九年级数学三角函数测试题 (1)
(常考题)人教版初中数学九年级数学下册第三单元《锐角三角函数》检测题(有答案解析)(1)
一、选择题1.小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆PA 的高度与拉绳PB 的长度相等,小明先将PB 拉到'PB 的位置,测得(''PB C a B C ∠=为水平线),测角仪/B D 的高度为1米,则旗杆PA 的高度为( )A .11sin a+米B .11cos a-米C .11sin a-米D .11cos a+米2.如图,已知第一象限内的点A 在反比例函数2y x=的图象上,第二象限的点B 在反比例函数ky x=的图象上,且OA ⊥OB ,tanA=2,则k 的值为( )A .4B .8C .-4D .-8 3.在Rt △ABC 中,∠C =90°,如果∠A =α,BC =a ,那么AC 等于( )A .a•tanαB .a•cotαC .a•sinαD .a•cosα4.如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 在x 轴的正半轴上,矩形的另一个顶点D 在y 轴的正半轴上,矩形的边,,AB a BC b DAO x ==∠=.则点C 到x 轴的距离等于( )A .cos sin a x b xB .cos cos a x b xC .sin cos a x b xD .sin sin a x b x5.如图,在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB 沿射线AO 平移,平移后点A '的横坐标为43,则点B ′的坐标为( )A .(63,2)-B .(63,23)-C .()6,2-D .(63,2)-6.如图,Rt △ABC 中,AB =4,BC =2,正方形ADEF 的边长为2,F 、A 、B 在同一直线上,正方形ADEF 向右平移到点F 与B 重合,点F 的平移距离为x ,平移过程中两图重叠部分的面积为y ,则y 与x 的关系的函数图象表示正确的是( )A .B .C .D .7.若菱形的周长为16,高为2,则菱形两个邻角的比为( ) A .6:1B .5:1C .4:1D .3:18.点E 在射线OA 上,点F 在射线OB 上,AO ⊥BO ,EM 平分∠AEF ,FM 平分∠BFE ,则tan ∠EMF 的值为( ) A .12B .33C .1D .39.如图,平行四边形ABCD 中,AB ⊥AC ,AB =3,BC =7,对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转,分别交B C ,AD 于点E ,F ,下列说法:①在旋转过程中,AF =CE . ②OB =AC ,③在旋转过程中,四边形ABEF 的面积为21,④当直线AC 绕点O 顺时针旋转30°时,连接BF ,DE 则四边形BEDF 是菱形,其中正确的是( )A .①②④B .① ②C .①②③④D .② ③ ④10.如图,在矩形ABCD 中,33AB =AD =9,点P 是AD 边上的一个动点,连接BP ,将矩形ABCD 沿BP 折叠,得到△A 1PB ,连接A 1C ,取A 1C 的三等分点Q (CQ <A 1Q ),当点P 从点A 出发,沿边AD 运动到点D 时停止运动,点Q 的运动路径长为( )A .πB .23πC .43π D .23π 11.如图,分别以直角三角形三边为边向外作等边三角形,面积分别为1S 、2S 、3S ;如图2,分别以直角三角形的三边为直径向外半圆,面积分别为4S 、5S 、6S .其中116S =,245S =,511S =,614S =,则34S S +=( )A .86B .64C .54D .4812.在平面直角坐标系中,正方形1111D C B A 、1122D E E B 、2222A B C D 、2343D E E B 、3333A B C D …按如图所示的方式放置,其中点1B 在y 轴上,点1C 、1E 、2C 、3E 、4E 、3C …在x 轴上,已知正方形1111D C B A 的边长为1,1160B C O ∠=︒,112233B C B C B C …则正方形2019201920192019A B C D 的边长是( )A .201812⎛⎫⎪⎝⎭B .201912⎛⎫⎪⎝⎭C .20193⎝⎭D .20183⎝⎭二、填空题13.如图,ABC 内接于O ,AB AC =,直径AD 交BC 于点E ,若1DE =,2cos 3BAC ∠=,则弦BC 的长为______.14.如图,已知在Rt ABC 中,C 90,AC BC 2∠=︒==,点D 在边BC 上,将ABC 沿直线AD 翻折,使点C 落在点C '处,联结AC ',直线AC '与边CB 的廷长线相交于点F ,如果DAB BAF ∠∠=,那么BF =_________.15.已知抛物线2y ax bx c =++过点()0,3A ,且抛物线上任意不同两点()11,M x y ,()22,N x y ,都满足:当120x x <<时,()()12120x x y y -->;当120x x <<时,()()12120x x y y --<.以原点O 为圆心,OA 为半径的圆与抛物线的另两个交点为B ,C ,且B 在C 的左侧,ABC ∆有一个内角为60︒,则抛物线的解析式为______. 16.如图,已知直线l :33y x =,过点()0,1A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ;过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ;…;按此作法继续下去,则点2020A 的坐标为__________.17.如图,已知直线l :y =33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为_____.18.如图,在直角三角形ABC 中,∠C=90°,AC=12cm ,BC=5cm ,AB=13cm ,则点C 到AB 边的距离是______cm .19.如图,在ABC ∆中,3AB AC cm ==,120A ∠=︒,AB 的垂直平分线分别交,AB BC 于,D E ,则EC 的长为_________.20.如图,已知2AB a =,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE .点P ,C ,E 在一条直线上,60DAP ∠=︒,M 、N 分别是对角线AC 、BE 的中点.当点P 在线段AB 上移动时,点M 、N 之间的距离最短为_______.三、解答题21.已知ABC 为等边三角形,6,AB P =是AB 上的一个动点,(与A B 、不重合),过点P 作AB 的垂线与BC 相交于点D ,以点D 为正方形的一个顶点,在ABC 内作正方形DEFG ,其中D E 、在BC 上,F 在AC 上,(1)设BP 的长为x ,正方形DEFG 的边长为y ,写出y 关于x 的函数解析式及定义域;(2)当2BP =时,求CF 的长;(3)GDP △是否可能成为直角三角形?若能,求出BP 的长;若不能,请说明理由.22.如图,已知⊙O 的直径 AB 与弦 CD 互相垂直,垂足为点 E.⊙O 的切线 BF 与弦 AC 的延长线相交于点 F,且AC=8,tan∠BDC=34.(1)求⊙O 的半径长;(2)求线段 CF 长.23.如图,在△ABC中,BD、CE是△ABC的高,连接DE.(1)求证:ABD∽ACE;(2)若∠BAC=60°,BC=2DE的长.24.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=5,求tan∠ABD的值.参考答案 25.理解写作如下图1,在探究锐角A ∠的对边与直角三角形斜边之比的数学实验中包含两个环节,一是通过在A ∠的边AB 上取不同的点B ', B '',分别作高B C '',B C ''''利用三角形相似,可以说明B C B C A ABB ''''''=''',即A ∠的对边与斜边的比值固定,与点B '的位置无关. 二是说明A ∠的度数发生变化时,A ∠的对边与斜边的比值也会发生变化.请根据下图2简要说明做法并证明第二个环节的结论,并在图3中再构造一种思路证明此结论.26.如图,小王在长江边某瞭望台D 处,测得江面上的渔船A 的俯角为40°,若DE =3米,CE =2米,CE 平行于江面AB ,DE ⊥CE ,迎水坡BC 的坡度i =1:0.75,坡长BC =10米,求此时AB 的长.(小数点后面保留一位,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【分析】设PA=PB=PB′=x,在RT△PCB′中,根据sinαPCPB=',列出方程即可解决问题.【详解】解:设PA=PB=PB′=x,在RT△PCB′中,sinαPCPB='∴1sinαxx-=∴x1xsinα-=,∴(1-sinα)x=1,∴x=11sinα-.故选C.【点睛】本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.2.D解析:D【分析】过点A、B分别作AC⊥x轴、BD⊥x轴,垂足分别为点C、D,如图,易证△AOC∽△OBD,则根据相似三角形的性质可得214AOCBODS OAS OB⎛⎫==⎪⎝⎭△△,再根据反比例函数系数k的几何意义即可求出k的值.【详解】解:过点A、B分别作AC⊥x轴、BD⊥x轴,垂足分别为点C、D,如图,则∠ACO=∠BDO=90°,∠OAC+∠AOC=90°,∵OA⊥OB,tan∠BAO=2,∴∠AOC+∠BOD=90°,OA:OB=1:2,∴∠OAC=∠BOD,∴△AOC∽△OBD,∴221124 AOCBODS OAS OB⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭△△,∵1212AOCS⨯==,12BODS k=△,∴11142k=,∴8k=,∵k<0,∴k=﹣8.故选:D.【点睛】本题考查了反比例函数系数k的几何意义、相似三角形的判定和性质以及三角函数的定义等知识,熟练掌握所学知识、明确解答的方法是解题的关键.3.B解析:B【分析】画出图形,根据锐角三角函数的定义求出即可.【详解】如图,∠C=90°,∠A=α,BC=a,∵cotαACBC=,∴AC=BC•cotα=a•cotα,故选:B.【点睛】本题考查了锐角三角函数的定义的应用,在直角三角形中,锐角的正弦是角的对边与斜边的比;余弦是角的邻边与斜边的比;正切是对边与邻边的比;余切是邻边与对边的比;熟练掌握三角函数的定义是解题关键.4.A解析:A【分析】作CE⊥y轴于E.解直角三角形求出OD,DE即可解决问题.【详解】作CE⊥y轴于E.在Rt △OAD 中,∵∠AOD=90°,AD=BC=b ,∠OAD=x , ∴OD=sin OAD sin AD b x ∠=, ∵四边形ABCD 是矩形, ∴∠ADC=90°, ∴∠CDE+∠ADO=90°, 又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=x , ∴在Rt △CDE 中,∵CD=AB=a ,∠CDE=x , ∴DE= cos CDE cos CD a x ∠=,∴点C 到x 轴的距离=EO=DE+OD=cos sin a x b x , 故选:A . 【点睛】本题考查了解直角三角形的应用,矩形的性质,正确作出辅助线是解题的关键.5.D解析:D 【详解】如解图,过点A 作AC x ⊥轴,过点A '作A D x '⊥轴,∵AOB 是等边三角形,∴4AO BO ==,60AOB ∠=︒,∴30AOC ∠=︒,∴·cos 23CO OA AOC ==,2AC =,∴(23,2)A -,∵30AOD AOC ∠'=∠=︒,43OD =,∴·t 3434an A D OD A OD ⨯=∠'==',∴(43,4)A '-,∴点A '是将点A 向右平移63个单位,向下平移6个单位得到的,∴点B '也是将点B 向右平移63个单位,向下平移6个单位得到的,∵()0,4B ,∴B '的坐标为(63,2)-.6.B【分析】分三种情况分析:当0<x≤2时,平移过程中两图重叠部分为Rt △AA'M ;当2<x≤4时,平移过程中两图重叠部分为梯形F'A'MN ;当4<x≤6时,平移过程中两图重叠部分为梯形F'BCN .