全等三角形(历年中考题)

合集下载

全等三角形32道经典题

全等三角形32道经典题

B O P A C Q E D
2.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个 更小的正三角形,……如此继续下去,结果如下表: 所剪次数 正三角形个数 1 4 2 7 3 10 4 13 … … n an
则 an=________________(用含 n 的代数式表示). O B E D C C A
9.如图(10),AC∥DE, BC∥EF,AC=DE 求证:AF=BD E C F A
A
C N M N E D B M E 图② D A
D B B
C
A 图①
10. 已知: 如图,B,C,E 三点在同一条直线上,AC ∥ DE ,AC CE ,ACD B . 求证: △ABC ≌△CDE . D A
三、简答题 1、已知:如图,AD=BC,AC=BD.求证:OD=OC
D O
C
A
B
2、如图,AB∥CD(1)用直尺和圆规作 C 的平分线 CP,CP 交 AB 于点 E(保留作图痕迹,不
写作法) (2)在(1)中作出的线段 CE 上取一点 F,连结 AF。要使△ACF≌△AEF,还需要添加 一个什么条件?请你写出这个条件(只要给出一种情况即可;图中不再增加字母和线段;不 要求证明)。 A B
A E C E’
A E D l E
A E D ’ D l D’ F ’ B
A E
B
l B C’ C (2)
’ B ′ C (3) ′ ′
C (4)
D
16.如图,在梯形 ABCD 中,AD∥BC,E 为 CD 中点,连接 AE 并延长 AE 交 BC 的延长线于 ′ 点 F.(1)求证:CF=AD;(2)若 AD=2,AB ′ =8,当 BC 为多少时,点 B 在线段 AF 的垂 直平分线上,为什么? A D

全等三角形中考真题200题(含答案解析)

全等三角形中考真题200题(含答案解析)

全等三角形中考题(精选 200 题)
A.60°
B.50°
C.45°
D.30°
14.(厦门)如图,在△ABC 和△BDE 中,点 C 在边 BD 上,边 AC 交边 BE 于点
F.若 AC=BD,AB=ED,BC=BE,则∠ACB 等于( )
A.∠EDB
B.∠BED
C. ∠AFB
D.2∠ABF
15.(双鸭山)如图所示,已知△ABC 和△DCE 均是等边三角形,点 B,C,E 在 同一条直线上,AE 与 BD 与 BD 交于点 O,AE 与 CD 交于点 G,AC 与 BD 交 于点 F,连接 OC,FG,其中正确结论的个数是( ) ①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.
A.1 个
B.2 个
C.3 个
D.4 个
16.(鄂州)如图,已知△ABC 中,∠ABC=45°,AC=4,H 是高 AD 和 BE 的交 点,则线段 BH 的长度为( )
A.
B.4
C.
D.5
全等三角形中考题(精选 200 题)
17.(乌兰察布)如图,已知等边△ABC 中,BD=CE,AD 与 BE 相交于点 P, 则∠APE 的度数为( )
21.(龙岩)如图,在边长为 4 的等边三角形 ABC 中,AD 是 BC 边上的高,点 E,F 是 AD 上的两点,则图中阴影部分的面积是( )
A.4
B.3
C.2
D.
22.(聊城)如图,在 Rt△ABC 中,AB=AC,AD⊥BC,垂足为 D.E、F 分别 是 CD、AD 上的点,且 CE=AF.如果∠AED=62°,那么∠DBF=( )
全等三角形中考题(精选 200 题)

中考数学三角形全等证明习题50题

中考数学三角形全等证明习题50题

探索三角形全等的条件练习题1、已知AD 是⊿ABC 的中线,BE ⊥AD ,CF ⊥AD ,问BE =CF 吗?说明理由。

2、已知AC =BD ,AE =CF ,BE =DF ,问AE ∥CF 吗?3、已知AB =CD ,BE =DF ,AE =CF ,问AB ∥CD 吗?4、已知在四边形ABCD 中,AB =CD ,AD =CB ,问AB ∥CD 吗?说明理由。

5、已知∠BAC =∠DAE ,∠1=∠2,BD =CE ,问ABD ≌⊿ACE .吗?为什么?6、已知CD ∥AB ,DF ∥EB ,DF =EB ,问AF =CE 吗?说明理由。

7、已知BE =CF ,AB =CD , ∠B =∠C .问AF =DE 吗?8、已知AD =CB , ∠A =∠C ,AE =CF ,问EB ∥DF 吗?说明理由。

9、已知,M 是AB 的中点,∠1=∠2,MC =MD ,问∠C =∠D 吗?说明理由。

10、已知,AE =DF ,BF =CE ,AE ∥DF ,问AB =CD 吗?说明理由。

11、已知∠1=∠2,∠3=∠4,问AC =AD 吗?说明理由。

12、已知∠E =∠F ,∠1=∠2,AB =CD ,问AE =DF 吗?说明理由。

13、已知ED ⊥AB ,EF ⊥BC ,BD =EF ,问BM =ME 吗?说明理由。

A C D B 1 2 3 4 A C D E F 1 2 A B C E H DA C M E FB D AB C E F D C B D E F D C F E A B D A D E B C 1 2 A D C E F B A C D B E F B A D F E C M A B C D 1 2 D C F E A B A B C D F E14、在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,问⊿BHD ≌⊿ACD ,为什么?15、已知∠A =∠D ,AC ∥FD ,AC =FD ,问AB ∥DE 吗?说明理由。

中考数学全等三角形真题汇总练习

中考数学全等三角形真题汇总练习

中考数学全等三角形真题汇总练习一.选择题1.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( B )A.PO B.PQC.MO D.MQ【考点】全等三角形的应用.【分析】利用全等三角形对应边相等可知要想求得MN的长,只需求得其对应边PQ的长,据此可以得到答案.【解答】解:要想利用△PQO≌△NMO求得MN的长,只需求得线段PQ的长,故选B.【点评】本题考查了全等三角形的应用,解题的关键是如何将实际问题与数学知识有机的结合在一起.2. 如图,已知点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A BCDEF 第4题图A.∠BCA=∠FB. ∠B=∠EC.BC∥EFD. ∠A=∠EDF3.如图,四边形ABCD是平行四边形,点E在边BC上,如果点F是边AD上的点,那么△CDF与△ABE不一定全等的条件是( ) A.DF=BE B.AF=CE C.CF=AE D.CF∥AE考点:平行四边形的性质;全等三角形的判定。

分析:根据平行四边形的性质和全等三角形的判定方法逐项分析即可.解答:解:A、当DF=BE时,有平行四边形的性质可得:AB=CD,∠B=∠D,利用SAS 可判定△CDF≌△ABE;B、当AF=CE时,有平行四边形的性质可得:BE=DF,AB=CD,∠B=∠D,利用SAS可判定△CDF≌△ABE;C、当CF=AE时,有平行四边形的性质可得:AB=CD,∠B=∠D,利用SSA不能可判定△CDF≌△ABE;D、当CF∥AE时,有平行四边形的性质可得:AB=CD,∠B=∠D,∠AEB=∠CFD,利用AAS可判定△CDF≌△ABE.故选C.点评:本题考查了平行四边形的性质和重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.4.如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( B )A.22 B.24 C.26 D.28【考点】梯形;全等三角形的判定与性质.【专题】数形结合.【分析】先判断△AMB≌△DMC,从而得出AB=DC,然后代入数据即可求出梯形ABCD的周长.【解答】解:∵AD∥BC,∴∠AMB=∠MBC,∠DMC=∠MCB,又∵MC=MB,∴∠MBC=∠MCB,∴∠AMB=∠DMC,在△AMB和△DMC中,∵AM=DM,MB=MC,∠AMB=∠DMC∴△AMB≌△DMC,∴AB=DC,四边形ABCD的周长=AB+BC+CD+AD=24.故选B.【点评】此题考查了梯形、全等三角形的判定与性质,属于基础题,解答本题的关键是判断△AMB≌△DMC,得出AB=DC,难度一般.二.填空题5.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是 DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等) .(不添加辅助线).考点:全等三角形的判定。

全等三角形(优选真题60道):三年(2021-2023)中考数学真题分项汇编(全国通用)(解析版)

全等三角形(优选真题60道):三年(2021-2023)中考数学真题分项汇编(全国通用)(解析版)

