6.3实数的概念和分类
人教版数学七年级下册6.3.1 实数的概念、分类、与数轴的关系

希伯斯很不服气.他想,不承 认这是数,岂不等于是说正方形的对 角线没有长度吗?为了坚持真理, 捍卫真理,希伯斯将自己的发现传扬 了开去.直到最近几百年,数学家们 才弄清楚,它确实不是整数,也不是 分数,而是一种新的数,那是什么呢?
3. 了解实数和数轴上的点一一对应,能用数轴 上的点表示无理数.
2. 熟练掌握实数大小的比较方法.
-2 -1 0 1 2 3
解: -2<- 3< 1< 2 < 5
5.试在数轴上标出π, - 5 , 3 的大致位置,并借助数轴比 较它们的大小.
解析:因为π≈3.14, - 5 ≈-2.24, 3 ≈1.73,所以可以近似地标 出它们在数轴上的位置,如图(其中点A表示π,点B表示- 5 ,点 C表示 3).
知识点 2 实数与数轴的关系 问题1 无理数能在数轴上表示出来吗?
如图,直径为1个单位长度的圆从原点沿数轴向右滚动一 周,圆上一点从原点到达A点,则点A的坐标为多少?
-4 -3 -2 -1 0 1 2 3A 4
无理数 可以用数轴上的点来表示.
问题2(1)你能在数轴上表示出 2 吗?
-2
-2 -1
不用计算器, 5 与2比较哪个大?与3比较呢?
5 ,2可以分别看作是
面积为5,4的正方形的边 长,容易说明:面积较大
的正方形,它的边长也较 大,因此
5 2.
同样,因为5<9,所以 5 3.
素养考点 1 比较实数的大小
例3 在数轴上表示下列各点,比较它们的大小, 并用“<”连接
它们.
1 2 -2
5 3
∴-1-x=1+ 3,
∴x=-2- 3
3.如果以2为边长画一个正方形,以原点为圆心,正方形的对角 线 为 半 径 画 弧 , 与 正 半 轴 的 交 点 就 表 示 _ _2_ _2_ _ , 与 负 半 轴 的 交 点就表示___2__2 ___.
人教版数学七年级下册教案6.3《 实数》

人教版数学七年级下册教案6.3《实数》一. 教材分析《实数》是人教版数学七年级下册的一章内容,主要介绍了实数的概念、性质和运算。
本章内容包括有理数、无理数和实数的分类,以及实数的运算规则。
通过本章的学习,学生能够理解实数的概念,掌握实数的性质和运算规则,为后续的数学学习打下基础。
二. 学情分析学生在学习本章内容前,已经学习了有理数的概念和运算规则,对数学运算有一定的基础。
但是,学生可能对无理数的概念和性质较为陌生,需要通过实例和讲解来加深理解。
此外,学生可能对实数的分类和运算规则有一定的困惑,需要通过具体的例题和练习来进行巩固。
三. 教学目标1.了解实数的概念和性质,能够对实数进行分类。
2.掌握实数的运算规则,能够进行实数的加减乘除运算。
3.能够运用实数的概念和运算规则解决实际问题。
四. 教学重难点1.实数的分类:有理数、无理数和实数的区别和联系。
2.实数的运算规则:实数的加减乘除运算规则。
五. 教学方法采用问题驱动法和案例教学法,通过提问和举例引导学生思考和探索实数的概念和性质,通过具体的例题和练习来讲解和巩固实数的运算规则。
六. 教学准备1.PPT课件:实数的概念、性质和运算规则的讲解和例题。
2.练习题:针对实数的分类和运算的练习题。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念和运算规则,为新课的学习做好铺垫。
2.呈现(15分钟)讲解实数的概念和性质,通过具体的例子来阐述实数的分类,如有理数、无理数和实数的区别和联系。
3.操练(20分钟)讲解实数的运算规则,通过具体的例题来演示和解释实数的加减乘除运算,引导学生进行思考和提问。
4.巩固(10分钟)学生进行实数的分类和运算的练习,教师进行个别指导和讲解,确保学生能够掌握实数的分类和运算规则。
5.拓展(10分钟)通过实际问题引导学生运用实数的概念和运算规则进行解决问题,培养学生的应用能力和创新思维。
6.小结(5分钟)对本节课的内容进行总结和回顾,强调实数的概念、性质和运算规则的重点和难点。
人教版七年级下册6.3.1 实数及其分类

6.3 实 数 第1课时 实数及其分类
1 课堂讲解
无理数 实数及其分类 实数与数轴上的点的关系
2 课时流程
பைடு நூலகம்
逐点 导讲练
课堂 小结
课后 作业
回顾旧知
什么是有理数?有理数怎样分类?
有理数
整数 分数
正有理数
有理数
0
负有理数
知识点 1 无理数
知1-导
探究 我们知道有理数包括整数和分数,请把下列分数写成 小数的形式,你有什么发现?
如,将3看成3.0), 那么任何一个有理数都可以写成有
限小数或无限循环小数的形式. 反过来,任 何有限小
数或无限循环小数也都是有理数.
(来自教材)
知1-讲
1. 定义:无限不循环小数叫做无理数. 判断标准:小数位数无限,小数形式为不循环.
2. 三种常见形式: (1)开方开不尽的数,如 3 ,3 5 ,…; (2)含有π的一类数: 1 π, 1 π,π+1,…;
5 8
,0,0.8,
45 6
,-4.2.
正数:{ ,…};负数:{ ,…};
正整数:{ ,…};正分数:{ ,…};
负整数:{ ,…};负分数:{ ,…}.
分析: 以前学过的0以外的数就是正数,正数前面加上 “-”号就是负数,再看它们是整数还是分数.
解:正数:{13,+6, ,0.8,4 5 ,…}; 6
议一议 (1)如图,OA=OB,数轴上点A对应的数是什么?它介
于哪两个整数之间? (2)你能在坐标轴上找到 5 对应的点吗?与同伴进
行交流.
知3-讲
1.实数与数轴间的关系:实数和数轴上的点是一一对应 的. 它包含着两层含义:
6.3无理数可以在数轴上表示出来吗——实数20121023