分别写出每一部分的函数解析式,结合排除法,问题可解.【详解】设AD 交AC 于N ,A D ''交AC 于M ,当0<x ≤2时,平移过程中两图重叠部分为Rt △AA 'M ,∵Rt △ABC 中,AB =4,BC =2,正方形ADEF 的边长为2,AA x '=,∴tan ∠CAB =A M BC AA AB ='', ∴A 'M =12x , 其面积y=12AA A M ''=12x •12x =14x 2, 故此时y 为x 的二次函数,排除选项D ; 当2<x ≤4时,平移过程中两图重叠部分为梯形F 'A 'MN ,AA x '=,2AF x '=-,同理:A 'M =12x ,()122F M x ='-, 其面积y=12AA A M ''-12AF F M ''=12x •12x ﹣12(x ﹣2)•12(x ﹣2)=x ﹣1, 故此时y 为x 的一次函数,故排除选项C .当4<x ≤6时,平移过程中两图重叠部分为梯形F 'BCN ,AF '=x ﹣2,F 'N =12(x ﹣2),F 'B =4﹣(x ﹣2)=6﹣x ,BC =2, 其面积y =12 [12(x ﹣2)+2]×(6﹣x )=﹣14x 2+x +3, 故此时y 为x 的二次函数,其开口方向向下,故排除A ;综上,只有B 符合题意.【点睛】本题考查了动点问题的函数图象以及三角函数的知识,数形结合并运用排除法,是解答本题的关键.7.B解析:B【分析】由锐角函数可求∠B 的度数,可求∠DAB 的度数,即可求解.【详解】如图,∵四边形ABCD 是菱形,菱形的周长为16,∴AB=BC=CD=DA=4,∵AE=2,AE ⊥BC ,∴sin ∠B=12BE AB = ∴∠B=30° ∵四边形ABCD 是菱形,∴AD ∥BC ,∴∠DAB+∠B=180°,∴∠DAB=150°,∴菱形两邻角的度数比为150°:30°=5:1,故选:B .【点睛】本题考查了菱形的性质,锐角三角函数,能求出∠B 的度数是解决问题的关键. 8.C解析:C【分析】根据三角形外角的性质求得∠AEF+∠BFE=270°,由角平分线定义可求得∠MEF+∠MFE=135°,根据三角形内角和定理可求出∠EMF=45°,从而可得出结论.【详解】如图,∵AO ⊥BO∴∠AOB=90°∴∠OEF+∠OFE=90°∵∠AEF 和∠BFE 是△EOF 的外角∴∠AEF=90°+∠OFE ,∠BFE=90°+∠OEF∴∠AEF+∠BFE=90°+90°+∠OFE+∠OEF=270°∵EM 平分∠AEF ,FM 平分∠BFE ,∴∠MEF+∠MFE=12(∠AEF+∠BFE) =135°, ∵∠MEF+∠MFE+∠M=180° ∴∠M=180°-(∠MEF+∠MFE)=180°-135°=45°∴tan ∠EMF=tan45°=1故选:C .【点睛】此题主要考查了三角形内角和定理、三角形外角的性质及三角函数,求出∠MEF+∠MFE=135°是解答此题的关键.9.A解析:A【分析】①通过证明AOF COE ≅△△即可判断;②分别利用勾股定理求出OB,AC 的长度即可得出答案;③先利用ABC 的面积求出AG 的长度,然后利用梯形的面积公式求解即可; ④易证四边形BEDF 是平行四边形,然后通过角度得出90DOF ∠=︒,然后证明DOF DOE ≅,则有DF DE =,则可证明结论.【详解】∵四边形ABCD 是平行四边形,,//,AO CO AD BC AD BC ∴== ,AFO CEO ∴∠=∠ .在AOF 和COE 中,AFO CEO AOF COE AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩()AOF COE AAS ∴≅,AF CE OF OE ∴==,故①正确;∵AB ⊥AC ,90BAC ∴∠=︒ .∵AB =3,BC=7,222AC BC AB ∴=-= ,112AO AC ∴== , 222OB AO AB ∴=+=,OB AC ∴=,故②正确;过点A 作AG BC ⊥交BC 于点G ,1122ABC S AB AC BC AG =⋅=⋅ , 322177AB AC AG BC ⋅∴===, 11221()73227ABEF S AF BE AG ∴=+⋅==四边形,故③错误; 连接DE,BF ,,AF CE AD BC ==,DF BE ∴= .∵//DF BE ,∴四边形BEDF 是平行四边形.3sin AB AOB OB ∠== , 60AOB ∴∠=︒ .30AOF ∠=︒,180603090DOF ∴∠=︒-︒-︒=︒,90DOE ∴∠=︒.在DOF △和DOE △中,FO OE DOF DOE DO DO =⎧⎪∠=∠⎨⎪=⎩()DOF DOE SAS ∴≅,DF DE ∴=,∴四边形BEDF 是菱形,故④正确;所以正确的有:①②④,故选:A .【点睛】本题主要考查平行四边形的性质,全等三角形的判定及性质,勾股定理和锐角三角函数,掌握平行四边形的性质,全等三角形的判定及性质,勾股定理和锐角三角函数是解题的关键.10.D解析:D【分析】连接AC ,BD ,相交于点O ,过点Q 作1//QE A B ,交BC 于点E ,即点E 为BC 的三等分点,根据平行线分线段成比例得出113QE A B =为定值,可得出点Q 的运动轨迹是以点E 为圆心,QE 为半径的圆弧,通过对点A 1运动轨迹的分析求出圆心角,最后根据弧长公式进行求解.【详解】连接AC ,BD ,相交于点O ,过点Q 作1//QE A B ,交BC 于点E ,即点E 为BC 的三等分点,∵在矩形ABCD 中,33AB =,AD =9,∴3tan 3AB ADB AD ∠==,即30ADB ︒∠=, ∴60ABD ︒∠=,∵将矩形ABCD 沿BP 折叠,得到△A 1PB ,∴133A B AB ==, ∴1133QE A B ==, 当点P 运动到点A 时,点A 1与点A 重合,当点P 运动到点D 时,点A 1与A 2重合,此时2120ABA ︒∠=,∴点Q 的运动轨迹是以点E 为圆心,QE 为半径,圆心角为120︒的圆弧,∴点Q 的运动路径长120323ππ⨯==, 故选D .【点睛】本题考查矩形与轴对称图形的性质,平行线分线段成比例,由三角函数值求锐角,弧长公式,构造平行线得出QE 的长为定值是解题的关键.11.C解析:C【分析】分别用AC ,AB 和BC 表示出123,,S S S ,然后根据222BC AB AC =-即可得出123,,S S S 的关系.同理,得出456,,S S S 的关系,从而可得答案.【详解】解:如图,1S 对应ACD ∆的面积,过D 作DH AC ⊥于H ,ACD ∆为等边三角形, 160,,,2DAC AH CH AC AD AC ∴∠=︒=== sin 60,DH AD ∴︒=33,22DH AD AC ∴== 2113,24S AC DH AC ∴=•=同理:222333,,S BC S AB == ∵222BC AB AC =-, ∴213,S S S -=如图2,同理可得:456S S S =+,∴3421564516111454.S S S S S S +=-++=-++=故选:C .【点睛】本题考查了勾股定理、等边三角形的性质.锐角三角函数等知识点,其中勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222+=a b c .12.D解析:D【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【详解】解:∵∠B 1C 1O=60°,B 1C 1//B 2C 2//B 3C 3,∴∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°,∴D 1E 1=C 1D 1sin30°= 12, 则B 2C 2= 2230B E cos = 123= 13(), 同理可得:B 3C 3= 13= 23()3, 故正方形A n B n C n D n 的边长是:13()n -. 则正方形2019201920192019A B C D 的边长是:20183(). 故选D .【点睛】 此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.二、填空题13.【分析】连接OBOC 由题意易得AE ⊥BC 则有BE=EC ∠BOD=∠BAC 设OB=3rOE=2r 然后根据勾股定理可求解【详解】解:连接OBOC 如图所示:∵内接于AD 过圆心O ∴AE ⊥BC ∴BE=EC ∴∠解析:25【分析】连接OB 、OC ,由题意易得AE ⊥BC ,则有BE=EC ,∠BOD=∠BAC ,设OB=3r ,OE=2r ,然后根据勾股定理可求解.【详解】解:连接OB 、OC ,如图所示:∵ABC 内接于O ,AB AC =,AD 过圆心O ,∴AE ⊥BC ,∴BE=EC ,BD DC =,∴∠BAD=∠CAD ,∵∠BOD=2∠BAD ,∴∠BAC=∠BOD , ∵2cos 3BAC ∠=, ∴2cos 3BOD ∠=, ∵DE=1,∴设OB=3r ,OE=2r ,则有: 321r r =+,解得:1r =,∴3,2OB OE ==,∴在Rt △BEO 中,BE =, ∴BC =故答案为【点睛】本题主要考查垂径定理、三角形内接圆的性质及圆周角定理,熟练掌握垂径定理、三角形内接圆的性质及圆周角定理是解题的关键.14.【分析】首先根据题意画出图形再根据折叠的性质和可求出各角的度数再利用解直角三角形的知识分别求出CDDFBD 的长度最后根据线段之间的和差关系即可求出结果【详解】解:如图所示:∵△ADC 是由△ACD 翻折解析:2【分析】首先根据题意画出图形,再根据折叠的性质和DAB BAF ∠∠=,可求出各角的度数,再利用解直角三角形的知识分别求出CD ,DF ,BD 的长度,最后根据线段之间的和差关系即可求出结果.【详解】解:如图所示:∵△ADC’是由△ACD 翻折得到,∴DAC 'DAC ∠∠=, ∵DAB BAF ∠∠=, ∴DAC 2DAB ∠∠=. ∵AC 45B ∠=︒, ∴DAB BAF=15∠∠=︒.∴30CAD ∠=︒.在Rt △ACD 中,AC=2 ∴23tan 30CD AC =⋅︒= ,43cos30AC AD ==︒ . ∵'ADC F DAC ∠=∠+∠∴'30F DAC ∠=∠=︒ . ∴433DF AD ==. 23432232BF CD DF BC∴=+-=-= 故答案为32.【点睛】本题考查了翻折的性质和解 直角三角形的知识,根据题意画出图形是解题的关键. 15.【分析】由A 的坐标确定出c 的值根据已知不等式判断出y1-y2<0可得出抛物线的增减性确定出抛物线对称轴为y 轴且开口向下求出b 的值如图1所示可得三角形ABC 为等边三角形确定出B 的坐标代入抛物线解析式即 解析:2233=-+y x 【分析】由A 的坐标确定出c 的值,根据已知不等式判断出y 1-y 2<0,可得出抛物线的增减性,确定出抛物线对称轴为y 轴,且开口向下,求出b 的值,如图1所示,可得三角形ABC 为等边三角形,确定出B 的坐标,代入抛物线解析式即可.【详解】解:∵抛物线过点A (0,3),∴c=3,当x 1<x 2<0时,x 1-x 2<0,由(x 1-x 2)(y 1-y 2)>0,得到y 1-y 2<0,∴当x <0时,y 随x 的增大而增大,同理当x >0时,y 随x 的增大而减小,∴抛物线的对称轴为y 轴,且开口向下,即b=0,∵以O 为圆心,OA 为半径的圆与抛物线交于另两点B ,C ,如图所示,∴△ABC 为等腰三角形,∵△ABC 中有一个角为60°,∴△ABC 为等边三角形,且OC=OA=3,设线段BC 与y 轴的交点为点D ,则有BD=CD ,且∠OBD=30°,333cos30,sin 3022︒︒∴=⋅==⋅=BD OB OD OB ∵B 在C 的左侧, ∴B 的坐标为3332⎛⎫- ⎪ ⎪⎝⎭∵B 点在抛物线上,且c=3,b=0,327432∴+=-a 解得:23a =- 则抛物线解析式为2233=-+y x故答案为: 2233=-+y x . 【点睛】 此题属于二次函数综合题,涉及的知识有:待定系数法求二次函数解析式,二次函数的图象与性质,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.16.