高一第二学期数学期中考试试
2023~2024学年度第二学期高一年级期中考试数学试卷
唐山市第三十六中学2023-2024学年高一下学期期中考试数学试卷一、选择题1.判断下列各命题的真假:①向量与平行,则与的方向相同或相反;②两个有共同起点而且相等的向量,其终点必相同;③零向量是没有方向的;④向量就是有向线段.其中假命题的个数为( )A .2B .3C .4D .52.如图,分别是长方体的棱的中点,则等于( )A .B .C .D .3.已知,,为非零平面向量,则下列说法正确的是( )A .B .若,则C .若,则,D .4.已知向量,,且,则实数的值为( )A .B .3C .8D .125.已知单位向量,的夹角为,则( )A .1BCD .36.在中,角A ,B ,C 所对边分别为,,,,则值等于( )a b a b E F ,ABCD A B C D '-'''AB CD ,AB CF + AD 'AC ' DE AE a b c()()a b c a b c ⋅⋅=⋅⋅ a c b c ⋅=⋅ a b =//a bλR ∃∈λb a = ||||||a b a b ⋅=⋅ (2,4)a = (,6)b m =- //a bm 3-a b 2π3a b -= ABC V ,,a b c π3A =2b =8c =22a b c sinA sinB sinC -+-+AB .CD7.已知复数在复平面内对应的点在第四象限,则实数的取值范围是( )A .B .C .D .8.在三棱锥P -ABC 中,PA ⊥底面ABC ,PA =2,底面ABC 是边长为的正三角形,M 为AC 的中点,球O 是三棱锥P -ABM 的外接球.若D 是球0上一点,则三棱锥D -PAC 的体积的最大值是( )A.2B .CD二、多项选择题9.在△ABC 中,下列说法正确的是( )A .若,则B .若,则C .若,则D .若,则10.若关于 方程 ( 是实数)有两个不等复数根 ,其中 ( 是虚数单位),下面四个选项正确的有( )A .B.C .D .11.如图,在直三棱柱中,,,E 为的中点,过AE 的截面与棱BB 、分别交于点F 、G ,则下列说法中正确的是( )(2)(1)i z m m =+++m (2,1)--(,2)(1,)⋃-∞--+∞(1,)-+∞(,2)-∞-A B C >>sinA sinB sinC>>A B C >>222sin A sin B sin C>>A B C >>cosA cosB cosC<<A B C >>222cos A cos B cos C<<x 的20x px q ++=p q ,αβ和12α=-+i 1αβ⨯=21αβ=2αβ=332αβ+=111ABC A B C -90ACB ∠=︒12AC BC CC ===11B C 11A CA .当点F 为棱中点时,截面B .线段长度的取值范围是C .当点F 与点B 重合时,三棱锥的体积为D .存在点F ,使得三、填空题12.已知平面和直线,给出条件:①;②;③;④;⑤.(1)当满足条件 时,有;(2)当满足条件 时,有.(填所选条件的序号)13.下列说法正确的序号为 .①若复数,则;②若全集为复数集,则实数集的补集为虚数集;③已知复数,,若,则,均为实数;④复数的虚部是1.14.如图,在四边形 中,对角线 与 相交于点 .已知 ,, ,且 是 的中点,若 ,则 的值为 .四、解答题15.如图,在平面四边形ABCD 中,已知,,△ABC 为等边三角形,记.1BB AFEG 3++1C G []01,C AEF -431A F AE ⊥αβ,m αm P αm ⊥αm ⊂αβ⊥αβP βm P βm ⊥3i z =+13i 1010z =-1z 2z 12z z >1z 2z 3i 1z =-+ABCD AC BD O AC BC =AC BC ⊥AD BD ⊥O AC 2AD AB CD CB ⋅-⋅= AC BD ⋅ 1AD =2CD =αADC ∠=(1)若,求△ABD 的面积;(2)若,求△ABD 的面积的取值范围.16.已知向量.(1)当时,求的值;(2)设函数,且,求 的最大值以及对应的的值.17.已知是关于x 的实系数一元二次方程.(1)若a是方程的一个根,且,求实数k 的值;(2)若,是该方程的两个实根,且,求使的值为整数的所有k 的值.18.如图,多面体 中,底面 是菱形, ,四边形 是正方形且 平面 .(1)求证:平面 ;(2)若 ,求多面体 的体积 .19.如图,两个相同的正四棱锥底面重合组成一个八面体,可放入一个底面为正方形的长方体内,且长方体的正方形底面边长为2,高为4,已知重合的底面与长方体的正方形底面平行,八面体的各顶点均在长方体的表面上.πα3=πα,π2⎛⎫∈⎪⎝⎭)1cos 12a x x b ⎛⎫==- ⎪ ⎪⎝⎭,a b ⊥ tan x ()()f x a b b =+⋅ π02x ⎡⎤∈⎢⎥⎣⎦,()f x x 24410kx kx k -++=1a =1x 2x Z k ∈1221x x x x +ABCDEF ABCD 60BCD ∠=︒BDEF DE ⊥ABCD //CF ADE AE =ABCDEF V(2)求该八面体表面积S的取值范围.。
人教版高一下学期期中考试数学试卷及答案解析(共五套)
人教版高一下学期期中考试数学试卷(一)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为312.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sin B=2sin A;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cos C=c(2cos B﹣cos A),∴(sin A﹣2sin B)cos C=sin C(2cos B﹣cos A),即sin A cos C+sin C cos A=2(sin B cos C+cos B sin C),∴sin(A+C)=2sin(B+C),即sin B=2sin A.∵△ABC的面积为a2sin,∴S=bc sin A=a2sin,根据正弦定理得,sin B•sin C•sin A=sin2A•sin,化简得,sin B•sin cos=sin A•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD,再由多面体ABCDEF 的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD=2•S EFBD•CO'=•a•b•a =a2b,由题意可得V ABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.【答案】BC【分析】由已知利用余弦定理整理可得cos A=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bc cos A,所以b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),可得:cos A=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x 轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C (2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R 且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tan x在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G ﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC 的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角人教版高一下学期期中考试数学试卷(二)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.14.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.25.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.96.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R27.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π8.已知半球O与圆台OO'有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为()A.B.C.D.二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.下列有关向量命题,不正确的是()A.若||=||,则=B.已知≠,且•=•,则=C.若=,=,则=D.若=,则||=||且∥10.若复数z满足,则()A.z=﹣1+i B.z的实部为1 C.=1+i D.z2=2i11.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1,棱长为2,E为线段B1C上的动点,O为AC的中点,P 为棱CC1上的动点,Q为棱AA1的中点,则以下选项中正确的有()A.AE⊥B1CB.直线B1D⊥平面A1BC1C.异面直线AD1与OC1所成角为D.若直线m为平面BDP与平面B1D1P的交线,则m∥平面B1D1Q三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.14.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为的扇形,则该圆锥的轴截面的面积S=.15.如图,已知有两个以O为圆心的同心圆,小圆的半径为1,大圆的半径为2,点A 为小圆上的动点,点P,Q是大圆上的两个动点,且•=1,则||的最大值是.16.如图,在三棱锥A﹣BCD的平面展开图中,已知四边形BCED为菱形,BC=1,BF=,若二面角A﹣CD﹣B的余弦值为﹣,M为BD的中点,则CD=,直线AD与直线CM所成角的余弦值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.18.已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4,b=6,cos A=﹣.(1)求c;(2)求cos2B的值.19.已知:复数z1与z2在复平面上所对应的点关于y轴对称,且z1(1﹣i)=z2(1+i)(i为虚数单位),|z1|=.(Ⅰ)求z1的值;(Ⅱ)若z1的虚部大于零,且(m,n∈R),求m,n的值.20.(Ⅰ)在复数范围内解方程|z|2+(z+)i=(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且﹣1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设,求证:μ为纯虚数;(3)在(2)的条件下求ω﹣μ2的最小值.21.如图,直三棱柱A1B1C1﹣ABC中,AB=AC=1,,A1A=4,点M为线段A1A 的中点.(1)求直三棱柱A1B1C1﹣ABC的体积;(2)求异面直线BM与B1C1所成的角的大小.(结果用反三角表示)22.如图所示,在正方体ABCD﹣A1B1C1D1中,点G在棱D1C1上,且D1G=D1C1,点E、F、M分别是棱AA1、AB、BC的中点,P为线段B1D上一点,AB=4.(Ⅰ)若平面EFP交平面DCC1D1于直线l,求证:l∥A1B;(Ⅱ)若直线B1D⊥平面EFP.(i)求三棱锥B1﹣EFP的表面积;(ii)试作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线,并写出作图步骤,保留作图痕迹.设平面EGM与棱A1D1交于点Q,求三棱锥Q﹣EFP的体积.答案解析一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【分析】直接利用复数的运算和几何意义的应用求出该点所表示的位置.【解答】解:设z=a+bi(a,b∈R),所以(2﹣i)(a+bi)=2a+b+(2b﹣a)i,由于对应的点在虚轴的正半轴上,所以,即,所以a<0,b>0.故该点在第二象限.故选:B.【知识点】复数的代数表示法及其几何意义2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.【答案】D【分析】利用平行四边形的性质以及向量相等的概念,再利用平面向量基本定理进行转化即可.【解答】解:因为ABCD为平行四边形,所以,故.故选:D.【知识点】平面向量的基本定理3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.1【答案】B【分析】根据平面向量的坐标表示和共线定理,列方程求出t的值.【解答】解:向量=(6t+3,9),=(4t+2,8),所以+=(6t+3,11),﹣=(4t+2,5).又(+)∥(﹣),所以5(6t+3)﹣11(4t+2)=0,解得t=﹣.故选:B.【知识点】平面向量共线(平行)的坐标表示4.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.2【答案】D【分析】先根据M,N满足的条件,将(+)•=0化成的表达式,从而判断出矩形ABCD为正方形;再将+=x+y,左边用表示出来,结合x+y =3,即可得NC+MC=4,最后借助于基本不等式求出MN的最小值.【解答】解:当M,N分别是边BC,DC的中点时,有(+)•===,所以AD=AB,则矩形ABCD为正方形,设,,则=.则x=2﹣λ,y=2﹣μ.又x+y=3,所以λ+μ=1.故NC+MC=4,则MN==(当且仅当MC=NC=2时取等号).故线段MN的最短长度为2.故选:D.【知识点】平面向量数量积的性质及其运算5.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.9【答案】B【分析】由题意画出图形,再由复数模的几何意义,数形结合得答案.【解答】解:由|z+3+4i|≤2,得z在复平面内对应的点在以Q(﹣3,﹣4)为圆心,以2为半径的圆及其内部.如图:|z﹣1﹣i|的几何意义为区域内的动点与定点P得距离,则M=|PQ|+2,m=|PQ|﹣2,则M﹣m=4.故选:B.【知识点】复数的运算6.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R2【答案】B【分析】设圆锥的底面半径为r,求得圆锥的高,由球的截面性质,运用勾股定理可得r,由圆锥的表面积公式可得所求.【解答】解:如图,设圆锥的底面半径为r,则圆锥的高为r,则R2=r2+(r﹣R)2,解得r=R,则圆锥的表面积为S=πr2+πr•2r=3πr2=3π(R)2=πR2,故选:B.【知识点】球内接多面体、旋转体(圆柱、圆锥、圆台)7.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π【答案】A【分析】先根据题意求得正四面体的体积,进而得到六面体的体积,再由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,设丸子的半径为R,则,由此求得R,进而得到答案.【解答】解:由题意可得每个三角形面积为,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为,故四面体的体积为,∵该六面体的体积是正四面体的2倍,。
高一数学期中考试题及答案
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,不是一次函数的是()A. y = 2x + 1B. y = 3x^2 + 5C. y = 1/xD. y = -4x2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∪B等于()A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}3. 若sinα=0.6,则cosα的值是()A. 0.8B. -0.8C. -0.4D. 0.44. 函数f(x) = |x - 2| + |x + 3|的最小值是()A. 5B. 2C. 1D. 45. 不等式x^2 - 4x + 3 ≤ 0的解集是()A. (1, 3)B. (-∞, 3]C. [1, 3]D. (-∞, 1] ∪ [3, +∞)6. 已知数列1, 3, 5, 7, ...,其第n项an等于()A. 2n - 1B. 2n + 1C. 2nD. n + 17. 若a + b + c = 0,则a^2 + b^2 + c^2 =()A. 0B. 2abC. 2bcD. 2ac8. 函数y = x^3 - 6x^2 + 12x - 4的极大值点是()A. x = 1B. x = 2C. x = 3D. x = 49. 已知tanθ = 2,求sin^2θ + cos^2θ的值是()A. 1B. 5C. 3D. 410. 下列哪个选项是二元一次方程()A. x^2 + y = 7B. 3x + 2y = 10C. x^2 - y = 0D. 2x/3 + y/4 = 1二、填空题(每题4分,共20分)11. 等差数列的首项是5,公差是3,则其第10项是_________。
12. 若函数f(x) = x^2 - 2x在区间[1, 4]上是增函数,则f(1) = ________。
13. 已知三角形ABC中,∠A = 90°,a = 3,b = 4,则c=_________。
广东省广州市广州中学2023-2024学年高一下学期期中考试数学试卷(含简单答案)
广州市广州中学2023-2024学年高一下学期期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知向量,,则( )A. 2B. 3C. 4D. 52( )A. B. C. D. 3. 如图,四边形中,,则必有( )A. B. C. D. 4. 如图,在空间四边形中、点、分别是边、上的点,、分别是边、上的点,,,则下列关于直线,的位置关系判断正确的是( )A. 与互相平行;B. 与是异面直线;C. 与相交,其交点在直线上;D. 与相交,且交点在直线上.5.已知,,且与互相垂直,则与的夹角为( )A. B. C. D. .(2,1)a =(2,4)b =- ||a b -= ()i 13i 1i-=+2i +2i -2i-+2i--ABCD AB DC =AD CB=DO OB=AC DB=OA OC=ABCD E H AB AD F G BC CD EH FG ∥EH FG ≠EF GH EF GH EF GH EF GH BD EF GH AC a = 1b = a b - 2a b + a b30︒45︒60︒90︒6. 已知圆锥的底面圆周在球的球面上,顶点为球心,圆锥的高为3,且圆锥的侧面展开图是一个半圆,则球的表面积为( )A. B. C. D.7. 函数的部分图象如图所示,则函数的单调递减区间为( )A. B. C. D. 8. 如图的曲线就像横放的葫芦的轴截面的边缘线,我们叫葫芦曲线(也像湖面上高低起伏的小岛在水中的倒影与自身形成的图形,也可以形象地称它为倒影曲线),它每过相同的间隔振幅就变化一次,且过点,其对应的方程为(,其中为不超过的最大整数,).若该葫芦曲线上一点到轴的距离为,则点到轴的距离为( )A.B.C.D.二、选择题:本题共3个小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,弹簧挂着的小球做上下运动,它在时相对于平衡位置的高度(单位:)由关系式O O O 12π16π48π96π()()πsin 1002f x A x A ωϕωϕ⎛⎫=++>>< ⎪⎝⎭,,()π16g x f x ⎛⎫=-- ⎪⎝⎭πππ,π,Z 66k k k ⎡⎤-+∈⎢⎥⎣⎦ππ2π,2π,Z 66k k k ⎡⎤-+∈⎢⎥⎣⎦π5ππ,π,Z 36k k k ⎡⎤++∈⎢⎥⎣⎦πππ,π,Z 63k k k ⎡⎤-+∈⎢⎥⎣⎦π,24P ⎛⎫⎪⎝⎭122sin 2πx y x ω⎛⎫⎡⎤=- ⎪⎢⎥⎣⎦⎝⎭0x ≥[]x x 05ω<<M y 4π3M x 1412s t h cm,确定,其中,,.小球从最高点出发,经过后,第一次回到最高点,则( )A B.C. 与时的相对于平衡位置的高度D. 与时的相对于平衡位置的高度之比为10. 下列说法正确的是( )A. 向量在向量上的投影向量可表示为B. 若,则与的夹角θ的范围是C. 若是等边三角形,则D 已知,,则11. 如图,在直三棱柱中,分别是棱上的点,,,则下列说法正确的是( )A. 直三棱柱的体积为..()sin h A t ωϕ=+[)0,t ∞∈+0A >0ω>(]0,πϕ∈2s π4ϕ=πω=3.75s t =10s t =h 3.75s t =10s t =h 12ab a b b b b⋅⋅0a b ⋅< a bπ,π2⎛⎤⎥⎝⎦ABC V π,3AB BC <>=(1,2)A -(1,1)B ()2AB =-,1111ABC A B C -,E F 11,B B C C 11111224AA A B A C ===111π3A CB ∠=111ABC A B C -B. 直三棱柱外接球的表面积为;C. 若分别是棱的中点,则直线;D. 当取得最小值时,有三、填空题:本小题共3小题,每小题5分,共15分12. 在复平面内,对应的复数是,对应的复数是,则点之间的距离是______.13. 已知不共线的三个单位向量满足与的夹角为,则实数____________.14. 将函数且的图象上各点的横坐标伸长为原来的2倍,再将所得图形向左平移个单位长度后,得到一个奇函数图象,则__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. (1)将向量运算式化简最简形式.(2)已知,且复数,求实数的值.16. 如图所示,正六棱锥的底面周长为24,H 是的中点,O 为底面中心,,求:(1)正六棱锥的高;(2)正六棱锥斜高;(3)正六棱锥的侧棱长.17. (1)在三角形中,内角所对的边分别是,其中,,求.(2)热气球是利用加热的空气或某些气体,比如氢气或氦气的密度低于气球外的空气密度以产生浮力飞行.热气球主要通过自带的机载加热器来调整气囊中空气的温度,从而达到控制气球升降的目的.其工作的基本原理是热胀冷缩,当空气受热膨胀后,比重会变轻而向上升起,热气球可用于测量.如图,在离地为的111ABC A B C -64π3,E F 11,B B C C 1A F AE ∥1AE EF FA ++1A F EF=AB1i -AD 1i +,B D ,,a b c0,a b c a λ++=bπ3λ=()sin cos (,R f x a x b x a b =+∈0)b ≠π3ab =AB CB DC DE FA --++x ∈R ()222522i 0x x x x -++--=x BC 60SHO ∠=︒ABC ,,A B C ,,a b c 2c a =1sin sin sin 2b B a A a C -=cos B面高的热气球上,观测到山顶处的仰角为,山脚处的俯角为,已知,求山的高度.18. 如图,在梯形中,,,且,,,在平面内过点作,以为轴将四边形旋转一周.(1)求旋转体的表面积;(2)求旋转体的体积;(3)求图中所示圆锥的内切球体积.19. 如图,在的边上做匀速运动的点,当时分别从点,,出发,各以定速度向点前进,当时分别到达点.(1)记,点为三角形的重心,试用向量线性表示(注:三角形的重心为三角形三边中线的公共点)(2)若的面积为,求的面积的最小值.(3)试探求在运动过程中,的重心如何变化?并说明理由.800m M C 15︒A 45︒60BAC ∠=︒BC ABCD 90ABC ∠=︒AD BC ∥AD a =2BC a =60DCB ∠=︒ABCD C l CB ⊥l ABCD CO ABC V ,,D E F 0=t A B C ,,B C A 1t =,,B C A ,AB a AC b == G ABC ,a bBG ABC V S DEF V DEF V广州市广州中学2023-2024学年高一下学期期中考试数学试卷简要答案一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】B【3题答案】【答案】B【4题答案】【答案】D【5题答案】【答案】D【6题答案】【答案】C【7题答案】【答案】C【8题答案】【答案】D二、选择题:本题共3个小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BC【10题答案】【答案】AB【11题答案】【答案】ABD三、填空题:本小题共3小题,每小题5分,共15分【12题答案】【答案】2【13题答案】【答案】-1【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1);(2)2.【16题答案】【答案】(1)6;(2)3)【17题答案】【答案】(1);(2)【18题答案】【答案】(1)(2(3【19题答案】【答案】(1)(2)(3)的重心保持不变,理由略.FE341200m 2(9πa +3a 3πa 1233BG b a =-14S DEF V。
高一数学期中考试题及答案
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 已知集合A={1,2,3},B={2,3,4},求A∪B的值。
A. {1,2,3}B. {1,2,3,4}C. {2,3}D. {1,4}2. 函数f(x)=2x^2-3x+1在区间[-1,2]上的最大值是多少?A. 1B. 5C. 7D. 93. 已知等差数列的首项a1=3,公差d=2,求第10项的值。
A. 23B. 25C. 27D. 294. 一个圆的半径为5,求其面积。
A. 25πB. 50πC. 75πD. 100π5. 已知直线y=-3x+5与x轴的交点坐标是什么?A. (0, 5)B. (1, 2)C. (5/3, 0)D. (0, 0)6. 已知sin(α)=3/5,α∈(0,π),求cos(α)的值。
A. 4/5B. -4/5C. √(1-(3/5)^2)D. -√(1-(3/5)^2)7. 一个函数f(x)是奇函数,且f(1)=2,求f(-1)的值。
A. 2B. -2C. 0D. 18. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 7C. 8D. 99. 已知一个函数f(x)=x^3-6x^2+11x-6,求f(2)的值。
A. -2B. 0C. 2D. 410. 已知一个等比数列的首项a1=2,公比q=3,求第5项的值。
A. 162B. 243C. 486D. 729二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,求对称轴的方程。
___________________________12. 已知等比数列的前n项和为S_n=3^n-1,求首项a1。
___________________________13. 已知正弦定理公式为a/sinA=b/sinB=c/sinC,求三角形ABC的面积,已知a=5,sinA=3/5。
___________________________14. 已知某函数的导数f'(x)=6x^2-4x+1,求f'(1)的值。
高一数学期中考试题及答案
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数集R的子集?A. 整数集ZB. 有理数集QC. 无理数集D. 复数集C2. 函数f(x) = 2x^2 - 3x + 1在区间[0, 2]上的最大值是:A. 1B. 5C. 7D. 93. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B的元素个数。
A. 1B. 2C. 3D. 44. 若a > 0,b < 0,且|a| < |b|,则a + b的符号是:A. 正B. 负C. 零D. 不确定5. 下列哪个不等式是正确的?A. √2 < πB. e < 2.72C. √3 > √2D. log2(3) > log3(2)6. 已知等差数列的首项为a1 = 3,公差为d = 2,第5项a5的值是:A. 9B. 11C. 13D. 157. 函数y = x^3 - 6x^2 + 9x + 2的零点个数是:A. 0B. 1C. 2D. 38. 已知f(x) = x^2 - 4x + 4,求f(x)的最小值。
A. 0B. 4C. 8D. 169. 抛物线y = x^2 - 2x - 3与x轴的交点个数是:A. 0B. 1C. 2D. 310. 已知等比数列的首项为a1 = 2,公比为r = 3,求第4项a4的值。
A. 162B. 486C. 729D. 1458二、填空题(每题2分,共20分)11. 圆的一般方程为x^2 + y^2 + dx + ey + f = 0,其中d^2 + e^2 - 4f > 0时,表示______。
12. 若函数f(x) = 3x - 2在区间[1, 4]上是增函数,则f(1) =______。
13. 已知集合M = {x | x^2 - 5x + 6 = 0},则M的补集∁_R M = {x | ______ }。
14. 函数y = log_2(x)的定义域是{x | x > ______ }。
高一数学期中考试题及答案
