江苏省海陵中学2018-2019学年八年级上期中数学试卷

合集下载

2018-2019学年八年级上期中考试数学试卷(含答案解析)

2018-2019学年八年级上期中考试数学试卷(含答案解析)

初二年级上传数学期中试卷(满分150,考试时间120分钟)第Ⅰ卷(选择题共48分)一. 选择题(本大题共12小题,每小题 4分,共 48 分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列图形中,是轴对称图形的是( )A. B. C. D.2. 已知等腰三角形的两边长分别为 6 和1,则这个等腰三角形的周长为( )A. 13B. 8C. 10D. 8 或 133. 若一个多边形的内角和为720°,则这个多边形是()A. 三角形B. 四边形C. 五边形D. 六边形4. 如图,用尺规作图作已知角平分线,其根据是构造两个三角形全等,它所用到的判别方法是()A. SASB. AASC. ASAD. SSS5. 如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B=35°,∠ACE=60°,则∠A=()A. 50°B. 60°C. 70°D. 80°6. 如图,∠A=50°,P 是等腰△ABC 内一点,AB=AC,BP 平分∠ABC,CP平分∠ACB,则∠BPC 的度数为( )A. 100°B.115°C.130°D. 1407. 如图,△ABC≌△DEF,若BC=12cm,BF=16cm,则下列判断错误的是( )A. AB=DEB. BE=CFC. AB//DED. EC=4cm8. 如图,△ABC 中,∠C=90°,AD 平分∠BAC,过点 D 作 DE⊥AB 于 E,测得 BC=9,BD=5,则DE的长为()A. 3B. 4C. 5D. 69. 如图,AB=AC,AD=AE,BE、CD 交于点 O,则图中全等的三角形共有()A.四对 B. 三对 C. 二对 D. 一对10. 如图,△ABC 中,AB=AC,BD 平分∠ABC 交 AC 于 G,DM//BC 交∠ABC 的外角平分线于 M,交AB、AC 于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE. 其中一定正确的有( )A. 0 个B. 1 个C. 2 个D. 3 个第 7 题第 8 题第 9 题第 10 题11、如图,△ABC中,∠C=75°,若沿图中虚线截去∠C,则∠1+∠2=()A. 360°B. 180°C. 255°D. 145°12、一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线第Ⅱ卷(非选择题共102分)二. 填空题(每小题 4 分,共 24 分)11. 已知△ABC 中,AB=6,BC=4,那么边 AC 的长可以是(填一个满足题意的即可).12. 如图,一扇窗户打开后,用窗钩 BC 将其固定. 这里所运用的几何原理是.13. 点 M 与点 N(-2,-3)关于y 轴对称,则点 M 的坐标为.1∠C,则△ABC 是三角形.14. 在△ABC 中,∠A=∠B=215. 如图,D 是 AB 边上的中点,将△ABC 沿过点 D 的直线折叠,DE 为折痕,使点 A 落在 BC 上 F 处,若∠B=40°,则∠EDF=_度.16. 如图,在 Rt△ABC 中,∠C=90°,∠BAC=30°,点 D 是 BC 边上的点,AB=18,将△ABC 沿直线AD 翻折,使点 C 落在 AB 边上的点 E 处,若点 P 是直线 AD 上的动点,则 BP+EP 的最小值是.第 15 题第 16 题三、解答题(一)(每小题 6 分,共 18 分)17. 如图,A、F、B、D 在一条直线上,AF=DB,BC=EF,AC=DE.求证:∠A=∠D.18. 一个多边形,它的内角和比外角和还多180°,求这个多边形的边数.19. 如图,已知△ABC,∠C=90°,AC<BC.D 为 BC 上一点,且到 A,B 两点的距离相等.(1)用直尺和圆规,作出点D 的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B= 35°,则∠CAD=°.四、解答题(二)(每小题 7 分,共 21 分)21. 如图,在△ABC 中,∠ACB=90°,AC=BC,BE⊥CE 于 E,AD⊥CE 于 D,AD=2.5,DE=1.7,求 BE 的长.22. 如图,在△ABC 中,D 是 BC 的中点,DE⊥AB 于点 E,DF⊥AC 于点 F,BE=CF.(1)求证:AD 平分∠BAC.(2)连接 EF,求证:AD 垂直平分 EF.五、解答题(三)(每小题 9 分,共 27 分)23. 如图, AD 为△ ABC 的中线, BE 为△ ABD 的中线.(1)∠ ABE=15°,∠ BED=55°,求∠ BAD 的度数;(2)作△ BED 的边 BD 边上的高;(3)若△ ABC 的面积为 20, BD=2.5,求△ BDE 中 BD 边上的高.24. 如图,在△ ABC 中,∠BAC=120°,AB=AC=4,AD⊥BC,BD= 2 3 ,延长 AD 到 E,使 AE=2AD,连接 BE.(1)求证:△ ABE 为等边三角形;(2)将一块含 60°角的直角三角板 PMN 如图放置,其中点 P 与点 E 重合,且∠NEM=60°,边 NE与AB 交于点 G,边 ME 与 AC 交于点 F. 求证:BG=AF;(3)在(2)的条件下,求四边形AGEF 的面积.25. 如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点 P 在线段 AB 上以 1cm/s 的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为 t(s).(1)若点 Q 的运动速度与点 P 的运动速度相等,当 t=1 时,△ACP 与△BPQ 是否全等,请说明理由,并判断此时线段 PC 和线段 PQ 的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点 Q 的运动速度为 x cm/s,是否存在实数 x,使得△ACP 与△BPQ 全等?若存在,求出相应的x、t 的值;若不存在,请说明理由.参考答案一. 选择题(每小题 3 分,共 30 分)1. 【分析】根据轴对称图形的概念解答即可【解答】选项A、C、D 中的图形是不是轴对称图形故答案为:B【点评】本题考查轴对称图形,掌握轴对称图形的概念,要求会判断一个图形是否是轴对称图形2. 【分析】根据等腰三角形边的定义及三角形三边关系解答即可【解答】∵等腰三角形的两边长分别是 6 和 1,①当腰为1 时,1+1=3<6,三角形不成立;②当腰为6 时,三角形的周长为:6+6+1=13;∴此等腰三角形的周长是 13.故答案为:A.【点评】本题考查三角形三边关系,等腰三角形的定义,及分类讨论的思想.3. 【分析】根据计算多边形内角和的公式(n-2)×180°,即可得出该多边形的边数。

20182019年度第一学期八年级数学期中试卷 .doc

20182019年度第一学期八年级数学期中试卷 .doc

感谢你的观看2018-2019年度第一学期八年级数学期中试卷时间:120分钟 满分:120分一、选择题(每题3分,共24分) 1. 4的算术平方根是 ( ) A 、2 B 、±2 C 、2± D 、2 2. 以下列各组数据中是勾股数的是 ( )A 、1,1,2B 、12,16,20C 、1,35,34 D 、1,2,33. 在实数:.9.0, π-, -3, 31, 16 , 3.14, 39 ,3125.0-,0.1010010001… (相邻两个1之间依次增加一个0)中,无理数的个数是( )个A 、3个B 、4个C 、5个D 、64. 下列二次根式中的最简二次根式是( )A. 30B.12C.8D.215. 在平面直角坐标系中,点P (-2,3)在 ( ).A. 第四象限B. 第三象限C.第二象限D. 第一象限6. 方程组 ⎩⎨⎧-=-=+523132y x y x 的解是( )A.⎩⎨⎧==11y xB.⎩⎨⎧-==11y xC.⎩⎨⎧=-=11y xD.⎩⎨⎧-=-=11y x 7. 最接近2018的整数是( )A.43B.44C.45D.468. 已知一次函数y =mx +n 的图象如图所示,则m 、n 的取值范围是( ) A .m >0,n <0 B .m >0,n >0 C .m <0,n <0D .m <0,n >0二、填空题(每空3分,共24分) 9. 3的倒数是 。

10. x 2=9,则x= .11. 如右图,在数轴上点A 表示的数是 . 12 .边长为4的等边三角形的面积是 。

13. 直线2+=x y 与y 轴的交点坐标为 。

14.经营超市的大刘从银行换回面值5元和面值1元的零钞80张共计200元。

设面值5元的有X 张,面值1元的有Y 张,则列出的方程组为 。

15. 小明在画一次函数y=kx+b 的图象时,列表为则函数值y 随着x 的增大而 .16. 在△ABC 中,D 为边BC 的中点,AC=3,BC=10,AD=4.则ΔABC 的面积是 .三、计算(要有计算过程,否则不得分,每题5分,共20分,) 17. 21625-⨯ 18. 28(2-)19、2)423(- 20、)26)(23(-+贺兰二中 班 级 姓 名 学 号 考 场 座位号x 0 3 y2装订 线感谢你的观看四、解答题(共48分)21.(7分))如图,(1)写出△ABC的各顶点坐标;(2)画出△ABC关于y轴对称△A1B1C1;(3)写出△A1B1C1的各顶点坐标。

2018-2019学年度第一学期八年级(上)期中数学试题(含答案).doc

2018-2019学年度第一学期八年级(上)期中数学试题(含答案).doc

2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学(满分:100分考试时间:100分钟)注意事项:1.选择题请用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.2.非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列“表情”中属于轴对称图案的是A. B. C. D.2.下列说法正确的是A .两个等边三角形一定全等B .形状相同的两个三角形全等C .面积相等的两个三角形全等D .全等三角形的面积一定相等3.下列长度的三条线段,能组成直角三角形的是 A .1,2,3B .2,3,4C .3,4,5D .4,5,64.在△ABC 中,AB =AC ,BD 为△ABC 的高,若∠BAC =40°,则∠CBD 的度数是 A .70°B .40°C .20°D .30°5.如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个小正方形的面积分别为9和25,则正方形A 的面积是 A .16 B .32 C .34 D .64925A(第5题)(第4题)ABCD6.到三角形三条边距离相等的点是A .三条边的垂直平分线的交点B .三条边上高的交点C .三条边上中线的交点D .三个内角平分线的交点7.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′C ′B ′=∠ACB 的依据是A .SASB .SSSC .ASAD .AAS8.如图,长方形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′,点B 落在点B ′处.若∠2=40°,则∠1的度数为 A .115°B .120°C .130°D .140°二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题..卷.相应位置....上) 9.等边三角形有▲条对称轴.10.在Rt △ABC 中,∠C =90°,AB =13,BC =12,则AC =▲.11.已知△ABC ≌△DEF ,且△DEF 的周长为12.若AB =5,BC =4,则AC =▲. 12.若等腰三角形的两边长分别为4和8,则这个三角形的周长为▲. 13.在等腰△ABC 中,AC =AB ,∠A =70°,则∠B =▲°.14.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,CD ⊥AB ,垂足为D ,CD =▲.15.如图,在等腰△ABC 中,AB =AC ,AD 为△ABC 的中线,∠B =72°,则∠DAC =▲°. 16.在Rt △ABC 中,∠C =90°,∠A =30°,D 是斜边AB 的中点,DE ⊥AC ,垂足为E ,DE =2,则AB =▲.(第7题) AC DBB ′A ′C ′D ′(第8题)1 2BB ′ CA ′ DEAF(第15题)DACBDACB(第14题)(第16题)ACBDE17.如图,△DEF 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫做格点三角形.若在图中再画1个格点△ABC (不包括△DEF ),使△ABC ≌△DEF ,这样的格点三角形能画▲个.18.如图,在Rt △ABC 中,∠ABC =90°,AB =BC =4,M 在BC 上,且BM =1,N 是AC上一动点,则BN +MN 的最小值为▲.三、解答题(本大题共9小题,共64分.请在答题..卷.指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤)19.(6分)已知:如图,在△ABC 中,DE ∥BC ,AD =AE .求证:AB =AC .20.(5分)如图,三个直角三角形(Ⅰ,Ⅱ,Ⅲ)拼成一个梯形(两底分别为a 、b ,高为a +b ),利用这个图形,小明验证了勾股定理.请将计算过程补充完整. 解:S 梯形=12(上底+下底)×高=12(a +b )•(a +b ),即S 梯形=12(▲).①S 梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表式相应图形的面积) =▲+▲+▲.即S 梯形=12(▲).②由①、②,得a 2+b 2=c 2.DE C(第19题)A(第20题)cⅢcⅡⅠb ba a(第17题)EDFMNABC(第18题)21.(6分)如图,育苗棚的顶部是长方形,求育苗棚顶部薄膜ABDE 的面积.22.(6分)已知:如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .求证:BC ∥EF .23.(6分)如图,△ABC 是等边三角形,D 是BC 上任意一点(与点B 、C 不重合),以AD 为一边向右侧作等边△ADE ,连接CE .求证:△CAE ≌△BAD .FECBA(第22题)DCEA(第23题)B(第21题)E24.(7分)如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,CD =12,AD =13.求四边形ABCD 的面积.25.(8分)如图,在△ABC 中,∠C =90°.E 是AB 中点,DE ⊥AB ,垂足为E .若CD =ED ,求∠BAC ,∠B 的度数.26.(8分)如图,在四边形ABCD 中,∠ABC =∠ADC =90°,M 为AC 的中点.(1)求证:MB =MD .(2)若∠BAD =100°,求∠BMD 的度数.M(第26题)CABD (第24题)CBDA(第25题)BE DC27.(12分)在Rt △ABC 中,∠C =90°,将△ABC 沿着某条直线折叠.(1)若该直线经过点A ,且折叠后点C 落在AB 边上,请用直尺和圆规在图①中作出该直线(不写作法,保留作图痕迹); (2)若折叠后点A 与点B 重合.①请用直尺和圆规在图②中作出该直线(不写作法,保留作图痕迹); ②若图②中所画直线与AC 交于点P ,且AB =8,AP =5,求CP 的长.(第27题)AC图①AC图②2018/2019学年度第一学期第一阶段学业质量监测试卷八年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计16分)二、填空题(每小题2分,共计20分)9.3 10.5 11.3 12.20 13.55 14.4.8 15.18 16.8 17.3 18.5三、解答题(本大题共9小题,共计64分) 19.(本题6分) 证明:∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C .……………………………………………2分 ∵AD =AE ,∴∠ADE =∠AED . …………………………………………………………4分 ∴∠B =∠C . ………………………………………………………………5分 ∴AB =AC .……………………………………………………………………6分20.(本题5分)解:S 梯形=12(上底+下底)•高=12(a +b )•(a +b ),即S 梯形=12(a 2+2ab +b 2).①…………………………1分S 梯形=Ⅰ+Ⅱ+Ⅲ(罗马数字表式相应图形的面积) =12ab +12c 2+12ab .…………………………4分即S 梯形=12(c 2+2 ab ).②……………………………5分由①、②,得a 2+b 2=c 2.21.(本题6分)解:在Rt △ABC 中,∠ACB =90°,由勾股定理得:AB 2=AC 2+BC 2=22+1.52=6.25,∴AB =2.5(m ).…………3分∴S 四边形ABDE =2.5×20=50(m 2).……………………………………………5分 答:四边形ABDE 的面积是50m 2.……………………………………………6分 22.(本题6分)证明:∵AF =DC ,∴AF +FC =DC +FC .即AC =DF .………………………1分在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠A =∠D ,AC =DF .∴△ABC ≌△DEF (SAS ).…………………4分∴∠BCA =∠EFD .……………………………………………5分 ∴BC ∥EF .……………………………………………6分 23.(本题6分)证明:∵△ABC 和△ADE 是等边三角形,∴AC =AB ,AE =AD ,∠DAE =∠BAC =60°.………………………………3分 ∴∠DAE -∠CAD =∠BAC -∠CAD ,即∠CAE =∠BAD .………………4分 在△CAE 和△BAD 中,⎩⎪⎨⎪⎧AC =AB ,∠CAE =∠BAD ,AE =AD .∴△CAE ≌△BAD (SAS ).………6分24.(本题7分)解:∵在△ABC 中,∠B =90°,AB =4,BC =3,∴AC =5.………………………2分在△ADC 中,AD =13,CD =12,AC =5. ∵122+52=132,即CD 2+AC 2=AD 2,∴△ADC 是直角三角形,且∠DCA =90°.……………………………………4分∴S 四边形ABCD =S △ABC +S △ADC =12AB •BC +12AC •CD =12×3×4+12×5×12=36.……7分25.(本题8分) 解:连接AD .∵∠C =90°,DE ⊥AB ,CD =ED , ∴点D 在∠BAC 的角平分线上.∴∠CAD =∠EAD .……………………………………………………………………2分 ∵E 是AB 中点,DE ⊥AB ,∴DB =DA .……………………………………………………………………4分 ∴∠DBA =∠DAB .……………………………………………………………………6分 ∵∠DBA +∠CAB =90°, ∴3∠DBA =90°. ∴∠DBA =30°.∴∠B =30°,∠BAC =60°.…………………………………………………………8分 26.(本题8分)(1)证明:∵∠ABC =∠ADC =90°,又∵M 为AC 的中点,∴MB =12AC ,MD =12AC .………………………………4分∴MB =MD .…………………………………………………………………………5分 (2)解:∵∠BAD =100°,∴∠BCD =360°-(∠ABC +∠ACB )-∠BAD =80°,……………………………6分 ∵MB =MC =MD ,∴∠MBC =∠MCB ,∠MCD =∠MDC .……………………………………………7分 ∴∠BMD =∠BMA +∠DMA =2∠BCA +2∠DCA =2∠ACB =2×80°=160°.……8分27.(本题12分)解:(1)如图,直线AD 即为所求.…………………………………………………3分(2)①如图,直线MN 即为所求.……………………………………………………6分②由①中的作图得:AP =PB .…………………………………………………7分 ∵∠C =90º,∴ △BCP 和△ACB 是直角三角形. 在Rt △ABC 中,∵AC 2+CB 2=AB 2,∴BC 2=AB 2-AC 2.………………………………………8分 在Rt △PCB 中,∵PC 2+CB 2=PB 2,∴ BC 2=PB 2-CP 2.………………………………………9分 ∴ AB 2-AC 2=PB 2-CP 2. 设CP =x ,则AC =5+x ,52-x 2=82-(5+x )2.……………………………………………………………11分 ∴ x =1.4.即CP 的长为1.4.…………………………12分.ACDBBCAPMN。