6.3无理数可以在数轴上表示出来吗?——实数背景材料:自从学习了实数的知识,小贝有一种体会——实数的内容简直是太丰富了!别的不说,光是“实数与数轴上的点是一一对应的”这一句话,就让小贝琢磨了好几天,她几乎花了这几天中所有的业余时间来消化理解这个结论.今天晚上写完作业后,小贝找出纸笔、计算器和绘图工具,她准备亲自动手,将一些无理数表示在数轴上.首先,小贝搜罗来六个无理数:π;2π-;2;3;5;512-,接着画出一条数轴,然后就开始研究怎样在数轴上表示出这些数.根据小贝的设想,先在原点上方画一个直径是1个单位长度的圆,使圆与数轴接触的点恰好是原点0,因为圆的直径是1,所以圆的周长是π,将圆从原点沿数轴向右滚动一周,那么现在圆与数轴接触的点到原点的距离就是π,这样就可以在数轴上表示出π来了.可是设想毕竟是设想,真到了实践的时候却出了问题:在原点处画的圆是“死的”,动不了!这可咋办?小贝充分发扬了不怕麻烦勤动手的优良习惯,索性用卡纸做出一个直径是1个单位长度的圆形纸片,这下好了,将圆形纸片在数轴上滚动一周,记下了此时圆与数轴的接触点,满意地在那里标记上“π”.下一个数是2π-,有了圆形纸片,标记这个数就好办多了,因为2π-是负数,且它的绝对值是π的一半,所以这次纸片滚动的方向是向左的,滚动半周就可以了. 接下来是2.记得学习平方根的时候老师讲过,作一个边长为1的正方形,那么正方形的对角线长度就是2.心动不如行动,小贝很快就把2作出来了.这时小贝发现,以上面的π和2为基础,可以表示出很多与它们有关的无理数:如-π,-2,21+,π-2等等,但是,3;5;512-这样的无理数该怎样表示呢?小贝苦思冥想,还是没有找到方法,只好暂时求助于计算器了.通过计算器计算得到3≈1.732;5≈2.236;512-≈0.618,最后在数轴上把这三个数一一表示出来.π-π24321-2-12-1-2125-12532-1-2120π-π243知识解读:一、实数的概念及分类通过前面两节的学习,我们知道很多数经过开平方或开立方后所得的结果都是无限不循环小数,因而它们不属于有理数.我们把无限不循环小数称为无理数.例如:2、(32)2+-、π等.有理数和无理数合在一起统称为实数.像有理数一样,无理数也有正负之分.例如3π、5、37是正无理数,-3、3-π是负无理数.所以实数也可以细分为:实数的性质:(1)实数范围内仍然适用在有理数范围内定义的一些概念(如倒数,相反数).(2)两实数的大小关系:正数大于0,0大于负数;两个正实数,绝对值大的实数大;两个负实数,绝对值大的实数反而小.在数轴上,右边的实数大于左边的实数.(3)在实数范围内,加、减、乘、除(除数不为零)、乘方五种运算是畅通无阻的,但是开方运算要注意,正实数和零总能进行开方运算,而负实数不能开偶次方.(4)有理数范围内的运算律和运算顺序在实数范围内仍然相同. 二、实数的运算在实数范围内,有关有理数的相反数、倒数和绝对值等概念、大小比较、运算法则及运算律仍然适用. 实数a 的相反数是-a ;一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0.例如:2的相反数是-2;-π的相反数是π;12-=21-;π-=π;0=0;33的倒数是33.当数从有理数扩充到实数以后,在进行实数的运算时,有理数的运算法则和性质等同样适用.例如:(32)2+-=3223+-=;3323+=53;2(223-)-23=2263-.三、实数的比较大小在比较实数大小的时候,要注意方法的运用.1.代数法:正数大于非正数,零大于负数,对于两个负数,绝对值大的反而小.2.数轴法:数轴右边的数比左边的数大.用数轴法比较实数的大小,先将实数表示在数轴上,再根据数的位置直接判断大小.3.特殊值法:例如,当0<x <1时,x 2、x 、1x的大小顺序是( )A .1x <x <x 2B .1x <x 2<xC .x 2<x <1xD .x <x 2<1x因为0<x <1,故可取x =0.5,则x 2=0.25,1x =2,由0.25<0.5<2,可得x 2<x <1x,故选C .4.分类讨论法:若a 是整数,那么a 2__________a .(请选符号>,≥,<,≤填空)因为对于a ,题目并未明确给出是正整数还是负整数,取值具有不确定性,因此需要分类讨论:当a是负整数时,得a 2>a ;当a 是0或1时,得a 2=a a a =2;当a 是大于1的整数时,得a 2>a ,综上可知,当a 是整数时,a 2≥a .5.作差法:0a b a b ->⇔>,0a b a b -=⇔=,0a b a b -<⇔<.例如,已知2005200620072008a ⨯=-⨯,2005200720062008b ⨯=-⨯,2005200820062007c ⨯=-⨯,则a ,b ,c 的大小关系是_______________. ∵a b -20052006200520072005200720052006()20072008200620082006200820072008⨯⨯⨯⨯=---=-⨯⨯⨯⨯200520072006()0200820062007=->,所以a b >,同理可得,b c >所以a b c >>.6.作商法:若0a >,0b >,1a a b b >⇔>,1a a b b =⇔=,1a a b b <⇔<.例如,比较78和910的大小,78÷910=7072<1,∴78<910.7.倒数法:分子一样,通过比较分母从而判定两数的大小.例如,比较34,56,78的大小,41133=,61155=,81177=,易得:468357>>,所以:357468<<.8.乘方法:例如,比较35和53的大小,先将两个数平方,得到45和75,∵45<75,∴35<53.9.同一法:将分数化为同分子或同分母的分数,再比较大小.例如,比较5个分数23,58,1523,1017,1219的大小,先找出分子的最小公倍数60,再将这些分数进行等值变换,5个分数依次等于:6090,6096,6092,60102,6095,∴60102<6096<6095<6092<6090,即1017<58<1219<1523<23.此外,比较数的大小时,还常常采用传递的原理(若a >b ,b >c ,则a >c )帮助解题. 四、实数与数轴的关系我们知道,所有的有理数都可以表示在数轴上.结合小贝的一系列实践操作,不难发现以下结论:数轴上任意一点表示的数,不是有理数就是无理数.数轴上的任一点必定表示一个实数;反过来,每一个实数(有理数或无理数)也都可以用数轴上的点来表示,所以“实数与数轴上的点是一一对应的”.相关链接:(一)“无理数”的由来在大多数学科里,一代人的建筑往往被另一代人所摧毁,一个人的创造被另一个人的创造所破坏.唯独数学,每一代人都在古老的大厦上添加一层楼.——【德】汉克尔公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟子希勃索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形边长是1,则对角线的长不是一个有理数)这一不可公度性与毕氏学派“万物皆为数”(指有理数)的哲理大相径庭.这一发现使该学派领导人惶恐、恼怒,认为这将动摇他们在学术界的统治地位.希勃索斯因此被囚禁,受到百般折磨,最后竞遭到沉舟身亡的惩处.毕氏弟子的发现,第一次向人们揭示了有理数系的缺陷,证明它不能同连续的无限直线同等看待,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的“孔隙”.而这种“孔隙”经后人证明简直多得“不可胜数”.于是,古希腊人把有理数视为连续衔接的那种算术连续统的设想彻底地破灭了.不可公度量的发现连同著名的芝诺悖论一同被称为数学史上的第一次危机,对以后2000多年数学的发展产生了深远的影响,促使人们从依靠直觉、经验而转向依靠证明,推动了公理几何学与逻辑学的发展,并且孕育了微积分的思想萌芽.不可通约的本质是什么?长期以来众说纷坛,得不到正确的解释,两个不可通约的比值也一直被认为是不可理喻的数.15世纪意大利著名画家达.芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数.然而,真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”.人们为了纪念希勃索斯这位为真理而献身的可敬学者,就把不可通约的量取名为“无理数”——这便是“无理数”的由来.从有理数到实数,是数的发展史上一次巨大的飞跃,这一次飞跃经历了曲折而漫长的过程,这是科学家们努力探索的结果.在学习中,要学习这种勇于探索,积极创新的精神,为造福于社会而努力学习.用电子计算机计算π与2的值(二)超越数e在我们中学阶段,接触到的无理数最多的是含有根号的无理数,就连神秘的黄金分割数,也可以用512的形式表示出来.再有就是我们很熟悉(小学阶段就已经学过)的无理数“π”了.与众多的含根号的无理数相比,π显得有点孤独.其实,除了这些无理数外,还有一些可能不为你所知的无理数呢.下面为读者介绍的是在数学中的另一个常数e .e 是自然对数的底数,有些著作上称它为欧拉数,因为数学家欧拉(1707-1783)研究过它.用e 表示这个数,是欧拉在1728年一篇未发表的手稿《遗作》中引入的,1731年他在给哥德巴赫的信中用过e 表示自然对数的底后,e 便一直沿用至今.毕达哥拉斯(约公元前580-前500)古希腊哲学家、数学家、天文学家发展到1737年,欧拉已经证明了e 及e 2是无理数.到了1873年,巴黎大学的爱尔米德教授(1822-1901)就证明了e 是超越数.而e 就具有下列性质:11111xx e x x +⎛⎫⎛⎫+<<+ ⎪ ⎪⎝⎭⎝⎭(x 为正数).当x 取1,000,000时,便可求得e =2.71828.e 也可以定义为极限值:e =lim 11xx x ⎛⎫+ ⎪→∞⎝⎭.若利用牛顿所发明的幂级数,则可得:11122!3!4!e =++++…,这将能得到更精确的近似值:e =2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 45713 82178 52516 64274 27466 39193 20030 59921 81741 35966 29043 57290 03342 95260 59563 07381 32328 62794 34907 63233 82988 07531 95251 01901 15738 34187 93070 21540 89149 93488 41675 09244 76146 06680 82264 80016 84774 11853 74234 54424 37107 53907 77449 92069 55170 27618 38606 26133 13845 83000 75204 49338 26560 29760 67371 13200 70932 87091 27443 74704 72306 96977 20931 01416 92836 81902 55151 08657 46377 21112 52389 78442 50569 53696 77078 54499 69967 94686 44549 05987 93163 68892 30098 79312....因为圆周率的定义直观,易于理解,所以π几乎是家喻户晓的一个数,知道π的人多数能背诵到3.14.e 则不同,在高等数学中大放异彩的常数e ,在现实中往往却不被人所知.它们时而出现在街角,时而见诸报端,只要你留意,生活中处处皆是数学.在Google2004年的首次公开募股,集资额不是通常的整头数,而是$2,718,281,828,这当然是取e 的前十位数字.顺便一提,Google2005年的一次公开募股中,集资额是$14,159,265,这是与圆周率π有关的一个数字了.阅读思考:问题1.(1983年,河北省初中数学竞赛试题)22π29 3.140.614140.10010001000017-,,,,,,这7个实数中,无理数的个数是( )A .0B .1C .2D .3问题2.已知实数a 、b 、c 在数轴上的位置如图所示,化简|a +b |-|c -b |的结果是( )abcA .a +cB .-a -2b +cC .a +2b -cD .-a -c问题3.有一个数值转换器原理如图所示,则当输入x 为64时,输出的y 是( )是无理数输出y是有理数取算术平方根输入xA .8B .22C .23D .32问题4.若a 、b 为实数,且22111a a ab a -+-+=+,求3a b -+的相反数.问题5.下面有四个命题:①有理数与无理数之和是无理数; ②有理数与无理数之积是无理数; ③无理数与无理数之和是无理数; ④无理数与无理数之积是无理数.请你判断哪些是正确的,哪些是不正确的,并说明理由.问题6.已知数14的小数部分是b ,求4321237620b b b b +++-. 问题7.(1995年第6届希望杯全国数学邀请赛试题)设[]x 表示不大于x 的最大整数,如[π]3=,则123100______⎡⎤⎡⎤⎡⎤⎡⎤++++=⎣⎦⎣⎦⎣⎦⎣⎦.参考答案:问题1.解:π20.1001000100001-,,是无理数.选D .【规律】(1)无理数应满足:①是小数;②是无限小数;③不循环.(2)无理数不是都带根号的数(例如π就是无理数),反之,带根号的数也不一定都是无理数(例如4,327都是有理数).问题2.解:从图中可知c <0,a <0,b >0,c <b ,|a |<|b |,a +b >0,c -b <0, 所以|a +b |=a +b ,|c -b |=b -c ,所以|a +b |-|c -b |=(a +b )-(b -c )=a +b -b +c =a +c . 因此选A .【启示】这是一道数形结合的题目,解题的关键在于认真观察图形,只有认真细致地观察才能准确地找出数轴上所给定的点表示的实数的取值范围,以及各实数之间的大小关系,从而准确地去掉绝对值符号.问题3.解:输入64,64的算数平方根是8,8是有理数,所以取8的算数平方根,得22,22是无理数,输出,得y =22,因此选B .问题4.解:依题意,a 2=1,即a =±1(舍去负值),故a =1,代入得b =12,代入3a b -+得3.问题5.解:设a b ,是有理数,αβ,是无理数.①若a b α+=,则b a α=-,此式左边是无理数,右边是有理数,它是不成立的, 故a α+是无理数.①正确.②当0a =时,0a α=是有理数,②不正确.③当22αβ==-,时,0αβ+=是有理数,故③不正确. ④当2αβ==时,2αβ=是有理数,故④不正确.问题6.解:∵91416<<,即3144<<,∴14的整数部分是3.设143b =+,两边同时平方得21496b b =++, ∴265b b +=.∴4321237620b b b b +++-()()43222636620b b b b b =+⋅+++-()()2226620b b b b =+++-25520=+- 10=.问题7.解:∵1231⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦, 456782⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=====⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦, [][]91011153⎡⎤⎡⎤=====⎣⎦⎣⎦, []1617244⎡⎤⎡⎤====⎣⎦⎣⎦, ……8182999⎡⎤⎡⎤⎡⎤====⎣⎦⎣⎦⎣⎦, 10010⎡⎤=⎣⎦. ∴原式1325374951161371581791910625=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+=.。
6.3实数(课件)七年级数学下册(人教版)