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 函数f(x) = x^2 - 2x + 1的零点是:A. 1B. -1C. 0D. 23. 集合A = {1, 2, 3},B = {2, 3, 4},则A∩B等于:A. {1}B. {2, 3}C. {4}D. {1, 2, 3, 4}4. 已知数列{a_n}的通项公式为a_n = 2n + 1,那么a_5等于:A. 11B. 9C. 13D. 155. 若函数f(x) = 3x - 5,则f(2)等于:A. 1B. -1C. 7D. 36. 直线y = 2x + 3与x轴的交点坐标是:A. (0, 3)B. (1, 5)C. (-3/2, 0)D. (3/2, 0)7. 圆的一般方程为x^2 + y^2 + 2x - 4y + 5 = 0,其圆心坐标是:A. (-1, 2)B. (1, -2)C. (-1, -2)D. (1, 2)8. 函数y = x^2 - 4x + 3的最小值是:A. -1B. 0C. 1D. 39. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定10. 函数y = √(x - 2)的定义域是:A. x ≥ 2B. x > 2C. x < 2D. x ≠ 2二、填空题(每题3分,共30分)1. 若函数f(x) = x^2 - 4x + 3的最大值为2,则x的值为______。
2. 已知数列{a_n}满足a_1 = 1,a_n = 2a_{n-1} + 1,那么a_3等于______。
3. 函数f(x) = 2x^2 - 3x + 1的对称轴方程是______。
4. 集合A = {x | x^2 - 5x + 6 = 0},则A的元素个数为______。
2023-2024学年厦门市高一数学第二学期期中考试卷附答案解析
2023-2024学年厦门市高一数学第二学期期中考试卷(考试时间120分钟,满分150分)考试时间:2024年4月28日考试时长120分钟一、单选题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数2i i z =-,则z 对应的点Z 在复平面的()A .第一象限B .第二象限C .第三象限D .第四象限2.已知向量(2,1),(1,4)a b ==- ,则23a b -=()A .(7,10)-B .(1,14)C .(7,10)-D .(7,6)3.下列命题中正确的是()A .有两个面互相平行,其余各面都是四边形的几何体叫棱柱B .棱柱中互相平行的两个面叫棱柱的底面C .棱柱的侧面都是平行四边形,而底面不是平行四边形D .棱柱的侧棱都相等,侧面是平行四边形4.在空间四边形ABCD 中,AC=BD ,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,顺次连接各边中点E ,F ,G ,H ,所得四边形EFGH 的形状是()A .梯形B .矩形C .正方形D .菱形5.某校运动会开幕式上举行升旗仪式,在坡度为15︒的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30︒,第一排和最后一排的距离为(如图所示),则旗杆的高度为()A .10mB .30mC .D .6.在ABC 中,若sin 2sin cos C B B =,且64ππ,B ⎛⎫∈ ⎪⎝⎭,则c b 的范围为()A .B .)2C .()0,2D .)27.如图,点A ,B ,C ,M ,N 为正方体的顶点或所在棱的中点,则下列各图中,不满足直线//MN 平面ABC 的是()A .B .C .D .8.已知AB AC ⊥ ,||AB t = ,1||AC t= .若点P 是△ABC 所在平面内一点,且2||||AB ACAP AB AC =+,则PB PC ⋅ 的最大值为()A .13B .5-C .5-D .10+二、多选题:本小题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设复数12i1i z +=+,则()A .z 的实部为32B .31i 22z =-C .z 的虚部为1i2D .1z =10.已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,下列说法正确的是()A .若sin :sin :sin 2:3:4ABC =,则ABC 是钝角三角形B .若sin sin A B >,则a b>C .若0AC AB ⋅>,则ABC 是锐角三角形D .若45A =o ,2a =,b =,则ABC 只有一解11.“奔驰定理”因其几何表示酷似奔驰的标志得来,是平面向量中一个非常优美的结论.奔驰定理与三角形四心(重心、内心、外心、垂心)有着神秘的关联.它的具体内容是:已知M 是ABC 内一点,BMC △,AMC ,AMB 的面积分别为A S ,B S ,C S ,且0A B C S MA S MB S MC ⋅+⋅+⋅=.以下命题正确的有()A .若::1:1:1ABC S S S =,则M 为AMC 的重心B .若M 为ABC 的内心,则0BC MA AC MB AB MC ⋅+⋅+⋅=C .若45BAC ∠=︒,60ABC ∠=︒,M 为ABC 的外心,则::2:1A B C S S S =D .若M 为ABC 的垂心,3450MA MB MC ++= ,则cos AMB ∠=三、填空题:本题共3小题,每小题5分,共15分.12.在△ABC 中,B =135°,C =15°,a =5,则此三角形的最大边长为.13.将边长为2的正方形卷成一个圆柱的侧面,所得圆柱的体积为.14.在ABC 中,角,,A B C 所对的边分别为,,a b c .若a c =,sin 3,26sin 2A aB =≤≤,则ABC S - 的最大值为.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在锐角ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin a B .(1)若2b =,3c =,求a 的值:(2)若2a bc =,判断ABC 的形状.16.如图,在平行四边形ABCD 中,4AB =,2AD =,60BAD ︒∠=,E ,F 分别为AB ,BC 上的点,且2AE EB =,2=CF FB .(1)若DE x AB y AD =+,求x ,y 的值;(2)求AB DE ⋅的值;(3)求cos BEF ∠.17.如右图所示,ABCD -A 1B 1C 1D 1是正四棱柱,侧棱长为1,底面边长为2,E 是棱BC 的中点.(1)求证:BD 1∥平面C 1DE ;(2)求三棱锥D -D 1BC 的体积18.已知ABC 的内角A ,B ,C 的对边为a ,b ,c ,且()3sin sin 32sin A B c bC a b--=+.(1)求sin A ;(2)若ABC①已知E 为BC 的中点,求ABC 底边BC 上中线AE 长的最小值;②求内角A 的角平分线AD 长的最大值.19.“费马点”是由十七世纪法国数学家费马提出并征解的一个问题.该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小.”意大利数学家托里拆利给出了解答,当ABC 的三个内角均小于120︒时,使得120AOB BOC COA ∠=∠=∠=︒的点O 即为费马点;当ABC 有一个内角大于或等于120︒时,最大内角的顶点为费马点.试用以上知识解决下面问题:已知ABC 的内角,,A B C 所对的边分别为,,a b c ,且cos2cos2cos21B C A +-=(1)求A ;(2)若2bc =,设点P 为ABC 的费马点,求PA PB PB PC PC PA ⋅+⋅+⋅;(3)设点P 为ABC 的费马点,PB PC t PA +=,求实数t 的最小值.1.C【分析】根据虚数单位的性质化简,再由实部、虚部符号确定复数对应点所在象限.【详解】因为2i i=1i z =---,所以z 对应的点Z 在复平面的第三象限,故选:C 2.A【分析】根据向量线性运算的坐标表示计算可得;【详解】解:因为(2,1),(1,4)a b ==-,所以()()()2322,131,47,10a b -=--=- ;故选:A 3.D【分析】根据题意,结合棱柱的几何结构特征,逐项判定,即可求解.【详解】对于A 中,如图所示满足有两个面互相平行,其余各面都是四边形,但该几何体不是棱柱,故A 不正确;对于B 中,正六棱柱中有四对互相平行的面,但只有一对面为底面,所以B 不正确;对于C 中,长方体、正方体的底面都是平行四边形,故C 不正确;对于D 中,根据棱柱的几何结构特征,可得棱柱的侧棱都相等,且侧面都是平行四边形,所以D 正确.故选:D.4.D【分析】根据空间四边形中各点的位置,结合中位线的性质可得EFGH 是平行四边形,再由AC=BD 即可判断四边形EFGH 的形状.【详解】如图所示,空间四边形ABCD 中,连接AC ,BD 可得一个三棱锥,将四个中点连接,得到四边形EFGH ,由中位线的性质及基本性质4知,EH ∥FG ,EF ∥HG ;∴四边形EFGH 是平行四边形,又AC=BD ,∴HG=12AC=12BD=EH ,∴四边形EFGH 是菱形.故选:D 5.B【分析】先根据正弦定理求出BC ,再根据直角三角形三角函数关系即可求解.【详解】如图,由题可知:在ABC 中,45A =︒,105ABC ∠=︒,所以30ACB ∠=︒.sin 45BC=︒,所以22BC ==,在Rt CBD △中,3sin 6030(m)2CD BC ︒==⨯=.故选:B 6.A【分析】根据题意,利用正弦定理化简得到2cos c B b =,结合64ππ,B ⎛⎫∈ ⎪⎝⎭和余弦函数的性质,即可求解.【详解】因为sin 2sin cos C B B =,由正弦定理得2cos c b B =,则2cos cB b=,又因为64ππ,B ⎛⎫∈ ⎪⎝⎭cos B <<2cos B <所以cb的范围为.故选:A.7.D【分析】对于A ,根据//MN AC 结合线面平行的判断定理即可判断;对于B,根据//MN BE 结合线面平行的判断定理即可判断;对于C ,根据//MN BD ,结合线面平行的判断定理即可判断;对于D ,根据四边形AMNB 是等腰梯形,AB 与MN 所在的直线相交,即可判断.【详解】对于A,如下图所示,易得//,//AC EF MN EF ,则//MN AC ,又MN ⊄平面ABC ,AC ⊂平面ABC ,则//MN 平面ABC ,故A 满足;对于B ,如下图所示,E 为所在棱的中点,连接,,EA EC EB ,易得,//AE BC AE BC =,则四边形ABCE 为平行四边形,,,,A B C E 四点共面,又易知//MN BE ,又MN ⊄平面ABC ,BE ⊂平面ABC ,则//MN 平面ABC ,故B 满足;对于C,如下图所示,点D 为所在棱的中点,连接,,DA DC DB ,易得四边形ABCD 为平行四边形,,,,A B C D 四点共面,且//MN BD ,又MN ⊄平面ABC ,BD ⊂平面ABC ,则//MN 平面ABC ,故C 满足;对于D ,连接,AM BN ,由条件及正方体的性质可知四边形AMNB 是等腰梯形,所以AB 与MN 所在的直线相交,故不能推出MN 与平面ABC 不平行,故D 不满足,故选:D.8.B【分析】以A 为原点,建立直角坐标系,利用向量的数量积的坐标运算,以及二次函数的性质,即可求解.【详解】以A 为坐标原点,建立如图所示的直角坐标系,设P (x ,y )则1(,0),(0,0)B t C t t >,可得(1,0)AB AB = ,2(0,2)||AC AC = ,所以(1,2)AP = ,即(1,2)P ,故(1,2)PB t =-- ,11,2PC t ⎛⎫=-- ⎪⎝⎭,所以221455PB PC t t t t ⎛⎫⋅=-+-=-+≤- ⎪⎝⎭ 2t t =即t 时等号成立.故选:B.9.AB【分析】根据复数除法求出z ,由复数的概念判断AC ,根据共轭复数判断B ,根据模的定义判断D.【详解】因为()()()()12i 1i 12i 122i i 31i 1i 1i 1i 222z +-+++-====+++-,所以z 的实部为32,虚部为12,31i 22z =-,102z =,故选:AB 10.ABD【分析】对于A ,利用正弦定理及大边对大角,结合余弦定理的推论即可求解;对于B ,利用正弦定理的角化边即可求解;对于C ,利用向量的数量积的定义即可求解;对于D ,利用正弦定理及三角函数的特殊值对应特殊角即可求解.【详解】对于A ,因为ABC 的三个角满足sin :sin :sin 2:3:4A B C =,所以由正弦定理化简得::2:3:4a b c =,设2,3,4a k b k c k ===,c 为最大边,由余弦定理得222222249163cos 02124a b c k k k C ab k +-+-===-<,所以C 为钝角,所以ABC 是钝角三角形,故A 正确;对于B ,由sin sin A B >及正弦定理,得22a b R R>,解得a b >,故B 正确;对于C ,因为0AC AB ⋅>,所以cos cos 0AC AB AC AB A bc A ⋅⋅==> ,所以cos 0A >,所以A 为锐角,但无法确定B 和C 是否为锐角,故C 错误;对于D ,由正弦定理得222sin 45sin B=,解得sin 1B =,因为0180B << ,所以90B = ,所以ABC 只有一解,故D 正确.故选:ABD.11.ABD【分析】A 选项,0MA MB MC ++=,作出辅助线,得到A ,M ,D 三点共线,同理可得M 为ABC 的重心;B 选项,设内切圆半径为r ,将面积公式代入得到0BC MA AC MB AB MC ⋅+⋅+⋅=;C 选项,设外接圆半径,由三角形面积公式求出三个三角形的面积,得到比值;D 选项,得到::3:4:5A B C S S S =,作出辅助线,由面积关系得到线段比,设MD m =,MF n =,5ME t =,表示出AM ,BM ,MC ,结合三角函数得到m ,m =,进而求出余弦值;【详解】对A 选项,因为::1:1:1A B C S S S =,所以0MA MB MC ++=,取BC 的中点D ,则2MB MC MD += ,所以2MD MA =-,故A ,M ,D 三点共线,且2MA MD =,同理,取AB 中点E ,AC 中点F ,可得B ,M ,F 三点共线,C ,M ,E 三点共线,所以M 为ABC 的重心,A 正确;对B 选项,若M 为ABC 的内心,可设内切圆半径为r ,则12A S BC r =⋅,12B S AC r =⋅,12C S AB r =⋅,所以1110222BC r MA AC r MB AB r MC ⋅⋅+⋅⋅+⋅⋅= ,即0BC MA AC MB AB MC ⋅+⋅+⋅=,B 正确;对C 选项,若45BAC ∠=︒,60ABC ∠=︒,M 为ABC 的外心,则75ACB ∠=︒,设ABC 的外接圆半径为R ,故290BMC BAC ∠=∠=︒,2120AMC ABC ∠=∠=︒,2150AMB ACB ∠=∠=︒,故2211sin 9022A S R R =︒=,221sin1202B S R R =︒,2211sin15024C S R R =︒=,所以::2A B C S S S =,C错误;对D 选项,若M 为ABC 的垂心,3450MA MB MC ++=,则::3:4:5A B C S S S =,如图,AD BC ⊥,CE AB ⊥,BF AC ⊥,相交于点M ,又ABC A B C S S S S =++ ,31124AABC S S == ,即:3:1AM MD =,41123BABC S S == ,即:1:2MF BM =,512CABC S S =,即:5:7ME MC =,设MD m =,MF n =,5ME t =,则3AM m =,2BM n =,7MC t =,因为CAD CBF ∠=∠,sin ,sin 32n mCAD CBF m n∠=∠=,所以32n m m n =,即3m =,3cos 22m BMD n n ∠===,则()cos cos πAMB BMD ∠=-∠=D 正确;故选:ABD.【点睛】关键点点睛:本题考查向量与四心关系应用,关键是利用三角形的几何关系及向量数量积及向量线性表示逐项判断.12.【详解】解:利用正弦定理可知,B 角对的边最大,因为05sin 230,51sin sin sin 2a b aBA b AB A =∴=∴===故答案为:13.2π【分析】先计算底面积,再计算体积.【详解】122R R ππ=∴=22122V R h ππππ=⨯=⨯⨯=故答案为2π【点睛】本题考查了圆柱的体积,意在考查学生的空间想象能力和计算能力.14【分析】由正弦定理和余弦定理以及三角形面积公式化简计算可得.【详解】222sin 37,23,,cos sin 229A a c b a b a c B B ac +-=∴==∴==,则sin B =2221922ABC S a a ⎫∴-=-⋅=+=-+⎪⎝⎭ []2,6,ABC a S ∈∴-V Q故答案为:922.15.(1)a =(2)等边三角形.【分析】(1)由正弦定理边化角,求出π3A =,再利用余弦定理可得答案;(2)由余弦定理得结合2a bc =得2220b c bc +-=,进而b c =,从而可得答案.【详解】(1)由正弦定理,33sin sin sin sin ,sin 022a B b A B B B =⇒≠ ,故ππsin 0,223A A A ⎛⎫=∈⇒= ⎪⎝⎭,再由余弦定理得,2222212cos 2322372a b c bc A =+-=+-⨯⨯⨯=,从而a =(2)因为π3A =,所以由余弦定理得222a b c bc=+-结合2a bc =得2220b c bc +-=,进而22,b c a b a b c =⇒===,所以ABC 是等边三角形.16.(1)2,13x y ==-(2)203【分析】(1)由向量的运算法则求解(2)分解后由数量积的运算求解(3)由数量积的定义求夹角【详解】(1)23DE DA AE AB AD =+=- ,故2,13x y ==-(2)2220()1642cos 60333AB DE AB AB AD ⋅=⋅-=⨯-⨯⨯︒=(3)111,,333EB AB EF AB AD ==+4||3EB =,27||3EF =16499cos 14||||EB EFBEF EB EF +⋅∠==17.(1)见解析;(2)23.【分析】(1)利用三角形中位线的性质,证明线线平行,从而可得线面平行;(2)利用等体积11D D BC D DBC V V --=,即可求得三棱锥D ﹣D 1BC 的体积.【详解】(1)证明:连接D 1C 交DC 1于F ,连接EF ,在正四棱柱ABCD ﹣A 1B 1C 1D 1中,底面四边形DCC 1D 1为矩形,∴F 为D 1C 的中点.又E 为BC 的中点,∴EF ∥D 1B .∴BD 1∥平面C 1DE .(2)解:连接BD ,11D D BC D DBCV V --=又△BCD 的面积为12222S =⨯⨯=.故三棱锥D ﹣D 1BC 的体积1111221333D DBC BCD V S D D -∆==⨯⨯=.【点睛】本题考查线面平行,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.18.(1)sin A =(2)AE,AD【分析】(1)由正弦定理和余弦定理得到1cos 3A =,进而求出sin A ;(2)由面积公式求出16bc =,进而根据向量的模长公式结合不等式即可求解AE 的最值,根据三角形面积公式,结合等面积法,利用基本不等式可求解AD 的最值.【详解】(1)由正弦定理,得3()32a b c b a b c --=+,即22223c b a bc +-=,故2221cos 23232bc c b a A bc bc +-===,因为cos 0A >,所以π(0,)2A ∈,所以22sin 3A ==;(2)①由(1)知sin 3A =,因为ABC1n si 2bc A =,解得16bc =,由于()12AE AB AC =+ ,所以()()2222222111212183222cos 2444343433AE AB AC AB AC c b bc A c b bc bc bc bc ⎛⎫⎛⎫=++⋅=++=++≥+=⨯= ⎪ ⎪⎝⎭⎝⎭当且仅当b c =时,等号取得到,所以2323AE AE ≥⇒ ②因为AD 为角A 的角平分线,所以1sin sin 2BAD CAD A ∠=∠=,由于ADB ADC ABC S S S += ,所以111sin sin sin sin cos 2222222A A A A AD c AD b bc A bc +==,由于sin02A ≠,所以()2cos 2A AD c b bc +=,由于2212cos 2cos 1cos cos 23232A A A A =-=⇒=⇒,又16bc =,所以()63262cos216233A AD c b bc +==⨯⨯由于8b c +≥,当且仅当b c =时,等号取得到,故()83AD c b AD =+≥=,故3AD ≤,19.(1)π2A =(2)(3)2+【分析】(1)根据二倍角公式结合正弦定理角化边化简cos2cos2cos21B C A +-=可得222a b c =+,即可求得答案;(2)利用等面积法列方程,结合向量数量积运算求得正确答案.(3)由(1)结论可得2π3APB BPC CPA ∠=∠=∠=,设||||||,||,||PB m PA PC n PA PA x ===,推出m n t +=,利用余弦定理以及勾股定理即可推出2m n mn ++=,再结合基本不等式即可求得答案.【详解】(1)由已知ABC 中cos2cos2cos21B C A +-=,即22212sin 12sin 12sin 1B C A -+--+=,故222sin sin sin A B C =+,由正弦定理可得222a b c =+,故ABC 直角三角形,即π2A =.(2)由(1)π2A =,所以三角形ABC 的三个角都小于120︒,则由费马点定义可知:120APB BPC APC ∠=∠=∠=︒,设,,PA x PB y PC z === ,由APB BPC APC ABC S S S S ++= 得:111122222xy yz xz +=⨯,整理得xy yz xz ++=,则PA PB PB PC PA PC⋅+⋅+⋅111142222233xy yz xz ⎛⎫⎛⎫⎛⎫=⋅-+⋅-+⋅-=-⨯=- ⎪ ⎪⎝⎭⎝⎭⎝⎭.(3)点P 为ABC 的费马点,则2π3APB BPC CPA ∠=∠=∠=,设||||||||,||,00,,0,PB m PA PC n PA PA x m n x ===>>>,则由PB PC t PA +=得m n t +=;由余弦定理得()22222222π||2cos 13AB x m x mx m m x =+-=++,()22222222π||2cos 13AC x n x nx n n x =+-=++,()2222222222π||2cos 3BC m x n x mnx m n mn x =+-=++,故由222||||||AC AB BC +=得()()()222222211n n x m m x m n mn x +++++=++,即2m n mn ++=,而0,0m n >>,故22()2m n m n mn +++=≤,当且仅当m n =,结合2m n mn ++=,解得1m n ==又m n t +=,即有2480t t --≥,解得2t ≥+2t ≤-故实数t 的最小值为2+【点睛】关键点睛:解答本题首先要理解费马点的含义,从而结合(1)的结论可解答第二问,解答第二问的关键在于设||||||,||,||PB m PA PC n PA PA x ===,推出m n t +=,结合费马点含义,利用余弦定理推出2m n mn ++=,然后利用基本不等式即可求解.。
上海宝山世外学校高中国内部2023-2024学年高一年级第二学期数学学科期中考试试卷答案
上海宝山世外学校高中国内部2023/2024学年第二学期期中考试 高一数学 试卷(考试时间: 120分钟 满分: 150分)班级 学号 姓名一. 填空题(本大题共有12题, 满分54分, 第1~6题每题4分, 第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1. 已知角α的终边经过点P(-3,4), 则cosα= .【答案】−35.2、复数 11−i的共轭复数的模是 .【答案】223、在复数范围内,方程.x²-2x+2=0的解为 .【答案】 1+3或 1−i.4.在△ABC 中, AB =c ,AC =b , 若点D 满足 BD =2DC ,则 AD =¯.【答案】23b +1c 5.已知 sin (π2+2α)=−13,则cos(π+2α)= 【答案】−136 关于x 的实系数一元二次方程. x²+kx +3=0有两个虚根x ₁和x ₂,若 |x 1−x 2|=22,则实数k= .【答案】 k =2或 k =−2.7.已知向量ā在向量b 方向上的投影向量为-2b ,且 |b |=3,则 a ⋅b =¯..(结果用数值表示)【答案】 −18.8 已知点A 的坐标为( (43,1),,将OA 绕坐标原点O 逆时针旋转π/3至OB ,则点B 的坐标为【答案】1329.正方体的6个面无限延展后把空间分成个部分【答案】 2710.如图,为计算湖泊岸边两景点B与C之间的距离,在岸上选取A和D两点, 现测得AB=5km, AD=7km, ∠ABD=60°,∠CBD=23°,∠BCD=117°,据以上条件可求得两景点B与C之间的距离为 km(精确到0.1km).【答案】5.811.在△ABC中, a=2, b=3, 若该三角形为钝角三角形, 则边C的取值范围是 .【答案】(1,5)∪(13,5).12 将函数f(x)=4cos(π2x)和直线g(x)=x-1的所有交点从左到右依次记为.A₁,A₂,……,Aₙ,若P的坐标为(0,5),则|PA1+PA2+⋯+PAn|的值为 .【答案】30二、选择题(本大题共有4题, 满分18分, 第13、14题每题4分, 第15、16题每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.下列说法正确的是 ( )A. 四边形一定是平面图形B.不在同一条直线上的三点确定一个平面C.梯形不一定是平面图形D.平面α和平面β一定有交线【答案】B14. 设z₁、z₂为复数, 则.z21+z22=0是z₁=z₂=0的 ( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C15.设函数f(x)=asinx+bcosx,其中a>0,b>0,若f(x)≤f(π4)对任意的x∈R恒成立,则下列结论正确的是 ( )Af(π2)>f(π6)в f(x)的图像关于直线x=3π4对称C. f(x)在[π4,5π4]上单调递增D.过点(a,b)的直线与函数f(x)的图像必有公共点【答案】D16 给定方程: (12)x+sin x−1=0,给出下列4个结论:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(-∞,0)内有且只有一个实数根;④若x₀是方程的实数根,则x₀>−1.其中正确结论的个数是A.1B.2C.3D.4【答案】C三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知复数z是纯虚数,(z+2)²−8i是实数.(1) 求z; (2) 若1z1=1z+2−z,求|z1|.【答案】z=2i,2824118. (本题满分14分,第1小题满分6分,第2小题满分8分)已知平面内给定三个向量a=(3,2),b=(−1,2),c=(4,1).(1) 若a=mb−nc,求实数m,n的值;(2) 若(a−kc)⋅(kb)<6,求实数k的取值范围.【答案】m=59,n=−89, (−2,32)19. (本题满分14分,第1小题满分6分,第2小题满分8分)在△ABC中, 角A, B, C所对的边分别为a, b, c.(1) 若c=2,C=π3,且△ABC的面积.S=3,求a, b的值;(2) 若sinC+sin(B--A)=sin2A, 判断△ABC的形状.【答案】a=b=2,△ABC 为等腰或直角三角形20. (本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)已知函数 f (x )=3sin ωx cos ωx +sin 2ωx−12(其中常数ω>0)的最小正周期为π.(1) 求函数y=f(x)的表达式;(2)作出函数y=f(x),x∈[0,π]的大致图像,并指出其单调递减区间;(3) 将y=f(x)的图像向左平移φ(0<φ<π)个单位长度得到函数y=g(x)的图像,若实数x ₁,x ₂满足. f (x₁)g (x₂)=−1,且 |x₁−x₂||的最小值是 π6,求φ的值.【答案】 y =f (x )=sin (2x−π6), [π3 , 5π6],φ=π3或 2π3【解析】(1)∵函数f (x )=3sin ωx cos ωx +sin 2ωx−12=32sin 2ωx +1−2cos 2ωx2−12=sin (2ωx−π6)(其中常数 ω>0)的最小正周期为 2π2ω=π,∴ω=1.函数 y =f (x )=sin (2x−π6).(2)作出函数 y =f (x ),x ∈[0,π]的大致图像:作图:2x-π6-π6π2π3π211π6xπ12π37π125π6πf(x)-12010—1-12作图:结合图像,可得其单调递减区间为[π3,5π6].(3)将y=f(x)=sin(2x−π6)的图像向左平移φ(0<φ<π)个单位长度,得到函数y=g(x)=sin(2x+2−π6)的图像,若实数x₁, x₂满足f(x₁)g(x₂)=−1,则f(x₁)与g(x₂)一个等于1,另一个等于.−1,且|x₁−x₂|的最小值为|T2−φ|=π6,即|122π2−φ|=π6求得φ=π3或2π3.21. (本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)在平面直角坐标系中,我们把函数y=f(x),x∈D上满足.x∈N°,y∈N*(其中N⁺表示正整数)的点P(x,y)称为函数y=f(x)的“正格点”.(1)写出当m=π2时, 函数f(x)=sin mx, x∈R图像上所有正格点的坐标;(2)若函数f(x)=sinmx, x∈R,m∈(1,2)与函数g(x)=lgx的图像有正格点交点, 求m的值,并写出两个图像所有交点个数,需说明理由.(3) 对于 (2) 中的m值和函数f(x)=sinmx, 若当x∈[0,59]时,不等式log a x>22f(x)恒成立,求实数a的取值范围.【答案】(4k+1,1)(k∈N),4,(2581,1)【解析】(1) 因为 m =π2,一所以 f (x )=sin π2x,所以函数 f (x )=sin π2x 的正格点为(1,1),(5,1), (9,1), ……, (4k+1,1)(k∈N).(2)作出两个函数图像,如图所示:可知函数. f (x )=sinmx,x ∈R,与函数 g (x )=lg x 的图像只有一个“正格点”交点(10,1),所以 2kπ+π2=10m,m =4k +120π, k ∈Z,又 m ∈(1,2),可得 m =9π20,根据图像可知,两个函数图像的所有交点个数为4;(3)由 (2) 知 f (x )=sin 9π20x,x ∈(0,59]所以 9π20x ∈(0,π4],所以f (x )=sin 9π20x ∈(0,22],故22f (x )∈(0,12],当 a >1时,不等式 log a x >22f (x )不能恒成立,当 0<a <1时, 由下图可知log a 59>22sin π4=12,由loga 59>12=logaa,.综上,实数a的取值范围是2581<a<1。
