基础课时6 牛顿第一定律 牛顿第三定律
牛顿第一定律、第二定律和第三定律的关系
牛顿第一定律、第二定律和第三定律的关系一、牛顿第一定律:牛顿第一定律奠定了整个牛顿力学的根底,它定义了两个概念——惯性和力,指出了惯性和力怎样影响着物体的运动:惯性是一切物体都具有的一种本性——抵抗速度改变的性质;力是改变物体速度的原因——即产生加速度的原因;物体不受力时,由于惯性,物体的自然运动是速度不变的运动——匀速直线运动〔或者保持静止〕;物体受力时,物体的速度就要变化,不过,此时惯性仍然有表现——它抵抗速度的改变,使得物体的速度只能渐变,不能突变。
注意:不受力,不包括所受合力为零的情况,详细解释见牛顿第二定律。
二、牛顿第二定律牛顿第一定律定义了惯性和力的概念,定性指出了惯性和力对物体速度的影响;牛顿第二定律在此根底上进一步定量的定义了惯性的大小和力的大小,定量的指出了惯性大小和力的大小对物体运动〔详细化为加速度〕的影响。
惯性大小——惯性质量的定义,是牛顿第二定律给出的,这是大多数中学教师所不知道的;大学教材中惯性质量的操作定义是这样的——两个孤立物体互相作用,经过一段时间,两个物体的速度该变量分别为Δv1和Δv2,那么两个物体的惯性质量大小之比就是m1/m2=Δv2/Δv1,即m1/m2=〔Δv2/Δt)/(Δv1/Δt),即m1/m2=a1/a2。
详细请参见大学教材“动量守恒〞一章。
力的大小,是在惯性质量大小定义的根底上,由F=ma来定义的,即力是由加速度来定义的。
从力的定义可以看出来,牛顿第二定律首先是一个定义式;但是牛顿第二定律之所以称之为定律,是因为实验发现,不仅仅对标准物体,a∝F,而且对任何物体,也有a∝F——此处的F的大小是用标准物体来定义的。
牛顿第二定律a=F/m。
这个表达式是和牛顿第一定律协调的,当F=0时,a=0,即物体由于惯性做匀速直线运动,当F≠0时,由于任何物体的质量都不为零,因此物体加速度并不是无穷大,有运动学知识可知,物体的速度就只能随着时间逐渐变化,而不能突变。
牛顿第一定律第三定律资料课件
惯性参考系
01
02
03
惯性参考系定义
牛顿第一定律成立的参考 系。
惯性参考系特点
相对于惯性参考系,物体 的运动状态保持不变。
非惯性参考系
相对于地面有加速度的参 考系,例如旋转的参考系 、加速运动的参考系等。
物体运动状态改变原因
合外力不为零
01
当物体受到的合外力不为零时,物体的运动状态将发生改变。
合外力方向与速度方向不在同一直线上
。
02
滑冰
滑冰运动员在冰面上滑行时,冰刀与冰面之间的摩擦力使运动员减速。
为了保持匀速滑行,运动员需要不断调整自己的姿势和重心,这体现了
牛顿第一定律的应用。
03
举重
举重运动员在举起杠铃时,需要克服杠铃的重力作用。运动员通过肌肉
收缩产生向上的拉力,使杠铃离开地面并完成举重动作。这体现了力的
作用效果之一——改变物体的运动状态。
作用力与反作用力
作用力与反作用力的性质
作用力与反作用力是同种性质的力,它们同时产生、同时消失,同时变化,并 且作用力与反作用力作用在两个不同的物体上。
作用力与反作用力的关系
大小相等、方向相反、作用在同一直线上。
平衡状态与非平衡状态
平衡状态
物体受到的合外力为零时,物体处于平衡状态。在平衡状态下,物体的运动状态 不发生改变。
动量守恒
溜冰时相互推开现象也遵循动量守恒定律。当两个人相互推开时,他们的总动量保持不变。因此,一 个人向前滑行的同时,另一个人会向后滑行,以保持系统的总动量不变。
05
实验验证与探究
牛顿第一定律实验验证方法
斜面实验
通过观察物体在斜面上的运动情况,验 证物体在不受外力作用时将保持匀速直 线运动或静止状态。
第1讲 牛顿第一、第二、第三定律
关键能力 · 突破
1.判断下列说法对错。
(1)牛顿第一定律是实验定律。 ( ) ✕
(2)在水平面上运动的物体最终停下来,是因为水平方向没有外力维持其运动。( ✕ ) (3)运动的物体惯性大,静止的物体惯性小。 ( )
✕ (4)牛顿第一定律是牛顿第二定律的特例。 ( )
✕ (5)人走在松软土地上下陷时,人对地面的压力大于地面对人的支持力。( )
必备知识 · 整合
关键能力 · 突破
解析 设雨滴下落时受到的阻力为f=kv,根据牛顿第二定律有mg-kv=
ma,则雨滴下落时,随着速率的增加,加速度逐渐减小,则达到最大速率前,所有
雨滴均做加速度减小的变加速运动,选项A错误;当a=0时速率最大,则vm=
mg k
,
质量越大最大速率越大,选项B错误,C正确;较小的雨滴在空中运动的最大速
必备知识 · 整合
关键能力 · 突破
(3)适用范围 a.牛顿第二定律只适用于惯性参考系,即相对于地面 静止 或 匀速直线运动 的参考系。 b.牛顿第二定律只适用于 宏观 物体(相对于分子、原子等)、 低速 运动(远 小于光速)的情况。 2.力学单位制 (1)单位制:由 基本 单位和 导出 单位一起组成了单位制。 (2)国际单位制中的基本单位:
必备知识 · 整合
关键能力 · 突破
2.[定律的理解]如图所示,一对父子掰手腕,父亲让儿子获胜。若父亲对儿子 的力记为F1,儿子对父亲的力记为F2,则( B ) A.F2> F1 B.F1和F2大小相等 C.F1先于F2产生 D.F1后于F2产生
必备知识 · 整合
关键能力 · 突破
通关锦囊 1.作用力与反作用力的关系
必备知识 · 整合
关键能力 · 突破
牛顿第一第二第三定律公式
牛顿第一第二第三定律公式牛顿第一、第二、第三定律,那可是物理学中的“大明星”呀!咱们先来说说牛顿第一定律,也叫惯性定律。
它就像是一个固执的家伙,认定了物体如果没有外力作用,就会保持原来的运动状态,要么静止不动,要么匀速直线运动。
这就好比我之前坐公交车的经历,车突然启动,我没站稳往后倒,这就是因为我的身体有保持原来静止状态的“惯性”。
牛顿第二定律呢,F=ma,力等于质量乘以加速度。
这就好像是在说,你越用力推一个东西,它跑得就越快;东西越重,要让它动起来就越费劲。
记得有一次我帮邻居搬东西,一个大箱子特别重,我使了好大的劲才推动一点点,这就是因为箱子质量大,需要更大的力才能产生明显的加速度。
牛顿第三定律,作用力与反作用力大小相等、方向相反。
比如说,你用力推墙,墙也会用同样大小的力反推你。
我曾经在公园里看到小朋友玩跷跷板,一个小朋友用力压下去,另一个小朋友就被翘起来,这两个小朋友施加给跷跷板的力和跷跷板给他们的反作用力就是大小相等、方向相反的。
在咱们的日常生活中,牛顿这三大定律简直无处不在。
就拿骑自行车来说吧,你不蹬车的时候,车子会慢慢停下来,这是因为地面的摩擦力这个“捣蛋鬼”在起作用,打破了车子原本的匀速直线运动状态,这就是牛顿第一定律的体现。
当你使劲蹬车,速度加快,这是因为你施加的力让车子有了更大的加速度,符合牛顿第二定律。
而当你骑车撞到一个障碍物,你会感觉到被反弹回来,这就是障碍物给你的反作用力,和你撞上去的力是相互的,这就是牛顿第三定律在发挥作用啦。
再比如说,咱们踢足球的时候。
一脚大力抽射,足球飞出去老远,这里面就有牛顿第二定律的功劳。
脚给足球施加的力越大,足球的质量不变,加速度就越大,球就飞得更快更远。
而当足球撞到球门框被弹回来,这就是牛顿第三定律的表现,球门框给足球的反作用力让足球改变了运动方向。
甚至是我们简单的走路,也是牛顿定律在默默支撑着。
当我们向前迈步,脚向后蹬地,地就给我们一个向前的反作用力,推动我们前进。
高中物理牛顿三大定律公式及内容
牛顿三大定律公式:
1,牛顿第一定律(惯性定律):
物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
2,牛顿第二定律公式:
F合=ma或a=F合/m
a由合外力决定,与合外力方向一致。
3,牛顿第三定律公式:
F= -F;
负号表示方向相反,F、-F为一对作用力与反作用力,各自作用在对方。
4,共点力的受力平衡公式:
F合=0
二力平衡则满足公式F1=-F2
请注意,二力平衡与作用力与反作用力是不一样的。
二力平衡的研究对象,是同一个物体;而作用力与反作用力,研究对象是两个不同的物体。
5,超重与失重的公式:
超重满足:N>G
失重满足:N<G
N为支持力,G为物体所受重力,不管失重还是超重,物体所受重力是不变的。
牛顿三大定律的内容:
1、牛顿第一定律:一切物体总是保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态。
(定性的描述了力与运动的关系,物体的运动不需要力维持,但改变物体的运动一定需要力,牛顿第一定律也叫惯性定律)
2、牛顿第二定律:物体加速度的大小跟它所受的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同。
(定量的计算力与运动的关系,F=ma)
3、牛顿第三定律:两个物体之间的作用力和反作用力,总是大小相等、方向相反,作用在同一条直线上。
(说明了力的作用是相互的)。
牛顿第一定律牛顿第三定律
针对训练 3-1:吊在大厅天花板上的吊扇的总 重力为 G,静止时固定杆对吊环的拉力大小为 F,当 接通电源,让扇叶转动起来后,吊杆对吊环的拉力 大小为 F′,则有( ) A.F=G,F′=F B.F=G,F′>F C.F=G,F′<G D.F′=G,F′>F 解析:扇叶不转动时,由共点力平衡条件可得 F=G; 当扇叶正常转动起来后, 对空气有向下的推力, 相应地空气对扇叶也就有竖直向上的反作用力,设 为 F0. 由平衡条件得 F′+F0=G,故 F′=G-F0<G 本题正确选项只有 C. 答案:C.