三年(2021-2023)中考数学真题分项汇编(全国通用)全等三角形(优选真题60道)一.选择题(共14小题)1.(2023•凉山州)如图,点E、点F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是()A.∠A=∠D B.∠AFB=∠DEC C.AB=DC D.AF=DE【分析】根据BE=CF求出BF=CE,再根据全等三角形的判定定理进行分析即可.【解答】解:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∴当∠A=∠D时,利用AAS可得△ABF≌△DCE,故A不符合题意;当∠AFB=∠DEC时,利用ASA可得△ABF≌△DCE,故B不符合题意;当AB=DC时,利用SAS可得△≌△DCE,故C不符合题意;当AF=DE时,无法证明△ABF≌△DCE,故D符合题意;故选:D.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL等.2.(2023•长春)如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA'、BB'的中点,只要量出A'B'的长度,就可以知道该零件内径AB的长度.依据的数学基本事实是()A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等C .两条直线被一组平行线所截,所得的对应线段成比例D .两点之间线段最短【分析】根据点O 为AA '、BB '的中点得出OA =OA ',OB =OB ',根据对顶角相等得到∠AOB =∠A 'OB ',从而证得△AOB 和△A 'OB '全等,于是有AB =A 'B ',问题得证.【解答】解:∵点O 为AA '、BB '的中点,∴OA =OA ',OB =OB ',由对顶角相等得∠AOB =∠A 'OB ',在△AOB 和△A 'OB '中,{OA =OA′∠AOB =∠A′OB′OB =OB′,∴△AOB ≌△A 'OB '(SAS ),∴AB =A 'B ',即只要量出A 'B '的长度,就可以知道该零件内径AB 的长度,故选:A .【点评】本题考查了三角形全等的判定与性质,正确运用三角形全等的判定定理是解题的关键.3.(2022•成都)如图,在△ABC 和△DEF 中,点A ,E ,B ,D 在同一直线上,AC ∥DF ,AC =DF ,只添加一个条件,能判定△ABC ≌△DEF 的是( )A .BC =DEB .AE =DBC .∠A =∠DEFD .∠ABC =∠D【分析】先根据平行线的性质得到∠A =∠D ,加上AC =DF ,则可根据全等三角形的判定方法对各选项进行判断.【解答】解:∵AC ∥DF ,∴∠A =∠D ,∵AC =DF ,∴当添加∠C =∠F 时,可根据“ASA ”判定△ABC ≌△DEF ;当添加∠ABC=∠DEF时,可根据“AAS”判定△ABC≌△DEF;当添加AB=DE时,即AE=BD,可根据“SAS”判定△ABC≌△DEF.故选:B.【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键,选用哪一种方法,取决于题目中的已知条件.4.(2022•云南)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F 与O点都不重合,连接ED、EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE【分析】由OB平分∠AOC,得∠DOE=∠FOE,由OE=OE,可知∠ODE=∠OFE,即可根据AAS得△DOE≌△FOE,可得答案.【解答】解:∵OB平分∠∴∠DOE=∠FOE,又OE=OE,若∠ODE=∠OFE,则根据AAS可得△DOE≌△FOE,故选项D符合题意,而增加OD=OE不能得到△DOE≌△FOE,故选项A不符合题意,增加OE=OF不能得到△DOE≌△FOE,故选项B不符合题意,增加∠ODE=∠OED不能得到△DOE≌△FOE,故选项C不符合题意,故选:D.【点评】本题考查全等三角形的判定,解题的关键是掌握全等三角形判定定理并会应用.5.(2022•金华)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO 的依据是()A .SSSB .SASC .AASD .HL【分析】根据题目中的条件和全等三角形的判定方法,可以得到判定△ABO ≌△DCO 的依据.【解答】解:在△AOB 和△DOC 中,{OA =OD∠AOB =∠DOC OB =OC,∴△AOB ≌△DOC (SAS ),故选:B .【点评】本题考查全等三角形的判定,解答本题的关键是明确题意,写出△AOB 和△DOC 全等的证明过程.6.(2022•扬州)如图,小明家仿古家具的一块三角形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为△ABC ,提供下列各组元素的数据,配出来的玻璃不一定符合要求的是( )A .AB ,BC ,CA B .AB ,BC ,∠B C .AB ,AC ,∠BD .∠A ,∠B ,BC【分析】直接利用全等三角形的判定方法分析得出答案.【解答】解:A .利用三角形三边对应相等,两三角形全等,三角形形状确定,故此选项不合题意;B .利用三角形两边、且夹角对应相等,两三角形全等,三角形形状确定,故此选项不合题意;C .AB ,AC ,∠B ,无法确定三角形的形状,故此选项符合题意;D .根据∠A ,∠B ,BC ,三角形形状确定,故此选项不合题意;故选:C .【点评】此题主要考查了全等三角形的应用,正确掌握全等三角形的判定方法是解题关键.7.(2022•湘西州)如图,在Rt △ABC 中,∠A =90°,M 为BC 的中点,H 为AB 上一点,过点C 作CG ∥AB ,交HM 的延长线于点G ,若AC =8,AB =6,则四边形ACGH 周长的最小值是( )A .24B .22C .20D .18【分析】通过证明△BMH ≌△CMG 可得BH =CG ,可得四边形ACGH 的周长即为AB +AC +GH ,进而可确定当MH ⊥AB 时,四边形ACGH 的周长有最小值,通过证明四边形ACGH 为矩形可得HG 的长,进而可求解.【解答】解:∵CG ∥AB ,∴∠B =∠MCG ,∵M 是BC 的中点,∴BM =CM ,在△BMH 和△CMG 中,{∠B =∠MCGBM =CM ∠BMH =∠CMG,∴△BMH ≌△CMG (ASA ),∴HM =GM ,BH =CG ,∵AB =6,AC =8,∴四边形ACGH 的周长=AC +CG +AH +GH =AB +AC +GH =14+GH ,∴当GH 最小时,即MH ⊥AB 时四边形ACGH 的周长有最小值,∵∠A =90°,MH ⊥AB ,∴GH ∥AC ,∴四边形ACGH 为矩形,∴GH =8,∴四边形ACGH 的周长最小值为14+8=22,故选:B .【点评】本题主要考查全等三角形的判定与性质,确定GH 的值是解题的关键.8.(2021•攀枝花)如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带()去最省事.A.①B.②C.③D.①③【分析】根据全等三角形的判定方法结合图形判断出带③去.【解答】解:由图形可知,③有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形,所以,最省事的做法是带③去.故选:C.【点评】本题考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题的关键.9.(2021•重庆)如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB 全等的是()A.∠ABC=∠DCB B.AB=DC C.AC=DB D.∠A=∠D【分析】根据证明三角形全等的条件AAS,SAS,ASA,SSS逐一验证选项即可.【解答】解:在△ABC和△DCB中,∵∠ACB=∠DBC,BC=BC,A:当∠ABC=∠DCB时,△ABC≌△DCB(ASA),故A能证明;B:当AB=DC时,不能证明两三角形全等,故B不能证明;C:当AC=DB时,△ABC≌△DCB(SAS),故C能证明;D:当∠A=∠D时,△ABC≌△DCB(AAS),故D能证明;故选:B.【点评】本题主要考查三角形全等的判定,熟练掌握三角形全等的判定是解题的关键.10.(2021•重庆)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥FD【分析】根据全等三角形的判定方法,可以判断添加各个选项中的条件是否能够判断△ABC≌△DEF,本题得以解决.【解答】解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,又∵∠B=∠E,∴当添加条件AB=DE时,△ABC≌△DEF(SAS),故选项A不符合题意;当添加条件∠A=∠D时,△ABC≌△DEF(AAS),故选项B不符合题意;当添加条件AC=DF ABC≌△DEF,故选项C符合题意;当添加条件AC∥FD时,则∠ACB=∠DFE,故△ABC≌△DEF(ASA),故选项D不符合题意;故选:C.【点评】本题考查全等三角形的判定,解答本题的关键是明确全等三角形的判定方法,利用数形结合的思想解答.11.(2021•盐城)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别截取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M 的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是()A.SAS B.ASA C.AAS D.SSS【分析】根据全等三角形的判定定理SSS 推出△COM ≌△DOM ,根据全等三角形的性质得出∠COM =∠DOM ,根据角平分线的定义得出答案即可.【解答】解:在△COM 和△DOM 中{OC =ODOM =OM MC =MD,所以△COM ≌△DOM (SSS ),所以∠COM =∠DOM ,即OM 是∠AOB 的平分线,故选:D .【点评】本题考查了全等三角形的判定定理和性质定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL ,全等三角形的对应角相等.12.(2021•青海)如图,在四边形ABCD 中,∠A =90°,AD =3,BC =5,对角线BD 平分∠ABC ,则△BCD 的面积为( )A .8B .7.5C .15D .无法确定【分析】过D 点作DE ⊥BC 于E ,如图,根据角平分线的性质得到DE =DA =3,然后根据三角形面积公式计算.【解答】解:过D 点作DE ⊥BC 于E ,如图,∵BD 平分∠ABC ,DE ⊥BC ,DA ⊥AB ,∴DE =DA =3,∴△BCD 的面积=12×5×3=7.5.故选:B .【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.13.(2021•哈尔滨)如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.30°B.25°C.35°D.65°【分析】由全等三角形的性质可求得∠ACD=65°,由垂直可得∠CAF+∠ACD=90°,进而可求解∠CAF 的度数.【解答】解:∵△ABC≌△DEC,∴∠ACB=∠DCE,∵∠BCE=65°,∴∠ACD=∠BCE=65°,∵AF⊥CD,∴∠AFC=90°,∴∠CAF+∠ACD=90°,∴∠CAF=90°﹣65°=25°,故选:B.【点评】本题主要考查全等三角形的性质,由全等三角形的性质求解∠ACD的度数是解题的关键.14.(2021•台湾)已知△ABC与△DEF全等,A、B、C的对应点分别为D、E、F,且E点在AC上,B、F、C、D四点共线,如图所示.若∠A=40°,∠CED=35°,则下列叙述何者正确?()A.EF=EC,AE=FC B.EF=EC,AE≠FCC.EF≠EC,AE=FC D.EF≠EC,AE≠FC【分析】由△ABC与△DEF全等,A、B、C的对应点分别为D、E、F,可得∠A=∠D=40°,AC=DF,∠ACB=∠DFE,可得EF=EC;∠CED=35°,∠D=40°可得∠D>∠CED,由大角对大边可得CE >CD;利用AC=DF,可得AC﹣CE<DF﹣CD,即AE<FC,由上可得正确选项.【解答】解:∵△ABC≌△DEF,∴∠A=∠D=40°,AC=DF,∠ACB=∠DFE,∵∠ACB=∠DFE,∴EF=EC.∵∠CED=35°,∠D=40°,∴∠D>∠CED.∴CE>CD.∵AC=DF,∴AC﹣CE<DF﹣CD,即AE<FC.∴AE≠FC.∴EF=EC,AE≠FC.故选:B.【点评】本题主要考查了全等三角形的性质.利用全等三角形对应角相等,对应边相等是解题的关键.二.填空题(共16小题)15.(2023•成都)如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为.【分析】根据全等三角形的对应边相等得到EF=BC=8,计算即可.【解答】解:∵△ABC≌△DEF,∴BC=EF,又BC=8,∴EF=8,∵EC=5,∵CF=EF﹣EC=8﹣5=3.故答案为:3.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.16.(2022•黑龙江)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=.【分析】过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB=√AC2+BC2=√62+82=10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=12AC•CD+12AB•DE=12AC•BC,即12×6•CD+12×10•CD=12×6×8,解得CD=3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并利用三角形的面积列出方程是解题的关键.17.(2022•株洲)如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON ⊥BC于点N,若OM=ON,则∠ABO=度.【分析】方法一:根据OM⊥AB,ON⊥BC,可知∠OMB=∠ONB=90°,从而可证Rt△OMB≌Rt△ONB (HL),根据全等三角形的性质可得∠OBM=∠OBN,即可求出∠ABO的度数.方法二:根据角平分线的判定定理求解即可.【解答】解:方法一:∵OM⊥,ON⊥BC,∴∠OMB=∠ONB=90°,在Rt△OMB和Rt△ONB中,{OM=ON,OB=OB∴Rt△OMB≌Rt△ONB(HL),∴∠OBM=∠OBN,∵∠ABC=30°,∴∠ABO=15°.方法二:∵OM⊥AB,ON⊥BC,又∵OM=ON,∴OB平分∠ABC,∴∠OBM=∠OBN,∵∠ABC=30°,∴∠ABO=15°.故答案为:15.【点评】本题考查了全等三角形的判定和性质,熟练掌握判定直角三角形全等特有的方法(HL)是解题的关键.18.(2022•牡丹江)如图,CA=CD,∠ACD=∠BCE,请添加一个条件,使△ABC≌△DEC.【分析】根据等式的性质可得∠DCE=∠ACB,然后再利用全等三角形的判定方法SAS,ASA或AAS即可解答.【解答】解:∵∠ACD=∠BCE,∴∠ACD+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵CA=CD,CB=CE,∴△ABC≌△DEC(SAS),故答案为:CB=CE.【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.19.(2022•南通)如图,点B,F,C,E在一条直线上,AB∥ED,AC∥FD,要使△ABC≌△DEF,只需添加一个条件,则这个条件可以是.【分析】根据平行线的性质可得∠B=∠E,∠ACB=∠DFE,然后再利用全等三角形的判定方法即可解答.【解答】解:∵AB∥ED,∴∠B=∠E,∵AC∥DF,∴∠ACB=∠DFE,∵AB=DE,∴△ABC≌△DEF(AAS),故答案为:AB=DE(答案不唯一).【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.20.(2022•北京)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S△ACD=.【分析】过D点作DH⊥AC于H,如图,根据角平分线的性质得到DE=DH=1,然后根据三角形面积公式计算.【解答】解:过D点作DH⊥AC于H,如图,∵AD平分∠BAC,DE⊥AB,DH⊥AC,∴DE=DH=1,∴S△ACD=12×2×1=1.故答案为:1.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.21.(2022•宁夏)如图,AC,BD相交于点O,OB=OD,要使△AOB≌△COD,添加一个条件是.(只写一个)【分析】根据全等三角形的判定方法,即可解答.【解答】解:∵OB =OD ,∠AOB =∠COD ,OA =OC ,∴△AOB ≌△COD (SAS ),∴要使△AOB ≌△COD ,添加一个条件是OA =OC ,故答案为:OA =OC (答案不唯一).【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.22.(2022•黑龙江)如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,OA =OC ,请你添加一个条件 ,使△AOB ≌△COD .【分析】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是OD ,理由是:在△AOB 和△COD 中,{AO =CO∠AOB =∠COD BO =DO,∴△AOB ≌△COD (SAS ),故答案为:OB =OD (答案不唯一).【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理是SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL 等.23.(2022•湖北)如图,已知AB ∥DE ,AB =DE ,请你添加一个条件 ,使△ABC ≌△DEF .【分析】添加条件:∠A =∠D ,根据ASA 即可证明△ABC ≌△DEF .【解答】解:添加条件:∠A =∠D .∵AB ∥DE ,∴∠B =∠DEC ,在△ABC 和△DEF 中,{∠A =∠DAB =DE ∠B =∠DEC,∴△ABC ≌△DEF (ASA ),故答案为:∠A =∠D .(答案不唯一)【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.24.(2021•福建)如图,AD 是△ABC 的角平分线.若∠B =90°,BD =√3,则点D 到AC 的距离是 .【分析】由角平分线的性质可求DE =BD =√3,即可求解.【解答】解:如图,过点D 作DE ⊥AC 于E ,∵AD 是△ABC 的角平分线.∠B =90°,DE ⊥AC ,∴DE =BD =√3,∴点D 到AC 的距离为√3,故答案为√3.【点评】本题考查了角平分线的性质,掌握角平分线上的点到角的两边距离相等是解题的关键.25.(2021•齐齐哈尔)如图,AC =AD ,∠1=∠2,要使△ABC ≌△AED ,应添加的条件是 .(只需写出一个条件即可)【分析】利用∠1=∠2得到∠BAC=∠EAD,由于AC=AD,然后根据全等三角形的判定方法添加条件.【解答】解:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD,∵AC=AD,∴当添加∠B=∠E时,可根据“AAS”判断△ABC≌△AED;当添加∠C=∠D时,可根据“ASA”判断△ABC≌△AED;当添加AB=AE时,可根据“SAS”判断△ABC≌△AED.故答案为∠B=∠E或∠C=∠D或AB=AE.【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决此类问题的关键.26.(2021•长沙)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若BC=4,DE=1.6,则BD的长为.【分析】由角平分线的性质可知CD=DE=1.6,得出BD=BC﹣CD=4﹣1.6=2.4.【解答】解:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴CD=DE,∵DE=1.6,∴CD=1.6,∴BD=BC﹣CD=4﹣1.6=2.4.故答案为:2.4【点评】本题主要考查了角平分线的性质,熟记角平分线上的点到角两边的距离相等是解题的关键.27.(2021•成都)如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于12MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若点D到AB的距离为1,则BC的长为.【分析】由题目作图知,AD是∠CAB的平分线,过点D作DH⊥AB,则CD=DH=1,进而求解.【解答】解:过点D作DH⊥AB,则DH=1,由题目作图知,AD是∠CAB的平分线,则CD=DH=1,∵△ABC为等腰直角三角形,故∠B=45°,则△DHB为等腰直角三角形,故BD=√2HD=√2,则BC=CD+BD=1+√2,故答案为:1+√2.【点评】本题考查的是角平分线的性质,涉及到几何作图、等腰直角三角形的性质等,有一定的综合性,难度适中.28.(2021•德州)如图,点E,F在BC上,BE=CF,∠A=∠D.请添加一个条件,使△ABF≌△DCE.【分析】求出BF=CE,再根据全等三角形的判定定理判断即可.【解答】解:∵BE =CF ,∴BE +EF =CF +EF ,∴BF =CE ,添加∠B =∠C ,在△ABF 和△DCE 中,{∠B =∠C∠A =∠D BF =CE,∴△ABF ≌△DCE (AAS ),故答案为:∠B =∠C (答案不唯一).【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键.29.(2021•常德)如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,DE ⊥AB 于E ,若CD =3,BD =5,则BE 的长为 .【分析】根据角的平分线上的点到角的两边的距离相等,得DE =DC =3,再由勾股定理求得BE 的长即可.【解答】解:∵AD 平分∠CAB ,又∵DE ⊥AB ,DC ⊥AC ,∴DE =DC =3,∵BD =5,∴BE =√BD 2−DE 2=√52−32=4,故答案为4.【点评】本题考查了角平分线的性质.角平分线上的任意一点到角的两边距离相等.比较简单,属于基础题.30.(2021•济宁)如图,四边形ABCD 中,∠BAC =∠DAC ,请补充一个条件 ,使△ABC ≌△ADC .【分析】本题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是AD =AB ,理由是:在△ABC 和△ADC 中{AC =AC∠BAC =∠DAC AD =AB,∴△ABC ≌△ADC (SAS ),故答案为:AD =AB (答案不唯一).【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL .三.解答题(共30小题)31.(2023•长沙)如图,AB =AC ,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E .(1)求证:△ABE ≌△ACD ;(2)若AE =6,CD =8,求BD 的长.【分析】(1)利用“AAS ”可证明△ABE ≌△ACD ;(2)先利用全等三角形的性质得到AD =AE =6,再利用勾股定理计算出AC ,从而得到AB 的长,然后计算AB ﹣AD 即可.【解答】(1)证明:∵CD ⊥AB ,BE ⊥AC ,∴∠AEB =∠ADC =90°,在△ABE 和△ACD 中,{∠AEB =∠ADC∠BAE =∠CAD AB =AC ,∴△ABE ≌△ACD (AAS );(2)解:∵△ABE ≌△ACD ,∴AD =AE =6,在Rt △ACD 中,AC =√AD 2+CD 2=√62+82=10,∵AB =AC =10,∴BD =AB ﹣AD =10﹣6=4.【点评】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.32.(2023•吉林)如图,点C 在线段BD 上,△ABC 和△DEC 中,∠A =∠D ,AB =DE ,∠B =∠E .求证:AC =DC .【分析】由两个三角形的全等判定ASA 直接可判断两个三角形全等,得出结论.【解答】解:在△ABC 和△DEC 中,{∠A =∠DAB =DE ∠B =∠E,∴△ABC ≌△DEC (ASA ),∴AC =DC .【点评】本题考查了三角形全等的判定ASA ,掌握ASA 判定两个三角形全等的方法是解题的关键.33.(2023•大连)如图,在△ABC 和△ADE 中,延长BC 交DE 于F .BC =DE ,AC =AE ,∠ACF +∠AED =180°.求证:AB =AD .【分析】由“SAS ”可证△ABC ≌△ADE ,可得结论.【解答】证明:∵∠ACB +∠ACF =∠ACF +∠AED =180°,∴∠ACB =∠AED ,在△ABC 和△ADE 中,{BC =DE∠ACB =∠AED AC =AE,∴△ABC ≌△ADE (SAS ),∴AB =AD .【点评】本题考查了全等三角形的判定和性质,证明三角形全等是解题的关键.34.(2023•福建)如图,OA =OC ,OB =OD ,∠AOD =∠COB .求证:AB =CD .【分析】根据角的和差求得∠AOB =∠COD ,根据全等三角形的判定和性质定理即可得到结论.【解答】证明:∵∠AOD =∠COB ,∴∠AOD ﹣∠BOD =∠COB ﹣∠BOD ,即∠AOB =∠COD .在△AOB 和△COD 中,{OA =OC∠AOB =∠COD OB =OD,∴△AOB ≌△COD (SAS ),∴AB =CD .【点评】本题考查了等式的基本性质、全等三角形的判定与性质,熟练掌握全等三角形的判定和性质定理是解题的关键.35.(2023•聊城)如图,在四边形ABCD 中,点E 是边BC 上一点,且BE =CD ,∠B =∠AED =∠C .(1)求证:∠EAD =∠EDA ;(2)若∠C =60°,DE =4时,求△AED 的面积.【分析】(1)利用AAS 证明∴△ABE ≌△ECD ,即可证明结论;(2)先证明△AED 为等边三角形,可得AE =AD =ED =4,过A 点作AF ⊥ED 于F ,利用等边三角形的性质可得EF =2,再根据勾股定理求得AF 的长,利用三角形的面积公式可求解.【解答】(1)证明:∵∠B =∠AED =∠C ,∠AEC =∠B +∠BAE =∠AED +∠CED ,∴∠BAE =∠CED ,在△ABE 和△ECD 中,{∠BAE =∠CED∠B =∠C BE =CD,∴△ABE ≌△ECD (AAS ),∴AE =ED ,∴∠EAD =∠EDA ;(2)解:∵∠AED =∠C =60°,AE =ED ,∴△AED 为等边三角形,∴AE =AD =ED =4,过A 点作AF ⊥ED 于F ,∴EF =12ED =2,∴AF =√AE 2−EF 2=√42−22=2√3,∴S △AED =12ED •AF =12×4×2√3=4√3.【点评】本题主要考查全等三角形的判定与性质,等边三角形的判定与性质,勾股定理,三角形的面积等知识的综合运用,证明△ABE ≌△ECD 是解题的关键.36.(2023•陕西)如图,在△ABC 中,∠B =50°,∠C =20°.过点A 作AE ⊥BC ,垂足为E ,延长EA 至点D .使AD =AC .在边AC 上截取AF =AB ,连接DF .求证:DF =CB .【分析】利用三角形内角和定理得∠CAB 的度数,再根据全等三角形的判定与性质可得结论.【解答】证明:在△ABC 中,∠B =50°,∠C =20°,∴∠CAB =180°﹣∠B ﹣∠C =110°.∵AE ⊥BC .∴∠AEC =90°.∴∠DAF =∠AEC +∠C =110°,∴∠DAF =∠CAB .在△DAF 和△CAB 中,{AD =BC∠DAF =∠CAB AF =AB,∴△DAF ≌△CAB (SAS ).∴DF =CB .【点评】此题考查的是全等三角形的判定与性质,掌握其性质定理是解决此题的关键.37.(2023•乐山)如图,已知AB 与CD 相交于点O ,AC ∥BD ,AO =BO ,求证:AC =BD .【分析】由平行线的性质可得∠A =∠B ,∠C =∠D ,利用AAS 即可判定△AOC ≌△BOD ,从而得AC =BD .【解答】证明:∵AC ∥BD ,∴∠A =∠B ,∠C =∠D ,在△AOC 和△BOD 中,{∠C =∠D∠A =∠B AO =BO,∴△AOC ≌△BOD (AAS ),∴AC =BD .【点评】本题主要考查全等三角形的判定与性质,解答的关键是熟记全等三角形的判定定理与性质并灵活运用.38.(2023•苏州)如图,在△ABC 中,AB =AC ,AD 为△ABC 的角平分线.以点A 圆心,AD 长为半径画弧,与AB ,AC 分别交于点E ,F ,连接DE ,DF .(1)求证:△ADE ≌△ADF ;(2)若∠BAC =80°,求∠BDE 的度数.【分析】(1)由角平分线定义得出∠BAD =∠CAD .由作图知:AE =AF .由SAS 可证明△ADE ≌△ADF ;(2)由作图知:AE =AD .得出∠AED =∠ADE ,由等腰三角形的性质求出∠ADE =70°,则可得出答案.【解答】(1)证明:∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD .由作图知:AE =AF .在△ADE 和△ADF 中,{AE =AF∠BAD =∠CAD AD =AD,∴△ADE ≌△ADF (SAS );(2)解:∵∠BAC =80°,AD 为△ABC 的角平分线,∴∠EAD =12∠BAC =40°,由作图知:AE =AD .∴∠AED =∠ADE ,∴∠ADE =12×(180°﹣40°)=70°,∵AB =AC ,AD 为△ABC 的角平分线,∴AD ⊥BC .∴∠BDE =90°﹣∠ADE =20°.【点评】本题考查了全等三角形的判定与性质,角平分线的性质,等腰三角形的性质,熟练掌握全等三角形的判定是解题的关键.39.(2023•宜宾)已知:如图,AB ∥DE ,AB =DE ,AF =DC .求证:∠B =∠E .【分析】由AF =DC ,得AC =DF ,由AB ∥DE ,得∠A =∠D ,即可证△ABC ≌△DEF (SAS ),故∠B =∠E .【解答】证明:∵AF =DC ,∴AF +CF =DC +CF ,即AC =DF ,∵AB ∥DE ,∴∠A =∠D ,在△ABC 和△DEF 中,{AB =DE∠A =∠D AC =DF,∴△ABC ≌△DEF (SAS ),∴∠B =∠E .【点评】本题考查三角形全等的判定与性质,解题的关键是掌握三角形全等的判定定理.40.(2023•云南)如图,C 是BD 的中点,AB =ED ,AC =EC .求证:△ABC ≌△EDC .【分析】求出BC =DC ,根据全等三角形的判定定理证明即可.【解答】证明:∵C 是BD 的中点,∴BC =DC ,在△ABC 和△EDC 中,{AB =EDAC =EC BC =DC,∴△ABC ≌△EDC (SSS ).【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL .41.(2023•泸州)如图,点B 在线段AC 上,BD ∥CE ,AB =EC ,DB =BC .求证:AD =EB .【分析】由平行线的性质可得∠A =∠EBC ,由“AAS ”可证△ABD ≌△BEC ,可得BD =EC .【解答】证明:∵BD ∥CE ,∴∠ABD =∠C ,在△ABD 和△ECB 中,{AB =EC ,∠ABD =∠C ,DB =BC ,∴△ABD ≌△ECB (SAS ),∴AD =EB .【点评】本题考查了全等三角形的判定和性质,涉及到平行线的性质,熟练运用全等三角形的判定是解题的关键.42.(2022•益阳)如图,在Rt △ABC 中,∠B =90°,CD ∥AB ,DE ⊥AC 于点E ,且CE =AB .求证:△CED ≌△ABC .【分析】由垂直的定义可知,∠DEC =∠B =90°,由平行线的性质可得,∠A =∠DCE ,进而由ASA 可得结论.【解答】证明:∵DE ⊥AC ,∠B =90°,∴∠DEC =∠B =90°,∵CD ∥AB ,∴∠A =∠DCE ,在△CED 和△ABC 中,{∠DCE =∠ACE =AB ∠DEC =∠B,∴△CED ≌△ABC (ASA ).【点评】本题主要考查全等三角形的判定,垂直的定义和平行线的性质,熟知全等三角形的判定定理是解题基础.43.(2022•长沙)如图,AC 平分∠BAD ,CB ⊥AB ,CD ⊥AD ,垂足分别为B ,D .(1)求证:△ABC ≌△ADC ;(2)若AB =4,CD =3,求四边形ABCD 的面积.【分析】(1)由AC 平分∠BAD ,得∠BAC =∠DAC ,根据CB ⊥AB ,CD ⊥AD ,得∠B =90°=∠D ,用AAS 可得△ABC ≌△ADC ;(2)由(1)△ABC ≌△ADC ,得BC =CD =3,S △ABC =S △ADC ,求出S △ABC =12AB •BC =6,即可得四边形ABCD 的面积是12.【解答】(1)证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC ,∵CB ⊥AB ,CD ⊥AD ,∴∠B =90°=∠D ,在△ABC 和△ADC 中,{∠B =∠D∠BAC =∠DAC AC =AC,∴△ABC ≌△ADC (AAS );(2)解:由(1)知:△ABC ≌△ADC ,∴BC =CD =3,S △ABC =S △ADC ,∴S △ABC =12AB •BC =12×4×3=6,∴S △ADC =6,∴S 四边形ABCD =S △ABC +S △ADC =12,答:四边形ABCD 的面积是12.【点评】本题考查全等三角形的判定与性质,解题的关键是掌握全等三角形的判定定理.44.(2022•西藏)如图,已知AD 平分∠BAC ,AB =AC .求证:△ABD ≌△ACD .【分析】由角平分线的定义得∠BAD =∠CAD ,再利用SAS 即可证明△ABD ≌△ACD .【解答】证明:∵AD 平分∠BAC ,∴∠BAD =∠CAD ,在△ABD 和△ACD 中,{AB =AC∠BAD =∠CAD AD =AD,∴△ABD ≌△ACD (SAS ).【点评】本题主要考查了全等三角形的判定,角平分线的定义等知识,熟练掌握全等三角形的判定定理是解题的关键.45.(2022•衡阳)如图,在△ABC 中,AB =AC ,D 、E 是BC 边上的点,且BD =CE .求证:AD =AE .【分析】由“SAS ”可证△ABD ≌△ACE ,可得AD =AE .【解答】证明:∵AB =AC ,∴∠B =∠C ,在△ABD 和△ACE 中,{AB =AC∠B =∠C BD =CE,∴△ABD ≌△ACE (SAS ),∴AD =AE .【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,掌握全等三角形的判定方法是解题的关键.46.(2022•兰州)如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB =AE ,AC =AD ,∠BAD =∠EAC ,∠C =50°,求∠D 的大小.【分析】由∠BAD =∠EAC 可得∠BAC =∠EAD ,根据SAS 可证△BAC ≌△EAD ,再根据全等三角形的性质即可求解.【解答】解:∵∠BAD =∠EAC ,∴∠BAD +∠CAD =∠EAC +∠CAD ,即∠BAC =∠EAD ,在△BAC 与△EAD 中,{AB =AE∠BAC =∠EAD AC =AD,∴△BAC ≌△EAD (SAS ),∴∠D =∠C =50°.【点评】本题考查了全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.47.(2022•衢州)已知:如图,∠1=∠2,∠3=∠4.求证:AB =AD .【分析】根据邻补角的定义得出∠ACB =∠ACD ,利用ASA 证明△ACB ≌△ACD ,根据全等三角形的性质即可得解.【解答】证明:∵∠3=∠4,∴∠ACB =∠ACD ,在△ACB 和△ACD 中,{∠1=∠2AC =AC∠ACB =∠ACD ,∴△ACB ≌△ACD (ASA ),∴AB =AD .【点评】此题考查了全等三角形的判定与性质,利用ASA 证明△ACB ≌△ACD 是解题的关键.48.(2022•福建)如图,点B ,F ,C ,E 在同一条直线上,BF =EC ,AB =DE ,∠B =∠E .求证:∠A =∠D .【分析】利用SAS 证明△ABC ≌△DEF ,根据全等三角形的性质即可得解.【解答】证明:∵BF =EC ,即BC =EF ,在△ABC 和△DEF 中,{AB =DE ∠B =∠EBC =EF ,∴△ABC ≌△DEF (SAS ),∴∠A =∠D .【点评】此题考查了全等三角形的判定与性质,利用SAS 证明△ABC ≌△DEF 是解题的关键.49.(2022•乐山)如图,B 是线段AC 的中点,AD ∥BE ,BD ∥CE .求证:△ABD ≌△BCE .【分析】根据ASA 判定定理直接判定两个三角形全等.【解答】证明:∵点B 为线段AC 的中点,∴AB =BC ,∵AD ∥BE ,∴∠A =∠EBC ,∵BD ∥CE ,∴∠C =∠DBA ,在△ABD 与△BCE 中,{∠A =∠EBCAB =BC ∠DBA =∠C,∴△ABD ≌△BCE .(ASA ).【点评】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.50.(2022•陕西)如图,在△ABC 中,点D 在边BC 上,CD =AB ,DE ∥AB ,∠DCE =∠A .求证:DE =BC .。