北京市2023-2024学年高一下学期期中考试数学试题含答案
北京2023—2024学年第二学期期中练习高一数学(答案在最后)2024.04说明:本试卷共4页,共120分.考试时长90分钟.一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin120︒的值等于()A.12-B.12C.2D.2【答案】D 【解析】【分析】根据特殊角的三角函数值得到2,从而可求解.【详解】由题意可得sin1202︒=,故D 正确.故选:D.2.若角α的终边过点()4,3,则πsin 2α⎛⎫+= ⎪⎝⎭()A.45B.45-C.35D.35-【答案】A 【解析】【分析】根据余弦函数定义结合诱导公式计算求解即可.【详解】因为角α的终边过点()4,3,所以4cos 5α==,所以π4sin cos 25αα⎛⎫+== ⎪⎝⎭.故选:A3.已知扇形的弧长为4cm ,圆心角为2rad ,则此扇形的面积是()A.22cmB.24cm C.26cm D.28cm 【答案】B【解析】【分析】由条件结合弧长公式l R α=求出圆的半径,然后结合扇形的面积公式12S lR =可得答案.【详解】因为扇形的圆心角2rad α=,它所对的弧长4cm l =,所以根据弧长公式l R α=可得,圆的半径2R =,所以扇形的面积211424cm 22S lR ==⨯⨯=;故选:B .4.向量a ,b ,c在正方形网格中的位置如图所示,若向量c a b λ=+,则实数λ=()A.2-B.1-C.1D.2【答案】D 【解析】【分析】将3个向量的起点归于原点,根据题设得到它们的坐标,从而可求λ的值.【详解】如图,将,,a b c的起点平移到原点,则()()()1,1,0,1,2,1a b c ==-= ,由c a b λ=+可得()()()2,11,10,1λ=+-,解得2λ=,故选:D.5.下列四个函数中以π为最小正周期且为奇函数的是()A.()cos2f x x =B.()tan2x f x =C.()()tan f x x =- D.()sin f x x=【答案】C 【解析】【分析】根据三角函数的周期性和奇偶性对选项逐一分析,由此确定正确选项.【详解】对于A ,函数()cos2f x x =的最小正周期为π,因为()()()cos 2cos 2f x x x f x -=-==,所以()cos2f x x =为偶函数,A 错误,对于B ,函数()tan 2xf x =的最小正周期为2π,因为()()tan tan 22x x f x f x ⎛⎫-=-=-=- ⎪⎝⎭,所以函数()tan 2x f x =为奇函数,B 错误,对于C ,函数()()tan f x x =-的最小正周期为π,因为()()()tan tan f x x x f x -==--=-,所以函数()()tan f x x =-为奇函数,C 正确,对于D ,函数()sin f x x =的图象如下:所以函数()sin f x x =不是周期函数,且函数()sin f x x =为偶函数,D 错误,6.在ABC 中,4AB =,3AC =,且AB AC AB AC +=- ,则AB BC ⋅= ()A.16B.16- C.20D.20-【答案】B 【解析】【分析】将AB AC AB AC +=- 两边平方,即可得到0AB AC ⋅=,再由数量积的运算律计算可得.【详解】因为AB AC AB AC +=- ,所以()()22AB ACAB AC +=-,即222222AB AB AC AC AB AB AC AC +⋅+=-⋅+uu u r uu u r uuu r uuu r uu u r uu u r uuu r uuu r ,所以0AB AC ⋅= ,即AB AC ⊥ ,所以()220416AB BC AB AC AB AB AC AB ⋅=⋅-=⋅-=-=- .故选:B7.函数cos tan y x x =⋅在区间3,22ππ⎛⎫⎪⎝⎭上的图像为()A.B.C.D.【答案】C 【解析】【分析】分别讨论x 在3,,[,)22ππππ⎛⎫⎪⎝⎭上tan x 的符号,然后切化弦将函数化简,作出图像即可.【详解】因为3,22x ππ⎛⎫∈ ⎪⎝⎭,所以sin ,,23sin ,.2x x y x x πππ⎧-<<⎪⎪=⎨⎪≤<⎪⎩故选:C.8.已知函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭,则“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】【分析】首先求出()f x α+、()f x α-的解析式,再根据正弦函数的性质求出使()f x α+是偶函数且()f x α-是奇函数时α的取值,再根据充分条件、必要条件的定义判断即可.【详解】因为()sin 24f x x π⎛⎫=+⎪⎝⎭,则()sin 224f x x ααπ⎛⎫+=++ ⎪⎝⎭,()sin 224f x x ααπ⎛⎫-=-+ ⎪⎝⎭,若()f x α-是奇函数,则112π,Z 4k k απ-+=∈,解得11π,Z 82k k απ=-∈,若()f x α+是偶函数,则222π,Z 42k k αππ+=+∈,解得22π,Z 82k k απ=+∈,所以若()f x α+是偶函数且()f x α-是奇函数,则π,Z 82k k απ=+∈,所以由()ππ8k k α=+∈Z 推得出()f x α+是偶函数,且()f x α-是奇函数,故充分性成立;由()f x α+是偶函数,且()f x α-是奇函数推不出()ππ8k k α=+∈Z ,故必要性不成立,所以“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的充分不必要条件.故选:A9.已知向量,,a b c 共面,且均为单位向量,0a b ⋅= ,则a b c ++ 的最大值是()A.1+ B.C.D.1-【答案】A 【解析】【分析】根据题意,可设出向量,,a b c 的坐标,由于这三个向量都是单位向量,则向量,,a b c的终点都落在以坐标原点为圆心的单位圆上,作出示意图,由向量的性质可知,只有当c 与a b +同向时,a b c ++ 有最大值,求解即可.【详解】因为向量,,a b c 共面,且均为单位向量,0a b ⋅= ,可设()1,0a =,()0,1b = ,(),c x y = ,如图,所以2a b += ,当c 与a b +同向时,此时a b c ++ 有最大值,为21+.故选:A .10.窗花是贴在窗户玻璃上的贴纸,它是中国古老的传统民间艺术之一在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均为正方形ABCD 各边的中点(如图2),若P 为 BC 的中点,则()PO PA PB ⋅+=()A .4B.6C.8D.10【答案】C 【解析】【分析】根据平面向量的线性运算将()PO PA PB ⋅+ 化为OA 、OB 、OP表示,再根据平面向量数量积的运算律可求出结果.【详解】依题意得||||2OA OB ==,||2OP =,3π4AOP =Ð,π4BOP =Ð,所以3π2||||cos 22(242OA OP OA OP ⋅=⋅=⨯-=- ,π2||||cos 22242OB OP OB OP ⋅=⋅=⨯= ,所以()PO PA PB ⋅+= ()OP OA OP OB OP -⋅-+- 22||OA OP OB OP OP =-⋅-⋅+ 222228=-+⨯=.故选:C二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上)11.写出一个与向量()3,4a =-共线的单位向量_____________.【答案】34,55⎛⎫- ⎪⎝⎭(答案不唯一)【解析】【分析】先求出a r ,则aa±即为所求.【详解】5a ==所以与向量()3,4a =- 共线的单位向量为34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭.故答案为:34,55⎛⎫- ⎪⎝⎭(答案不唯一)12.已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图,则π3f ⎛⎫= ⎪⎝⎭__________.【解析】【分析】根据图象可得函数()f x 的最大值,最小值,周期,由此可求,A ω,再由5π212f ⎛⎫=⎪⎝⎭求ϕ,由此求得的解析式,然后求得π3f ⎛⎫⎪⎝⎭.【详解】由图可知,函数()f x 的最大值为2,最小值为2-,35ππ3π41234T =+=,当5π12x =时,函数()f x 取最大值2,又()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭所以2A =,32π3π44ω⨯=,所以2ω=,所以()()2sin 2f x x ϕ=+,又5π212f ⎛⎫=⎪⎝⎭,所以5π5π2sin 2126f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ5π4π,22363ϕϕ-<<<+<,所以5πππ,623ϕϕ+==-,所以()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,ππ2sin 33f ⎛⎫== ⎪⎝⎭.13.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象过点10,2⎛⎫ ⎪⎝⎭,则ϕ=__________.,若将函数()f x 图象仅向左平移π4个单位长度和仅向右平移π2个单位长度都能得到同一个函数的图象,则ω的最小值为__________.【答案】①.π6##1π6②.83##223【解析】【分析】由条件列方程求ϕ,再利用平移变换分别得到变换后的函数解析式,并根据相位差为2π,Z k k ∈求解;【详解】因为函数()()sin f x x ωϕ=+的图象过点10,2⎛⎫ ⎪⎝⎭,所以1sin 2ϕ=,又π2ϕ<,所以π6ϕ=,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向左平移π4个单位长度得到函数ππππsin sin 4646y x x ωωω⎡⎛⎫⎤⎛⎫=++=++ ⎪ ⎢⎥⎝⎭⎦⎝⎭⎣的图象,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向右平移π2个单位长度得到ππππsin sin 2626y x x ωωω⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,则ππππ2π4626k ωω⎛⎫⎛⎫+--+=⎪ ⎪⎝⎭⎝⎭(Z k ∈),化简得3π2π4k ω=(Z k ∈),解得83k ω=(Z k ∈),由于0ω>,所以当1k =时,ω取得最小值83,故答案为:π8,63.14.已知边长为2的菱形ABCD 中,π3DAB ∠=,点E 满足3BE EC = ,点F 为线段BD 上一动点,则AF BE ⋅的最大值为______.【答案】3【解析】【分析】建立如图平面直角坐标系,设BF BD λ= ,利用平面向量线性运算与数量积的坐标表示可得AF BE⋅关于λ的表达式,从而得解.【详解】如图,以A为原点建立平面直角坐标系,则(0,0),(2,0),A B C D ,因为3BE EC =,所以(33333,4444BE BC ⎛⎫=== ⎪ ⎪⎝⎭,由题意,设()01BF BD λλ=≤≤,则(()BF λλ=-=- ,则()()()2,02,AF AB BF λλ=+=+-=-,所以()3333324422AF BE λλ⋅=-+=+,因为01λ≤≤,所以当1λ=时,AF BE ⋅的最大值为3.故答案为:3.15.声音是由物体振动产生的声波.我们听到的每个音都是由纯音合成的,纯音的数学模型是函数sin y A t ω=.音有四要素,音调、响度、音长和音色.它们都与函数sin y A t ω=及其参数有关,比如:响度与振幅有关,振幅越大响度越大,振幅越小响度越小;音调与频率有关,频率低的声音低沉,频率高的声音尖锐.我们平时听到的乐音不只是一个音在响,而是许多音的结合,称为复合音.我们听到的声音对应的函数是111sin sin 2sin 3sin 4234y x x x x =++++⋯..给出下列四个结论:①函数1111sin sin 2sin 3sin 4sin1023410y x x x x x =++++⋯+不具有奇偶性;②函数()111sin sin2sin3sin4234f x x x x x =+++在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增;③若某声音甲对应的函数近似为()11sin sin 2sin 323g x x x x =++,则声音甲的响度一定比纯音()1sin22h x x =的响度小;④若某声音乙对应的函数近似为()1sin sin 22x x x ϕ=+,则声音乙一定比纯音()1sin22h x x =更低沉.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】对①,结合奇偶性的定义判断即可;对②,利用正弦型函数的单调性作出判断;对③,分别判断()(),g x h x 的振幅大小可得;对④,求出周期,可得频率,即可得出结论.【详解】对于①,令()1111sin sin2sin3sin4sin1023410F x x x x x x =++++⋯+,所以()()()()()()1111sin sin 2sin 3sin 4sin 1023410F x x x x x x -=-+-+-+-+⋯+-,所以()1111sin sin2sin3sin4sin1023410F x x x x x x -=-----⋅⋅⋅-,所以()()F x F x -=-,所以()F x 是奇函数,①错误;对于②,由ππ88x -≤≤可得,ππ244x -≤≤,3π3π388x -≤≤,ππ422x -≤≤,所以111sin ,sin2,sin3,234x x x x 都在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以()111sin sin2sin3sin4234f x x x x x =+++在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以函数()f x 在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,②正确;对于③.因为()11sin sin 2sin 323g x x x x =++,所以π223g ⎛⎫= ⎪⎝⎭,所以()max 23g x ≥,即()g x 的振幅比()1sin22h x x =的振幅大,所以声音甲的响度一定比纯音()1sin22h x x =的响度大,所以③错误;对于④,因为()()()()112πsin 2πsin 24πsin sin 222x x x x x x ϕϕ+=+++=+=,所以函数()x ϕ为周期函数,2π为其周期,若存在02πα<<,使()()x x ϕϕα=+恒成立,则必有()()0ϕϕα=,()()110sin 0sin 00sin sin 222ϕϕααα∴=+===+,()sin 1cos 0αα∴+=,因为02πα<<,πα∴=,又()()()11πsin πsin 2πsin sin 222x x x x x ϕ+=+++=-+与()1sin sin 22x x x ϕ=+不恒相等,所以函数()1sin sin22x x x ϕ=+的最小正周期是2π,所以频率1112πf T ==而()h x 的周期为π,频率21πf =,12f f <,所以声音乙一定比纯音()1sin22h x x =更低沉,所以④正确.故答案为:②④.三、解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤)16.如图,在ABC 中,2BD DC = ,E 是AD 的中点,设AB a = ,AC b = .(1)试用a ,b 表示AD ,BE ;(2)若1a b == ,a 与b 的夹角为60︒,求AD BE ⋅ .【答案】(1)1233AD a b =+ ,5163BE a b =-+ (2)518-【解析】【分析】(1)利用向量加法减法的三角形法则及数乘运算即可求解;(2)根据(1)的结论,利用向量的数量积运算法则即可求解.【小问1详解】因为2BD DC = ,所以23BD BC = ,所以221)212(333333AB AC AB AB AC a b AD AB BD AB BC +-=+=+=+=+= .因为E 是AD 的中点,所以()11211()22323BE BA BD AB BC AB AC AB ⎛⎫=+=-+=-+- ⎪⎝⎭ 51516363AB AC a b =-+=-+ .【小问2详解】因为1a b == ,a 与b 的夹角为60︒,所以11cos ,1122a b a b a b ⋅==⨯⨯= ,由(1)知,1233AD a b =+ ,5163BE a b =-+ ,所以22125154233631899AD BE a b a b a a b b ⎛⎫⎛⎫⋅=+⋅-+=--⋅+ ⎪ ⎪⎝⎭⎝⎭541251892918=--⨯+=-.17.已知函数()π3sin 24f x x ⎛⎫=+⎪⎝⎭(1)求()f x 的最小正周期;(2)求函数()f x 的单调递增区间;(3)若函数()f x 在区间[]0,a 内只有一个零点,直接写出实数a 的取值范围.【答案】(1)()f x 的最小正周期为π,(2)函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;(3)a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.【解析】【分析】(1)根据正弦型函数的周期公式求解即可;(2)利用正弦函数的单调区间结论求解;(3)求出()0f x =的解后可得a 的范围.【小问1详解】因为()π3sin 24f x x ⎛⎫=+ ⎪⎝⎭,所以函数()f x 的最小正周期2ππ2T ==;【小问2详解】由πππ2π22π242k x k -≤+≤+,Z k ∈,可得3ππππ88k x k -≤≤+,Z k ∈,所以函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;【小问3详解】由π()3sin(204f x x =+=可得,π2π4x k +=,Z k ∈所以ππ28k x =-,Z k ∈,因为函数()f x 在区间[]0,a 上有且只有一个零点,所以3π7π88a ≤<,所以实数a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.18.已知()()()4,0,0,4,cos ,sin ,(0π)A B C ααα<<.(1)若OA OC += (O 为坐标原点),求OB 与OC 的夹角;(2)若⊥ AC BC ,求sin cos αα-的值.【答案】(1)OB 与OC 的夹角为π6,(2)sin cos 4αα-=【解析】【分析】(1)根据向量模长以及夹角的坐标公式计算即可;(2)由向量垂直得到数量积为0,进而得到1sin cos 4αα+=,通过平方得到2sin cos αα,进而可得()2sin cos αα-,再根据α的范围确定正负,开方得解.【小问1详解】因为()()()4,0,0,4,cos ,sin A B C αα,所以()()()4,0,0,4,cos ,sin OA OB OC αα=== ,所以()4cos ,sin OA OC αα+=+ ,由OA OC += ()224+cos sin 21αα+=,所以1cos 2α=,又0πα<<,,所以π3α=,13,22C ⎛⎫ ⎪ ⎪⎝⎭,设OB 与OC 的夹角为β()0πβ≤≤,则cos OB OC OB OC β⋅= 23342==,又0πβ≤≤,故OB 与OC 的夹角为π6,【小问2详解】由⊥ AC BC 得0AC BC ⋅= ,又()cos 4,sin AC αα=- ,()cos ,sin 4BC αα=- ,所以()()cos 4cos sin sin 40αααα-+-=,所以1sin cos 4αα+=,所以152sin cos 016αα-=<,又0πα<<,所以ππ2α<<,所以()21531sin cos 11616αα--=-=,所以sin cos 4αα-=.19.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭,且()f x 图像的相邻两条对称轴之间的距离为π2,再从条件①、条件②、条件③中选择两个作为一组已知条件.(1)确定()f x 的解析式;(2)设函数()π24g x x ⎛⎫=+ ⎪⎝⎭,则是否存在实数m ,使得对于任意1π0,2x ⎡⎤∈⎢⎥⎣⎦,存在2π0,2x ⎡⎤∈⎢⎥⎣⎦,()()12m g x f x =-成立?若存在,求实数m 的取值范围:若不存在,请说明理由.条件①:()f x 的最小值为2-;条件②:()f x 图像的一个对称中心为5π,012⎛⎫ ⎪⎝⎭;条件③:()f x 的图像经过点5π,16⎛⎫- ⎪⎝⎭.注:如果选择多组条件分别解答,按第一个解答计分.【答案】(1)选①②,②③,①③答案都为()2sin(2)6f x x π=+,(2)存在m 满足条件,m 的取值范围为2,0⎤⎦.【解析】【分析】(1)先根据已知求出()f x 的最小正周期,即可求解ω,选条件①②:可得()f x 的最小值为A -,可求A .根据对称中心可求ϕ,即可得解函数解析式;选条件①③:可得()f x 的最小值为A -,可求A .根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求ϕ,可得函数解析式;选条件②③:根据对称中心可求ϕ,再根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求A 的值,即可得解函数解析式.(2)求出函数()f x ,()g x 在π0,2⎡⎤⎢⎥⎣⎦上的值域,再结合恒成立、能成立列式求解作答.【小问1详解】由于函数()f x 图像上两相邻对称轴之间的距离为π2,所以()f x 的最小正周期π2π2T =⨯=,所以2π2T ω==,此时()()sin 2f x A x ϕ=+.选条件①②:因为()f x 的最小值为A -,所以2A =.因为()f x 图象的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以56k ϕπ=π-,()k ∈Z ,因为||2ϕπ<,所以π6ϕ=,此时1k =,所以()2sin(2)6f x x π=+.选条件①③:因为()f x 的最小值为A -,所以2A =.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,则5π()16f =-,所以5π2sin()13ϕ+=-,即5π1sin()32ϕ+=-.因为||2ϕπ<,所以7π5π13π636ϕ<+<,所以5π11π36ϕ+=,所以π6ϕ=,所以()2sin(2)6f x x π=+.选条件②③:因为函数()f x 的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以5ππ(Z)6k k ϕ=-∈.因为||2ϕπ<,所以π6ϕ=,此时1k =.所以π()sin(26f x A x =+.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,所以5π(16f =-,所以5ππsin 136A ⎛⎫+=-⎪⎝⎭,11πsin 16A =-,所以2A =,所以()2sin(2)6f x x π=+.综上,不论选哪两个条件,()2sin(2)6f x x π=+.【小问2详解】由(1)知,()2sin(2)6f x x π=+,由20,2x π⎡⎤∈⎢⎥⎣⎦得:2ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦,2π1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,因此[]2()1,2f x ∈-,由10,2x π⎡⎤∈⎢⎥⎣⎦得:1ππ5π2,444x ⎡⎤+∈⎢⎥⎣⎦,1πsin 2,142x ⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦,因此1()g x ⎡∈-⎣,从而1()1,g x m m m ⎡-∈---+⎣,由()()12m g x f x =-得:()()21f x g x m =-,假定存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,即存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()21f x g x m =-成立,则[]1,1,2m m ⎡---+⊆-⎣,于是得112m m --≥-⎧⎪⎨-+≤⎪⎩,解得20m -≤≤,因此存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,所以实数m的取值范围是2,0⎤⎦.20.对于定义在R 上的函数()f x 和正实数T 若对任意x ∈R ,有()()f x T f x T +-=,则()f x 为T -阶梯函数.(1)分别判断下列函数是否为1-阶梯函数(直接写出结论):①()2f x x =;②()1f x x =+.(2)若()sin f x x x =+为T -阶梯函数,求T 的所有可能取值;(3)已知()f x 为T -阶梯函数,满足:()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,且对任意x ∈R ,有()()2f T x f x T x --=-.若函数()()F x f x ax b =--有无穷多个零点,记其中正的零点从小到大依次为123,,,x x x ⋅⋅⋅;若1a =时,证明:存在b ∈R ,使得()F x 在[]0,2023T 上有4046个零点,且213240464045x x x x x x -=-=⋅⋅⋅=-.【答案】(1)①否;②是(2)2πT k =,*k ∈N (3)证明见解析【解析】【分析】(1)利用T -阶梯函数的定义进行检验即可判断;(2)利用T -阶梯函数的定义,结合正弦函数的性质即可得解;(3)根据题意得到()()F x T F x +=,()()F T x F x -=,从而取3344TT b f ⎛⎫=- ⎪⎝⎭,结合零点存在定理可知()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +,从而得解.【小问1详解】()2f x x =,则22(1)()(1)211f x f x x x x +-=+-=+≠;()1f x x =+,则(1)()11f x f x x x +-=+-=,故①否;②是.【小问2详解】因为()f x 为T -阶梯函数,所以对任意x ∈R 有:()()()()()sin sin sin sin f x T f x x T x T x x x T x T T +-=+++-+=+-+=⎡⎤⎣⎦.所以对任意x ∈R ,()sin sin x T x +=,因为sin y x =是最小正周期为2π的周期函数,又因为0T >,所以2πT k =,*k ∈N .【小问3详解】因为1a =,所以函数()()F x f x x b =--,则()()()()()()()F x T f x T x T b f x T x T b f x x b F x +=+-+-=+-+-=--=,()()()()()()()2F T x f T x T x b f x T x T x b f x x b F x -=----=+----=--=.取3344TT b f ⎛⎫=- ⎪⎝⎭,则有3330444TT T F f b ⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭,30444T T T F F T F ⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由于()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,因此()()F x f x x b =--在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,结合()()F T x F x -=,则有()F x 在0,2T ⎡⎤⎢⎥⎣⎦上有唯一零点4T ,在,2T T ⎡⎤⎢⎥⎣⎦上有唯一零点34T .又由于()()F x T F x +=,则对任意k ∈Ζ,有044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,33044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,因此,对任意m ∈Z ,()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +.综上所述,存在3344TT b f ⎛⎫=- ⎪⎝⎭,使得()F x 在[]0,2023T 上有4046个零点,且14T x =,234T x =,354T x =,474T x =,L ,404580894T x =,404680914T x =,其中,2132404640452T x x x x x x -=-=⋅⋅⋅=-=.【点睛】关键点睛:本题解决的关键是充分理解新定义T -阶梯函数,从而在第3小问推得()()F x T F x +=,()()F T x F x -=,由此得解.。