思路点拨:甲用拳头打乙胸口,从物理知识角度是相 互作用,作用力大小用牛顿第三定律判断;而判决支付医 疗费是依据行为是否错误致伤责任人是谁来确定. 解析:甲用拳头打乙胸口时,甲的拳头打乙的胸口的 力是作用力,乙的胸口对甲的拳头产生的力是反作用力, 由牛顿第三定律知,这两个力是相等的;但乙受伤,甲未 受伤是因各自部位能承受的外力是不同的,且甲主动伤 人,其行为是错误的,应负致人伤害责任.所以法院的判 决正确 A、C、D 选项对判决依据的说法错误,B 选项对判 决依据的说法正确. 答案:B. 方法技巧:判断作用力与反作用力现象的解释是否正 确,关键是首先判断两力是否属于相互作用力,方法是看 FA 对 B、FB 对 A 即可确认;一定要避免按力的效果来判断 作用力和反作用力的大天, 下着倾盆大雨.某人乘坐列车时发现, 车厢的双层玻璃窗内积水了.列车进站过程中,他发现水 面的形状如图中的( )
解析:列车进站时刹车,速度减小,而水由于惯性仍 要保持原来较大的速度,所以水向前涌,液面形状和选项 C 相同. 答案:C.
考点演练
(对应学生用书第 214~215 页) 达标提升 1.在向前行驶的客车上驾驶员和乘客的身体姿势如图 3-1-5 所示,则对客车运动情况的判断正确的是( C )
第十讲:牛顿第一定律 牛顿第三定律
C.两物体从同一高度自由下落,较重的物体下落较快
D.一个物体维持匀速直线运动,不需要受力
例 题 讲 解
【典例5】如图3-1-1所示,质量相等的甲、乙两人所用绳 子相同,甲拉住绳子悬在空中处于静止状态;乙拉住绷紧 绳子的中点把绳子拉断了.则 ( ).
图3-1-1 A.绳子对甲的拉力小于甲的重力 B.绳子对甲的拉力大于甲对绳子的拉力
例 【典例3】 粗糙的水平地面上有一只木箱,现用一 题 ). 讲 水平拉力拉木箱匀速前进,则 ( 解 A .拉力与地面对木箱的摩擦力是一对作用力与
反作用力 B .木箱对地面的压力与地面对木箱的支持力是 一对平衡力 C .木箱对地面的压力与地面对木箱的支持力是 一对作用力与反作用力
D .木箱对地面的压力与木箱受到的重力是一对
C.乙拉断绳子前瞬间,绳上的拉力一定小于乙的重力
D.乙拉断绳子前瞬间,绳上的拉力一定大于乙的重力
“转换对象法”
——牛顿第三定律在受力分析中的应用
在对物体进行受力分析时,如果不便于分析求出物体 受到的某些力时,可先求它的反作用力,再反过来求 待求力.如求压力时,可先求支持力.在许多问题 中,摩擦力的求解亦是如此.可见牛顿第三定律将起 到非常重要的转换研究对象的作用,使得我们对问题 的分析思路更灵活、更宽阔.
2.“一对相互作用力”与“一对平衡力”的比较
内容 受力物体 作用时间 力的性质
作用在两个相互作用 的物体上
同时产生,同时消 失,同时变化 一定是同性质的力
大小关系
方向关系 依赖关系
大小相等
方向相反且共线 相互依存,不可单独 存在
大小相等
方向相反且共线 无依赖关系,撤除一个 力,另一个力依然可以 存在,只是不再平衡
运动三大定律
运动三大定律
一、牛顿第一定律
弗里德曼牛顿发现了力学运动三大定律,即牛顿第一定律,牛顿第二定律,牛顿第三
定律。
牛顿第一定律是“物体在没有外界作用力的情况下,运动速度不变,即在匀速直线运动。
”
它说明,当物体处于外力作用无效的情况,它会保持原来的运动状态,包括它的速度
和方向,不受变化,这就是所谓的动量守恒定律。
例如:在空间中游动的飞船,当没有任何外力作用,它就会保持原来的均匀直线运动,改变它的状态需要作用新的外力才行。
二、牛顿第二定律
牛顿第二定律是“物体受到外力作用时将会发生变化,即受力后物体运动速度有可能
变化,而其物体运动方向也可能发生变化。
”
它说明,当物体受到外力作用时,不仅会给它施加加速度,而且会改变它原来的运动
方向,有可能让它从直线运动改变成曲线运动,称为“力与加速度的关系”。
例如,受太阳的引力作用,地球将作椭圆运动;受水面的摩擦作用,小车将在空中滑行,这其中就体现了牛顿第二定律中“力与加速度的关系”。
三、牛顿第三定律
牛顿第三定律是:“每个物体对另一个物体施加的力都会产生反作用力,并与它相等
相反。
”
这句话说明了在物体之间发生作用力时,两个物体间都会产生反作用力,而且这两种
反作用力相等相反,并且同时转移到两个物体上,由此引出动量定理。
例如,当两个球直接碰撞时,A给B施加的力为Fa,那么B给A产生的反作用力就是Fb,Fb和Fa的方向是相反的,而且其大小也相等。
高中物理牛顿第一定律、第二定律和第三定律的关系
牛顿第一定律、第二定律和第三定律的关系湖北省恩施高中陈恩谱1、牛顿第一定律:牛顿第一定律奠定了整个牛顿力学的基础,它定义了两个概念——惯性和力,指出了惯性和力怎样影响着物体的运动:惯性是一切物体都具有的一种本性——抵抗速度改变的性质;力是改变物体速度的原因——即产生加速度的原因;物体不受力时,由于惯性,物体的自然运动是速度不变的运动——匀速直线运动(或者保持静止);物体受力时,物体的速度就要变化,不过,此时惯性仍然有表现——它抵抗速度的改变,使得物体的速度只能渐变,不能突变。
注意:不受力,不包括所受合力为零的情况,具体解释见牛顿第二定律。
2、牛顿第二定律牛顿第一定律定义了惯性和力的概念,定性指出了惯性和力对物体速度的影响;牛顿第二定律在此基础上进一步定量的定义了惯性的大小和力的大小,定量的指出了惯性大小和力的大小对物体运动(具体化为加速度)的影响。
惯性大小——惯性质量的定义,是牛顿第二定律给出的,这是大多数中学老师所不知道的;大学教材中惯性质量的操作定义是这样的——两个孤立物体相互作用,经过一段时间,两个物体的速度该变量分别为Δv1和Δv2,则两个物体的惯性质量大小之比就是m1/m2=Δv2/Δv1,即m1/m2=(Δv2/Δt)/(Δv1/Δt),即m1/m2=a1/a2。
具体请参见大学教材“动量守恒”一章。
力的大小,是在惯性质量大小定义的基础上,由F=ma来定义的,即力是由加速度来定义的。
从力的定义可以看出来,牛顿第二定律首先是一个定义式;但是牛顿第二定律之所以称之为定律,是因为实验发现,不仅仅对标准物体,a∝F,而且对任何物体,也有a∝F——此处的F的大小是用标准物体来定义的。
牛顿第二定律a=F/m。
这个表达式是和牛顿第一定律协调的,当F=0时,a=0,即物体由于惯性做匀速直线运动,当F≠0时,由于任何物体的质量都不为零,因此物体加速度并不是无穷大,有运动学知识可知,物体的速度就只能随着时间逐渐变化,而不能突变。
牛顿力学的三大定律
牛顿力学的三大定律
牛顿力学三大定律,即牛顿第一定律、牛顿第二定律和牛顿第三定律,是牛顿力学中的基础定律,对于理解和分析物体运动具有重要作用。
这三个定律在科学领域中有着广泛的应用,例如在机械工程、航天工程以及许多其他领域。
一、牛顿第一定律
牛顿第一定律,又被称为惯性定律。
这个定律表述为:如果没有外力作用,一个物体将保持其静止状态,或者继续以恒定速度沿直线运动。
这条定律揭示了惯性的存在和本质,惯性是质点抵抗外力改变其运动状态的性质。
惯性造成物体保持速率恒定与运动方向不变。
二、牛顿第二定律
牛顿的第二定律,又被称为力的定律或加速度定律。
这个定律表述为:物体的加速度与作用于它的力成正比,与其质量成反比,且加速度的方向与力的方向相同。
这个表述形式,通常被写作F=ma。
这条定律揭示了力与加速度的关系,并且引入了质量的概念。
牛顿第二定律实际上定义了力,并强调绝对平移运动中质量的不变性,在近代物理学中,此原理对于设计机械系统和预测物体运动至关重要。
三、牛顿第三定律
牛顿的第三定律,又称为作用反作用定律,表述为:每个作用力都有一个大小相等、方向相反的反作用力。
也就是说当一个物体(物体A)向另一个物体(物体B)施加力时,A会受到从B来的与A施加给B
的力大小相等、方向相反的力。
这条定律揭示了力的互相作用,即没有孤立存在的力。
总结来说,牛顿三大定律回答了我们在解决物体运动问题上的基本信息:物体为什么运动?物体怎样运动?以及物体与物体之间如何相互作用?牛顿力学的三大定律未只是科学研究的基础,也是我们日常生活中理解物理现象的重要工具。
课时6 牛顿第一、第三定律
课时6 牛顿第一、第三定律编写:王进审核:【说明】请同学先认真研读物理课本必修1第四章第1节、第5节内容,完成课本例题和课后练习,在此基础上,用45分钟的时间完成以下作业。
一. 基础回顾1. 牛顿第一定律:一切物体总保持状态或状态,除非迫使它改变这种状态。
2. 牛顿第一定律揭示了运动和力的关系,力是的原因,而不是维持物体运动的原因。
3. 惯性:物体保持状态或状态的性质。
⑴惯性是物体的,即一切物体都有惯性,与物体的受力情况及运动状态无关。
⑵是物体惯性大小的量度,大的物体惯性大,小的物体惯性小。
4.一个同学说,向上抛出的物体,在空中向上运动时,肯定受到了向上的作用力,否则它不可能向上运动。
这个结论错在哪里?5. 牛顿第三定律:两个物体之间的作用力和反作用力总是大小,方向,作用在。
⑴作用力和反作用力产生,消失,并且在力的性质上也是的,作用在物体上,作用效果相互抵消。
⑵一对平衡力同时产生,同时消失,力的性质相同,作用在物体上,作用效果相互抵消。
6. ⑴弹力产生条件:①,②⑵压力和支持力的方向垂直于指向。
绳的拉力沿着而指向。
7. ⑴摩擦力产生条件:①两个物体,②两个物体接触面③两个物体接触面上发生或具有⑵方向:总是沿着,并且跟物体或的方向相反。