【分析】先求出点B 的坐标为(1)得到OA=1OB=求出∠AOB=60°再求出∠得到求出(04);同理得到(0);由此得到规律求出答案【详解】将y=1代入中得x=∴B (1)∴OA=1OB=∴tan ∠A解析:()20200,4【分析】先求出点B 1),得到OA=1,∠AOB=60°,再求出∠130OA B =得到13AA =,求出1A (0,4);同理得到11A B =121112A A B ==,2A (0,24);由此得到规律求出答案.【详解】将y=1代入3y x =中得 ∴B,1),∴OA=1,∴tan ∠AOB=AB OA=, ∴∠AOB=60°,∵∠A 1BO=90°, ∴∠130OA B =,∴13AA =,∴14OA =,∴1A (0,4);同理:11A B =121112A AB =, ∴2OA =1624=,∴2A (0,24); ,∴点2020A 的坐标为()20200,4,故答案为:()20200,4. 【点睛】此题考查图形类规律的探究,一次函数的实际应用,锐角三角函数,根据图形的规律求出点的坐标得到点坐标的表示规律是解题的关键.17.(0256)【分析】利用锐角三角函数分别计算得到的坐标利用规律直接得到答案【详解】解:∵l :y =x ∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB =∵A1B ⊥l ∴∠ABA1=6解析:(0,256)【分析】利用锐角三角函数分别计算得到12,A A 的坐标,利用规律直接得到答案.【详解】解:∵l :y ∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB∵A 1B ⊥l∴∠ABA 1=60°∴AA 1=3∴A 1(0,4)同理可得A 2(0,16)…∴A 4纵坐标为44=256∴A 4(0,256)故答案为:(0,256).【点睛】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x 轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到123,,A A A …的点的坐标是解决本题的关键.18.【分析】根据△ABC 的面积相等选择AC 和BC 为底高算出的△ABC 的面积和选择AB 为底C 到AB 边的距离为高算出的面积一样列出等式求解【详解】解:在Rt △ABC 中设点C 到AB 边的距离为由△ABC 的面积相 解析:6013【分析】根据△ABC 的面积相等,选择AC 和BC 为底、高算出的△ABC 的面积和选择AB 为底,C 到AB 边的距离为高算出的面积一样列出等式求解.【详解】解:在Rt △ABC 中,设点C 到AB 边的距离为d ,由△ABC 的面积相等可列出如下等式:11=22⨯⨯AC BC AB d ,代入数据: 即:11125=1322⨯⨯⨯⨯d 解得:6013=d 故点C 到AB 边的距离是6013cm. 故答案为:6013. 【点睛】 本题结合直角三角形考查了三角形的面积公式,点到直线的距离垂线段最短等知识点,掌握好直角三角形的等面积法是解题的关键.19.【分析】根据等腰三角形的性质可求出两底角的度数连接AE 可得出AE=BE 推出解直角三角形即可得出答案【详解】解:∵∴连接AE ∵ED 垂直平分AB ∴AE=BE ∵∴∴故答案为:【点睛】本题考查的知识点是等腰解析:【分析】根据等腰三角形的性质可求出两底角的度数,连接AE ,可得出AE=BE ,30EAD =∠°,推出90EAC ∠=︒,解直角三角形即可得出答案.【详解】解:∵3AB AC cm ==,120A ∠=︒, ∴1(180120)302B C ,连接AE ,∵ED 垂直平分AB ,∴AE=BE ,30EAD =∠°,∵120A ∠=︒,∴90EAC ∠=︒,∴cos30AC CE ===︒故答案为:【点睛】本题考查的知识点是等腰三角形的性质、解直角三角形、垂直平分线的性质,综合性较强,但难度不大.20.【分析】连接PMPN 根据菱形的性质求出∠CAP=30°∠MPC=∠CPA=60°∠EPN=∠BPN=∠EPB=30°从而求出∠MPN=90°设AP=x 则PB=2a -x 然后利用锐角三角函数求出PM 和P 解析:32a 【分析】连接PM 、PN ,根据菱形的性质求出∠CAP=12∠=DAP 30°,∠MPC=12∠CPA=60°,∠EPN=∠BPN=12∠EPB=30°,从而求出∠MPN=90°,设AP=x ,则PB=2a -x ,然后利用锐角三角函数求出PM 和PN ,然后利用勾股定理求出MN 2与x 的函数关系式,化为顶点式即可求出MN 2的最小值,从而求出结论.【详解】 解:连接PM 、PN∵四边形APCD 和四边形PBFE 为菱形,60DAP ∠=︒∴∠CPA=180°-∠DAP=120°,∠EPB=∠DAP=60°,PM ⊥AC ,PN ⊥EB ,AC 平分∠DAP ,PM 平分∠APC ,PN 平分∠EPB∴∠CAP=12∠=DAP 30°,∠MPC=12∠CPA=60°,∠EPN=∠BPN=12∠EPB=30° ∴∠MPN=∠MPC +∠EPN=90°设AP=x ,则PB=2a -x ∴PM=AP·sin ∠CAP=12x ,PN=PB·cos ∠32a -x ) 在Rt △MON 中MN 2= PM 2+PN 2=214x +34(2a -x )2=(x -32a )2+34a 2 当x=32a 时,MN 2取最小值,最小为34a 2∴MN. 【点睛】 此题考查的是菱形的性质、锐角三角函数、勾股定理和二次函数的应用,掌握菱形的性质、锐角三角函数、勾股定理和利用二次函数求最值是解决此题的关键.三、解答题21.(1)))3903y x x =+-<≤;(2)32;(3) 【分析】(1)设BP 的长为 x ,正方形 DEFG 的边长为 y ,则由题意可得BD=2x ,DE=y ,3EC y =,然后根据BC=6可以得到y 关于 x 的函数解析式; (2)若BP=2,即x=2,由(1)可得正方形 DEFG 的边长EF 的长度,解直角三角形CEF 可得CF 的长度;(3)设△GDP 是直角三角形,则PG ⊥GD ,然后可得关于x 的方程,解方程可得x 的值,即BP 的长度.【详解】解:(1)设BP 的长为 x ,正方形 DEFG 的边长为 y ,由∠B=60°,PD 垂直AB ,则BD=2x ,DE=y ,EC=tan 303EF y ⨯︒=,∴有263x y y ++=,整理得: ))3903y x x =+-<≤;(2)若BP=2,即x=2,可得3y =,∴(3sin 6032CF EF =⨯︒==; (3)若△GDP 是直角三角形,则PG ⊥GD ,∴∠DPG=30°,即PD=2GD ,)(22329y x ==+-,解之得: x =,此即BP 的长度. 【点睛】本题考查解直角三角形与一次函数的综合应用,根据直角三角形边和角的关系求解是解题关键.22.(1)5;(2)92 【分析】(1)过O 作OH 垂直于AC ,利用垂径定理得到H 为AC 中点,求出AH 的长为4,根据同弧所对的圆周角相等得到tanA =tan ∠BDC ,求出OH 的长,利用勾股定理即可求出圆的半径OA 的长; (2)由AB 垂直于CD 得到E 为CD 的中点,得到EC =ED ,在直角三角形AEC 中,由AC 的长以及tanA 的值求出CE 与AE 的长,由FB 为圆的切线得到AB 垂直于BF ,得到CE 与FB 平行,由平行得比例列出关系式求出AF 的长,根据AF−AC 即可求出CF 的长.【详解】(1)作OH AC ⊥于H ,则142AH AC ==,在Rt AOH ∆中,344AH tanA tan BDC ==∠=,, 3OH ∴=,∴半径225OA AH OH =+=;(2)AB CD ⊥,E ∴为CD 的中点,即CE DE =, 在Rt AEC ∆中,384AC tanA ==,,设3CE k =,则4AE k =, 根据勾股定理得:222AC CE AE =+,即2291664k k +=,解得85k =则2432,55CE DE AE ===, BF 为圆O 的切线,FB AB ∴⊥,又AE CD ⊥,//CD FB ∴,AC AE AF AB ∴=,即328510AF =,解得:252AF =, 则92CF AF AC =-=. 【点睛】此题考查了切线的性质,垂径定理,锐角三角函数定义,勾股定理,以及平行线的性质,熟练掌握切线的性质是解本题的关键.23.(1)见解析;(2)【分析】(1)找出公共角即可求出相似(2)根据~ABD ACE ∆∆得出一个比例式AE AD AC AB=,再根据两边对应成比例且夹角相等得出~ADE ABC ∆∆,再结合60的余弦值即可求出答案.【详解】解:(1)证明:,BD CE 是ABC ∆的高90ADB AEC ∴∠=∠=A A ∠=∠~ABD ACE ∴∆∆(2)~ABD ACE ∆∆ AB AD AC AE ∴= AEAD AC AB∴= A A ∠=∠~ADE ABC ∴∆∆DE AD BC AB∴= 60BAC ∠=1cos 2AD BAC AB ∴∠== 又6BC ==DE ∴=【点睛】本题主要考察了相似三角形,三角函数等知识点,能找出根据第一个相似三角形的比例式来证第二个相似三角形是解题关键.24.(1)90°;(2)证明见解析;(3)2.【分析】(1)根据圆周角定理即可得∠CDE的度数;(2)连接DO,根据直角三角形的性质和等腰三角形的性质易证∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切线;(3)根据已知条件易证△CDE∽△ADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值即可.【详解】解:(1)解:∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠EDC=90°;(2)证明:连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切线;(3)解:如图所示:可得∠ABD=∠ACD,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴DC DEAD DC=,∴DC2=AD•DE∵,∴设DE=x,则,则AC2﹣AD2=AD•DE,期()2﹣AD2=AD•x,整理得:AD2+AD•x﹣20x2=0,解得:AD=4x或﹣4.5x(负数舍去),则2x=,故tan∠ABD=tan∠ACD=422AD xDC x==.25.答案见解析.【分析】环节一,我们用相似论证了当A ∠不变时,A ∠的对边与斜边的比值固定不变;环节二,再次为我们论证了当A ∠改变时,A ∠的对边与斜边的比值也随之变化,不再固定不变;进而从斜边相等,或直角边相等,两个方面论证即可.【详解】解:环节二证明过程如下:(1)如下图所示:过点A 在BAC ∠内部做射线AB ',截取AB AB '=,过点 B '作BC AC ''⊥,此时构造出了B AC ''∠,显然 BAC B AC ''∠≠∠此时sin BC BAC AB ∠=;sin B C B AC AB ''''∠=', 因为AB AB '=,而BC B C ''≠,所以 sin sin BAC B AC ''∠≠∠ 所以当A ∠的度数发生变化时,A ∠的对边与斜边的比值也会发生改变.(2)图3中构造另外一种思路证明:由上题我们自然想到控制变量法.环节二我们使斜边相等,现在我们使直角边BC 与B C ''与相等,如图所示:此时sin BC BAC AB ∠=;sin B C B AC AB ''''∠=';因为 BC B C ''=,而AB AB '≠,所以 sin sin BAC B AC ''∠≠∠.【点睛】本题考查了对边与斜边的比,即正弦值,会随着角度的变化而变化,熟悉相关性质是解题的关键.26.5.1米【分析】延长DE 交AB 延长线于点P 、作CQ AP ⊥于点Q ,根据矩形的判定和性质可得CE PQ 2==、CQ PE =,由坡度1:0.75i =,可设CQ 4x =、BQ 3x =,根据勾股定理可列出关于x 的方程、解方程即可求得x 的值,即由线段的和差可知11DP =,最后解Rt ADP 、线段的和差可求得答案.【详解】解:如图,延长DE 交AB 延长线于点P ,作CQ AP ⊥于点Q ,如图:∵//CE AP ,DE CE ⊥∴DP AP ⊥∴四边形CEPQ 为矩形∴CE PQ 2==,CQ PE = ∵140.753CQ i BQ === ∴设CQ 4x =、BQ 3x =∴在Rt BCQ 中, 222BQ CQ BC +=∴()()2224310x x += ∴12x =或22x =-(舍去)∴48CQ PE x ===,36BQ x ==∴DP DE PE 11=+=∵测得江面上的渔船A 的俯角为40︒∴40A ∠=︒∴在Rt ADP 中,1113.1tan 0.84DP AP A =≈≈∠ ∴13.162 5.1AB AP BQ PQ =--=--= ∴此时AB 的长为5.1米.故答案是:5.1米【点睛】本题考查了俯角、坡度、锐角三角函数、矩形的判定和性质、勾股定理、一元二次方程、线段的和差等,解题的关键在于通过添加辅助线构造出直角三角形.。