上海市复旦大学附属中学2023-2024学年高一下学期期中考试数学试题
复旦附中2023学年第二学期高一年级数学期中A 卷2024.04一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.函数y cosx =的最小正周期为.2.若02π-<α<,则点()cot ,cos αα在第象限.3.已知平面上,A B 两点的坐标分别是()()65,21,,,P 为直线AB 上一点,且13AP PB =,则点P 的坐标为.4.若2AB AC AB AC ==-= ,则AB AC +=.5.若α为第二象限角,且2sin cos α=α,则sin α=.6*.已知平面向量a 与b 的夹角为3π,若()1,12a b ,== ,则a在b 方向上的投影向量的坐标为.7.在ABC ∆中,,tanA tanB 是方程2670x x -+=的两个根,则tanC =.8.已知()()f x sin x =ω+ϕ,其中0,02ω>≤ϕ<π,满足以下三个条件:(1)函数()y f x =的最小正周期为π;(2)函数()y f x =的图像关为直线4x π=对称;(3)函数()y f x =在04,π⎛⎫⎪⎝⎭上足严格㺂函数.则函数()y f x =的表达式为()f x =.9.窗花足贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,图中所示的窗花轮廓可以看作是一个正八边形.已知该正八边形12345678A A A A A A A A 的边长为10,点P 在其边上运动,则121A A A P ⋅的取值范围是.10.已知()()f x sin x =ω,其中0ω>.若函数()y f x =在区间36,ππ⎡⎤-⎢⎥⎣⎦上有且只有一个最大值点和一个最小值点,则ω的取值范围为.11.设()()244,,,48,.sin x a x a a R f x a x a x a x ⎧π-π<⎪∈=⎨++-≥⎪⎩若函数()y f x =在区间()0,+∞内恰有7个零点,则a 的取值范围是.12*.若,a b均为单位向量,下列结论中正确的是(填写你认为所有正确结论的序号)(1)若0a b ⋅= 且()()0a c b c -⋅-≤ ,且1c = ,则a b c +-的取值范围为11,⎤-⎦;(2)若0a b ⋅= 且()()0a c b c -⋅-≤,且22c =,则a b c +- 的取值范围为2622⎢⎥⎣⎦;(3)若12a c ⋅= 且12a c a c +λ≥- 对任意实数λ恒成立,则abc b ++-(4)若12a c ⋅= 且12a c a c +λ≥- 对任意实数λ恒成立,则1122ab bc ++-二、选择题(本大题满分18分)本大题共4题,第1314-题每题4分,第1516-题每题5分13.下列说法错误的是().A.若//,//a b b c ,则//a cB.若,a b b c == ,则a c= C.若a 与b 都是非零向照且//a b ,则a与b 的方向相同或者相反D.若a与b 都是单位向量,则a b= 14.在ABC ∆中,角,,A B C 所对的边分别为,,a b c,其中a b ==.若满足条件的三角形有且只有两个,则角A 的取值范围为().A.03,π⎛⎫ ⎪⎝⎭B.06,π⎛⎫ ⎪⎝⎭C.32,ππ⎛⎫ ⎪⎝⎭D.2033,,ππ⎛⎫⎛⎫⋃π ⎪ ⎪⎝⎭⎝⎭15.设n 是正整数,集合2|,k A x x cosk Z nπ⎧⎫==∈⎨⎬⎩⎭.当2024n =时,集合A 元素的个数为()A.1012B.1013C.2023D.202416*.对于实数x ,用[]x 表示不超过x 的最大整数,例如[][]2.13,2.12-=-=.已知()f x sin x sinx =+,()()g x f x ⎡⎤=⎣⎦,则下列3个命题4,真命题的个数为().(1)函数()y g x =是周期函数;(2)函数()y g x =的图像关于直线2x π=对称;(3)方程()()f x g x x ⋅=有2个实数根.A.0B.1C.2D.3三、解答题(本大题满分78分)本大题共有5题17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知()2,3, 5.a b a b b ==-⋅=-(1)若ka b - 与2a b +垂直,求实数k 的值;(2)若ka b - 与2a kb -方向相反,求实数k 的值.18.(本题满分14分)本题共有3个小题,第1小题满分6分,第2小题满分4分,第3小题满分4分.已知向量)()22,12a x ,cosx b ,cosx =-=.设()f x a b =⋅.(1)求函数()y f x =的表达式,并写出该函数图像对称轴的方程;(2)将函数()y f x =的图像向右平移6π个单位,得到函数()y g x =的图像,直接写出函数()y g x =的表达式;(3)求关于x 的方程()20f x +=在区间[]0,π上的解集.19.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.简车是我国古代发明的一种水利利溉T.具.如图,假定在水流挺稳定的情况下,一个半径为5米的简车开启后按逆时针方向做匀速圆周运动,每分钟转1圈,筒车的轴心O 距离水面的高度为52米.设筒车上的桨个盛水简P 到水面的距离为y (单位:米)(在水面下则y 为负数).若以盛水简P 刚浮出水面时开始计算时间,则y 与时少t (单位:秒)之少的关系为()y Asin t K =ω+ϕ+,其中0,0,2A π>ω>ϕ<.(1)求,,,A K ωϕ的值;(2)当()4050t ,∈时,判断盛水筒P 的运动状态(处于向上运动状态、处于向下的运动状态、处于先向上后向下运动状态、处于先向下后向上运动状态),并说明理由.20*.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.如图所示,已知3,5,OA OB OA == 与OB 的夹角为23π,点C 是ABO ∆的外接圆优孤AB 上的一个动点(含端点,A B ),记OA 与OC的夹角为θ,并设OC xOA yOB =+ ,其中,x y 为实数.(1)求ABO ∆外接圆的直径;(2)试将OC表示为θ的函数()y f =θ,并指出该函数的定义域;(3)求OC 为直径时,x y +的值.21.(本题满分18分)本共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.对于定义域为R 的函数()y g x =,若存在常数0T >,使得()()y sin g x =是以T 为周期的周期函数,则称()y g x =为“正弦周期函数”,且称T 为其“正弦周期”.(1)判断函数2xy x cos=+是否为“正弦周期函数”,并说明理由;(2)已知()y g x =是定义在R 上的严格增函数,值域为R ,且()y g x =是以T 为“正弦周期”的“止弦周期函数”,若()()90,22g g T ππ==,且存在()00x ,T ∈,使得()052g x π=,求()2g T 的值;(3)已知()y h x =是以T 为一个“正弦周期”的“正弦周期函数”,且存在0a >和0A >,使得对任意x R ∈,都有()()h x a Ah x +=,证明:()y h x =是周期函数.复旦附中2023学年第二学期高一年级数学期中A 卷2024.04一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.函数y cosx =的最小正周期为.【答案】π2.若02π-<α<,则点()cot ,cos αα在第象限.【答案】二3.已知平面上,A B 两点的坐标分别是()()65,21,,,P 为直线AB 上一点,且13AP PB =,则点P 的坐标为.【答案】()54,4.若2AB AC AB AC ==-= ,则AB AC +=.【答案】5.若α为第二象限角,且2sin cos α=α,则sin α=.【答案】126*.已知平面向量a 与b 的夹角为3π,若()1,12a b ,== ,则a在b 方向上的投影向量的坐标为.【答案】105⎛⎫⎪ ⎪⎝⎭7.在ABC ∆中,,tanA tanB 是方程2670x x -+=的两个根,则tanC =.【答案】18.已知()()f x sin x =ω+ϕ,其中0,02ω>≤ϕ<π,满足以下三个条件:(1)函数()y f x =的最小正周期为π;(2)函数()y f x =的图像关为直线4x π=对称;(3)函数()y f x =在04,π⎛⎫⎪⎝⎭上足严格㺂函数.则函数()y f x =的表达式为()f x =.【答案】()2sin x +π(也可化简为2)sin x -9.窗花足贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,图中所示的窗花轮廓可以看作是一个正八边形.已知该正八边形12345678A A A A A A A A 的边长为10,点P 在其边上运动,则121A A A P ⋅的取值范围是.【答案】100⎡-+⎣10.已知()()f x sin x =ω,其中0ω>.若函数()y f x =在区间36,ππ⎡⎤-⎢⎥⎣⎦上有且只有一个最大值点和一个最小值点,则ω的取值范围为.【答案】993,022,,⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭也算对11.设()()244,,,48,.sin x a x a a R f x a x a x a x ⎧π-π<⎪∈=⎨++-≥⎪⎩若函数()y f x =在区间()0,+∞内恰有7个零点,则a 的取值范围是.【答案】4387,,23254⎡⎤⎧⎫⎛⎤⋃⎨⎬ ⎢⎥⎥⎣⎦⎩⎭⎝⎦12*.若,a b均为单位向量,下列结论中正确的是(填写你认为所有正确结论的序号)(1)若0a b ⋅= 且()()0a c b c -⋅-≤ ,且1c = ,则a b c +-的取值范围为11,⎤-⎦;(2)若0a b ⋅= 且()()0a c b c -⋅-≤,且2c =,则a b c +-的取值范围为22⎢⎥⎣⎦;(3)若12a c ⋅= 且12a c a c +λ≥- 对任意实数λ恒成立,则a b c b ++- (4)若12a c ⋅= 且12a c a c +λ≥- 对任意实数λ恒成立,则1122a b b c ++-.【答案】(1)(2)(3)(4)二、选择题(本大题满分18分)本大题共4题,第1314-题每题4分,第1516-题每题5分13.下列说法错误的是().A.若//,//a b b c ,则//a cB.若,a b b c == ,则a c= C.若a 与b 都是非零向照且//a b ,则a与b 的方向相同或者相反D.若a与b 都是单位向量,则a b= 【答案】A14.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,其中a b ==.若满足条件的三角形有且只有两个,则角A 的取值范围为().A.03,π⎛⎫ ⎪⎝⎭B.06,π⎛⎫ ⎪⎝⎭C.32,ππ⎛⎫ ⎪⎝⎭D.2033,,ππ⎛⎫⎛⎫⋃π ⎪ ⎪⎝⎭⎝⎭【答案】A15.设n 是正整数,集合2|,k A x x cosk Z nπ⎧⎫==∈⎨⎬⎩⎭.当2024n =时,集合A 元素的个数为()A.1012B.1013C.2023D.2024【答案】B16*.对于实数x ,用[]x 表示不超过x 的最大整数,例如[][]2.13,2.12-=-=.已知()f x sin x sinx =+,()()g x f x ⎡⎤=⎣⎦,则下列3个命题4,真命题的个数为().(1)函数()y g x =是周期函数;(2)函数()y g x =的图像关于直线2x π=对称;(3)方程()()f x g x x ⋅=有2个实数根.A.0B.1C.2D.3【答案】B三、解答题(本大题满分78分)本大题共有5题17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知()2,3, 5.a b a b b ==-⋅=-(1)若ka b - 与2a b +垂直,求实数k 的值;(2)若ka b - 与2a kb -方向相反,求实数k 的值.【答案】(1)1712k =(2)k =18.(本题满分14分)本题共有3个小题,第1小题满分6分,第2小题满分4分,第3小题满分4分.已知向量)()22,12a x ,cosx b ,cosx =-=.设()f x a b =⋅.(1)求函数()y f x =的表达式,并写出该函数图像对称轴的方程;(2)将函数()y f x =的图像向右平移6π个单位,得到函数()y g x =的图像,直接写出函数()y g x =的表达式;(3)求关于x 的方程()20f x +=在区间[]0,π上的解集.【答案】(1),62k x k Z ππ=+∈(2)()2216g x sin x π⎛⎫=-- ⎪⎝⎭(3)526,ππ⎧⎫⎨⎬⎩⎭【解析】(1)()2222221,36f x x cos x sin x π⎛⎫=-+=+-⋅ ⎪⎝⎭ 分令262x k ππ+=π+,得对称轴为直线,62k x k Z ππ=+∈..6分(2)()2216g x sin x π⎛⎫=-- ⎪⎝⎭.(3)由()20f x +=得1262sin x π⎛⎫+=- ⎪⎝⎭,由于[]130,2,2666x ,x ,πππ⎡⎤∈π+∈⋅⎢⎣⎦分所以7266x ππ+=或116π,故所求解集为5.426,ππ⎧⎫⎨⎬⎩⎭分另解:由1262sin x π⎛⎫+=- ⎪⎝⎭得2266x k ππ+=π-或526k ππ-,得6x k π=π-或,22k ππ- 分而[]0x ,∈π,所以56x π=或2π,所求解集为526,ππ⎧⎫⎨⎬⎩⎭.19.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.简车是我国古代发明的一种水利利溉T.具.如图,假定在水流挺稳定的情况下,一个半径为5米的简车开启后按逆时针方向做匀速圆周运动,每分钟转1圈,筒车的轴心O 距离水面的高度为52米.设筒车上的桨个盛水简P 到水面的距离为y (单位:米)(在水面下则y 为负数).若以盛水简P 刚浮出水面时开始计算时间,则y 与时少t (单位:秒)之少的关系为()y Asin t K =ω+ϕ+,其中0,0,2A π>ω>ϕ<.(1)求,,,A K ωϕ的值;(2)当()4050t ,∈时,判断盛水筒P 的运动状态(处于向上运动状态、处于向下的运动状态、处于先向上后向下运动状态、处于先向下后向上运动状态),并说明理由.【答案】(1)55,2A K ==30πω=6πϕ=-(2)y 单调递减,6分所以盛水筒P 处于向下运动的状态.【解析】(1)如图,设简车与水面的交点为,M N ,连接OM ,过点P 作PB MN ⊥于点B ,过点O 分别作OD MN ⊥于点,D OC PB ⊥于点C ,则55,2A OM K OD ====.因为筒车转一周需要1分钟,所以26030ππω==,故30MOP t π∠=.在Rt OMD ∆中,12OD sin OMD OM ∠==,所以6COM OMD π∠=∠=,即6πϕ=-.(四个答案各2分)(2)盛水筒P 处于向下运动的状态 (3)分理由如下:553062y sin t ππ⎛⎫=-+ ⎪⎝⎭,当()734050,30662t ,t ,ππππ⎛⎫∈-∈ ⎪⎝⎭,此时y 单调递减,6分所以盛水筒P 处于向下运动的状态.20*.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.如图所示,已知3,5,OA OB OA == 与OB 的夹角为23π,点C 是ABO ∆的外接圆优孤AB 上的一个动点(含端点,A B ),记OA 与OC的夹角为θ,并设OC xOA yOB =+ ,其中,x y 为实数.(1)求ABO ∆外接圆的直径;(2)试将OC表示为θ的函数()y f =θ,并指出该函数的定义域;(3)求OC 为直径时,x y +的值.【答案】(1)7AB =(2)()23,03f cos ,π⎡⎤θ=θ+θθ∈⎢⎥⎣⎦(3)18845x y +=【解析】(1)在AOB ∆中,由余弦定理222249AB OA OB OA OBcos AOB =+-⋅∠=,即7,2AB = 分(2)连接2,03AC ,π⎡⎤θ∈⎢⎥⎣⎦,在AOC ∆中,由正弦定理2OA R sin OCA =∠,则33,2214OA sin OCA R ∠== 分又02OCA ,π⎛⎫∠∈ ⎪⎝⎭,则1314cos OCA ∠==,于是()33131414sin OAC sin OCA sin OCA cos cos OCA sin cos sin ∠=∠+θ=∠⋅θ+∠⋅θ=θ+θ则由正弦定理得132314OC Rsin OAC sin cos ⎫=∠=θ+θ=θ+θ⎪⎪⎝⎭ .所以()23,0.63OC f cos ,π⎡⎤=θ=θ+θθ∈⎢⎥⎣⎦ 分(定义域1分,注意格式)另解:()13222,0143OC Rsin OAC Rsin B arccos ,π⎛⎫⎡⎤=∠=π-θ-=θ+θ∈⎪⎢⎥⎝⎭⎣⎦.(3)设AB 与OC 交于点D ,当OC 为直径时,2OAC π∠=,此时13,214sin cos OCA cos sin OCA θ=∠=θ=∠= 分又由正弦定理可得5311,.21414OB sin BAO cos BAO R ∠==∠==于是()47,449sin ADO sin BAO sin cos BAO cos sin BAO ∠=θ+∠=θ⋅∠+θ⋅∠= 分因此由正弦定理得,694OA OD sin BAO sin ODA =⋅∠=∠ 分而由向量的共线定理可得存在()01,λ∈,使得()1OD OA OB =λ+-λ,且2R OC ODOD=⋅ 故()221881,.845R R OC xOA yOB OA OB x y OD OD ⎡⎤=+=λ+-λ+==⎣⎦分另解:22159,25,2OA OB OA OB ==⋅=- .由于此时22,OA AC xOA yOB OA OC OA OA ⊥+⋅=⋅= ,得1599,42x y -= 分同理,由OB BC ⊥得,22xOA OB yOB OC OB OB ⋅+=⋅= ,得1525252x y -+=.解得()2226915x,y ,⎛⎫= ⎪⎝⎭,因此188.845x y += 分21.(本题满分18分)本共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.对于定义域为R 的函数()y g x =,若存在常数0T >,使得()()y sin g x =是以T 为周期的周期函数,则称()y g x =为“正弦周期函数”,且称T 为其“正弦周期”.(1)判断函数2xy x cos=+是否为“正弦周期函数”,并说明理由;(2)已知()y g x =是定义在R 上的严格增函数,值域为R ,且()y g x =是以T 为“正弦周期”的“止弦周期函数”,若()()90,22g g T ππ==,且存在()00x ,T ∈,使得()052g x π=,求()2g T 的值;(3)已知()y h x =是以T 为一个“正弦周期”的“正弦周期函数”,且存在0a >和0A >,使得对任意x R ∈,都有()()h x a Ah x +=,证明:()y h x =是周期函数.【答案】(1)是(2)()1272g T =π(3)见解析【解析】(1)()4422x x sin x cos sin x cos +π⎛⎫⎛⎫+π+=+ ⎪ ⎪⎝⎭⎝⎭,所以2xy x cos =+是正弦周期函数.……过程、结论各2分(2)由()()()021sing x T sing T sing T +===,故()()02,22,222g x T m g T t m t Z ππ+=π+=π+∈ 、、分则由02T x T T <+<,且()y g x =严格增,得其中整数3,4m t ≥≥,下证4t =.若不然,5t ≥,则()2122g T π≥,由()y g x =的值域为R 知,存在()1212,2,x x T ,T x x ∈≠使得()1132g x π=,()2172g x π=,则()()()()1212121,0sing x sing x sing x T sing x T x T x T T ==-=-=<-<-<由()()()()()()121290,122g g x T g x T g T sing x T sing x T ππ=<-<-<=-=-=得120x T x T x -=-=,这与12x x ≠矛盾..4 分17π因此综上所述,()2,6217g T =π分(3)假设()y h x =不是周期函数,则()()h x T h x +=与()()h x a h x +=均不恒成立.特别地,1A ≠.因为()()h x T h x +=不恒成立,所以存在0x R ∈,使得()()00h x T h x +≠.......反证法2分因为()()011A ,,∈⋃+∞,所以存在n Z ∈,使得()01n A h x <且()01n A h x T +<.其中若1A >,取n 为负整数;若01A <<,取A 为正整数..5 分此时,由正弦周期性得()()()()00sin h x na T sin h x na ++=+,即()()()()00n n sin A h x T sin A h x +=,综上,()y h x =是周期函数.另解:若1A =,则由()()h x a h x +=可知()y h x =为周期函数.2 分若01A <<,则对任意0x R ∈,存在正整数n ,使得()01n A h x ≤且()01n A h x T +≤.此时,()()()()()()()()0000n n sin A h x T sin h x na T sin h x na sin A h x +=++=+=.若1A >,则同理可证(取n 为负整数即可)..8 分综上,得证.。
北京市中国人民大学附属中学2023-2024学年高一下学期期中练习数学试题
人大附中2023~2024学年度第二学期高一年级数学期中练习2024年4月23日制卷人:宁少华王鼎审卷人:吴中才说明:本试卷共六道大题,共7页,满分150分,考试时间120分钟第Ⅰ卷(共18题,满分100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1.在平行四边形ABCD 中,BA DA += ()A.CAB.ACC.BDD.DB【答案】A 【解析】【分析】利用向量加法的平行四边形法则求解即得.【详解】在ABCD Y 中,,BA CD DA CB ==,所以BA DA CD CB CA +=+=.故选:A2.已知角α终边上一点(1,)P y ,若cos 5α=,则y 的值为()A.B.2C.D.2±【答案】D 【解析】【分析】利用余弦函数的定义列式计算即得.【详解】由角α终边上一点(1,)P y ,得r =,因此5cos 5α==,解得2y =±,所以y 的值为2±.故选:D3.下列函数中,既是偶函数又在区间π0,2⎛⎫⎪⎝⎭单调递增的是()A.tan y x= B.sin y x= C.cos y x= D.sin y x x=【答案】D 【解析】【分析】根据奇偶性的定义判断排除AB ,再由单调性排除C 的可得.【详解】由三角函数性质知选项AB 中函数都是奇函数,C 中函数是偶函数,但它在π(0,)2上是减函数,也排除,只有D 可选,实际上,记()sin f x x x =,则()sin()sin ()f x x x x x f x -=--==,它是偶函数,又设12π02x x <<<,则120sin sin x x <<,因此1122sin sin x x x x <,即12()()f x f x <,()f x 在π(0,)2上是增函数,满足题意.故选:D .4.已知P 为ABC 所在平面内一点,2BC CP =uuu r uur,则()A .1322AP AB AC =-+uuu r uuur uuu r B.1233AP AB AC=+C.3122AP AB AC =-uuu r uuu r uuu r D.2133AP AB AC =+uuu r uuu r uuu r 【答案】A 【解析】【分析】根据题意作出图形,利用向量线性运算即可得到答案.【详解】由题意作出图形,如图,则11()22AP AC CP AC BC AC AC AB =+=+=+-1322AB AC =-+,故选:A.5.把函数()sin 2f x x =的图象按向量π(,1)6m =- 平移后,得到新函数的解析式为()A.πsin(2)16y x =++B.πsin(2)16y x =-+C.πsin(2)13y x =++ D.πsin(213y x =-+【答案】C 【解析】【分析】把函数()f x 的图象向左平移π6个单位长度,再向上平移1个单位长度,写出解析式即可.【详解】把函数()sin 2f x x =的图象按向量π(,1)6m =- 平移,即把函数()f x 的图象向左平移π6个单位长度,再向上平移1个单位长度,所以得到新函数的解析式为ππsin 2()1sin(2)163y x x =++=++.故选:C6.在人大附中π节活动的入场券中有如下图形,单位圆M 与x 轴相切于原点O ,该圆沿x 轴向右滚动,当小猫头鹰位于最上方时,其对应x 轴的位置正好是π,若在整个运动过程中当圆M 滚动到与出发位置时的圆相外切时(此时记圆心为N ),此时小猫头鹰位于A 处,圆N 与x 轴相切于B ,则劣弧AB 所对应的扇形面积是()A.1B.2C.π3D.π4【答案】A 【解析】【分析】根据给定条件,求出劣弧AB 的长,再利用扇形面积公式计算即得.【详解】由圆M 与圆N 外切,得2MN =,又圆M 、圆N 与x 轴分别相切于原点O 和B ,则2OB MN ==,依题意,圆M 沿x 轴向右无滑动地滚动,因此劣弧AB 长等于OB 长2,所以劣弧AB 所对应的扇形面积是11212⨯⨯=.故选:A7.已知函数()sin()(0,0)f x A x A ωϕω=+>≠,则“π2π,Z 2k k ϕ=+∈”是“()f x 为偶函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】利用正余弦函数性质,充分条件、必要条件的定义判断即得.【详解】当π2π,Z 2k k ϕ=+∈时,π()si 2n()os π2c f x A x A x k ωω=+=+,()f x 为偶函数;反之,()f x 为偶函数,则π2π,Z 2k k ϕ=+∈或π2π,Z 2k k ϕ=-∈,所以“π2π,Z 2k k ϕ=+∈”是“()f x 为偶函数”的充分不必要条件.故选:A8.已知O 为坐标原点,P 是α终边上一点,其中4cos ,||45OP α==,非零向量a的方向与x 轴正方向相同,若,[0,5]||OQ a a λλ=∈ ,则OP OQ -取值范围是()A.16,35⎡⎤⎢⎥⎣⎦B.12,35⎡⎤⎢⎥⎣⎦C.16,45⎡⎤⎢⎥⎣⎦D.12,45⎡⎤⎢⎥⎣⎦【答案】D 【解析】【分析】根据向量模的坐标表示写出模的表达式,然后由函数性质得结论.【详解】由已知1612(,55P 或1612(,)55-,1612(,)55OP = 或1612(,)55-,(1,0)(,0)OQ a a λλλ=== ,1612(,55OP OQ λ-=-±,OP OQ -= ,又05λ≤≤,所以165λ=时,OP OQ - 取最小值125,0λ=时,OP OQ - 取最大值4,故选:D .9.函数sin 3sin 5()sin 35x xf x x =++图像可能是()A.B.C. D.【答案】D 【解析】【分析】根据函数图象的对称性排除AC ,再结合函数值π()2f 大小排除B ,从而得正确结论.【详解】从四个选项中可以看出,函数的周期性、奇偶性、函数值的正负无法排除任一个选项,但是sin(3π3)sin()sin 3sin 5sin (35π5)(π)sin(π)355x x f x x xx x x f ---=-++=+=+,因此()f x 的图象关于直线π2x =对称,可排除AC ,又3π5πsinsin ππ111322()sin 1122353515f =++=-+=<,排除B ,故选:D .10.已知函数sin ()xf x x=,下列结论错误的是()A.()f x 的图像有对称轴B.当(π,0)(0,π)x ∈-⋃时,cos ()1x f x <<C.sin ()xf x x=有最小值 D.方程()cos ln f x x x =-在(1,)π上无解【答案】D 【解析】【分析】选项A ,根据条件可得sin ()xf x x=为偶函数,即可判断选项A 的正误,选项B ,利用偶函数的性质,先判断π()0,x ∈时,cos ()1x f x <<成立,分π,π2x ⎡⎫∈⎪⎢⎣⎭和π0,2x ⎛⎫∈ ⎪⎝⎭两种情况,当π,π2x ⎡⎫∈⎪⎢⎣⎭时,利用三角函数的符号即可判断成立,当π0,2x ⎛⎫∈ ⎪⎝⎭时,利用三角函数的定义及弧长公式,即可判断成立;选项C ,利用sin y x =的周期性及sin ()x f x x=的奇偶性,当0x >,得到sin ()xf x x=存在最小值,则最小值只会在区间()π,2π内取到,再利用导数与函数单调性间的关系,即可判断出选项C 的正误;选项D ,利用零点存在性原理,即可判断出选项D 的正误,从而得出结果.【详解】对于选项A ,易知sin ()xf x x=的定义域为{}|0x x ≠,关于原点对称,又sin()sin ()()x x f x f x x x--===-,所以sin ()xf x x =为偶函数,关于y 轴对称,所以选项A 结论正确,对于选项B ,当π,π2x ⎡⎫∈⎪⎢⎣⎭时,cos 0x ≤,又0sin 1x <≤,π12x ≥>,所以sin 0()1x f x x <=<,即当π,π2x ⎡⎫∈⎪⎢⎣⎭时,cos ()1x f x <<成立,当π0,2x ⎛⎫∈ ⎪⎝⎭时,如图,在单位圆中,设OP 是角x 的终边,过A 作x 轴的垂线交OP 于T ,过P 作x 轴的垂线交x 轴于H ,易知 AP x =,由三角函数的定义知,sin ,tan PH x AT x ==,由图易知OPA OAT POA S S S << 扇形,即111222PH x AT <<,得到 PH APAT <<,所以sin tan <<x x x ,即有sin cos 1xx x<<,。