8. 受力分析的一般顺序:先,再(在有接触的地方才可能有弹力),然后(在有弹力的接触面之间才可能有摩擦力),最后其它力的顺序逐一分析研究对象所受的力,并画出各力的示意图。
二. 精题训练1. 关于惯性的下列说法中正确的是A.物体能够保持原有运动状态的性质叫惯性B.物体不受外力作用时才有惯性C.物体静止时有惯性,一开始运动,不再保持原有的运动状态,也就失去了惯性D.物体静止时没有惯性,只有始终保持运动状态才有惯性2. 马拉着车在平直的路面上匀速前进,则下列说法正确的是A. 马拉车的力和车拉马的力是一对作用力和反作用力B. 马拉车的力和车拉马的力是一对平衡力C. 路面对车的摩擦力和车对马的拉力是一对作用力和反作用力D. 路面对车的摩擦力和马对车的拉力是一对平衡力3. 如图所示,在倾角为θ的斜面上放着一个质量为m的光滑小球,球被竖直的木板挡住,则球对木板的压力大小为A.mgcosθB.mgtanθmgC.θcosmgD.θtan4. 如图所示,伽利略理想实验将可靠的事实和理论思维结合起来,能更深刻地反映自然规律。
牛顿的三大定律
牛顿的三大定律在物理学中,英国科学家艾萨克·牛顿提出了三大基本定律,即牛顿的三大定律。
这些定律解释了物体运动的规律,对于理解和研究力学现象非常重要。
本文将详细介绍牛顿的三大定律及其应用。
一、牛顿第一定律-惯性定律牛顿第一定律,也被称为惯性定律,表明物体在没有受到外力作用时将保持静止或匀速直线运动的状态。
换句话说,物体将保持其现有的运动状态,除非受到外力的干扰。
例如,当你在开车时突然刹车,你的身体会向前倾斜。
这是因为你身体的惯性使你想保持匀速直线前进,但车辆突然停下,你的身体没有及时适应,继续向前运动。
牛顿第一定律的一个重要应用是惯性导航系统,如加速度计和陀螺仪。
这些设备利用物体的惯性来测量和保持方向以及位置的稳定。
二、牛顿第二定律-运动定律牛顿第二定律表明一个物体上所受的力等于其质量乘以加速度。
数学表达式为:F = ma,其中F代表力,m代表物体的质量,a代表物体的加速度。
牛顿第二定律告诉我们,当一个力作用于物体时,物体加速度的改变率与所受力成正比,质量越大,所受加速度越小,质量越小,所受加速度越大。
例如,如果你用相同的力推动一辆双人自行车和一辆单人自行车,单人自行车的加速度将比双人自行车大得多。
这是因为单人自行车的质量较小,所受加速度较大。
牛顿第二定律的应用非常广泛,如汽车工程、航空航天工程和运动力学等领域。
它被用来计算物体所受力的大小和方向,并帮助设计和改进工程设备。
三、牛顿第三定律-行动反作用定律牛顿第三定律表明每一个作用力都会引起一个相等大小、方向相反的反作用力。
换句话说,对于任何两个物体之间的相互作用,作用力与反作用力的大小相等、方向相反。
例如,当你站在地面上时,你感受不到地面对你的压力,因为你对地面施加的重力与地面对你施加的支持力相互抵消。
牛顿第三定律的一个有趣应用是火箭发动机的工作原理。
火箭喷气的推力是由废气向后排放而产生的,而火箭则受到相等大小、方向相反的推力向前运动。
牛顿三大定律知识点与例题
牛顿运动定律牛顿第一定律、牛顿第三定律知识要点一、牛顿第一定律1.牛顿第一定律的内容:一切物体总保持原来的匀速直线运动或静止状态,直到有外力迫使它改变这种状态为止.2.理解牛顿第一定律,应明确以下几点:1牛顿第一定律是一条独立的定律,反映了物体不受外力时的运动规律,它揭示了:运动是物体的固有属性,力是改变物体运动状态的原因.①牛顿第一定律反映了一切物体都有保持原来匀速直线运动状态或静止状态不变的性质,这种性质称为惯性,所以牛顿第一定律又叫惯性定律.②它定性揭示了运动与力的关系:力是改变物体运动状态的原因,是产生加速度的原因.2牛顿第一定律表述的只是一种理想情况,因为实际不受力的物体是不存在的,因而无法用实验直接验证,理想实验就是把可靠的事实和理论思维结合起来,深刻地揭示自然规律.理想实验方法:也叫假想实验或理想实验.它是在可靠的实验事实基础上采用科学的抽象思维来展开的实验,是人们在思想上塑造的理想过程.也叫头脑中的实验.但是,理想实验并不是脱离实际的主观臆想,首先,理想实验以实践为基础,在真实的实验的基础上,抓住主要矛盾,忽略次要矛盾,对实际过程做出更深一层的抽象分析;其次,理想实验的推理过程,是以一定的逻辑法则作为依据.3.惯性1惯性是任何物体都具有的固有属性.质量是物体惯性大小的唯一量度,它和物体的受力情况及运动状态无关.2改变物体运动状态的难易程度是指:在同样的外力下,产生的加速度的大小;或者,产生同样的加速度所需的外力的大小.3惯性不是力,惯性是指物体总具有的保持匀速直线运动或静止状态的性质,力是物体间的相互作用,两者是两个不同的概念.二、牛顿第三定律1.牛顿第三定律的内容两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上.2.理解牛顿第三定律应明确以下几点:1作用力与反作用力总是同时出现,同时消失,同时变化;2作用力和反作用力是一对同性质力;3注意一对作用力和反作用力与一对平衡力的区别对一对作用力、反作用力和平衡力的理解典题解析例1.关于物体的惯性,下列说法正确的是:A 只有处于静止状态或匀速直线运动状态的物体才有惯性.B 惯性是保持物体运动状态的力,起到阻碍物体运动状态改变的作用.C 一切物体都有惯性,速度越大惯性就越大.D 一切物体都有惯性,质量越大惯性就越大.例2.有人做过这样一个实验:如图所示,把鸡蛋A 向另一个完全一样的鸡蛋B 撞去用同一部分,结果是每次都是鸡蛋B被撞破,则下列说法不正确的是 A A对B的作用力大小等于B对A的作用力的大小. B A对B的作用力的大于B对A的作用力的大小.C A 蛋碰撞瞬间,其内蛋黄和蛋白由于惯性,会对A 蛋壳产生向前的作用力.D A 蛋碰撞部位除受到B 对它的作用力外,还受到A 蛋中蛋黄和蛋白对它的作用力,所以受到合力较小.例3如图所示,一个劈形物abc 各面均光滑,放在固定的斜面上,ab 边成水平并放上一光滑小球,把物体abc 从静止开始释放,则小球在碰到斜面以前的运动轨迹是A 沿斜面的直线B 竖直的直线C 弧形曲线D 抛物线拓展如图所示,AB 为一光滑水平横杆,杆上套一轻环,环上系一长为L 质量不计的细绳,绳的另一端拴一质量为m 的小球,现将绳拉直,且与AB 平行,由静止释放小球,则当细绳与AB 成θ角时,小球速度的水平分量和竖直分量的大小各是多少 轻环移动的距离d 是多少深化思维怎样正确理解牛顿第一定律和牛顿第二定律的关系例4由牛顿第二定律的表达式F=ma ,当F=0时,即物体所受合外力为0或不受外力时,物体的加速度为0,物体就做匀速直线运动或保持静止,因此,能不能说牛顿第一定律是牛顿第二定律的一个特例同步练习1.伽利略理想实验将可靠的事实与理论思维结合起来,能更深刻地反映自然规律,伽利略的斜面实验程序如下:1减小第二个斜面的倾角,小球在这个斜面上仍然要达到原来的高度. 2两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面.ABA3如果没有摩擦,小球将上升到释放时的高度.4继续减小第二个斜面的倾角,最后使它成水平面,小球沿水平面做持续的匀速直线运动.请按程序先后次序排列,并指出它属于可靠的事实还是通过思维过程的推论,下列选项正确的是数字表示上述程序号码A. 事实2→事实1→推论3→推论4B. 事实2→推论1→推论3→推论4C. 事实2→推论3→推论1→推论4D. 事实2→推论1→推论4→推论32. 火车在水平轨道上匀速行驶,门窗紧闭的车厢内有人向上跳起,发现仍落回到车上原来的位置,这是因为A.人跳起后,厢内空气给他一个向前的力,带着他随同火车一起向前运动.B.人跳起的瞬间,车厢底板给他一个向前的力,推动他随同火车一起向前运动.C.人跳起后,车继续向前运动,所以人下落后必定偏后一些,只是由于时间太短,距离太小,不明显而已.D.人跳起后直到落地,在水平方向上人和车始终具有相同的速度. 3.关于惯性下列说法正确的是:A.静止的火车启动时速度变化缓慢,是因为火车静止时惯性大B.乒乓球可以迅速抽杀,是因为乒乓球惯性小的缘故.C.物体超重时惯性大,失重时惯性小.D.在宇宙飞船中的物体不存在惯性.4. 如图所示,在一辆表面光滑足够长的小车上,有质量分别为m 1、m 2的两个小球m 1﹥m 2随车一起匀速运动,当车突然停止时,若不考虑其他阻力,则两个小球 A.一定相碰 B.一定不相碰 C.不一定相碰D.难以确定是否相碰,因为不知道小车的运动方向.5. 如图所示,重物系于线DC 下端,重物下端再系一根同样的线BA下列说法正确的是:A.在线的A 端慢慢增加拉力,结果CD 线拉断.B.在线的A 端慢慢增加拉力,结果AB 线拉断.C.在线的A 端突然猛力一拉,结果将AB 线拉断. D .在线的A 端突然猛力一拉,结果将CD 线拉断.6. 海南高考16世纪纪末,伽利略用实验和推理,推翻了已在欧洲流行了近两千年的亚里士多德关于力和运动的理论,开启了物理学发展的新纪元.在以下说法中,与亚里士多德观点相反的是A .四匹马拉拉车比两匹马拉的车跑得快:这说明,物体受的力越大,速度就越大B .一个运动的物体,如果不再受力了,它总会逐渐停下来,这说明,静止状态才是物体长时间不受力时的“自然状态”C .两物体从同一高度自由下落,较重的物体下落较快D .一个物体维持匀速直线运动,不需要受力7.