九年级数学三角函数习题
九年级数学《直角三角形的边角关系》测试题(一)班级:_______ 姓名:_________组名_________审核人_______ 1.如图,P 是∠α的边OA 上一点, 且P 点坐标为(3,4),则αsin = ,αcos =___ ___.2.支离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α,如果测角仪高为1.5 那么旗杆的有为 米(用含α的三角比表示).3.甲、乙、丙三个梯子斜靠在一堵墙上(梯子顶端靠墙), 小明测得 甲与地面的夹角为603米,且顶端距离墙脚3米;丙的坡31。
那么,这三张梯子的倾斜程度( )A.甲较陡 B .乙较陡 C .丙较陡 D .一样陡4.如图,沿AC 方向开山修路,为了加快施工进度,要在山的另一边同时施工,现在从AC 上取一点B ,使得∠ABD =145°,BD =500米,∠D =55°,要使A 、C 、E 在一条直线上,那么开挖点E 离点D 的距离是( )A .500sin55°米B .500cos55°米C .500tan55°米;D .o55tan 500米5.如图,北部湾海面上,一艘解放军军舰正在基地A 的正东方向且距A 地40海里的B 地训练.突然接到基地命令,要该军舰前往C 岛,接送一名病危的渔民到基地医院救治.已知C 岛在A 的北偏东60°方向,且在B 的北偏西45°方向,军舰从B 处出发,平均每小时行驶20海里,需要多少时间才能把患病渔民送到基地医院?(精确到0.1小时)αP oy34第4题图︒60︒45A B北北6.(2012•陕西)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与湖岸上凉亭间的距离,他先在湖岸上的凉亭A处测得湖心岛上的迎宾槐C处位于北偏东65°方向,然后,他从凉亭A处沿湖岸向东方向走了100米到B处,测得湖心岛上的迎宾槐C处位于北偏东45°方向(点A、B、C在同一平面上),请你利用小明测得的相关数据,求湖心岛上的迎宾槐C处与湖岸上的凉亭A处之间的距离(结果精确到1米).(参考数据sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663,sin65°≈0.5563,cos65°≈0.4226,tan65°≈2.1445)7.如图是使用测角仪测量一幅壁画高度的示意图,已知壁画AB的底端距离地面的高度BC=1m,在壁画的正前方点D处测得壁画底端的俯角∠BDF=30°,且点距离地面的高度DE=2m,求壁画AB的高度.九年级数学《直角三角形的边角关系》测试题(二)班级:_______ 姓名:_________组名_________审核人_______一、选择题1.在△ABC 中,∠C=90°,a 、b 分别是∠A 、∠B 所对的两条直角边,c 是斜边,则有( )。
人教版九年级数学下册第28章:锐角三角函数 全章测试含答案
人教版初中数学九年级下册第28章《锐角三角函数》全章测试一、选择题1. 在直角三角形中,如果各边都扩大1倍,则其锐角的三角函数值( )A. 都扩大1倍B.都缩小为原来的一半C.都没有变化D. 不能确定2.Rt △ABC 中,∠C =90°,若BC =4,,32sin =A 则AC 的长为( )A .6B .52C .53D .132 3.已知β为锐角,cos β≤21,则β的取值范围为( ) A.30°≤β <90° B. 0°<β≤60° C. 60°≤β<90° D. 30°≤β<60° 4.化简:140tan 240tan 2+-︒︒ 的结果为( )A.1+tan40°B. 1-tan40°C. tan40°-1D. tan 240°+1 5.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为( )A .312B .12C .324D .3486.如图,△ABC 中,,90︒=∠C AD 是BAC ∠的角平分线,交BC 于点D ,那么CDACAB -=( )(A )BAC ∠sin (B )BAC ∠cos (C )BAC ∠tan (D )无法确定7.已知:如图,AB 是⊙O 的直径,弦AD 、BC 相交于P 点,那么ABDC的值为( )A .sin ∠APCB .cos ∠APC C .tan ∠APCD .APC∠tan 18.铁路路基的横断面是一个等腰梯形,若腰的坡度为2∶3,顶宽为3m ,路基高为4m ,则路基的下底宽应为( )A .15mB .12mC .9mD .7m 9. 已知α是锐角,且sin α+cos α=332,则sin α·cos α值为( ) A. 32 B. 23 C. 61D. 110.P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B 点,若∠APB =2,⊙O 的半径为R ,则AB 的长为( )A .ααtan sin RB .ααsin tan R C .ααtan sin 2R D .ααsin tan 2R二、填空题11. 计算:1sin 60cos302-= . 12.ABC △中,90C =∠,若1tan 2A =,则sin ______A =13. 已知山坡的坡度i =1,则坡角为________.14. 在△ABC 中,∠C =90°,∠ABC =60°,若D 是AC 边中点,则tan ∠DBC 的值为______. 15. 在Rt △ABC 中,∠C =90°,a =10,若△ABC 的面积为3350,则∠A =______度. 第6题 第7题16. 菱形的两条对角线长分别为23和6,则菱形的相邻的两内角分别为_________.17.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= .18. 如图所示,四边形ABCD 中,∠B =90°,AB =2,CD =8,AC ⊥CD ,若,31s i n =∠A C B 则cos ∠ADC =______.19.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC = 米(用根号表示). 20.在数学活动课上,小敏,小颖分别画了△ABC •和△DEF ,数据如图7,如果把小敏画的三角形面积记作ABC S ∆,小颖画的三角形面积记作DEF S ∆,那么你认为小敏和小颖画的两个三角形的面积的大小关系是ABC S ∆ DEF S ∆.(填“>,<,或=”) 三、解答题 21.计算:(1) 200822)45cot (30cot 60tan 60cot 30sin 2︒-+︒︒-︒+︒ (2) 130cos 260sin 60tan 45tan 2+︒-︒+︒-︒ (3)已知α是锐角,且sin (α+15°)=32,求8 -4cos α—( 2 -1)0+tan α的值. 22. 在Rt △ABC 中,∠C = 90°,a =3 ,c =5,求sin A 和tan A 的值.23由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC 中∠A =30°,tan B = ▲,AC =AB 的长”。
三角函数练习题(含答案)
三角函数练习题及答案(一)选择题1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=45,则AC=( ) A 、3 B 、4 C 、5 D 、6 3、若∠A 是锐角,且sinA=13,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=13,则A A AA tan 2sin 4tan sin 3+-=( ) A 、47B 、 13C 、 12D 、0 5、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:√2C 、1:1:√3D 、1:1:√226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB= 23B .cosB= 23C .tanB= 23D .tanB=32 8.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( ) A .(32,12) B .(-32,12) C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C地,此时王英同学离A 地 ( )(A )350m (B )100 m (C )150m (D )3100m11、如图1,在高楼前D点测得楼顶的仰角为300,向高楼前进60米到C点,又测得仰角为450,则该高楼的高度大约为()A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距().(A)30海里(B)40海里(C)50海里(D)60海里(二)填空题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____.2.在△ABC中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC中,AB=2,AC=2,∠B=30°,则∠BAC的度数是______.4.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为________. (不取近似值. 以下数据供解题使用:sin15°=,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A点,沿着西南方向,行了个42单位,到达B 点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=090,BC=13,AB=12,那么tan B=___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(保留两个有效数字,2≈1.41,3≈1.73)三、简答题:1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。
初三数学锐角三角函数试题答案及解析