浙江省余姚2023-2024学年高一下学期期中考试数学试题含答案
余姚2023学年第二学期期中检测高一数学试卷(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知1i22i z -=+,则z z -=()A .i- B.iC.0D.1【答案】A 【解析】【分析】根据复数的除法运算求出z ,再由共轭复数的概念得到z ,从而解出.【详解】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.故选:A .2.如图,一个水平放置的平面图形的斜二测直观图是直角梯形O A B C '''',且//O A B C '''',242O A B C A B '''''='==,,则该平面图形的高为()A. B.2C.D.【答案】C 【解析】【分析】由题意计算可得O C '',还原图形后可得原图形中各边长,即可得其高.【详解】在直角梯形O A B C ''''中,//O A B C '''',24,2O A B C A B ''''='==',则O C ==''直角梯形O A B C ''''对应的原平面图形为如图中直角梯形OABC ,则有//,,24,242BC OA OC OA OA BC OC O C ''⊥====,所以该平面图形的高为42.故选:C.3.在平行四边形ABCD 中,,AC BD 相交于点O ,点E 在线段BD 上,且3BE ED = ,则AE =()A.1142AD AC + B.1124AD AC +C.3144AD AC +D.1344AD AC +【答案】B 【解析】【分析】利用平面向量基本定理即可得到答案.【详解】因为O 是AC 的中点,12AO AC ∴= ,又由3BE ED =可得E 是DO 的中点,11112224AE AD AO AD AC ∴=+=+ .故选:B.4.某小组有2名男生和3名女生,从中任选2名学生去参加唱歌比赛,在下列各组事件中,是互斥事件的是()A.恰有1名女生和恰有2名女生B.至少有1名男生和至少有1名女生C.至少有1名女生和全是女生D.至少有1名女生和至多有1名男生【答案】A 【解析】【分析】根据互斥事件的定义判断即可.【详解】依题意可能出现2名男生、1名男生1名女生、2名女生;对于A :恰有1名女生即选出的两名学生中有一名男生一名女生和恰有2名女生,他们不可能同时发生,故是互斥事件,故A 正确;对于B :当选出的两名学生中有一名男生一名女生,则至少有1名男生和至少有1名女生都发生了,故不是互斥事件,故B 错误;对于C :至少有1名女生包含有一名男生一名女生与全是女生,所以当全是女生时,至少有1名女生和全是女生都发生了,故不是互斥事件,故C 错误;对于D :至少有1名女生包含有一名男生一名女生与全是女生,至多有1名男生包含有一名男生一名女生与全是女生,故至少有1名女生和至多有1名男生是相等事件,故D 错误.故选:A5.已知点()1,1A ,()0,2B ,()1,1C --.则AB 在BC上的投影向量为()A.10310,55⎛ ⎝⎭B.10310,55⎛⎫-- ⎪ ⎪⎝⎭C.13,55⎛⎫⎪⎝⎭ D.13,55⎛⎫-- ⎪⎝⎭【答案】C 【解析】【分析】根据向量的坐标公式,结合投影向量的定义进行求解即可.【详解】因为()1,1A ,()0,2B ,()1,1C --.所以()1,1AB =-uu u r,()1,3BC =--,5cos ,5AB BC AB BC AB BC⋅〈〉==-⋅,所以向量AB 与BC的夹角为钝角,因此量AB 在BC上的投影向量与BC 方向相反,而cos ,55AB AB BC ⋅〈〉==,155BC == ,所以AB 在BC 上的投影向量为()11131,3,5555BC ⎛⎫-⋅=-⋅--= ⎪⎝⎭,故选:C6.秦九韶是我国南宋时期的著名数学家,他在著作《数书九章》中提出,已知三角形三边长计算三角形面积的一种方法“三斜求积术”,即在ABC 中,,,a b c 分别为内角,,A B C 所对应的边,其公式为:ABCS ==若22sin sin C c A =,3cos 5B =,a b c >>,则利用“三斜求积术”求ABC 的面积为()A.54B.34 C.35D.45【答案】D 【解析】【分析】由正弦定理可得2ac =,由余弦定理可得222625a cb +-=,在结合已知“三斜求积术”即可求ABC 的面积.【详解】解:因为22sin sin C c A =,由正弦定理sin sin a c A C=得:22c c a =,则2ac =又由余弦定理2223cos 25a cb B ac +-==得:22236255a c b ac +-==则由“三斜求积术”得45ABC S == .故选:D.7.已知某样本的容量为50,平均数为36,方差为48,现发现在收集这些数据时,其中的两个数据记录有误,一个错将24记录为34,另一个错将48记录为38.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则()A.236,48s x =<B.236,48s x =>C.236,48s x ><D.236,48s x <>【答案】B 【解析】【分析】根据数据总和不变,则平均数不变,根据方差的定义得()()()2221248148363636850x x x ⎡⎤=-+-++-+⎣⎦ ,而()()()4221222813628843668035s x x x +⎡-⎤=-+>⎣⎦-+ .【详解】设收集的48个准确数据为1248,,x x x ,所以124834383650x x x +++++= ,所以12481728x x x +++= ,所以124824483650x x x x +++++== ,又()()()222221248148363636(3436)(3836)50x x x ⎡⎤=-+-++-+-+-⎣⎦ ()()()22212481363636850x x x ⎡⎤=-+-++-+⎣⎦ ,()()()42222222183636(2436)(48136536)0s x x x ⎡⎤=-+⎣⎦-++-+-+- ()()()222281413628848365360x x x ⎡⎤=+-+-+->⎣⎦ ,故选:B.8.在ABC 中,π6A =,π2B =,1BC =,D 为AC 中点,若将BCD △沿着直线BD 翻折至BC D '△,使得四面体C ABD '-的外接球半径为1,则直线BC '与平面ABD 所成角的正弦值是()A.3B.23C.3D.3【答案】D 【解析】【分析】由直角三角形性质和翻折关系可确定BC D '△为等边三角形,利用正弦定理可确定ABD △外接圆半径,由此可知ABD △外接圆圆心O 即为四面体C ABD '-外接球球心,由球的性质可知OG ⊥平面BC D ',利用C OBD O C BD V V ''--=可求得点C '到平面ABD 的距离,由此可求得线面角的正弦值.【详解】π6A =,π2B =,1BC =,2AC ∴=,又D 为AC 中点,1AD CD BD ∴===,则1BC C D BD ''===,即BC D '△为等边三角形,设BC D '△的外接圆圆心为G ,ABD △的外接圆圆心为O ,取BD 中点H ,连接,,,,,C H OH OG OB OC OD '',π6A =,1BD =,112sin BDOB A∴=⋅=,即ABD △外接圆半径为1,又四面体C ABD '-的外接球半径为1,O ∴为四面体C ABD '-外接球的球心,由球的性质可知:OG ⊥平面BC D ',又C H '⊂平面BC D ',OG C H '∴⊥,22333C G CH '===,1OC '=,3OG ∴=;设点C '到平面ABD 的距离为d ,由C OBD O C BD V V ''--=得:1133OBD C BD S d S OG '⋅=⋅ ,又OBD 与C BD ' 均为边长为1的等边三角形,3d OG ∴==,直线BC '与平面ABD 所成角的正弦值为3d BC ='.故选:D.【点睛】关键点点睛;本题考查几何体的外接球、线面角问题的求解;本题求解线面角的关键是能够确定外接球球心的位置,结合球的性质,利用体积桥的方式构造方程求得点到面的距离,进而得到线面角的正弦值.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.数据1,2,3,3,4,5的平均数和中位数相同B.数据6,5,4,3,3,3,2,2,1的众数为3C.有甲、乙、丙三种个体按3:1:2的比例分层抽样调查,如果抽取的甲个体数为9,则样本容量为30D.甲组数据的方差为4,乙组数据为5,6,9,10,5,则这两组数据中较稳定的是乙组【答案】AB 【解析】【分析】根据已知条件,结合平均数、方差公式,众数、中位数的定义,以及分层抽样的定义,即可求解.【详解】对于A ,平均数为12334536+++++=,将数据从小到大排列为1,2,3,3,4,5,所以中位数为3332+=,A 正确;对于B ,数据6,5,4,3,3,3,2,2,1的众数为3,B 正确;对于C ,根据样本的抽样比等于各层的抽样比知,样本容量为3918312÷=++,C 错误;对于D ,乙数据的平均数为56910575++++=,乙数据的方差为()()()()()22222157679710757 4.445⎡⎤-+-+-+-+-=>⎣⎦,所以这两组数据中较稳定的是甲组,D 错误.故选:AB.10.在ABC 中,内角A 、B 、C 所对的边分别a 、b 、c ,22sin a bc A =,下列说法正确的是()A.若1a =,则14ABC S =△B.ABC 外接圆的半径为bc aC.c b b c+取得最小值时,π3A =D.π4A =时,c b b c+值为【答案】ABD 【解析】【分析】对A ,由正弦定理化简2sin a b C =可得1sin 2C b=,再根据三角形面积公式判断即可;对B ,根据2sin a b C =结合正弦定理判断即可;对C ,根据正弦定理与余弦定理化简sin 2sin sin A B C =可得π4b c A c b ⎛⎫+=+ ⎪⎝⎭,再根据基本不等式与三角函数性质判断即可;对D ,根据三角函数值域求解即可.【详解】对A ,因为22sin a bc A =,由正弦定理可得sin 2sin sin a A b A C =,因为()0,πA ∈,则sin 0A >,则2sin a b C =,又因为1a =,故1sin 2C b =,故三角形面积为1111sin 12224ABC S ab C b b ==⨯⨯⨯=△,故A 正确;对B ,2sin a b C =,则sin 2aC b=,设ABC 外接圆的半径为R ,则2sin cR C=,故22c bc R a a b==⨯,故B 正确;对C ,因为22sin a bc A =,由余弦定理222sin 2cos b c c A b bc A =+-,即()222sin cos bc A A b c +=+,化简可得π4b c A c b⎛⎫+=+ ⎪⎝⎭,由基本不等式得2b c c b +≥=,当且仅当b c =时取等号,此时πsin 42A ⎛⎫+= ⎪⎝⎭,故当π2A =,π4B C ==时,b c c b +取得最小值2,故C 错误;对D ,由C,π4b c A c b ⎛⎫+=+ ⎪⎝⎭,当π4A =时,b c c b+的值为,故D 正确;故选:ABD.11.如图,在棱长为4的正方体1111ABCD A B C D -中,E ,F ,G 分别为棱,,AD AB BC 的中点,点P 为线段1D F 上的动点(包含端点),则()A.存在点P ,使得1//C G 平面BEPB.对任意点P ,平面1FCC ⊥平面BEPC.两条异面直线1D C 和1BC 所成的角为45︒D.点1B 到直线1D F 的距离为4【答案】ABD 【解析】【分析】A 选项当P 与1D 重合时,用线面平行可得出11//C G D E ,进而可得;B 选项证明BE ⊥平面1FCC 即可得出;选项C 由正方体的性质和画图直接得出;选项D 由余弦定理确定1145B D F ∠=︒,之后求距离即可.【详解】A :当P 与1D 重合时,由题可知,11111111//,,//,,//,EG DC EG DC D C DC D C DC EG D C EG D C ==∴=,四边形11EGC D 为平行四边形,故11//C G D E ,又1C G ⊄平面BEP ,1D E ⊂平面BEP ,则1//C G 平面BEP ,故A 正确;B :连接CF ,1CC ⊥ 平面ABCD ,BE ⊂平面ABCD ,1CC BE ∴⊥,又,,,AE BF AB BC A CBF BAF CBF ==∠=∠∴ ≌,故90,AEB BFC EBA BFC CF BE ∠=∠⇒∠+∠=︒∴⊥,又11,,CF CC C CF CC =⊂ 平面1FCC ,BE ∴⊥平面1FCC ,又BE ⊂平面BEP ,故对任意点P ,平面1FCC ⊥平面BEP ,故B 正确;C:由正方体的结构特征可知11//BC AD ,异面直线1D C 和1BC 所成的角即为1AD 和1D C 所成的角,由图可知为60︒,故C 错误;D :由正方体的特征可得1111B D FD B F =====,222222111111111116cos ,4522B D FD B FB D F B D F B D FD +-+-∴∠===∴∠=︒⋅,所以点1B 到直线1D F 的距离1111sin 42d B D B D F =∠==,故D 正确;故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12.为培养学生“爱读书、读好书、普读书”的良好习惯,某校创建了人文社科类、文学类、自然科学类三个读书社团.甲、乙、丙三位同学各自参加其中一个社团,每位同学参加各个社团的可能性相同,则三人恰好参加同一个社团的概率为______.【答案】19【解析】【分析】根据题意,得到基本事件的总数为27n =,以及所求事件中包含的基本事件个数为3m =,结合古典摡型的概率计算公式,即可求解.【详解】由人文社科类、文学类、自然科学类三个读书社团,甲、乙、丙三位同学各自参加其中一个社团,每位同学参加各个社团的可能性相同,基本事件的总数为3327n ==,三人恰好参加同一个社团包含的基本事件个数为3m =,则三人恰好参加同一个社团的概率为31279m P n ===.故答案为:19.13.如图,在ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足()12AP mAC AB m =+∈R ,若2AC =,4AB =,则AP CD ⋅的值为______.【答案】3【解析】【分析】利用//CP CD ,结合已知条件可把m 求出,由平面向量基本定理把AP 、CD 用已知向量AB 、AC表示,再利用数量积的运算法则可求数量积.【详解】 2AD DB =,∴23AD AB = ,//CP CD,∴存在实数k ,使得CP kCD = ,即()AP AC k AD AC -=- ,又 12AP mAC AB =+ ,则()12123m AC AB k AB AC ⎛⎫-+=- ⎪⎝⎭,∴11223m kk -=-⎧⎪⎨=⎪⎩,34k ∴=,14m =,则()112423AP CD AP AD AC AC AB AB AC ⎛⎫⎛⎫⋅=⋅-=+⋅- ⎪⎪⎝⎭⎝⎭2221111611π242cos 33433433AB AC AB AC =--⋅=--⨯⨯ ,故答案为:3.14.已知正方体1111ABCD A B C D -的棱长为3,动点P 在1AB C V 内,满足1D P =,则点P 的轨迹长度为______.【解析】【分析】确定正方体1111ABCD A B C D -对角线1BD 与1AB C V 的交点E ,求出EP 确定轨迹形状,再求出轨迹长度作答.【详解】在正方体1111ABCD A B C D -中,如图,1DD ⊥平面ABCD ,AC ⊂平面ABCD ,则1DD AC ⊥,而BD AC ⊥,1DD BD D =I ,1DD ,BD ⊂平面1BDD ,于是AC ⊥平面1BDD ,又1BD ⊂平面1BDD ,则1AC BD ⊥,同理11⊥AB BD ,而1AC AB A ⋂=,AC ,1AB ⊂平面1AB C ,因此1BD ⊥平面1AB C ,令1BD 交平面1AB C 于点E ,由11B AB C B ABC V V --=,得111133AB C ABC S BE S BB ⋅=⋅ ,即)23142BE AB ⋅⋅=,解得BE AB ==而1BD ==1D E =,因为点P 在1AB C V 内,满足1D P =,则EP ==因此点P 的轨迹是以点E 为半径的圆在1AB C V 内的圆弧,而1AB C V 为正三角形,则三棱锥1B AB C -必为正三棱锥,E 为正1AB C V 的中心,于是正1AB C V 的内切圆半径111323232EH AB =⨯⨯=⨯=,则cos 2HEF ∠=,即π6HEF ∠=,π3FEG ∠=,所以圆在1AB C V 内的圆弧为圆周长的12,即点P 的轨迹长度为12π2⋅=【点睛】方法点睛:涉及立体图形中的轨迹问题,若动点在某个平面内,利用给定条件,借助线面、面面平行、垂直等性质,确定动点与所在平面内的定点或定直线关系,结合有关平面轨迹定义判断求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知z 为复数,2i z +为实数,且(12i)z -为纯虚数,其中i 是虚数单位.(1)求||z ;(2)若复数2(i)z m +在复平面上对应的点在第一象限,求实数m 的取值范围.【答案】(1)(2)()2,2-【解析】【分析】(1)设=+i ,R z a b a b ∈,,根据复数代数形式的乘法法则化简2i z +与(12i)z -,根据复数为实数和纯虚数的条件,即可求出a b ,,利用复数模长公式,即可求得到复数的模长;(2)由(1)知,求出复数的共轭复数,再根据复数代数形式的除法与乘方运算化简复数,再根据复数的几何意义得到不等式组,解得即可.【小问1详解】设=+i ,R z a b a b ∈,,()2i=2i z a b +++,因为2i z +为实数,所以20b +=,即2b =-所以(12i)(2i)(12i)42(1)i z a a a -=--=--+,又因为(12i)z -为纯虚数,所以40a -=即4a =,所以42z i =-,所以z ==.【小问2详解】由(1)知,42iz =+所以222(i)(42i i)16(2)8(2)i m m z m m +=++=-+++,又因为2(i)z m +在复平面上所对应的点在第一象限,所以216(2)08(2)0m m ⎧-+>⎨+>⎩,解得:22m -<<所以,实数m 的取值范围为()2,2-.16.某校为了提高学生对数学学习的兴趣,举办了一场数学趣味知识答题比赛活动,共有1000名学生参加了此次答题活动.为了解本次比赛的成绩,从中抽取100名学生的得分(得分均为整数,满分为100分)进行统计.所有学生的得分都不低于60分,将这100名学生的得分进行分组,第一组[)60,70,第二组[)70,80,第三组[)80,90,第四组[]90,100(单位:分),得到如下的频率分布直方图.(1)求图中m 的值,并估计此次答题活动学生得分的中位数;(2)根据频率分布直方图,估计此次答题活动得分的平均值.若对得分不低于平均值的同学进行奖励,请估计参赛的学生中有多少名学生获奖.(以每组中点作为该组数据的代表)【答案】(1)0.01m =,中位数为82.5.(2)82x =,有520名学生获奖.【解析】【分析】(1)利用频率分布直方图中所有频率之和等于1和中位数左边和右边的直方图的面积应该相等即可求解;(2)利用频率分布直方图中平均数等于每个小矩形底边的中点的横坐标与小矩形的面积的乘积之和及不低于平均值的学生人数为总数500乘以不低于平均值的频率即可.【小问1详解】由频率分布直方图知:()0.030.040.02101m ++++⨯=,解得0.01m =,设此次竞赛活动学生得分的中位数为0x ,因数据落在[)60,80内的频率为0.4,落在[)60,90内的频率为0.8,从而可得08090x <<,由()0800.040.1x -⨯=,得082.5x =,所以估计此次竞赛活动学生得分的中位数为82.5.【小问2详解】由频率分布直方图及(1)知:数据落在[)60,70,[)70,80,[)80,90,[]90,100的频率分别为0.1,0.3,0.4,0.2,650.1750.3850.4950.282x =⨯+⨯+⨯+⨯=,此次竞赛活动学生得分不低于82的频率为90820.20.40.5210-+⨯=,则10000.52520⨯=,所以估计此次竞赛活动得分的平均值为82,在参赛的1000名学生中估计有520名学生获奖17.在①()(sin sin )(sin sin )a c A C b A B +-=-;②2cos 0cos b a A c C--=;③向量()m c = 与(cos ,sin )n C B = 平行,这三个条件中任选一个,补充在下面题干中,然后解答问题.已知ABC 内角,,A B C 的对边分别为,,a b c ,且满足______.(1)求角C ;(2)若ABC 为锐角三角形,且2c =,求ABC 周长的取值范围;(3)在(2)条件下,若AB 边中点为D ,求中线CD 的取值范围.(注:如果选择多个条件分别解答,按第一个解答计分)【答案】(1)条件选择见解析,3π(2)2,6]+(3)3CD <≤【解析】【分析】(1)选①根据正弦定理化简,然后转化成余弦值即可;选②根据正弦定理化简即可求到余弦值,然后求出角度;选③先根据向量条件得到等式,然后根据正弦定理即可求到正切值,最后求出角度.(2)根据(1)中结果和2c =,把ABC 周长转化成π4sin 26A ⎛⎫++ ⎪⎝⎭,然后再求解范围.(3)根据中线公式和正弦定理,把CD 转化成三角函数求解即可.【小问1详解】选①:因为()(sin sin )(sin sin )a c A C b A B +-=-,()()()a c a c b a b ∴+-=-,即222c a b ab =+-,1cos 2C ∴=,()0,πC ∈ ,π3C ∴=.选②:2cos 0cos b a A c C--=,2sin sin cos sin cos B A A C C-∴=,2sin cos sin cos sin cos B C A C C A ∴-=,1cos 2C ∴=,()0,πC ∈ ,π3C ∴=.选③:向量()m c = 与(cos ,sin )n C B =平行,sin cos c B C ∴=,sin sin cos C B B C ∴=,tan C ∴=()0,πC ∈ ,π3C ∴=.【小问2详解】π,23C c == ,sin sin sin a b c A B C==,23sin )2sin())2sin )232a b c A B A A A A π∴++=++=+-+=+4sin(26A π=++. ABC 为锐角三角形,π022ππ032A B A ⎧<<⎪⎪∴⎨⎪<=-<⎪⎩,ππ62A ∴<<,πsin ,162A ⎛⎤⎛⎫∴+∈ ⎥ ⎪ ⎝⎭⎝⎦.ABC ∴周长的取值范围为2,6]+.【小问3详解】224a b ab =+- ,又由中线公式可得222(2)42()2(4)CD a b ab +=+=+,21624442·sin sin 33CD B A A π⎛⎫∴=+=+- ⎪⎝⎭2161161142·sin cos sin 42·sin 23223426A A A A π⎛⎫⎡⎤⎛⎫=++=++- ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭.即254πsin 2336CD A ⎛⎫=+- ⎪⎝⎭, ABC 为锐角三角形,π022ππ032A B A ⎧<<⎪⎪∴⎨⎪<=-<⎪⎩,ππ62A ∴<<,ππ5π2666A ∴<-<.3CD <≤.18.三棱台111ABC A B C -中,若1A A ⊥面ABC ,ABAC ⊥,12AB AC AA ===,111A C =,M ,N 分别是BC ,BA 中点.(1)求1A N 与1CC 所成角的余弦值;(2)求平面1C MA 与平面11ACC A 所成成角的余弦值;(3)求1CC 与平面1C MA 所成角的正弦值.【答案】(1)45(2)23(3)15【解析】【分析】(1)根据题意,证得11//MN A C 和11//A N MC ,得到1CC M ∠为1A N 与1CC 所成角,在1CC M △中,利用余弦定理,即可求解;(2)过M 作ME AC ⊥,过E 作1EF AC ⊥,连接1,MF C E ,证得ME ⊥平面11ACC A ,进而证得1AC ⊥平面MEF ,得到平面1C MA 与11ACC A 所成角即MFE ∠,在直角MEF 中,即可求解;(3)过1C 作1C P AC ⊥,作1C Q AM ⊥,连接,PQ PM ,由1C P ⊥平面AMC ,得到1C P AM ⊥和1C Q AM ⊥,得到AM ⊥平面1C PQ 和PR ⊥平面1C MA ,在直角1C PQ 中,求得23PR =,求得C 到平面1C MA 的距离是43,进而求得1CC 与平面1C MA 所成角.【小问1详解】解:连接1,MN C A .由,M N 分别是,BC BA 的中点,根据中位线性质,得//MN AC ,且12AC MN ==,在三棱台111ABC A B C -中,可得11//A C AC ,所以11//MN A C ,由111MN A C ==,可得四边形11MNAC 是平行四边形,则11//A N MC ,所以1CC M ∠为1A N 与1CC 所成角,在1CC M △中,由111CC A N C M CM ====,可得14cos5CC M ∠=.【小问2详解】解:过M 作ME AC ⊥,垂足为E ,过E 作1EF AC ⊥,垂足为F ,连接1,MF C E .由ME ⊂面ABC ,1A A ⊥面ABC ,故1AA ME ⊥,又因为ME AC ⊥,1AC AA A =∩,1,AC AA ⊂平面11ACC A ,则ME ⊥平面11ACC A .由1AC ⊂平面11ACC A ,故1ME AC ⊥,因为1EF AC ⊥,ME EF E ⋂=,且,ME EF ⊂平面MEF ,于是1AC ⊥平面MEF ,由MF ⊂平面MEF ,可得1AC MF ⊥,所以平面1C MA 与平面11ACC A 所成角即MFE ∠,又因为12AB ME ==,1cos CAC ∠=,则1sin CAC ∠=所以11sin EF CAC =⨯∠=,在直角MEF 中,90MEF ∠=,则MF ==2cos 3EF MFE MF ∠==.【小问3详解】解:过1C 作1C P AC ⊥,垂足为P ,作1C Q AM ⊥,垂足为Q ,连接,PQ PM ,过P 作1PR C Q ⊥,垂足为R ,由11C A C C ==,1C M ==12C Q ==,由1C P ⊥平面AMC ,AM ⊂平面AMC ,则1C P AM ⊥,因为1C Q AM ⊥,111C Q C P C = ,11,C Q C P ⊂平面1C PQ ,于是AM ⊥平面1C PQ ,又因为PR ⊂平面1C PQ ,则PR AM ⊥,因为1PR C Q ⊥,1C Q AM Q = ,1,C Q AM ⊂平面1C MA ,所以PR ⊥平面1C MA ,在直角1C PQ 中,1122223322PC PQ PR QC ⋅⋅==,因为2CA PA =,故点C 到平面1C MA 的距离是P 到平面1C MA 的距离的两倍,即点C 到平面1C MA 的距离是43,设所求角为θ,则43sin 15θ==.19.如图①,在矩形ABCD 中,2AB AD ==E 为CD 的中点,如图②,将AED △沿AE 折起,点M 在线段CD 上.(1)若2DM MC =,求证AD ∥平面MEB ;(2)若平面AED ⊥平面BCEA ,是否存在点M ,使得平面DEB 与平面MEB 垂直?若存在,求此时三棱锥B DEM -的体积,若不存在,说明理由.【答案】(1)证明见解析(2)存在,169【解析】【分析】(1)根据已知条件及平行线分线段成比例定理,结合线面平行的判定定理即可求解;(2)根据(1)的结论及矩形的性质,利用面面垂直的性质定理及线面垂直的性质定理,结合线面垂直的判定定理及面面垂直的判定定理,再利用等体积法及棱锥的体积公式即可求解.【小问1详解】如图,连AC ,交EB 于G ,在矩形ABCD 中,E 为DC 中点,AB EC ∴∥,且2AB EC =,2AG GC ∴=,又2DM MC =,AD MG ∴∥,又MG ⊂平面MEB ,AD ⊄平面MEB ,AD ∴∥平面MEB .【小问2详解】存在点M ,使得平面DEB 与平面MEB 垂直.在矩形ABCD 中,12DE DA AB ==,45DEA BEC ∴∠=∠=︒,90AEB ∴∠=︒,即AE EB ⊥,已知平面AED ⊥平面BCEA ,又平面AED 平面BCEA AE =,BE ∴⊥平面AED ,DE ⊂平面AED ,BE DE ∴⊥.①取AE 中点O ,则DO AE ⊥,平面AED ⊥平面BCEA ,平面AED 平面BCEA AE =,DO ∴⊥平面BCEA ,由(1)知当2DM MC =时,AD MG ∥,AD DE ⊥ ,MG DE ∴⊥.②而BE MG G ⋂=,,⊂BE MG 平面MEB ,DE ∴⊥平面MEB ,又DE ⊂平面DEB ,∴平面DEB ⊥平面MEB .即当2DM MC =时,平面DEB 与平面MEB 垂直.依题意有DE AD ==4AE =,2DO =,(2222121116233333329B DEM B DEC D BEC BEC V V V DO S ---∴===⨯⨯⨯=⨯⨯⨯⨯=△.。