关于作用力和反作用力,下列说法正确的是 A.物体相互作用时,先有作用力,后有反作用力.B.作用力和反作用力大小相等、方向相反、作用在同一直线上,因此这二力平衡.C.作用力与反作用力可以是不同性质的力,例如作用力是重力,其反作用力可能是弹力D.作用力和反作用力总是同时分别作用在两个相互作用的物体上.8.某同学坐在运动的车厢内,观察水杯中水面的变化情况,如下图所示,说明车厢 A.向前运动,速度很大. B.向前运动,速度很小. C.加速向前运动 D.减速向后运动.9. 如图所示,在车厢内的B 是用绳子拴在底部上的氢气球,A 是用绳挂在车厢顶的金属球,开始时它们和车厢一起向右作匀速直线运动,若忽然刹车使车厢作匀减速运动,则下列哪个图正确表示刹车期间车内的情况A BC D10.在地球赤道上的A 处静止放置一个小物体,现在设想地球对小物体的万有引力突然消失,则在数小时内,小物体相对于A 点处的地面来说,将 A.水平向东飞去.B.原地不动,物体对地面的压力消失. C.向上并渐偏向西方飞去. D.向上并渐偏向东方飞去. E.一直垂直向上飞去.11.有一种仪器中电路如右图,其中M 是质量较大的一个钨块,将仪器固定在一辆汽车上,汽车启动时, 灯亮,原理是 ,刹车时 灯亮,原理是 .牛顿第二定律车前进方向知识要点一.牛顿第二定律的内容及表达式物体的加速度a跟物体所受合外力F成正比,跟物体的质量m成反比,加速度的方向跟合外力的方向相同.其数学表达式为: F=ma二.理解牛顿第二定律,应明确以下几点:1.牛顿第二定律反映了加速度a跟合外力F、质量m的定量关系.注意体会研究中的控制变量法,可理解为:①对同一物体m一定,加速度a与合外力F成正比.②对同样的合外力F一定,不同的物体,加速度a与质量成反比.2.牛顿第二定律的数学表达式F=ma是矢量式,加速度a永远与合外力F同方向,体会单位制的规定.3.牛顿第二定律是力的瞬时规律,即状态规律,它说明力的瞬时作用效果是使物体产生加速度,加速度与力同时产生、同时变化、同时消失.瞬时性问题分析三.牛顿运动定律的适用范围——宏观低速的物体在惯性参照系中.1.宏观是指用光学手段能观测到物体,有别于分子、原子等微观粒子.2.低速是指物体的速度远远小于真空中的光速.3.惯性系是指牛顿定律严格成立的参照系,通常情况下,地面和相当于地面静止或匀速运动的物体是理想的惯性系.四.超重和失重1.超重:物体有向上的加速度或向上的加速度分量,称物体处于超重状态.处于超重的物体,其视重大于其实重.2. 失重:物体有向下的加速度或向下的加速度分量,称物体处于失重状态.处于失重的物体,其视重小于实重.3. 对超、失重的理解应注意的问题:1不论物体处于超重还是失重状态,物体本身的重力并没有改变,而是因重力而产生的效果发生了改变,如对水平支持面的压力或对竖直绳子的拉力不等于物体本身的重力,即视重变化.2发生超重或失重现象与物体的速度无关,只决定于加速度的方向.3在完全失重的状态下,平常一切由重力产生的物理观感现象都会完全消失,如单摆停摆,天平实效,浸在液体中的物体不再受浮力、液体柱不再产生压强等.典题解析例1关于力和运动,下列说法正确的是A.如果物体运动,它一定受到力的作用.B.力是使物体做变速运动的原因.C.力是使物体产生加速度的原因.D.力只能改变速度的大小.点评 力是产生加速度的原因,合外力不为零时,物体必产生加速度,物体做变速运动;另一方面,如果物体做变速运动,则物体必存在加速度,这是力作用的结果.例2如图所示,一个小球从竖直固定在地面上的轻弹簧的正上方某处自由下落,从小球与弹簧接触开始直到弹簧被压缩到最短的过程中,小球的速度和加速度的变化情况是A.加速度和速度均越来越小,它们的方向均向下.B.加速度先变小后又增大,方向先向下后向上;速度越来越小,方向一直向下.C.加速度先变小后又增大,方向先向下后向上;速度先变大后又变小,方向一直向下.D.加速度越来越小,方向一直向下;速度先变大后又变小,方向一直向下. 深化本题要注意动态分析,其中最高点、最低点和平衡位置是三个特殊的位置;例3 跳伞运动员从盘旋在空中高度为400m 的直升机上跳下.理论研究表明:当降落伞全部打开时,伞所受到的空气阻力大小跟伞下落的速度大小的平方成正比,即f=kv 2,已知比例系数k =20N.s 2/m 2,跳伞运动员的总质量为72kg.讨论跳伞运动员在风速为零时下落过程中的运动情况.例4如下图所示,一质量为m 的物体系于长度分别为L 1、L 2 的两根细线上,L 1 的一端悬挂在天花板上,与竖直方向夹角为a ,L 2水平拉直,物体处于平衡状态,现将L 2线剪断,求剪断瞬间物体的加速度. 1下面是某同学对该题的一种解法:解:设L 2线上拉力为T 1,L 2上拉力为T 2,重力为mg ,物体在三力作用下平衡. T 1cos a=mg,T 1sin a=T 2T 2=mg tan a剪断线的瞬间,T 2突然消失,物体在T 2反方向获得加速度,即mg tan a=ma ,所以加速度a=g tan a,方向与T 2相反.你认为这个结果正确吗 请对该解法做出评价并说明理由.2若将上题中的细线L 1改变为长度相同、质量不计的轻弹簧,其他条件不变,求解的步骤与1完全相同,即a=g tan a ,你认为这个结果正确吗 请说明理由.点评 1.牛顿运动定律是力的瞬时作用规律,加速度和力同时产生, 同时变化,同时消失,分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力及其变化.2.明确两种基本模型的特点:1轻绳不需要形变恢复时间,在瞬时问题中,其弹力可以突变.2轻弹簧或橡皮绳需要较长的形变恢复时间,在瞬时问题中,其弹力来不及变化不能突变大小和方向均不变.同步练习1. 在牛顿第二定律中F=kma 中,有关比例系数k 的说法正确的是 A. 在任何情况下都等于1B. k 的数值是由质量、加速度和力的大小决定的C. k 的数值是由质量、加速度和力的单位决定的D.在国际单位制中,k 等于1.2. 如右图所示,一木块在水平恒力F 的作用下沿光滑水平面向右匀加速运动,前方墙上固定一劲度系数足够大的弹簧,当木块接触弹簧后,将 A.立即做减速运动. B.立即做匀速运动.C.在一段时间内速度继续增大.D.当物块速度为零时,其加速度最大.3.轻质弹簧下端挂一重物,手执弹簧上端使物体向上匀加速运动.当手突然停止时,重物的运动情况是:A.立即向上做减速运动B.先向上加速后减速C.上升过程中加速度越来越大D.上升过程中加速度越来越小4. 如右图是做直线运动的物体受力F 与位移s 的关系图,则从图中可知,①这物体至位移s 2 时的速度最小②这物体至位移s 1时的加速度最大③这物体至位移s 1后便开始返回运动.④这物体至位移s 2时的速度最大. A. 只有① B.只有③ C. ①③ D.②④5.如图所示,DO 是水平面,初速为v 0的物体从D 点出发沿DBA 滑动到顶点A 时速度刚好为零.如果斜面改为AC ,让该物体从D 点出发沿DCA 滑动到A 点且速度刚好为零,则物体具有的初速度已知物体与路面之间的动摩擦因数处处相同且不为零A .大于v 0B .等于v 0C .小于v 0D .取决于斜面的倾角6. 下列说法正确的是A.体操运动员双手握住单杠作大回环通过最低点时处于超重状态.B.蹦床运动员在空中上升和下落过程都处于失重状态.C.举重运动员在举起杠铃后不动的那段时间内处于超重状态.D.游泳运动员仰卧在水面静止不动时处于失重状态.7. 黄冈模拟轻质弹簧的上端固定在电梯的天花板上,下端悬挂一个铁球,电梯中有质量为50㎏ 的乘客,如图示,在电梯运行时,乘客发现轻弹簧的伸长量是电梯静止时的伸长量的一半,这一现象表明:g =10m/s 2A.电梯此时可能正以1m/s 2的加速度加速上升,也可能以1m/s 2的加速度减速下降.B. 电梯此时不可能是以1m/s 2的加速度减速上升,只能是以5m/s 2的加速度加速下降;C.电梯此时正以5m/s 2的加速度加速上升,也可以是以5m/s 2的加速度减速下降.D.不论电梯此时是上升还是下降,也不论电梯是加速还是减速,乘客对电梯地板的压力大小一定是250N.8. 如图所示,木块A 与B 用一轻弹簧相连,竖直放在木块C 上,三者静置于地面,它们的质量比是1:2:3.设所有的接触面光滑,当沿着水平方向迅速抽出木块C 的瞬间,A 和B 的加速度分别是a 1 = ,a 2= 9. 民用航空客机的机舱,除了有正常的舱门和舷梯连接,一般还有紧急出FFSS 1 S 2 CAB口,发生意外的飞机在着地后,打开紧急出口的舱门,会自动生成一个由气囊构成的斜面,机舱内的人可沿该斜面滑行到地面上来,若机舱离气囊底端的竖直高度为3.2m,斜面长4.0m,一个质量为60kg 的乘客在气囊上受到的阻力为240N.求人滑到气囊底端的速度大小为 g =10m/s 210. “蹦极跳”是一种能获得强烈失重、超重感的娱乐项目.人处在离沟底水面上方二十多层楼的高处,用橡皮绳拴住身体,让人自由下落,落到一定位置时橡皮绳拉紧,设人体立即做匀减速运动,接近水面时刚好减为零,然后反弹.已知“勇敢者”头戴50N 的安全帽,开始下落的高度为76m,设计的系统使人落到离水面28m 时,弹性绳才绷紧,则当他落到离水面50m 左右位置时,戴安全帽的头顶感觉如何 当它落到离水面15m 左右时,头向下脚向上,则其颈部要用多大的力才能拉住安全帽 g=10m/s 211. 用如图所示的装置可以测量汽车在水平路面上作匀加速直线运动的加速度.