●
●
●
●
●
●
-2
-1
●
●●
0
π
1
2
●
●
●
3
4
从图中可以看出,OO’的长是这个圆的周长π,所以点O’对应的数是π.
这样,无理数π可以用数轴上的点表示出来.
探究新知
人教版数学七年级下册
数轴上的点可以表示有理数,那它可以表示无理数吗,
你能在数轴上画出表示 的点吗?
2
-2
2-1
0
1
2
2
当数的范围从有理数扩充到实数后,实数与数轴上的点是一一对应
例1 (1)分别写出− 和π-3.14的相反数;
(2)指出− , −
��分别是什么数的相反数;
(3)求 −的绝对值;
(4)已知一个数的绝对值是 ,求这个数.
解:(1)因为
( 6) 6 ,-(π-3.14)=3.14-π,
所以, 6 ,π-3.14的相反数分别为 6 ,3.14-π.
人教版数学七年级下册
人教版数学七年级下册
第6.3 实数
学习目标
人教版数学七年级下册
1.理解无理数和实数的概念.
2.对实数进行分类,判断一个数是有理数还是无理数.
3.理解实数和数轴上的点一一对应.
4.掌握实数的运算法则及运算律.
情境引入
人教版数学七年级下册
探究
我们知道有理数包括整数和分数,请把下列分数写成
例题讲解
例2
人教版数学七年级下册
计算下列各式的值:
(1)( 3
2)
2; (2)3 3 2 3
解:
(1)( 3 2) 2
6.3.1 实数的相关概念及分类(第一课时)七年级数学下册(人教版)