初三数学锐角三角函数试题答案及解析1.(2014山东德州)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1︰2,则斜坡AB的长为()A.米B.米C.米D.24米【答案】B【解析】∵斜面坡度为1︰2,∴在Rt△ABC中,BC︰AC=1︰2,∴米,由勾股定理得米,故选B.2.(2013湖北十堰)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B 点的俯角为30°,则小山东西两侧A,B两点间的距离为________米.【答案】【解析】如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°-30°=45°,AC =30×25=750(米),∴米.在Rt△ABD中,易知∠B=30°,∴米.3.如图,在离水面高度为5米的岸上有人用绳子拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米的速度收绳.问:(1)未开始收绳子的时候,图中绳子BC的长度是多少米?(2)收绳8秒后船向岸边移动了多少米?(结果保留根号)【答案】见解析【解析】(1)在Rt△ABC中,,∴(米),∴绳子BC的长度是10米.(2)未收绳时,(米),收绳8秒后,绳子BC缩短了4米,只剩6米,这时,船与河岸的距离为(米),∴船向岸边移动的距离为米.4. (2014江苏无锡)如图,在□ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于________.【答案】【解析】如图,在直角△AOE中,,∴.又∵四边形ABCD是平行四边形,∴.5. (2014四川宜宾)规定:sin(-x)=-sinx,cos(-x)=cosx,sin(x+y)=sinx·cosy+cosx·siny.据此判断下列等式中成立的是________(写出所有正确的序号).①;②;③sin2x=2sinx·cosx;④sin(x-y)=sinx·cosy-cosx·siny.【答案】②③④【解析】①,故①错误;②sin75°=sin(30°+45°)=sin30°·cos45°+cos30°·sin45°,故②正确;③sin2x=sinx·cosx+cosx·sinx=2sinx·cosx,故③正确;④sin(x-y)=sinx·cos(-y)+cosx·sin(-y)=sinx·cosy-cosx·siny,故④正确.6. (2014浙江绍兴)某校九(1)班的同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图①,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求α的度数.(2)如图②,第二小组用皮尺量得EF的长为16米(E为护墙上的端点),EF的中点距离地面FB的高度为1.9米,请你求出E点距离地面FB的高度.(3)如图③,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P处测得旗杆顶端A的仰角为45°,向前走4米到达点Q处,测得A的仰角为60°,求旗杆的高度AE(精确到0.1米.参考数据:tan60°≈1.732,tan30°≈0.577,,).【解析】(1)∵BD=BC,∴∠CDB=∠DCB,∴α=2∠CDB=2×38°=76°.(2)设EF的中点为M,过M作MN⊥BF,垂足为点N,过点E作EH⊥BF,垂足为点H,如图①.∴MN∥EH,又M为EF的中点,∴MN为△EFH的中位线,又∵MN=1.9米,∴EH=2MN=3.8米,∴E点距离地面FB的高度是3.8米.(3)延长AE,交PB于点C,如图②.设AE=x米,则AC=(x+3.8)米.∵∠APB=45°,∴PC=AC=(x+3.8)米.∵PQ=4米,∴CQ=x+3.8-4=(x-0.2)米.∵,∴,解得x≈5.7,即AE≈5.7米.答:旗杆的高度AE约为5.7米.7.(2014黑龙江大庆)如图,矩形ABCD中,,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB=________.【答案】【解析】∵∠GAF=∠F=20°,∴∠AGC=∠ACG=40°,∴∠CAG=100°,∴∠DAC=60°,∴,∵,∴.8.如图所示,在△ABC中,∠C=90°,,D为AC上一点,∠BDC=45°,DC=6,求AB的长.【答案】15【解析】先解直角三角形BCD,求得BC=DC=6,再解直角三角形ABC,由正弦的定义可得,从而得.所以在较复杂的图形中求线段的长度时,有时要通过两次或更多次解直角三角形才能达到目的.因为∠C=90°,∠BDC=45°,所以∠DBC=45°,所以BC=DC=6.在Rt△ABC中,,所以,即AB的长为15.9. (2014江西抚州)如图①所示的晾衣架,支架的基本图形是菱形,其示意图如图②,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均为20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C,D两点间的距离.(2)当∠CED由60°变为120°时,点A向左移动了多少厘米?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据:,可使用科学计算器)【答案】(1)20cm(2)43.9cm(3)20≤x≤34.6【解析】(1)连接CD(如图①).∵CE=DE,∠CED=60°,∴△CED是等边三角形,∴CD=DE=20cm.(2)连接CD,根据题意得AB=BC=CD,当∠CED=60°时,AD=3CD=60cm.当∠CED=120°时,过点E作EH⊥CD于H(如图②),则∠CEH=60°,CH=HD.在Rt△CHE中,.∴(cm),∴cm,∴(cm).∴点A向左大约移动了103.9-60=43.9(cm).(3)连接CD,当∠CED=120°时,∠DEG=60°.又∵DE=EG,∴△DEG是等边三角形,∴DG=DE=20cm当∠CED=60°时(如图③),∠DEG=120°,过点E作EI⊥DG于点I.∵DE=EG.∴∠DEI=∠GEI=60°,DI=IG.在Rt△DIE中,,∴(cm).∴(cm).故x的取值范围是20≤x≤34.6.10. (2014贵州黔东南)某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校旗杆的高,小明站在点B处测得旗杆顶端E点的仰角为45°,小军站在点D处测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF.(结果精确到0.1米,参考数据:,)【答案】10.3米【解析】过点A作AM⊥EF于M,过点C作CN⊥EF于N,则MN=0.25米.∵∠EAM=45°,∴AM=ME.设AM=ME=x米,则CN=(x+6)米,EN=(x-0.25)米.∵∠ECN=30°,∴,解得x≈8.8,则EF=EM+MF≈8.8+1.5=10.3(米).∴旗杆的高EF约为10.3米.11.(2014四川广安)为邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图,已知斜坡AB的长为米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为,求休闲平台DE的长.(2)一座建筑物距离A点33米远(即AG=33米),小亮在D点处测得建筑物顶部H的仰角(即∠HDM)为30°.点B,C,A,G,H在同一个平面内,点C,A,G在同一条直线上,且HG⊥CG.问:建筑物的高GH为多少米?【答案】(1)米(2)米【解析】(1)∵FM∥CG,∴∠BDF=∠BAC=45°,∴BF=DF.∵斜坡AB的长为米,D是AB的中点,∴米,∴(米),∴BF=DF=30米.∵斜坡BE的坡比为,∴,∴(米),∴米.(2)由题意及(1)知CF=BF=AP=30米,又四边形MGCF为矩形,∴GM=FC=30米.设GH=x米,则MH=GH-GM=(x-30)米,DM=AG+AP=33+30=63(米).在Rt△DMH中,,即,解得.∴建筑物的高GH为米.12.(2014江苏镇江)如图,小明从点A出发,沿着坡角为α的斜坡向上走了0.65千米到达点B,,然后又沿着坡度为i=1︰4的斜坡向上走了1千米到达点C.问小明从A点到C点上升的高度CD是多少千米(结果保留根号)?【答案】【解析】如图,作BE⊥AD于E,BF⊥CD于F,则,∴.∵,∴设CF=x,则BF=4x,∴,∴.∵BE⊥AD,BF⊥CD,CD⊥AD,∴四边形BEDF是矩形,∴BE=DF.∴.答:小明从A点到C点上升的高度CD是千米.13.如图,在Rt△ABC中,∠C=90°,BC=8,,点D在BC上,且BD=AD.求AC 的长和cos∠ADC的值.【答案】4;【解析】在Rt△ABC中,∵BC=8,,∴AC=4.设AD=x,则BD=x,CD=8-x,由勾股定理,得(8-x)2+42=x2.解得x=5.∴.14.计算:(1);(2).【答案】(1)(2)1【解析】准确地掌握30°,45°,60°角的正弦、余弦、正切值是解题的关键.解:(1)(2).15.根据下列条件,求α的度数.(1)0°<α<90°,;(2)0°<α<90°,tan2α+2tanα-3=0.【答案】(1)60°(2)45°【解析】(1)因为,所以.又0°<α<90°,所以α=60°.(2)因为tan2α+2tanα-3=0,所以(tanα+3)·(tanα-1)=0,即tanα=-3或tanα=1,因为0°<α<90°,所以tanα>0,所以tanα=1,所以α=45°.16. (2014福建厦门)sin30°的值是( )A.B.C.D.1【答案】A【解析】直接根据特殊角的三角函数值进行计算即可..故选A.17. (2014贵州贵阳)在Rt△ABC中,∠C=90°,AC=12,BC=5,则sinA的值为( ) A.B.C.D.【答案】D【解析】如图所示,∵∠C=90°,AC=12,BC=5,∴,∴.18. (2014内蒙古包头)计算sin245°+cos30°·tan60°的结果是( )A.2B.1C.D.【答案】A【解析】原式.19.计算:(1).(2)cos245°+tan30°·sin60°=________.【答案】(1)2 (2)1【解析】(1).(2).20.用计算器求下列各式的值(结果保留小数点后四位):(1)sin89°;(2)cos45.32°;(3)tan60°25′41″;(4)sin67°28′35″.【答案】(1)0.9998 (2)0.7031 (3)1.7623 (4)0.9237【解析】(1)按键顺序为,显示结果为0.999847695,∴sin89°≈0.9998.(2)按键顺序为,显示结果为0.703146544,∴cos45.32°≈0.7031.(3)按键顺序为,显示结果为1.762327064,∴tan60°25′41″≈1.7623.(4)按键顺序为,显示结果为0.923721753,∴sin67°28′35″≈0.9237.。
人教版九年级下册数学锐角三角函数单元测试卷附详细解析
人教版九年级下册数学锐角三角函数单元测试卷附详细解析一、单选题(共10题;共30分)1.(3分)tan30°的值等于()A.√3B.√33C.√22D.12.(3分)如图,PA、PB分别切⊙O于A,B,⊙APB=60°,⊙O半径为2,则PB的长为()A.3B.4C.2√3D.2√23.(3分)已知Rt⊙ABC中,⊙C=90°,⊙A=50°,AB=2,则AC=()A.2sin50°B.2sin40°C.2tan50°D.2tan40°4.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=4,tanA=34.以点C为圆心,CB长为半径的圆交AB于点D,则AD的长是()A.1B.75C.32D.25.(3分)如图,在扇形AOB中,⊙AOB=90°,以点A为圆心,OA的长为半径作OC⌢交AB⌢于点C,若OA=2,则阴影部分的面积为()A.23π−√3B.√3−13πC.13πD.√3+13π6.(3分)如图,一艘轮船在小岛A的西北方向距小岛40√2海里的C处,沿正东方向航行一段时间后到达小岛A的北偏东60°的B处,则该船行驶的路程为()A.80海里B.120海里C.(40+40√2)海里D.(40+40√3)海里7.(3分)如图,A,B,C是小正方形的顶点,且每个小正方形的边长为1,则sin⊙ABC的值()A.√22B.1C.√33D.√28.(3分)在⊙ABC中,(2cosA-√2)2+| √3-tanB|=0,则⊙ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.锐角三角形9.(3分)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin⊙OBD=()A.12B.34C.45D.3510.(10分)如图(1)所示,E为矩形ABCD的边AD上一边,动点P,Q同时从点B出发,点P 沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,⊙BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分)则下列结论正确的是()A.AB:AD=3:4B.当⊙BPQ是等边三角形时,t=5秒C.当⊙ABE⊙⊙QBP时,t=7秒D.当⊙BPQ的面积为4cm2时,t的值是√10或475秒二、填空题(共5题;共15分)11.(3分)cos245∘−tan30∘⋅sin60∘=.12.(3分)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则tan∠ABC的值为.13.(3分)如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是cm.14.