数是______________.
【答案】
【解析】
【分析】
根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第2019个三角形中以A2019为顶点的内角度数.
【详解】
解:∵在△CBA1中,∠B=20°,A1B=CB,
∴∠BA1C= =80°,
当点P运动到点F或点H时,BE=8cm,BH=BF=10cm,
∴EF=EH=6cm
∴OP=OF=8-6=2(cm)或OP=OH=8+6=14(cm),
故答案为:2秒,4 秒或14秒.
【点睛】
本题综合考查了勾股定理和等腰三角形在平面直角坐标系中的应用,通过作图找出要求的点的位置,利用勾股定理来求解是本题的关键.
∴∠B=∠C=∠BAD,∠CAD=∠CDA,
∵∠CDA=∠B+∠BAD=2∠B,
∴∠BAC=3∠B,
∵∠BAC+∠B+∠C=180°,
∴5∠B=180°,
∴∠B=36°,
∴∠BAC=108°.
③如图3,∵AB=AC,当AD=BD=BC,
∴∠ABC=∠C,∠BAC=∠ABD,∠BDC=∠C,
∵∠BDC=∠A+∠ABD=2∠BAC,
∵AE=CD,AF=DG,∴EF=CG;∴③正确;
∵∠ADB=60°,而∠CDB=∠EAB≠30°,∴AD与CD不一定垂直,∴④错误.
∵△BFG是等边三角形,∴∠BFG=60°,∴∠GFB=∠DBA=60°,∴FG∥AB,∴⑤正确.
故答案为①②③⑤.
【点睛】
本题考查了等边三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质、平行线的判定和性质,证得△ABE≌△DBC是解题的关键.
∵∠A=40°,AB=AC=2,
∴∠ABC=∠ACB=70°,
∴∠MBD=∠ABC+∠DBC=90°,
同理可得∠NCD=90°,
∴∠ECD=∠NCD=∠MBD=90°,
在△BDM和△CDE中,
∴△BDM≌△CDE(SAS),
∴MD=ED,∠MDB=∠EDC,
∴∠MDE=∠BDC=140°,
∵∠MDN=70°,
【答案】
【解析】
【分析】
(1)由题意得:DA=DB,结合 ,即可得到答案;
(2)根据题意,分4种情况讨论,①当BD=AD,CD=AD,②当AD=BD,AC=CD,③AB=AC,当AD=BD=BC,④当AD=BD,CD=BC,分别求出 的度数,即可得到答案.
【详解】
(1)由题意得:当DA=BA,BD=BA时,不符合题意,
【答案】9.6.
故答案为:5
【点睛】
本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键
8.如图,∠AOB=45°,点M、点C在射线OA上,点P、点D在射线OB上,且OD=3 ,则CP+PM+DM的最小值是_____.
【答案】 .
【解析】
【分析】
如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,根据轴对称的性质得到OC′=OC=2,OD′=OD=3 ,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,于是得到CP+PM+MD=C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,于是得到结论.
∴7∠BAC=180°,
∴∠BAC= .
综上所述,∠A的最小度数为: .
故答案是: .
【点睛】
本题主要考查等腰三角形的性质定理以及三角形内角和定理与外角的性质,根据等腰三角形的性质,分类讨论,是解题的关键.
3.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为______.
∴∠BDA=180°-25°×2=130°.
故答案为:130°;
(2)①如图1,∵AB=AC,当BD=AD,CD=AD,
∴∠B=∠C=∠BAD=∠CAD,
∵∠BAC+∠B+∠C=180°,
∴4∠B=180°,
∴∠BAC=90°.
②如图2,∵AB=AC,当AD=BD,AC=CD,
【答案】①②③⑤
【解析】
【分析】
易证△ABE≌△DBC,则有∠BAE=∠BDC,AE=CD,从而可证到△ABF≌△DBG,则有AF=DG,BF=BG,由∠FBG=60°可得△BFG是等边三角形,证得∠BFG=∠DBA=60°,则有FG∥AC,由∠CDB≠30°,可判断AD与CD的位置关系.
【详解】
∵△ABD和△BCE都是等边三角形,∴BD=BA=AD,BE=BC=EC,∠ABD=∠CBE=60°.
【答案】2 .
【解析】
【分析】
【详解】
过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,
∵∠B=60°,BE=BD=4,
∴△BDE是等边三角形,
∵△B′DE≌△BDE,
∴B′F= B′E=BE=2,DF=2 ,
∴GD=B′F=2,
∴B′G=DF=2 ,
∵AB=10,
∴AG=10﹣6=4,
∴AB′=2 .
全等三角形中考真题汇编[解析版]
一、八年级数学轴对称三角形填空题(难)
1.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.