自学导航
有理数和无理数统称为实数.
(1)按定义分
有理数
正有理数
0
有限小数或者无限循环小数
负有理数
实数
正无理数
无理数
无限不循环小数
负无理数
自学导航
有理数和无理数统称为实数.
(2)按性质分
正有理数
正实数
实数
正无理数
0
负有理数
无理数π可以用数轴上的点来表示出.
合作探究
如图,以单位长度为边长画一个正方形,以原点为圆心,正方形
对角线为半径画弧,与正半轴的交点就表示 2,与负半轴的交点就表示
- 2.(为什么)
合作探究
事实上,每一个无理数都可以用数轴上的一个点表示出来.
当数的范围从有理数扩充到实数以后,实数与数轴上的点是一一对应的,即
1.了解实数的意义,并能将实数按要求进行分
类;
2.熟练掌握实数大小的比较方法;(重点)
3.了解实数和数轴上的点一一对应,能用数轴
上的点表示无理数.(难点)
自学导航
我们知道有理数包括整数和分数,利用计算器把下列分数写成小数的形式,
它们有什么特征?
5 3 27 11 9
, , , , .
2 5 4 9 11
5
2.5
2
3
0.6
5
27
6.75
4
.
11
1. 2
9
. .
9
0. 81
11
它们都可以写成有限小数或者无限循环小数的形式.
整数能写成小数的形式吗?3可以看成是3.0吗?
6.3实数--实数的分类及表示

判断:
1.实数不是有理数就是无理数。( ) 2.无理数都是无限不循环小数。( )
3.无理数都是无限小数。( )
4.带根号的数都是无理数。( ×) 5.无理数一定都带根号。( ×) 6.两个无理数之和一定是无理数。(× )
在数轴上表示下列各数:
0 21
3.6
3
21
30
3.6
-3 -2 -1 0 1 2 3 4
实
正无理数
数0
负有理数
负实数
负无理数
你知道怎样区分有理数和无理数吗?
把下列各数分别填入相应的集合内:
3
2,
1 4
,
4, 0,
9
7, , 5 ,
2
2,
20 3
,
5, 3 8,
(相邻两个3之间
0.3737737773 的7的个数逐次加1)
1 , 5 , 42
4, 0,
9
3 8,
2、怎样比较 3 与 7 的大小
结论:- 3 7
(3)两个负数比较大小绝对值大的反 而小
做一做: 比较下列各组数的大小:
(1) 11 > 6 (2) 5 < 5 (3) 25 = 5 (4) 0.01 > - 0.01
问题二:
1.怎样比较 0.5 与 0.5 的大小
可用平方法,把两个正数都化成带根号或 不带根号的式子,从而比较出它们的大小
有理数都可以用数轴上的点表示
1.探究新知
我们知道,每个有理数都可以用数轴上的点 来表示,那么无理数是否也可以用数轴上的 点表示出来呢?你能在数轴上找到表示无理 数的点吗?
以单位长度为边长画一个正方形,以 原点为圆心,正方形对角线为半径画弧, 与正半轴的交点表示什么?
6.3 实数(第二课时)--(课件)