《全等三角形》中考专练附答案

《全等三角形》中考专练附答案
【解答】解:∵CF∥AB,
∴∠A=∠FCE, ∠ADE=∠F,
在△ADE和△FCE中 ,
∴△ADE≌△CFE〔AAS〕,
∴AD=CF=3,
∵AB=4,
∴DB=AB﹣AD=4﹣3=1.
应选:B.
【点评】此题考查了全等三角形的性质和判定,平行线的性质的应用,能判定△ADE≌△FCE是解此题的关键,解题时注意运用全等三角形的对应边相等,对应角相等.
【点评】此题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键.逸夫中学2021-2021学年八〔下)数学校本作业 ---完全平方公式
在△ABE和△DBE中, ,
∴△ABE≌△DBE〔SAS〕;
〔2〕解:∵∠A=100°,∠C=50°,
∴∠ABC=30°,
∵BE平分∠ABC,
∴∠ABE=∠DBE= ∠ABC=15°,
在△ABE中,∠AEB=180°﹣∠A﹣∠ABE=180°﹣100°﹣15°=65°.
【点评】此题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键.
3.〔2021•山东威海•3分〕如图,在四边形ABCD中,AB∥DC,过点C作CE⊥BC,交AD于点E,连接BE, ∠BEC=∠DEC,假设AB=6,那么CD=3.
【分析】延长BC、AD相交于点F,可证△EBC≌△EFC,可得BC=CF,那么CD为△ABF的中位线,故CD= 可求出.
【解答】解:如图,延长BC、AD相交于点F,
全等三角形
1.〔2021·贵州安顺·3分〕如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加以下一个条件后,仍无法判定△ABC≌△DEF的是〔 〕

中考数学真题《三角形及全等三角形》专项测试卷(附答案)

中考数学真题《三角形及全等三角形》专项测试卷(附答案)

中考数学真题《三角形及全等三角形》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(30题)一 、单选题1.(2023·吉林长春·统考中考真题)如图,工人师傅设计了一种测零件内径AB 的卡钳 卡钳交叉点O 为AA ' BB '的中点 只要量出A B ''的长度 就可以道该零件内径AB 的长度.依据的数学基本事实是( )A .两边及其夹角分别相等的两个三角形全等B .两角及其夹边分别相等的两个三角形全等C .两余直线被一组平行线所截 所的对应线段成比例D .两点之间线段最短2.(2023·四川宜宾·统考中考真题)如图, AB CD ∥ 且40A ∠=︒ 24D ∠=︒则,E ∠等于( )A .40︒B .32︒C .24︒D .16︒3.(2023·云南·统考中考真题)如图,AB 、两点被池塘隔开 、、A BC 三点不共线.设AC BC 、的中点分别为M N 、.若3MN =米则,AB =( )A .4米B .6米C .8米D .10米4.(2023·四川眉山·统考中考真题)如图,ABC 中 ,40=∠=︒AB AC A 则,ACD ∠的度数为( )A .70︒B .100︒C .110︒D .140︒5.(2023·湖南·统考中考真题)下列长度的各组线段能组成一个三角形的是( )A .1cm,2cm,3cmB .3cm,8cm,5cmC .4cm,5cm,10cmD .4cm,5cm,6cm6.(2023·山西·统考中考真题)如图,一束平行于主光轴的光线经凸透镜折射后 其折射光线与一束经过光心O 的光线相交于点P 点F 为焦点.若1155,230∠=︒∠=︒则,3∠的度数为( )A .45︒B .50︒C .55︒D .60︒7.(2023·福建·统考中考真题)阅读以下作图步骤:①在OA 和OB 上分别截取,OC OD 使OC OD =①分别以,C D 为圆心 以大于12CD 的长为半径作弧 两弧在AOB ∠内交于点M①作射线OM 连接,CM DM 如图所示.根据以上作图 一定可以推得的结论是( )A .12∠=∠且CM DM =B .13∠=∠且CM DM =C .12∠=∠且OD DM = D .23∠∠=且OD DM =8.(2023·浙江台州·统考中考真题)如图,锐角三角形ABC 中 AB AC = 点DE 分别在边AB AC 上连接BE CD .下列命题中 假命题...是( ).A .若CD BE =则,DCB EBC ∠=∠B .若DCB EBC ∠=∠则,CD BE = C .若BD CE =则,DCB EBC ∠=∠ D .若DCB EBC ∠=∠则,BD CE =9.(2023·河北·统考中考真题)在ABC 和A B C '''中 3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒则,C '∠=( )A .30︒B .n ︒C .n ︒或180n ︒-︒D .30︒或150︒二 填空题 10.(2023·江苏连云港·统考中考真题)一个三角形的两边长分别是3和5则,第三边长可以是__________.(只填一个即可)11.(2023·浙江金华·统考中考真题)如图,把两根钢条OA OB ,的一个端点连在一起 点C D ,分别是OA OB ,的中点.若4cm CD =则,该工件内槽宽AB 的长为__________cm .12.(2023·新疆·统考中考真题)如图,在ABC 中 若AB AC = AD BD = 24CAD ∠=︒则,C ∠=______︒.13.(2023·安徽·统考中考真题)清初数学家梅文鼎在著作《平三角举要》中 对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明 证明过程中创造性地设计直角三角形 得出了一个结论:如图,AD 是锐角ABC 的高则,2212AB AC BD BC BC ⎛⎫-=+ ⎪⎝⎭.当7,6AB BC == 5AC =时 CD =____.14.(2023·浙江·统考中考真题)如图,在ABC 中 AC 的垂直平分线交BC 于点D 交AC 于点E B ADB ∠=∠.若4AB =则,DC 的长是__________.15.(2023·湖北随州·统考中考真题)如图,在Rt ABC △中 9086C AC BC ∠=︒==,, D 为AC 上一点 若BD 是ABC ∠的角平分线则,AD =___________.16.(2023·湖北十堰·统考中考真题)一副三角板按如图所示放置 点A 在DE 上 点F 在BC 上 若35EAB ∠=︒则,DFC ∠=___________________︒.17.(2023·浙江杭州·统考中考真题)如图,点,D E 分别在ABC 的边,AB AC 上 且DE BC ∥ 点F 在线段BC 的延长线上.若28ADE ∠=︒ 118ACF ︒∠=则,A ∠=_________.18.(2023·湖北荆州·统考中考真题)如图,CD 为Rt ABC △斜边AB 上的中线 E 为AC 的中点.若8AC = 5CD =则,DE =___________.19.(2023·湖南·统考中考真题)如图,在Rt ABC △中 90C ∠=︒ 按以下步骤作图:①以点A 为圆心 以小于AC 长为半径作弧 分别交,AC AB 于点M N ①分别以M N 为圆心 以大于12MN 的长为半径作弧 在BAC ∠内两弧交于点O ①作射线AO 交BC 于点D .若点D 到AB 的距离为1则,CD 的长为__________.20.(2023·广东深圳·统考中考真题)如图,在ABC 中 AB AC = 3tan 4B = 点D 为BC 上一动点 连接AD 将ABD △沿AD 翻折得到ADE DE 交AC 于点G GE DG < 且:3:1AG CG =则,AGEADG S S =三角形三角形______.三 解答题21.(2023·江苏苏州·统考中考真题)如图,在ABC 中 ,AB AC AD =为ABC 的角平分线.以点A 圆心 AD 长为半径画弧 与,AB AC 分别交于点,E F 连接,DE DF .(1)求证:ADE ADF ≌(2)若80BAC ∠=︒ 求BDE ∠的度数.22.(2023·江西·统考中考真题)(1038tan 453︒-(2)如图,AB AD = AC 平分BAD ∠.求证:ABC ADC △△≌.23.(2023·云南·统考中考真题)如图,C 是BD 的中点 ,AB ED AC EC ==.求证:ABC EDC △≌△.24.(2023·四川宜宾·统考中考真题)已知:如图,AB DE ∥ AB DE = AF DC =.求证:B E ∠=∠.25.(2023·福建·统考中考真题)如图,,,OA OC OB OD AOD COB ==∠=∠.求证:AB CD =.26.(2023·全国·统考中考真题)如图,点C 在线段BD 上 在ABC 和DEC 中A D AB DE B E ∠=∠=∠=∠,,.求证:AC DC =.27.(2023·四川乐山·统考中考真题)如图,AB CD 相交于点O AO=BO AC①DB .求证:AC=BD .28.(2023·山东临沂·统考中考真题)如图,90,,,A AB AC BD AB BC AB BD ∠=︒=⊥=+.(1)写出AB 与BD 的数量关系(2)延长BC 到E 使CE BC = 延长DC 到F 使CF DC = 连接EF .求证:EF AB ⊥.(3)在(2)的条件下 作ACE ∠的平分线 交AF 于点H 求证:AH FH =.29.(2023·山东聊城·统考中考真题)如图,在四边形ABCD 中 点E 是边BC 上一点 且BE CD = B AED C ∠=∠=∠.(1)求证:EAD EDA ∠=∠(2)若60C ∠=︒ 4DE =时 求AED △的面积.30.(2023·甘肃兰州·统考中考真题)综合与实践问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线 如图2是欧几里得在《几何原本》中给出的角平分线作图法:在OA 和OB 上分别取点C 和D 使得OC OD = 连接CD 以CD 为边作等边三角形CDE 则,OE 就是AOB ∠的平分线.请写出OE 平分AOB ∠的依据:____________类比迁移:(2)小明根据以上信息研究发现:CDE 不一定必须是等边三角形 只需CE DE =即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3 在AOB ∠的边OA OB 上分别取OM ON = 移动角尺 使角尺两边相同刻度分别与点M N 重合则,过角尺顶点C 的射线OC 是AOB ∠的平分线 请说明此做法的理由拓展实践:(3)小明将研究应用于实践.如图4 校园的两条小路AB 和AC 汇聚形成了一个岔路口A 现在学校要在两条小路之间安装一盏路灯E 使得路灯照亮两条小路(两条小路一样亮) 并且路灯E 到岔路口A 的距离和休息椅D 到岔路口A 的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规..........在对应的示意图5中作出路灯E 的位置.(保留作图痕迹 不写作法)参考答案一 单选题1.(2023·吉林长春·统考中考真题)如图,工人师傅设计了一种测零件内径AB 的卡钳 卡钳交叉点O 为AA ' BB '的中点 只要量出A B ''的长度 就可以道该零件内径AB 的长度.依据的数学基本事实是( )A .两边及其夹角分别相等的两个三角形全等B .两角及其夹边分别相等的两个三角形全等C .两余直线被一组平行线所截 所的对应线段成比例D .两点之间线段最短【答案】A【分析】根据题意易证()SAS AOB A OB ''≌ 根据证明方法即可求解.【详解】解:O 为AA ' BB '的中点OA OA ∴'= OB OB '=AOB A OB ''∠=∠(对顶角相等)∴在AOB 与A OB ''△中OA OA AOB A OB OB OB=⎧⎪∠=∠⎨⎪=''⎩'()SAS AOB A OB ''∴△≌△AB A B ''∴=故选:A .【点睛】本题考查了全等三角形的证明 正确使用全等三角形的证明方法是解题的关键. 2.(2023·四川宜宾·统考中考真题)如图, AB CD ∥ 且40A ∠=︒ 24D ∠=︒则,E ∠等于()A .40︒B .32︒C .24︒D .16︒【答案】D【分析】可求40ACD ∠=︒ 再由ACD D E ∠=∠+∠ 即可求解.【详解】解:AB CD ∥40ACD A ∴∠=∠=︒ACD D E ∠=∠+∠2440E ∴︒+∠=︒16E ∴∠=︒.故选:D .【点睛】本题考查了平行线的性质 三角形外角性质 掌握三角形外角的性质是解题的关键.3.(2023·云南·统考中考真题)如图,AB 、两点被池塘隔开 、、A BC 三点不共线.设AC BC 、的中点分别为M N 、.若3MN =米则,AB =( )A .4米B .6米C .8米D .10米【答案】B 【分析】根据三角形中位线定理计算即可.【详解】解①①AC BC 、的中点分别为M N 、①MN 是ABC 的中位线①26(AB MN ==米)故选:B .【点睛】本题考查的是三角形中位线定理 掌握三角形的中位线平行于第三边 且等于第三边的一半是解题的关键.4.(2023·四川眉山·统考中考真题)如图,ABC 中 ,40=∠=︒AB AC A 则,ACD ∠的度数为( )A .70︒B .100︒C .110︒D .140︒【答案】C 【分析】根据等腰三角形的等边对等角和三角形的内角和定理 即可解答.【详解】解:,40AB AC A =∠=︒180702A B ACD ︒-∠∴∠=∠==︒ 110ACD A B ∴∠=∠+∠=︒故选:C .【点睛】本题考查了等腰三角形的等边对等角性质 三角形内角和定理 熟知上述概念是解题的关键. 5.(2023·湖南·统考中考真题)下列长度的各组线段能组成一个三角形的是( )A .1cm,2cm,3cmB .3cm,8cm,5cmC .4cm,5cm,10cmD .4cm,5cm,6cm【答案】D【分析】根据两边之和大于第三边 两边之差小于第三边判断即可.【详解】A.1cm+2cm=3cm 不符合题意B.3cm+5cm=8cm 不符合题意C.4cm+5cm=9cm 10cm < 不符合题意D.4cm+5cm=9cm 6cm > 符合题意故选:D .【点睛】本题考查了是否构成三角形 熟练掌握三角形两边之和大于第三边是解题的关键.6.(2023·山西·统考中考真题)如图,一束平行于主光轴的光线经凸透镜折射后 其折射光线与一束经过光心O 的光线相交于点P 点F 为焦点.若1155,230∠=︒∠=︒则,3∠的度数为( )A .45︒B .50︒C .55︒D .60︒【答案】C 【分析】利用平行线的性质及三角形外角的性质即可求解.【详解】解:①AB OF ∥①1180BFO ∠+∠=︒①18015525BFO ∠=︒-︒=︒①230POF ∠=∠=︒①3302555POF BFO ∠=∠+∠=︒+︒=︒故选:C .【点睛】本题考查了平行线的性质 三角形外角的性质等知识 掌握这两个知识点是关键.7.(2023·福建·统考中考真题)阅读以下作图步骤:①在OA 和OB 上分别截取,OC OD 使OC OD =①分别以,C D 为圆心 以大于12CD 的长为半径作弧 两弧在AOB ∠内交于点M①作射线OM 连接,CM DM 如图所示.根据以上作图 一定可以推得的结论是( )A .12∠=∠且CM DM =B .13∠=∠且CM DM =C .12∠=∠且OD DM = D .23∠∠=且OD DM =【答案】A【分析】由作图过程可得:,OD OC CM DM == 再结合DM DM =可得()SSS COM DOM ≌ 由全等三角形的性质可得12∠=∠即可解答.【详解】解:由作图过程可得:,OD OC CM DM ==①DM DM =①()SSS COM DOM ≌.①12∠=∠.①A 选项符合题意不能确定OC CM =,则13∠=∠不一定成立 故B 选项不符合题意不能确定OD DM =,故C 选项不符合题意OD CM ∥不一定成立则,23∠∠=不一定成立 故D 选项不符合题意.故选A .【点睛】本题主要考查了角平分线的尺规作图 全等三角形的判定与性质等知识点 理解尺规作图过程是解答本题的关键.8.(2023·浙江台州·统考中考真题)如图,锐角三角形ABC 中 AB AC = 点D E 分别在边AB AC 上 连接BE CD .下列命题中 假命题...是( ).A .若CD BE =则,DCB EBC ∠=∠B .若DCB EBC ∠=∠则,CD BE = C .若BD CE =则,DCB EBC ∠=∠D .若DCB EBC ∠=∠则,BD CE =【答案】A 【分析】由AB AC = 可得A ABC CB =∠∠ 再由CD BE BC CB ==, 由SSA 无法证明BCD 与CBE 全等 从而无法得到DCB EBC ∠=∠ 证明ABE ACD 可得CD BE = 证明ABE ACD 可得ACD ABE ∠=∠ 即可证明 证明()DBC ECB ASA ≅ 即可得出结论.【详解】解:①AB AC =①A ABC CB =∠∠①若CD BE =又BC CB =①BCD 与CBE 满足“SSA ”的关系 无法证明全等因此无法得出DCB EBC ∠=∠ 故A 是假命题①若DCB EBC ∠=∠①ACD ABE ∠=∠在ABE 和ACD 中ACD ABE AB ACA A ∠=∠⎧⎪=⎨⎪∠=∠⎩①()ABE ACD ASA ≅①CD BE = 故B 是真命题若BD CE =则,AD AE =在ABE 和ACD 中AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩①()ABE ACD SAS ≅①ACD ABE ∠=∠①A ABC CB =∠∠①DCB EBC ∠=∠ 故C 是真命题若DCB EBC ∠=∠则,在DBC △和ECB 中ABC ACB BC BCDCB EBC ∠=∠⎧⎪=⎨⎪∠=∠⎩①()DBC ECB ASA ≅①BD CE = 故D 是真命题故选:A .【点睛】本题考查等腰三角形的判定和性质 全等三角形的判定和性质 命题的真假判断 正确的命题叫真命题 错误的命题叫假命题 判断命题的真假关键是掌握相关性质定理.9.(2023·河北·统考中考真题)在ABC 和A B C '''中 3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒则,C '∠=( )A .30︒B .n ︒C .n ︒或180n ︒-︒D .30︒或150︒【答案】C 【分析】过A 作AD BC ⊥于点D 过A '作A D B C ''''⊥于点D 求得3AD A D ''== 分两种情况讨论 利用全等三角形的判定和性质即可求解.【详解】解:过A 作AD BC ⊥于点D 过A '作A D B C ''''⊥于点D①306B B AB A B '''∠=∠=︒==,①3AD A D ''==当B C 、在点D 的两侧 B C ''、在点D 的两侧时 如图,①3AD A D ''== 4AC A C ''==①()Rt Rt HL ACD A C D '''≌△△①C C n '∠=∠=︒当B C 、在点D 的两侧 B C ''、在点D 的同侧时 如图,①3AD A D ''== 4AC A C ''==①()Rt Rt HL ACD A C D '''≌△△①'''A C D C n ∠=∠=︒ 即'''180'''180A C B A C D n ∠=︒-∠=︒-︒综上 C '∠的值为n ︒或180n ︒-︒.故选:C .【点睛】本题考查了含30度角的直角三角形的性质 全等三角形的判定和性质 分类讨论是解题的关键.二 填空题10.(2023·江苏连云港·统考中考真题)一个三角形的两边长分别是3和5则,第三边长可以是__________.(只填一个即可)【答案】4(答案不唯一 大于2且小于8之间的数均可)【分析】根据三角形的三边关系定理:三角形两边之和大于第三边 三角形的两边差小于第三边可得5353x -<<+ 再解即可.【详解】解:设第三边长为x 由题意得:5353x -<<+则28x <<故答案可为:4(答案不唯一 大于2且小于8之间的数均可).【点睛】此题主要考查了三角形的三边关系:第三边的范围是:大于已知的两边的差 而小于两边的和. 11.(2023·浙江金华·统考中考真题)如图,把两根钢条OA OB ,的一个端点连在一起 点C D ,分别是OA OB ,的中点.若4cm CD =则,该工件内槽宽AB 的长为__________cm .【答案】8【分析】利用三角形中位线定理即可求解.【详解】解:①点C D ,分别是OA OB ,的中点 ①12CD AB = ①()28cm AB CD ==故答案为:8.【点睛】本题考查了三角形中位线定理的应用 掌握“三角形的中位线是第三边的一半”是解题的关键.12.(2023·新疆·统考中考真题)如图,在ABC 中 若AB AC = AD BD = 24CAD ∠=︒则,C ∠=______︒.