2018-2019学年苏科版八年级上数学期中复习试题含答案详解

2018-2019学年苏科版八年级上数学期中复习试题含答案详解

期中测试题【本试卷满分120分,测试时间120分钟】一、选择题(每小题3分,共36分) 1.下列说法中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形. 正确的有( )A.1个B.2个C.3个D.4个 2.已知等腰三角形的周长为15 cm ,其中一边长为7 cm ,则该等腰三角形的底边长为( ) A.3 cm 或5 cm B.1 cm 或7 cm C.3 cm D.5 cm 3.下列各组数中互为相反数的是( )A.2)2(2--与 B.382--与 C.2)2(2-与 D.22与-4.下列运算中,错误的是( ) ①1251144251=;②4)4(2±=-;③22222-=-=-;④2095141251161=+=+. A. 1个 B. 2个 C. 3个 D. 4个 5.如图,在△中,是角平分线,∠∠36°,则图中有等腰三角形( ) A.3个 B.2个 C.1个 D.0个6.如图(1)中,△和△都是等腰直角三角形,∠和∠都是直角,点在上,△绕着点经过逆时针旋转后能够与△重合,再将图(1)作为“基本图形”绕着点经过逆时针旋转得到图(2).两次旋转的角度分别为( )A.45°,90°B.90°,45°C.60°,30°D.30°,60° 7.如图,已知∠∠15°,∥,⊥,若,则( )A.4B.3C.2D.18.如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.12 9.如图,在□中,⊥于点,⊥于点.若,,且□的周长为40,则□的面积为( )A.24B.36C.40D.48 10. 已知平行四边形的周长为,两条对角线相交于点,且△的周长比△的周长大,则的长为( ) A.2ba -B.2ba + C.22ba + D.22ba + 11. 下列图形是轴对称图形而不是中心对称图形的是( )A.平行四边形B.菱形C.正方形D.等腰梯形12.顺次连接四边形四边中点所组成的四边形是菱形,则原四边形为( )A.平行四边形B.菱形C.对角线相等的四边形D.直角梯形 二、填空题(每小题3分,共30分)13.把下列各数填入相应的集合内:-7,0.32,31,46,0,8,21,3216,-2π. ①有理数集合: { };②无理数集合: { }; ③正实数集合: { };④实数集合: { }.14.若等腰梯形三边的长分别为3、4、11,则这个等腰梯形的周长为 . 15.在△中, cm , cm ,⊥于点,则_______. 16.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为________.17.如图所示,点为∠内一点,分别作出点关于、的对称点,,连接交于点,交于点,已知,则△的周长为_______.18.如图,在△中,,∠90°,是边的中点,是边上一动点,则的最小值是__________.19.已知5-a +3+b ,那么.20.若02733=+-x ,则_________.21.如图,点、分别是菱形的边、上的点,且∠∠60°,∠45°,则∠___________.22.把边长为3、5、7的两个全等三角形拼成四边形,一共能拼成____________种不同的四边形,其中有____________个平行四边形. 三、解答题(共54分)23.(6分)如图,四边形ABCD 是平行四边形,,BD ⊥AD ,求BC ,CD 及OB 的长.24.(6分)作一直线,将下图分成面积相等的两部分(保留作图痕迹).25.(6分)如图,在矩形中,是边上一点,的延长线交的延长线于点,⊥,垂足为,且.(1)求证:;(2)根据条件请在图中找出一对全等三角形,并证明你的结论.26.(6分)如图,在梯形中,∥,,⊥,延长至点,使.(1)求∠的度数.(2)试说明:△为等腰三角形.27.(7分)如图,四边形为一梯形纸片,∥,.翻折纸片,使点与点重合,折痕为.已知⊥,试说明:∥.28.(7分)如图,菱形中,点是的中点,且⊥,.求:(1)∠的度数;(2)对角线的长;(3)菱形的面积.29.(8分)已知矩形中,6,8,平分∠交于点,平分∠交于点.(1)说明四边形为平行四边形;(2)求四边形的面积.30.(8分)如图,点是等腰直角△的直角边上一点,的垂直平分线分别交、、于点、、,且.当时,试说明四边形是菱形.期中测试题参考答案一、选择题1.A 解析:①两个全等三角形合在一起,由于位置关系不确定,不能判定是否为轴对称图形,错误;②等腰三角形的对称轴是底边上的中线所在的直线,而非中线,故错误; ③等边三角形一边上的高所在的直线是这边的垂直平分线,故错误;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形,正确.故选A . 2.B 解析:(1)当边长7是腰时,底边长(cm ), 三角形的三边长为1、7、7,能组成三角形; (2)当边长7是底边时,腰长(cm ),三角形的三边长为4、4、7,能组成三角形.因此,三角形的底边长为1 cm 或7 cm . 3.A 解析:选项A 中;选项B 中;选项C 中;选项D中,故只有A 正确.4.D 解析:4个算式都是错误的.其中①12111213144169144251===;②4)4(2=-; ③22-没有意义; ④204125162516251161=⨯+=+.5.A 解析:∵ 是角平分线,∠36°,∴ ∠36°,∠72°,∴ (△是等腰三角形). ∵ ∠∠72°,∴(△是等腰三角形).∵ ∠72°,∴ (△是等腰三角形),故选A . 6.A 解析:∵ △和△都是等腰直角三角形,∴ ∠∠. 又∵ △绕着点沿逆时针旋转度后能够与△重合,∴ 旋转中心为点,旋转角度为45°,即45.若把图(1)作为“基本图形”绕着点沿逆时针旋转度可得到图(2),则454590,故选A .7.C 解析:如图,作⊥于点,∵ ∠,⊥,⊥,∴ .∵ ∥,∴ ∠2∠30°,∴ 在Rt △中,,故选C .8.C 解析:如图为圆柱的侧面展开图,∵ 为的中点,则就是蚂蚁爬行的最短路径. ∵,∴.∵ ,∴ ,即蚂蚁要爬行的最短距离是10 cm . 9.D 解析:设,则,根据“等面积法”得,解得,∴ 平行四边形的面积.10.B 解析:依据平行四边形的性质有,由△的周长比△的周长大,得,故2ba +. 11.D 解析:A 是中心对称图形,不是轴对称图形;B 、C 是轴对称图形,也是中心对称图形;D 是轴对称图形,不是中心对称图形,故选D . 12.C 解析:由于菱形的四边相等,且原四边形对角线为菱形边长的2倍,故原四边形为对角线相等的四边形. 二、填空题13. ①-7,0.32,31,46,0,3216;②8,21,-2π; ③0.32,31,46,8,21,3216;④-7,0.32,31,46,0,8,21,3216,-2π14.29 解析:当腰长为3时,等腰梯形不成立.同理,当腰长为4时,也不能构成等腰梯形.故只有当腰长为11时满足条件,此时等腰梯形的周长为29.15.15 cm 解析:如图,∵ 等腰三角形底边上的高、中线以及顶角平分线三线合一, ∴.∵,∴ .∵ ,∴ (cm ).16.108 解析:因为,所以△是直角三角形,且两条直角边长分别为9、12,则以两个这样的三角形拼成的长方形的面积为.17.15 解析:∵ 点关于的对称点是,关于的对称点是,∴ ,. ∴ △的周长为. 18. 解析:如图,过点作⊥于点,延长到点,使,连接,交于点,连接,此时的值最小.连接,由对称性可知∠45°,,∴ ∠90°.根据勾股定理可得.19.8 解析:由5-a +3+b ,得,所以.20.27 解析:因为,所以,所以. 21. 解析:连接,∵ 四边形是菱形,∠, ∴ ∠,,∠,∠21∠.∴ ∠,△为等边三角形,∴ ,∠,即∠.又∠,即∠, ∴ ∠.又,∠,∴△≌△(ASA),∴.又,则△是等边三角形,∴.又,则.22.6、3 解析:因为将三角形的三边分别重合一次,可拼得3个四边形,通过旋转后可得3个,所以共有6个.其中有3个是平行四边形.三、解答题23.分析:在平行四边形中,可由对边分别相等得出,的长,再在Rt △中,由勾股定理得出线段的长,进而可求解的长.解:∵四边形ABCD是平行四边形,∴,,.∵ BD⊥AD,∴,∴2125.24.解:将此图形分成两个矩形,分别作出两个矩形的对角线的交点,,则,分别为两矩形的对称中心,过点,的直线就是所求的直线,如图所示.25.(1)证明:在矩形ABCD中,,且,所以.(2)解:△ABF≌△DEA.证明:在矩形ABCD中,∵ BC∥AD,∴∠.∵ DE⊥AG,∴∠.∵∠,∴∠.又∵,∴△ABF≌△DEA.26.分析:(1)在三角形中,根据等边对等角,再利用角的等量关系可知,再由直角三角形中,两锐角互余即可求解.(2)有两条边相等的三角形是等腰三角形,故连接,根据等腰梯形的性质及线段间的关系及平行的性质,可得.解:(1)∵∥,∴.∵,∴.∴.∵,∴梯形为等腰梯形,∴.∴.在△中,∵,∴.∴.∴21.∴.(2)如图,连接,由等腰梯形可得.EF在四边形中,∵ ∥,,∴ 四边形是平行四边形.∴ ,∴ , 即△为等腰三角形.27.分析:过点作∥,交的延长线于点,连接,交于点,则. 证明四边形是平行四边形,△是等腰三角形,根据等腰三角形的性质,底边上的高是底边上的中线,得到是△的中位线, 可得∥,即∥.解:如图,过点作∥,交的延长线于点, 连接,交于点,则.∵ ∥,∴ 四边形是平行四边形,∴ ,.∵ ,∴ .∴ △是等腰三角形.又∵ ⊥,∴ .∴ 是△的中位线.∴ ∥.∴ ∥. 28.分析:(1)连接,可证△是等边三角形,进而得出;(2)可根据勾股定理先求得的一半,再求的长; (3)根据菱形的面积公式计算即可. 解:(1)如图,连接,∵ 点是的中点,且⊥,∴ (垂直平分线的性质).又∵ ,∴ △是等边三角形,∴ .∴ (菱形的对角线互相垂直平分,且每一条对角线平分一组对角). (2)设与相交于点,则2a.根据勾股定理可得a 23,∴ a 3.(3)菱形的面积=21××a 3=223a . 29.分析:(1)可证明∥,又∥,可证四边形为平行四边形.(2)先求△的面积,再求平行四边形的面积. 解:(1)∵ 四边形是矩形,∴ ∥,∥,∴ ∵ 平分,平分,∴ .∴ ∥. ∴ 四边形为平行四边形(两组对边分别平行的四边形是平行四边形). (2)如图,作⊥于点.∵ 平分∠,∴ (角平分线的性质).又,∴ ,.在Rt △中,设,则, 那么,解得.∴ 平行四边形的面积等于.30.解:如图,过点作⊥于点,∵,,∴△是等腰直角三角形,∵,,∴.又,,∴△≌△,∴.∵是的垂直平分线,∴,,∴,∴△≌△,∴,∴四边形是菱形.。