则|a|= 3
所以a=± 3
所以绝对值为 3的数为 3和- 3 。
第五步:巩固反馈
− − − (−) +
−
3
4
【环节1 :师友检测】
− + − + (−)
(−) −
+ −
+ − − − + − .
3
问题二:指出− 5,1 − 3分别是什么数的相反数。
解: − − 5 = 5
3
-( 1 − 3 )=
3
3
3 -1
所以,− 5和1 − 3的相反数分别为 5,
3
3 -1
第二步:互助探究
【环节2 :教师讲解】
当数从有理数扩充到实数以后,实数之间不仅可以进
行加、减、乘、除(除数不为0)、乘方运算,又增加了非
【详解】
3
3
−27 − 32 − (−1)2 + 8 = −3 − 3 − 1 + 2 = −5;
2 5−
5 − 2 + 5 − 3 + (−5)2 = 2 5 − 5 + 2 − 5 + 3 + 5 = 10.
3
(−3)2 − 8 + 1 − 2 = 2.
18 + 1 − 2 − 2−3 + − 1
负数的开平方运算,任意实数可以进行开立方运算.进行
实数运算时,有理数的运算法则及性质等同样适用。
实数的运算顺序
(1)先算乘方和开方;
(2)再算乘除,最后算加;
(3)如果遇到括号,则先进行括号里的运算.
第三步:分层提高
人教版七年级数学下册6.3.1《实数的概念》说课稿

人教版七年级数学下册6.3.1《实数的概念》说课稿一. 教材分析人教版七年级数学下册6.3.1《实数的概念》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统学习的开始。
本节内容从实际问题出发,引导学生认识实数的必要性,进而引入实数的概念,使学生感受数学与现实生活的密切联系。
教材通过丰富的例题和练习题,帮助学生理解和掌握实数的概念,培养学生的抽象思维能力。
二. 学情分析七年级的学生已经学习了有理数和无理数,对数学运算和逻辑推理有一定的基础。
但是,对于实数的定义和性质,学生可能还比较陌生。
因此,在教学过程中,需要结合学生的认知水平,循序渐进地引导学生理解和掌握实数的概念。
三. 说教学目标1.知识与技能:使学生理解实数的概念,掌握实数的性质,能够运用实数解决一些实际问题。
2.过程与方法:通过观察、分析、归纳等方法,让学生体验实数概念的形成过程,培养学生的抽象思维能力。
3.情感态度与价值观:让学生感受数学与现实生活的密切联系,激发学生学习数学的兴趣。
四. 说教学重难点1.教学重点:实数的概念和性质。
2.教学难点:实数的抽象性质和实数在实际问题中的应用。
五. 说教学方法与手段本节课采用讲授法、引导发现法、实践操作法等多种教学方法,结合多媒体课件、实物模型等教学手段,引导学生主动探究、合作交流,提高学生的学习效果。
六. 说教学过程1.导入新课:从实际问题出发,引导学生认识实数的必要性,激发学生的学习兴趣。
2.自主探究:让学生通过观察、分析、归纳等方法,自主发现实数的性质,体会实数概念的形成过程。
3.教师讲解:对实数的性质进行详细讲解,引导学生理解实数的概念。
4.例题讲解:通过典型例题,让学生了解实数在实际问题中的应用,巩固所学知识。
5.练习与巩固:让学生进行课堂练习,及时巩固所学知识,提高学生的实际应用能力。
6.课堂小结:对本节课的主要内容进行总结,帮助学生形成知识体系。
七. 说板书设计板书设计要简洁明了,突出实数的概念和性质。
2020人教版七年级数学下册第六章6.3实数(1)实数的概念课件(共32张PPT)

6,
••
, 1. 2 3,
22 , 36
2
7
1.232232223 (两个3之间依次多一个 2)
有理数是:1.
•
2
•
3
22
,7
36
无理数是: 6
,,
2
1.232232223 ,(两个3之间依次多一个 2)
思考:无理数一般有哪些形式?
(1)像 7, 3, 12 的开不尽方的数是无理数。
020
002
000
02…是无
理数吗?
1.57079632679...
2
它们都是无限 不循环小数,
2.02002000200002…
是无理数
常见的一些无理数:
(1)含 π 的一些数;
(2)含开不尽方的数; (3)有规律但不循环的小数,如1.01001000100001…
例:判断下列数哪些是有理数?哪些是无理数?
人教版七年级数学 下册
6.3 实 数 第1课时 实数的概念
1.了解实数的意义,并能将实数按要求进 行准确的分类;
2.熟练掌握实数大小的比较方法;(重点) 3.了解实数和数轴上的点一一对应,能用 数轴上的点 表示无理数.(难点)
认真阅读课本中6.3 实数的 内容,完成下面练习并体验知 识点的形成过程。
• 这个矛盾说明, 2 不能写成分数的形式, 即 2 不是有理数。
• 实际上, 2 是无限不循环小数。
实数的概念:
在前面的学习中,我们知道,许多数的平方根和 立方根都是无限不循环小数,它们不能化成分数.我 们给无限不循环小数起个名字,叫“无理数”.有理 数和无理数统称为实数.
思考:
2020春七彩课堂初中数学人教版七年级下册教学课件6.3实数