【答案】52【分析】根据等边对等角得出,B C B BAD ∠∠∠∠== 再有三角形内角和定理及等量代换求解即可.【详解】解:①AB AC = AD BD =①,B C B BAD ∠∠∠∠==①B C BAD ∠∠∠==①180B C BAC ∠∠∠++=︒①180B C BAD CAD ∠∠∠∠+++=︒ 即324180C ∠+︒=︒解得:52C ∠=︒故答案为:52.【点睛】题目主要考查等边对等角及三角形内角和定理 结合图形 找出各角之间的关系是解题关键. 13.(2023·安徽·统考中考真题)清初数学家梅文鼎在著作《平三角举要》中 对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明 证明过程中创造性地设计直角三角形 得出了一个结论:如图,AD 是锐角ABC 的高则,2212AB AC BD BC BC ⎛⎫-=+ ⎪⎝⎭.当7,6AB BC == 5AC =时 CD =____.【答案】1【分析】根据公式求得BD 根据CD BC BD =- 即可求解.【详解】解:①7,6AB BC == 5AC = ①2212AB AC BD BC BC ⎛⎫-=+ ⎪⎝⎭149256526-⎛⎫=+= ⎪⎝⎭①651CD BC BD =-=-=,故答案为:1.【点睛】本题考查了三角形的高的定义 正确的使用公式是解题的关键.14.(2023·浙江·统考中考真题)如图,在ABC 中 AC 的垂直平分线交BC 于点D 交AC 于点E B ADB ∠=∠.若4AB =则,DC 的长是__________.【答案】4【分析】由B ADB ∠=∠可得4AD AB == 由DE 是AC 的垂直平分线可得AD DC = 从而可得4DC AB ==.【详解】解:①B ADB ∠=∠①4AD AB ==①DE 是AC 的垂直平分线①AD DC =①4DC AB ==.故答案为:4.【点睛】本题主要考查了线段垂直平分线的性质以及等角对等边等知识 熟练掌握相关知识是解答本题的关键.15.(2023·湖北随州·统考中考真题)如图,在Rt ABC △中 9086C AC BC ∠=︒==,, D 为AC 上一点 若BD 是ABC ∠的角平分线则,AD =___________.【答案】3【分析】首先证明CD DP = 6BC BP == 设CD PD x == 在Rt ADP 中 利用勾股定理构建方程即可解决问题.【详解】解:如图,过点D 作AB 的垂线 垂足为P在Rt ABC △中 ①86AC BC ==, ①22228610AB AC BC ++①BD 是ABC ∠的角平分线①CBD PBD ∠=∠①90C BPD BD BD ∠=∠=︒=,①()AAS BDC BDP ≌①6BC BP == CD PD =设CD PD x ==在Rt ADP 中 ①4PA AB BP =-= 8AD x =-①2224(8)x x +=-①3x =①3AD =.故答案为:3.【点睛】本题考查了角平分线的性质 全等三角形的判定和性质 勾股定理等知识 解题的关键是熟练掌握基本知识 属于中考常考题型.16.(2023·湖北十堰·统考中考真题)一副三角板按如图所示放置 点A 在DE 上 点F 在BC 上 若35EAB ∠=︒则,DFC ∠=___________________︒.【答案】100︒【分析】根据直角三角板的性质 得到45DFE ∠=︒ 90E B ∠=∠=︒ 结合12∠=∠得到35EAB BFE ∠=∠=︒利用平角的定义计算即可.【详解】解:如图,根据直角三角板的性质 得到45DFE ∠=︒ 90E B ∠=∠=︒①12∠=∠①35EAB BFE ∠=∠=︒1803545100DFC ∠=︒-︒-︒=︒.故答案为:100︒.【点睛】本题考查了三角板的性质 直角三角形的性质 平角的定义 熟练掌握三角板的性质 直角三角形的性质是解题的关键.17.(2023·浙江杭州·统考中考真题)如图,点,D E 分别在ABC 的边,AB AC 上 且DE BC ∥ 点F 在线段BC 的延长线上.若28ADE ∠=︒ 118ACF ︒∠=则,A ∠=_________.【答案】90︒【分析】首先根据平行线的性质得到28B ADE ∠=∠=︒ 然后根据三角形外角的性质求解即可.【详解】①DE BC ∥ 28ADE ∠=︒①28B ADE ∠=∠=︒①118ACF ︒∠=①1182890A ACF B ∠=∠-∠=︒-︒=︒.故答案为:90︒.【点睛】此题考查了平行线的性质和三角形外角的性质 解题的关键是熟练掌握以上知识点.18.(2023·湖北荆州·统考中考真题)如图,CD 为Rt ABC △斜边AB 上的中线 E 为AC 的中点.若8AC = 5CD =则,DE =___________.【答案】3【分析】首先根据直角三角形斜边中线的性质得出AB 然后利用勾股定理即可得出BC 最后利用三角形中位线定理即可求解.【详解】解:①在Rt ABC △中 CD 为Rt ABC △斜边AB 上的中线 5CD =①210AB CD == ①22221086BC AB AC --①E 为AC 的中点 ①132DE BC == 故答案为:3.【点睛】本题主要考查直角三角形的性质 三角形中位线定理 掌握直角三角形中斜边上的中线等于斜边的一半是解题的关键.19.(2023·湖南·统考中考真题)如图,在Rt ABC △中 90C ∠=︒ 按以下步骤作图:①以点A 为圆心 以小于AC 长为半径作弧 分别交,AC AB 于点M N ①分别以M N 为圆心 以大于12MN 的长为半径作弧 在BAC ∠内两弧交于点O ①作射线AO 交BC 于点D .若点D 到AB 的距离为1则,CD 的长为__________.【答案】1【分析】根据作图可得AD 为CAB ∠的角平分线 根据角平分线的性质即可求解.【详解】解:如图所示 过点D 作DE AB ⊥于点E 依题意1DE =根据作图可知AD 为CAB ∠的角平分线①,DC AC DE AB ⊥⊥①1CD DE ==故答案为:1.【点睛】本题考查了作角平分线 角平分线的性质 熟练掌握基本作图以及角平分线的性质是解题的关键.20.(2023·广东深圳·统考中考真题)如图,在ABC 中 AB AC = 3tan 4B = 点D 为BC 上一动点 连接AD 将ABD △沿AD 翻折得到ADE DE 交AC 于点G GE DG < 且:3:1AG CG =则,AGEADG S S =三角形三角形______.【答案】4975【分析】AM BD ⊥于点M AN DE ⊥于点N 则,AM AN = 过点G 作GP BC ⊥于点P 设12AM a = 根据3tan 4AM B BM ==得出16BM a = 继而求得2220AB AM BM a =+ 5CG a = 15AG a = 再利用3tan tan 4GP C B CP === 求得3,4GP a CP a == 利用勾股定理求得229GN AG AN a =-= 2216EN AE AN a =-= 故7EG EN GN a =-=【详解】由折叠的性质可知 DA 是BDE ∠的角平分线 AB AE = 用HL 证明ADM ADN △≌△ 从而得到DM DN = 设DM DN x ==则,9DG x a =+ 12DP a x =- 利用勾股定理得到222DP GP DG +=即()()()2221239a x a x a -+=+ 化简得127x a = 从而得出757DG a =利用三角形的面积公式得到:174921757527AGEADG EG AN EG a DG DG AN S a S ⋅====⋅三角形三角形. 作AM BD ⊥于点M AN DE ⊥于点N 则,AM AN =过点G 作GP BC ⊥于点P①AM BD ⊥于点M ①3tan 4AM B BM == 设12AM a =则,16BM a = 2220AB AM BM a =+又①AB AC = AM BD ⊥①12CM AM a == 20AB AC a == B C ∠=∠①:3:1AG CG = 即14CG AC =①5CG a = 15AG a =在Rt PCG △中 5CG a = 3tan tan 4GP C B CP === 设3GP m =则,224,5CP m CG GP CP m =+=①m a =①3,4GP a CP a ==①15AG a = 12AM AN a == AN DE ⊥ ①229GN AG AN a =-=①20AB AE a == 12AN a = AN DE ⊥ ①2216EN AE AN a -=①7EG EN GN a =-=①AD AD = AM AN = AM BD ⊥ AN DE ⊥①()HL ADM ADN △≌△①DM DN =设DM DN x ==则,9DG DN GN x a =+=+ 16412DP CM CP DM a a x a x =--=--=-在Rt PDG △中 222DP GP DG += 即()()()2221239a x a x a -+=+ 化简得:127x a = ①7597DG x a a =+=①174921757527AGEADG EG AN EG a DG DG AN S a S ⋅====⋅三角形三角形 故答案是:4975. 【点睛】本题考查解直角三角形 折叠的性质 全等三角形的判定与性质 角平分线的性质 勾股定理等知识 正确作出辅助线并利用勾股定理列出方程是解题的关键.三 解答题21.(2023·江苏苏州·统考中考真题)如图,在ABC 中 ,AB AC AD =为ABC 的角平分线.以点A 圆心 AD 长为半径画弧 与,AB AC 分别交于点,E F 连接,DE DF .(1)求证:ADE ADF ≌(2)若80BAC ∠=︒ 求BDE ∠的度数.【答案】(1)见解析(2)20BDE ∠=︒【分析】(1)根据角平分线的定义得出BAD CAD ∠=∠ 由作图可得AE AF = 即可证明ADE ADF ≌ (2)根据角平分线的定义得出40EAD ∠=︒ 由作图得出AE AD =则,根据三角形内角和定理以及等腰三角形的性质得出70ADE ∠=︒ AD BC ⊥ 进而即可求解.【详解】(1)证明:①AD 为ABC 的角平分线①BAD CAD ∠=∠由作图可得AE AF =在ADE 和ADF △中AE AFBAD CAD AD AD=⎧⎪∠=∠⎨⎪=⎩ ①ADE ADF ≌()SAS(2)①80BAC ∠=︒ AD 为ABC 的角平分线①40EAD ∠=︒由作图可得AE AD =①70ADE ∠=︒①AB AC = AD 为ABC 的角平分线①AD BC ⊥①20BDE ∠=︒【点睛】本题考查了全等三角形的性质与判定 等腰三角形的性质与判定 角平分线的定义熟练掌握等腰三角形的性质与判定是解题的关键.22.(2023·江西·统考中考真题)(1038tan 453︒-(2)如图,AB AD = AC 平分BAD ∠.求证:ABC ADC △△≌.【答案】(1)2(2)见解析【分析】(1)先计算立方根 特殊角三角函数值和零指数幂 再计算加减法即可(2)先由角平分线的定义得到BAC DAC ∠=∠ 再利用SAS 证明ABC ADC △△≌即可.【详解】解:(1)原式211=+-2=(2)①AC 平分BAD ∠①BAC DAC ∠=∠在ABC 和ADC △中AB AD BAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩①()SAS ABC ADC △△≌.【点睛】本题主要考查了实数的运算 零指数幂 特殊角三角函数值 全等三角形的判定 角平分线的定义等等 灵活运用所学知识是解题的关键.23.(2023·云南·统考中考真题)如图,C 是BD 的中点 ,AB ED AC EC ==.求证:ABC EDC △≌△.【答案】见解析【分析】根据C 是BD 的中点 得到BC CD = 再利用SSS 证明两个三角形全等. 【详解】证明:C 是BD 的中点BC CD ∴=在ABC 和EDC △中BC CD AB ED AC EC =⎧⎪=⎨⎪=⎩()ABC EDC SSS ∴≌【点睛】本题考查了线段中点 三角形全等的判定 其中对三角形判定条件的确定是解决本题的关键. 24.(2023·四川宜宾·统考中考真题)已知:如图,AB DE ∥ AB DE = AF DC =.求证:B E ∠=∠.【答案】见解析【分析】根据平行线的性质得出A D ∠=∠ 然后证明AC DF = 证明()SAS ABC DEF ≌△△ 根据全等三角形的性质即可得证.【详解】证明:①AB DE ∥①A D ∠=∠①AF DC =①AF CF DC CF +=+即AC DF =在ABC 与DEF 中AC DF A D AB DE =⎧⎪∠=∠⎨⎪=⎩①()SAS ABC DEF ≌△△ ①B E ∠=∠.【点睛】本题考查了全等三角形的性质与判定 熟练掌握全等三角形的性质与判定是解题的关键. 25.(2023·福建·统考中考真题)如图,,,OA OC OB OD AOD COB ==∠=∠.求证:AB CD =.【答案】见解析【分析】根据已知条件得出AOB COD ∠=∠ 进而证明△≌△AOB COD 根据全等三角形的性质即可得证.【详解】证明:AOD COB ∠=∠,AOD BOD COB BOD ∴∠-∠=∠-∠即AOB COD ∠=∠.在AOB 和COD △中,,,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩AOB COD ∴≌AB CD ∴=.【点睛】本小题考查等式的基本性质 全等三角形的判定与性质等基础知识 考查几何直观 推理能力等 掌握全等三角形的性质与判定是解题的关键.26.(2023·全国·统考中考真题)如图,点C 在线段BD 上 在ABC 和DEC 中A D AB DE B E ∠=∠=∠=∠,,.求证:AC DC =.【答案】证明见解析【分析】直接利用ASA 证明ABC DEC ≌△△ 再根据全等三角形的性质即可证明.【详解】解:在ABC 和DEC 中A D AB DE B E ∠=∠⎧⎪=⎨⎪∠=∠⎩①()ASA ABC DEC ≌①AC DC =.【点睛】本题考查了全等三角形的判定与性质 熟练掌握全等三角形的判定方法是解题的关键. 27.(2023·四川乐山·统考中考真题)如图,AB CD 相交于点O AO=BO AC①DB .求证:AC=BD .【答案】见解析【分析】要证明AC=BD 只要证明①AOC①①BOD 根据AC//DB 可得①A=①B ①C=①D 又知AO=BO 则,可得到①AOC①①BOD 从而求得结论.【详解】(方法一)①AC//DB①①A=①B ①C=①D .在①AOC 与①BOD 中①①A=①B ①C=①D AO=BO①①AOC①①BOD .①AC=BD .(方法二)①AC//DB①①A=①B .在①AOC 与①BOD 中①A BAO BO AOC BOD∠=∠⎧⎪=⎨⎪∠=∠⎩ ①①AOC①①BOD .①AC=BD .28.(2023·山东临沂·统考中考真题)如图,90,,,A AB AC BD AB BC AB BD ∠=︒=⊥=+.(1)写出AB 与BD 的数量关系(2)延长BC 到E 使CE BC = 延长DC 到F 使CF DC = 连接EF .求证:EF AB ⊥.(3)在(2)的条件下 作ACE ∠的平分线 交AF 于点H 求证:AH FH =.【答案】(1))21AB BD =(2)见解析(3)见解析【分析】(1)勾股定理求得2BC AB 结合已知条件即可求解(2)根据题意画出图形 证明CBD CEF ≌ 得出=45E DBC ∠=∠︒则,EF BD ∥ 即可得证 (3)延长,BA EF 交于点M 延长CH 交ME 于点G 根据角平分线以及平行线的性质证明EG EC = 进而证明()AAS AHC FHG ≌ 即可得证.【详解】(1)解:①90,A AB AC ∠=︒= ①2BC AB①BC ABBD =+2AB AB BD =+ 即)21AB BD = (2)证明:如图所示①90,A AB AC ∠=︒=①=45ABC ∠︒①BD AB ⊥①45DBC ∠=︒①CE BC = 12∠=∠,CF DC =①CBD CEF ≌①=45E DBC ∠=∠︒①EF BD ∥①AB EF ⊥(3)证明:如图所示 延长,BA EF 交于点M 延长CH 交ME 于点G①EF AB ⊥ AC AB ⊥①ME AC ∥①CGE ACG ∠=∠①CH 是ACE ∠的角平分线①ACG ECG ∠=∠①CGE ECG ∠=∠①EG EC =①CBD CEF ≌①EF BD = CE CB =①EG CB =又①BC AB BD =+①EG AB BD AC EF =+=+即FG EF AC EF +=+①AC EG =又AC FG ∥则,HAG HFG ∠=∠在,AHC FHG 中HAG HFG AHG FHG AC FG ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS AHC FHG ≌①AH HF =【点睛】本题考查了全等三角形的与判定 等腰三角形的性质与判定 勾股定理 平行线的性质与判定 熟练掌握全等三角形的性质与判定是解题的关键.29.(2023·山东聊城·统考中考真题)如图,在四边形ABCD 中 点E 是边BC 上一点 且BE CD = B AED C ∠=∠=∠.(1)求证:EAD EDA ∠=∠(2)若60C ∠=︒ 4DE =时 求AED △的面积.【答案】(1)见解析 (2)3【分析】(1)由B AED ∠=∠求出BAE CED ∠=∠ 然后利用AAS 证明BAE CED ≅ 可得EA ED = 再由等边对等角得出结论(2)过点E 作EF AD ⊥于F 根据等腰三角形的性质和含30︒直角三角形的性质求出DF 和AD 然后利用勾股定理求出EF 再根据三角形面积公式计算即可.【详解】(1)证明:①B AED ∠=∠①180180B AED ︒-∠=︒-∠ 即BEA BAE BEA CED ∠+∠=∠+∠①BAE CED ∠=∠在BAE 和CED △中 B C BAE CED BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS BAE CED ≅①EA ED =①EAD EDA ∠=∠(2)解:过点E 作EF AD ⊥于F由(1)知EA ED =①60C AED ︒∠=∠=①30AEF DEF ∠=∠=︒①4DE = ①122DF DE == ①24AD DF == 22224223EF DE DF =--①114234322AED S AD EF =⋅=⨯⨯=【点睛】本题考查了三角形内角和定理 全等三角形的判定和性质 等腰三角形的性质 含30︒直角三角形的性质以及勾股定理等知识 正确寻找证明三角形全等的条件是解题的关键.30.(2023·甘肃兰州·统考中考真题)综合与实践问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线 如图2是欧几里得在《几何原本》中给出的角平分线作图法:在OA 和OB 上分别取点C 和D 使得OC OD = 连接CD 以CD 为边作等边三角形CDE 则,OE 就是AOB ∠的平分线.请写出OE 平分AOB ∠的依据:____________类比迁移:(2)小明根据以上信息研究发现:CDE 不一定必须是等边三角形 只需CE DE =即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3 在AOB ∠的边OA OB 上分别取OM ON = 移动角尺 使角尺两边相同刻度分别与点M N 重合则,过角尺顶点C 的射线OC 是AOB ∠的平分线 请说明此做法的理由拓展实践:(3)小明将研究应用于实践.如图4 校园的两条小路AB 和AC 汇聚形成了一个岔路口A 现在学校要在两条小路之间安装一盏路灯E 使得路灯照亮两条小路(两条小路一样亮) 并且路灯E 到岔路口A 的距离和休息椅D 到岔路口A 的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规..........在对应的示意图5中作出路灯E 的位置.(保留作图痕迹 不写作法)【答案】(1)SSS (2)证明见解析 (3)作图见解析【分析】(1)先证明()SSS OCE ODE ≌ 可得AOE BOE ∠=∠ 从而可得答案(2)先证明()SSS OCM OCN ≌ 可得AOC BOC ∠=∠ 可得OC 是AOB ∠的角平分线(3)先作BAC ∠的角平分线 再在角平分线上截取AE AD =即可.【详解】解:(1)①OC OD = CE DE = DE DE =①()SSS OCE ODE ≌①AOE BOE ∠=∠①OE 是AOB ∠的角平分线故答案为:SSS(2)①OM ON = CM CN = OC OC =①()SSS OCM OCN ≌①AOC BOC ∠=∠①OC 是AOB ∠的角平分线(3)如图,点E 即为所求作的点.【点睛】本题考查的是全等三角形的判定与性质 角平分线的定义与角平分线的性质 作已知角的角平分线 理解题意 熟练的作角的平分线是解本题的关键.。