2018-2019学年第一学期期中考试八年级数学试卷参考答案

2018-2019学年第一学期期中考试八年级数学试卷参考答案
(3)连DE,易证△CDE是等腰直角三角形.
∴∠CBE= (180°-150°)=30°-
∴=30°.…………………………………………………………………………………………12分
20.由题知:点P在第四象限.
∴ 解得a<- ……………………………………………………………………………7分
21.(1)证明:∵∠ADE=∠2+∠BDE=∠1Βιβλιοθήκη ∠ACE∴∠BDE=∠ACE
又∵∠A=∠B,AE=BE
∴△ACE≌△BDE,∴AC=BD.………………………………………………………………………5分
2018--2019学年第一学期期中考试
八年级数学试题参考答案
一、选择题:1.D;2.C;3.A;4.B;5.D;6.A;7.C;8.D;9.B;10.B.
二、填空题:11.10;12.0;13.64º;14.3;15.(4,-4);16.7.
三、解答题:
17.略.…………………………………………………………………………………………………6分
18.由题知:∠ABD=2∠DBE=56º
∴∠BAC=180º-56º-70º=54º………………………………………………………………………6分
19.(1)略;………………………………………………………………………………………………4分
(2)A1(8,0),B1(6,-2),C1(5,2)…………………………………………………………………7分
(2)由(1)知:△ACE≌△BDE,∴CE=DE
∴∠C=∠CDE= (180º-40º)=70º
∴∠BDE=70º……………………………………………………………………………………………8分
22.(1)易得∠ADE=∠CDF=30º,

苏科版2018-2019学年八年级上册期中数学试题及答案

苏科版2018-2019学年八年级上册期中数学试题及答案

2018-2019学年八年级(上册)期中数学试卷一、选择题1.下面有4个汽车标志图案,其中是轴对称图形的有()A.1个B.2个C.3个D.4个2.下列各式中,正确的是()A.=﹣2 B.=9 C.=±3 D.±=±33.如图,∠CAB=∠DBA,再添加一个条件,不一定能判定△ABC≌△BAD的是()A.AC=BD B.∠1=∠2 C.AD=BC D.∠C=∠D4.下列命题中,正确的是()A.有理数和数轴上的点一一对应B.到角两边距离相等的点在这个角的平分线上C.全等的两个图形一定成轴对称D.实数不是有理数就是无理数5.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或106.在下列长度的各组线段中,能构成直角三角形的是()A.3,5,9 B.1,,2 C.4,6,8 D.,,7.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D 重合,折痕为MN,则线段BN的长为()A.B.C.4 D.58.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③ B.①③④ C.①②④ D.①②③④二、填空题9.的平方根是;的立方根是﹣;立方根等于本身的数为.10.若一个正数的两个不同的平方根为2m﹣6与m+3,则m为;这个正数为.数a、b满足,则=.11.(1)若等腰三角形有一外角为100°,则它的底角为度;(2)若直角三角形两边长为3和4,则斜边上的中线为.12.如图,△OAD≌△OBC,且∠O=72°,∠C=20°,则∠AEB=°.13.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=20°,则∠2的度数为.14.如图,OP平分∠AOB,PB⊥OB,OA=8cm,PB=3cm,则△POA的面积等于cm2.15.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是cm.16.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的F点,则BE的长为.17.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线,F是AD上的动点,E 是AC边上的动点,则CF+EF的最小值为.18.如图,在△ABC中,AD为∠CAB平分线,BE⊥AD于E,EF⊥AB于F,∠DBE=∠C=15°,AF=2,则BF=.19.如图,点P、Q是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A出发,沿线段AB运动,点Q从顶点B出发,沿线段BC运动,且它们的速度都为1cm/s,连接AQ、CP交于点M,在P、Q运动的过程中,假设运动时间为t秒,则当t=时,△PBQ为直角三角形.三、解答题。

2018-2019学年八年级数学上期中试题含答案(五四制)

2018-2019学年八年级数学上期中试题含答案(五四制)

2018-2019学年八年级数学上学期期中试题注意事项:1、答题前请考生务必在答题卡及试卷的规定位置将自己的姓名、考试号、考试科目等内容填、写(涂)准确。

2、本试题分第I卷和第II卷两个部分,第I卷为选择题共48分,第II卷为非选择题共72分,共120分,考试时间为120分钟。

3、第I卷每小题选出答案后,必须用2B铅笔把答题卡上,对应题目的答案标号(AB-CD)涂黑,如需改动,须先用橡皮擦干净再改涂其它答案,第II卷须用蓝黑钢笔或圆珠笔直接答在试卷上,考试时,不允许使用计算器。

4、考试结束后,由监考教师把第I卷和第II卷及答题卡一并收回。

第I卷(选择题)一、选择题。

本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(本题4分)把多项式m(n﹣2)﹣m2(2﹣n)分解因式得()A.(n﹣2)(m2+m)B.(n﹣2)(n﹣m)2C.m(n﹣2)(m+1)D.m(n﹣2)(1﹣m)2.(本题4分)分解因式x2﹣2x﹣3,结果是()A .(x ﹣1)(x+3)B .(x+1)(x ﹣3)C .(x ﹣1)(x ﹣3)D .(x+1)(x+3)3.(本题4分)一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重合,那么这个正多边形( )A .是轴对称图形,但不是中心对称图形B .是中心对称图形,但不是轴对称图形C .既是轴对称图形,又是中心对称图形D .既不是轴对称图形,也不是中心对称图形4.(本题4分)若分式方程xx a x --=+-2321有增根,则a 的值是( ) A .1 B .0 C .﹣1 D .﹣25.(本题4分)有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg .已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设第一块试验田每亩收获蔬菜xkg ,根据题意,可得方程( )A .x x 1500300900=+ B .3001500900-=x x C .3001500900+=x x D .x x 1500300900=- 6.(本题4分)如果把分式52x x y-中的x ,y 都扩大7倍,那么分式的值( ) A .扩大7倍 B .扩大14倍 C .扩大21倍 D .不变7.(本题4分)要使45x x --的值和424x x --的值互为倒数,则x 的值为( ). A. 0 B. -1 C. 12 D. 18.(本题4分)在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8 乙:7、9、6、9、9,则下列说法中错误的是( )A .甲、乙得分的平均数都是8B .甲得分的众数是8,乙得分的众数是9C .甲得分的中位数是9,乙得分的中位数是6D .甲得分的方差比乙得分的方差小9.(本题4分)下列从左到右的变形,哪一个是因式分解( )A .()()22b a b a b a -=-+B .()()()144422-+-+=-+-y y x y x y y xC .()()()22112-+=++-+b a b a b aD .⎪⎭⎫ ⎝⎛++=++x x x x x 45452 10.(本题4分)判断下列两个结论:①正三角形是轴对称图形;②正三角形是中心对称图形,结果( )A 、①②都正确B 、①②都错误C 、①正确,②错误D 、①错误,②正确11.(本题4分)下列图案中既是中心对称图形,又是轴对称图形的是( )A .B .C .D .12.(本题4分)如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转l20°得到△AB ′C ′,连接 BB ′,若AC ′∥BB ′,则∠CAB ′的度数为( )A. 45°B. 60°C. 70°D. 90°第II 卷(非选择题)二、填空题(本大题共5个小题,每小题4分,共20分. 把答案写在题中横线上)13.(本题4分)评定学生的学科期末成绩由期考分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定.已知小明的数学期考80分,作业90分,课堂参与85分,则他的数学期末成绩为 .14.(本题4分)如图,把一块等腰直角三角板△ABC ,∠C=90°,BC=5,AC=5.现将△ABC 沿CB 方向平移到△A ′B ′C ′的位置,若平移距离为x (0≤x ≤5),△ABC与△A ′B ′C ′的重叠部分的面积y ,则y= (用含x 的代数式表示y ).15.(本题4分)计算:b a a b a b---=___ _____; 16.(本题4分)当x ___ ___时,分式在实数范围内有意义.17.(本题4分)如图①,在△AOB 中,∠AOB =90º,OA =3,OB =4.将△AOB 沿x 轴依次以点A 、B 、O 为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为____________.三、解答题(本大题共7个小题,共52分. 解答应写出文字说明、证明过程或演算步骤)18.(本题6分)解分式方程: 2113222x x x x+=++.19.(本题6分)先化简,再求值:624)373(+-÷+--a a a a ,其中1-=a20.(本题6分)在“爱满扬州”慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成统计图.(1)这50名同学捐款的众数为 元,中位数为 元;(2)求这50名同学捐款的平均数;(3)该校共有600名学生参与捐款,请估计该校学生的捐款总数.21.(本题8分)如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2)(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(、)、B′(、)、C′( 、)(4)求△ABC的面积.22.(本题8分)某文具厂加工一种学生画图工具2500套,在加工了1000套后,采用了新技术,使每天的工作效率是原来的1.5倍,结果提前5天完成任务. 求该文具厂采用新技术前平均每天加工多少套这种学生画图工具.23.(本题9分)课堂上,老师给出了如下一道探究题:“如图,在边长为1的正方形组成的6×8的方格中,△ABC和△A1B1C1的顶点都在格点上,且△ABC≌△A1B1C1.请利用平移或旋转变换,设计一种方案,使得△ABC通过一次或两次变换后与△A1B1C1完全重合.”(1)小明的方案是:“先将△ABC向右平移两个单位得到△A2B2C2,再通过旋转得到△A1B1C1”.请根据小明的方案画出△A2B2C2,并描述旋转过程;(2)小红通过研究发现,△ABC只要通过一次旋转就能得到△A1B1C1.请在图中标出小红方案中的旋转中心P,并简要说明你是如何确定的.24.(本题9分)(10分)已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF.(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=求此时线段CF的长(直接写出结果).2017—2018学年上学期期中质量检测数学试题参考答案1.C【解析】把m(n﹣2)﹣m2(2﹣n)转化成m(n﹣2)+m2(n﹣2),提取公因式m(n﹣2)即可.解:m(n﹣2)﹣m2(2﹣n),=m(n﹣2)+m2(n﹣2),=m(n﹣2)(m+1),故选C.2.B【解析】根据十字相乘法分解因式即可.解:x2﹣2x﹣3=(x+1)(x﹣3).故选B.3.C.【解析】试题分析:∵一个正多边形绕着它的中心旋转45°后,能与原正多边形重合,360°÷45°=8,∴这个正多边形是正八边形.正八边形既是轴对称图形,又是中心对称图形.故选C.考点:①中心对称图形;②轴对称图形.4.A【解析】分式方程去分母转换为整式方程,由分式方程有增根,得到x﹣2=0,求出x的值,代入整式方程即可求出a的值.解:去分母得:1+3x﹣6=﹣a+x,根据题意得:x﹣2=0,即x=2,代入整式方程得:1+6﹣6=﹣a+2,解得:a=1.故选:A .5.C【解析】根据面积=田地的产量÷田地每亩产量,两块试验田的面积相同列出方程即可6.D .【解析】 试题解析:如果把分式52x x y -中的x ,y 都扩大7倍则原式变为: ()57755 727722x x x x y x y x y⨯⨯==-⨯⨯--. 故选D .考点:分式的基本性质.7.B【解析】试题解析:首先根据倒数的性质列出关于x 的分式方程,然后根据分式方程的解法进行求解,得出答案.根据题意可得: x 542x x 44x--=--,方程两边同时乘以(x-4)可得:x-5=2x-4,解得:x=-1,经检验:x=-1是原方程的解.8.C.【解析】试题分析:选项A ,由平均数的计算方法可得甲、乙得分的平均数都是8,此选项正确;选项B ,甲得分次数最多是8分,即众数为8,乙得分最多的是9分,即众数为9故此选项正确;选项C ,甲得分从小到大排列为:7、8、8、8、9,可得甲的中位数是8分;乙得分从小到大排列为:6、7、9、9、9,可得乙的中位数是9分;此选项错误;选项D ,512=甲S ×[(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=51×2=0.4,2乙S =51×[(7﹣8)2+(9﹣8)2+(6﹣8)2+(9﹣8)2+(9﹣8)2]=51×8=1.6,所以2甲S <2乙S ,故D 正确;故答案选C . 考点:算术平均数;中位数;众数;方差.9.C .【解析】试题解析:A .B 中最后结果不是乘积的形式,不属于因式分解;C 、()()()22112-+=++-+b a b a b a ,是运用完全平方公式进行的因式分解;D 、不是在整式范围内进行的分解,不属于因式分解.故选C .考点:因式分解的意义.【解析】本题考查了中心对称图形与轴对称图形的概念.要注意,轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后能与原图形重合.根据轴对称图形与中心对称图形的概念和正三角形的性质即可求解.解:正三角形是轴对称图形,不是中心对称图形.故选C.11.A【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.考点:中心对称图形;轴对称图形.12.D【解析】已知△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,根据旋转的性质可得∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质和三角形的内角和定理可得∠AB′B=12(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故选D.13.84.5分.【解析】试题分析:因为数学期末总评成绩由期考分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,所以利用加权平均数的公式即可求出答案.解:由题意知,小明的总评成绩=(80×3+90×2+85×5)÷(3+2+5)=84.5(分).故答案为:84.5分.考点:加权平均数.14.x2﹣5x+.试题分析:根据等腰三角形的性质得出BC ′=DC ′=5﹣x ,进而求出即可.解:由题意可得:CC ′=x ,BC ′=DC ′=5﹣x ,故y=(5﹣x )2=x 2﹣5x+. 故答案为:x 2﹣5x+.考点:平移的性质.15.-1【解析】根据同分母的分式相加减的法则可得原式=1b a a b -=-- . 16.1x ≠-【解析】∵分式在实数范围内有意义,∴x+1≠0,∴x ≠-1.故答案是:x ≠-1.17.(36,0)【解析】试题解析:∵在△AOB 中,∠AOB=90°,OA=3,OB=4,∴AB=5,∴图③、④的直角顶点坐标为(12,0),∵每旋转3次为一循环,∴图⑥、⑦的直角顶点坐标为(24,0),∴图⑨、⑩的直角顶点为(36,0).【点睛】本题主要考查了旋转的性质、坐标与图形的性质及勾股定理,找出图形旋转的规律“旋转3次为一循环”,是解答本题的关键. 18.x =15【解析】两边同乘以x (x +2)得x + x +2=32 -------------------------------------------2分 x =15-------------------------------------------------------------------------------3分检验x =15是原方程的根.19.解:原式=()2164(4)(4)2(3)=24=2832(3)34a a a a a a a a a a a --+-+÷⋅+++++-。