(3分)如图,在Rt⊙ABC中,⊙ACB=90°,CD是高,如果⊙A=α,AC=4,那么BD=.(用锐角α的三角比表示)15.(3分)如图,Rt⊙AOB中,⊙OAB=90°,⊙OBA=30°,顶点A在反比例函数y=−4x图象上,若Rt⊙AOB的面积恰好被y轴平分,则进过点B的反比例函数的解析式为.三、解答题(共8题;共78分)16.(8分)先化简,再求代数式(aa2−1−1a+1)⋅(a−1)的值,其中a=tan60°−2sin30°.17.(9分)居庸关位于距北京市区50余公里外的昌平区境内,是京北长城沿线上的著名古关城,有“天下第一雄关”的美誉某校数学社团的同学们使用皮尺和测角仪等工具,测量南关主城门上城楼顶端距地面的高度,下表是小强填写的实践活动报告的部分内容:请你帮他计算出城楼的高度AD(结果精确到0.1m,sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)18.(9分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20 √2海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:√2≈1.41,√3≈1.73)19.(9分)如图,从甲楼AB的楼顶A,看乙楼CD的楼顶C,仰角为30°,看乙楼(CD)的楼底D,俯角为60°;已知甲楼的高AB=40m.求乙楼CD的高度,(结果精确到1m)20.(10分)如图,两幢楼高AB=CD=30m,两楼间的距离AC=24m,当太阳光线与水平线的夹角为30°时,求甲楼投在乙楼上的影子的高度.(结果精确到0.01,√3≈1.732,√2≈1.414)21.(10分)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊙AB于E,设⊙ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k,使得⊙EFD=k⊙AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2-CF2取最大值时,求tan⊙DCF的值.22.(11分)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)(5分)求楼间距AB;(2)(6分)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)23.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣4,0)和点B(2,0),与y轴交于点C.(1)(4分)求该抛物线的表达式及点C的坐标;(2)(4分)如果点D的坐标为(﹣8,0),联结AC、DC,求⊙ACD的正切值;(3)(4分)在(2)的条件下,点P为抛物线上一点,当⊙OCD=⊙CAP时,求点P的坐标.答案解析部分1.【答案】B【解析】【解答】解:tan30°=√33. 故答案为:B【分析】利用特殊角的三角函数值直接求解即可。
九年级下册《第28章 锐角三角函数》2021年单元测试卷(广东省潮州市饶平县英才实验中学)(1)
人教新版九年级下册《第28章锐角三角函数》2021年单元测试卷(广东省潮州市饶平县英才实验中学)(1)试题数:31,总分:01.(单选题,0分)在Rt△ABC中,∠C=90°,BC=5,AC=12,则sinB的值是()A. 512B. 125C. 513D. 12132.(单选题,0分)在正方形网格中,∠α的位置如图所示,则tanα的值是()A. √33B. √53C. 12D.23.(单选题,0分)在Rt△ABC中,各边都扩大5倍,则∠A的三角函数值()A.不变B.扩大5倍C.缩小5倍D.不能确定,则cosA的值为()4.(单选题,0分)在△ABC中,∠C=90°,tanA= 13A. √1010B. 23C. 3410,则sinA的值为()5.(单选题,0分)在Rt△ABC中,若∠C=90°,cosA= 725A. 2425B. 724C. 725D. 2524,则sinA+cosA=___ .6.(填空题,0分)△ABC中,∠C=90°,tanA= 437.(单选题,0分)sin60°的值等于()A. 12B. √22C. √32D. √33,则α=()8.(单选题,0分)已知α为锐角,sin(α-20°)= √32A.20°B.40°C.60°D.80°9.(问答题,0分)计算:2cos245°+tan60°•tan30°-cos60°10.(问答题,0分)计算:√8 +(1)-1-4cos45°-(√3−π)0.211.(单选题,0分)在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A. 5√714B. √2114C. √357,则S△ABC=___ .12.(填空题,0分)△ABC中,∠C=90°,斜边上的中线CD=6,sinA= 1313.(填空题,0分)在△ABC中,∠ABC=30°,AB= √3,AC=1,则∠ACB为___ 度.14.(问答题,0分)如图,在△ABC中,AD⊥BC于点D,若AD=6.tanC= 3,BC=12,求2cosB的值.15.(单选题,0分)如图,山顶一铁塔AB在阳光下的投影CD的长为6米,此时太阳光与地面的夹角∠ACD=60°,则铁塔AB的高为()A.3米B.6 √3米C.3 √3米D.2 √3米16.(填空题,0分)如图,身高1.6m的小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为6m,那么这棵树高为(其中小丽眼睛距离地面高度近似为身高)___ .17.(问答题,0分)如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈ 38,cos22°≈1516,tan22 °≈25)18.(单选题,0分)如图,传送带和地面所成斜坡的坡度i=1:2.4,如果它把某物体从地面送到离地面10米高的地方,那么该物体所经过的路程是()A.10米B.24米C.25米D.26米19.(单选题,0分)如图,某轮船在点O处测得一个小岛上的电视塔A在北偏西60°的方向,船向西航行20海里到达B处,测得电视塔A在船的西北方向,若要轮船离电视塔最近,则还需向西航行()A. 10(√3+1)海里B. 10(√3−1)海里C. 20(√3+1)海里D. 20(√3−1)海里20.(单选题,0分)如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进40海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD是()A.20海里B.40海里C.20 √3海里D.40 √3海里21.(单选题,0分)已知B港口位于A观测点北偏东45°方向,且其到A观测点正北方向的距离BM为10 √2 km,一艘货轮从B港口沿如图所示的BC方向航行4 √7 km到达C处,测得C处位于A观测点北偏东75°方向,则此时货轮与A观测点之间的距离AC的长为()km.A.8 √3B.9 √3C.6 √3D.7 √322.(填空题,0分)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为___ .23.(问答题,0分)为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时40海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围20海里内有暗礁,问海监船继续向正东方向航行是否安全?24.(问答题,0分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,√2≈1.41)25.(填空题,0分)在△ABC中,∠C=90°,若tanA= 1,则sinB=___ .226.(问答题,0分)有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角α的度数来调整晾杆的高度,图2是晾衣架的侧面的平面示意图,AB和CD分别是两根长度不等的支撑杆,夹角∠BOD=α,AO=70cm,BO=DO=80cm,CO=40cm.(1)若α=56°,求点A离地面的高度AE;(参考值:sin62°=cos28°≈0.88,sin28°=cos62°≈0.47,tan62°≈1.88,tan28°≈0.53.)(2)调节α的大小,使A离地面高度AE=125cm时,求此时C点离地面的高度CF.27.(问答题,0分)某数学小组开展了一次测量小山高度的活动,如图,该数学小组从地面A处出发,沿坡角为53°的山坡AB直线上行一段距离到达B处,再沿着坡角为22°的山坡BC直线上行600米到达C处,通过测量数据计算出小山高CD=612m,求该数学小组行进的水平距离AD(结果精确到1m).(参考数据:sin22°≈0.37,cos22°≈0.92,cos53°≈0.6,tan53°≈1.3)28.(问答题,0分)热气球的探测器显示,从热气球底部A处看一栋高楼顶部的俯角为30°,看这栋楼底部的俯角为60°,热气球A处于地面距离为420米,求这栋楼的高度.29.(问答题,0分)某校一栋教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为45°,沿山坡向上走到B处测得宣传牌顶部C的仰角为30°.已知山坡AB的坡度i=1:√3,AB=10米,AE=15米,求这块宣传牌CD的高度.30.(问答题,0分)如图,线段AB、CD分别表示甲、乙两建筑物的高,AB⊥BC,DC⊥BC,垂足分别为B、C,从B点测得D点的仰角α为60°,从A点测得D点的仰角β为30°,已知甲建筑物的高度AB=34m,求甲、乙两建筑物之间的距离BC和乙建筑物的高度DC.(结果保留根号)31.(问答题,0分)某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)人教新版九年级下册《第28章锐角三角函数》2021年单元测试卷(广东省潮州市饶平县英才实验中学)(1)参考答案与试题解析试题数:31,总分:01.(单选题,0分)在Rt△ABC中,∠C=90°,BC=5,AC=12,则sinB的值是()A. 512B. 125C. 513D. 1213【正确答案】:D【解析】:直接利用勾股定理得出AB的长,再利用锐角三角函数得出答案.【解答】:解:如图所示:∵∠C=90°,BC=5,AC=12,∴AB= √52+122 =13,∴sinB= ACAB = 1213.故选:D.【点评】:此题主要考查了锐角三角函数关系,正确掌握边角关系是解题关键.2.(单选题,0分)在正方形网格中,∠α的位置如图所示,则tanα的值是()A. √33B. √53C. 12D.2【正确答案】:D【解析】:此题可以根据“角的正切值=对边÷邻边”求解即可.【解答】:解:由图可得,tanα=2÷1=2.故选:D.【点评】:本题考查了锐角三角函数的定义,正确理解正切值的含义是解决此题的关键.3.(单选题,0分)在Rt△ABC中,各边都扩大5倍,则∠A的三角函数值()A.不变B.扩大5倍C.缩小5倍D.不能确定【正确答案】:A【解析】:易得边长扩大后的三角形与原三角形相似,那么对应角相等,相应的三角函数值不变.【解答】:解:∵各边都扩大5倍,∴新三角形与原三角形的对应边的比为5:1,∴两三角形相似,∴∠A的三角函数值不变,故选:A.【点评】:用到的知识点为:三边对应成比例,两三角形相似;相似三角形的对应角相等.三角函数值只与角的大小有关,与角的边的长短无关.4.(单选题,0分)在△ABC中,∠C=90°,tanA= 13,则cosA的值为()A. √1010B. 23C. 34D. 3√1010【正确答案】:D【解析】:根据正切的定义得到tanA= BCAC = 13,于是可设BC=x,则AC=3x,根据勾股定理计算出AB,然后利用余弦的定义求解.【解答】:解:如图,∵tanA= BCAC = 13,∴设BC=x,则AC=3x,∴AB= √AC2+BC2 = √10 x,∴cosA= ACAB = 3x√10x= 3√1010.故选:D.【点评】:本题考查了三角形函数的定义:在三角形三角形中,一锐角的余弦等于它的邻边与斜边的比值;这个锐角的正切等于它的对边与邻边的比值.