全等三角形经典例题(含答案)

全等三角形经典例题(含答案)

三角形全等典型例题集锦(含答案)一、选择题(本大题共13小题,共39.0分)1.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于点E,如果BC=27,BD:CD=2:1,则DE的长是()A. 2B. 9C. 18D. 27【答案】B由“AAS”可证△ACD≌△AED,可得CD=DE=9.本题考查了全等三角形的判定和性质,角平分线的性质,证明△ACD≌△AED是本题的关键.解:∵BC=27,BD:CD=2:1,∴BD=18,CD=9,∵AD平分∠BAC,∴∠DAC=∠DAE,且AD=AD,∠DCA=∠DEA= 90°,∴△ACD≌△AED(AAS)∴CD=DE=9,故选B.2.如图,已知∠ABC=∠DCB,添加下列条件,不能使△ABC≌△DCB的是()A. AC=DBB. AB=DCC. ∠A=∠DD. ∠1=∠2【答案】A【解析】A.当添加AC=DB时,不能判定△ABC≌△DCB,故本选项符合题意;B.当添加AB=DC时,能判定△ABC≌△DCB,故本选项不符合题意;C.当添加∠A=∠D时,能判定△ABC≌△DCB,故本选项不符合题意;D.当添加∠2=∠1时,能判定△ABC≌△DCB,故本选项不符合题意,故选A.如图,下列三角形中,与△ABC全等的是()A. B. C. D.【答案】C3.如图,已知△ABC三条边、三个角,则甲、乙两个三角形中,与△ABC全等的图形是()A. 甲B. 乙C. 甲和乙D. 都不是【答案】C4.如图,∠ACB=90∘,AC=BC,BE⊥CE于E点,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为()A. 0.8cmB. 1cmC. 1.5cmD. 4.2cm【答案】A【解析】∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90∘,∴∠EBC+∠BCE=90∘.∵∠BCE+∠DCA=∠ACB=90∘,∴∠EBC=∠DCA.在△CEB和△ADC中,{∠E=∠ADC,∠EBC=∠DCA, BC=CA,∴△CEB≌△ADC(AAS),∴BE=DC,CE=AD=2.5cm.∵DC=CE−DE,DE=1.7cm,∴DC=2.5−1.7=0.8cm,∴BE=0.8cm,故选A.5.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积为12AC⋅BD.其中正确的结论有()A. 0个B. 1个C. 2个D. 3个【答案】D如图,已知AB=AC,AD=AE,欲说明△ABD≌△ACE,需补充的条件是()A. ∠B=∠CB. ∠D=∠EC. ∠1=∠2D. ∠CAD=∠2【答案】C6.下列三角形中全等的两个是()A. ①②B. ②③C. ③④D. ①④【答案】A如图,D是AB上一点,DF交AC于点E,DE=FE,FC//AB.若AB=4,CF=3,则BD的长是()A. 0.5B. 1C. 1.5D. 2【答案】B7.如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM 平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A. 4B. 3C. 2D. 1【答案】B【解析】解:∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中, {OA=OB∠AOC=∠BOD OC=OD∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故②正确;∵∠OCA=∠ODB,由三角形的外角性质得:∠CMD+∠OCA=∠COD+∠ODB,得出∠CMD=∠COD=36°,∠AMB=∠CMD=36°,故①正确;作OG⊥AM于G,OH⊥DM于H,如图所示则∠OGA=∠OHB=90°,在△OGA和△OHB中,∵{∠OGA=∠OHB=90°∠OAG=∠OBHOA=OB,∴△OGA≌△OHB(AAS)∴OG=OH,∴OM平分∠AMD,故④正确;假设OM平分∠AOD,则∠DOM=∠AOM,在△AMO与△DMO中,{∠AOM=∠DOMOM=OM∠AMD=∠DMO∴△AMO≌△OMD(ASA),∴AO=OD,∵OC=OD,∴OA=OC,而OA<OC,故③错误;正确的个数有3个;故选:B.由SAS证明△AOC≌△BOD得出∠OCA=∠ODB,AC=BD,②正确;由全等三角形的性质得出∠OCA=∠ODB,由三角形的外角性质得:∠CMD+∠OCA=∠COD+∠ODB,得出∠CMD=∠COD=36°,∠AMB=∠CMD=36°,①正确;作OG⊥AM于G,OH⊥DM于H,如图所示:则∠OGA=∠OHB=90°,由AAS证明△OGA≌△OHB(AAS),得出OG=OH,由角平分线的判定方法得出OM平分∠AMD,④正确;假设OM平分∠AOD,则∠DOM=∠AOM,由全等三角形的判定定理可得△AMO≌△OMD,得AO=OD,而OC=OD,所以OA=OC,而OA< OC,故③错误;即可得出结论.本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.8.尺规作图作角的平分线,作法步骤如下:9.①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于12CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.则上述作法的依据是().A. SSSB. SASC. AASD. ASA【答案】A本题考查了全等三角形的判定与性质、角平分线的尺规作图方法与作图原理,解题的关键是要理解作图过程中每一步的效果,即:OC=OD,CP=DP,OP=OP.连接CP、DP,由作图可证△OCP≌△ODP,则∠COP=∠DOP,而证明△OCP≌△ODP的条件就是作图的依据.【解答】解:如下图④所示:连接CP、DP在△OCP与△ODP中,由作图可知:{OC=ODCP=DPOP=OP∴△OCP≌△ODP(SSS),∴∠COP=∠DOP,即OP是∠AOB的平分线.因此题中作法的依据是SSS.故选A.10.图中的小正方形边长都相等,若△MNP≌△MFQ,则点Q可能是图中的()A. 点DB. 点CC. 点BD. 点A【答案】A【解析】解:观察图象可知△MNP≌△MFD.故选:A.根据全等三角形的判定即可解决问题.本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.11.如图,AD//BC,点E是线段AB的中点,DE平分∠ADC,BC=AD+2,CD=7,则BC2−AD2的值等于()A. 14B. 9C. 8D. 5【答案】A延长CB和DE交于点F,∵AD//BC∴∠DAE=∠FBE∵点E是线段AB的中点,∴AE=BE∠AED=∠BEF∴△ADE≌△BFE(ASA∴∠ADE=∠BFE,AD =BF ∵DE 平分∠ADC ,∴∠ADE =∠CDE ∴∠CDE =∠BFE ∴CD =CF ∴BC +BF =BC +AD =CD =7∵BC =AD +2,∴解得BC =92,AD =52∴BC 2−AD 2=(92)2−(52)2=14.或者:∵BC +AD =7BC −AD =2∴BC 2−AD 2=(BC +AD)(BC −AD)=7×2=14.故选:A .可以延长CB 和DE 交于点F ,证明△ADE≌△BFE(ASA)得∠ADE =∠BFE ,AD =BF ,再根据已知条件DE 平分∠ADC ,得∠ADE =∠CDE ,∠CDE =∠BFE ,得CD =CF ,进而得BC +BF =BC +AD =CD =7BC =AD +2,即可求解.本题考查了全等三角形的判定和性质,解决本题的关键是构造适当的辅助线.二、填空题(本大题共7小题,共21.0分)12. 如图,∠AOB 是任意一个角,在OA ,OB 边上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 的射线OC 便是∠AOB 平分线,此作法用的判定三角形全等的方法是 .(用字母表示即可)【答案】SSS【解析】略 13. 如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E ,AD ,CE 交于点H ,已知EH =EB =3,AE =4,则CH 的长是 .14.【答案】1【解析】略15. 如图为6个边长相等的正方形的组合图形,则∠1−∠2+∠3= .16.【答案】45°【解析】略17. 如图,△ABC 三个内角的平分线交于点O ,点D 在CA 的延长线上,且DC =BC.若∠D =20°,则∠ABC 的度数为 .18.【答案】40°【解析】略19. 已知等边三角形的三条边,三个内角都相等.如图,△ABC 为等边三角形,点D ,E ,F 分别在边BC ,CA ,AB 上,且AE =CD =BF ,则△DEF 的形状按边分类为 三角形. 20.【答案】等边【解析】略21. 如图,△ABC ,∠ABC =45°,∠ACB =30°,点D 在BC 上,点E 在△ABC 外,且AD =AE =CE ,AD ⊥AE ,则AB BD =______.【答案】√6+√22【解析】解:作DF ⊥AB 于点F ,作DG ⊥AC 于点G ,作EH ⊥AC 于点H ,∵∠ACB =30°,DG ⊥AC ,∴CD =2DG ,∵AE =CE ,EH ⊥AC ,∴AH =CH ,∴AC =2AH ,∵AD ⊥AE ,DG ⊥AC ,EH ⊥AC ,∴∠DAE =90°,∠DGA =∠AHE =90°,∴∠DAG +∠EAH =90°,∠EAH +∠AEH =90°,∴∠DAG =∠AEH ,在△DAG 和△AEH 中{∠DGA =∠AHE ∠DAG =∠AEH DA =AE∴△DAG≌△AEH(AAS)∴DG =AH ,∴AC =2DG ,∴AC =CD ,∴∠CAD =∠CDA ,∵∠ACB =30°,∵∠ABC=45°,∠ACB=30°,∴∠BAC=180°−∠ABC−∠ACB=105°,∴∠DAE=∠BAC−∠CAD=105°−75°=30°,∵DF⊥AB,∴∠DFA=∠DFB=90°,又∵∠B=45°,∠BAD=30°,∴AD=2DF,BF=DF,∴AF=√AD2−DF2=√3DF,BD=√BF2+DF2=√2DF,∴AB=AF+BF=√3DF+DF,∴ABBD =√3DF+DF√2DF=√6+√22,故答案为:√6+√22.作DF⊥AB于点F,作DG⊥AC于点G,作EH⊥AC于点H,然后根据直角三角形的性质和全等三角形的判定,利用勾股定理可以求得AB和BD与DF的关系,然后即可求得ABBD的值.本题考查全等三角形的判定与性质、等腰三角形的性质、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.22.如图,AB=6cm,AC=BD=4cm,∠CAB=∠DAB=60°,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动。

全等三角形中考真题汇编[解析版]

全等三角形中考真题汇编[解析版]
故答案为:4.
【点睛】
此题主要考查等腰三角形的判定及坐标与图形性质的综合运用,注意分类讨论思想的运用是解题关键.
2.在直角坐标系中,O为坐标原点,已知点A(1,2),点P是y轴正半轴上的一点,且△AOP为等腰三角形,则点P的坐标为_____________.
【答案】
【解析】
【分析】
有三种情况:①以O为圆心,以OA为半径画弧交y轴于D,求出OA即可;②以A为圆心,以OA为半径画弧交y轴于P,求出OP即可;③作OA的垂直平分线交y轴于C,则AC=OC,根据勾股定理求出OC即可.
全等三角形中考真题汇编[解析版]
一、八年级数学轴对称三角形填空题(难)
1.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P有_____个.
【答案】4
【解析】
【分析】
由A点坐标可得OA=2 ,∠AOP=45°,分别讨论OA为腰和底边,求出点P在x轴正半轴和负半轴时,△APO是等腰三角形的P点坐标即可.
∵点∵AP=OP,
∴∠OAP=∠AOP=45°,
∴∠OPA=90°,
∴OP=2,
∴P点坐标为(2,0).
(2)当点P在x轴负半轴上,
③以OA为腰时,
∵A的坐标是(2,2),
∴OA=2 ,
∴OA=OP=2 ,
∴P的坐标是(﹣2 ,0).
综上所述:P的坐标是(2,0)或(4,0)或(2 ,0)或(﹣2 ,0).
【解析】
【分析】
先求出∠DAO=50°,分三种情况讨论:①AO=AD,则∠AOD=∠ADO,②OA=OD,则∠OAD=∠ADO,③OD=AD,则∠OAD=∠AOD,分别求出α的角度即可.
【详解】
解:∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,

全等三角形中考题汇总

全等三角形中考题汇总

中考题汇总1.(2008年仙桃、潜江)△ABC 中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使△ABD 与△ABC 全等,那么点D 的坐标是 .2.(2007年泰安)如图,ABE △和ACD △是ABC △分别沿着AB AC ,边翻折180形成的,若150BAC ∠=,则θ∠的度数是 .3.(2008年遵义市)如图,OA =OB ,OC =OD ,∠O =50°,∠D =35°,则∠AEC 等于( ) A .60° B .50° C .45° D .30°4.(2008年宜宾市)已知:如图,AD =BC,AC =BD.求证:∠C =∠DD C OAB5.(2008常州市) 已知:如图,AB =AD ,AC =AE ,∠BAD =∠CAE. 求证:AC =DE.CDAEBθOEA BDCABDCE6.(2007年南昌市)如图,在△ABC 中,D 是AB 上一点,DF 交AC 于点E ,DE =FE ,AE =CE ,AB 与CF 有什么位置关系?证明你的结论.7.(2008年泰安市)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC ⊥BE .8.(2008年北京)已知:如图,C 为BE 上一点,点A ,D 分别在BE 两侧.AB ∥ED ,AB =CE ,BC =ED .求证:AC =CD .图1图2ADBCFEACEDB9.(2008年苏州)如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4. 求证:(1)△ABC ≌△ADC ;(2)BO =DO .10.(2007年随州市)如图,△ABC 中,点D 在BC 上,点E 在AB 上,BD =BE ,要使△ADB ≌△CEB ,还需添加一个条件. (1)给出下列四个条件: ①AD CE =②AE CD =③BAC BCA ∠=∠ ④ADB CEB ∠=∠请你从中选出一个能使ADB CEB △≌△的条件,并给出证明; 你选出的条件是.证明:(2)在(1)中所给出的条件中,能使ADB CEB △≌△的还有哪些? 直接在题后横线上写出满足题意的条件序号:.DCBA O 123 411.(2007年十堰)如图,在△ABC中,AD平分∠BAC,AB=AC-BD,则∠B∶∠C的值是________ADB C12.(2008年南宁市)如上图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF。

初中数学 全等三角形经典题型50题(含答案)

初中数学 全等三角形经典题型50题(含答案)

全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。

因为 BC=ED,CF=DF,∠BCF=∠EDF 。

所以 三角形BCF 全等于三角形EDF(边角边)。

所以 BF=EF,∠CBF=∠DEF 。

连接BE 。

在三角形BEF 中,BF=EF 。

所以 ∠EBF=∠BEF 。

又因为 ∠ABC=∠AED 。

所以 ∠ABE=∠AEB 。

所以 AB=AE 。

在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。

所以 三角形ABF 和三角形AEF 全等。

所以 ∠BAF=∠EAF (∠1=∠2)。

ADBC4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

中考数学专题练习:全等三角形(含答案)

中考数学专题练习:全等三角形(含答案)

中考数学专题练习:全等三角形(含答案)1.(·成都)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是( )A.∠A=∠D B.∠ACB=∠DBCC.AC=DB D.AB=DC2.(·黔南州)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A.甲和乙B.乙和丙C.甲和丙D.只有丙3.(·南京)如图,AB⊥CD,且AB=CD,E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF =c,则AD的长为( )A.a+c B.b+c C.a-b+c D.a+b-c4.(·原创) 如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,当BC∥OA时,下列结论正确的是( )A.∠OAD=2∠ABOB.∠OAD=∠ABOC.∠OAD+2∠ABO=180°D.∠OAD+∠ABO=90°5.(·临沂)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D,E.AD=3,BE=1,则DE的长是( )A.32B.2 C.2 2 D.106.(·济宁)在△ABC中,点E、F分别是边AB、AC的中点,点D在BC边上,连接DE、DF、EF,请你添加一个条件____________________________,使△BED与△FED全等.7.(·原创)如图,已知△ABC≌△ADE,若AB=6,C为AD的中点,则AC的长为______.8.(·包河区二模)如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,垂足分别为D,E,若BD=3,CE=2,则DE=______.9.(·宜宾)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.10.(·菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.11.(·泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.12.(·陕西)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G、H,若AB=CD,求证:AG=DH.13.(·镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=________°.14.(·温州) 如图,在四边形 ABCD 中,E 是 AB 的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当 AB=6 时,求 CD 的长.15.(·恩施)如图,点 B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交 BE于点O.求证:AD与BE互相平分.16.(·广东)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E 处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.1.(·阜阳模拟)如图,过等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是( )A.PD=DQB.DE=12 ACC.AE=12CQD.PQ⊥AB2.(·原创)如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是( )A.76° B.62°C.42° D.76°、62°或42°都可以3.(·原创)如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是( )A.75° B.70° C.65° D.60°4.(·德阳)如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连接AH,已知ED=2,求AH的值.5.(·合肥45中一模) 如图1,已知正方形ABCD,E是线段BC上一点,N是线段BC延长线上一点,以AE为边在直线BC的上方作正方形AEFG.(1)连接GD,求证:DG=BE;(2)连接FC,求∠FCN的度数;(3)如图2,将图1中正方形ABCD改为矩形ABCD,AB=m,BC=n(m、n为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线BC的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由点B向点C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含m、n的代数式表示tan∠FCN的值,若∠FCN的大小发生改变,请画图说明.参考答案【基础训练】1.C 2.B 3.D 4.A 5.B 6.BD =EF(答案不唯一) 7.3 8.5 9.证明:∵∠1=∠2,∴180°-∠1=180°-∠2,即∠ACB=∠ACD.在△CDA 和△CBA 中,⎩⎨⎧∠B=∠D,∠ACB=∠ACD,AC =AC ,∴△CDA≌△CBA(AAS).∴CB=CD.10.解:DF =AE.证明:∵AB∥CD ,∴∠C=∠B. ∵CE=BF,∴CE-EF =BF -FE,∴CF=BE. 又∵CD=AB,∴△DCF≌△ABE(SAS), ∴DF=AE.11.证明:方法一:∵∠A=∠D=90°,AC =DB,BC =CB, ∴Rt△ABC≌Rt△DCB(HL), ∴∠OBC=∠OCB ,∴BO=CO.方法二:∵∠A=∠D=90°,AC =DB,BC =CB, ∴Rt△ABC≌Rt△DCB(HL), ∴AB=DC,又∵∠AOB=∠DOC , ∴△ABO≌△DCO(AAS ),∴BO =CO. 12.证明:∵AB∥CD ,∴∠A=∠D.又∵CE∥BF ,∴∠AHB=∠DGC.在△ABH 和△DCG 中,⎩⎨⎧∠A=∠D∠AHB=∠DGC AB =CD,∴△ABH≌△DCG(AAS), ∴AH=DG.又∵AH=AG +GH,DG =DH +GH,∴AG=DH. 13.(1)证明:∵AB=AC,∴∠B=∠ACF.在△ABE 和△ACF 中,⎩⎨⎧AB =AC ,∠B=∠ACF,BE =CF ,∴△ABE≌△ACF(SAS). (2)解:75.14.(1)证明:由AD∥EC 可知∠A =∠CEB, 又因为E 是 AB 的中点,所以AE =EB, 且∠AED=∠B ,所以△AED≌△EBC(ASA). (2)解:由(1)△AED≌△EBC 可知AD =EC, 又因为AD∥EC ,所以四边形AECD 为平行四边形, 又因为AB =6,则CD =AE =3. 15.证明:如解图,连接 BD ,AE . ∵AB∥ED ,∴∠ABC=∠DEF. ∵AC∥FD ,∴∠ACB=∠DFE. ∵ FB=CE, ∴BC=EF. 在△ACB 和 △DFE 中,⎩⎨⎧∠ABC=∠DEF,BC =EF ,∠ACB=∠DFE.∴△ACB ≌ △DFE(ASA). ∴ AB=DE.∵AB∥ED ,∴四边形ABDE 是平行四边形.∴AD 与BE 互相平分.16.证明:(1)∵四边形ABCD 是矩形, ∴AD=BC, AB =DC.∵△AEC 是由△ABC 折叠而成的, ∴AD=BC =EC,AB =DC = AE.在△ADE 和△CED 中,⎩⎨⎧AD =CEDE =ED AE =CD,∴△ADE≌△CED(SSS);(2)由(1)△ADE≌△CED 可得∠AED=∠CDE , ∴FD=EF,∴△DEF 是等腰三角形. 【拔高训练】 1.D 2.B 3.C 4.(1)证明:∵EF⊥EC ,∴∠CEF=90°, ∴∠AEF+∠DEC=90°, ∵四边形ABCD 是矩形,∴∠AEF+∠AFE=90°, ∠DEC+∠DCE=90°, ∴∠AEF=∠DCE ,∠AFE=∠DEC , ∵AE=DC,∴△AEF≌△DCE(AAS), ∴DE=AF,∵AE=DC =AB =2DE,∴AB=2AF, ∴F 为AB 的中点.(2)解:由(1)知AF =FB,且AE∥BH , ∴∠FBH=∠FAE=90°, ∠AEF=∠FHB , ∴△AEF≌△BHF(AAS),∴AE=HB, ∵DE=2, 且AE =2DE, ∴AE=4,∴HB=AB =AE =4,∴AH 2=AB 2+BH 2=16+16=32,∴AH=4 2.5.(1)证明:∵四边形ABCD 和四边形AEFG 是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS).∴DG=BE;(2)解:如解图1,过点F作FH⊥BN于点H.∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°, ∴∠FEH=∠BAE,又∵AE=EF,∠EHF=∠EBA=90°,∴△EFH≌△AEB(AA S),∴FH=BE,EH=AB=BC,∴CH=BE=FH,∴∠FCN=∠CFH=12(180°-∠FHC).∵∠FHC=90°, ∴∠FCN=45°.(3)解:当点E由点B向点C运动时,∠FCN的大小总保持不变,理由如下:如解图2,过点F 作FH⊥BN于点H,由已知可得∠EAG=∠BAD=∠AEF=90°, 结合(1)(2)得∠FEH=∠BAE=∠DAG,又∵G在射线CD上,∠GDA=∠EHF=∠EBA=90°,∴△EFH≌△AGD(AAS),△EFH∽△AEB,∴EH=AD=BC=n, ∴CH=BE,∴EHAB=FHBE=FHCH;在Rt△FCH中,tan∠FCN=FHCH=EHAB=nm.∴当点E由点B向点C运动时,∠FCN的大小总保持不变,且tan∠FCN=n m .。