北京市2023-2024学年高一下学期期中考试数学试题含答案
2023—2024学年度第二学期北京市高一数学期中考试试卷(答案在最后)一、选择题(本大题共10小题,每小题4分,共40分)1.11πsin3的值为()A.2B.2-C.2D.2【答案】A 【解析】【分析】利用诱导公式及特殊角的三角函数值计算可得.【详解】11πππsin sin 4πsin 3332⎛⎫=-=-=-⎪⎝⎭.故选:A2.下列函数中,最小正周期为π且是偶函数的是()A.πsin 4y x ⎛⎫=+ ⎪⎝⎭B.tan y x =C.cos 2y x =D.sin 2y x=【答案】C 【解析】【分析】由三角函数的最小正周期公式和函数奇偶性对选项一一判断即可得出答案.【详解】对于A ,πsin 4y x ⎛⎫=+⎪⎝⎭的最小正周期为:2π2π1T ==,故A 不正确;对于B ,tan y x =的最小正周期为:ππ1T ==,tan y x =的定义域为ππ,Z 2x x k k ⎧⎫≠+∈⎨⎬⎩⎭,关于原点对称,令()tan f x x =,则()()()tan tan f x x x f x -=-=-=-,所以tan y x =为奇函数,故B 不正确;对于C ,cos 2y x =的最小正周期为:2ππ2T ==,令()cos 2g x x =的定义域为R 关于原点对称,则()()()cos 2cos 2g x x x g x -=-==,所以cos 2y x =为偶函数,故C 正确;对于D ,sin 2y x =的最小正周期为:2ππ2T ==,sin 2y x =的定义域为R ,关于原点对称,令()sin 2h x x =,则()()()sin 2sin 2h x x x h x -=-=-=-,所以sin 2y x =为奇函数,故D 不正确.故选:C .3.设向量()()3,4,1,2a b ==- ,则cos ,a b 〈〉=()A.5-B.5C.5-D.5【答案】D 【解析】【分析】根据给定条件,利用向量夹角的坐标表示求解即得.【详解】向量()()3,4,1,2a b ==-,则cos ,5||||a b a b a b ⋅〈〉==.故选:D4.在△ABC 中,已知1cos 3A =,a =,3b =,则c =()A.1B.C.2D.3【答案】D 【解析】【分析】直接利用余弦定理求解即可【详解】因为在△ABC 中,1cos 3A =,a =,3b =,所以由余弦定理得2222cos a b c bc A =+-,2112963c c =+-⨯,得2230c c --=,解得3c =,或1c =-(舍去),故选:D5.函数()()sin f x A x =+ωϕ(其中0A >,0ω>,0ϕπ<<)的图像的一部分如图所示,则此函数的解析式是()A.()3sin 42f x x ππ⎛⎫=+⎪⎝⎭ B.3()3sin 44f x x ππ⎛⎫=+⎪⎝⎭C.()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭ D.3()3sin 84f x x ππ⎛⎫=+⎪⎝⎭【答案】C 【解析】【分析】根据图象可以求出最大值,结合函数的零点,根据正弦型函数的最小正周期公式,结合特殊值法进行求解即可.【详解】由函数图象可知函数的最大值为3,所以3A =,由函数图象可知函数的最小正周期为4(62)16⨯-=,因为0ω>,所以24(62)168ππωω⨯-==⇒=,所以()3sin 8f x x πϕ⎛⎫=+ ⎪⎝⎭,由图象可知:(2)3f =,即3sin 32()2()4424k k Z k k Z ππππϕϕπϕπ⎛⎫+=⇒+=+∈⇒=+∈ ⎪⎝⎭,因为0ϕπ<<,所以令0k =,所以4πϕ=,因此()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭,故选:C6.函数ππ()sin(2),[0,]62f x x x =+∈的最大值和最小值分别为()A.11,2-B.31,2-C.1,12- D.1,1-【答案】A 【解析】【分析】根据给定条件,求出相位的范围,再利用正弦函数的性质求解即得.【详解】由π[0,2x ∈,得ππ7π2[,666x +∈,则当ππ262x +=,即π6x =时,max ()1f x =,当π7π266x +=,即π2x =时,min 1()2f x =-,所以所求最大值、最小值分别为11,2-.故选:A7.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅= ()A.2B.2- C.1 D.1-【答案】B 【解析】【分析】根据给定信息,利用向量数量的运算律,结合数量积的定义计算得解.【详解】依题意,π3π|||2,||2,,,,,44a b c a b b c a c ===〈〉=⊥〈〉= ,因此3π||||cos2(242a c a c ⋅==⨯-=-,0b c ⋅= ,所以()2a b c a c b c +⋅=⋅+⋅=-.故选:B8.在ABC 中,已知cos cos 2cos a B b A c A +=,则A =()A.π6B.π4C.π3 D.π2【答案】C 【解析】【分析】根据给定条件,利用正弦定理边化角,再逆用和角的正弦求出即得.【详解】在ABC 中,由cos cos 2cos a B b A c A +=及正弦定理,得sin cos sin cos 2sin cos A B B A C A +=,则sin()2sin cos A B C A +=,即sin 2sin cos C C A =,而sin 0C >,因此1cos 2A =,而0πA <<,所以π3A =.故选:C9.已知函数()()π2sin 03⎛⎫=+> ⎪⎝⎭f x x ωω,则“()f x 在π0,3⎡⎤⎢⎥⎣⎦上既不是增函数也不是减函数”是“1ω>”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】以π3x ω+为整体结合正弦函数的性质可得12ω>,进而根据充分、必要条件分析判断.【详解】因为π0,3x ⎡⎤∈⎢⎥⎣⎦且0ω>,则ππππ,3333x ωω⎡⎤+∈+⎢⎥⎣⎦,若()f x 在π0,3⎡⎤⎢⎣⎦上既不是增函数也不是减函数,则2πππ33ω+>,解得12ω>,又因为()1,+∞1,2⎛⎫+∞ ⎪⎝⎭,所以“()f x 在π0,3⎡⎤⎢⎥⎣⎦上既不是增函数也不是减函数”是“1ω>”的必要不充分条件.故选:B.10.如图,正方形ABCD 的边长为2,P 为正方形ABCD 四条边上的一个动点,则PA PB ⋅的取值范围是()A.[]1,2-B.[]0,2 C.[]0,4 D.[]1,4-【答案】D 【解析】【分析】建立平面直角坐标系,分点P 在CD 上,点P 在BC 上,点P 在AB 上,点P 在AD 上,利用数量积的坐标运算求解.【详解】解:建立如图所示平面直角坐标系:则()()0,2,2,2A B ,当点P 在CD 上时,设()(),002Px x ≤≤,则()(),2,2,2PA x PB x =-=--,所以()()224133,4PA PB x x x ⎡⎤⋅=-+=-+∈⎣⎦ ;当点P 在BC 上时,设()()2,02P yy ≤≤,则()()2,2,0,2PA y PB y =-=-,所以()220,4PA PB y ⎡⎤⋅=-∈⎣⎦ ;当点P 在AB 上时,设()(),202Px x ≤≤,则()(),0,2,0PA x PB x ==-,所以()()22111,0PA PB x x x ⎡⎤⋅=-=--∈-⎣⎦ ;当点P 在AD 上时,设()()0,02P y y ≤≤,则()()0,2,2,2PA y PB y=-=--,所以()220,4PA PB y ⎡⎤⋅=-∈⎣⎦ ;综上:PA PB ⋅的取值范围是[]1,4-.故选:D二、填空题(本大题共5小题,每小题5分,共25分)11.已知圆的半径为2,则60 的圆心角的弧度数为__________;所对的弧长为__________.【答案】①.π3##1π3②.2π3##2π3【解析】【分析】利用度与弧度的互化关系,弧长计算公式求解即可.【详解】60 的圆心角的弧度数为ππ601803⨯=;所对的弧长为π2π233⨯=.故答案为:π3;2π312.已知向量()2,3a =- ,(),6b x =- .若//a b ,则a =r __________,x =__________.【答案】①.②.4【解析】【分析】利用坐标法求出向量的模,再根据向量共线的坐标表示求出x .【详解】因为向量()2,3a =- ,所以a == ,又(),6b x =- 且//a b ,所以()326x =-⨯-,解得4x =.;4.13.若函数()sin f x A x x =的一个零点为π3,则A =__________;将函数()f x 的图象向左至少平移__________个单位,得到函数2sin y x =的图象.【答案】①.1②.π3##1π3【解析】【分析】利用零点的意义求出A ;利用辅助角公式化简函数()f x ,再借助平移变换求解即得.【详解】函数()sin f x A x x =的一个零点为π3,得ππsin 033A =,解得1A =;则π()sin 2sin()3f x x x x =-=-,显然πππ(2sin[()]2sin 333f x x x +=+-=,所以()f x 的图象向左至少平移π3个单位,得到函数2sin y x =的图象.故答案为:1;π314.设平面向量,,a b c 为非零向量,且(1,0)a = .能够说明“若a b a c ⋅=⋅ ,则b c = ”是假命题的一组向量,b c的坐标依次为__________.【答案】(0,1),(0,1)-(答案不唯一)【解析】【分析】令向量,b c 与向量a 都垂直,且b c ≠即可得解.【详解】令(0,1),(0,1)b c ==- ,显然0a b a c ⋅==⋅,而b c ≠ ,因此(0,1),(0,1)b c ==- 能说明“若a b a c ⋅=⋅ ,则b c = ”是假命题,所以向量,b c的坐标依次为(0,1),(0,1)-.故答案为:(0,1),(0,1)-15.已知函数()2cosπ1xf x x =+,给出下列四个结论:①函数()f x 是奇函数;②函数()f x 有无数个零点;③函数()f x 的最大值为1;④函数()f x 没有最小值.其中,所有正确结论的序号为__________.【答案】②③【解析】【分析】根据偶函数的定义判断①,令()0f x =求出函数的零点,即可判断②,求出函数的最大值即可判断③,根据函数值的特征判断④.【详解】函数()2cosπ1xf x x =+的定义域为R ,又22cos(π)cos π()()()11x x f x f x x x --===-++,所以()2cosπ1xf x x =+为偶函数,故①错误;令2cos ππ1()0cos π0ππ(Z)(Z)122x f x x x k k x k k x ==⇒=⇒=+∈⇒=+∈+,所以函数()f x 有无数个零点,故②正确;因为cos π1x ≤,当ππ(Z)x k k =∈,即(Z)x k k =∈时取等号,又因为211x +≥,当且仅当0x =时取等号,所以有21011x <≤+,当且仅当0x =时取等号,所以有2cos π11x x ≤+,当且仅当0x =时取等号,因此有()2cos π11xf x x =≤+,即()()max 01f x f ==,故③正确;因为()2cosπ1xf x x =+为偶函数,函数图象关于y 轴对称,只需研究函数在()0,∞+上的情况即可,当x →+∞时2101x →+,又1cosπ1x -≤≤,所以当x →+∞时()0f x →,又()()max 01f x f ==,当102x <<时cos π0x >,210x +>,所以()0f x >,当1322x <<时1cos π0x -≤<,210x +>,所以()0f x <,当1x >时212x +>,0cos π1x ≤≤,所以()12f x <,又()112f =-,102f ⎛⎫= ⎪⎝⎭,302f ⎛⎫= ⎪⎝⎭,且()f x 为连续函数,所以()f x 存在最小值,事实上()f x 的图象如下所示:由图可知()f x 存在最小值,故④错误.故答案为:②③三、解答题(本大题共6小题,共85分)16.在平面直角坐标系xOy 中,角θ以Ox 为始边,终边经过点()1,2--.(1)求tan θ,tan2θ的值;(2)求πsin ,cos ,cos 4θθθ⎛⎫+⎪⎝⎭的值.【答案】(1)tan 2θ=,4tan 23θ=-(2)sin 5θ-=,cos 5θ=,π10cos 410θ⎛⎫+=⎪⎝⎭【解析】【分析】(1)由三角函数的定义求出tan θ,再由二倍角正切公式求出tan 2θ;(2)由三角函数的定义求出sin θ,cos θ,再由两角和的余弦公式计算可得.【小问1详解】因为角θ以Ox 为始边,终边经过点()1,2--,所以2tan 21θ-==-,则222tan 224tan 21tan 123θθθ⨯===---.【小问2详解】因为角θ以Ox 为始边,终边经过点()1,2--,所以sin 5θ-==,cos 5θ==,所以πππcos cos cos sin sin 444θθθ⎛⎫+=- ⎪⎝⎭2520555210221⎛⎫- =⨯-⨯=⎪ ⎪⎝⎭.17.已知平面向量,,2,3,a b a b a == 与b的夹角为60 ,(1)求22,,a b a b ⋅;(2)求(2)(3)a b a b -⋅+的值:(3)当x 为何值时,xa b -与3a b +rr 垂直.【答案】(1)4,9,3;(2)4-;(3)3013x =.【解析】【分析】(1)利用数量积的定义计算即得.(2)利用数量积的运算律计算即得.(3)利用垂直关系的向量表示,数量积的运算律求解即得.【小问1详解】向量,,2,3,a b a b a == 与b 的夹角为60 ,所以2222|4,|9,3||||c |os 0|6a a b b a b a b ===⋅=== .【小问2详解】依题意,2222(2)(3)2352233534a b a b a b a b -⋅+=-+⋅=⨯-⨯+⨯=- .【小问3详解】由()(3)0xa b a b -⋅+= ,得223(31)4273(31)13300xa b x a b x x x -+-⋅=-+-=-= ,解得3013x =,所以当3013x =时,xa b - 与3a b +r r 垂直.18.已知函数()sin2cos2f x x x =+.(1)求(0)f ;(2)求函数()f x 的最小正周期及对称轴方程;(3)求函数()f x 的单调递增区间.【答案】(1)1;(2)π,ππ,Z 82k x k =+∈;(3)()3πππ,πZ 88k k k ⎡⎤-++∈⎢⎥⎣⎦.【解析】【分析】(1)代入计算求出函数值.(2)(3)利用辅助角公式化简函数()f x ,再结合正弦函数的图象与性质求解即得.【小问1详解】函数()sin2cos2f x x x =+,所以(0)sin0cos01f =+=.【小问2详解】函数π())4f x x =+,所以函数()f x 的最小正周期2ππ2T ==;由ππ2π,Z 42x k k +=+∈,解得ππ,Z 82k x k =+∈,所以函数()f x 图象的对称轴方程为ππ,Z 82k x k =+∈.【小问3详解】由πππ2π22π,Z 242k x k k -+≤+≤+∈,得3ππππ,Z 88k x k k -+≤≤+∈,所以函数()f x 的单调递增区间是()3πππ,πZ 88k k k ⎡⎤-++∈⎢⎥⎣⎦.19.在△ABC 中,7a =,8b =,再从条件①、条件②这两个条件中选择一个作为已知.(1)求A ∠;(2)求ABC 的面积.条件①:3c =;条件②:1cos 7B =-.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)选①②答案相同,3A π∠=;(2)选①②答案相同,ABC 的面积为【解析】【分析】(1)选①,用余弦定理得到cos A ,从而得到答案;选②:先用余弦定理求出3c =,再用余弦定理求出cos A ,得到答案;(2)选①,先求出sin 2A =,使用面积公式即可;选②:先用sin sin()C A B =+求出sin C ,再使用面积公式即可.【小问1详解】选条件①:3c =.在△ABC 中,因为7a =,8b =,3c =,由余弦定理,得222cos 2b c a A bc+-=64949283+-=⨯⨯12=.因为()0,πA ∈,所以π3A ∠=;选条件②:1cos 7B =-由余弦定理得:222249641cos 2147a cbc B ac c +-+-===-,解得:3c =或5-(舍去)由余弦定理,得222cos 2b c a A bc+-=64949283+-=⨯⨯12=.因为()0,πA ∈,所以π3A ∠=;【小问2详解】选条件①:3c =由(1)可得sin 2A =.所以ABC 的面积11sin 8322S bc A ==⨯⨯=选条件②:1cos 7B =-.由(1)可得1cos 2A =.因为sin sin[()]C A B =π-+sin()A B =+sin cos cos sin A B A B=+11()72=-+⨯3314=,所以ABC 的面积11sin 7822S ab C ==⨯⨯=..20.已知函数()2π2cos cos 213f x x x ⎛⎫=+-- ⎪⎝⎭.(1)求π6f ⎛⎫ ⎪⎝⎭的值;(2)求函数()f x 的在[]0,π上单调递减区间;(3)若函数()f x 在区间[]0,m 上有且只有两个零点,求m 的取值范围.【答案】(1)32(2)π7π,1212⎡⎤⎢⎥⎣⎦(3)3564π,π⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用二倍角公式及和差角公式化简函数解析式,再代入计算可得;(2)由x 的取值范围求出π23x +的范围,再根据正弦函数的性质得到ππ3π2232x ≤+≤,解得即可;(3)由x 的取值范围求出π23x +的范围,再根据正弦函数的性质得到不等式组,解得即可.【小问1详解】因为()2π2cos cos 213f x x x ⎛⎫=+-- ⎪⎝⎭ππcos2cos2cossin 2sin 33x x x =++3cos2sin 222x x =+1cos2sin 222x x ⎫=+⎪⎪⎭π23x ⎛⎫=+ ⎪⎝⎭,所以πππ2π3266332f ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝⎭.【小问2详解】当[]0,πx ∈时ππ7π2,333x ⎡⎤+∈⎢⎥⎣⎦,令ππ3π2232x ≤+≤,解得π7π1212x ≤≤,所以函数()f x 的在[]0,π上的单调递减区间为π7π,1212⎡⎤⎢⎥⎣⎦.【小问3详解】当[]0,x m ∈时,πππ2,2333x m ⎡⎤+∈+⎢⎥⎣⎦,又函数()f x 在区间[]0,m 上有且只有两个零点,所以π2π23π3m ≤<+,解得5π4π63m ≤<,即m 的取值范围为3564π,π⎡⎫⎪⎢⎣⎭.21.某地进行老旧小区改造,有半径为60米,圆心角为π3的一块扇形空置地(如图),现欲从中规划出一块三角形绿地PQR ,其中P 在 BC 上,PQ AB ⊥,垂足为Q ,PR AC ⊥,垂足为R ,设π0,3PAB α⎛⎫∠=∈ ⎪⎝⎭;(1)求PQ ,PR (用α表示);(2)当P 在BC 上运动时,这块三角形绿地的最大面积,以及取到最大面积时α的值.【答案】(1)60sin PQ α=,π60sin 3PR α⎛⎫=- ⎪⎝⎭(2)三角形绿地的最大面积是平方米,此时π6α=【解析】【分析】(1)利用锐角三角函数表示出PQ 、PR ;(2)依题意可得2π3QPR ∠=,则1sin 2PQR S PQ PR QPR =⋅⋅⋅∠ ,利用三角恒等变换公式化简,再结合正弦函数的性质求出最大值.【小问1详解】在Rt PAQ 中,π0,3PAB ∠α⎛⎫=∈ ⎪⎝⎭,60AP =,∴sin 60sin PQ AP αα==(米),又π3BAC ∠=,所以π3PAR α∠=-,在Rt PAR 中,可得πsin 60sin 3PR PAR AP α⎛⎫==-⎪⎝⎭∠(米).【小问2详解】由题可知2π3QPR ∠=,∴PQR 的面积1sin 2PQR S PQ PR QPR =⋅⋅⋅∠1π2π60sin 60sin sin 233αα⎛⎫=⨯⨯-⨯ ⎪⎝⎭πsin3αα⎛⎫=- ⎪⎝⎭ππsin cos cos sin 33ααα⎛⎫=- ⎪⎝⎭112cos 222αα⎫=+-⎪⎪⎭π1sin 262α⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,又π0,3α⎛⎫∈ ⎪⎝⎭,526πππ,66α⎛⎫+∈ ⎪⎝⎭,∴当ππ262α+=,即π6α=时,PQR 的面积有最大值即三角形绿地的最大面积是π6α=.。
泰安第一中学2022-2023学年高一下学期期中考试数学试题(含答案)
泰安一中新校区2022-2023学年高一下学期期中考试数学试题2023.5一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数()1i 1i z -=+,则z = A.22B.1C.D.22.若,m n 表示两条不重合的直线,,,αβγ表示三个不重合的平面,下列命题正确的是A .若m αγ⋂=,n βγ= ,且//m n ,则//αβB .若,m n 相交且都在,αβ外,//m α,//n α,//m β,//n β,则//αβC .若//m n ,n α⊂,则//m αD .若//m α,//n α,则//m n4.已知2a =,3b =.若a b a b +=-,则23a b +=425.某景区为提升游客观赏体验,搭建一批圆锥形屋顶的小屋(如图1).现测量其中一个屋顶,得到圆锥SO 的底面直径AB 长为12m ,母线SA 长为18m (如图2).若C 是母线SA 的一个三等分点(靠近点S ),从点A 到点C 绕屋顶侧面一周安装灯光带,则灯光带的最小长度为A. B.16mC. D.12m6.如图所示,在ABC ∆中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB mAM = ,(,0)AC nAN m n =>,则m n +的值为A .2B .3C .92D .57.已知4sin 45πα⎛⎫+= ⎪⎝⎭,,42ππα⎛⎫∈ ⎪⎝⎭,则cos α=A.210 B.3210C.22D.72108.函数()()sin 0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图象如图所示,将该函数图象上各点的横坐标缩短到原来的一半(纵坐标不变),再向右平移()0θθ>个单位长度后,所得到的图象关于原点对称,则θ的最小值为A.3πB.6πC.12π D.724π二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列有关复数的说法中(其中i 为虚数单位),正确的是A .22i 1=B .复数32i z =-的共轭复数的虚部为2C .若13i -是关于x 的方程()20,x px q p q ++=∈R 的一个根,则8q =-D .若复数z 满足i 1z -=,则z 的最大值为210.下列说法正确的是A .已知向量()1,3a = ,()cos ,sin b θθ= ,若a b ⊥ ,则3tan 3θ=-B .已知向量()2,3a = ,(),2b x = ,则“a ,b的夹角为锐角”是“3x >-”的充要条件C .若向量()()4,31,3a b =- = ,,则a 在b 方向上的投影向量坐标为13,22⎛⎫ ⎪⎝⎭三、填空题:本题共4小题,每小题5分,共20分.13.已知复数2(4)(2)i m m +-+ (R)m ∈是纯虚数,则m =___________.14.需要测量某塔的高度,选取与塔底D 在同一个水平面内的两个测量基点A 与B ,现测得75DAB ∠= ,45ABD ∠= ,96AB =米,在点A 处测得塔顶C 的仰角为30 ,则塔高CD 为__________米.15.公元前6世纪,毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值,这一数值近似可以表示为2sin18m =︒,若24m n +=,则cos 27m =︒______.四、解答题:本题6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(10分)已知,,a b c是同一平面内的三个向量,()1,2a = .(1)若c = ,且//c a ,求c的坐标;(2)若52b = ,且2a b + 与2a b - 垂直,求a 与b 的夹角θ..19.(12分)已知ABC 中,D 是AC 边的中点.3BA =,7BC =,7BD =(1)求AC 的长;(2)BAC ∠的平分线交BC 于点E ,求AE 的长.20.(12分)已知函数()5sin 22cos sin 644f x x x x πππ⎛⎫⎛⎫⎛⎫=--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求函数()f x 的单调递增区间;(2)若函数()y f x k =-在11,612ππ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,求实数k 的取值范围.泰安一中新校区2022-2023学年高一下学期期中考试数学试题解析2023.5一、单项选择题:1.B2.B3.D4.A5.C6.A7.A8.C二、多项选择题:9.BD 10.ACD 11.ACD 12.ACD11.【详解】对于A ,由正弦定理可得sin cos sin cos sin sin C B B C A a A +==,因为0πA <<,所以sin 0A ≠,所以1a =,若2B C A +=,且πB C A ++=,所以π3A =,由余弦定理得22222π1cos cos 322b c a b c A bc bc+-+-===,由0,0b c >>,可得2212b c bc bc +=+³,即1bc ≤,则ABC面积11sin 22bc A ≤=ABC,故A 正确;对于B ,若π4A =,且1a =,由正弦定理得1πsin sin 4b B=,所以πsin sin4B b b =,当sin 1B =1=,所以b =时有一解,故B 错误;对于C ,若C =2A ,所以π2π3B A A A =--=-,且ABC 为锐角三角形,所以π02π022π0π32A A A ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,解得ππ64A <<,所以2cos 2A ⎛∈ ⎝⎭,由正弦定理sin sin a cA C =得1sin sin 22cos sin sin C A c A A A⨯===∈,故C 正确;对于D ,做OD BC ⊥交BC 于点D 点,则D 点为BC 的中点,且1BC =,设OBD αÐ=,所以cos BDBOα=,所以211cos 22BD BC BO BC BO BC BO BC BD BC BOα⋅=⋅=⋅⨯=⋅==,故D 正确.12.