该装置是在矩形车厢前、后壁上各安装一个由压敏电阻组成的压力传感器.用两根完全一样的轻弹簧夹着一个质量为2.0㎏的滑块,两弹簧的另一端分别压在传感器a 、b 上,其压力大小可直接从传感器的显示屏上读出.现将装置沿运动方向固定在汽车上,b 在前,a 在后,当汽车静止时,传感器a 、b 的示数均为10N.g =10m/s 21若传感器a 的示数为14N,b 为6 N,求此时汽车的加速度大小和方向. 2当汽车怎样运动时,传感器a 的示数为零.12. 一个闭合的正方形金属线框abcd,从一个有严格边界的磁场的正上方自由落下,如图示,已知磁场的磁感应强度为B ,线框的边长为l ,质量为m ,线框的总电阻为R ,线框的最低边距磁场边界的高度为H ,试讨论线框进入磁场后的可能的运动情况,并画出v —t 示意图.求解动力学问题的常用方法知识要点一. 动力学的两类基本问题 1. 已知受力求运动应用牛顿第二定律求加速度,如果再知道运动的初始条件,应用运动学公式就可以求解物体的具体运动情况. 2. 已知运动求力传感器av传感器ba cd由运动情况求出加速度,由牛顿第二定律求出物体所受到合外力,结合受力的初始条件,推断物体的受力情况.二. 应用牛顿运动定律解题的一般步骤1.取对象——根据题意确定研究对象,可以是单个物体也可以是系统.2.画图——分析对象的受力情况,画出受力分析图;分析运动情况,画出运动草图.3.定方向——建立直角坐标系,将不在坐标轴上的矢量正交分解.4.列方程——根据牛顿定律和运动学公式列方程. 三. 处理临界问题和极值问题的常用方法临界状态常指某种物理现象由量变到质变过渡到另一种物理现象的连接状态,常伴有极值问题出现.典型例题一、已知受力情况判断运动情况例1如图所示,AC 、BC 为位于竖直平面内的两根光滑细杆,A 、B 、C 三点恰好位于同一圆周上,C 为该圆周的最低点,a 、b 为套在细杆上的两个小环,当两环同时从A 、B 两点自静止开始下滑,则A. 环a 将先到B. 环b 先到C. 两者同时到D. 无法判断例2 将金属块m 用压缩的弹簧卡在一个矩形箱中,如图示,在箱子的上顶部和下地板装有压力传感器,箱子可以沿竖直轨道运动,当箱子以a =2m/s 2的加速度竖直向上作匀减速运动时,上顶部的压力传感器显示的压力为6.0N,下地板的压力传感器显示的压力为10N,g =10m/s 2.1若上顶部压力传感器的示数是下地板压力传感器的示数的一半,判断箱子的运动情况.2要使上顶部压力传感器的示数为零,箱子沿竖直方向运动情况可能是怎样的拓展一弹簧秤的秤盘质量m 1=1.5kg,盘内放一质量为m 2=10.5kg 的物体P ,弹簧质量不计,其劲度系数为k =800N/m,系统处于静止状态,如图所示.现给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在最初0.2s 内F 是变化的,在0.2s 后是恒定的,求F 的最大值和最小值各是多少 g=10m/s 2例3.一物体放在光滑水平面上,初速度为零.先对物体施加一向东的水平恒力F,历时1s ;随即把此力方向改为向西,大小不变,历时1s ;接着又把此力改为向东,大小不变,历时1s .如此反复,只改变力的B/s方向,不改变力的大小,共历时1min,在此1min 内物体的运动情况是:A .物体时而向东运动,时而向西运动,在1min 末静止于初始位置以东B .物体时而向东运动,时而向西运动,在1min 末静止于初始位置C .物体时而向东运动,时而向西运动,在1min 末继续向东运动D .物体一直向东运动,从不向西运动,在1min 末静止于初始位置以东二、由受力情况判断运动情况1.由一种状态转换为另一种状态时往往要考虑临界状态 例4 如右图所示,斜面是光滑的,一个质量为0.2kg 的小球用细绳吊在倾角是530的斜面顶端,斜面静止时,球紧靠在斜面上,绳与斜面平行,当斜面以8 m/s 2的加速度向右做匀加速运动时,求绳子的拉力及斜面对小球的弹力.2.两个或两个以上物体相互连接参与运动的系统称为连接体.以平衡态或非平衡态下连接体问题拟题屡次呈现于高考卷面中,是考生备考临考的难点之一.例4用质量为m 、长度为L 的绳沿着光滑水平面拉动质量为M 的物体,在绳的一端所施加的水平拉力为F , 如图甲所示,求:1物体与绳的加速度;2绳中各处张力的大小假定绳的质量分布均匀,下垂度可忽略不计.三、对系统应用牛顿运动定律的两种方法:1.牛顿第二定律不仅适用于单个物体,同样也适用于系统.若系统内有几个物体,m 1、m 2、m 3…,加速度分别为a 1、a 2、a 3…,这个系统的合外力为F 合,不考虑系统间的内力则这个系统的牛顿第二定律的表达式为F 合= m 1a 1 +m 2a 2 +m 3a 3 +…,其正交分解表达式为∑Fx = m 1a 1x +m 2a 2x +m 3a 3x +… ∑Fy = m 1a 1y +m 2a 2y +m 3a 3y +…若一个系统内各个物体的加速度大小不相同,而又不需要求系统内物体间的相互作用力,对系统整体列式,可减少未知的内力,使问题简化.例5 如图所示,质量为M 的框架放在水平地面上,一轻质弹簧固定在框架上,下端拴一个质量为m 的小球,当小球上下振动时,框架始终没有跳起来.在框架对地面的压力为零的瞬间,小球加速度大小为:A .g B.M +mg/mC. 0 D .M -mg/m例6 如右图所示,质量为M =10kg 的木楔ABC 置于粗糙的水平地面上,动摩擦因数μ=0.02,在倾角为300的斜面上,有一质量为m =1.0㎏的物块由静止开始沿斜面下滑.当滑行距离为s =1.4m 时,其速度v =1.4m/s.在这过程中木a甲M楔没有动,求地面对木楔的摩擦力的大小和方向.g =10m/s 22. 自然坐标法:在处理连接体问题中,除了常用整体法和隔离法外,还经常用到自然坐标法,即:沿着绳子的自然弯曲方向建立一个坐标轴,应用牛顿第二定律列式.例7 一轻绳两端各系重物A 和B ,质量分别为M 、m 且M >m ,挂在一光滑的定滑轮两侧,刚开始用手托住重物使整个装置处于静止状态,当松开手后,重物B 加速下降,重物A 加速上升,若B 距地面高为H ,求1经过多长时间重物B 落到地面 2运动过程中,绳子的拉力为大同步练习1.07卷Ⅰ如图所示,在倾角为30°的足够长的斜面上有一质量为m 的物体,它受到沿斜面方向的力F 的作用.力F 可按图a 、b 、c 、d 所示的四种方式随时间变化图中纵坐标是F 与mg 的比值,为沿斜面向上为正已知此物体在t =0时速度为零,若用4321υυυυ、、、分别表示上述四种受力情况下物体在3秒末的速率,则这四个速率中最大的是 A .1υB .2υC .3υD .4υ2. 如右图所示,一质量为M 的楔形块放在水平桌面上,它的顶角为900,两底角为a 、β,两个质量均为m 的小木块放在两个斜面上.已知所有的接触面都是光滑的.现在两个小木块沿斜面下滑,而楔形木块静止不动,这时楔形木块对水平桌面的压力等于 A. Mg+ mg B. Mg + 2mg C. Mg + mg sin a + sin βD. Mg + mg cos a + cos β3. 某消防队员从一平台上跳下,下落2m 后双脚着地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5m,在着地的过程中地面对他双脚的平均作用力估计为 A. 自身重力的2倍 B. 自身重力的5倍 C. 自身重力的8倍 D. 自身重力的10倍4. 原来做匀速运动的升降机内,有一个伸长的弹簧拉住质量为m 的物体A ,相对升降机静止在地板上,如图所示,现发现A 突然被弹簧拉向右方,由此判断,此时升降MaβAAB HA B a Aa BMg xo mg ·。
牛顿第一定律和牛顿第三定律
牛顿第一定律和牛顿第三定律一、牛顿第一定律:理解:①牛顿第一定律是物体不受外力作用时的规律,是独立的,与牛顿第二定律无关。
②牛顿第一定律不能用实验来验证,是通过理想实验方法总结出来的。
③牛顿第一定律的意义在于它科学的阐述了力和惯性的概念,正确揭示了力和运动的关系。
二、惯性:理解:①惯性是一切物体都具有的性质,是物体的固有属性,与物体的速度和受力无关。
②惯性的表现:物体不受外力作用时,有保持静止或匀速直线运动的性质;物体受到外力作用时其关性大小表现在运动状态改变的难易程度上。
③力和物体的惯性都对物体运动状态的改变产生影响,但不能把物体的惯性作为一种力。
三、牛顿第三定律:理解:作用力与反作用力之间的关系适用于任何物体,任何状态,与物体间是否接触无关。
分力和合力无反作用力。
作用力与反作用力作用效果不能抵消。
例题:1、一个小球正在做曲线运动,若突然撤去外力,它将A、立即静止下来B、仍做曲线运动C、做减速运动D、做匀速直线运动2、在一艘匀速向北行驶的轮船甲板上,一运动员作立定跳远,若向各个方向都用相同的力,则A、向北跳最远B、向南跳最远C、向东向西跳一样远但没有向南跳远D、无论向哪个方向跳都一样远思考:发射相同的卫星(质量和轨道),向哪个方向发射最省燃料?3、重球系于线DC下端,重球下系一根同样的线BA,下面说法正确的是A、在线的A端缓慢增加拉力,CD先断B、在线的A端缓慢增加拉力,AB先断C 、 在线的A 端突然猛力一拉,AB 先断D 、 在线的A 端突然猛力一拉,CD 先断4、汽车拉着拖车在水平路面上沿着直线加速行驶根据牛顿运动定律可知A 、 汽车拉拖车的力大于拖车拉汽车的力B 、 汽车拉拖车的力等于拖车拉汽车的力C 、 汽车拉拖车的力大于拖车受到的阻力D 、 汽车拉拖车的力等于拖车受到的阻力5、在平直的轨道上,密闭的车厢向右做匀加速直线运动。