D.数轴上任一点都对应一个有理数
6.3 实数/
课堂检测
基础巩固题
6.3 实数/
3.有一个数值转换器,原理如下,当输x=81时,输出
的y是( C )
输入x 取算术平 方根
是无理数 输出y
是有理数
A.9
B.3
C. 3
D.±3
课堂检测
6.3 实数/
基础巩固题
4.你能分辩下列各数是哪个家庭的成员吗?试试看?
毕达哥拉斯无法解释这种怪现象,又不敢承认它是一种新的 数,因为他的全部“宇宙”理论,都奠基在整数的基础上.他下 令封锁消息,不准希伯斯再谈论,并且警告说,不要忘记了入学 时立下的誓言.
导入新知
希伯斯很不服气.他想,不承 认这是数,岂不等于是说正方形的对 角线没有长度吗?为了坚持真理, 捍卫真理,希伯斯将自己的发现传扬 了开去.直到最近几百年,数学家们 才弄清楚,它确实不是整数,也不是 分数,而是一种新的数,那是什么呢?
3, 3 , 47 , 9 , 11 , 5 5 8 11 90 9
(2)请用计算器把 2 和 3 5 写成小数的形式,你有什么发
现?像这样的数我们把它叫什么数?你还能说出一些这样的数 吗?
探究新知
6.3 实数/
3
47
3 3.0, 0.6,
5.875,
5
8
9
••
0.81,
11
•
0.12,
(2) 5 的相反数是 5 ; 1 3 3 的相反数是 3 3-1 .
(3)3 64 的绝对值是4.
(4) 绝对值是 3 的数是 3 或- 3.
巩固练习
6.3 实数/
1.分别求下列各数的相反数和绝对值. (1)3 27 ; (2) 225 ; (3) 11.
6.3实数(教案)

本节课将结合具体实例,让学生掌握实数的概念和性质,并熟练运用实数进行运算。
二、核心素养目标
1.理解并掌握实数的定义、分类及性质,培养学生的数学抽象和逻辑推理能力。
2.通过实数的运算和数轴表示,提高学生的数学运算和直观想象能力。
3.培养学生运用实数知识解决实际问题的能力,提升数学建模和数据分析素养。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解实数的基本概念。实数是包括有理数和无理数的数集,它是数学中最重要的数系之一,因为它们能够表示数轴上的所有点。
2.案例分析:接下来,我们来看一个具体的案例。通过分析圆的周长与直径的比例,即π,来理解无理数的概念和性质。
3.重点难点解析:在讲授过程中,我会特别强调实数的分类和实数的运算这两个重点。对于难点部分,如无理数的运算,我会通过具体的例子和步骤来帮助大家理解。
2.教学难点
-无理数的理解:无理数的概念对学生来说是抽象的,难以直观理解。
-无理数的运算:无理数的运算规则和有理数不同,学生容易混淆。
-实数与数轴的结合:将实数与数轴对应起来,学生需要建立起抽象与直观的联系。
-解决实际问题时实数的应用:将实数应用于解决具体问题,学生可能难以找到与实数知识的联系。
举例解释:
-实数的运算:熟练进行实数的四则运算,特别是无理数的运算规则。
-实数与数轴的关系:理解实数在数轴上的表示,能够通过数轴直观地分析实数的大小关系。
举例解释:
-通过π和√2等无理数的引入,强调实数的广泛性,不仅仅局限于分数和整数。
-通过具体的运算例子,如(√3+√2)×(√3-√2),强调实数运算的规则和性质。
6.3实数 (3)

6.3实数教学目标1、了解无理数及实数的概念,并会对实数进行分类.2、知道实数与数轴上的点具有一一对应关系.3、学会使用计算器探求将有理数化为小数形式的规律.4、学会使用计算器估算无理数的近似值.5、学会使用计算器计算实数的值.1、通过计算器探求将有理数化为小数形式的规律,使学生经历观察、猜想、实验等数学活动过程,培养学生数学探究能力和归纳表达能力.2、在使用计算器估算和探究的过程中,使学生学会用计算器探究数学问题的方法.3、经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的.4、经历对实数进行分类,发展学生的分类意识.解决问题1、通过无理数的引入,使学生对数的认识由有理数扩充到实数.2、通过计算器对无理数近似值的估算和对实数计算,使学生发展实践能力.3、在交流中学会与人合作,并能与他人交流自己思维的过程和结果.情感态度1、通过计算器探求将有理数化为小数形式的规律,激发学生的求知欲,使学生感受数学活动充满了探索性与创造性,体验发现的快乐,获取成功的体验.2、通过了解数系扩充体会数系扩充对人类发展的作用.3、敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.重点了解无理数和实数的概念,以及实数的分类;会用计算器计算实数.难点对无理数的认识.教学流程安排活动流程图活动内容和目的活动1 通过对有理数探究,激发进一步学习的欲望.通过用计算器计算有理数和研究有理数的规律,得出对数的进一步研究的重要性,引出本节课要研究的课题.活动2 通过对数的归纳辨析,引出无理数和实数的概念,并对实数进行分类. 使学生了解无理数和实数的概念,学会对实数的分类,活动3 通过教师演示和学生活动,建立实数与数轴上的点的一一对应. 通过在数轴上找到表示的点,认识无理数可以用数轴上的点表示,理解实数与数轴上的点建立一一对应的关系.教学过程设计问题与情境师生行为设计意图[活动[活动1]通过对有理数探究,激发进一步学习的欲望.问题:(1)利用计算器,把下列有理数3,- , , , , 转换成小数的形式,你有什么发现?(2)我们所学过的数是否都具有问题(1)中数的特征,即是否都是有限小数和无限循环小数? 教师提出问题(1).教师引导学生观察计算结果,得出任何一个整数或整数比即有理数都可以写成有限小数或无限循环小数的形式.教师提出问题(2).学生回顾思考,通过学生对有理数的再认识,师生共同归纳无理数是无限不循环小数,从而得出无理数既不是整数也不是分数的结论.活动1中,教师应关注:(1)学生通过实际计算实现有理数到小数的转化,激发进一步学习无理数的欲望;(2)学生了解无理数的主要特征. 计算器是将有理数转化为小数的主要计算工具,通过组织学生的计算活动,发现规律,并与学过的无限不循环小数作对比,为学习无理数概念作准备.通过让学生参与无理数的概念的建立和发现数系扩充必要性的过程,促进学生对数学学习的兴趣,培养学生初步的发现能力.注重新旧知识的连贯性,使学生体会到学习的内容是融会贯通的。
人教版数学七年级下册6.3《实数》教学设计3