八年级2018-2019学年度上学期期中考试 数学试题(word版,含答案)

八年级2018-2019学年度上学期期中考试 数学试题(word版,含答案)

2018-2019学年度八年级上学期期中考试 数学试题第1卷(选择题 共42分)注意事项:1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后。

再选涂其它答案,不能答在试卷上。

3.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共14小题.每小题3分,共42分)1.若一个正多边形一个外角是60°,则该正多边形的内角和是 A .360° B . 540° C . 720° D .900° 2. 若点A (1,1)m n +-与点B (-3,2)关于y 轴对称,则m n +的值是A .-5B .-3C .3D . 13. 已知三角形三个内角∠A 、∠B 、∠C ,满足关系式∠B+∠C=2∠A ,则此三角形 A. 一定有一个内角为45° B. 一定有一个内角为60° C. 一定是直角三角形 D. 一定是钝角三角形4. 如图,已知∠ABC=∠DCB,添加以下条件不能判定∆ABC ≌∆DCB 的是A .∠A=∠DB .∠ACB=∠DBC C .AC=DBD .AB=DC第4题 第5题第6题5.观察图中尺规作图痕迹,下列说法错误的是A.OE是∠AOB的平分线 B.OC=ODC.点C、D到OE的距离不相等 D、∠AOE=∠BOE6.如图,在Rt∆ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S∆ABD=15,则CD的长为A.3 B.4 C.5 D.67. 将一副直角三角板按如图所示位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是A.45° B.60° C.75° D.85°第7题第8题第9题8.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC②△ACE≌△BDE③点E在∠O的平分线上其中正确的结论是A. 只有①B. 只有②C. 只有①②D. 有①②③9.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则等于∠ACE=A.15° B.30° C.45 D.60°10.将一个n边形变成n+1边形,内角和将A.减少180∘B.增加90∘C.增加180∘D.增加360∘11.如图,△ABC中,∠A=36∘,AB=AC,BD平分∠ABC,下列结论错误的是A. ∠C=2∠AB. BD=BCC. △ABD是等腰三角形D. 点D为线段AC的中点第11题第12题第13题12.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是A. AB=ADB. AC平分∠BCDC. AB=BDD. △BEC≌△DEC13.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F分别为垂足,则下列四个结论:①∠DEF=∠DFE;②AE=AF;③AD平分∠EDF;④AD垂直平分EF.其中正确结论有()A.1个B.2个C.3个D.4个14.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A. 30°B. 35°C. 45°D. 60°第14题第17题第18题二、填空题(本题共4小题,每小题5分,共20分)15.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.16.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是___17.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是______.18. 在△ABC 中,AB=AC,CD=CB,若∠ACD=42∘,则∠BAC=______∘.19. 含角30°的直角三角板与直线1l ,2l 的位置关系如图所示,已知12l l ,∠1=60°,以下三个结论中正确的是____(只填序号)。

苏科版2018-2019学年八年级上学期期中考试数学试卷(解析版)

苏科版2018-2019学年八年级上学期期中考试数学试卷(解析版)