某时刻起车厢顶上P 点连续处掉下几个水滴并都落到车厢的地板上下列说法正确的是:A 、 这几个水滴都落到P 点正下方的O 点B 、 这几个水滴都落到OA 之间的同一点C 、 这几个水滴都落到OB 之间的同一点D 、 这几个水滴不可能落到同一点思考:若车厢高h ,车箱加速度为a ,则水滴落地点到O 点的距离是多少?6、一向右运动的车厢顶上悬挂着单摆M 与N ,它们只能在图示上摆动,某一瞬间出现如图所示情景,由此可知,车厢的运动及两个单摆相当于车厢的运动的可能情况是A 、 车厢做匀速直线运动,M 在摆动,N 静止B 、 车厢做匀速直线运动,M 在摆动,N 也在摆动C 、 车厢做匀速直线运动,M 静止,N 在摆动D 、 车厢做匀加速直线运动,M 静止,N 也静止7、两辆完全相同的汽车,一辆是空车,一辆装满货物,在同一路面上以相同的速度行驶,两辆车的车轮与地面的动摩擦因数相同,当急刹车后(车轮不转,只可能滑动),则A 、空车滑动的距离较小B 、空车滑动的距离较大C 、两车滑行过程中加速度不等D 、两车滑动的时间相等牛顿第二定律一、牛顿第二定律:①加速度与合外力关系的四性:同体性、矢量性、瞬时性、独立性。
第1节 牛顿第一定律 牛顿第三定律
C.不一定相碰
3.(多选)(2012· 全国卷)伽利略根据小球在斜面上运动的实验和理 想实验,提出了惯性的概念,从而奠定了牛顿力学的基础。 早期物理学家关于惯性有下列说法,其中正确的是 ( A.物体抵抗运动状态变化的性质是惯性 B.没有力的作用,物体只能处于静止状态 C.行星在圆周轨道上保持匀速率运动的性质是惯性 D.运动物体如果没有受到力的作用,将继续以同一速度沿 同一直线运动 )
• [易错警示]►► • 我们不能消除一切阻力,也不能把水平木板 做得无限长,所以伽利略的实验是个“理想 实验”,但它却指出了物体在不受外力作用 时的状态,所以仍有实际意义.
要点一
牛顿第一定律的理解
1.惯性的两种表现形式
(1)物体在不受外力或所受的合外力为零时,惯性表现为使 物体保持原来的运动状态不变(静止或匀速直线运动)。 (2) 物体受到外力时,惯性表现为运动状态改变的难易程
3.如图所示为英国人阿特伍德设计的装置,不考 虑绳与滑轮的质量,不计轴承、绳与滑轮间的 摩擦。初始时两人均站在水平地面上,当位于 左侧的甲用力向上攀爬时,位于右侧的乙始终 用力抓住绳子,最终至少一人能到达滑轮。下 列说法中正确的是( ) A.若甲的质量较大,则乙先到达滑轮 B.若甲的质量较大,则甲、乙同时到达滑轮 C.若甲、乙质量相同, 则乙先到达滑轮 D.若甲、乙质量相同, 则甲先到达滑轮
[例] 如图为伽利略的“理想实验”示意图,两 个斜面对接,让小球从其中一个固定的斜面滚 下,又滚上另一个倾角可以改变的斜面,斜面 的倾角逐渐减小直至为零.这个实验的目的是 为了说明( ) A.如果没有摩擦,小球将运动到与释放时相 同的高度 B.如果没有摩擦,小球运动时机械能守恒 C.维持物体做匀速直线运动并不需要力 D.如果物体不受到力,就不会运动
牛顿运动定律
牛顿运动定律牛顿第一定律牛顿第三定律基础知识归纳1.牛顿第一定律(1)内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.(2)牛顿第一定律的意义①指出了一切物体都有惯性,因此牛顿第一定律又称惯性定律.②指出力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因.(3)惯性①定义:物体具有保持原来匀速直线运动状态或静止状态的性质.②量度:质量是物体惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.③普遍性:惯性是物体的固有属性,一切物体都有惯性.2.牛顿第三定律(1)作用力和反作用力:两个物体之间的作用总是相互的,一个物体对另一个物体施加了力,另一个物体一定同时对这个物体也施加了力.(2)内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上.(3)物理意义:建立了相互作用的物体之间的联系及作用力与反作用力的相互依赖关系.4.作用力与反作用力的“四同”和“三不同”四同:(1)大小相同(2)方向在同一直线上(3)性质相同(4)出现、存在、消失的时间相同三不同:(1)方向不同(2)作用对象不同(3)作用效果不同典例精析1.牛顿第一定律的应用、【例1】如图所示,在一辆表面光滑的小车上,有质量分别为mm2的两个小球(m1>m2)随车一起匀速运动,当车停止时,如不考虑其他阻力,设车足够长,则两个小球()A.一定相碰B.一定不相碰C.不一定相碰D.难以确定是否相碰,因为不知小车的运动方向2.对惯性概念的理解【例2】做匀速直线运动的小车上,水平放置一密闭的装有水的瓶子,瓶内有一气泡,如图所示,当小车突然停止运动时,气泡相对于瓶子怎样运动?(1)若在瓶内放一小软木块,当小车突然停止时,软木块相对于瓶子怎样运动?(2)若在瓶内放一小铁块,又如何?3.作用力与反作用力和平衡力的区别【例3】如图所示,在台秤上放半杯水,台秤示数为G′=50 N,另用挂在支架上的弹簧测力计悬挂一边长a=10 cm的金属块,金属块的密度ρ=3×103kg/m3,当把弹簧测力计下的金属块平稳地浸入水中深b=4 cm时,弹簧秤和台秤示数分别为多少?(水的密度是ρ水=103 kg/m3,取g=10 m/s2)【例4】关于马拉车时马与车的相互作用,下列说法正确的是()A.马拉车而车未动,马向前拉车的力小于车向后拉马的力B.马拉车只有匀速前进时,马向前拉车的力才等于车向后拉马的力C.马拉车加速前进时,马向前拉车的力大于车向后拉马的力D.无论车是否运动、如何运动,马向前拉车的力都等于车向后拉马的力牛顿第二定律力学单位制基础知识归纳1.牛顿第二定律(1)内容:物体的加速度与所受合外力成正比,跟物体的质量成反比.(2)表达式:F=ma.(3)力的单位:当质量m的单位是kg、加速度a的单位是m/s2时,力F的单位就是N,即1 kg•m/s2=1 N.(4)物理意义:反映物体运动的加速度大小、方向与所受合外力的关系,且这种关系是瞬时的.(5)适用范围:①牛顿第二定律只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).②牛顿第二定律只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.2.单位制单位制:由基本单位和导出单位一起组成了单位制.①基本单位:基本物理量的单位.力学中的基本物理量有三个,它们是长度、质量、时间;它们的国际单位分别是米、千克、秒.②导出单位:由基本量根据物理关系推导出来的其他物理量的单位.3.力和运动关系的分析分析力和运动关系问题时要注意以下几点:1.物体所受合力的方向决定了其加速度的方向,合力与加速度的大小关系是F合=ma,只要有合力,不管速度是大还是小,或是零,都有加速度,只有合力为零时,加速度才能为零,一般情况下,合力与速度无必然的联系,只有速度变化才与合力有必然的联系.2.合力与速度同向时,物体加速,反之则减速.3.物体的运动情况取决于物体受的力和物体的初始条件(即初速度),尤其是初始条件是很多同学最容易忽视的,从而导致不能正确地分析物体的运动过程.典例精析1.瞬时性问题分析【例1】如图甲所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.(1)现将L2线剪断,求剪断瞬间物体的加速度;(2)若将图甲中的细线L1改为质量不计的轻弹簧而其余情况不变,如图乙所示,求剪断L2线瞬间物体的加速度.【拓展1】如图所示,弹簧S1的上端固定在天花板上,下端连一小球A,球A与球B之间用线相连.球B与球C之间用弹簧S2相连.A、B、C的质量分别为m A、m B、m C,弹簧与线的质量均不计.开始时它们都处于静止状态.现将A、B间的线突然剪断,求线刚剪断时A、B、C的加速度.2.应用牛顿第二定律解题的基本方法【例2】一物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a,如图所示,在物体始终相对于斜面静止的条件下,下列说法正确的是()A.当θ一定时,a越大,斜面对物体的正压力越小B.当θ一定时,a越大,斜面对物体的摩擦力越大C.当a一定时,θ越大,斜面对物体的正压力越小D.当a一定时,θ越大,斜面对物体的摩擦力越小【拓展2】风洞实验中可产生水平方向的、大小可以调节的风力,先将一套有小球的细杆放入风洞实验室,小球孔径略大于细杆直径,如图所示.(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上匀速运动,这时所受风力为小球所受重力的0.5倍,求小球与杆的动摩擦因数;(2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球从静止出发在细杆上滑下距离x的时间为多少.(sin 37°=0.6,cos 37°=0.8)易错门诊3.