中考数学专题《全等三角形》

中考数学专题《全等三角形》

专题01 全等三角形一、单选题1.(2021·全国)在ABC V 中,B C ∠=∠,与ABC V 全等的三角形有一个角是100︒,那么在ABC V 中与这100︒角对应相等的角是( )A .A ∠B .BÐC .C ∠D .B Ð或C ∠2.(2021·山西襄汾县·七年级期末)如图,Rt △ABC 沿直角边BC 所在直线向右平移到Rt △DEF ,则下列结论中,错误的是( )A .BE EC =B .BC EF =C .AC DF =D .ABC DEF △≌△3.(2021·山西七年级期末)下列说法:①两个形状相同的图形称为全等图形;②边、角分别对应相等的两个多边形全等;③全等图形的形状、大小都相同;④面积相等的两个三角形全等.其中正确的是()A .①②③B .①②④C .①③D .②③4.(2021·哈尔滨市第四十七中学)如图,ABD BAC ∆∆≌,若AD BC =,则BAD ∠的对应角( )A .ADB ∠B .BCD ∠C .ABC ∠D .CDA ∠5.(2021·全国八年级课时练习)如图,,40,30ABD CDB ABD CBD ∠=︒∠=︒V V ≌,则C ∠等于( )A .20︒B .100︒C .110︒D .115︒6.(2021·重庆巴南区·)已知△ABC 的三边的长分别为3,5,7,△DEF 的三边的长分别为3,7,2x ﹣1,若这两个三角形全等,则x 的值是( )A .3B .5C .﹣3D .﹣57.(2021·大连市第三十四中学八年级月考)如图,ABC A B C '''≅V V ,其中36A ∠=︒,24C '∠=︒,则B ∠=( )A .150︒B .120︒C .90︒D .60︒8.(2021·全国七年级课时练习)如图,在ABC V 中,D ,E 分别是边AC ,BC 上的点,若ADB EDB EDC V V V ≌≌,则C ∠的度数为( )A .15︒B .20︒C .25︒D .30°9.(2021·甘肃榆中县·七年级期末)如图,90A B ∠=∠=︒,6AB =,E 、F 分别为线段AB 和射线BD 上的一点,若点E 从点B 出发向点A 运动,同时点F 从点B 出发向点D 运动,二者速度之比为1:2,运动到某时刻同时停止,在射线AC 上取一点G ,使AEG △与BEF V 全等,则AG 的长为( )A .2B .3C .2或3D .2或610.(2021·全国)如图,锐角△ABC 中,D 、E 分别是AB 、AC 边上的点,△ADC ≌△ADC ′,△AEB ≌△AEB ′,且C ′D //EB ′//BC ,BE 、CD 交于点F ,若∠BAC =α,∠BFC =β,则( )A .2α+β=180°B .2β﹣α=180°C .α+β=150°D .β﹣α=60°11.(2021·全国八年级课时练习)如图,AOB ADC △≌△,点B 和点C 是对应顶点,90O D ∠=∠=︒,记,,OAD ABO ABC ACB αβ∠=∠=∠=∠,当//BC OA 时,α与β之间的数量关系为( )A .αβ=B .2αβ=C .90αβ+=︒D .2180αβ+=︒12.(2021·河南川汇区·八年级期末)如图,点D ,E ,F 分别在ABC V 的边AB ,BC ,CA 上(不与顶点重合),设BAC α∠=,FED θ∠=.若BED CFE ≌△△,则α,θ满足的关系是( )A .90αθ+=︒B .2180αθ+=︒C .90αθ-=︒D .2180αθ+=︒第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.(2021·吉林铁西区·八年级期中)如图所示,ABC ECD ≌△△,48A ∠=︒,62D ∠=︒,则图中B Ð的度数是______度.14.(2021·全国八年级课时练习)如图,ABE ACD △≌△,且D ∠与E ∠是对应角,顶点C 与顶点B 对应,若10cm BE =,则CD =__________.15.(2021·全国)如图,长方形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,AD =7cm ,DM =5cm ,∠DAM =39°,则△ANM ≌△ADM ,AN =_____cm ,NM =_____cm ,∠NAB =_______.17.(2021·浙江东阳市·七年级期末)如图,把一张长方形纸板裁去两个边长为3cm的小正方形和两个全等的小长方形,再把剩余部分(阴影部分)四周折起,恰好做成一个有底有盖的长方体纸盒,纸盒底面长方形的长为3k cm,宽为2k cm,则(1)裁去的每个小长方形面积为___cm2;(用k的代数式表示)(2)若长方体纸盒的表面积是底面积的正整数倍,则正整数k的值为___.18.(2021·山东莱州市·七年级期末)三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数等于_______.19.(2021·辽宁本溪市·七年级期末)如图,∠A=∠B=90°,AB=80,点E和点F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,点E和点F运动速度之比为2:3,运动到某时刻点E和点F同时停止运动,在射线AC 上取一点G,使△AEG与△BEF全等,则AG的长为________.20.(2021·全国)如图,在△ABC中,AB=AC=24厘米,∠B=∠C,BC=16厘米,点D为AB的中点,点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.当点Q 的运动速度为________厘米/秒时,能够在某一时刻使△BPD 与△CQP 全等.三、解答题21.(2021·全国八年级课时练习)已知:如图,,8cm,5cm ABC DEF BC EC ==V V ≌,求线段CF 的长.22.(2020·铜陵市第二中学八年级月考)如图,ABF V ≌CDE △,已知30B ∠=︒,25DCF ∠=︒,求EFC ∠的度数.23.(2021·河南邓州市·七年级期末)我们已经认识了图形的轴对称、平移和旋转,这是图形的三种基本变换,图形经过这样的变换,虽然位置发生了改变,但图形的形状与大小都不发生变化,反映了图形之间的全等关系.这种运用动态变换研究图形之间的关系的方法,是一种重要而且有效的方法.同学们学完了这些知识后,王老师在黑板上给大家出示了这样的一道题目:(1)如图,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .试说明AD =BE ;聪明的小亮很快就找到了解决该问题的方法:请你帮小亮把说理过程补充完整.解:∵△ACB 和△DCE 均为等边三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =60°,(等边三角形的性质)∴∠ACD = (等式的性质)∴△ACD 绕点C 按逆时针方向旋转 度,能够与 重合∴△ACD ≌ (旋转变换的性质)∴AD =BE ( );(2)当同学们把这道题领会感悟后,王老师又在上题基础上追加了一问:试求∠AEB 的度数.聪明的同学们你会解决吗?请写出你的求解过程.(此题不用写推理依据即可). 24.(2021·全国八年级课时练习)如图,,ABF CDE B ∠V V ≌和D ∠是对应角,AF 和CE 是对应边.(1)写出ABF V 和CDE △的其他对应角和对应边;(2)若30,40B DCF ∠=︒∠=︒,求EFC ∠的度数;(3)若10,2BD EF ==,求BF 的长.25.(2021·河南伊川县·七年级期末)如图,点A、B、C、D在同一直线上,△ACE≌△DBF,AD =8,BC=2.(1)求AC的长;(2)求证:CE∥BF,AE∥DF.⊥于点B,26.(2021·辽宁铁西区·)如图,点B,C,E,F在同一直线上,AB BCCE=.BC=,3DEF ABCV V≌,且6(1)求CF的长;(2)判断DE与EF的位置关系,并说明理由.27.(2021·浙江浙江省·八年级期末)如图,已知正方形ABCD 边长为4cm ,动点M 从点C 出发,沿着射线CD 的方向运动,动点P 从点B 出发,沿着射线BC 的方向运动,连结,BM DP ,(1)若动点M 和P 都以每秒2cm 的速度运动,问t 为何值时DPC △和BCM V 全等?(2)若动点P 的速度是每秒3cm ,动点M 的速度是每秒1.5cm 问t 为何值时DPC △和BCM V 全等?28.(2020·浙江浙江省·)在56⨯的方格纸中,每格的边长为1,请按下列要求画图.(1)在图1中画一个格点ADE V ,使ADE V 与ABC V 全等,且所画格点三角形的顶点均不与点B ,C 重合.(2)在图2中画一个面积为7的格点四边形ABCD ,且BAD ∠为锐角.29.(2021·云南盘龙区·七年级期末)如图,在平面直角坐标系中,O 为坐标原点,ABC V 的边BC 在x 轴上,A 、C 两点的坐标分别为()0,A m ,(),0C n ,()5,0B -,且()231230m n -+-=点P 从B 出发,以每秒1个单位的速度沿射线BO 匀速运动,设点P 运动时间为t .(1)点A 的坐标为 ;点C 的坐标为 ;(2)连接PA ,当POA V 的面积等于ABC V 的面积的一半时,求t 的值;(3)当P 在线段BO 上运动时,在y 轴上是否存在点Q ,使POQ △与AOC △全等?若存在,请直接写出Q 点坐标;若不存在,请说明理由.30.(2021·江苏姑苏区·苏州草桥中学七年级期末)如图,将一副三角板按如图所示的方式放置,其中ABC V 中,90ACB ∠=︒,45BAC ∠=︒,ADE V 中,90ADE ∠=︒,30DAE ∠=︒,AB AD =,点C 在线段AE 上.射线AB '从AB 出发,绕点A 以5︒/秒的速度顺时针旋转;同时,射线DA '从DA 出发,绕点D 顺时针旋转.设射线AB '运动的时间为t 秒(09t <≤),AB '与BC 交于点M ,DA '与AB '交于点N .(1)若射线DA '旋转的速度为5︒/秒,则AND ∠=________︒;(2)设射线DA '旋转的速度为x ︒/秒,当射线AB '与DA '旋转到某处时,ABM V 与AND △全等,求相应的t 、x 的值.。

全等三角形历年中考难题

全等三角形历年中考难题

红城教育培训学校数学教研组制作制作人:汪皞监制:汪校长黄校长童老师全等三角形专题(一)姓名:1.如图,OP平分,MON PA ON∠⊥于点A,点Q是射线OM上的一个动点,若2PA=,则PQ的最小值为()A.1B.2D. 42.如图所示,两块完全相同的含30°角的直角三角形叠放在一起,且∠DAB=30°。

有以下四个结论:①AF⊥BC;②△ADG≌△ACF;③O为BC的中点;④AG:DE=3:4,其中正确结论的序号是 .(错填得0分,少填酌情给分)3.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别及A、D重合,连结BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.4.八(1)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案:(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度及M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.AB CDE(第6题)AO NMQ P(Ⅱ)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度及M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由.(2)在方案(Ⅰ)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.5.(2010湖南娄底)如图10,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD6.(2010江苏扬州)电子跳蚤游戏盘是如图所示的△ABC,AB=6,AC=7,BC=8.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第一次落点)处,且CP1=CP0;第二步从P1跳到AB 边的P 2(第一次落点)处,且AP 2=AP 1;第三步从P 2跳到BC 边的P 3(第三次落点)处,且BP 3=BP 2;……;跳蚤按上述规则一致跳下去,第n 次落点为P n (n 为正整数),则点P 2007及P 2010之间的距离为( )A .1B .2C .3D .47.(2010安徽蚌埠)在ABC ∆中,E D 、分别是AC BC 、上的点,CD BD CE AE 2,2==,BE AD 、交于点F ,若3=∆ABC S ,则四边形DCEF 的面积为________。