2018-2019学年八年级上学期期中考试数学试卷一、选择题(每小题3分,共30分)1.以下图形中对称轴的数量小于3的是()A.B.C.D.2.下列各式中,正确的是()A.(﹣)2=9B.=﹣2C.±=±3D.=﹣33.在实数:﹣3.14,,π,4.3333,中,无理数的个数为()A.0个B.1个C.2个D.3个4.把0.356按四舍五入法精确到0.01的近似值是()A.0.3B.0.36C.0.35D.0.3505.如图,∠C=∠D=90°,AC=AD,那么△ABC与△ABD全等的理由是()A.HL B.SAS C.ASA D.AAS6.下列数组作为三角形的三条边,其中不能构成直角三角形的是()A.1、、4B.1.5、2、2.5C.、、5D.、、7.如图,在△ABC中,AC的垂直平分线分别交AB、AC于点D、E,EC=5,△ABC的周长为26,则△BDC的周长为()A.14B.16C.18D.198.如图,在2×3的正方形网络中,有一个以格点为顶点的三角形,此网格中所有与该三角形成轴对称且以格点为顶点的三角形共有()A.1个B.2个C.3个D.4个9.如图,在Rt△ABC中,∠C=90°,沿过点A的一条直线AE折叠Rt△ABC,使点C恰好落在AB边的中点D处,则∠B的度数是()A.25°B.30°C.40°D.45°10.如图,已知AB=2,BF=8,BC=AE=6,CE=CF=7,则△CDF与四边形ABDE的面积比值是()A.1:1B.2:1C.1:2D.2:3二、填空题(每小题2分,共16分)11.﹣27的立方根是.12.若一个直角三角形的两直角边长分别为12、5,则其斜边长为.13.已知a、b为两个连续的整数,且,则a+b=.14.如图,点D是BC上的一点,若△ABC≌△ADE,且∠B=65°,则∠EAC=°.15.如图,已知AD∥BC,DE、CE分别平分∠ADC、∠DCB,AB过点E,且AB⊥AD,若AB=8,则点E到CD的距离为.16.如图,已知△ABC中,AB=AC=12厘米,BC=8厘米,点D为AB的中点,如果点M在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点N在线段CA上由C点向A点运动,若使△BDM与△CMN全等,则点N的运动速度应为厘米/秒.17.如图,在△ABC和△ADC中,已知AB=8,∠ACB=105°,∠B=45°,且∠ACB=∠BAD,∠B=∠D,则线段CD的长是.18.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=5,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是.三、解答题(共74分)19.(10分)计算:(1);(2)(2018﹣π)0﹣()﹣1++|﹣2|20.(10分)求下列各式中x的值:(1)9x2﹣4=0;(2)(3x﹣1)3+64=0.21.(6分)已知某正数的平方根是2a﹣7和a+4,b﹣12的立方根为﹣2.(1)求a、b的值;(2)求a+b的平方根.22.(6分)如图,点E在线段AC上,BC∥DE,AC=DE,CB=CE,求证:∠A=∠D.23.(6分)如图,在长度为1个单位的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线MN成轴对称的△A1B1C1;(不写画法)(2)请你判断△ABC的形状,并求出AC边上的高.24.(8分)在等腰△ABC中,已知AB=AC,BD⊥AC于D.(1)若∠A=48°,求∠CBD的度数;(2)若BC=15,BD=12,求AB的长.25.(8分)已知两个等腰直角△ABC和△CDE,它们的两个直角顶点B、D在直线MN上,过点A、E分别作AG⊥MN,EF⊥MN,垂足分别为G、F.(1)如图1,当△ABC和△CDE在△BCD的外部时,请你探索线段EF、DB、AG之间的数量关系,其数量关系为.(2)如图2,将图1中的△ABC沿BC翻折,其他条件不变,那么(1)中的结论是否仍然成立?若成立,请你给出证明,若不成立,请探索它们的数量关系,并说明理由.26.(10分)画图计算:(1)已知△ABC,请用尺规在图1中△ABC内确定一个点P,使得点P到AB和BC的距离相等,且满足P到点B和点C的距离相等(不写作法,保留作图痕迹).(2)如图2,如果点P是(1)中求作的点,点E、F分别在边AB、BC上,且PE=PF.①若∠ABC=60°,求∠EPF的度数;②若BE=2,BF=8,EP=5,求BP的长.(3)如图3,如果点P是△ABC内一点,且点P到点B的距离是7,若∠ABC=45°,请分别在AB、BC上求作两个点M、N,使得△PMN的周长最小(不写作法,保留作图痕迹),则△PMN的最小值为27.(10分)【定义】数学课上,陈老师对我们说,如果1条线段将一个三角形分成2个等腰三角形,那么这1条线段就称为这个三角形的“好线”,如果2条线段将一个三角形分成3个等腰三角形,那么这2条线段就称为这个三角形的“好好线”.【理解】如图①,在△ABC中,∠A=36°,∠C=72°,请你在这个三角形中画出它的“好线”,并标出等腰三角形顶角的度数.如图②,已知△ABC是一个顶角为45°的等腰三角形,请你在这个三角形中画出它的“好好线”,并标出所分得的等腰三角形底角的度数.【应用】(1)在△ABC中,已知一个内角为42°,若它只有“好线”,请你写出这个三角形最大内角的所有可能值;(2)在△ABC中,∠C=27°,AD和DE分别是△ABC的“好好线”,点D在BC边上,点E在AB边上,且AD=DC,BE=DE,请你根据题意画出示意图,并求∠B的度数.参考答案与试题解析一、选择题(每小题3分,共30分)1.以下图形中对称轴的数量小于3的是()A.B.C.D.【分析】根据对称轴的概念求解.【解答】解:A、有4条对称轴;B、有6条对称轴;C、有4条对称轴;D、有2条对称轴.故选:D.【点评】本题考查了轴对称图形,解答本题的关键是掌握对称轴的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.2.下列各式中,正确的是()A.(﹣)2=9B.=﹣2C.±=±3D.=﹣3【分析】根据二次根式的性质:和,以及立方根的概念,即可得到结论.【解答】解:A.(﹣)2=3,故本选项错误;B.==2,故本选项错误;C.±=±3,故本选项正确;D.=﹣3,故本选项错误;故选:C.【点评】本题主要考查了立方根,平方根以及算术平方根的概念,解题时注意:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.3.在实数:﹣3.14,,π,4.3333,中,无理数的个数为()A.0个B.1个C.2个D.3个【分析】由于无理数就是无限不循环小数,利用无理数的定义即可判定选择项.【解答】解:在所列实数中,无理数只有π这1个数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.4.把0.356按四舍五入法精确到0.01的近似值是()A.0.3B.0.36C.0.35D.0.350【分析】根据近似数的精确度求解.【解答】解:0.356≈0.36(精确到0.01).故选:B.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.5.如图,∠C=∠D=90°,AC=AD,那么△ABC与△ABD全等的理由是()A.HL B.SAS C.ASA D.AAS【分析】已知∠C=∠D=90°,AC=AD,且公共边AB=AB,故△ABC与△ABD全等【解答】解:在Rt△ABC与Rt△ABD中,∴Rt△ABC≌Rt△ABD(HL)故选:A.【点评】本题考查全等三角形的判定,解题的关键是注意AB是两个三角形的公共边,本题属于基础题型.6.下列数组作为三角形的三条边,其中不能构成直角三角形的是()A.1、、4B.1.5、2、2.5C.、、5D.、、【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【解答】解:A、12+()2=4,能构成直角三角形,故选项错误;B、(1.5)2+22=52,能构成直角三角形,故选项错误;C、1.52+22=2.52,能构成直角三角形,故选项错误;D、()2+()2≠()2,不能构成直角三角形,故选项正确;故选:D.【点评】本题考查了勾股定理的逆定理,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.7.如图,在△ABC中,AC的垂直平分线分别交AB、AC于点D、E,EC=5,△ABC的周长为26,则△BDC的周长为()A.14B.16C.18D.19【分析】根据线段的垂直平分线的性质得到DA=DC,AC=2EC=10,根据三角形的周长公式计算即可.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,AC=2EC=10,∵△ABC的周长为26,∴AB+AC+BC=26,∴AB+BC=16,∴△BDC的周长=BD+CD+BC=BD+AD+BC=AB+BC=16,故选:B.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.8.如图,在2×3的正方形网络中,有一个以格点为顶点的三角形,此网格中所有与该三角形成轴对称且以格点为顶点的三角形共有()A.1个B.2个C.3个D.4个【分析】因为对称图形是全等的,所以面积相等,据此连接矩形的对角线,观察得到的三角形即可解答.【解答】解:如图,与△ABE成轴对称的格点三角形有△ABF、△AEF、△EBC共3个,故选:C.【点评】此题考查利用轴对称设计图案,要做到全部找到不漏掉还是不容易的,解题的关键是仔细观察.9.如图,在Rt△ABC中,∠C=90°,沿过点A的一条直线AE折叠Rt△ABC,使点C恰好落在AB边的中点D处,则∠B的度数是()A.25°B.30°C.40°D.45°【分析】由折叠的性质可得出:∠CAE=∠DAE,∠ADE=∠C=90°,结合点D为线段AB的中点,利用等腰三角形的三线合一可得出AE=BE,进而可得出∠B=∠DAE,再利用三角形内角和定理,即可求出∠B的度数.【解答】解:由折叠,可知:∠CAE=∠DAE,∠ADE=∠C=90°,∴ED⊥AB.∵点D为线段AB的中点,ED⊥AB,∴AE=BE,∴∠B=∠DAE.又∵∠CAE+∠DAE+∠B+∠C=180°,∴3∠B=9°,∴∠B=30°.故选:B.【点评】本题考查了翻折变换、等腰三角形的性质以及三角形内角和定义,根据折叠的性质及等腰三角形的性质找出∠B=∠DAE=∠CAE是解题的关键.10.如图,已知AB=2,BF=8,BC=AE=6,CE=CF=7,则△CDF与四边形ABDE的面积比值是()A.1:1B.2:1C.1:2D.2:3【分析】由题意得AC=CB+BA=8,可得AC=BF,利用SSS可证得△AEC≌△BCF,从而可得S△AEC=S△BCF,也就得出S△CDF+S△CDB=S四边形ABDE+S△CDB,这样可求出四边形ABDE与△CDF面积的比值.【解答】解:由题意得AC=CB+BA=8,∴AC=BF,在△AEC和△BCF中,∴△AEC≌△BCF(SSS),∴S△AEC =S△BCF,故可得S△CDF +S△CDB=S ABDE+S△CDB⇒S四边形ABDE=S△CDF,∴四边形ABDE与△CDF面积的比值是1:1.故选:A.【点评】本题考查了面积及等积变换的知识,难度一般,根据题意证明△AEC≌△BCF是解答本题的关键,另外要注意等量代换在解答数学题目中的运用.二、填空题(每小题2分,共16分)11.﹣27的立方根是﹣3.【分析】根据立方根的定义求解即可.【解答】解:∵(﹣3)3=﹣27,∴=﹣3故答案为:﹣3.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.12.若一个直角三角形的两直角边长分别为12、5,则其斜边长为13.【分析】由两个直角边的长度,利用勾股定理可求出斜边的长度,此题得解.【解答】解:=13.故答案为:13.【点评】本题考查了勾股定理,牢记“在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方”是解题的关键.13.已知a、b为两个连续的整数,且,则a+b=11.【分析】先求出,得出a=5,b=6,代入求出即可.【解答】解:∵∴∵a<b,且a、b为两个连续的整数∴a=5,b=6∴a+b=5+6=11,故答案为11.【点评】本题考查了估计无理数的大小的应用,解此题的关键是确定的范围,题目比较好,但是一道比较容易出错的题目.14.如图,点D是BC上的一点,若△ABC≌△ADE,且∠B=65°,则∠EAC=50°.【分析】根据全等三角形的性质得到AB=AD,∠EAD=∠CAB,根据等腰三角形的性质、三角形内角和定理计算,得到答案.【解答】解:∵△ABC≌△ADE,∴AB=AD,∠EAD=∠CAB,∴∠ADB=∠B=65°,∠EAD﹣∠CAD=∠CAB﹣∠CAD,∴∠EAC=∠BAD=50°,故答案为:50.【点评】本题考查的是全等三角形的性质,等腰三角形的性质,掌握全等三角形的对应角相等、对应边相等是解题的关键.15.如图,已知AD∥BC,DE、CE分别平分∠ADC、∠DCB,AB过点E,且AB⊥AD,若AB=8,则点E到CD的距离为4.【分析】过点E作EF⊥CD于F,根据两直线平行,同旁内角互补可得∠B=90°,然后根据角平分线上的点到角的两边距离相等可得AE=EF=BE,从而得解.【解答】解:如图,过点E作EF⊥CD于F,∵AD∥BC,AB⊥AD,∴∠A=∠B=180°﹣90°=90°,∵CE平分∠BCD,DE平分∠ADC,∴AE=EF=BE,∵AB=8,∴EF=×8=4,即点E到CD的距离为4.故答案为:4.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作出辅助线构造出角平分线的性质的应用条件是解题的关键.16.如图,已知△ABC中,AB=AC=12厘米,BC=8厘米,点D为AB的中点,如果点M在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点N在线段CA上由C点向A点运动,若使△BDM与△CMN全等,则点N的运动速度应为2或3厘米/秒.【分析】分两种情形讨论①当BD=CM=4,BM=CN时,△DBM≌△MCN,②当BD=CN,BM =CM时,△DBM≌△NCM,再根据路程、时间、速度之间的关系求出点N的速度.【解答】解:∵AB=AC,∴∠B=∠C,①当BD=CM=6厘米,BM=CN时,△DBM≌△MCN,∴BM=CN=2厘米,t==1,∴点N运动的速度为2厘米/秒.②当BD=CN,BM=CM时,△DBM≌△NCM,∴BM=CM=4厘米,t==2,CN=BD=6厘米,∴点N的速度为:=3厘米/秒.故点N的速度为2或3厘米/秒.故答案为:2或3.【点评】本题考查等腰三角形的性质、全等三角形的判定和性质,用分类讨论是正确解题的关键.17.如图,在△ABC和△ADC中,已知AB=8,∠ACB=105°,∠B=45°,且∠ACB=∠BAD,∠B=∠D,则线段CD的长是8.【分析】根据题意和图形,利用勾股定理,锐角三角函数可以求得CD的长,本题得以解决.【解答】解:作CE⊥AB于点E,作AF⊥CD于点F,则∠CED=∠CEB=90°,∠AFD=∠AFC=90°,∵在△ABC和△ADC中,AB=8,∠ACB=105°,∠B=45°,且∠ACB=∠BAD,∠B=∠D,∴∠BCE=45°,∠D=45°,∠BAD=105°,∴∠ECA=60°,∴∠CAE=30°,∴∠DAC=75°,∴∠DCA=60°,设BE=a,则CE=a,AE=8﹣a,∵∠CAE=30°,∠CEA=90°,∴=tan30°,解得,a=4(﹣1),∴AC=2a=8(﹣1),∵∠AFC=90°,∠ACF=60°,∴CF=4(﹣1),AF=12﹣4,∵∠AFD=90°,∠D=45°,∴DF=AF=12﹣4,∴CD=DF+CF=12﹣4+4(﹣1)=8,故答案为:8.【点评】本题考查勾股定理、含30°角的直角三角形、等腰直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=5,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是.【分析】如图,取AB的中点E,连接CE,PE.由△QBC≌△PBE(SAS),推出QC=PE,推出当EP⊥AC时,QC的值最小;【解答】解:如图,取AB的中点E,连接CE,PE.∵∠ACB=90°,∠A=30°,∴∠CBE=60°,∵BE=AE,∴CE=BE=AE,∴△BCE是等边三角形,∴BC=BE,∵∠PBQ=∠CBE=60°,∴∠QBC=∠PBE,∵QB=PB,CB=EB,∴△QBC≌△PBE(SAS),∴QC=PE,∴当EP⊥AC时,QC的值最小,在Rt△AEP中,∵AE=,∠A=30°,∴PE=AE=,∴CQ的最小值为.【点评】本题考查全等三角形的判定和性质,等边三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.三、解答题(共74分)19.(10分)计算:(1);(2)(2018﹣π)0﹣()﹣1++|﹣2|【分析】(1)直接利用二次根式以及立方根的性质分别化简得出答案;(2)利用负指数幂的性质以及零指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:(1)原式=4+2﹣1=5;(2)原式=1﹣2+3+2﹣=4﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(10分)求下列各式中x的值:(1)9x2﹣4=0;(2)(3x﹣1)3+64=0.【分析】(1)先移项,然后开方即可得出x的值.(2)先移项,然后开立方可得出3x﹣1的值,进而可得出x的值.【解答】解:(1)原方程可化为:x2=,∴x=±;(2)原方程可化为:(3x﹣1)3=﹣64,∴3x﹣1=﹣4,解得:x=﹣1.【点评】本题考查了平方根和立方根的知识点.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.21.(6分)已知某正数的平方根是2a﹣7和a+4,b﹣12的立方根为﹣2.(1)求a、b的值;(2)求a+b的平方根.【分析】利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a的值,根据立方根的定义求出b的值,根据算术平方根的定义求出a+b的算术平方根.【解答】解:(1)由题意得,2a﹣7+a+4=0,解得:a=1,b﹣12=﹣8,解得:b=4;(2)a+b=5,a+b的平方根为.【点评】本题考查的是平方根、立方根和算术平方根的定义,正数的平方根有两个,且互为相反数;正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.22.(6分)如图,点E在线段AC上,BC∥DE,AC=DE,CB=CE,求证:∠A=∠D.【分析】根据平行线的性质和全等三角形的判定可以判断△ABC≌△DCE,然后根据全等三角形的性质即可证明结论成立.【解答】证明:∵BC∥DE,∴∠BCA=∠CED,在△ABC和△DCE中,,∴△ABC≌△DCE(SAS),∴∠A=∠D.【点评】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,利用全等三角形的判定和性质解答.23.(6分)如图,在长度为1个单位的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线MN成轴对称的△A1B1C1;(不写画法)(2)请你判断△ABC的形状,并求出AC边上的高.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)利用勾股定理以及勾股定理的逆定理判断即可;【解答】解:(1)△A1B1C1如图所示.(2)∵AB ==,BC ==,AC ==,∴AB 2+BC 2=AC 2,AB =BC ,∴△ABC 是等腰直角三角形.设AC 边上的高为h ,则有: =•h ,∴h =.∴AC 边上的高为. 【点评】本题考查作图﹣轴对称变换,勾股定理,勾股定理的逆定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(8分)在等腰△ABC 中,已知AB =AC ,BD ⊥AC 于D .(1)若∠A =48°,求∠CBD 的度数;(2)若BC =15,BD =12,求AB 的长.【分析】(1)根据等腰三角形的性质和直角三角形的两个锐角互余,可以求得∠CBD 的度数; (2)根据题目中的数据和勾股定理,可以求得AB 的长.【解答】解:(1)∵在等腰△ABC 中,AB =AC ,BD ⊥AC ,∴∠ABC =∠C ,∠ADB =90°,∵∠A =48°,∴∠ABC =∠C =66°,∠ABD =42°,∴∠CBD =24°;(2)∵BD ⊥AC ,∴∠BDC =90°,∵BC =15,BD =12,∴CD =9,设AB =x ,则AD =x ﹣9,∵∠ADB =90°,BD =12,∴122+(x﹣9)2=x2,解得,x=,即AB=.【点评】本题考查勾股定理,等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.(8分)已知两个等腰直角△ABC和△CDE,它们的两个直角顶点B、D在直线MN上,过点A、E分别作AG⊥MN,EF⊥MN,垂足分别为G、F.(1)如图1,当△ABC和△CDE在△BCD的外部时,请你探索线段EF、DB、AG之间的数量关系,其数量关系为BD=EF+AG..(2)如图2,将图1中的△ABC沿BC翻折,其他条件不变,那么(1)中的结论是否仍然成立?若成立,请你给出证明,若不成立,请探索它们的数量关系,并说明理由.【分析】(1)结论:BD=EF+AG.只要证明△FDE≌△HCD(AAS),可得EF=DH,同理可证:△BHC≌△AGB,可得AG=BH,即可解决问题;(2)结论不变,证明方法类似;【解答】解:(1)结论:BD=EF+AG.理由:如图1中,作CH⊥MN于H.∵EF⊥MN,AG⊥MN,∴∠EFD=∠EDC=∠CHD=90°,∴∠EDF+∠CDH=90°,∠CDH+∠DCH=90°,∴∠EDF=∠DCH,∵DE=DC,∴△FDE≌△HCD(AAS),∴EF=DH,同理可证:△BHC≌△AGB,∴AG=BH,∴BD=EF+AG.故答案为BD=EF+AG.(2)结论不变.理由:如图2中,作CH⊥MN于H.∵EF⊥MN,AG⊥MN,∴∠EFD=∠EDC=∠CHD=90°,∴∠EDF+∠CDH=90°,∠CDH+∠DCH=90°,∴∠EDF=∠DCH,∵DE=DC,∴△FDE≌△HCD(AAS),∴EF=DH,同理可证:△BHC≌△AGB,∴AG=BH,∴BD=EF+AG.故答案为BD=EF+AG.【点评】本题考查翻折变换、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.26.(10分)画图计算:(1)已知△ABC,请用尺规在图1中△ABC内确定一个点P,使得点P到AB和BC的距离相等,且满足P到点B和点C的距离相等(不写作法,保留作图痕迹).(2)如图2,如果点P是(1)中求作的点,点E、F分别在边AB、BC上,且PE=PF.①若∠ABC=60°,求∠EPF的度数;②若BE=2,BF=8,EP=5,求BP的长.(3)如图3,如果点P是△ABC内一点,且点P到点B的距离是7,若∠ABC=45°,请分别在AB、BC上求作两个点M、N,使得△PMN的周长最小(不写作法,保留作图痕迹),则△PMN的最小值为7【分析】(1)作∠ABC的平分线BM,线段BC的垂直平分线EF,直线EF交射线BM于点P,点P即为所求;(2)①由Rt△PME≌Rt△PNF(HL),推出∠EPM=∠FPN,推出∠EPF=∠MPN,即可解决问题;②由Rt△PMB≌Rt△PNB(HL),推出BM=BN,由Rt△PME≌Rt△PNF(HL),推出EM=FN,推出BE+BF=BM﹣EM+BN+NF=2BN=10,推出BN=NM=5,再利用勾股定理即可解决问题;(3)分别作点P关于边AB、BC的对称点E、F,连接EF,分别与边AB、BC交于点M、N,连接PM、PN.则线段EF的长度即为△PMN的周长的最小值;【解答】解:(1)如图,点P即为所求;(2)①连接BP,作PM⊥AB于M,PN⊥BC于N.∵BP平分∠ABC,PM⊥AB,PN⊥BC,∴PM=PN,∵PE=PF,∠PME=∠PNF=90°,∴Rt△PME≌Rt△PNF(HL),∴∠EPM=∠FPN,∴∠EPF=∠MPN,∵∠MPN=360°﹣90°﹣90°﹣60°=120°,∴∠EPF=120°.②∵PB=PB,PM=PN,∠PMB=∠PFB=90°∴Rt△PMB≌Rt△PNB(HL),∴BM=BN,∵Rt△PME≌Rt△PNF(HL),∴EM=FN,∴BE+BF=BM﹣EM+BN+NF=2BN=10,∴BN=NM=5,∵BE=2,PE=5,∴EM=3,PM==4,∴BP==.(3)分别作点P关于边AB、BC的对称点E、F,连接EF,分别与边AB、BC交于点M、N,连接PM、PN.则线段EF的长度即为△PMN的周长的最小值.∵点E与点P关于AB对称,点F与点P关于BC对称,∴∠EBA=∠PBA,∠FBC=∠PBC,BE=BF=BP=7.∴EF=BE=7∴△PMN周长的最小值为7.故答案为7.【点评】本题考查作图﹣复杂作图,角平分线的性质,线段的垂直平分线的性质,轴对称最短问题等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用轴对称解决最短问题,属于中考常考题型.27.(10分)【定义】数学课上,陈老师对我们说,如果1条线段将一个三角形分成2个等腰三角形,那么这1条线段就称为这个三角形的“好线”,如果2条线段将一个三角形分成3个等腰三角形,那么这2条线段就称为这个三角形的“好好线”.【理解】如图①,在△ABC中,∠A=36°,∠C=72°,请你在这个三角形中画出它的“好线”,并标出等腰三角形顶角的度数.如图②,已知△ABC是一个顶角为45°的等腰三角形,请你在这个三角形中画出它的“好好线”,并标出所分得的等腰三角形底角的度数.【应用】(1)在△ABC中,已知一个内角为42°,若它只有“好线”,请你写出这个三角形最大内角的所有可能值84°或103.5°或124°或117°或126°;(2)在△ABC中,∠C=27°,AD和DE分别是△ABC的“好好线”,点D在BC边上,点E在AB边上,且AD=DC,BE=DE,请你根据题意画出示意图,并求∠B的度数.【分析】【定义】如图①,如图②所示,根据题意画出图形即可;【应用】(1)①如图③当∠B=42°,AD为“好线”,②如图④当∠B=42°,AD为“好线”,③如图⑤当∠ABC=42°时,BD为“好线”,④如图⑥,当∠B=42°时,CD为“好线”,⑤如图⑦,当∠B=42°时,CD为“好线”,根据等腰三角形的性质即可得到结论;(2)设∠B=x°,①当AD=DE时,如图1(a),②当AD=AE时,如图1(b),③当EA=DE 时,根据等腰三角形的性质列方程即可得到结论.【解答】解:【定义】如图①,如图②所示,【应用】(1)①如图③当∠B=42°,AD为“好线”,则AD=AD=BD,故这个三角形最大内角是∠C=84°;②如图④当∠B=42°,AD为“好线”,则AB=AD,AD=CD,这个三角形最大内角是∠BAC=103.5°;③如图⑤当∠ABC=42°时,BD为“好线”,则AD=BD,CD=BC,故这个三角形最大内角是∠C=124°,④如图⑥,当∠B=42°时,CD为“好线”,则AD=CD=BC,故这个三角形最大内角是∠ACB=117°,⑤如图⑦,当∠B=42°时,CD为“好线”,则AD=AC,CD=BD,故这个三角形最大内角是∠ACB=126°,综上所述,这个三角形最大内角的所有可能值是84°或103.5°或124°或117°或126°,故答案为:84°或103.5°或124°或117°或126°;(2)设∠B=x°,①当AD=DE时,如图1(a),∵AD=CD,∴∠C=∠CAD=27°,∵DE=EB,∴∠B=∠EDB=x°∴∠AED=∠DAE=2x°,∴27×2+2x+x=180,∴x=42,∴∠B=42°;②当AD=AE时,如图1(b),∵AD=CD,∴∠C=∠CAD=27°,∵DE=EB,∴∠B=∠EDB=x°∴∠AED=∠ADE=2x°,∴2x+x=27+27,∴x=18,∴∠B=18°.③当EA=DE时,∵90﹣x+27+27+x=180,∴x不存在,应舍去.综合上述:满足条件的x=42°或18°.【点评】本题考查设计与作图、等腰三角形的定义、正确的理解题意是解决问题的关键,并注意第二问的分类讨论的思想,不要丢解.。