力和运动的关系【例3】如图所示,弹簧左端固定,右端自由伸长到O点并系住物体m,现将弹簧压缩到A点,然后释放,物体一直可以运动到B点,如果物体受到的摩擦力恒定,则()A.物体从A到O加速,从O到B减速B.物体从A到O速度越来越小,从O到B加速度不变C.物体从A到O间先加速后减速,从O到B一直减速运动D.物体运动到O点时所受合力为零牛顿运动定律的应用重点难点突破一、动力学两类基本问题的求解思路两类基本问题中,受力分析是关键,求解加速度是桥梁和枢纽,思维过程如下:二、用牛顿定律处理临界问题的方法1.临界问题的分析思路解决临界问题的关键是:认真分析题中的物理情景,将各个过程划分阶段,找出各阶段中物理量发生突变或转折的“临界点”,然后分析出这些“临界点”应符合的临界条件,并将其转化为物理条件.2.临界、极值问题的求解方法(1)极限法:在题目中如出现“最大”、“最小”、“刚好”等词语时,一般隐含着临界问题,处理此类问题时,应把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,达到尽快求解的目的.(2)假设法:有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,也可能不出现临界问题,解答此类题目,一般采用假设法.此外,我们还可以应用图象法等进行求解.典例精析1.动力学基本问题分析【例1】在光滑的水平面上,一个质量为200 g的物体,在1 N的水平力F作用下由静止开始做匀加速直线运动,2 s后将此力换为相反方向的1 N的力,再过2 s将力的方向再反过来……这样物体受到的力大小不变,而力的方向每过2 s改变一次,求经过30 s物体的位移.【拓展1】质量为40 kg的雪橇在倾角θ=37°的斜面上向下滑动(如图甲所示),所受的空气阻力与速度成正比.今测得雪橇运动的v-t图象如图乙所示,且AB是曲线的切线,B点坐标为(4,15),CD是曲线的渐近线.试求空气的阻力系数k和雪橇与斜坡间的动摩擦因数μ.2.临界、极值问题【例2】如图所示,一个质量为m=0.2 kg的小球用细绳吊在倾角为θ=53°的光滑斜面上,当斜面静止时,绳与斜面平行.当斜面以10 m/s2的加速度向右做加速运动时,求绳子的拉力及斜面对小球的弹力.【拓展2】如图所示,长L=1.6 m,质量M=3 kg的木板静放在光滑水平面上,质量m=1 kg的小物块放在木板的右端,木板和物块间的动摩擦因数μ=0.1.现对木板施加一水平向右的拉力F,取g=10 m/s2,求:(1)使物块不掉下去的最大拉力F;(2)如果拉力F=10 N恒定不变,小物块的所能获得的最大速度.易错门诊3.多过程问题分析【例3】如图,有一水平传送带以2 m/s的速度匀速运动,现将一物体轻轻放在传送带上,若物体与传送带间的动摩擦因数为0.5,则传送带将该物体传送10 m的距离所需时间为多少?(取重力加速度g=10 m/s2)超重与失重整体法和隔离法基础知识归纳1.超重与失重和完全失重(1)实重和视重①实重:物体实际所受的重力,它与物体的运动状态无关.②视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力.此时弹簧测力计的示数或台秤的示数即为视重.(2)超重、失重和完全失重的比较现象实质超重物体对支持物的压力或对悬挂物的拉力大于自身重力的现象系统具有竖直向上的加速度或加速度有竖直向上的分量失重物体对支持物的压力或对悬挂物的拉力小于自身重力的现象系统具有竖直向下的加速度或加速度有竖直向下的分量完全失重物体对支持物的压力或对悬挂物的拉力等于零的现象系统具有竖直向下的加速度,且a=g2.连接体问题(1)连接体两个或两个以上存在相互作用或有一定关联的物体系统称为连接体,在我们运用牛顿运动定律解答力学问题中常会遇到.(2)解连接体问题的基本方法整体法:把两个或两个以上相互连接的物体看成一个整体,此时不必考虑物体之间的内力.隔离法:当求物体之间的作用力时,就需要将各个物体隔离出来单独分析.解决实际问题时,将隔离法和整体法交叉使用,有分有合,灵活处理.典例精析1.超重和失重现象【例1】升降机由静止开始上升,开始2 s 内匀加速上升8 m ,以后3 s 内做匀速运动,最后2 s 内做匀减速运动,速度减小到零.升降机内有一质量为250 kg 的重物,求整个上升过程中重物对升降机的底板的压力,并作出升降机运动的v-t 图象和重物对升降机底板压力的F-t 图象.(g 取10 m/s 2)【拓展1】如图所示,小球的密度小于杯中水的密度,弹簧两端分别固定在杯底和小球上.静止时弹簧伸长Δx .若全套装置自由下落,则在下落过程中弹簧的伸长量将( D )A.仍为ΔxB.大于ΔxC.小于Δx ,大于零D.等于零2.整体法和隔离法的应用【例2】如图所示,质量为m =1 kg 的物块放在倾角为θ的斜面上,斜面体质量为M =2 kg ,斜面与物块间的动摩擦因数μ=0.2,地面光滑,θ=37°.现对斜面体施一水平推力F ,要使物块m 相对斜面静止,力F 应为多大?(设物块与斜面间的最大静摩擦力等于滑动摩擦力,g 取10 m/s 2)3.整体运用牛顿第二定律【例3】如图所示,倾角α=30°、质量M =34 kg 的斜面体始终停在粗糙的水平地面上,质量m A =14 kg 、m B =2 kg 的物体A 和B ,由细线通过定滑轮连接.若A 以a =2.5 m/s 2的加速度沿斜面下滑,求此过程中地面对斜面体的摩擦力和支持力各是多少?易错门诊【例4】如图所示,一个质量为M 、倾角为30°的光滑斜面体放在粗糙水平桌面上,质量为m 的小木块从斜面顶端无初速度滑下的过程中,斜面体静止不动.则下列关于此斜面体对水平桌面压力F N的大小和桌面对斜面体摩擦力F f 的说法正确的( )A.F N =Mg +mgB.F N =Mg +43mg C.F f 方向向左,大小为23mg D.F f 方向向左,大小为43mg。
牛顿定律知识点总结
牛顿定律知识点总结牛顿定律是经典力学的基石,描述了物体运动的基本规律。
它由三个定律组成,即牛顿第一定律、牛顿第二定律和牛顿第三定律。
下面将分别对这三个定律进行详细介绍。
一、牛顿第一定律,也称为惯性定律。
它的主要内容是:一个物体如果没有外力作用,将保持静止或匀速直线运动。
这意味着物体的速度和方向不会自发地改变,除非有外力作用。
例如,一个静止的书本只有在有人推或拉的情况下才会移动,而一个匀速直线运动的汽车只有在有刹车或加速的力作用下才会改变速度。
二、牛顿第二定律,也称为运动定律。
它的表述为:物体的加速度与作用在其上的力成正比,与物体的质量成反比。
换句话说,当一个力作用于物体上时,物体将产生加速度,其大小与力的大小成正比,与物体的质量成反比。
这可以用公式F=ma表示,其中F是作用在物体上的力,m是物体的质量,a是物体的加速度。
例如,一个力为10牛顿作用在质量为2千克的物体上,根据牛顿第二定律可以计算出物体的加速度为5米每平方秒。
三、牛顿第三定律,也称为作用-反作用定律。
它的核心思想是:对于每一个作用在物体上的力,都存在一个与之大小相等、方向相反的反作用力。
换句话说,作用力和反作用力是一对相互作用的力,它们的大小相等、方向相反,但作用在不同的物体上。
例如,当我们站在地面上时,我们会感受到地面向上的支持力,而地面则会感受到我们向下的压力。
牛顿定律的应用非常广泛,几乎贯穿于物理学的各个领域。
它不仅可以解释物体在力的作用下的运动规律,还可以解释天体运动、机械振动等现象。
在工程学中,牛顿定律被广泛应用于设计和分析各种力学系统,如桥梁、飞机、汽车等。
在航天领域,牛顿定律也是计算和预测航天器轨道运动的基础。
除了经典力学,牛顿定律还为其他物理学分支提供了理论基础。
例如,在电磁学中,洛伦兹力和库伦定律可以通过将牛顿第二定律应用于电荷运动而得到。
在相对论中,质能关系E=mc²可以通过将牛顿第二定律与相对论动力学原理相结合而推导出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础课时6牛顿第一定律牛顿第三定律[知识梳理]知识点一、牛顿第一定律1.内容一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态。
2.意义(1)指出力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因。
(2)指出了一切物体都有惯性,因此牛顿第一定律又称惯性定律。
3.惯性(1)定义:物体具有保持原来匀速直线运动状态或静止状态的性质。
(2)量度:质量是物体惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小。
(3)普遍性:惯性是物体的固有属性,一切物体都有惯性。
与物体运动情况和受力情况无关。
知识点二、牛顿第三定律1.作用力和反作用力两个物体之间的作用总是相互的。
一个物体对另一个物体施加了力,另一个物体一定同时对这一个物体也施加了力。
物体间相互作用的这一对力,通常叫做作用力和反作用力。
2.牛顿第三定律(1)内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。