也考查了勾股定理.5.(单选题,0分)在Rt△ABC中,若∠C=90°,cosA= 725,则sinA的值为()A. 2425B. 724C. 725D. 2524【正确答案】:A【解析】:先根据特殊角的三角函数值求出∠A的值,再求出sinA的值即可.【解答】:解:∵Rt△ABC 中,∠C=90°,∴∠A 是锐角, ∵cosA= 725 = AC AB∴设AB=25x ,AC=7x ,由勾股定理得:BC=24x ,∴sinA= BC AB = 2425 ,故选:A .【点评】:本题考查的是特殊角的三角函数值,主要考查学生对锐角三角函数的定义的理解能力和计算能力.6.(填空题,0分)△ABC 中,∠C=90°,tanA= 43 ,则sinA+cosA=___ .【正确答案】:[1] 75【解析】:根据tanA= 43 和三角函数的定义画出图形,进而求出sinA 和cosA 的值,再求出sinA+cosA 的值.【解答】:解:如图,∵tanA= BC AC = 43 , ∴设AB=5x ,则BC=4x ,AC=3x , 则有:sinA+cosA= BC AB + AC AB = 3x 5x + 4x 5x = 75 ,故答案为: 75 .【点评】:此题考查了锐角三角函数的定义,只要画出图形,即可将正弦、余弦、正切函数联系起来,进而得出结论.7.(单选题,0分)sin60°的值等于( )A. 12B. √22C. √32D. √33【正确答案】:C【解析】:根据特殊角的三角函数值直接解答即可.【解答】:解:sin60°= √32.故选:C.【点评】:此题考查了特殊角的三角函数值,是需要识记的内容,要注意积累.8.(单选题,0分)已知α为锐角,sin(α-20°)= √32,则α=()A.20°B.40°C.60°D.80°【正确答案】:D【解析】:根据特殊角的三角函数值直接解答即可.【解答】:解:∵α为锐角,sin(α-20°)= √32,∴α-20°=60°,∴α=80°,故选:D.【点评】:本题考查的是特殊角的三角函数值,属较简单题目.9.(问答题,0分)计算:2cos245°+tan60°•tan30°-cos60°【正确答案】:【解析】:把特殊角的三角函数值代入计算,得到答案.【解答】:解:原式=2×(√22)2+ √3 × √33- 12=1+1- 12= 3.2【点评】:本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.10.(问答题,0分)计算:√8 +(1)-1-4cos45°-(√3−π)0.2【正确答案】:【解析】:先根据二次根式的化简、负整数指数幂、特殊角的三角函数值及0指数幂把原式化简,再根据实数混合运算的法则进行计算即可.-1,【解答】:解:原式=2 √2 +2-4× √22=2 √2 +2-2 √2 -1,=1.故答案为:1.【点评】:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂及二次根式等考点的运算.11.(单选题,0分)在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A. 5√714B. √2114C. √35D. √217【正确答案】:B【解析】:首先延长BA过点C作CD⊥BA延长线于点D,进而得出AD,CD,BC的长,再利用锐角三角函数关系求出即可.【解答】:解:延长BA过点C作CD⊥BA延长线于点D,∵∠CAB=120°,∴∠DAC=60°,∴∠ACD=30°,∵AB=4,AC=2,∴AD=1,CD= √3,BD=5,∴BC= √28 =2 √7,∴sinB= CDBC = √32√7= √2114.故选:B.【点评】:此题主要考查了解直角三角形,作出正确辅助线构造直角三角形是解题关键.12.(填空题,0分)△ABC中,∠C=90°,斜边上的中线CD=6,sinA= 13,则S△ABC=___ .【正确答案】:[1] 16√2【解析】:根据直角三角形中斜边上的中线为斜边的一半可求出AB;根据三角函数的定义求出AC,根据面积公式解答.【解答】:解:在Rt△ABC中,∵斜边上的中线CD=6,∴AB=12.∵sinA= BCAB = 13,∴BC=4,AC= √AB2−BC2 =8 √2.∴S△ABC= 12AC•BC=16 √2.故答案为:16 √2.【点评】:本题利用了直角三角形的性质:直角三角形中斜边上的中线为斜边的一半和锐角三角函数的概念求解.13.(填空题,0分)在△ABC中,∠ABC=30°,AB= √3,AC=1,则∠ACB为___ 度.【正确答案】:[1]120或60【解析】:作AD⊥BC于D,先在Rt△ABD中求出AD= √32,再在Rt△ACD中利用sinC= ADAC=√32,可计算出∠C=60°,则可得到∠AC′D=60°,∠AC′B=120°.【解答】:解:如图,作AD⊥BC于D,AC=AC′=1,在Rt△ABD中,∠B=30°,AB= √3,∴AD= 12 AB= √32,在Rt△ACD中,sinC= ADAC = √32,∴∠C=60°,同理可得∠AC′D=60°,∴∠AC′B=120°.故答案为60或120.【点评】:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了分类讨论的思想.14.(问答题,0分)如图,在△ABC中,AD⊥BC于点D,若AD=6.tanC= 32,BC=12,求cosB的值.【正确答案】:【解析】:根据AD、tanC直角三角形ACD中求出CD,在直角三角形ABD中,利用勾股定理求出AB,最后根据锐角三角函数关系求出cosB.【解答】:解:∵tanC= ADCD = 6CD= 32,∴CD=4.∴BD=12-4=8.在Rt△ABD中,AB= √AD2+BD2 =10.∴cosB= BDAB = 45.【点评】:本题考查了解直角三角形.掌握直角三角形中的边角间关系,是解决本题的关键.15.(单选题,0分)如图,山顶一铁塔AB在阳光下的投影CD的长为6米,此时太阳光与地面的夹角∠ACD=60°,则铁塔AB的高为()A.3米B.6 √3米C.3 √3米D.2 √3米【正确答案】:B【解析】:依据平行于三角形一边的直线截其他两边所得的线段对应成比例及60°的正切值联立求解.【解答】:解:设直线AB与CD的交点为点O.∴ BO AB =DOCD.∴AB= BO×CDDO.∵∠ACD=60°.∴∠BDO=60°.在Rt△BDO中,tan60°= BODO.∵CD=6.∴AB= BODO×CD =6 √3.故选:B.【点评】:本题主要考查平行线分线段成比例定理,解题的关键是根据实际问题抽象出几何图形.16.(填空题,0分)如图,身高1.6m的小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为6m,那么这棵树高为(其中小丽眼睛距离地面高度近似为身高)___ .【正确答案】:[1](2 √3 +1.6)m【解析】:已知小丽与树之间的距离为6m即AD=7m,可由直角三角形ACD及三角函数的关系可求出CD的长度,再由AB=1.6m可得出树的高度.【解答】:解:由题意得:AD=6m,在Rt△ACD中,tanA= CDAD = √33∴CD=2 √3,又AB=1.6m∴CE=CD+DE=CD+AB=2 √3 +1.6,所以树的高度为(2 √3 +1.6)m.故答案为:(2 √3 +1.6)m.【点评】:本题考查解直角三角形的应用,要注意利用已知线段及三角函数关系求未知线段.17.(问答题,0分)如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈ 38,cos22°≈1516,tan22 °≈25)【正确答案】:【解析】:(1)首先构造直角三角形△AEM ,利用tan22°= AM ME ,求出即可;(2)利用Rt△AME 中,cos22°= ME AE ,求出AE 即可【解答】:解:(1)如图,过点E 作EM⊥AB ,垂足为M .设AB 为x .Rt△ABF 中,∠AFB=45°,∴BF=AB=x , ∴BC=BF+FC=x+25,在Rt△AEM 中,∠AEM=22°,AM=AB-BM=AB-CE=x-2, tan22°= AM ME ,则 x−2x+25 = 25 ,解得:x=20.即教学楼的高20m .(2)由(1)可得ME=BC=x+25=20+25=45. 在Rt△AME 中,cos22°= ME AE .∴AE= MEcos22°≈ 451516=48m,即A、E之间的距离约为48m【点评】:此题主要考查了解直角三角形的应用,根据已知得出tan22°= AMME是解题关键18.(单选题,0分)如图,传送带和地面所成斜坡的坡度i=1:2.4,如果它把某物体从地面送到离地面10米高的地方,那么该物体所经过的路程是()A.10米B.24米C.25米D.26米【正确答案】:D【解析】:根据坡度的概念求出BC,根据勾股定理计算,得到答案.【解答】:解:作AB⊥CB于B,由题意得,AB=10米,∵斜坡的坡度i=1:2.4,∴ AB BC = 12.4,即10BC= 12.4,解得,BC=24,由勾股定理得,AC= √AB2+BC2 = √102+242 =26(米),故选:D.【点评】:本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.19.(单选题,0分)如图,某轮船在点O处测得一个小岛上的电视塔A在北偏西60°的方向,船向西航行20海里到达B处,测得电视塔A在船的西北方向,若要轮船离电视塔最近,则还需向西航行()A. 10(√3+1)海里B. 10(√3−1)海里C. 20(√3+1)海里D. 20(√3−1)海里【正确答案】:A【解析】:作AC⊥OB于C点,根据题目提供的方向角,并从图中整理出直角三角形的模型,利用解直角三角形的知识求得BC的长即可.【解答】:解:作AC⊥OB于C点,只要到C处,轮船离电视塔最近,求出BC长即可,由已知得:∠AOB=30°,∠ABC=45°、OB=20海里,∴BC=AC,CO=AC÷tan∠AOB=AC÷tan30°= √3AC,∵CO-CB= √3AC -AC=20,解得:AC= 10(√3+1)海里,∴BC=AC=10(√3 +1)海里,故选:A.【点评】:本题考查了方向角的知识,解决此类题目的关键是将方向角正确的转化为直角三角形的内角,并利用解直角三角形的知识解题.20.(单选题,0分)如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进40海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD是()A.20海里B.40海里C.20 √3海里D.40 √3海里【正确答案】:C【解析】:根据方向角的定义及余角的性质求出∠CAD=30°,∠CBD=60°,再由三角形外角的性质得到∠CAD=30°=∠ACB,根据等角对等边得出AB=BC=20,然后解Rt△BCD,求出CD即可解答.【解答】:解:根据题意可知∠CAD=30°,∠C BD=60°,∵∠CBD=∠CAD+∠ACB,∴∠CAD=30°=∠ACB,∴AB=BC=40海里,,在Rt△CBD中,∠BDC=90°,∠DBC=60°,sin∠DBC= CDBC∴sin60°= CD,BC=20 √3(海里).∴CD=40×sin60°=40× √32故选:C.【点评】:本题考查了解直角三角形的应用,难度适中.解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.21.(单选题,0分)已知B港口位于A观测点北偏东45°方向,且其到A观测点正北方向的距离BM为10 √2 km,一艘货轮从B港口沿如图所示的BC方向航行4 √7 km到达C处,测得C处位于A观测点北偏东75°方向,则此时货轮与A观测点之间的距离AC的长为()km.A.8 √3B.9 √3C.6 √3D.7 √3【正确答案】:A【解析】:根据∠MAB=45°,BM=10 √2和勾股定理求出AB的长,再根据tan∠BAD= BDAD,求出BD的长,即可得出AD以及CD的长,进而得出答案.