【详解】由题意,PC 的中点O 即为-P ABC 的外接球的球心,设外接球的半径为R ,则34108π33R π=,得3R =,在Rt PAB 中,222PA AB PB +=,故222PB BC PC +=,即222224PA AB BC PC R ++==,而2AB =,所以2232PA BC +=,鳖臑-P ABC 的体积()()22111116232663P ABC V AB BC PA BC PA BC PA -=⨯⋅⋅=⋅⋅≤⋅+=,当且仅当4BC PA ==时,取得等号,故max 16()3P ABC V -=,故A 项正确,B 项错误;而1823C ABO O ABC V V V --===,故C 项正确;设-P ABC 的内切球半径为r ,由题意知三棱锥-P ABC 的四个侧面皆为直角三角形,由等体积法1111116322223P ABC V AB BC PA AC PA PB BC r -⎛⎫=⨯⋅+⋅+⋅+⋅⋅= ⎪⎝⎭,而2AC ==6PC =,得(1632r +⋅=,所以r =,故D 项正确,三、填空题:13.214.15.16.216【详解】以ABC 外接圆圆心为原点建立平面直角坐标系,如图,因为等边ABC21sin BCr r A=⇒=,设11(1,0),(,(,),(cos ,sin )2222A B C P αα---,则1(1cos ,sin ),(cos sin )2PA PB αααα=--=---,1(cos ,sin )2PC αα=--,所以(12cos ,2sin )PC PB αα+=---,所以()1cos PA PB PC α⋅+=-,因为1cos 1α-≤≤,所以01cosα2£-£,所以()PA PB PC ⋅+的最大值为2.四、解答题:17.【详解】(1)设向量(),c x y = ,因为()1,2a = ,c =r ,c a ∥,所以2x y==⎪⎩,解得24x y =⎧⎨=⎩,或24x y =-⎧⎨=-⎩,所以()2,4c =r 或()2,4c =-- ;(2)因为2a b + 与2a b -垂直,所以()()220a b a b +⋅-=r r r r ,所以222420a a b a b b -⋅+⋅-= 而52b =,a == ,所以5253204a b ⨯+⋅-⨯= ,得52a b ⋅=- ,a 与b的夹角为θ,所以52cos 12a b a bθ-⋅===-⋅,因为[]0,θπ∈,所以θπ=.18.【详解】(1)设圆锥的底面半径为r ,高为h.由题意,得:2r π=,∴r =,∴3h =∴圆锥的侧面积16S rl ππ===,底面积223S r ππ==,∴表面积129S S S π=+=.(2)由(1)可得:圆锥的体积为211133333V r h πππ==⨯⨯=.又圆柱的底面半径为2r =322h =,∴圆柱的体积为2233922428r hV πππ⎛⎫==⨯⨯= ⎪⎝⎭.∴剩下几何体的体积为12915388V VV πππ=-=-=.19.【详解】(1)设AD DC x ==,由余弦定理可得22cosADB CDB∠=∠==又cos cos ADB CDB ∠∠=- 2=1x ∴=,即2AC =.(2)由(1)知223271cos 2322A +-==⨯⨯,因为0A π<<,所以3A π=,由ABE ACE ABC S S S += 可得,1113sin 302sin 3032sin 60222AE AE ︒︒︒⨯⨯+⨯⨯=⨯⨯⨯,即5AE =,解得5AE =.20.【详解】(1)()5sin 22cos sin 644f x x x x πππ⎛⎫⎛⎫⎛⎫=--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭sin 2coscos 2sin 2cos sin 6644x x x x ππππ⎛⎫⎛⎫=-+++ ⎪ ⎪⎝⎭⎝⎭11sin 2cos 2sin 2sin 2cos 2cos 222222x x x x x x π⎛⎫=-++=-+ ⎪⎝⎭1sin 2cos 2sin 2+226x x x π⎛⎫=+= ⎪⎝⎭,令222,Z 262k x k k πππππ-+≤+≤+∈,所以,Z 36k x k k ππππ-+≤≤+∈,所以函数()f x 的单调递增区间为:,,Z 36k k k ππππ⎡⎤-++∈⎢⎥⎣⎦(2)函数()y f x k =-在区间11,612ππ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,即曲线sin 26y x π⎛⎫=+ ⎪⎝⎭与直线y k =在区间11,612ππ⎡⎤-⎢⎥⎣⎦上有且仅有两个交点.设26t x π=+,则sin ,y t =且,26t ππ⎡⎤∈-⎢⎥⎣⎦,又因为1sin 62π⎛⎫-=- ⎪⎝⎭,由图象可知,若要使sin y t =与y k =区间,26t ππ⎡⎤∈-⎢⎥⎣⎦上有且仅有两个交点,则()11,0,12k ⎛⎫∈--⋃ ⎪⎝⎭.21.【详解】(1)选择①,在ABC 中,由余弦定理得222222222a c b a c b a b c b ac a+-+-=+⋅=+,整理得222a b c ab +-=,则2221cos 22a b c C ab +-==,又()0,πC ∈,所以π3C =.选择②,可得sin cos sin cos cos a A B b A A C +=,在ABC中,由正弦定理得,2sin cos sin sin cos cos A B A B A A C +=,因为sin 0A ≠,则sin cos sin cos A B B A C +=,即()sin A B C +=,因为πA B C ++=,因此sin cos C C =,即tan C =又()0,πC ∈,所以3C π=.选择③,在ABC22(2cos1)2cos 2CC C =--=-,cos 2C C +=,即πsin 16C ⎛⎫+= ⎪⎝⎭,又()0,πC ∈,所以ππ7π,666C ⎛⎫+∈ ⎪⎝⎭,所以ππ62C +=,从而π3C =.(2)由(1)知,π3C =,有2π3ABC BAC ∠+∠=,而BAC ∠与ABC ∠的平分线交于点I ,即有π3ABI BAI ∠+∠=,于是2π3AIB ∠=,设ABI θ∠=,则π3BAI θ∠=-,且π03θ<<,在ABI △中,由正弦定理得,4π2πsin sin sin()sin33BI AI AB AIB θθ====∠-,所以)4sin π3(BI θ=-,4sin AI θ=,所以ABI △的周长为3234sin(4si π)n θθ-+3123cos sin )4sin 22θθθ=-+π23232sin 4sin()233θθθ=++=++由π03θ<<,得ππ2π333θ<+<,所以当ππ32θ+=,即π6θ=时,ABI △的周长取得最大值423+22.【详解】(1)记F 为AB 的中点,连接,DF MF ,如图1,因为,F M 分别为,AB AE 的中点,故//MF EB ,因为MF ⊄平面,EBC EB ⊂平面,EBC 所以//MF 平面EBC ,又因为ADB 为正三角形,所以60DBA ∠=︒,DF AB ⊥,又BCD △为等腰三角形,120BCD ∠=︒,所以30DBC ∠=︒,所以90ABC ∠=︒,即BC AB ⊥,所以//DF BC ,又DF ⊄平面,EBC BC ⊂平面,EBC 所以//DF 平面EBC ,又DF MF F ⋂=,,DF MF ⊂平面DMF ,故平面//DMF 平面EBC ,又因为DM ⊂平面DMF ,故//DM 平面BEC .(2)延长,CD AB 相交于点P ,连接PM 交BE 于点N ,连接CN ,过点N 作//NQ AE 交AB 于点Q ,如图2,因为//DM 平面ECB ,DM ⊂平面PDM ,平面PDM 平面ECB CN =,所以//DM CN ,此时,,,D M N C 四点共面,由(1)可知,2,60,BC CD PCB CB BP ==∠=︒⊥,得30,4CPB PC ∠=︒=,故4263PN CP PM DP ===,又因为//NQ AE ,所以23NQ PN AM PM ==,则有3112223NQ NQ AE AM ==⨯=,故13BN NQ BE AE ==.N。
山东省聊城市聊城一中2023-2024学年下学期期中考试高一数学试题(含答案)
2023-2024学年第二学期期中考试高一数学试题时间:120分钟分值:150分第Ⅰ卷(58分)一、单选题本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中;只有一个选项符合题目要求.1.若复数是纯虚数,则的共轪复数( )A .B .C .D .12.如图所示的中,点是线段上犁近的三等分点,点是线段的中点,则()A .B .C .D .3.如下图;正方形的边长为.它是水平放罝的一个平面图形的直观图,则图形的周长是()A .B .C .D .4.已知是两个不共线的向量,.若与是共线向量,实数的值为( )A .B .C .D .5.在等腰中,平分且与相交于点,则向量在上的投影向量为()A.B .CD6.下列命题正确的是()A .若是两条直线,是两个平面,且,则是异面直线()i1ia z a -=∈+R z z =1-i-iABC △D AC A E AB DE =1136BA BC--1163BA BC--5163BA BC--5163BA BC-+O A B C ''''2cm 16cm 8cm 4+12,e e 12122,2e e b e e a k =-=+ a bk 6-5-4-3-ABC △120,BAC AD ∠=︒BAC ∠BC D BD BA32BA34BABA a b 、,αβ,a b αβ⊂⊂a b 、B .四边形可以确定一个甲面C .已知两条相交直线,且平面,则与的位置关系是相交D .两两相交且不共点的三条直线确定一个平面7.已知点在所在平面内,且,,则点依次是的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心8.如图,在中,已知边上的两条中线相交于点,求的余弦值.()二、多选题本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.(多选)中,根据下列条件解三角形,其中有一解的是( )A .B .C .D .10.如图,透明望料制成的长方体内灌进一些水,固定容器底面一边于水平地面上,再将容器倾斜,随着倾斜度不同,其中正确的命题的是()A .没有水的部分始终呈棱柱形;B .水面所在四边形的面积为定值;C .棱始终与水面所在平面平行;D .当容器倾斜如图(3)所示时,是定值.11.《数书九章》是南宋时期杰出数学家秦九韶的著作,全书十八卷,共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九韶的许多创造性成就,其中在卷五“三斜求积术”中提出了已知三角形三边a b 、a ∥αb αO N P 、、ABC △,0OA OBOC NA NB NC ==++=PA PB PB PC PC PA ⋅=⋅=⋅O N P 、、ABC △ABC △2,5,60,,AB AC BAC BC AC ==∠=︒,AM BM P MPN ∠ABC △7,3,30b c c ===︒5,4,45b c B ===︒6,60a b B ===︒20,30,30a b A ===︒1111ABCD A B C D -BC EFGH 11A D BE BF ⋅,求面积的公式,这与古希腊的海伦公式完全等价,其求法是:“以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实:一为从隅,开平方得积.”若把以上这段文字写成公式,即.现有满足的面积)A .的周长为B .三个内角满足C .D .的中线的长为三、填空题本题共3小题,每小题5分,共15分.12.已知点,向旦,点是线段的三等分点,求点的坐标________.13.如图是一个正方体的展开图,如果将它还原为正方体,那么在这四条线段中,有________对异面直线?14.如下图,在中,点是的中点,过点的直线分别交直线于不同的两点M ,N .设,则________.四、解答题本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)如图,圆锥的底面直径和高均是,过的中点作平行于底面的截面,以该截面为底面挖去一个圆柱,求剩下几何体的表面积和体积.,,a b c S =ABC △sin :sin :sin 2:3:A B C =ABC △S =ABC △10+ABC △,,A B C 2C A B=+ABC △ABC △CD ()0,0O ()()2,3,6,3O OA B ==-P AB P ,,,AB CD EF GH ABC △O BC O ,AB AC ,AB mAM AC nAN ==m n +=PO a PO O '16.(15分)在复平面内,点对应的复数分别是(其中是虚数单位),设向量对应的复数为.(1)求复数;(2)求;(3)若,且是纯虚数,求实数的值.17.(15分)如图,是海面上位于东西方向相距海里的两个观测点,现位于点北偏东点北偏西的点有一艘轮船发出求救信号,位于点南偏西且与点相距海里的点的救援船立即前往营救,其航行速度为30海里/小时,试求:(1)轮船D 与观测点B 的距离;(2)救援船到达D点所需要的时间.18.(17分)在等腰梯形中,,动点分别在线段和上(不包含端点),和交于点,且.(1)用向量,表示向量;(2)求的取值范围;(3)是否存在点,使得.若存在,求;若不存在,说明理由.19.(17分)“费马点”是由十七世纪法国数学家费马提出并征解的一个问题.该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小.”意大利数学家托里拆利给出了解答,当的,A B 23i,12i ++i BAz z 2z z z +⋅1i z m =+1z zm A B 、(53+A 45,B ︒60︒D B 60︒B C ABCD ,60,1,2,3AB DC DAB CD AD AB ∠=︒===∥,E F BC DC AE BD μ(),1BC D BE DC F λλ=⋅=- AB AD ,AE AF 2AE AF +E 8AM DM BM EM =λABC △三个内角均小于120°时,使得的点O 即为费马点,当有一个内角大于或等于时,最大内角的顶点为费马点.试用以上知识解决下面问题:已知的内角所对的边分别为,且.(1)求;(2)若,设点为的费马点,求;(3)设点为的费马点,,求实数的最小值.2023-2024学年第二学期期中考试高一数学试题参考答案一、单选题1.C 2.B 3.A 4.C 5.B 6.D 7.C 8.B 二、多选题9.BC 10.ACD 11.ABC三、填空题12.或 13.3 14.2四、解答题15.解:(由于是的中点,所以圆杜的高,且圆柱的底面半径为圆锥的体积为,圆柱的体积为,所以剩下几何体的体积为.剩下部分的表面积等于圆锥的面积加上圆柱的侧面积,即.(3部分面积分值分别为2、2、3分)16.解:(1)因为点对应的复数分别是,所以,所以,故.(2)因为,所以.120AOB BOC COA ∠=∠=∠=︒ABC △120︒ABC △,,A B C ,,a b c cos2cos2cos21B C A +-=A2bc =P ABC △PA PB PB PC PC PA ⋅+⋅+⋅ P ABC △PB PC t PA +=t 14,13⎛⎫- ⎪⎝⎭10,13⎛⎫⎪⎝⎭O 'PO 12OO a '=4a231ππ3212a a a⎛⎫⨯⨯⨯=⎪⎝⎭231ππ4232a a a ⎛⎫⨯⨯= ⎪⎝⎭33ππ5π123296a a ⎛⎫-=⎪⎝⎭2ππ2π2242a a a a ⎛⎫⨯+⨯+⨯⨯= ⎪⎝⎭,A B 23i,12i ++()()2,3,1,2A B ()1,1BA =1i z =+1i z =+()()222(1i)1i 1i 2i 1i 22i z z z +⋅=+++-=+-=+==(3)因为,所以,由是纯虚数,可知且,解得.17.解:(1)由在的北偏东,在的北偏西,,由正弦定理得,又,代入上式得:,答:轮船与观测点的距离为海里;(2)中,海里,海里,,,,解得海里,(小时),答:救援船到达D 所需的时间为1小时.18.解(1)因为,所以.又.(2),因为,所以1i z m =+()()()()()1i 1i 11i i 11i 1i 1i 1i 222m m m z m m mz +-++-++-====+++-1z z 102m +=102m -≠1m =-D A 45︒B 60︒45,30,105DAB DBA ADB ∴∠=︒∠=︒∴∠=︒,sin sin sin 45AB BD BD ADB DAB ==∠∠︒()sin105sin 4560sin 45cos60cos45sin 660︒=︒+︒=︒︒+︒︒=BD =D B BCD △BD =BC =60DBC ∠=︒22212cos60300120022DC BD BC BD BC ∴=+-⨯⨯︒=+-⨯⨯2900DC ∴=30DC =30130t ∴==()1233BE BC BA A AD D DC AB AD AB AB λλλλλ⎛⎫==++=-++=-+ ⎪⎝⎭213AE AB BE AB AD λλ⎛⎫=+=-+ ⎪⎝⎭()113AF A AD DF AD DC AB D λλ-=+=+-=+()542233A AE F AB AD λλ⎛⎫+=-++ ⎪⎝⎭3,2,32cos603AB AD AB AD ==⋅=⨯⨯︒=()()22222254545422(2)22333333AE AF AB AB AD AD AB ADλλλλλλ⎡⎤⎛⎫⎛⎫⎛⎫+=-++=-+++-+⋅ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.因为动点分别在线段和上゙且不包含端点,所以,所以所以的取值范围是.(3)设,其中,则,因为,由平面向量基本定理,得解得,由,得,故,所以,解得,或.因为,所以.19.解:(1)由已知中,即,故,由正弦定理可得,故直角三角形,即;(2)由(1)可得,所以三角形的三个角都小于,则由费马点定义可知:()2254549624(2)3333λλλλ⎛⎫⎛⎫=-+-+++ ⎪ ⎪⎝⎭⎝⎭2251691230611244λλλ⎛⎫=-+=-+ ⎪⎝⎭,E F BC DC 01λ<<24322AE AF AF <+<+<2A A E F +,tME B M D M M s A ==,0s t >()1111s s s s AB BM AB BD AB AD AB AB AD s s sM s A =+=+=+-=+++++ 21113t t AE AB AD t A t M λ⎡⎤⎛⎫==-+ ⎪⎢⎥++⎝⎭⎣⎦121,113.11t s t s t s tλλ⎧⎛⎫=- ⎪⎪⎪++⎝⎭⎨⎪=⎪++⎩3,323.s t λλλ⎧=⎪⎪-⎨⎪=⎪⎩8AM DM BM EM = 8AM DM t ME DM s MD EM ==8t s =33832λλλ=-12λ=34-01λ<<12λ=ABC △cos2cos2cos21B C A +-=22212sin 12sin 12sin 1B C A -+--+=222sin sin sin A B C =+222a b c =+ABC △π2A =π2A =ABC 120︒,设,由,得,整理得,则;(3)点为的费马点,则,设,则由,得:由余弦定理得,,,故由,得.即,而,故,当且仅当,结合,解得时,等号成立.又,即有,解得(舍去).故实数的最小值为120APB BPC APC∠=∠=∠=︒,,PA x PB y PC z===APB BPC APC ABCS S S S++=△△△△111122222xy yz xz++=⨯xy yz xz++=11112222PA PB PB PC PA PC xy yz xz⎛⎫⎛⎫⎛⎫⋅+⋅+⋅=⋅-+⋅-+⋅-=-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭P ABC△2π3APB BPC CPA∠=∠=∠=,,,0,0,0PB m PA PC n PA PA x m n x===>>>PB PC t PA+=m n t+=()22222222π||2cos13AB x m x mx m m x=+-=++()22222222π||2cos13AC x n x nx n n x=+-=++()2222222222π||2cos3BC m x n x mnx m n mn x=+-=++222AC AB BC+=()()()222222211n n x m m x m n mn x+++++=++2m n mn++=0,0m n>>222m nm n mn+⎛⎫++=≤ ⎪⎝⎭m n=2m n mn++=1m n==+m n t+=2480t t--≥2t≥+2t≤-t2。
2023年上海松江二中高一下期中数学试卷及答案
松江二中2022学年第二学期期中考试高一数学考生注意:1.试卷共有21道题,满分150分,考试时间120分钟;2.本考试分设试卷和答题纸,试卷包括三部分;3.答题前,务必在答题纸上填写姓名、班级和考号.作答必须涂或写在答题纸上,在试卷上作答一律不得分.一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.半径为2且周长为6的扇形的面积是__________.2.设集合{}12|A x x =<<-,{}|B x x a =<,若A B ⋂≠∅,则a 的取值范围是________.3.已知向量1(4,3)e =- ,2(2,1)e m m =+- ,且12//e e,则实数m 的值为_____.4.ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos a B b A =,则ABC 的形状是________三角形.5.若πcos 0,,tan 22sin αααα⎛⎫∈=⎪⎝⎭,则α=__________.6.方程π12x ⎛⎫-= ⎪⎝⎭,π,π2x ⎛⎫∈ ⎪⎝⎭的解为_______.7.不等式3lg 3xx +≤的解集是__________.8.函数ππ()2sin()0,0,22f x x A ωϕωϕ⎛⎫=+>>-<< ⎪⎝⎭的部分图像如图所示,则⋅=ωϕ____.9.菱形ABCD 的边长为4,30BAD ∠=︒,若N 为菱形内任意一点(含边界),则AB AN ⋅的最大值为______.10.若函数()cos ,[0,2]f x x x π=∈与()tan g x x =的图象交于,M N 两点,则OM ON +=_______.11.设平面向量a ,b ,c 满足:3a = ,b c= ,1a b -= ,b c ⊥ ,则b c - 的取值范围是__________.12.记()(){|sin A f x x θωθ==+为偶函数,ω是正整数},()(){|10}B x x a x a =---<,对任意实数a ,满足A B ⋂中的元素不超过两个,且存在实数a 使A B ⋂中含有两个元素,则ω的值是__________.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)13.下列函数在其定义域内既是严格增函数,又是奇函数的是()A.sin y x =B.2log y x =C.cos y x x =-D.e e x xy -=-14.若π3π,22⎛⎫∈⎪⎝⎭α,且π3cos 2cos 4αα⎛⎫=+ ⎪⎝⎭,则sin 2α可以为()A.6-B.89C.18-D.1718-15.已知A 、B 、C 是平面上不共线的三点,O 是△ABC 的重心,点P 满足112663OP OB OC =++,则△ACO 与△CBP 面积比为()A.5:6B.3:4C.2:3D.1:216.对任意两个非零的平面向量,αβ,定义αβαβββ⋅=⋅ ,若平面向量,a b 满足0≥> a b ,,a b 的夹角π0,4θ⎛⎫∈ ⎪⎝⎭,且a b 和b a 都在集合|Z 2n n ⎧⎫∈⎨⎬⎩⎭中,则a b =()A.12B.1C.32D.52三、解答题(本大题共有5题,满分78分)解答下列各题必须写出必要的步骤.17.已知O 是坐标原点,(2,3),(1,4)OA OB ==,(1)求向量OB 在OA方向上的投影向量的坐标和数量投影;(2)若3OC OA = ,3OD OB = ,2OE OA OB =+,请判断C 、D 、E 三点是否共线,并说明理由.18.已知π02α<<,π02β-<<,tan 7α=,sin 5β=-.(1)求()cos αβ-的值;(2)求tan(2)αβ-的值,并确定2αβ-的大小.19.如图,某避暑山庄为吸引游客,准备在门前两条小路OA 和OB 之间修建一处弓形花园,已知π6AOB ∠=,弓形花园的弦长||AB =,记弓形花园的顶点为M ,π6MAB MBA ∠=∠=,设OBA θ∠=.(1)将OA 、OB 用含有θ的关系式表示出来;(2)该山庄准备在M 点处修建喷泉,为获取更好的观景视野,如何设计OA 、OB 的长度,使得喷泉M 与山庄O 的距离最大?喷㬌M 与山庄O 的距离最大?20.已知函数()sin cos sin cos 1(,,R)f x a x b x c x x a b c =+++∈.(1)当0a b ==,1c =时,求函数()y f x =的单调增区间;(2)当1a =,0c =时,设()()1g x f x =-,且函数()g x 的图像关于直线π6x =对称,将函数()y g x =的图像向右平移π6个单位,得到函数()y h x =,求解不等式()1h x ≥;(3)当3a =,2b =,0c =时,若实数m ,n ,p 使得()()1mf x nf x p +-=对任意实数x 恒成立,求cos 2023pm n+的值.21.已知函数()()sin cos 4sin29f x a x x x =+++,且π134f ⎛⎫=-⎪⎝⎭.(1)求a 的值,并求出()y f x =的最小正周期(不需要说明理由);(2)若π0,2x ⎡⎤∈⎢⎥⎣⎦,求()y f x =的值域;(3)是否存在正整数n ,使得()y f x =在区间[]0,πn 内恰有2025个零点,若存在,求由n 的值;若不存在,说明理由.松江二中2022学年第二学期期中考试高一数学考生注意:1.试卷共有21道题,满分150分,考试时间120分钟;2.本考试分设试卷和答题纸,试卷包括三部分;3.答题前,务必在答题纸上填写姓名、班级和考号.作答必须涂或写在答题纸上,在试卷上作答一律不得分.一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.半径为2且周长为6的扇形的面积是__________.【答案】2【解析】【分析】根据题意求得弧长2l =,结合扇形的面积公式,即可求解.【详解】设扇形的弧长为l ,由题意可得226l ++=,即2l =,又由扇形面积公式,可得扇形的面积为1122222S lr ==⨯⨯=.故答案为:22.设集合{}12|A x x =<<-,{}|B x x a =<,若A B ⋂≠∅,则a 的取值范围是________.【答案】()1,-+∞【解析】【分析】A B ⋂≠∅,故1a >-,得到答案.【详解】{}12|A x x =<<-,{}|B x x a =<,A B ⋂≠∅,故1a >-.故答案为:()1,-+∞3.已知向量1(4,3)e =- ,2(2,1)e m m =+- ,且12//e e,则实数m 的值为_____.【答案】10【解析】【分析】根据平面向量平行的坐标表示,即可求解【详解】解:因为12//e e,所以()()4132m m -=-+,即3644m m --=-,解得10m =,故答案为:10.4.ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos a B b A =,则ABC 的形状是________三角形.【答案】等腰【解析】【分析】由cos cos a B b A =结合正弦定理可得sin cos sin cos A B B A =,即in 0()s A B -=,结合A 、B 范围即可得到答案.【详解】因为cos cos a B b A =,由正弦定理,得sin cos sin cos A B B A =,即in 0()s A B -=,又(0,)A π∈,(0,)B π∈,所以(,)A B ππ-∈-,所以0A B -=,即A B =,所以ABC 是等腰三角形.故答案为:等腰【点睛】本题考查正弦定理判断三角形形状,涉及到两角差的正弦公式,考查学生的逻辑推理能力,数学运算能力,是一道容易题.5.若πcos 0,,tan 22sin αααα⎛⎫∈= ⎪⎝⎭,则α=__________.【答案】π6##1π6【解析】【分析】根据二倍角公式、同角三角函数的基本关系式求得正确答案.【详解】依题意,πcos 0,,tan 22sin αααα⎛⎫∈= ⎪⎝⎭,所以2222tan 1,2tan 1tan 1tan tan ααααα==--,21tan 3α=,而α为锐角,所以3πtan ,36αα==.故答案为:π66.方程π12x ⎛⎫-= ⎪⎝⎭,π,π2x ⎛⎫∈ ⎪⎝⎭的解为_______.【答案】3π4x =【分析】根据给定条件,利用诱导公式,结合特殊角的三角函数值求解作答.【详解】依题意,π2cos(22x -=,而π(,π)2x ∈,即ππ(0,)22x -∈,因此ππ24x -=,解得3π4x =,所以所求方程的解为3π4x =.故答案为:3π4x =7.不等式3lg 3xx +≤的解集是__________.【答案】(]0,1【解析】【分析】设()3lg x f x x =+,判断其单调性,根据函数的单调性即可求得不等式.的解集.