【答案】4
【解析】
7.如图,在平面直角坐标系中,点A,B的坐标分别是(1,5)、(5,1),若点C在x轴上,且A,B,C三点构成的三角形是等腰三角形,则这样的C点共有_____________个
【答案】5
【解析】
【分析】
分别以A、B为圆心,AB为半径画圆,及作AB的垂直平分线,数出在x轴上的点C的数量即可
【详解】
解:由图可知:点C在x轴上,且A,B,C三点构成的三角形是等腰三角形,则这样的C点共有5个
∵h₁=1
∴AA₁=2,
∴
同理: ;
;
…
∴经过n次操作后得到的折痕Dn-1En-1到BC的距离
∴
【点睛】
本题考查了中点性质和折叠的性质,本题难度较大,要从每次折叠发现规律,求得规律的过程是难点.
5.如图,点A,B,C在同一直线上,△ABD和△BCE都是等边三角形,AE,CD分别与BD,BE交于点F,G,连接FG,有如下结论:①AE=CD ②∠BFG= 60°;③EF=CG;④AD⊥CD⑤FG ∥AC其中,正确的结论有__________________. (填序号)
【详解】
解:如图连接AA₁,由折叠的性质可得:AA₁⊥DE, DA= DA₁,A₂、A₃…均在AA₁上
又∵D是AB中点,∴DA= DB ,
∵DB= DA₁,
∴∠BA₁D=∠B ,
∴∠ADA₁=∠B +∠BA₁D=2∠B,
又∵∠ADA₁=2∠ADE ,
∴∠ADE=∠B
∵DE//BC,
∴AA₁⊥BC ,
6.如图,在直角坐标系中,点 ,点 ,若动点 从坐标原点出发,沿 轴正方向匀速运动,运动速度为 ,设点 运动时间为 秒,当 是以 为腰的等腰三角形时,直接写出 的所有值__________________.
【答案】 秒或 秒或 秒
【解析】
【分析】
分两种情况: 为腰或 为腰.分别作出符合条件的图形,计算出OP的长度,即可求出t的值.
∵点A、B、C在同一直线上,∴∠DBE=180°﹣60°﹣60°=60°,∴∠ABE=∠DBC=120°.
在△ABE和△DBC中,∵ ,∴△ABE≌△DBC,∴∠BAE=∠BDC,∴AE=CD,∴①正确;
在△ABF和△DBG中, ,∴△ABF≌△DBG,∴AF=DG,BF=BG.
∵∠FBG=180°﹣60°﹣60°=60°,∴△BFG是等边三角形,∴∠BFG=60°,∴②正确;
【答案】
【解析】
【分析】
根据中点的性质及折叠的性质可得DA=DA₁=DB,从而可得∠ADA₁=2∠B,结合折叠的性质可得.,∠ADA₁=2∠ADE,可得∠ADE=∠B,继而判断DE// BC,得出DE是△ABC的中位线,证得AA₁⊥BC,AA₁=2,由此发现规律: 同理 …于是经过第n次操作后得到的折痕Dn-1 En-1到BC的距离 ,据此求得 的值.
2.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形
(1)如图,在 中, ,过 作一直线交 于 ,若 把 分割成两个等腰三角形,则 的度数是______.
(2)已知在 中, ,过顶点和顶点对Βιβλιοθήκη Baidu上一点的直线,把 分割成两个等腰三角形,则 的最小度数为________.
【分析】
延长AC至E,使CE=BM,连接DE.证明△BDM≌△CDE(SAS),得出MD=ED,∠MDB=∠EDC,证明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,进而得出答案.
【详解】
延长AC至E,使CE=BM,连接DE.
∵BD=CD,且∠BDC=140°,
∴∠DBC=∠DCB=20°,
【详解】
解:如图所示,过点B作BD⊥x轴于点D,作BE⊥y轴于点E,分别以点B和点C为圆心,以BC长为半径画弧交y轴正半轴于点F,点H和点G
∵点B(-8,8),点C(-2,0),
∴DC=6cm,BD=8cm,由勾股定理得:BC=10cm
∴在直角三角形COG中,OC=2cm,CG=BC=10cm,
∴OP=OG= ,
∴∠EDN=70°=∠MDN,
在△MDN和△EDN中,
∴△MDN≌△EDN(SAS),
∴MN=EN=CN+CE,
∴△AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;
故答案为:4.
【点睛】
本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键.
考点:1轴对称;2等边三角形.
4.如图,将 沿着过 中点 的直线折叠,使点 落在 边上的 处,称为第1次操作,折痕 到 的距离记为 ,还原纸片后,再将 沿着过 中点 的直线折叠,使点 落在 边上的 处,称为第2次操作,折痕 到 的距离记为 ,按上述方法不断操作下去…经过第2020次操作后得到的折痕 到 的距离记为 ,若 ,则 的值为______.