人教版数学七年级下册6.3《实数》教学设计3一. 教材分析人教版数学七年级下册 6.3《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统地认识和理解。
本节课的主要内容是实数的分类,实数与数轴的关系,以及实数的运算性质。
教材通过丰富的例题和练习题,帮助学生掌握实数的概念,提高学生的数学思维能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数和无理数有了初步的认识。
但是,对于实数的系统理解和运用,还存在一定的困难。
因此,在教学过程中,教师需要从学生的实际出发,循序渐进地引导学生理解和掌握实数的概念和性质。
三. 教学目标1.了解实数的概念,掌握实数的分类和实数与数轴的关系。
2.掌握实数的运算性质,能够熟练地进行实数的运算。
3.培养学生的数学思维能力,提高学生解决问题的能力。
四. 教学重难点1.实数的分类和实数与数轴的关系。
2.实数的运算性质。
五. 教学方法1.采用问题驱动法,引导学生主动探究实数的概念和性质。
2.利用数轴辅助教学,帮助学生直观地理解实数与数轴的关系。
3.运用例题和练习题,巩固学生对实数的理解和运用。
六. 教学准备1.教学课件:制作课件,包括实数的分类、实数与数轴的关系、实数的运算性质等内容。
2.练习题:准备一些有关实数的练习题,用于巩固学生的学习成果。
3.数轴:准备数轴教具,用于辅助教学。
七. 教学过程1.导入(5分钟)利用数轴教具,引导学生回顾有理数和无理数的概念,引出实数的概念。
2.呈现(15分钟)呈现实数的分类,讲解实数与数轴的关系,以及实数的运算性质。
通过例题和练习题,让学生直观地理解实数的概念和性质。
3.操练(15分钟)让学生在课堂上进行实数的运算练习,巩固学生对实数的理解和运用。
4.巩固(10分钟)通过练习题,巩固学生对实数的理解和运用。
教师巡回指导,解答学生的疑问。
5.拓展(10分钟)引导学生运用实数的概念和性质解决实际问题,提高学生解决问题的能力。
6.3第1课时实数的概念

第1课时 实数的概念
9.如图 6-3-1,数轴上的 A,B,C,D 四点中,与数- 3表 示的点最接近的是( B )
图 6-3-1 A.点 A B.点 B C.点 C D.点 D
[解析] ∵ 3≈1.732,∴- 3≈-1.732. ∵点 A,B,C,D 表示的数分别为-3,-2,-1,2,∴与数- 3表示的 点最接近的是点 B.故选 B.
[解析] A 项不正确,无限不循环小数是无理数.B 项不正确,有根号的数
不一定是无理数,如 4,3 8等.C 项不正确,π及类似 1.010010001…(两
个 1 之间 0 的个数逐次加 1)的数也是无理数.
第1课时 实数的概念
2.任何一个有理数都可以写成_有_限__小__数_或__无_限__循__环_小__数__的形式,反 过来,任何_有__限__小_数__或_无__限__循_环__小__数__都是有理数.
负实数集合{-31π,-2123,- 0.4,…}.
第1课时 实数的概念
知识点 3 实数与数轴的关系
8.和数轴上的点成一一对应关系的数是( D ) A.自然数 B.有理数 C.无理数 D.实数
[解析] ∵任何实数都可以用数轴上的点来表示,数轴上的任何一点都表示 一个实数, ∴和数轴上的点成一一对应关系的数是实数. 故选 D.
32..12下11列22各111数22中2…:,-其14,中3无.1理 41数 59有,_-_-_ππ__,,_π_π55_,_,_2._10_2,1_1_20_2._311_,1_2_212_5…_,__5_.2·.01·,
第1课时 实数的概念
知识点 2 实数的定义与分类
4.能够组成全体实数的是( C ) A.自然数和负数 B.整数和分数 C.有理数和无理数 D.正数和负数
人教版数学七年级下册6.3实数的概念优秀教学案例

1.生活情境导入:通过学生熟悉的生活场景,如购物、长。
2.数形结合教学:利用数轴这一直观工具,让学生在数轴上表示实数,感受实数与数轴的关系,提高学生的空间想象能力,加深对实数概念的理解。
3.小组合作学习:组织学生进行小组讨论和合作,让学生在小组内共同探究实数的性质和运算,培养学生的团队协作能力,提高学生的沟通能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,使学生感受到数学与生活的紧密联系,提高学生对数学的学习积极性。
2.培养学生勇于探究、实事求是的精神,使学生在面对实数问题时,能够积极思考、不断尝试,从而解决问题。
3.培养学生团队协作的能力,使学生在小组合作中学会倾听、沟通、协作,培养学生的社会适应能力。
4.问题驱动学习:通过设计具有启发性的问题,引导学生思考实数的性质,激发学生的问题解决能力,培养学生的批判性思维。
5.多元化评价体系:在教学过程中,采用多种评价方式,如课堂提问、作业批改、测试等,及时了解学生的学习情况,给予有针对性的指导和建议,关注学生的个体差异,促进学生的全面发展。
在教学过程中,我充分关注学生的个体差异,针对不同层次的学生设置不同难度的教学目标,让每个学生都能在课堂上找到自己的位置,充分参与到学习中。对于学生在学习过程中遇到的问题,我及时进行反馈和指导,帮助学生建立正确的实数观念。
二、教学目标
(一)知识与技能
1.理解实数的定义,掌握实数与数轴的关系,能够正确表示实数在数轴上的位置。
在教学过程中,我将密切关注学生的学习动态,根据学生的反馈和实际情况,灵活运用教学策略,确保教学目标的实现。同时,注重培养学生的学习能力,使学生在实数的学习中不断成长。
四、教学内容与过程
(一)导入新课
人教版七年级数学下册6.3.1《实数的概念》教学设计