2018-2019学年八年级上期中考试数学试题含答案 (2)

2018-2019学年八年级上期中考试数学试题含答案 (2)

2018—2019学年度上期期中教学质量检测八年级数学三题号一二总分1617181920212223得分一、单项选择题(每小题3分,共30分)1.下列图形是轴对称图形的有()(A)2个(B)3个(C)4个(D)5个2.以下列各组线段为边,能组成三角形的是()(A)4cm,5cm,6cm (C)2cm,3cm,5cm (B)3cm,3cm,6cm (D)5cm,8cm,2cm3.如图,将一副三角板按如图所示摆放,图中∠α的度数是()(A)75°(B)90°(C)105°(D)120°4.一个多边形的边数每增加一条,这个多边形的()(A)内角和增加360°(B)外角和增加360°(C )对角线增加一条(D )内角和增加 180°5.若一个三角形的两边长分别为 3 和 7,则第三边的长可能是( )(A )6(B )3 (C )2 (D )116.若从多边形的一个顶点出发,最多可以引 10 条对角线,则它是( )(A )十三边形(B )十二边形 (C )十一边形 (D )十边形7.如图 AB=CD ,AD=BC ,过 O 点的直线交 AD 于 E ,交 BC 于 F ,图中全等三角形有( )(A )4 对(B )5 对 (C )6 对 (D )7 对第 3 题图第 7 题图8.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标 1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第______块去,这利用了三角形全等中的______判定方法()(A )2;SAS(B )4;ASA(C )2;AAS(D )4;SAS 9.等腰三角形一腰上的高与另一腰的夹角为 30°,则顶角度数为( )(A )30°(B )60° (C )90° (D )120°或 60°10.如图,∠BAC 与∠CBE 的平分线相交于点 P ,BE=BC ,PB 与 CE 交于点 H ,PG∥AD交 BC 于 F ,交 AB 于 G ,下列结论:①GA=GP ;②S △PAC :S △PAB =AC :AB ;③BP 垂直平分 CE ;④FP=FC;其中正确的判断有( )(A )只有①②(B )只有③④ (C )只有①③④(D )①②③④第 8 题图第 10 题图二、填空题(每小题 3 分,共 15 分)11.将直角三角形(∠ACB 为直角)沿线段 CD 折叠使 B 落在 B′处,若∠ACB′=50°,则∠ACD 度数为__________。

2018-2019(含答案)八年级(上)期中数学试卷 (3)

2018-2019(含答案)八年级(上)期中数学试卷 (3)

2018-2019(含答案)八年级(上)期中数学试卷 (3).................................................................................................................................................................2018.10.22一、选择题(本大题共16个小题,共42分)1.在,,,,,,分式的个数是()A.个B.个C.、个D.个2.的平方根为()A.和B.和C. D.3.已知,,,则A. B. C. D.4.若分式无意义,那么的取值为()A. B. C. D.5.分式约分的结果是()A. B. C. D.6.的相反数为()A. B. C. D.7.如图,下列条件中,不能证明的是()A.,B.,C.,D.,8.分式,,的最简公分母是()A. B. C. D.9.如图,在方格纸中,以为一边作,使之与全等,从,,,四个点中找出符合条件的点,则点的个数为()A. B. C. D.10.计算:A. B. C. D.11.若有平方根,则的取值范围是()A. B. C. D.12.若,,则分式的值是()A. B. C. D.13.的整数部分是()A. B. C. D.14.如图,小敏做了一个角平分仪,其中,.将仪器上的点与的顶点重合,调整和,使它们分别落在角的两边上,过点,画一条射线,就是的平分线.此角平分仪的画图原理是:根据仪器结构,可得,这样就有.则说明这两个三角形全等的依据是()A. B. C. D.15.一个水塘里放养了鲤鱼和草鱼,草鱼的数量占总数的,现又放进了条鲤鱼,这时草鱼的数量占总数的,则这个水塘里草鱼的数量是()A. B. C. D.16.下列命题中:①已知两数,,如果,那么;②同旁内角互补,两直线平行;③全等三角形的对应角相等,对应边相等;④对顶角相等;其逆命题是真命题的是()A.①②B.②③C.③④D.①④二、填空题(本大题有3个小题,共10分)17.的平方根是________.18.若分式的值为,则的值为________.19.若关于的分式方程有增根,则的值是________;若分式方程无解,则的值为________.三、解答题(本大题共7个小题,共68分)20.把下列各数分别填入相应的大括号中:,, . ,,,,,,, . ,,整数: ...分数: ...负实数: ...无理数: ....21.如图,点,,,在同一条直线上,,,.与相等吗?说说你的理由;与平行吗?说说你的理由.22.化简并求值:,其中,.22.解分式方程:.23.如图,已知线段及,只用直尺和圆规,求作,使,,(保留作图痕迹,不写作法)24.某公司接到一份合同,要生产部新型手机,有,两个车间接受此任务,车间每天的综合费用为万元,车间每天加工的数量为车间的 . 倍,若,两车间共同完成一半,剩余的由车间单独完成,则共需要天完成.求,两车间每天分别能加工多少部?25.如图,在中,,,过点的直线交于点,过点作,垂足为,过点作,垂足为,请你在图中找出一对全等三角形,并说明理由.26.阅读:例:若,求,因为,所以.探究:填空:①若,则________;②若,则________;③若,则________;规定:若,用符号“ ”表示,即填空:① ________;② ________;③ ________;应用:________;________;________;举例说明,,之间的关系.答案1. 【答案】B【解析】根据分式的定义,可得答案.【解答】解:,,是分式,故选:.2. 【答案】A【解析】根据平方根的定义即可得.【解答】解:的平方根为,故选:.3. 【答案】D【解析】根据全等三角形的性质即可求出的度数.【解答】解:∵ ,∴ ,∵∴故选4. 【答案】C【解析】根据分式无意义,分母等于列方程求解即可.【解答】解:由题意得,,解得.故选.5. 【答案】B【解析】先对分子、分母找出公约式,再约分即可.【解答】解:,故选.6. 【答案】D【解析】根据一个数的相反数就是在这个数前面添上“-”号,求解即可.【解答】解:的相反数为,故选:.7. 【答案】C【解析】全等三角形的判定定理有,,,,根据定理逐个判断即可.【解答】解:、,,,符合全等三角形的判定定理,能推出,故本选项不符合题意;、,,,符合全等三角形的判定定理,能推出,故本选项不符合题意;、,,不能推出,不符合全等三角形的判定定理,故本选项符合题意;、∵ ,∴ ,∵ ,∴根据三角形内角和定理得出,,,,符合全等三角形的判定定理,能推出,故本选项不符合题意.故选.8. 【答案】A【解析】确定最简公分母的方法是:取各分母系数的最小公倍数;凡单独出现的字母连同它的指数作为最简公分母的一个因式;同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,,的最简公分母是;故选9. 【答案】B【解析】根据全等三角形的判定定理进行分析即可.【解答】解:符合条件的点的个数为个,分别是,,故选:.10. 【答案】A【解析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式,故选11. 【答案】D【解析】根据非负数有平方根列式求解即可.【解答】解:根据题意得,解得.故选:.12. 【答案】B【解析】先算除法,再算减法,最后把,的值代入进行计算即可.【解答】解:原式,当,时,原式.故选.13. 【答案】C【解析】由被开方数的范围确定出所求无理数的整数部分即可.【解答】解:∵ ,∴,则的整数部分为,故选14. 【答案】D【解析】在和中,由于为公共边,,,利用定理可判定,进而得到,即.【解答】解:在和中,,∴ ,∴ ,即.故选:.15. 【答案】A【解析】设这个水塘里草鱼的数量是,根据题意列出方程解答即可.【解答】解:这个水塘里草鱼的数量是,可得:,解得:,经检验是原方程的解,故选16. 【答案】B【解析】先分别写出各命题的逆命题,再分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①已知两数,,如果,那么的逆命题是:已知两数,,如果,那么,错误,如,都是负数时;②同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,正确;③全等三角形的对应角相等,对应边相等的逆命题是对应角相等,对应边相等的三角形是全等三角形,正确;④对顶角相等”的逆命题是“相等的角是对顶角”是假命题,故本选项错误;其逆命题是真命题的是②③;故选.17. 【答案】【解析】根据平方根的定义,求数的平方根,也就是求一个数,使得,则就是的平方根,由此即可解决问题.【解答】解:的平方根.故答案为:.18. 【答案】【解析】直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案.【解答】解:由题意,得且,解得,故答案为:.19. 【答案】,或【解析】根据分式方程的增根,可得关于的整式方程,根据解方程,可得答案.【解答】解:两边都乘以,得,将代入,得,故答案为:;两边都乘以,得,将代入,得,时,,故答案为:或.20. 【答案】,,,,,, . , . ,,,, . ,,,,,,【解析】根据实数的分类即可求出答案.【解答】解:整数:...分数: . . ...负实数:...无理数:....21. 【答案】证明:.理由如下:在和中,,∴ ,∴ ,∴ ,即;; .理由如下:∵ ,∴ ,∴ .【解析】利用“边角边”证明和全等,根据全等三角形对应边相等可得,再求解即可;; 根据全等三角形对应角相等可得,再根据同位角相等,两直线平行证明即可.【解答】证明:.理由如下:在和中,,∴ ,∴ ,∴ ,即;; .理由如下:∵ ,∴ ,∴ .22. 【答案】解:原式,当时,原式;; 解:方程两边同乘以得,,解得:,经检验,是原方程的解.【解析】原式去括号合并得到最简结果,把的值代入计算即可求出值;; 首先方程的两边同乘以最简公分母,把分式方程转化为整式方程,再求解即可,最后要把求得的的值代入到最简公分母进行检验.【解答】解:原式,当时,原式;; 解:方程两边同乘以得,,解得:,经检验,是原方程的解.23. 【答案】解:如图,①作线段.②作,,与交于点.即为所求.【解析】①作线段.②作,,与交于点.即为所求.【解答】解:如图,①作线段.②作,,与交于点.即为所求.24. 【答案】,两车间每天分别能加工和部.【解析】关键描述语是:“ 车间每天加工的数量为车间的 . 倍”;等量关系为:共需要天完成,根据等量关系列式.,【解答】解:设两车间每天能加工部,根据题意可得:.解得:,经检验是原方程的解,. ,25. 【答案】解:,理由:∵ ,∴ ,∵ ,∴ ,∴ ,∴ ,∵ ,∴ ,在与中,,∴ .【解析】根据余角的性质得到,根据全等三角形的判定即可得到结论.【解答】解:,理由:∵ ,∴ ,∵ ,∴ ,∴ ,∴ ,∵ ,∴ ,在与中,,∴ .26. 【答案】,,; ; ,,; ,,; 设,,则,而,故即,,之间的关系是.【解析】根据题目中的例子可以解答本题;; ; 根据中的规定和中的结果可以解答本题;; 根据前面的问题解答可以解答本题;; 列出具体的数据加以说明,,之间的关系即可.【解答】解: ①∵ ,,∴ ,②∵ ,,∴ ,③∵ ,,∴ ,; ; 由可得,① ,② ,③ ,; ∵∴ ,∵,∴,∵ ,∴ ,; 设,,则,而,故即,,之间的关系是.。