∵A1A2=A1D,∠BA1C是△A1A2D的外角,
∴∠DA2A1= ∠BA1C= ×80°;
同理可得∠EA3A2=( )2×80°,∠FA4A3=( )3×80°,
∴第n个三角形中以An为顶点的底角度数是( )n-1×80°.
∴第2017个三角形中以A2019为顶点的底角度数是( )2018×80°,
【详解】
解:如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,
则OC′=OC=2,OD′=OD=3 ,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,
∴CP+PM+MD=C′+PM+D′M≥C′D′,
当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,
故答案为:( )2018×80°.
【点睛】
本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.
10.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是_____.
∴∠ABC=∠C=2∠BAC,
∵∠BAC+∠ABC+∠C=180°,
∴5∠BAC=180°,
∴∠BAC=36°.
④如图4,∵AB=AC,当AD=BD,CD=BC,
∴∠ABC=∠C,∠BAC=∠ABD,∠CDB=∠CBD,
∵∠BDC=∠BAC+∠ABD=2∠BAC,
∴∠ABC=∠C=3∠BAC,
∵∠BAC+∠ABC+∠C=180°,
作C′T⊥D′O于点T,
则C′T=OT= ,
∴D′T=4 ,
∴C′D′= ,
∴CP+PM+DM的最小值是 .
故答案为: .
【点睛】
本题考查了最短路径问题,掌握作轴对称点是解题的关键.
9.如图,在第1个△A1BC中,∠B=20°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,按此做法继续下去,第2019个等腰三角形的底角度数是______________.
【答案】
【解析】
【分析】
根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第2019个三角形中以A2019为顶点的内角度数.
【详解】
解:∵在△CBA1中,∠B=20°,A1B=CB,
∴∠BA1C= =80°,
当点P运动到点F或点H时,BE=8cm,BH=BF=10cm,
∴EF=EH=6cm
∴OP=OF=8-6=2(cm)或OP=OH=8+6=14(cm),
故答案为:2秒,4 秒或14秒.
【点睛】
本题综合考查了勾股定理和等腰三角形在平面直角坐标系中的应用,通过作图找出要求的点的位置,利用勾股定理来求解是本题的关键.
∴∠B=∠C=∠BAD,∠CAD=∠CDA,
∵∠CDA=∠B+∠BAD=2∠B,
∴∠BAC=3∠B,
∵∠BAC+∠B+∠C=180°,
∴5∠B=180°,
∴∠B=36°,
∴∠BAC=108°.
③如图3,∵AB=AC,当AD=BD=BC,
∴∠ABC=∠C,∠BAC=∠ABD,∠BDC=∠C,
∵∠BDC=∠A+∠ABD=2∠BAC,
∵AE=CD,AF=DG,∴EF=CG;∴③正确;
∵∠ADB=60°,而∠CDB=∠EAB≠30°,∴AD与CD不一定垂直,∴④错误.
∵△BFG是等边三角形,∴∠BFG=60°,∴∠GFB=∠DBA=60°,∴FG∥AB,∴⑤正确.
故答案为①②③⑤.
【点睛】
本题考查了等边三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质、平行线的判定和性质,证得△ABE≌△DBC是解题的关键.
∵∠A=40°,AB=AC=2,
∴∠ABC=∠ACB=70°,
∴∠MBD=∠ABC+∠DBC=90°,
同理可得∠NCD=90°,
∴∠ECD=∠NCD=∠MBD=90°,
在△BDM和△CDE中,
∴△BDM≌△CDE(SAS),
∴MD=ED,∠MDB=∠EDC,
∴∠MDE=∠BDC=140°,
∵∠MDN=70°,
【答案】
【解析】
【分析】
(1)由题意得:DA=DB,结合 ,即可得到答案;
(2)根据题意,分4种情况讨论,①当BD=AD,CD=AD,②当AD=BD,AC=CD,③AB=AC,当AD=BD=BC,④当AD=BD,CD=BC,分别求出 的度数,即可得到答案.
【详解】
(1)由题意得:当DA=BA,BD=BA时,不符合题意,
【答案】9.6.
故答案为:5
【点睛】
本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键
8.如图,∠AOB=45°,点M、点C在射线OA上,点P、点D在射线OB上,且OD=3 ,则CP+PM+DM的最小值是_____.
【答案】 .
【解析】
【分析】
如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,根据轴对称的性质得到OC′=OC=2,OD′=OD=3 ,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,于是得到CP+PM+MD=C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,于是得到结论.
∴7∠BAC=180°,
∴∠BAC= .
综上所述,∠A的最小度数为: .
故答案是: .
【点睛】
本题主要考查等腰三角形的性质定理以及三角形内角和定理与外角的性质,根据等腰三角形的性质,分类讨论,是解题的关键.
3.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为______.