人教版七年级数学下册6.3.1《实数的概念》教学设计一. 教材分析人教版七年级数学下册6.3.1《实数的概念》是学生在掌握了有理数的基础上,进一步对实数进行学习。
本节内容主要介绍实数的概念,包括实数的定义、实数的性质等。
教材通过实例和问题,引导学生理解实数的意义,并能够运用实数进行简单的运算和解决问题。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的概念和运算方法,具备一定的数学基础。
但实数概念相对抽象,学生可能存在一定的理解难度。
因此,在教学过程中,需要结合学生的实际情况,通过实例和问题,引导学生理解和掌握实数的概念。
三. 教学目标1.理解实数的定义,掌握实数的性质。
2.能够运用实数进行简单的运算和解决问题。
3.培养学生的抽象思维能力,提高学生的数学素养。
四. 教学重难点1.实数的定义和性质。
2.实数的运算方法。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过问题引导学生思考,实例帮助学生理解,小组合作促进学生交流和讨论。
六. 教学准备1.教材、PPT等相关教学资料。
2.实例和问题。
3.小组合作学习分组。
七. 教学过程1. 导入(5分钟)通过提问方式引导学生回顾有理数的概念和性质,为新课的学习做好铺垫。
例如:“同学们,我们已经学习了有理数,那么有理数能表示所有的数吗?还有哪些数是有理数无法表示的?”2. 呈现(15分钟)利用PPT展示实数的定义和性质,结合实例进行讲解。
例如,通过数轴展示实数,解释实数包括有理数和无理数,以及实数的性质如大小关系、加减乘除等。
3. 操练(15分钟)让学生进行实数的运算练习,巩固所学知识。
例如,给出一些实数的运算题目,让学生独立完成,然后集体讲解答案。
4. 巩固(10分钟)通过问题和小测验的形式,巩固学生对实数的理解和掌握。
例如,提出一些关于实数的问题,让学生回答,或者让学生解决一些实际问题,运用实数进行计算。
5. 拓展(10分钟)引导学生思考实数在实际生活中的应用,拓展学生的思维。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
1
2
3 O′ 4
OO′= π
O′的坐标是 π
无理数π可以用数轴上的点表示
2、以单位长度为边长画一个正方形,以 原点为圆心,正方形对角线为半径画弧,与数 轴的交点表示什么?2 Nhomakorabea2
-2 -1 0 1 2 3 4
说明:每一个无理数都可以用数轴
上的一个点来表示。数轴上的点有些表 示有理数,有些表示无理数。
5
0. 5
11
90
9
事实上,任何一个有理数都可以写成 有限小数或无限循环小数
.
设x=0.3=0.333…① 则10x=3.333…② 则②-①得9x=3,即x=1/3
..
根据上面提供的方法,你能把0.125,0.21 化成分数吗?
想一想是不是任何无限循环小数都可以化成分数?
0.125
负整数 正分数
负分数
无理数
正无理数 负无理数
无限不循环小数 (1)含π 的数
2开方开不尽的数
一般有三种情况 (3)有规律但不循环的无限小数
也可以按正负来分类:
正实数
正有理数
实
数
0
正无理数
负有理数
负实数
负无理数
随堂练习
1.实数不是有理数就是无理数。( ) 2.无理数都是无限不循环小数。( ) 3.无理数都是无限小数。( )
4.带根号的数都是无理数。( ×) 5.无理数一定都带根号。( ×)
6.两个无理数之积不一定是无理数。( )
7.两个无理数之和一定是无理数。(× )
把下列各数填入相应的集合内:
9 3 5 64
(1)有理数集合: 9
0.6
64
0.6
3
4
3
3 9 3 3 0.13
0.13
通过今天的学习,用你自己的 话说说你的收获和体会?
归纳
有理数和无理数统称实数; 每一个实数都可用数轴上的点来表示; 数轴上的每一个点都表示一个实数; 实数与数轴上的点是一一对应的; 实数的分类。
随堂练习
在实数
3 22 , 1 , , 3
2 ,0.
,
73
9 , 3 8,0 中,
整数有
9, 3 8,0
有理数有
3 22 , 1 ,0. , 9 , 3 8,0
7
3
无理数有 实数有
,3 2
3 22 , 1 , , 3
2 ,0.
,
9 , 3 8,0
73
谢谢!
4
(2)无理数集合: 3 5
3 9
(3)整数集合: (4)负数集合: (5)分数集合:
9
3 4
0.6
(6)实数集合: 9 3 5
64 3
3 9
3 0.13
4
64
0.6
3 4
3 9
3
0.13
探究
1、直径为1个单位长度的圆从原点沿 数轴向右滚动一周,圆上的一点由原点到 达O′,点O′的坐标是多少?
0.1010010001(每两个1之间依次增加一个0)
无限不循环小数叫做无理数
小组合作
无理数也像有理数一样广泛存在着, 请你任意写出3个实数,把小组内所有 的数放一起,并对这些数按整数、分 数、有理数、无理数进行分类。
实数:有理数和无理数统称为实数。
有限小数及无限循环小数整数
有理数
实
分数
数
正整数 0
1
,
0 . 21
7
,
8
33
反过来,任何有限小数或无限循环 小数也都是有理数
除了有限小数和无限循环小数, 还有什么其它类型的小数吗?
无限不循环小数
无限不循环小数有哪些:
1.圆周率及一些含有 的数 5
2.开方开不尽数 2
3.有一定的规律,但 不循环的无限小数
注意:带根号 的数不一定 是无理数
人教版·数学·七年级(下)
主讲教师:袁瑞
你没忘吧?
110, 12.91, 12.96, 0, -52 1.1, 122.5, 182.5, +75, 305, 18, -7.5,
1.在以上各数中, 整数有哪些?分数有哪些?
2.什么是有理数?它可以分哪几类?
有理数
整数 分数
正整数
0 负整数 正分数
负分数
正整数 正有理数 有理数 0 正分数 负有理数 负整数
负分数
快速计算,把下列各数写成小数的形式,
你有什么发现?
3, 3 , 47 , 9 , 11 , 5 5 8 11 90 9
3 3.0, 3 0.6, 47 5.875,
5
8
9
0.
81,
11
0.1
2,