专题15 三角形及全等三角形(共30题)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题15 三角形及全等三角形(共30题)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题15三角形及全等三角形(30题)一、单选题1.(2023·吉林长春·统考中考真题)如图,工人师傅设计了一种测零件内径AB 的卡钳,卡钳交叉点O 为AA '、BB '的中点,只要量出A B ''的长度,就可以道该零件内径AB 的长度.依据的数学基本事实是()A .两边及其夹角分别相等的两个三角形全等B .两角及其夹边分别相等的两个三角形全等C .两余直线被一组平行线所截,所的对应线段成比例D .两点之间线段最短【答案】A【分析】根据题意易证()SAS AOB A OB '' ≌,根据证明方法即可求解.【详解】解:O 为AA '、BB '的中点,OA OA ∴'=,OB OB '=,AOB A OB ''∠=∠ (对顶角相等),∴在AOB 与A OB ''△中,OA OA AOB A OB OB OB =⎧⎪∠=∠⎨⎪=''⎩',()SAS AOB A OB ''∴△≌△,AB A B ''∴=,故选:A .【点睛】本题考查了全等三角形的证明,正确使用全等三角形的证明方法是解题的关键.2.(2023·四川宜宾·统考中考真题)如图,AB CD ∥,且40A ∠=︒,24D ∠=︒,则E ∠等于()【答案】D 【分析】可求40ACD ∠=︒,再由ACD D E ∠=∠+∠,即可求解.【详解】解:AB CD ∥ ,40ACD A ∴∠=∠=︒,ACD D E ∠=∠+∠ ,2440E ∴︒+∠=︒,16E ∴∠=︒.故选:D .【点睛】本题考查了平行线的性质,三角形外角性质,掌握三角形外角的性质是解题的关键.3.(2023·云南·统考中考真题)如图,A B 、两点被池塘隔开,、、A B C 三点不共线.设AC BC 、的中点分别为M N 、.若3MN =米,则AB =()A .4米B .6米C .8米D .10米【答案】B 【分析】根据三角形中位线定理计算即可.【详解】解∶∵AC BC 、的中点分别为M N 、,∴MN 是ABC 的中位线,∴26(AB MN ==米),故选:B .【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.4.(2023·四川眉山·统考中考真题)如图,ABC 中,,40=∠=︒AB AC A ,则ACD ∠的度数为()【答案】C 【分析】根据等腰三角形的等边对等角和三角形的内角和定理,即可解答.【详解】解:,40AB AC A =∠=︒ ,180702A B ACD ︒-∠∴∠=∠==︒,110ACD A B ∴∠=∠+∠=︒,故选:C .【点睛】本题考查了等腰三角形的等边对等角性质,三角形内角和定理,熟知上述概念是解题的关键.5.(2023·湖南·统考中考真题)下列长度的各组线段能组成一个三角形的是()A .1cm,2cm,3cmB .3cm,8cm,5cmC .4cm,5cm,10cmD .4cm,5cm,6cm 【答案】D【分析】根据两边之和大于第三边,两边之差小于第三边判断即可.【详解】A.1cm+2cm=3cm ,不符合题意;B.3cm+5cm=8cm ,不符合题意;C.4cm+5cm=9cm 10cm <,不符合题意;D.4cm+5cm=9cm 6cm >,符合题意,故选:D .【点睛】本题考查了是否构成三角形,熟练掌握三角形两边之和大于第三边是解题的关键.6.(2023·山西·统考中考真题)如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若1155,230∠=︒∠=︒,则3∠的度数为()A .45︒B .50︒C .55︒D .60︒【答案】C故选:C .【点睛】本题考查了平行线的性质,三角形外角的性质等知识,掌握这两个知识点是关键.7.(2023·福建·统考中考真题)阅读以下作图步骤:①在OA 和OB 上分别截取,OC OD ,使,C D 1CD 的长为半径作弧,两弧在A .12∠=∠且CM DM=C .12∠=∠且OD DM=【答案】A 【分析】由作图过程可得:OD 角形的性质可得12∠=∠即可解答.【详解】解:由作图过程可得:,OD OC CM DM ==,∵DM DM =,∴()SSS COM DOM ≌.∴12∠=∠.∴A 选项符合题意;不能确定OC CM =,则13∠=∠不一定成立,故B 选项不符合题意;不能确定OD DM =,故C 选项不符合题意,OD CM ∥不一定成立,则23∠∠=不一定成立,故D 选项不符合题意.故选A .【点睛】本题主要考查了角平分线的尺规作图、全等三角形的判定与性质等知识点,理解尺规作图过程是解答本题的关键.8.(2023·浙江台州·统考中考真题)如图,锐角三角形ABC 中,AB AC =,点D ,E 分别在边AB ,AC 上,连接BE ,CD .下列命题中,假命题...是().A .若CD BE =,则DCB EBC∠=∠B .若DCB EBC ∠=∠,则CD BE =C .若BD CE =,则DCB EBC∠=∠D .若DCB EBC ∠=∠,则BD CE=【答案】A 【分析】由AB AC =,可得A ABC CB =∠∠,再由CD BE BC CB ==,,由SSA 无法证明BCD 与CBE 全等,从而无法得到DCB EBC ∠=∠;证明ABE ACD @V V 可得CD BE =;证明ABE ACD @V V ,可得ACD ABE ∠=∠,即可证明;证明()DBC ECB ASA ≅ ,即可得出结论.【详解】解:∵AB AC =,∴A ABC CB =∠∠,∵若CD BE =,又BC CB =,∴BCD 与CBE 满足“SSA ”的关系,无法证明全等,因此无法得出DCB EBC ∠=∠,故A 是假命题,∵若DCB EBC ∠=∠,∴ACD ABE ∠=∠,在ABE 和ACD 中,ACD ABE AB AC A A ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABE ACD ASA ≅ ,∴CD BE =,故B 是真命题;若BD CE =,则AD AE =,在ABE 和ACD 中,AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩,∴()ABE ACD SAS ≅ ,∴ACD ABE ∠=∠,∵A ABC CB =∠∠,∴DCB EBC ∠=∠,故C 是真命题;若DCB EBC ∠=∠,则在DBC △和ECB 中,ABC ACB BC BC DCB EBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()DBC ECB ASA ≅ ,∴BD CE =,故D 是真命题;故选:A .【点睛】本题考查等腰三角形的判定和性质,全等三角形的判定和性质,命题的真假判断,正确的命题叫真命题,错误的命题叫假命题,判断命题的真假关键是掌握相关性质定理.9.(2023·河北·统考中考真题)在ABC 和A B C ''' 中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=()A .30︒B .n ︒C .n ︒或180n ︒-︒D .30︒或150︒【答案】C 【分析】过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,求得3AD A D ''==,分两种情况讨论,利用全等三角形的判定和性质即可求解.【详解】解:过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,∵306B B AB A B '''∠=∠=︒==,,∴3AD A D ''==,当B C 、在点D 的两侧,B C ''、在点D ¢的两侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴C C n '∠=∠=︒;当B C 、在点D 的两侧,B C ''、在点D ¢的同侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴'''A C D C n ∠=∠=︒,即'''180'''180A C B A C D n ∠=︒-∠=︒-︒;综上,C '∠的值为n ︒或180n ︒-︒.故选:C .【点睛】本题考查了含30度角的直角三角形的性质,全等三角形的判定和性质,分类讨论是解题的关键.二、填空题10.(2023·江苏连云港·统考中考真题)一个三角形的两边长分别是3和5,则第三边长可以是__________.(只填一个即可)【答案】8【分析】利用三角形中位线定理即可求解.【详解】解:∵点C D ,分别是OA ∴12CD AB =,∴()28cm AB CD ==,故答案为:8.【点睛】本题考查了三角形中位线定理的应用,掌握12.(2023·新疆·统考中考真题)如图,【答案】52【分析】根据等边对等角得出,B C B BAD ∠∠∠∠==,再有三角形内角和定理及等量代换求解即可.【详解】解:∵AB AC =,AD BD =,∴,B C B BAD ∠∠∠∠==,∴B C BAD ∠∠∠==,∵180B C BAC ∠∠∠++=︒,∴180B C BAD CAD ∠∠∠∠+++=︒,即324180C ∠+︒=︒,解得:52C ∠=︒,故答案为:52.【点睛】题目主要考查等边对等角及三角形内角和定理,结合图形,找出各角之间的关系是解题关键.13.(2023·安徽·统考中考真题)清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个结论:如图,AD 是锐角ABC 的高,则2212AB AC BD BC BC ⎛⎫-=+ ⎪⎝⎭.当7,6AB BC ==,5AC =时,CD =____.【答案】1【分析】根据公式求得BD ,根据CD BC BD =-,即可求解.【详解】解:∵7,6AB BC ==,5AC =,∴2212AB AC BD BC BC ⎛⎫-=+ ⎪⎝⎭149256526-⎛⎫=+= ⎪⎝⎭∴651CD BC BD =-=-=,故答案为:1.【点睛】本题考查了三角形的高的定义,正确的使用公式是解题的关键.14.(2023·浙江·统考中考真题)如图,在ABC 中,AC 的垂直平分线交BC 于点D ,交AC 于点E ,B ADB ∠=∠.若4AB =,则DC 的长是__________.【答案】4【分析】由B ADB ∠=∠可得4AD AB ==,由DE 是AC 的垂直平分线可得AD DC =,从而可得4DC AB ==.【详解】解:∵B ADB ∠=∠,∴4AD AB ==,∵DE 是AC 的垂直平分线,∴AD DC =,∴4DC AB ==.故答案为:4.【点睛】本题主要考查了线段垂直平分线的性质以及等角对等边等知识,熟练掌握相关知识是解答本题的关键.15.(2023·湖北随州·统考中考真题)如图,在Rt ABC △中,9086C AC BC ∠=︒==,,,D 为AC 上一点,若BD 是ABC ∠的角平分线,则AD =___________.【答案】3【分析】首先证明CD DP =,6BC BP ==,设CD PD x ==,在Rt ADP 中,利用勾股定理构建方程即可解决问题.【详解】解:如图,过点D 作AB 的垂线,垂足为P ,在Rt ABC △中,∵86AC BC ==,,∴22228610AB AC BC =+=+=,∵BD 是ABC ∠的角平分线,∴CBD PBD ∠=∠,∵90C BPD BD BD ∠=∠=︒=,,∴()AAS BDC BDP ≌,∴6BC BP ==,CD PD =,设CD PD x ==,在Rt ADP 中,∵4PA AB BP =-=,8AD x =-,∴2224(8)x x +=-,∴3x =,∴3AD =.故答案为:3.【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(2023·湖北十堰·统考中考真题)一副三角板按如图所示放置,点A 在DE 上,点F 在BC 上,若35EAB ∠=︒,则DFC ∠=___________________︒.【答案】100︒【分析】根据直角三角板的性质,得到45DFE ∠=︒,90E B ∠=∠=︒,结合12∠=∠得到35EAB BFE ∠=∠=︒,利用平角的定义计算即可.【详解】解:如图,根据直角三角板的性质,得到45DFE ∠=︒,90E B ∠=∠=︒,∵12∠=∠,∴35EAB BFE ∠=∠=︒,1803545100DFC ∠=︒-︒-︒=︒.故答案为:100︒.【点睛】本题考查了三角板的性质,直角三角形的性质,平角的定义,熟练掌握三角板的性质,直角三角形的性质是解题的关键.17.(2023·浙江杭州·统考中考真题)如图,点,D E 分别在ABC 的边,AB AC 上,且DE BC ∥,点F 在线段BC 的延长线上.若28ADE ∠=︒,118ACF ︒∠=,则A ∠=_________.【答案】90︒【分析】首先根据平行线的性质得到28B ADE ∠=∠=︒,然后根据三角形外角的性质求解即可.【详解】∵DE BC ∥,28ADE ∠=︒,∴28B ADE ∠=∠=︒,∵118ACF ︒∠=,∴1182890A ACF B ∠=∠-∠=︒-︒=︒.故答案为:90︒.【点睛】此题考查了平行线的性质和三角形外角的性质,解题的关键是熟练掌握以上知识点.18.(2023·湖北荆州·统考中考真题)如图,CD 为Rt ABC △斜边AB 上的中线,E 为AC 的中点.若8AC =,5CD =,则DE =___________.【答案】3【分析】首先根据直角三角形斜边中线的性质得出AB ,然后利用勾股定理即可得出BC ,最后利用三角形中位线定理即可求解.【详解】解:∵在Rt ABC △中,CD 为Rt ABC △斜边AB 上的中线,5CD =,∴210AB CD ==,∴22221086BC AB AC =-=-=,∵E 为AC 的中点,∴132DE BC ==故答案为:3.【点睛】本题主要考查直角三角形的性质,三角形中位线定理,掌握直角三角形中斜边上的中线等于斜边的一半是解题的关键.19.(2023·湖南·统考中考真题)如图,在Rt ABC △中,90C ∠=︒,按以下步骤作图:①以点A 为圆心,以小于AC 长为半径作弧,分别交,AC AB 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,在BAC ∠内两弧交于点O ;③作射线AO ,交BC 于点D .若点D 到AB 的距离为1,则CD 的长为__________.【答案】1【分析】根据作图可得AD 为CAB ∠的角平分线,根据角平分线的性质即可求解.【详解】解:如图所示,过点D 作DE AB ⊥于点E ,依题意1DE =,根据作图可知AD 为CAB ∠的角平分线,∵,DC AC DE AB⊥⊥∴1CD DE ==,故答案为:1.【答案】4975【分析】AM BD ⊥于点M ,AN DE ⊥根据3tan 4AM B BM ==得出16BM a =,继而求得3tan tan 4GP C B CP ===,求得3GP a =2216EN AE AN a =-=,故EG EN =【详解】由折叠的性质可知,DA 是到DM DN =,设DM DN x ==,则DG ()()()2221239a x a x a -+=+,化简得17217527AGEADG EG AN EG a DG DG AN S a S ⋅====⋅三角形三角形作AM BD ⊥于点M ,AN DE ⊥于点N ,则AM AN =,过点G 作GP BC ⊥于点P ,∵AM BD ⊥于点M ,∴3tan 4AM B BM ==,设12AM a =,则16BM a =,2220AB AM BM a =+=,又∵AB AC =,AM BD ⊥,∴12CM AM a ==,20AB AC a ==,B C ∠=∠,∵:3:1AG CG =,即14CG AC =,∴5CG a =,15AG a =,在Rt PCG △中,5CG a =,3tan tan 4GP C B CP ===,设3GP m =,则224,5CP m CG GP CP m==+=∴m a=∴3,4GP a CP a ==,∵15AG a =,12AM AN a ==,AN DE ⊥,∴229GN AG AN a =-=,∵20AB AE a ==,12AN a =,AN DE⊥∴2216EN AE AN a =-=,∴7EG EN GN a =-=,∵AD AD =,AM AN =,AM BD ⊥,AN DE ⊥,∴()HL ADM ADN △≌△,∴DM DN =,设DM DN x ==,则9DG DN GN x a =+=+,16412DP CM CP DM a a x a x =--=--=-,在Rt PDG △中,222DP GP DG +=,即()()()2221239a x a x a -+=+,三、解答题21.(2023·江苏苏州·统考中考真题)如图,在ABC 中,,AB AC AD =为ABC 的角平分线.以点A 圆心,AD 长为半径画弧,与,AB AC 分别交于点,E F ,连接,DE DF .(1)求证:ADE ADF V V ≌;(2)若80BAC ∠=︒,求BDE ∠的度数.【答案】(1)见解析(2)20BDE ∠=︒【分析】(1)根据角平分线的定义得出BAD CAD ∠=∠,由作图可得AE AF =,即可证明ADE ADF V V ≌;(2)根据角平分线的定义得出40EAD ∠=︒,由作图得出AE AD =,则根据三角形内角和定理以及等腰三角形的性质得出70ADE ∠=︒,AD BC ⊥,进而即可求解.【详解】(1)证明:∵AD 为ABC 的角平分线,∴BAD CAD ∠=∠,由作图可得AE AF =,在ADE V 和ADF △中,BAD CAD AD AD ⎪∠=∠⎨⎪=⎩,∴ADE ADF V V ≌()SAS ;(2)∵80BAC ∠=︒,AD 为ABC 的角平分线,∴40EAD ∠=︒由作图可得AE AD =,∴70ADE ∠=︒,∵AB AC =,AD 为ABC 的角平分线,∴AD BC ⊥,∴20BDE ∠=︒【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质与判定,角平分线的定义,熟练掌握等腰三角形的性质与判定是解题的关键.22.(2023·江西·统考中考真题)(1)计算:038tan 453+︒-(2)如图,AB AD =,AC 平分BAD ∠.求证:ABC ADC △△≌.【答案】(1)2(2)见解析【分析】(1)先计算立方根,特殊角三角函数值和零指数幂,再计算加减法即可;(2)先由角平分线的定义得到BAC DAC ∠=∠,再利用SAS 证明ABC ADC △△≌即可.【详解】解:(1)原式211=+-2=;(2)∵AC 平分BAD ∠,∴BAC DAC ∠=∠,在ABC 和ADC △中,BAC DAC AC AC ⎪∠=∠⎨⎪=⎩,∴()SAS ABC ADC △△≌.【点睛】本题主要考查了实数的运算,零指数幂,特殊角三角函数值,全等三角形的判定,角平分线的定义等等,灵活运用所学知识是解题的关键.23.(2023·云南·统考中考真题)如图,C 是BD 的中点,,AB ED AC EC ==.求证:ABC EDC △≌△.【答案】见解析【分析】根据C 是BD 的中点,得到BC CD =,再利用SSS 证明两个三角形全等.【详解】证明: C 是BD 的中点,BC CD ∴=,在ABC 和EDC △中,BC CD AB ED AC EC =⎧⎪=⎨⎪=⎩,()ABC EDC SSS ∴ ≌【点睛】本题考查了线段中点,三角形全等的判定,其中对三角形判定条件的确定是解决本题的关键.24.(2023·四川宜宾·统考中考真题)已知:如图,AB DE ∥,AB DE =,AF DC =.求证:B E ∠=∠.【答案】见解析【分析】根据平行线的性质得出A D ∠=∠,然后证明AC DF =,证明()SAS ABC DEF ≌△△,根据全等三角形的性质即可得证.【详解】证明:∵AB DE ∥,∴A D ∠=∠,∵AF DC =,∴AF CF DC CF+=+即AC DF=在ABC 与DEF 中AC DF A D AB DE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC DEF ≌△△,∴B E ∠=∠.【点睛】本题考查了全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.25.(2023·福建·统考中考真题)如图,,,OA OC OB OD AOD COB ==∠=∠.求证:AB CD =.【答案】见解析【分析】根据已知条件得出AOB COD ∠=∠,进而证明△≌△AOB COD ,根据全等三角形的性质即可得证.【详解】证明:AOD COB ∠=∠ ,,AOD BOD COB BOD ∴∠-∠=∠-∠即AOB COD ∠=∠.在AOB 和COD △中,,,,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩AOB COD∴ ≌AB CD ∴=.【点睛】本小题考查等式的基本性质、全等三角形的判定与性质等基础知识,考查几何直观、推理能力等,掌握全等三角形的性质与判定是解题的关键.26.(2023·全国·统考中考真题)如图,点C 在线段BD 上,在ABC 和DEC 中,A D AB DE B E ∠=∠=∠=∠,,.求证:AC DC =.【答案】证明见解析【分析】直接利用ASA 证明ABC DEC ≌△△,再根据全等三角形的性质即可证明.【详解】解:在ABC 和DEC 中,A D AB DE B E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ABC DEC ≌ ∴AC DC =.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.27.(2023·四川乐山·统考中考真题)如图,AB 、CD 相交于点O ,AO=BO ,AC ∥DB .求证:AC=BD .【答案】见解析【分析】要证明AC=BD ,只要证明△AOC ≌△BOD ,根据AC//DB 可得∠A=∠B ,∠C=∠D ,又知AO=BO ,则可得到△AOC ≌△BOD ,从而求得结论.【详解】(方法一)∵AC//DB ,∴∠A=∠B ,∠C=∠D .在△AOC 与△BOD 中∵∠A=∠B ,∠C=∠D ,AO=BO ,∴△AOC ≌△BOD .∴AC=BD .(方法二)∵AC//DB ,∴∠A=∠B .在△AOC 与△BOD 中,∵A B AO BO AOC BOD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOC ≌△BOD .∴AC=BD .28.(2023·山东临沂·统考中考真题)如图,90,,,A AB AC BD AB BC AB BD ∠=︒=⊥=+.(1)写出AB 与BD 的数量关系(2)延长BC 到E ,使CE BC =,延长DC 到F ,使CF DC =,连接EF .求证:EF AB ⊥.(3)在(2)的条件下,作ACE ∠的平分线,交AF 于点H ,求证:AH FH =.【答案】(1)()21AB BD -=(2)见解析(3)见解析【分析】(1)勾股定理求得2BC AB =,结合已知条件即可求解;(2)根据题意画出图形,证明CBD CEF ≌,得出=45E DBC ∠=∠︒,则EF BD ∥,即可得证;(3)延长,BA EF 交于点M ,延长CH 交ME 于点G ,根据角平分线以及平行线的性质证明EG EC =,进而证明()AAS AHC FHG ≌,即可得证.【详解】(1)解:∵90,A AB AC∠=︒=∴2BC AB =,∵BC AB BD=+∴2AB AB BD =+∴90,A AB AC∠=︒=∴=45ABC ∠︒,∵BD AB ⊥,∴45DBC ∠=︒∵CE BC =,12∠=∠,CF DC=∴CBD CEF≌∴=45E DBC ∠=∠︒∴EF BD∥∴AB EF⊥(3)证明:如图所示,延长,BA EF 交于点∵EF AB ⊥,AC AB ⊥,∴ME AC ∥,∴CGE ACG∠=∠∵CH 是ACE ∠的角平分线,∴ACG ECG ∠=∠,∴CGE ECG∠=∠∴EG EC=∵CBD CEF ≌,∴EF BD =,CE CB =,∴EG CB =,又∵BC AB BD =+,∴EG AB BD AC EF =+=+,即FG EF AC EF +=+,∴AC EG =,又AC FG ∥,则HAG HFG ∠=∠,在,AHC FHG 中,HAG HFG AHG FHG AC FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AHC FHG ≌,∴AH HF=【点睛】本题考查了全等三角形的与判定,等腰三角形的性质与判定,勾股定理,平行线的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.29.(2023·山东聊城·统考中考真题)如图,在四边形ABCD 中,点E 是边BC 上一点,且BE CD =,B AED C ∠=∠=∠.【点睛】本题考查了三角形内角和定理,全等三角形的判定和性质,等腰三角形的性质,含30︒直角三角形的性质以及勾股定理等知识,正确寻找证明三角形全等的条件是解题的关键.30.(2023·甘肃兰州·统考中考真题)综合与实践问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线,如图2是欧几里得在《几何原本》中给出的角平分线作图法:在OA 和OB 上分别取点C 和D ,使得OC OD =,连接CD ,以CD 为边作等边三角形CDE ,则OE 就是AOB ∠的平分线.请写出OE 平分AOB ∠的依据:____________;类比迁移:(2)小明根据以上信息研究发现:CDE 不一定必须是等边三角形,只需CE DE =即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3,在AOB ∠的边OA ,OB 上分别取OM ON =,移动角尺,使角尺两边相同刻度分别与点M ,N 重合,则过角尺顶点C 的射线OC 是AOB ∠的平分线,请说明此做法的理由;拓展实践:(3)小明将研究应用于实践.如图4,校园的两条小路AB 和AC ,汇聚形成了一个岔路口A ,现在学校要在两条小路之间安装一盏路灯E ,使得路灯照亮两条小路(两条小路一样亮),并且路灯E 到岔路口A 的距离和休息椅D 到岔路口A 的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规..........在对应的示意图5中作出路灯E 的位置.(保留作图痕迹,不写作法)【答案】(1)SSS ;(2)证明见解析;(3)作图见解析;【分析】(1)先证明()SSS OCE ODE ≌,可得AOE BOE ∠=∠,从而可得答案;(2)先证明()SSS OCM OCN ≌,可得AOC BOC ∠=∠,可得OC 是AOB ∠的角平分线;(3)先作BAC ∠的角平分线,再在角平分线上截取AE AD =即可.【详解】解:(1)∵OC OD =,CE DE =,DE DE =,∴()SSS OCE ODE ≌,∴AOE BOE ∠=∠,∴OE 是AOB ∠的角平分线;故答案为:SSS(2)∵OM ON =,CM CN =,OC OC =,∴()SSS OCM OCN ≌,∴AOC BOC ∠=∠,∴OC 是AOB ∠的角平分线;(3)如图,点E 即为所求作的点;.【点睛】本题考查的是全等三角形的判定与性质,角平分线的定义与角平分线的性质,作已知角的角平分线,理解题意,熟练的作角的平分线是解本题的关键.。

初中数学中考复习:30全等三角形(含答案)

初中数学中考复习:30全等三角形(含答案)

中考总复习:全等三角形—巩固练习【巩固练习】一、选择题1.如图,△ABC是不等边三角形,DE=BC,以D、E为两个顶点画位置不同的三角形,使所画的三角形与△ABC全等,这样的三角形最多可画出( ) .A.2个B.4个C.6个D.8个2.如图,Rt△ABC中,∠BAC=90°,AB=AC,D为AC的中点,AE⊥BD交BC于E,若∠BDE=,∠ADB的大小是().A. B. C. D.3.如图,△ABC中,∠C为钝角,CF为AB上的中线,BE为AC上的高,若CF=BE,则∠ACF的大小是().A.45° B.60° C.30° D.不确定4.如图,△ABC中,∠BAC=90° AD⊥BC,AE平分∠BAC,∠B=2∠C,∠DAE的度数是( ) . A. 45°B. 20°C. 30°D. 15°5.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是().  A.△ABD和△CDB的面积相等 B.△ABD和△CDB的周长相等 C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC6. 如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则(). A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC;二、填空题7.如图,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的。

若∠1:∠2:∠3=28:5:3,则的度数为______.8.如图,把△ABC绕C点顺时针旋转35°,得到,交于点,若,则∠A=______.9.如图,已知的周长是20,分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3, △ABC的面积是___________..如图,直线AE∥BD,点则……峰1峰2已知:如图,过△ABC的边BC的中点求证:14.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE,AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.15.如图,已知中,厘米,厘米,点为的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C 点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与 全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?16. 如图,在中,,,,. (1)求证:,. (2)如图,若是的中点.求证:. (3)如图,若于点,延长交于点.求证:.【答案与解析】一、选择题1.【答案】B.2.【答案】C.【解析】作关于BC的对称图形,作的中点,连接,则容易证明,说明和AE在同一条直线上的线段,根据对称性交于E点,所以与DE在同一条直线上,容易证明.所以.所以.3.【答案】C.【解析】延长CF到D,使CD=2CF,容易证明 △AFC≌△,所以∠D=∠FCA,所以AC∥BD,因为 CF=BE,所以CD=2BE,即AC与BD之间的距离等于CD的一半, 所以∠D=30°.所以内错角∠ACF=30°.4.【答案】D.5.【答案】C.【解析】提示:∵△ABD≌△CDB, ∴AB=CD,BD=DB,AD=CB,∠ADB=∠CBD, ∴△ABD和△CDB的周长和面积都分别相等. ∵∠ADB=∠CBD, ∴AD∥BC.6.【答案】D.二、填空题7.【答案】80°.【解析】由三角形内角和是180°知∠1=140°,∠2=25°,∠3=15°, 由翻折知:∠ABE=∠2,∠ACD=∠3,∴.8.【答案】55°.【解析】由旋转知:,, ∵,∴55, ∴55°.9.【答案】30 .【解析】提示:面积法.10.【答案】8.11.【答案】相等或互补.12.【答案】-29 , B .三、解答题13.【答案与解析】证明:延长FM到G,使,连接 ∵M为BC的中点, ∴△BMG≌△CMF ∴∠G=∠2,CF=BG, 又∵平分,ME∥AD, ∴∠3=∠4,∠3=∠E,∠1=∠4, ∴∠1=∠E,即AE=AF, ∵∠1=∠2,∠G=∠2,∠1=∠E, ∴∠G=∠E,即BE=BG=CF, ∴AB+AC=AB+AF+CF=AB+AE+CF=BE+CF=2CF,即14.【答案与解析】猜测AE=BD,AE⊥BD. 证明如下: ∵∠ACD=∠BCE=90°, ∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB. ∵△ACD和△BCE都是等腰直角三角形, ∴AC=CD,CE=CB. ∴△ACE≌△DCB(SAS) ∴AE=BD,∠CAE=∠CDB. ∵∠AFC=∠DFH, ∴∠DHF=∠ACD=90°, ∴AE⊥BD.15.【答案与解析】(1)①∵秒, ∴, ∵,点为的中点, ∴. 又∵, ∴, ∴. 又∵, ∴, ∴. ②∵,∴, 又∵,,则, ∴点,点运动的时间秒, ∴. (2)设经过秒后点与点第一次相遇, 由题意,得, 解得. ∴点共运动了. ∵, ∴点、点在边上相遇, ∴经过秒点与点第一次在边上相遇.16.【答案与解析】(1)提示:证明≌(SAS).(2)提示:延长至,使得,连结,先证≌(SAS), 再证≌(SAS).(3)提示:作于,的延长线于,先证≌(AAS), 同理证明≌,再证≌(AAS).。

(完整版)全等三角形证明中考题选(答案齐全)

(完整版)全等三角形证明中考题选(答案齐全)