苏科版2018--2019学年度第一学期八年级期中考试数学试卷

苏科版2018--2019学年度第一学期八年级期中考试数学试卷

绝密★启用前苏科版2018--2019学年度第一学期八年级期中考试数学试卷望你做题时,不要慌张,要平心静气,把字写得工整些,让自己和老师都看得舒服些,祝你成功!1.(本题3分)在实数﹣2,, ,0.1122,π中,无理数的个数为( ) A . 0个 B . 1个 C . 2个 D . 3个2.(本题3分)在Rt△ABC 中,∠C=90°,AC=3,BC=4,则点C 到AB 的距离是( ) A .34 B . 35 C . 45 D . 1253.(本题3分)已知2)9(-的平方根是x , 64的立方根是y ,则y x +的值为( ) A.3 B.7 C.3或7 D.1或7 4.(本题3分) 的整数部分为( ) A . 1 B . 2 C . 3 D . 45.(本题3分)等腰直角三角形的三边之比为( )A . 3∶4∶5B . 1∶1∶2C . 1∶1∶D . ∶ ∶16.(本题3分)如图,△OAD ≌△OBC ,且∠O =72°,∠C =20°,则∠AEB =_____度.7.(本题3分)下列各式中,正确的是( )A 2=-B .2(9=C 3=-D 3=○………………○………○…………………○…线…………○…※※请※※※※订※※线※※答※※题※※ ……○…线……………论中不正确的是A .B .C .D .9.(本题3分)如图,将 ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC=5cm ,△ADC 的周长为12cm ,则BC 的长为( )A . 7cmB . 10cmC . 12cmD . 22cm10.(本题3分)(题文)下列图形中不是轴对称图形的是( )A .B .C .D .二、填空题(计32分)11.(本题4分)如图,Rt ABC 中,∠C =90°,AB =5,BC =4,斜边AB 的垂直平分线DE 交边BC 于点D ,连接AD ,线段CD 的长为_________.12.(本题4分) 的平方根是______.13.(本题4分)如图,在△ABC 中,AB =15cm ,AC =13cm ,BC =14cm ,则△ABC 的面积为________cm 2.…………○……………○………名:___________班级:__:___________………○…………线…………………○…………内……14.(本题4分)如果一个正数的两个平方根是a +9和2a +15,则这个数为____________ 15.(本题4分)已知两条线段的长分别为 和 ,当第三条线段的长取 ______ 时,这三条线段能围成一个直角三角形.16.(本题4分)如图,尺规作图作AOB 的平分线,方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画孤,两弧交于点P ,作射线OP ,由作法得OCP ≌ODP 的根据是:__________;17.(本题4分)如图所示,I 是 ABC 三内角平分线的交点,IE ⊥BC 于E ,AI 延长线交BC 于D ,CI 的延长线交AB 于F ,下列结论:①∠BIE=∠CID ;②S ABC =12IE (AB+BC+AC );③BE=12(AB+BC ﹣AC );④AC=AF+DC .其中正确的结论是_____.18.(本题4分)如图,△ABC 中,AB=AD=DC ,设∠BAD=x ,∠C=y ,试求y 与x 的函数关系式,并写出x 的取值范围.三、解答题(计58分)19.(本题8分)计算:(﹣2)3×+(﹣1)2018+.………外……………订……※※内※※答※……○……20.(本题8分)一个正数 的平方根是 与 ,求 和 的值。

2018-2019学年八年级上学期 期中考试数学试题(含答案)

2018-2019学年八年级上学期 期中考试数学试题(含答案)

2018-2019学年八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)在平面直角坐标系中,点(3,﹣2)关于y轴对称的点的坐标是()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)3.(3分)下列长度的三条线段能组成三角形的是()A.1cm 2cm 3cm B.6cm 2cm 3cmC.4cm 6cm 8cm D.5cm 12cm 6cm4.(3分)如图,在△ABC中,∠A=55°,∠B=45°,那么∠ACD的度数为()A.110 B.100 C.55 D.455.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE6.(3分)如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(P不与AA′共线),下列结论中错误的是()A.△AA′P是等腰三角形B.MN垂直平分AA′,CC′C.△ABC与△A′B′C′面积相等D.直线AB、A′B′的交点不一定在MN上7.(3分)如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,且BD=BE,则∠ADE的大小为()A.10°B.20°C.40°D.70°8.(3分)如图,在△ABC中,BE、CE分别是∠ABC和∠ACB的平分线,过点E作DF∥BC 交AB于D,交AC于F,若AB=4,AC=3,则△ADF周长为()A.6 B.7 C.8 D.109.(3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)10.(3分)已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形二、填空题(共6小题,每小题3分,满分18分)11.(3分)在△ABC中,已知∠A=60°,∠B=80°,则∠C是°.12.(3分)五边形的内角和为.13.(3分)如图,△ABC的边BC的垂直平分线M N交AC于D,若△ADB的周长是10cm,AB=4cm,则AC=cm.14.(3分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB 的距离是.15.(3分)如图,把长方形纸片ABCD纸沿对角线折叠,若∠BDE=25°,那么∠BED=.16.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF 分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为.三、解答题(本题共9小题,共86分)17.(8分)一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.18.(8分)如图,AB=AC,AE=AF.求证:∠B=∠C.19.(8分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1).(1)描出点A关于x轴的对称点A1的位置,写出A1的坐标;(2)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(3)用尺规在x轴上找一点P,使PA=PB(保留作图痕迹).20.(8分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.21.(1)尺规作图:作∠B的角平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.21.(8分)已知三角形一条边上的中线等于这条边的一半,证明这个三角形是直角三角形.22.(10分)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.23.(10分)如图,△ABC是等边三角形,BD⊥AC,AE⊥BC,垂足分别为D、E,AE、BD相交于点O,连接DE.(1)判断△CDE的形状,并说明理由.(2)若AO=12,求OE的长.24.(12分)如图1和2,△ABC中,BE平分∠ABC交AC边于点E,(1)过点E作DE∥BC交AB于点D,求证:△BDE为等腰三角形;(2)若AB=AC,AF⊥BD,∠ACD=∠ABC,判断BF、CD、DF的数量关系,并说明理由.25.(14分)在平面直角坐标系中,点A(a,b)的坐标满足(a﹣2)2+(b+2)2=0(1)A点坐标为,则OA==;(2)y轴上是否存在点P使△OAP为等腰三角形,若存在请求出P点坐标;(3)若直线l过点A,且平行于y轴,如果点N的坐标是(﹣n,0),其中n>0,点N关于y轴的对称点是点N1,点N1关于直线l的对称点是点N2,求NN2的长.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选;B.2.(3分)在平面直角坐标系中,点(3,﹣2)关于y轴对称的点的坐标是()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)【解答】解:点(3,﹣2)关于y轴对称的点的坐标是(﹣3,﹣2),故选:D.3.(3分)下列长度的三条线段能组成三角形的是()A.1cm 2cm 3cm B.6cm 2cm 3cmC.4cm 6cm 8cm D.5cm 12cm 6cm【解答】解:A.∵1+2=3,∴1cm 2cm 3cm不能组成三角形,故A错误;B.∵3+2<6,∴6cm 2cm 3cm不能组成三角形,故B错误;C.∵4+6>8,∴4cm 6cm 8cm能组成三角形,故C正确;D.∵5+6<12,∴5cm 12cm 6cm不能组成三角形,故D错误;故选:C.4.(3分)如图,在△ABC中,∠A=55°,∠B=45°,那么∠ACD的度数为()A.110 B.100 C.55 D.45【解答】解:由三角形的外角的性质可知,∠ACD=∠A+∠B=100°,故选:B.5.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故选:B.6.(3分)如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(P不与AA′共线),下列结论中错误的是()A.△AA′P是等腰三角形B.MN垂直平分AA′,CC′C.△ABC与△A′B′C′面积相等D.直线AB、A′B′的交点不一定在MN上【解答】解:∵△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,∴△AA′P是等腰三角形,MN垂直平分AA′,CC′,这两个三角形的面积相等,A、B、C选项正确;直线AB,A′B′关于直线MN对称,因此交点一定在MN上.D错误;故选D.7.(3分)如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,且BD=BE,则∠ADE的大小为()A.10°B.20°C.40°D.70°【解答】解:∵△A BC中,AB=AC,∠BAC=100°∴∠B=∠C=(180°﹣∠BAC)=(180°﹣100°)=40°∵BD=BE∴∠BED=∠BDE=(180°﹣∠B)=(180°﹣40°)=70°∴∠ADE=90°﹣70°=20°.故选B.8.(3分)如图,在△ABC中,BE、CE分别是∠ABC和∠ACB的平分线,过点E作DF∥BC交AB于D,交AC于F,若AB=4,AC=3,则△ADF周长为()A.6 B.7 C.8 D.10【解答】(1)证明:∵E是∠ABC,∠ACB平分线的交点,∴∠EBD=∠EBC,∠ECF=∠ECB,∵DF∥BC,∴∠DEB=∠EBC,∠FEC=∠ECB,∴∠DEB=∠DBE,∠FEC=∠FCE,∴DE=BD,EF=CF,∴DF=DE+EF=BD+CF,即DE=BD+CF,∴△ADF的周长=AD+DF+AF=(AD+BD)+(CF+AF)=AB+AC,∵AB=4,AC=3,∴△ADF的周长=4+3=7,故选B.9.(3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.10.(3分)已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形【解答】解:根据轴对称的性质可知,OP1=OP2=OP,∠P1OP2=60°,∴△P1OP2是等边三角形.故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)在△ABC中,已知∠A=60°,∠B=80°,则∠C是40°.【解答】解:∵∠A=60°,∠B=80°,∴∠C=180°﹣60°﹣80°=40°,故答案为:40.12.(3分)五边形的内角和为540°.【解答】解:(5﹣2)•180°=540°.故答案为:540°.13.(3分)如图,△ABC的边BC的垂直平分线MN交AC于D,若△ADB的周长是10cm,AB=4cm,则AC=6cm.【解答】解:∵MN是线段BC的垂直平分线,∴CD=BD,∵△ADB的周长是10cm,∴AD+BD+AB=10cm,∴AD+CD+AB=10cm,∴AC+AB=10cm,∵AB=4cm,∴AC=6cm,故答案为:6.14.(3分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB 的距离是3.【解答】解:作DE⊥AB于E,∵AD是∠CAB的角平分线,∠C=90°,∴DE=DC,∵DC=3,∴DE=3,即点D到AB的距离DE=3.故答案为:3.15.(3分)如图,把长方形纸片ABCD纸沿对角线折叠,若∠BDE=25°,那么∠BE D=130°.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠BDE=∠DBC,根据折叠的性质得:∠EBD=∠DBC,∴∠EBD=∠EDB=25°,∴∠BED=130°,故答案为:130°.16.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF 分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为10.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵E F是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故答案为:10.三、解答题(本题共9小题,共86分)17.(8分)一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.【解答】解:设这个多边形的边数是,则(n﹣2)×180=360×4,n﹣2=8,n=10.答:这个多边形的边数是10.18.(8分)如图,AB=AC,AE=AF.求证:∠B=∠C.【解答】证明:在△ABF和△ACE中,∴△ABF≌△ACE(SAS),∴∠B=∠C.19.(8分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1).(1)描出点A关于x轴的对称点A1的位置,写出A1的坐标(1,﹣3);(2)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(3)用尺规在x轴上找一点P,使PA=PB(保留作图痕迹).【解答】解:(1)如图所示:A1的坐标(1,﹣3);故答案为:(1,﹣3);(2)如图所示:点C即为所求;(3)如图所示:点P即为所求.20.(8分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.(1)尺规作图:作∠B的角平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.【解答】解:(1)如图所示:BD即为所求;(2)∵AB=AC,∴∠ABC=∠C,∵∠A=36°,∴∠ABC=∠ACB=(180°﹣36°)÷2=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=36°+36°=72°,∴BD=BC,∴△DBC是等腰三角形.21.(8分)已知三角形一条边上的中线等于这条边的一半,证明这个三角形是直角三角形.【解答】已知:如图1,在△ABC中,点D是AB的中点,连接CD,且CD=AB求证:△ABC为直角三角形证明:由条件可知,AD=BD=CD则∠A=∠DCA,∠B=∠DCB又∵∠A+∠DCA+∠B+∠DCB=180°∴∠DCA+∠DCB=90°即∠ACB=90°∴△ABC为直角三角形22.(10分)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.【解答】(1)解:∵∠BAC=50°,AD平分∠BAC,∴∠EAD=∠BAC=25°,∵DE⊥AB,∴∠AED=90°,∴∠EDA=90°﹣25°=65°.(2)证明∵DE⊥AB,∴∠AED=90°=∠ACB,又∵AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,∵AD平分∠BAC,∴AD⊥CE,即直线AD是线段CE的垂直平分线.23.(10分)如图,△ABC是等边三角形,BD⊥AC,AE⊥BC,垂足分别为D、E,AE、BD相交于点O,连接DE.(1)判断△CDE的形状,并说明理由.(2)若AO=12,求OE的长.【解答】解:(1)∵△ABC是等边三角形,且BD⊥AC,AE⊥BC,∴∠C=60°,CE=BC,CD=AC;而BC=AC,∴CD=CE,△CDE是等边三角形.(2)由(1)知:AE、BD分别是△ABC的中线,∴AO=2OE,而AO=12,∴OE=6.24.(12分)如图1和2,△ABC中,BE平分∠ABC交AC边于点E,(1)过点E作DE∥BC交AB于点D,求证:△BDE为等腰三角形;(2)若AB=AC,AF⊥BD,∠ACD=∠ABC,判断BF、CD、DF的数量关系,并说明理由.【解答】(1)证明:∵BE平分∠ABC,∴∠ABE=∠EBC,∵DE∥BC,∴∠DEB=∠EBC=∠ABE,∴BD=ED,∴△DBE为等腰三角形;(2)解:过A作AG=AD,交BD于G,∵AF⊥BD,∴DF=FG,∵∠ACD=∠ABC,BE平分∠ABC,∴∠ACD=∠ABD,∴A,B,C,D四点共圆,∴∠DAC=∠CBD,∠ADB=∠ACB=∠ABC=∠AGD,∵∠AGD=∠BAG+∠ABG,∠ABG=ABC=∠AGD,∴∠BAG=∠CAD,在△ABG与△ACD中,∴△ABG≌△ACD,∴BG=CD,∴BF=BG+DF,即BF=CD+DF.25.(14分)在平面直角坐标系中,点A(a,b)的坐标满足(a﹣2)2+(b+2)2=0(1)A点坐标为(2,﹣2),则OA==2;(2)y轴上是否存在点P使△OAP为等腰三角形,若存在请求出P点坐标;(3)若直线l过点A,且平行于y轴,如果点N的坐标是(﹣n,0),其中n>0,点N关于y轴的对称点是点N1,点N1关于直线l的对称点是点N2,求NN2的长.【解答】解:(1)∵(a﹣2)2+(b+2)2=0,∴a﹣2=0且b+2=0,则a=2,b=﹣2,故A(2,﹣2),OA==2.故答案是:(2,﹣2),2.(2)如图1所示,①当OA=OP=2时,符合条件的点P的坐标是P(0,﹣4),P′(0,2);②当OP=AP=2时,符合条件的点P的坐标是P″(0,﹣2);综上所述,符合条件的点的坐标是:P(0,﹣4)或P′(0,2)或P″(0,﹣2);(3)如图2,①当n≥2时,∵N与N1关于y轴对称,N(﹣n,0),∴N1(n,0),又∵N1与N2关于l:直线x=3对称,设N2(x,0),可得:=2,即x=4﹣n,∴N2(4+n,0),则NN2=4﹣n﹣(﹣n)=4.②如图3,当0<a<2时,∵N与N1关于y轴对称,N(﹣n,0),∴N1(n,0),又∵N1与N2关于l:直线x=2对称,设N2(x,0),可得:=2,即x=4﹣n,∴P2(4﹣n,0),则PP2=4﹣n+n=4.③综上所述,NN2的长是4.。