【详解】由题意可设()3lg x f x x =+,定义域为(0,)+∞,由于3,lg x y y x ==在(0,)+∞都单调递增,故()3lg x f x x =+在(0,)+∞上单调递增,且(1)3f =,故不等式3lg 3x x +≤的解集是(]0,1,故答案为:(]0,18.函数ππ()2sin()0,0,22f x x A ωϕωϕ⎛⎫=+>>-<< ⎪⎝⎭的部分图像如图所示,则⋅=ωϕ____.【答案】2π3-【解析】【分析】由函数()f x 的图象,求得πT =,得到2πT ω=,再由5π(212f =,求得π3ϕ=-,【详解】由函数()y f x =的图象,可得111π5ππ212122T =-=,即πT =,所以2π2Tω==,即()2sin(2)f x x ϕ=+,又由5π()212f =,可得5π5πsin(2)sin()1126ϕϕ⨯+=+=,解得5ππ2π,Z 62k k ϕ+=+∈,可得π2π,Z 3k k ϕ=-+∈,因为22ππϕ-<<,所以π3ϕ=-,所以ππ3322()ωϕ⋅-=⨯=-.故答案为:2π3-.9.菱形ABCD 的边长为4,30BAD ∠=︒,若N 为菱形内任意一点(含边界),则AB AN ⋅的最大值为______.【答案】16+##16+【解析】【分析】设(01,01)AN xAB y AD x y =+≤≤≤≤,根据数量积的运算律得到16A x B AN =⋅+,即可得解.【详解】设(01,01)AN xAB y AD x y =+≤≤≤≤,则()AB AN AB x AB y AD ⋅=⋅+ 2xAB y AB AD=+⋅ 2cos x AB y AB A BA D D=∠+⋅2164cos3016x y x =+⨯⨯︒=+,所以当1x =,1y =时,AB AN ⋅取得最大值16+.故答案为:16+.10.若函数()cos ,[0,2]f x x x π=∈与()tan g x x =的图象交于,M N 两点,则OM ON +=_______.【答案】π【解析】【分析】画出()cos f x x =与()tan g x x =图像,可得M 与N 关于点,02π⎛⎫⎪⎝⎭对称,进而求解即可【详解】由题,画出()cos f x x =与()tan g x x =的图像,如图所示,则M 与N 关于点,02π⎛⎫⎪⎝⎭对称,所以(),0OM ON π+=,所以||OM ON π+=,故答案为:π【点睛】本题考查余弦函数与正切函数的图像的应用,考查向量的模,考查数形结合思想11.设平面向量a ,b ,c满足:3a = ,b c = ,1a b -= ,b c ⊥ ,则b c - 的取值范围是__________.【答案】⎡⎣【解析】【分析】根据题设条件,设出,,a b c的坐标,利用坐标运算进行求解【详解】依题意,设(3cos ,3sin )a θθ=,(,0),(0,)b t c t == ,R t ∈.根据1a b -=r r ,即(3cos ,3sin )1t θθ-=,即()223cos (3sin )1t θθ-+=,整理得286cos t t θ+=.显然0t ≠,否则(0,0)0b ==,1a b a -==r r r ,与已知矛盾,故286cos t t θ+=可得28cos 6t tθ+=.由28cos 16t t θ+=≤,即2680t t -+≤,故()()240t t --≤,解得24t ≤≤.故(),b c t t ⎡-=-=∈⎣.故答案为:⎡⎣12.记()(){|sin A f x x θωθ==+为偶函数,ω是正整数},()(){|10}B x x a x a =---<,对任意实数a ,满足A B ⋂中的元素不超过两个,且存在实数a 使A B ⋂中含有两个元素,则ω的值是__________.【答案】4、5、6【解析】【分析】根据()()sin f x x ωθ=+偶函数,ω是正整数,推断出θ的取值范围,相邻的两个θ的距离是22πω,依照题意列不等式组,求出ω的值.【详解】由题意得{}|1B x a x a =<<+.∵()(){|sin A f x x θωθ==+为偶函数,ω是正整数},∴21{|,,*}{|,,*}22k A k k Z N k Z N πθωθπωθθπωω+==+∈∈==∈∈,∵对任意实数a ,满足A B ⋂中的元素不超过两个,且存在实数a 使A B ⋂中含有两个元素,∴A 中任意相邻的两个元素的间隔必小于1,任意相邻的三个元素的间隔之和必大于1.∴212{2212πωπω<⨯≥,解得2πωπ<≤,又*N ω∈,∴4,5,6ω=.答案:4,5,6.【点睛】本题考查了正弦函数的奇偶性和周期性,以及根据集合的运算关系,求参数的值,关键是理解212{2212πωπω<⨯≥的意义,强调抽象思维与灵活应变的能力.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)13.下列函数在其定义域内既是严格增函数,又是奇函数的是()A.sin y x =B.2log y x =C.cos y x x =-D.e e x xy -=-【答案】D 【解析】【分析】根据初等函数的单调性和奇偶性的判定方法,逐项判定,即可求解.【详解】对于A 中,函数sin y x =在定义域R 上不是严格的单调函数,不符合题意;对于B 中,函数2log y x =的定义域为(0,)+∞,所以为非奇非偶函数,不符合题意;对于C 中,函数()cos f x x x =-,可得()()cos()cos f x x x x x f x -=---=--≠,所以函数()f x 不是奇函数,不符合题意;对于D 中,函数()1e ee exxx x f x -=-=-,在定义域R 上严格的单调递增函数,且()()()e e e e xx x x f x f x ---=-=--=-,所以函数()f x 为奇函数,符合题意.故选:D.14.若π3π,22⎛⎫∈ ⎪⎝⎭α,且π3cos 2cos 4αα⎛⎫=+ ⎪⎝⎭,则sin 2α可以为()A.6-B.89C.18-D.1718-【答案】D 【解析】【分析】利用两角和的余弦公式及二倍角公式得到()2223cos sin sin )2αααα-=-,即可得到cos sin 6αα+=或cos sin 0αα-=,再将上式平方即可得解;【详解】因为π3cos 2cos 4αα⎛⎫=+⎪⎝⎭,所以()2243cos sin cos co c ππ4ssin os αααα-=-,所以()2223cos sin (cos sin )2αααα-=-,即()()3cos sin cos sin (cos sin )2αααααα-+=-,解得2cos sin 6αα+=或cos sin 0αα-=,当2cos sin 6αα+=时,()281cos sin 1αα+=,2281cos 2cos sin sin 1αααα++=,即11sin 218α+=,解得17sin 218α=-;当cos sin 0αα-=时,()2cos sin 0αα-=,22cos 2cos sin sin 0αααα-+=,即1sin 20α-=,解得sin 21α=.故选:D15.已知A 、B 、C 是平面上不共线的三点,O 是△ABC 的重心,点P 满足112663OP OB OC =++,则△ACO 与△CBP 面积比为()A.5:6B.3:4C.2:3D.1:2【答案】D 【解析】【分析】利用重心的性质和已知线性关系可得2OP OA =,故P 为OA 中点,进而可得面积比.【详解】由O 是△ABC 的重心,得0OA OB OC ++=,而112663OP OB OC =++,则64OB OC OP OA +=- ,故2OP OA =,所以点P 为OA 中点,即点P 、点O 为BC 边中线的两个三等分点,所以211323ACO ABC ABC S S S =⨯= ,23CBP ABC S S = ,所以△ACO 与△CBP 面积比为1:2.故选:D16.对任意两个非零的平面向量,αβ,定义αβαβββ⋅=⋅,若平面向量,a b 满足0≥> a b ,,a b 的夹角π0,4θ⎛⎫∈ ⎪⎝⎭,且a b 和b a 都在集合|Z 2n n ⎧⎫∈⎨⎬⎩⎭中,则a b =()A.12B.1C.32D.52【答案】C 【解析】【分析】由题意可可设m ∈Z ,Z t ∈,2m a b = ,2t b a = ,得21cos ,142mt θ⎛⎫=∈ ⎪⎝⎭,对m ,t 进行赋值即可得出m ,t 的值,进而得出结论.【详解】解:2cos |Z 2a a b n a b n b b θ⋅⎧⎫==∈∈⎨⎬⎩⎭ ,故cos |Z 2b n b a n a θ⎧⎫=∈∈⎨⎬⎩⎭.又由||||0a b >,可设m ∈Z ,Z t ∈,令2m a b = ,2t b a = ,且0m t ≥>又夹角π0,4θ⎛⎫∈ ⎪⎝⎭,所以21cos ,142mt θ⎛⎫=∈ ⎪⎝⎭,对m ,t 进行赋值即可得出3,1m t ==所以322m a b == .故选:C .三、解答题(本大题共有5题,满分78分)解答下列各题必须写出必要的步骤.17.已知O 是坐标原点,(2,3),(1,4)OA OB ==,(1)求向量OB 在OA方向上的投影向量的坐标和数量投影;(2)若3OC OA = ,3OD OB = ,2OE OA OB =+,请判断C 、D 、E 三点是否共线,并说明理由.【答案】(1)坐标2842,1313⎛⎫⎪⎝⎭,数量投影是141313(2)共线,理由见解析【解析】【分析】(1)根据投影向量和投影的公式,准确计算,即可求解;(2)根据平面向量的共线的坐标表示,得到3CD CE =,即可求解.【小问1详解】解:由向量(2,3),(1,4)OA OB ==,可得213414OA OA OB =⋅=⨯+⨯= 则投影向量的坐标是||cos OB OA < ,2842,1313||||||OA OA OB OA OB OA OA OA ⋅⎛⎫>⋅=⋅= ⎪⎝⎭,数量投影是||cos OB OA <,13||OA OB OB OA ⋅>== ,即向量OB 在OA 方向上的数量投影是141313.【小问2详解】解:C 、D 、E 三点共线,理由:向量(2,3),(1,4)OA OB ==,因为3OC OA = ,3OD OB = ,2OE OA OB =+,可得(6,9)OC = ,(3,12)OD = ,(5,10)OE =,所以(3,3)CD OD OC =-=- ,(1,1)CE OE OC =-=-,可得3CD CE =,所以C 、D 、E 三点共线.18.已知π02α<<,π02β-<<,tan 7α=,5sin 5β=-.(1)求()cos αβ-的值;(2)求tan(2)αβ-的值,并确定2αβ-的大小.【答案】(1)10(2)1-,3π4【解析】【分析】(1)由tan α解得sin ,cos αα,由sin β求出cos β,利用两角差的余弦公式求解()cos αβ-的值;(2)由sin β,cos β求出tan β,再求tan 2β,利用两角差的正切公式计算tan(2)αβ-的值,并得到2αβ-的大小.【小问1详解】π02α<< ,由22sin tan 7cos sin cos 1ααααα⎧==⎪⎨⎪+=⎩,72sin 10α∴=,2cos 10α=,又π02β-<<,sin 5β=-,cos β∴=,25257210cos()cos cos sin sin 51051010αβαβαβ∴-=+=⨯-=-.【小问2详解】由(1)可知,1tan 2β=-,22tan 4tan 231tan βββ∴==--,tan tan 2tan(2)11tan tan 2αβαβαβ-∴-==-+,3π022αβ<-<,3π24αβ∴-=.19.如图,某避暑山庄为吸引游客,准备在门前两条小路OA 和OB 之间修建一处弓形花园,已知π6AOB ∠=,弓形花园的弦长||AB =,记弓形花园的顶点为M ,π6MAB MBA ∠=∠=,设OBA θ∠=.(1)将OA 、OB 用含有θ的关系式表示出来;(2)该山庄准备在M 点处修建喷泉,为获取更好的观景视野,如何设计OA 、OB 的长度,使得喷泉M 与山庄O 的距离最大?喷㬌M 与山庄O 的距离最大?【答案】(1)||OA θ=,π||6OB θ⎛⎫=+ ⎪⎝⎭.(2)当||||OA OB ==+OM 的最大值4+.【解析】【分析】(1)根据题意和正弦定理,即可求得||OA θ=,π||6OB θ⎛⎫=+ ⎪⎝⎭;(2)在OMB △中,由余弦定理化简得到22π||2283OM θ⎛⎫=-++ ⎪⎝⎭,结合三角函数的图像与性质,即可求解.【小问1详解】解:在OAB 中,由正弦定理得||||||sin sin sin OA OB AB OAB AOBθ==∠∠,因为6AOB π∠=,||AB =,所以56OAB πθ∠=-,所以||OA θ=,5ππ||66OB θθ⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭.【小问2详解】解:因为||AB =,π6MAB MBA ∠=∠=,所以||||2AM BM ==,在OMB △中,由余弦定理易知222π||||||2||||cos 6OM OB BM OB BM θ⎛⎫=+-⋅⋅⋅+⎪⎝⎭,即22πππ||48sin 4cos 666OM θθθ⎛⎫⎛⎫⎛⎫=++-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2ππ48sin 2428263θθ⎛⎫⎛⎫=+-+-+ ⎪ ⎪⎝⎭⎝⎭ππ24cos 222833θθ⎛⎫⎛⎫=-+-++ ⎪ ⎪⎝⎭⎝⎭3π1πcos 2sin 2282323θθ⎤⎛⎫⎛⎫=-++++⎥ ⎪ ⎪⎝⎭⎝⎭⎦2π2283θ⎛⎫=-++ ⎪⎝⎭,因为5π0,6θ⎛⎫∈ ⎪⎝⎭,所以2π2π7π2,333θ⎛⎫+∈ ⎪⎝⎭,π23sin 21,32θ⎡⎫⎛⎫+∈-⎪⎢ ⎪⎪⎝⎭⎣⎭,当2πsin 213θ⎛⎫+=- ⎪⎝⎭,即5π12θ=时,2||OM取最大值28+即OM取最大值4+此时5πππ||1264OA ⎛⎫==+=+ ⎪⎝⎭5ππππ||12643OB ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭,故当||||OA OB ==+OM取最大值4+.20.已知函数()sin cos sin cos 1(,,R)f x a x b x c x x a b c =+++∈.(1)当0a b ==,1c =时,求函数()y f x =的单调增区间;(2)当1a =,0c =时,设()()1g x f x =-,且函数()g x 的图像关于直线π6x =对称,将函数()y g x =的图像向右平移π6个单位,得到函数()y h x =,求解不等式()1h x ≥;(3)当3a =,2b =,0c =时,若实数m ,n ,p 使得()()1mf x nf x p +-=对任意实数x 恒成立,求cos 2023pm n +的值.【答案】(1)πππ,π,Z 44k k k ⎡⎤-+∈⎢⎥⎣⎦(2)22π,π2π,Z 3k k k ⎡⎤+∈⎢⎥⎣⎦(3)11012-【解析】【分析】(1)根据题意得到1()sin 212f x x =+,结合正弦型函数的性质,即可求解;(2)根据题意得到1322b +=b =,得到π()2sin 3g x x ⎛⎫=+ ⎪⎝⎭,结合图象的变换求得()2sin π6h x x ⎛⎫=+⎪⎝⎭,由不等式()1h x ≥,即π1sin 62x ⎛⎫+≥ ⎪⎝⎭,即可求解;(3)化简得到())1f x x ϕ=++,求得())1f x p x p ϕ-=+-+,转化为cos )sin()sin cos()(1)0m n p x p x m n ϕϕ++-+++-=,得到方程组,分类讨论,即可求解.【小问1详解】解:当0a b ==,1c =时,可得函数1()sin cos 1sin 212f x x x x =+=+,令ππ2π22π,Z 22k x k k -≤≤+∈,所以单调增区间为πππ,π,Z 44k k k ⎡⎤-+∈⎢⎥⎣⎦;【小问2详解】解:当1a =,0c =时,可得sin cos ()()1)x b x x g x f x θ=-=+=+,其中tan b θ=,因为()g x 关于直线π6x =对称,可得max π()6g x g ⎛⎫==⎪⎝⎭1322b +=b =,所以π()sin 2sin 3g x x x x ⎛⎫==+ ⎪⎝⎭,将函数()y g x =的图像向右平移π6个单位,得到函数()2sin π6h x x ⎛⎫=+ ⎪⎝⎭,由()1h x ≥,即π1sin 62x ⎛⎫+≥ ⎪⎝⎭,则ππ52ππ2π,Z 666k x k k +≤+≤+∈解得22ππ2π,Z 3k x k k ≤≤+∈,所以不等式的解集为()22π,π2πZ 3k k k ⎡⎤+∈⎢⎥⎣⎦;【小问3详解】解:当3a =,2b =,0c =时,则()3sin 2cos 1f x x x =++,可得())1f x x ϕ=++,则())1f x p x p ϕ-=+-+,其中π02ϕ<<且2tan 3ϕ=,于是()()1mf x nf x p +-=,sin()sin()1x x p m n ϕϕ+++-++=,sin()sin()cos sin cos()(1)0x x p p x m n ϕϕϕ+++-+++-=,cos )sin()sin cos()(1)0m n p x p x m n ϕϕ++-+++-=.由已知条件,上式对任意x ∈R 恒成立,故必有cos 0(1)sin 0(2)10(3)m n p n p m n +=⎧⎪=⎨⎪+-=⎩,若0n =,则由(1)知0m =,显然不满足(3)式,故0n ≠,所以由(2)知sin 0p =,故ππ2p k =+或π2Z ,p k k =∈,当2πp k =时,cos 1p =,则(1)、(3)两式矛盾,故2,Z p k k ππ=+∈,cos 1p =-由(1)、(3)知12m n ==,所以cos 120231012p m n =-+.21.已知函数()()sin cos 4sin29f x a x x x =+++,且π134f ⎛⎫=-⎪⎝⎭.(1)求a 的值,并求出()y f x =的最小正周期(不需要说明理由);(2)若π0,2x ⎡⎤∈⎢⎥⎣⎦,求()y f x =的值域;(3)是否存在正整数n ,使得()y f x =在区间[]0,πn 内恰有2025个零点,若存在,求由n 的值;若不存在,说明理由.【答案】(1)9a =-,函数()f x 的最小正周期为πT =(2)1,1316⎡--⎢⎣(3)存在正整数506n =,理由见解析【解析】【分析】(1)根据π134f ⎛⎫=-⎪⎝⎭代入即可求解a 的值.因为sin cos sin 2x x x 、、的周期是都π,故得函数()f x 的最小正周期;(2)根据π0,2x ⎡⎤∈⎢⎥⎣⎦,得到()()9sin cos 4sin29f x x x x =-+++,设πsin cos4x x x t ⎛⎫+=+= ⎪⎝⎭,t ⎡∈⎣,转化为二次函数求解;(3)分类讨论π0,2x ⎡⎤∈⎢⎥⎣⎦和π,π2x ⎛⎫∈ ⎪⎝⎭时,将()y f x =转化为二次函数,从而求得其零点个数,进而得解.【小问1详解】函数()()sin cos 4sin 29f x a x x x =+++,∵π134f ⎛⎫=-⎪⎝⎭,∴πππsincos 4sin 913442a ⎛⎫+++=- ⎪⎝⎭9a =-,所以()()9sin cos 4sin29f x x x x =-+++,因为sin cos sin 2x x x 、、的周期是都π,又周期成倍数关系的两个函数之和,其周期为这两个函数的周期的最小公倍数,所以函数()f x 的最小正周期为πT =.【小问2详解】若π0,2x ⎡⎤∈⎢⎥⎣⎦,则()()9sin cos 4sin29f x x x x =-+++,设πsin cos 4x x x t ⎛⎫+=+= ⎪⎝⎭,则t ⎡∈⎣,则2sin22sin cos 1x x x t ==-,所以()()2495,f x g t t t t ⎡==-+∈⎣,所以其值域为1,1316⎡--⎢⎣;【小问3详解】存在正整数506n =,使得()0f x =在区间[]0,πn 内恰有2025个零点.当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()()9sin cos 4sin29f x x x x =-+++.设πsin cos ,4t x x x t ⎛⎫⎡=+=+∈ ⎪⎣⎝⎭,则2sin22sin cos 1x x x t ==-,于是()()29sin cos 4sin29495f x x x x t t =-+++=-+,令24950t t -+=,得1t =或54t ⎡=∈⎣,此时π0,2x =,或00π04x x x ⎛⎫=<< ⎪⎝⎭或0π2x x =-,其中0π52sin 48x ⎛⎫+= ⎪⎝⎭,当π,π2x ⎛⎫∈⎪⎝⎭时,()()9sin cos 4sin29f x x x x =--++.设(πsin cos ,4t x x x t ⎛⎫=-=-∈ ⎪⎝⎭,则2sin22sin cos 1x x x t ==-,于是()()29sin cos 4sin294913f x x x x t t =--++=--+,令249130t t --+=,解得1t =或(134t =-∉,故()f x 在π,π2x ⎛⎫∈⎪⎝⎭没有实根.综上,()0f x =在[)0,π上有4个零点,又()f x 的最小正周期为πT =,而202545061=⨯+,所以函数在[]0,506π有2025个零点.。
2024年第二学期高一年级数学期中试卷—学生版
考试时间:120分钟总分:120分第一部分:选择题(共70分)1.下列函数中,不是下三角比的是()A.y=-2x+1B.y=3x-2C.y=1/xD.y=2x+32.若下三角比函数y=kx+2,当x=1时,y=3;当x=2时,y=5、设函数的定义域为R,则k=?()A.2/3B.1C.3/2D.-13.已知函数y=k*x+b是下三角比,函数图象与x轴交于点(2,0),则k=?()A.-1B.0C.1D.24.已知函数y=k*x+b是下三角比,函数图象经过点(-2,5),(-1,4),则k=?()A.-1B.0C.1D.25.若函数y=k*x+b是下三角比,函数图象经过点(2,3),(-4,-1),则函数的解析式是()A.y=-x+1B.y=-2x+7C.y=x-1D.y=2x-56.已知函数y=k*(x-1)^2+b是下三角比,若函数图象与y轴交于点(0,-2),则函数的值域是()A.(-∞,-2)B.(-2,+∞)C.(-∞,-1)D.(-∞,0)7.已知函数y=k*(x+1)^2+b是下三角比,若函数图象与x轴交于点(1,0),则函数的定义域是()A.(-1,+∞)B.(0,+∞)C.(-∞,-1)D.(-∞,0)8.若函数y=x^2+b是下三角比,且函数图象经过点(-2,8),则函数图象与x轴交于点的x坐标是()A.2B.-2C.4D.-49.若函数y=x^2+b是下三角比,且函数图象与y轴交于点的y坐标是4,则函数的解析式是()A.y=x^2-4B.y=x^2+4C.y=x^2+2D.y=x^2+610.已知函数y=mx^2+nx+b是下三角比,若函数图象经过点(-1,3),(2,-1),则函数的解析式是()A.y=-x^2-2x+3B.y=-2x^2+4x+1C.y=2x^2-3x-1D.y=x^2+2x-1第二部分:非选择题(共50分)1.已知函数y=kx+b是下三角比,若函数图象与y轴交于点(0,3),并且图象经过点(2,1),求k和b的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
并求此时棱锥的全面积。
D
C
A
B
( 24 题图)
25.若函数 f (x) cos2 x 2m sin x 2m 2 对任意实数 x R 都有 f (x) 0恒成立, 求实数 m 的取值范围。
参考答案与评分标准
一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 B D D D D A D C A D C B A C C
二、 填空题: 16; 1 6
17; 9
三、 解答题 (共 5 题 , 每题 8 分 , 满分 40 分 )
18;- 1
19; 60
20; 9
21.解:由条件得: sin cos 1 3 2
2分.
两边平方得: 1 2 sin cos
4 23 , sin cos
3
4
4
tg 2 ctg 2
sin2 cos2
5 ]( k Z )
12
(B)[ k
,k
]( k Z )
3
6
(C) [ k
, k 2 ]( k Z )
6
3
( D) [k
5 ,k
12
11 ]( k Z )
6
12. 函数 y sin 2 x 3sin x 2 的最小值为(
)
(A)2
( B) 0
(C)- 1
(D )6
1
13. 若 sin cos
,且 0
)
3
(A) R
1 (B) R
2
3 ( C) R
2
2 (D) R
2
二、 填空题 (共 5 小题 ,每小题 3 分 ,满分 15 分 )
tg ( 150 ) cos 210 cos300
16.
.
ctg 210 sin( 300 )
17. 已知圆锥的底面面积为 16 ,则它的中截面与底面间部分(圆台)的中截面的面积为
( D )第四象限
2. 若角 的终边在射线 y 2x ( y 0) 上,则 sin 的值为(
)
5
(A)
2
(B) 5
3. 下列命题中正.确.的是(
)
5
( C)
5
25
(D)
5
(A )直平行六面体是长方体
(B )对角面是全等的矩形的四棱柱是长方体
( C )侧面都是矩形的直四棱柱是长方体
( D)底面是矩形的直四棱柱是长方体
(B) 60
( C) 45
(D ) 30
10. 已知圆台上、下底面半径之和等于母线长的 2 倍,其侧面积为 450 ,母线与底面所成的角为 ,
且 cos
(A ) 12
4
,那么圆台的高是(
5
( B) 21
) (C) 6
(D)9
11. 函数 y cos(2x ) 的单调递减区间是(
)
3
(A) [k
,k 12
.
18. 已知 f ( x) x cos x a sin x 2 ( a为常数),若 f (1) 5,则 f ( 1)
.
19. 若正棱台的上、下底面面积及侧面面积之比为 4∶ 9∶ 10,则其侧面与底面所成的角为
.
20. 长方体的共顶点的三个侧面面积为 3、 5、 15,则它的外接球的表面积为
.
三、 解答题 (共 5 题 , 每题 8 分 , 满分 40 分 )
高一第二学期数学期中考试试卷
(满分 :100 分 考试时间 :120 分钟 )
一、 选择题(共 15 小题,每小题 3 分,满分 45 分。将唯.一.正确的答案填在答题卷答题卡对应的题号下。 )
cos
sin
1. 若
1,则 角所在的象限是(
)
1 tg 2
1 ctg 2
(A )第一象限
(B )第二象限
( C )第三象限
值域并指出它的单调递减区间 .
0) 的最大值为 3 ,最小值为 2
1 . 求函数 y
2
4a sin 3bx 的定义域、
24.(如图)已知四棱锥 P ABCD 的高为 h ,底面是边长为 2cm 的菱形,
侧面 PAD 和侧面 PDC 都垂直于底面,且二面角 A PD C 为 120 .
P
试求:当 h 为何值时,侧面 PBC 与底面所成的角为 45 ,
(D) { x | x (2k 1)
1 , k Z}
6
8. 在 ABC 中,若 tg 2 A tg 2B ,则 ABC 的形状一定是(
)
(A )钝角三角形
( B)等腰三角形 (C)直角三角形
(D )正三角形
9. 一个三棱锥中,两组相对棱所成的角都是 90 ,则另一组相对棱所成的角为(
)
(A ) 90
6. y sin( 2x ) 的图象的一条对称轴的方程是(
)
2
(A) x 2
(B) x 4
( C) x 8
5 (D) x
4
7. 满足 cos x
3 的 x 的集合是( 2
(A) { x | x 2k
5 , k Z}
6
)
(B) { x | x 2k
7 , k Z}
6
(C) { x | x 2k
1 , k Z} 6
S圆锥全 = R 2R R2
( 2 1)R2 ,
S圆柱全 =2 r ( R r )+2 r 2 2 Rr .
21.已知 sin(
) cos(
1 )
3 .求
tg 2
2
ctg 2 的值 .
22.已知圆锥的高和底面半径均为 R . 请问:是否存在该圆锥的一个内接圆柱,使得圆柱的全面积是圆锥的全 面积的 2 倍 . 若存在,请求出圆柱的全面积;若不存在,请说明理由。
23.已知函数 f (x) a b cos3x (b
cos2 sin 2
sin 4 cos4 sin2 cos2
1 2sin2 cos2
sin 2 cos2
12 3 16
10 .
3
3
16
4分
.
6分.
8分 .
22.解:设存在满足题意的圆柱,且设它的底面半径为 由三角形相似可得
r Rh , h R r.
RRLeabharlann r ,高为 h 。则 S圆柱全 2 rh 2 r 2 , 2分 .
4. 圆锥的侧面积为 80,其侧面展开图的扇形圆心角为 135 ,则圆锥底面面积为(
)
(A ) 15
(B) 60
(C) 40
( D) 30
5. 下列函数中同时满足①在区间 (0, ) 上是增函数;②以 为周期;③是偶函数三个条件的是(
)
2
(A ) y tgx
( B) y 2 cos x
(C) y | cos x | ( D) y | sin x |
5
, 则 tg 的值为 (
)
4
(A)
3
4
(B)
3
3
(C)
4
3
(D)
4
14. 如图,已知函数 y 2sin( x
的图象(部分) ,则(
)
) (| | ) 2
(A)
10 ,
(B)
10 ,
11
6
11
6
(C) 2,
(D) 2,
6
6
y 2
O
12
-2
(14 题图)
11 12
x
15. 在半径为 R 的球面上有 A、 B 两点,其球面距离为 R ,那么过 AB 的球截面到球心的最大距离为 (