人教版八年级数学上册 全等三角形中考真题汇编[解析版]

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、八年级数学全等三角形解答题压轴题(难)

1.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0.

(1)求a,b的值;

(2)点P在直线AB的右侧;且∠APB=45°,

①若点P在x轴上(图1),则点P的坐标为;

②若△ABP为直角三角形,求P点的坐标.

【答案】(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).【解析】

【分析】

(1)利用非负数的性质解决问题即可.

(2)①根据等腰直角三角形的性质即可解决问题.

②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可.【详解】

(1)∵a2+4a+4+b2﹣8b+16=0

∴(a+2)2+(b﹣4)2=0

∴a=﹣2,b=4.

(2)①如图1中,

∵∠APB=45°,∠POB=90°,

∴OP=OB=4,

∴P(4,0).

故答案为(4,0).

②∵a=﹣2,b=4

∴OA=2OB=4

又∵△ABP为直角三角形,∠APB=45°

∴只有两种情况,∠ABP=90°或∠BAP=90°

①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.

∴∠PCB=∠BOA=90°,

又∵∠APB=45°,

∴∠BAP=∠APB=45°,

∴BA=BP,

又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,

∴∠ABO=∠BPC,

∴△ABO≌△BPC(AAS),

∴PC=OB=4,BC=OA=2,

∴OC=OB﹣BC=4﹣2=2,

∴P(4,2).

②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.

∴∠PDA=∠AOB=90°,

又∵∠APB=45°,

∴∠ABP=∠APB=45°,

∴AP=AB,

又∵∠BAD+∠DAP=90°,

∠DPA+∠DAP=90°,

∴∠BAD=∠DPA,

∴△BAO≌△APP(AAS),

∴PD=OA=2,AD=OB=4,

∴OD=AD﹣0A=4﹣2=2,

∴P(2,﹣2).

综上述,P点坐标为(4,2),(2,﹣2).

【点睛】

本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.

2.在ABC ∆中,90,BAC AB AC ∠=︒=,点D 为直线BC 上一动点(点D 不与点,B C 重合),以AD 为腰作等腰直角DAF ∆,使90DAF ∠=︒,连接CF .

(1)观察猜想

如图1,当点D 在线段BC 上时,

①BC 与CF 的位置关系为__________;

②CF DC BC 、、之间的数量关系为___________(提示:可证DAB FAC ∆≅∆)

(2)数学思考

如图2,当点D 在线段CB 的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;

(3)拓展延伸

如图3,当点D 在线段BC 的延长线时,将DAF ∆沿线段DF 翻折,使点A 与点E 重合,连接CE CF 、,若4,22CD BC AC ==CE 的长.(提示:做AH BC ⊥于H ,做EM BD ⊥于M )

【答案】(1)①BC ⊥CF ;②BC =CF +DC ;(2)C ⊥CF 成立;BC =CF +DC 不成立,正确结论:DC =CF +BC ,证明详见解析;(3)32【解析】

【分析】

(1)①根据正方形的性质得,∠BAC =∠DAF =90°,推出△DAB ≌△FAC (SAS );②由正方形ADEF 的性质可推出△DAB ≌△FAC ,根据全等三角形的性质可得到=CF BD ,ACF ABD ∠=∠ ,根据余角的性质即可得到结论;

(2)根据正方形的性质得到∠BAC =∠DAF =90°,推出△DAB ≌△FAC ,根据全等三角形的性质以及等腰三角形的角的性质可得到结论;

(3)过A 作AH BC ⊥ 于H ,过E 作EM BD ⊥ 于M ,证明ADH DEM △≌△ ,推出3EM DH == ,2DM AH == ,推出3CM EM == ,即可解决问题.

【详解】

(1)①正方形ADEF 中,AD AF =

∵90BAC DAF ==︒∠∠

∴BAD CAF ∠=∠

在△DAB 与△FAC 中

AD AF BAD CAF AB AC =⎧⎪∠=∠⎨⎪=⎩

∴()DAB FAC SAS △≌△

∴B ACF ∠=∠

∴90ACB ACF +=︒∠∠ ,即BC CF ⊥ ;

②∵DAB FAC △≌△

∴=CF BD

∵BC BD CD =+

∴BC CF CD =+

(2)BC ⊥CF 成立;BC =CF +DC 不成立,正确结论:DC =CF +BC

证明:∵△ABC 和△ADF 都是等腰直角三角形

∴AB =AC ,AD =AF ,∠BAC =∠DAF =90°,

∴∠BAD =∠CAF

在△DAB 和△FAC 中AD AF BAD CAF AB AC =⎧⎪∠=∠⎨⎪=⎩

∴△DAB ≌△FAC (SAS )

∴∠ABD =∠ACF ,DB =CF

∵∠BAC =90°,AB =AC ,

∴∠ACB =∠ABC =45°

∴∠ABD =180°-45°=135°

∴∠ACF =∠ABD =135°

∴∠BCF =∠ACF -∠ACB =135°-45°=90°,

∴CF ⊥BC

∵CD =DB +BC ,DB =CF

∴DC =CF +BC

(3)过A 作AH BC ⊥ 于H ,过E 作EM BD ⊥ 于M ,

∵90BAC ∠=︒

,AB AV ==

∴1422

BC AH BH CH BC =

=====, ∴114CD BC == ∴3DH CH CD =+=

相关文档
最新文档