智皓教育姓名:全等三角形中考证明题一.解答题1.(2013•泉州)如图,已知AD是△ABC的中线,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:BE=CF.2.(2013•河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是_________;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是_________.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.3.(2013•大庆)如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.4.(2012•阜新)(1)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.①当点D在AC上时,如图1,线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论;②将图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图2,线段BD、CE有怎样的数量关系和位置关系?请说明理由.(2)当△ABC和△ADE满足下面甲、乙、丙中的哪个条件时,使线段BD、CE在(1)中的位置关系仍然成立?不必说明理由.甲:AB:AC=AD:AE=1,∠BAC=∠DAE≠90°;乙:AB:AC=AD:AE≠1,∠BAC=∠DAE=90°;丙:AB:AC=AD:AE≠1,∠BAC=∠DAE≠90°.5.(2009•仙桃)如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A 点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:(1)若AB=AC,请探究下列数量关系:①在图②中,BD与CE的数量关系是_________;②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;(2)若AB=k•AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC 的数量关系,直接写出你的猜想,不必证明.6.(2008•台州)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE_________CF;EF_________|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件_________,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).7.(2007•绍兴)课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)8.(2007•常德)如图,已知AB=AC,(1)若CE=BD,求证:GE=GD;(2)若CE=m•BD(m为正数),试猜想GE与GD有何关系.(只写结论,不证明)9.(2006•泰安)(1)已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°,求证:①AC=BD;②∠APB=60度;(2)如图②,在△AOB和△COD中,若OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系式为_________;∠APB的大小为_________;(3)如图③,在△AOB和△COD中,若OA=k•OB,OC=k•OD(k>1),∠AOB=∠COD=α,则AC与BD间的等量关系式为_________;∠APB的大小为10.(2005•南宁)(A类)如图,DE⊥AB、DF⊥AC.垂足分别为E、F.请你从下面三个条件中,再选出两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况).①AB=AC;②BD=CD;③BE=CF已知:DE⊥AB、DF⊥AC,垂足分别为E、F,AB=AC,BD=CD求证:BE=CF已知:DE⊥AB、DF⊥AC,垂足分别为E、F,AB=AC,BE=CF求证:BD=CD已知:DE⊥AB、DF⊥AC,垂足分别为E、F,BD=CD,BE=CF求证:AB=AC(B类)如图,EG∥AF,请你从下面三个条件中,再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况).①AB=AC;②DE=DF;③BE=CF已知:EG∥AF,AB=AC,DE=DF求证:BE=CF参考答案与试题解析一.解答题(共10小题)1.(2013•泉州)如图,已知AD是△ABC的中线,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:BE=CF.考点:全等三角形的判定与性质.专题:证明题.分析:根据中线的定义可得BD=CD,然后利用“角角边”证明△BDE和△CDF全等,根据全等三角形对应边相等即可得证.解答:证明:∵AD是△ABC的中线,∴BD=CD,∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴BE=CF.点评:本题考查了全等三角形的判定与性质,利用三角形全等证明边相等是常用的方法之一,要熟练掌握并灵活运用.2.(2013•河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是DE∥AC;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.考点:全等三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)①根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;②根据等边三角形的性质可得AC=AD,再根据直角三角形30°角所对的直角边等于斜边的一半求出AC=AB,然后求出AC=BE,再根据等边三角形的性质求出点C到AB的距离等于点D到AC的距离,然后根据等底等高的三角形的面积相等解答;(2)根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角边”证明△ACN和△DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明;(3)过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE中求出BE的长,即可得解.解答:解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;故答案为:DE∥AC;S1=S2;(2)如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF=S△BDE,过点D作DF2⊥BD,∵∠ABC=60°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=×60°=30°,∴∠CDF1=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,又∵BD=4,∴BE=×4÷cos30°=2÷=,∴BF1=,BF2=BF1+F1F2=+=,故BF的长为或.点评:本题考查了全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题的关键,(3)要注意符合条件的点F有两个.3.(2013•大庆)如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.考点:全等三角形的判定与性质.分析:(1)在△CBF和△DBG中,利用SAS即可证得两个三角形全等,利用全等三角形的对应边相等即可证得;(2)根据全等三角形的对应角相等,即可证得∠DHF=∠CBF=60°,从而求解.解答:(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.点评:本题考查了全等三角形的判定与性质,正确证明三角形全等是关键.4.(2012•阜新)(1)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.①当点D在AC上时,如图1,线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论;②将图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图2,线段BD、CE有怎样的数量关系和位置关系?请说明理由.(2)当△ABC和△ADE满足下面甲、乙、丙中的哪个条件时,使线段BD、CE在(1)中的位置关系仍然成立?不必说明理由.甲:AB:AC=AD:AE=1,∠BAC=∠DAE≠90°;乙:AB:AC=AD:AE≠1,∠BAC=∠DAE=90°;丙:AB:AC=AD:AE≠1,∠BAC=∠DAE≠90°.考点:全等三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)①BD=CE,BD⊥CE.根据全等三角形的判定定理SAS推知△ABD≌△ACE,然后由全等三角形的对应边相等证得BD=CE、对应角相等∠ABF=∠ECA;然后在△ABD和△CDF中,由三角形内角和定理可以求得∠CFD=90°,即BD⊥CF;②BD=CE,BD⊥CE.根据全等三角形的判定定理SAS推知△ABD≌△ACE,然后由全等三角形的对应边相等证得BD=CE、对应角相等∠ABF=∠ECA;作辅助线(延长BD交AC于F,交CE于H)BH构建对顶角∠ABF=∠HCF,再根据三角形内角和定理证得∠BHC=90°;(2)根据结论①、②的证明过程知,∠BAC=∠DFC(或∠FHC=90°)时,该结论成立了,所以本条件中的∠BAC=∠DAE≠90°不合适.解答:解:(1)①结论:BD=CE,BD⊥CE;②结论:BD=CE,BD⊥CE…1分理由如下:∵∠BAC=∠DAE=90°∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE…1分在△ABD与△ACE中,∵∴△ABD≌△ACE(SAS)∴BD=CE…1分延长BD交AC于F,交CE于H.在△ABF与△HCF中,∵∠ABF=∠HCF,∠AFB=∠HFC∴∠CHF=∠BAF=90°∴BD⊥CE…3分(2)结论:乙.AB:AC=AD:AE,∠BAC=∠DAE=90°…2分点评:本题考查了全等三角形的判定与性质.SSS,SAS,ASA,AAS,HL均可作为判定三角形全等的定理.注意:在全等的判定中,没有AAA(角角角)和SSA(边边角)(特例:直角三角形为HL,因为勾股定理,只要确定了斜边和一条直角边,另一直角边也确定,属于SSS),因为这两种情况都不能唯一确定三角形的形状;另外三条中线(或高、角平分线)分别对应相等的两个三角形也全等.5.(2009•仙桃)如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A 点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:(1)若AB=AC,请探究下列数量关系:①在图②中,BD与CE的数量关系是;②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;(2)若AB=k•AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC 的数量关系,直接写出你的猜想,不必证明.考点:全等三角形的判定.专题:压轴题;探究型.分析:(1)①根据题意和旋转的性质可知△AEC≌△ADB,所以BD=CE;②根据题意可知∠CAE=BAD,AB=AC,AD=AE,所以得到△BAD≌△CAE,在△ABM和△ACN中,DM=BD,EN=CE,可证△ABM≌△ACN,所以AM=AN,即∠MAN=∠BAC.(2)直接类比(1)中结果可知AM=k•AN,∠MAN=∠BAC.解答:解:(1)①BD=CE;②AM=AN,∠MAN=∠BAC,∵∠DAE=∠BAC,∴∠CAE=∠BAD,在△BAD和△CAE中∵∴△CAE≌△BAD(SAS),∴∠ACE=∠ABD,∵DM=BD,EN=CE,∴BM=CN,在△ABM和△ACN中,∵∴△ABM≌△ACN(SAS),∴AM=AN,∴∠BAM=∠CAN,即∠MAN=∠BAC;(2)AM=k•AN,∠MAN=∠BAC.点评:本题考查三角形全等的判定方法和性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题还要会根据所求的结论运用类比的方法求得同类题目.6.(2008•台州)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE=CF;EF=|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠BCA=180°,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).考点:直角三角形全等的判定;三角形内角和定理.专题:几何综合题;压轴题.分析:由题意推出∠CBE=∠ACF,再由AAS定理证△BCE≌△CAF,继而得答案.解答:解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CFA;∴△BCE≌△CAF,∴BE=CF;EF=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CFA,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)EF=BE+AF.点评:本题综合考查全等三角形、等边三角形和四边形的有关知识.注意对三角形全等,相似的综合应用.7.(2007•绍兴)课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)考点:直角三角形全等的判定.专题:证明题;压轴题;开放型.分析:(1)如果:“∠B=∠D”,根据∠B与∠D互补,那么∠B=∠D=90°,又因为∠DAC=∠BAC=30°,因此我们可在直角三角形ADC和ABC中得出AD=AB=AC,那么AD+AB=AC.(2)按(1)的思路,作好辅助线后,我们只要证明三角形CFD和BCD全等即可得到(1)的条件.根据AAS可证两三角形全等,DF=BE.然后按照(1)的解法进行计算即可.解答:证明:(1)∵∠B与∠D互补,∠B=∠D,∴∠B=∠D=90°,∠CAD=∠CAB=∠DAB=30°,∵在△ADC中,cos30°=,在△ABC中,cos30°=,∴AB=AC,AD=.∴AB+AD=.(2)由(1)知,AE+AF=AC,∵AC为角平分线,CF⊥CD,CE⊥AB,∴CE=CF.而∠ABC与∠D互补,∠ABC与∠CBE也互补,∴∠D=∠CBE.∵在Rt△CDF与Rt△CBE中,∴Rt△CDF≌Rt△CBE.∴DF=BE.∴AB+AD=AB+(AF+FD)=(AB+BE)+AF=AE+AF=AC.点评:本题考查了直角三角形全等的判定及性质;通过辅助线来构建全等三角形是解题的常用方法,也是解决本题的关键.8.(2007•常德)如图,已知AB=AC,(1)若CE=BD,求证:GE=GD;(2)若CE=m•BD(m为正数),试猜想GE与GD有何关系.(只写结论,不证明)考点:全等三角形的判定与性质.专题:证明题;压轴题;探究型.分析:(1)要证GE=GD,需证△GDF≌△GEC,由已知条件可根据AAS判定.(2)若CE=m•BD(m为正数),那么GE=m•GD.解答:证明:(1)过D作DF∥CE,交BC于F,则∠E=∠GDF.∵AB=AC,∴∠ACB=∠ABC∵DF∥CE,∴∠DFB=∠ACB,∴∠DFB=∠ACB=∠ABC.∴DF=DB.∵CE=BD,∴DF=CE,在△GDF和△GEC中,,∴△GDF≌△GEC(AAS).∴GE=GD.(2)GE=m•GD.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.本题的辅助线是解决题目的关键.9.(2006•泰安)(1)已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°,求证:①AC=BD;②∠APB=60度;(2)如图②,在△AOB和△COD中,若OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系式为AC=BD;∠APB的大小为α;(3)如图③,在△AOB和△COD中,若OA=k•OB,OC=k•OD(k>1),∠AOB=∠COD=α,则AC与BD间的等量关系式为AC=k•BD;∠APB的大小为180°﹣α.考点:全等三角形的判定;三角形内角和定理.专题:探究型.分析:(1)分析结论AC=BD可知,需要证明△AOC≌△BOD,围绕这个目标找全等的条件;(2)与图①比较,图形条件发生了变化,仍然可以证明△AOC≌△BOD,方法类似;(3)转化为证明△AOC∽△BOD.解答:解:(1)①∵∠AOB=∠COD=60°,∴∠AOB+∠BOC=∠COD+∠BOC.即:∠AOC=∠BOD.又∵OA=OB,OC=OD,∴△AOC≌△BOD.∴AC=BD.②由①得:∠OAC=∠OBD,∵∠AEO=∠PEB,∠APB=180°﹣(∠BEP+∠OBD),∠AOB=180°﹣(∠OAC+∠AEO),∴∠APB=∠AOB=60°.(2)AC=BD,α(3)AC=k•BD,180°﹣α.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.10.(2005•南宁)(A类)如图,DE⊥AB、DF⊥AC.垂足分别为E、F.请你从下面三个条件中,再选出两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况).①AB=AC;②BD=CD;③BE=CF已知:DE⊥AB、DF⊥AC,垂足分别为E、F,AB=AC,BD=CD求证:BE=CF已知:DE⊥AB、DF⊥AC,垂足分别为E、F,AB=AC,BE=CF求证:BD=CD已知:DE⊥AB、DF⊥AC,垂足分别为E、F,BD=CD,BE=CF求证:AB=AC(B类)如图,EG∥AF,请你从下面三个条件中,再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况).①AB=AC;②DE=DF;③BE=CF已知:EG∥AF,AB=AC,DE=DF求证:BE=CF友情提醒:若两题都做的同学,请你确认以哪类题记分,你的选择是A类类题.考点:全等三角形的判定与性质.专题:证明题;开放型.分析:本题是开放题,应先确定选择哪对三角形,对应三角形全等条件求解;再根据全等三角形的性质得出结论.解答:解:(A类)已知:…,AB=AC,BD=CD求证:BE=CF.证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.在△BDE和△CDF中∴△BDE≌△CDF.∴BE=CF.已知:…,AB=AC,DE=DF,求证:BE=CF.证明:∵EG∥AF,∴∠GED=∠F,∠BGE=∠BCA.∵AB=AC,∴∠B=∠BCA,∴∠B=∠BGE,∴BE=EG.在△DEG和△DFC中∴△DEG≌△DFC,∴EG=CF,∴BE=CF.点评:这是一道考查三角形全等的识别方法的开放性题目,答案可有多种.同时还考查了全等三角形的性质.。

全等三角形的判定中考题

全等三角形的判定中考题

全等三角形的判定中考题一、已知两个三角形两边及夹角分别相等,根据哪种全等判定定理可以确定这两个三角形全等?A. SSS(三边相等)B. SAS(两边及夹角相等)C. ASA(两角及夹边相等)D. AAS(两角及非夹边相等)(答案:B)二、在△ABC与△DEF中,若∠A=∠D,∠C=∠F,且AC=DF,则依据哪个判定定理可证明两三角形全等?A. SSSB. SASC. ASAD. AAS(答案:C)三、若△PQR与△STU中,PQ=ST,QR=TU,且∠Q=∠T,但∠Q并非PQ与QR的夹角,则根据哪个判定不能直接证明两三角形全等?A. SSSB. SASC. ASAD. 以上均不可(答案:D)四、两个三角形中,如果两个角和一条边分别相等,且这条边是这两个角的夹边,应使用哪个全等判定定理?A. SSSB. SASC. ASAD. AAS(答案:C)五、在△ABC与△MNP中,若AB=MN,BC=NP,且∠B=∠N,但∠B不是AB和BC的夹角,则不能直接通过哪个判定证明两三角形全等?A. SSSB. SASC. AASD. 以上都不是直接证明的依据(答案:B)六、若两个三角形的两个角及非夹边分别相等,应依据哪个全等判定定理来确定它们全等?A. SSSB. SASC. ASAD. AAS(答案:D)七、在△XYZ与△LMN中,若XY=LM,YZ=MN,且∠YZX=∠LMN,但∠YZX并非XY与YZ的夹角,则不能直接应用哪个全等判定?A. SSSB. SAS(答案)C. 这种情况无法判定三角形全等D. AAS八、已知△ABC与△DEF中,∠A=∠D,∠B=∠E,若要证明两三角形全等,还需满足以下条件中的哪一个?A. AB=DEB. AC=EF(非夹角对应的边)C. BC=DF(夹角对应的边,即SAS情况)(答案)D. ∠C=∠F(已有两角相等,再加一角无法判定全等)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形专题(一) 姓名:1.如图,OP 平分,MON PA ON ∠⊥于点A ,点Q 是射线OM 上的一个动点,若2PA =,则PQ 的最小值为( )A.1B.2C.3D. 42.如图所示,两块完全相同的含30°角的直角三角形叠放在一起,且∠DAB=30°。

有以下四个结论:①AF ⊥BC ;②△ADG ≌△ACF ; ③O 为BC 的中点; ④AG :DE =3:4,其中正确结论的序号是 .(错填得0分,少填酌情给分)3.如图,在Rt △ABC 中,∠BAC=90°,AC=2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D 重合,连结BE 、EC . 试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.4.八(1)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案: ABCDEON(Ⅰ)∠AOB 是一个任意角,将角尺的直角顶点P 介于射线OA 、OB 之间,移动角尺使角尺两边相同的刻度与M 、N 重合,即PM=PN ,过角尺顶点P 的射线OP 就是∠AO B 的平分线. (Ⅱ)∠AOB 是一个任意角,在边OA 、OB 上分别取OM=ON ,将角尺的直角顶点P 介于射线OA 、OB 之间,移动角尺使角尺两边相同的刻度与M 、N 重合,即PM=PN ,过角尺顶点P 的射线OP 就是∠AOB 的平分线. (1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由.(2)在方案(Ⅰ)PM=PN 的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.5.(2010湖南娄底)如图10,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连结AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ; (2)AB =BC +AD6.(2010江苏扬州)电子跳蚤游戏盘是如图所示的△ABC ,AB =6,AC =7,BC =8.如果跳蚤开始时在BC 边的P 0处,BP 0=2.跳蚤第一步从P 0跳到AC 边的P 1(第一次落点)处,且CP 1=CP 0;第二步从P 1跳到AB 边的P 2(第一次落点)处,且AP 2=AP 1;第三步从P 2跳到BC 边的P 3(第三次落点)处,且BP 3=BP 2;……;跳蚤按上述规则一致跳下去,第n 次落点为P n (n 为正整数),则点P 2007与P 2010之间的距离为( )A .1B .2C .3D .47.(2010安徽蚌埠)在ABC ∆中,E D 、分别是AC BC 、上的点,CD BD CE AE 2,2==,BE AD 、交于点F ,若3=∆ABC S ,则四边形DCEF 的面积为________。

03第8题8.(2010安徽蚌埠)三角形纸片内有100个点,连同三角形的顶点共103个点,其中任意三点都不共线。

现以这些点为顶点作三角形,并把纸片剪成小三角形,则这样的三角形的个数为__________。

9.(2009年济宁市)观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有 个 .10、(2009临沂)数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.第1个第2个第3个11、(2009年牡丹江)已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F . 当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.12.(2008山东泰安)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE ⊥.图1图2(第22题)ADFC GB图1ADFC G B 图2ADFGB图3A EC FB D 图1图3ADFECBADBCE 图2F13、在等边ABC ∆的两边AB 、AC 所在直线上分别有两点M 、N ,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.图1 图2 图3(I )如图1,当点M 、N 边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是 ; 此时=LQ; (II )如图2,点M 、N 边AB 、AC 上,且当DM ≠DN 时,猜想(I )问的两个结论还成立吗?写出你的猜想并加以证明;(III ) 如图3,当M 、N 分别在边AB 、CA 的延长线上时, 若AN=x ,则Q= (用x 、L 表示).14、已知四边形ABCD 中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,(或它们的延长线)于E F ,.当MBN ∠绕B 点旋转到AE CF =时(如图1),易证AE CF EF +=.当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE CF ,,EF 又有怎样的数量关系?请写出你的猜想,不需证明.(图1) A B CD E FM N(图2)A B CD E FM N(图3)ABC DE F MNF E D C B ACBA15 正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF ,求∠EAF 的度数.16、如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。

请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA的平分线,AD 、CE 相交于点F 。

请你判断并写出FE 与FD 之间的数量关系; (2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。

17、如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD18、如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F. (1)说明BE=CF 的理由;(2)如果AB=a ,AC=b ,求AE 、BE 的长. 1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC(第23题图)O P AM NE B CDF AE F BD图①图② 图③E DGFCBACDBA全等三角形专题(二)姓名:全等三角形难题1.在△ABC 中,AB=AC,∠A=20°,D、E 分别是AB、AC 上的点,∠DCB=50°,∠EBC =60°,求∠DEB 的度数。

2.在三角形ABC 中,AB=AC,AD 平分角ABC 交AC 于D,AD+BD=BC,求角A 的度数。

3.在直角三角形ABC 中,∠BAC=90°,AB=AC,点D、E 是直线AC 上的两个动点,且AD=EC,AM⊥BD,垂足为M,AM 的延长线交BC 于N,直线BD 直线NE 相交于点F,试判断三角形DEF的形状,并加以证明。

4.如图,在△ABC 中,∠C = 2∠B ,D 是BC 上的一点,且AD ⊥AB ,点E 是BD的中点,连结AE .(1)求证:∠AEC = ∠C(2)求证:BD = 2AC(3)若AE = 6.5,AD = 5,那么△ABE 的周长是多少?全等专题(三) 姓名: 全等三角形中的动态几何问题动态几何题,是指以几何知识和几何图形为背景,渗透运动变化观点的一类试题;而通过对几何图形运动变化,使同学们经历由观察、想象、推理等发现、探索的过程,是中考数学试题中,考查创新意识、创新能力的重要题型;解决这类问题,要善于探索图形的运动特点和规律,抓住变化中图形的性质与特征,化动为静,以静制动.本文以中考试题中的全等三角形动态几何题为例,谈谈这类问题的解题思路,供同学们学习时参考.例1.(扬州)在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD⊥MN 于D ,BE⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD -BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明. 证明:评注:本题以直线MN 绕点C 旋转过程中与△ABC 的不同的位置关系为背景设置的三个小题,第(1)小题的两个小题中,①是②的台阶,只要证明了①,不难得到②;第(1)小题思路又作为解决第(2)小题的借鉴;第(3)小题为探索性问题,探索的结论及证明过程可借鉴第(1)、(2)两小题,整个试题考查了同学们从具体、特殊的情形出发去探究运动变化过CBAED 图1 NM ABC DE M N图2ACBEDN M图3程中的规律的能力.例2 (锦州)如图A,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系?请证明你的结论;(2)将图A中的△CEF绕点C旋转一定的角度,得到图B,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图A中的△AB C绕点C旋转一定的角度,请你画山一个变换后的图形C(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现.答:(3)此小题图形不惟一,如第(1)中的结论仍成立.(4)根据以上证明、说理、画图,归纳如下:如图A,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE.′ O 家庭作业:全等三角形提高练习1.如图所示,△AB C ≌△ADE ,BC 的延长线过点E ,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF 的度数 。

相关文档
最新文档