(2)表达式:F=-F′[诊断自测]1.下列说法正确的是()A.物体做自由落体运动,就是物体具有惯性的表现B.作用力与反作用力可以作用在同一物体上C.人走在松软的土地上下陷时,人对地面的压力大于地面对人的支持力D.物体运动状态发生变化时,物体一定受到力的作用2.(多选)关于牛顿第一定律的说法正确的是()A.牛顿第一定律不能在实验室中用实验验证B.牛顿第一定律说明力是改变物体运动状态的原因C.惯性定律与惯性的实质是相同的D.物体的运动不需要力来维持3.物体A的质量为10 kg,物体B的质量为20 kg,A、B分别以20 m/s和10 m/s的速度运动,则下列说法中正确的是()A.A的惯性比B大B.B的惯性比A大C.A和B的惯性一样大D.不能确定4.如图1所示,放在水平面上的物体受到一个水平向右的拉力F的作用而处于静止状态,下列说法中正确的是()图1A.物体对水平面的压力和物体受到的重力是一对平衡力B.拉力F和水平面对物体的摩擦力是一对作用力和反作用力C.物体受到四对平衡力的作用D.物体受到的合外力为零5.如图2所示,大人很轻松地就能将小孩拉过来,如果用两个力传感器与计算机相连,就很容易地显示两个拉力随时间变化的图象。
由图象可以得出的正确结论是()图2A.作用力与反作用力的大小总是相等B.作用力与反作用力的大小不相等C.作用力与反作用力的作用时间不相等D.作用力与反作用力的方向相同考点一对牛顿第一定律及惯性的理解1.明确了惯性的概念牛顿第一定律揭示了一切物体所具有的一种固有属性——惯性,即物体保持原来的匀速直线运动状态或静止状态的性质。
2.揭示了力的本质力是改变物体运动状态的原因,而不是维持物体运动状态的原因。
3.理想化状态牛顿第一定律描述的是物体不受外力的状态,而物体不受外力的情形是不存在的。
在实际情况中,如果物体所受的合外力等于零,与物体不受外力的表现是相同的。
4.与牛顿第二定律的关系牛顿第一定律和牛顿第二定律是相互独立的。
力是如何改变物体运动状态的问题由牛顿第二定律来回答。
【例1】下列关于惯性的说法中正确的是()A.速度大的物体比速度小的物体难以停下来,所以速度大的物体惯性大B.同一个物体在光滑水平面上时的惯性小,在粗糙水平面上时的惯性大C.乒乓球可以快速抽杀,是因为乒乓球惯性小D.在“嫦娥二号”卫星中的物体不存在惯性规律总结1.惯性的两种表现形式(1)物体的惯性总是以保持“原状”或反抗“改变”两种形式表现出来。
(2)物体在不受外力或所受的合外力为零时,惯性表现为使物体保持原来的运动状态不变(静止或匀速直线运动)。
2.牛顿第一定律的应用技巧如果物体的运动状态发生改变,则物体必然受到不为零的合外力作用。
因此,判断物体的运动状态是否改变,以及如何改变,应分析物体的受力情况。
【变式训练】1.[对惯性的理解](2015·广东广州执信中学高三上学期末)某同学为了取出如图3所示羽毛球筒中的羽毛球,一手拿着球筒的中部,另一手用力击打羽毛球筒的上端,则()A.此同学无法取出羽毛球B.羽毛球会从筒的下端出来C.羽毛球筒向下运动过程中,羽毛球受到向上的摩擦力才会从上端出来D.该同学是在利用羽毛球的惯性2.[对牛顿第一定律及惯性的理解]下列说法正确的是()A.在高速公路上高速行驶的轿车的惯性比静止在货运场的集装箱货车的惯性大B.牛顿第一定律是根据理论推导出来的C.在粗糙水平面上滚动的小球最后会停下来是因为小球的惯性逐渐变为零D.物体的速度逐渐增大同时加速度逐渐减小是有可能的考点二牛顿第三定律的理解与应用1.作用力与反作用力的关系于两个人拔河,如果甲、乙两人在“押加”比赛中,甲获胜,则下列说法中正确的是()图4A.甲对乙的拉力大于乙对甲的拉力,所以甲获胜B.当甲把乙匀速拉过去时,甲对乙的拉力大小等于乙对甲的拉力大小C.当甲把乙加速拉过去时,甲对乙的拉力大小大于乙对甲的拉力大小D.甲对乙的拉力大小始终等于乙对甲的拉力大小特别提醒应用牛顿第三定律应注意的三个问题(1)定律中的“总是”说明对于任何物体,在任何情况下牛顿第三定律都是成立的。
(2)作用力与反作用力虽然等大反向,但因所作用的物体不同,所产生的效果(运动效果或形变效果)往往不同。
(3)作用力与反作用力只能是一对物体间的相互作用力,不能牵扯第三个物体。
【变式训练】3.[作用力和反作用力与平衡力的区别]一起重机通过一绳子将货物向上吊起的过程中(忽略绳子的重力和空气阻力),以下说法正确的是()A.当货物匀速上升时,绳子对货物的拉力与货物对绳子的拉力是一对平衡力B.无论货物怎么上升,绳子对货物的拉力大小都等于货物对绳子的拉力大小C.无论货物怎么上升,绳子对货物的拉力大小总大于货物的重力大小D.若绳子质量不能忽略且货物匀速上升时,绳子对货物的拉力大小一定大于货物的重力大小4.[作用力和反作用力的特点]如图5所示,有两个穿着溜冰鞋的人站在冰面上,当其中一个人A从背后轻轻推另一个人B时,两个人都会向相反方向运动,这是因为A推B时()图5A.A与B之间有相互作用力B.A对B的作用在先,B对A的作用在后C.B对A的作用力小于A对B的作用力D.A对B的作用力和B对A的作用力是一对平衡力1.在研究力和运动的关系时,伽利略巧妙地设想了两个对接斜面的实验,假想让一个小球在斜面上滚动。
伽利略运用了()A.理想实验方法B.控制变量方法C.等效替代方法D.建立模型方法2.(多选)如图6所示,在匀速前进的磁悬浮列车里,小明将一小球放在水平桌面上,且小球相对桌面静止。
关于小球与列车的运动,下列说法正确的是()A.若小球向前滚动,则磁悬浮列车在加速前进B.若小球向后滚动,则磁悬浮列车在加速前进C.磁悬浮列车急刹车时,小球向前滚动D.磁悬浮列车急刹车时,小球向后滚动3.一个榔头敲在一块玻璃上把玻璃打碎了。
对这一现象,下列说法正确的是()A.榔头敲玻璃的力大于玻璃对榔头的作用力,所以玻璃才碎裂B.榔头受到的力大于玻璃受到的力,只是由于榔头能够承受比玻璃更大的力才没有碎裂C.榔头和玻璃之间的作用力应该是等大的,只是由于榔头能够承受比玻璃更大的力才没有碎裂D.因为不清楚玻璃和榔头的其他受力情况,所以无法判断它们之间的相互作用力的大小4.如图所示,质量相等的甲、乙两人所用绳子相同,甲拉住绳子悬在空中处于静止状态,乙拉住绷紧绳子的中点把绳子拉断了。
则()A.绳子对甲的拉力小于甲的重力B.绳子对甲的拉力大于甲对绳子的拉力C.乙拉断绳子前瞬间,绳上的拉力一定小于乙的重力D.乙拉断绳子前瞬间,绳上的拉力一定大于乙的重力小结巧记3个概念——惯性、作用力、反作用力2个定律——牛顿第一定律、牛顿第三定律4位物理学家——亚里士多德、伽利略、笛卡儿、牛顿1个区别——一对平衡力与一对作用力和反作用力的区别一、单项选择题1.关于物体惯性的大小,下列说法中正确的是()A.因为运动速度大的物体比运动速度小的物体难停下来,所以运动速度大的物体惯性大B.因为物体受到的力越大,要使它停下来就越困难,所以物体受到的力越大,惯性越大C.行驶中的车辆突然刹车,乘客前倾,这是惯性引起的。
D.材料不同的两个物体放在地面上,用相同的水平力分别推它们,难以被推动的物体惯性较大2.冰壶在冰面上运动时受到的阻力很小,可以在较长时间内保持运动速度的大小和方向不变,我们可以说冰壶有较强的抵抗运动状态变化的“本领”。
这里所指的“本领”是冰壶的惯性,则惯性的大小取决于()A.冰壶的速度B.冰壶的质量C.冰壶受到的推力D.冰壶受到的阻力3.牛顿在总结前人的研究结果后,提出了著名的牛顿第三定律,阐述了作用力和反作用力的关系,从而与牛顿第一定律和牛顿第二定律形成了完整的牛顿力学体系。
下列关于作用力和反作用力的说法正确的是()A.物体先对地面产生压力,然后地面才对物体产生支持力B.物体对地面的压力和地面对物体的支持力互相平衡C.人推车前进,人对车的作用力大于车对人的作用力D.物体在地面上滑行,不论物体的速度多大,物体对地面的摩擦力与地面对物体的摩擦力始终大小相等4.如图2所示,用细绳把小球悬挂起来,当小球静止时,下列说法中正确的是()图2A.小球受到的重力和细绳对小球的拉力是一对作用力和反作用力B.小球受到的重力和小球对细绳的拉力是一对作用力和反作用力C.小球受到的重力和细绳对小球的拉力是一对平衡力D.小球受到的重力和小球对细绳的拉力是一对平衡力5.在一次交通事故中,一辆载有30吨“工”字形钢材的载重汽车由于避让横穿马路的摩托车而紧急制动,结果车厢上的钢材向前冲出,压扁驾驶室。
关于这起事故原因的物理分析正确的是()A.由于车厢上的钢材有惯性,在汽车制动时,钢材继续向前运动,压扁驾驶室B.由于汽车紧急制动,使其惯性减小,而钢材惯性较大,所以继续向前运动C.由于车厢上的钢材所受阻力太小,不足以克服其惯性,所以继续向前运动D.由于汽车制动前的速度太大,汽车的惯性比钢材的惯性大,在汽车制动后,钢材继续向前运动6.足够长的水平木板,沿水平方向向右做匀速直线运动。
木板上有两个质量不等的铁块与木板一起做匀速直线运动,两个铁块沿运动方向分布,质量大的在前,质量小的在后,并有一定的间隔。
某时刻木板突然停止运动,下列说法正确的是()A.若木板光滑,由于前面的铁块惯性大,两个铁块之间距离将增大B.若木板光滑,由于后面的铁块惯性小,两个铁块之间距离将减小C.若木板不光滑,两个铁块有可能相撞D.无论木板是否光滑,两个铁块之间距离总是保持不变7.不同质量的汽车在同一水平公路上直线行驶,则下列说法中正确的是()A.车速越大的汽车,它的惯性越大B.质量越大的汽车,它的惯性越大C.车速越大的汽车,紧急刹车后滑行的路程越短D.质量越大的汽车,紧急刹车后滑行的路程越长8.在滑冰场上,甲、乙两小孩分别坐在滑冰板上,原来静止不动,在相互猛推一下后分别向相反方向运动。