初中数学海陵区八年级上期中数学考试题及答案

初中数学海陵区八年级上期中数学考试题及答案

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下列图形中既是轴对称图形,又是中心对称图形的是()试题2:以下列数组为边长,能构成直角三角形的是()A.1,1, B.,, C.0.2,0.3,0.5 D.,,试题3:在□ABCD中,∠A:∠B:∠C:∠D的值可能是()A.1:2:3:4 B .1:2:2:1 C .2:2:1:1D .2:1:2:1试题4:下列各数中,3.14159,,0.131131113……,,,,无理数的个数有()A.1个B.2个C.3个D.4个试题5:等腰三角形的一个角为80°,则它的顶角为()A.80° B.20° C.20°或80° D.不能确定试题6:下列语句正确的是()A.如果一个数的立方根是这个数的本身,那么这个数一定是零;B.一个数的立方根不是正数就是负数;C.负数没有立方根;D.一个数的立方根与这个数同号,零的立方根是零。

试题7:如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是()试题8:下列说法中:①一组对边平行,另一组对边相等的四边形是平行四边形;②一组对边平行,一组对角相等的四边形是平行四边形;③对角线相等的四边形一定是平行四边形。

其中正确的说法有()A.0个B.1个C.2个D.3个试题9:已知∠AOB=30°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,则△P1O P2是()A.含30°角的直角三角形 B.顶角是30°的等腰三角形C.等边三角形 D.等腰直角三角形试题10:平行四边形的一条边长为12cm,那么这个平行四边形的两条对角线的长可以是()A.5 cm 和7 cmB.20 cm 和30 cmC.8 cm 和16 cmD.6 cm和10 cm试题11:的平方根是,试题12:写一个3与4之间的无理数。

海陵中学2018~2019学年度第一学期阶段形成性检测八年级第一次月考数学试卷

海陵中学2018~2019学年度第一学期阶段形成性检测八年级第一次月考数学试卷

海陵中学2018~2019学年度第一学期阶段形成性检测八年级数学试卷(总分100分考试时间100分钟)命题:周红一、选择题:(本题共10小题.每小题2分,共20分.每小题只有一个选项是正确的)1.下列图案中,不是轴对称图形的是(▲)A.B.C.D.2.已知图中的两个三角形全等,则∠α的度数是(▲)A.72°B.60°C.58°D.50°(第2题)(第3题)3.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是(▲)A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°4.如图,OP平分∠AOB,P A⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是(▲)A.P A=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP(第4题)(第5题)(第6题)5.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=(▲)A.30°B.45°C.60°D.90°6.如图,△AEB、△AFC中,∠E=∠F,∠B=∠C,AE=AF,则下列结论错误的是(▲)A.∠EAM=∠F AN B.BE=CF C.△ACN≌△ABM D.CD=DN7.在锐角△ABC内一点P满足P A=PB=PC,则点P是△ABC (▲)A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三边垂直平分线的交点8.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是(▲)A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA(第8题)(第9题)(第10题)9.如图,Rt△ABC中,∠C=90°,以点B为圆心,适当长为半径画弧,与∠ABC的两边相交于点E,F,分别以点E和点F为圆心,大于12EF的长为半径画弧,两弧相交于点M,作射线BM,交AC于点D.若△BDC的面积为10,∠ABC=2∠A,则△ABC的面积为(▲)A.25 B.30 C.35 D.4010.如图,四边形ABCD中,∠BAD=125°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为(▲)A.130°B.120° C.110°D.125°二、填空题:(本题共8小题.每小题3分,共24分)的坐标为▲.12.用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其运用全等的方法是▲.(用字母写出).13.如图,在△ABC中,∠B=90°,∠BAC=30°,AB=9cm,D是BC延长线上一点.且AC=DC,则AD=▲cm.(第13题)(第14题)14.如图,△ABC的垂直平分线DE交AB于E,交BC于D,连结AD.已知AC=5cm,△AD C的周长为17cm,则BC的长为▲cm.15.如图,在一个规格为6×12(即6×12个小正方形)的球台上,有两个小球A,B.若击打小球A,经过球台边的反弹后,恰好击中小球B,那么小球A击出时,应瞄准球台边上的点▲.(填P1至P4点中的一个)(第15题)(第16题)16.如图,已知等边△ABC中,AB=2,点D在AB上,点F在AC的延长线上,BD=CF,DE⊥BC于E,FG⊥BC于G,DF交BC于点P,则下列给出的四个结论中:①BE=CG;②△EDP≌△GFP;③∠EDP=60°;④EP=1,一定正确的是▲.(填序号)17.若等腰三角形一腰上的高与另一腰的夹角为40°,则该等腰三角形底角度数为▲.18.如图,在△ABC中,AB=AC,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.在点D的运动过程中,△ADE的形状也在改变,当∠BDA等于▲时,△ADE是等腰三角形.三、解答题:(本题共7小题,共56分)19.(本题6分)已知:如图,点A、B、C、D在同一直线上,AC=BD,AE∥CF,且AE=CF.求证:∠E=∠F.20.(本题6分)如图,点D、E在△ABC 的边BC上,AB=AC,AD=AE.求证:BD=CE.21.(本题8分)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=64°时,求∠EBC的度数.22.(本题8分)在3×3的正方形格点图中,有格点△ABC和格点△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的格点△DEF.(每个小正方形的顶点称为格点)23.(本题8分)如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.24.(本题8分)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图1,线段BD、CE有怎样的关系?直接写出你猜想的结论;(2)将图1中的△ADE绕点A顺时针旋转α角(90°<α<180°),如图2,线段BD、CE 有怎样的关系?请说明理由.(1)(2)25.(本题12分)如图,△ABC中,AB=AC,点D是AC上一动点,点E在BD的延长线上,且AB=AE,AF平分∠CAE交DE于F.(1)如图1,连CF,求证:∠ABE=∠ACF;(2)如图2,当∠ABC=60°时,求证:AF+EF=FB;(3)如图3,(3)如图3,若BD平分∠ABC,当∠ABC=▲°时,BD=2EF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海陵中学2019~2019学年度第一学期期中检测
八年级数学试卷
(总分100分考试时间100分钟)
命题:张虎审卷:王兴泉
一、选择题(本大题共有10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题
..纸.相应位置
....上)
1.下列“表情图”中,属于轴对称图形的是(▲)
A.B.C.D.
2.下列运算正确的是(▲)
A.236
a a a
⋅=B.2
3
6a
a
a=
÷ C.(-a+b)(a+b)=b2-a2D.(a-b)2=a2-b2
3.在式子
π
n
m
b
a
a
a
x
a2
2
,
4
3
,
5
2
,
,
6
5
,
2
+
+
中,分式的个数是(▲)
A.1 B.2 C.3 D.4
(第4题图)(第6题图)(第8题图)(第9
题图)
4.如图,若△ABE≌△ACF
,且AB=5,AE=2,则EC的长为(▲)
A.3 B.2 C.5 D.2.5
5.分式
2
可变形为(▲)
6.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、
O、F,则图中全等三角形的对数是(▲)
A.1对B.2对C.3对D.4对
7. 已知a+b=3,ab=2,则22
a b
+的值为(▲)
A.3 B.4 C.5 D.6
8.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC
的大小是(▲)
A.40°B.45°C.50°D.60°
9.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC
于点M和N,再分别以M、N为圆心,大于
1
2
MN的长为半径画弧,两弧交于点P,连结AP
并延长交BC于点D,则下列说法中①AD平分∠BAC;②∠ADC=60°;③点D在AB的中垂
线上;④S△DAC∶S△ABC=1∶3.正确的个数是(▲)
A.1 B.2 C.3 D.4
10.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,
△ADG和△AED的面积分别为50和39,则△EDF的面积为(▲)
A.11 B.7 C.5.5 D.3.5
(第10题图)
二、填空题(本大题共有8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填
写在答题
..纸.相应位置
....上)
11.点P(-3,4)关于y轴的对称点的坐标是▲.
14.如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长
为▲cm.
(第14题图)(第16题图)(第17题图)(第18题图)
15.当x为▲时,分式
3
9
2
-
-
x
x
的值为0.
16.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果点C也是图
中的格点,且使得△ABC为等腰三角形,则点C的个数是▲.
17.如图,将正方形OABC放在平面直角坐标系中,点A的坐标为(1,2),则点B的坐标
是▲.
18.如图,△ABC中,AB=AC,∠BAC=56°,∠BAC的平分线与AB的垂直平分线交于点O,
将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为▲度.
三、解答题(本大题共有8小题,共64分.请在答题纸指定区域内作答)
19.(本题9分)计算:(1))
2
(
)
3
(3
3
2xy
y
x-

-;(2)2)5
2
(+
-m;(3))9
)(
3
)(
3
(2+
-
+a
a
a.
20.(本题9分)分解因式:(1)210
x x
-;(2)32
44
m m m
-+;(3)2
236
16b
a-.
21.(本题8分)计算:(1)2019×2019-2
2015;
(2)先化简,再求值:2b2+(a+b)(a-b)-(a-b)2,其中a=-3,b=2.C
A F
O
B
D
E
22.(本题8分)画图或作图: (1)如图1是4×4正方形网格,其中已有3个小方格被涂成了黑色.请从其余13个白色小
方格中选出一个涂成黑色,使整个涂成黑色的图形成为轴对称图形(只要画出一种图形),并回答符合条件的小方格共有 ▲ 个.
(2)如图2,点A 、B 是直线l 同侧的两个点,在直线l 上可以找到一个点P ,
使得P A +PB 最小.小玉画完符合题意的图形后,不小心将墨水弄脏了图形(如图3),直线l 看不清了.请你帮助小玉补全图形,作出直线l .(尺规作图,保留痕迹,不要求写作法)
(图1) (图2) (图3)
23.(本题6分)
如图,△ABC 中,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,连结EF .
求证:(1)AE =AF ;(2)AD 垂直平分EF .
24.(本题6分)
仔细阅读下面例题,解答问题:
例题:已知二次三项式x 2
-4x +m 有一个因式是(x +3),求另一个因式以及m 的值. 解:设另一个因式为(x +n ),得 x 2
-4x +m =(x +3)(x +n )
则x 2-4x +m =x 2
+(n +3)x +3n
∴34
3n m n
+=-⎧⎨
=⎩ 解得:n =-7,m =-21
∴另一个因式为(x -7),m 的值为-21 问题:仿照以上方法解答下面问题:
已知二次三项式2x 2
+3x -k 有一个因式是(4x +),求另一个因式以及k 的值. 25.(本题8分)
在Rt △POQ 中,OP =OQ ,M 是PQ 的中点,把一三角尺的直角顶点放在点M 处,以M 为旋转中心,旋转三角尺,三角尺的两直角边与△POQ 的两直角边分别交于点A 、B . (1)求证:MA =MB ;
(2)在旋转三角尺的过程中,四边形AOBM 的面积是否变化?试说明你的理由.
(3)连接AB ,探究:在旋转三角尺的过程中,△AOB 的周长 ▲ 变化(直接填“有”或“没有”).
26.(本题10分)
如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E =30°.
(1)操作发现
如图2,固定△ABC ,使△DEC 绕点C 旋转,当点D 恰好落在AB 边上时,填空: ①线段DE 与AC 的位置关系是 ▲ ;
②设△BDC 的面积为S 1,△AEC 的面积为S 2,则S 1与S 2的数量关系是 ▲ .
(2)猜想论证
当△DEC 绕点C 旋转到如图3所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的高,请你证明小明的猜想. (3)拓展探究 已知∠ABC =60°,点D 是角平分线上一点,BD =CD ,DE ∥AB 交BC 于点E (如图4).若在射线BA 上存在点F ,使S △DCF =2S △BDE ,已知BE =1,请直接写出相应的BF 的长.
l
F
E
D C B A。

相关文档
最新文档