【解答】:解:∵∠MAB=45°,BM=10 √2 km,∴AB= √BM2+MA2 = √(10√2)2+(10√2)2 =20(km),过点B作BD⊥AC,交AC的延长线于D,如图所示,在Rt△ADB中,∠BAD=∠MAC-∠MAB=75°-45°=30°,tan∠BAD= BDAD = √33,∴AD= √3 BD,BD2+AD2=AB2,即BD2+(√3 BD)2=202,∴BD=10km,∴AD=10 √3 km,在Rt△BCD中,BD2+CD2=BC2,BC=4 √7 km,∴CD=2 √3 km,∴AC=AD-CD=10 √3 -2 √3 =8 √3(km),∴此时货轮与A观测点之间的距离AC的长为8 √3 km.故选:A.【点评】:此题主要考查了解直角三角形中方向角问题,根据题意作出辅助线,构造直角三角形,求出BD的长是解题关键.22.(填空题,0分)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为___ .【正确答案】:[1]2 √2 kmOA=2km,再由△ABD是等腰【解析】:过点A作AD⊥OB于D.先解Rt△AOD,得出AD= 12直角三角形,得出BD=AD=2km,则AB= √2 AD=2 √2 km.【解答】:解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4km,OA=2km.∴AD= 12在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB-∠AOB=75°-30°=45°,∴BD=AD=2km,∴AB= √2 AD=2 √2 km.即该船航行的距离(即AB的长)为2 √2 km.故答案为2 √2 km.【点评】:本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.23.(问答题,0分)为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时40海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围20海里内有暗礁,问海监船继续向正东方向航行是否安全?【正确答案】:【解析】:(1)在△ABP中,求出∠PAB、∠PBA的度数即可解决问题;(2)作PD⊥AB于D.求出PD的值即可判定;【解答】:解:(1)由题意得,∠PAB=30°,∠PBD=60°,∴∠APB=∠PBD-∠PAB=30°,(2)由(1)可知∠APB=∠PAB=30°,∴PB=AB=40(海里)过点P作PD⊥AB于点D,在Rt△PBD中,PD=BPsin60°=20 √3(海里)20 √3>20∴海监船继续向正东方向航行是安全的.【点评】:本题考查的是解直角三角形的应用-方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.24.(问答题,0分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,√2≈1.41)【正确答案】:【解析】:延长CA交BE于点D,得CD⊥BE,设AD=x,得BD=x米,CD=(20+x)米,根=tan∠DCB列方程求出x的值即可得.据DBCD【解答】:解:如图,延长CA交BE于点D,则CD⊥BE,由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,=tan∠DCB,在Rt△CDB中,DBCD∴ x20+x=tan33°≈0.65,解得x≈37,答:这段河的宽约为37米.【点评】:本题考查了解直角三角形的应用-方向角问题,作出辅助线构造直角三角形是解题的关键.25.(填空题,0分)在△ABC中,∠C=90°,若tanA= 12,则sinB=___ .【正确答案】:[1] 2√55【解析】:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.【解答】:解:如图所示:∵∠C=90°,tanA= 12,∴设BC=x,则AC=2x,故AB= √5 x,则sinB= ACAB = 2x√5x= 2√55.故答案为:2√55.【点评】:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.26.(问答题,0分)有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角α的度数来调整晾杆的高度,图2是晾衣架的侧面的平面示意图,AB和CD分别是两根长度不等的支撑杆,夹角∠BOD=α,AO=70cm,BO=DO=80cm,CO=40cm.(1)若α=56°,求点A离地面的高度AE;(参考值:sin62°=cos28°≈0.88,sin28°=cos62°≈0.47,tan62°≈1.88,tan28°≈0.53.)(2)调节α的大小,使A离地面高度AE=125cm时,求此时C点离地面的高度CF.【正确答案】:【解析】:(1)过O作OG⊥BD于点G,根据等腰三角形的性质和平行线的性质可得∠EAB=∠BOG=28°,再利用锐角三角函数即可解决问题;(2)根据已知条件证明△AEB∽△CFD,对应边成比例即可求出CF的高度.【解答】:解:(1)如图,过O作OG⊥BD于点G,∵AE⊥BD,∴OG || AE,∵BO=DO,∴OG平分∠BOD,∴∠BOG= 12∠BOD= 12×56°=28°,∴∠EAB=∠BOG=28°,在Rt△ABE中,AB=AO+BO=70+80=150(cm),∴AE=AB•cos∠EAB=150×cos28°≈150×0.88=132(cm),答:点A离地面的高度AE约为132cm;(2)∵OG || AE,∴∠EAB=∠BOG,∵CF⊥BD,∴CF || OG,∴∠DCF=∠DOG,∵∠BOG=∠DOG,∴∠BAE=∠DCF,∵∠AEB=∠CFD=90°,∴△AEB∽△CFD,∴ CF AE = CDAB,∴CF= CD•AEAB = 120×125150=100(cm),答:C点离地面的高度CF为100cm.【点评】:本题考查了解直角三角形的应用,解决本题的关键是综合运用锐角三角函数,等腰三角形的性质,相似三角形的判定与性质等知识.27.(问答题,0分)某数学小组开展了一次测量小山高度的活动,如图,该数学小组从地面A处出发,沿坡角为53°的山坡AB直线上行一段距离到达B处,再沿着坡角为22°的山坡BC 直线上行600米到达C处,通过测量数据计算出小山高CD=612m,求该数学小组行进的水平距离AD(结果精确到1m).(参考数据:sin22°≈0.37,cos22°≈0.92,cos53°≈0.6,tan53°≈1.3)【正确答案】:【解析】:过B作BE⊥CD于E,过B作BH⊥AD于H,则四边形BEDH是矩形,得到DE=BH,BE=DH,解直角三角形求出BE、AH的长,即可解决问题.【解答】:解:过B作BE⊥CD于E,过B作BH⊥AD于H,如图所示:则四边形BEDH是矩形,∴DE=BH,BE=DH,在Rt△BCE中,∵BC=600,∠CBE=22°,∴CE=BC•sin22°=600×0.37=222(m),BE=BC•cos22°=600×0.92=552(m),∴DH=BE=552m,∵CD=612m,∴BH=DE=CD-CE=612-222=390(m),在Rt△ABH中,∵∠BAH=53°,,∴tan53°= BHAH=300(m),∴AH≈ 3901.3∴AD=AH+DH=300+552=852(m),答:该数学小组行进的水平距离AD约为852m.【点评】:此题考查了解直角三角形的应用-坡度坡角问题,熟练掌握锐角三角函数定义是解题的关键.28.(问答题,0分)热气球的探测器显示,从热气球底部A处看一栋高楼顶部的俯角为30°,看这栋楼底部的俯角为60°,热气球A处于地面距离为420米,求这栋楼的高度.【正确答案】:【解析】:过A作AE⊥BC,交CB的延长线于点E,先解Rt△ACD,求出CD的长,则AE=CD,再解Rt△ABE,求出BE的长,然后根据BC=AD-BE即可得到这栋楼的高度.【解答】:解:过A作AE⊥BC,交CB的延长线于点E,在Rt△ACD中,∵∠CAD=30°,AD=420米,∴CD=AD•tan30°=420× √3=140 √3(米),3∴AE=CD=140 √3米.在Rt△ABE中,∵∠BAE=30°,AE=140 √3米,∴BE=AE•tan30°=140 √3 × √3=140(米),3∴BC=AD-BE=420-140=280(米),答:这栋楼的高度为280米.【点评】:本题主要考查了解直角三角形的应用-仰角俯角问题,在此类题目中常用的方法是利用作高线转化为直角三角形进行计算.29.(问答题,0分)某校一栋教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为45°,沿山坡向上走到B处测得宣传牌顶部C的仰角为30°.已知山坡AB的坡度i=1:√3,AB=10米,AE=15米,求这块宣传牌CD的高度.【正确答案】:【解析】:过B 分别作AE 、DE 的垂线,设垂足为F 、G .分别在Rt△ABF 和Rt△ADE 中,通过解直角三角形求出BF 、AF 、DE 的长,进而可求出EF 即BG 的长;在Rt△CBG 中,∠CBG=30°,求出CG 的长;根据CD=CG+GE-DE 即可求出宣传牌的高度.【解答】:解:过B 作BF⊥AE ,交EA 的延长线于F ,作BG⊥DE 于G .在Rt△ABF 中,i=tan∠BAF= 1√3 = √33 ,∴∠BAF=30°,∴BF= 12 AB=5,AF=5 √3 .∴BG=AF+AE=5 √3 +15.在Rt△BGC 中,∵∠CBG=30°,∴CG :BG= √33 ,∴CG=5+5 √3 .在Rt△ADE 中,∠DAE=45°,AE=15,∴DE=AE=15,∴CD=CG+GE -DE=5+5 √3 +5-15=(5 √3 -5)m .答:宣传牌CD 高约(5 √3 -5)米.【点评】:此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.30.(问答题,0分)如图,线段AB、CD分别表示甲、乙两建筑物的高,AB⊥BC,DC⊥BC,垂足分别为B、C,从B点测得D点的仰角α为60°,从A点测得D点的仰角β为30°,已知甲建筑物的高度AB=34m,求甲、乙两建筑物之间的距离BC和乙建筑物的高度DC.(结果保留根号)【正确答案】:【解析】:作AE⊥CD,用BC可以分别表示DE,CD的长,根据CD-DE=AB,即可求得BC的长,即可解题.【解答】:解:作AE⊥CD,BC,∵CD=BC•tanα= √3 BC,DE=BC•tanβ= √33BC,∴AB=CD-DE= 2√33∴BC=17 √3 m,CD=BC•tanα= √3 BC=51m.答:甲、乙两建筑物之间的距离BC为17 √3 m,乙建筑物的高度DC为51m.【点评】:本题考查了直角三角形中三角函数的应用,考查了特殊角的三角函数值,本题中求的BC的长是解题的关键.31.(问答题,0分)某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【正确答案】:≈0.75求得AE=40,由【解析】:作DE⊥AB于点E,作CF⊥DE于点F,由tan37°= DEAEAB=57知BE=17,再根据四边形BCFE是矩形知CF=BE=17.由∠CDF=∠DCF=45°知DF=CF=17,从而得BC=EF=30-17=13.【解答】:解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=37°,∠DCF=45°.在Rt△ADE中,∠AED=90°,≈0.75.∴tan37°= DEAE∴AE=40,∵AB=57,∴BE=17∵四边形BCFE是矩形,∴CF=BE=17.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=17,∴BC=EF=30-17=13.答:教学楼BC高约13米.【点评】:此题主要考查了解直角三角形的应用,利用数形结合以及锐角三角函数关系求解是解题关键.。
九年级下册数学《锐角三角函数》同步测试及答案
九年级下册数学《锐角三角函数》同步测试及答案一、选择题(每小题3分,共30分)1.河堤的横断面如图所示,堤高BC 是5米,迎水斜坡AB 的长是13米,那么斜坡AB 的坡度i 是( )A .1∶3B .1∶2.6C .1∶2.4D .1∶22.如图,某渔船上的渔民在A 处看见灯塔M 在北偏东600方向,这艘渔船以28海里/小时的速度向正东航行半小时到B 处,在B 处看见灯塔M 在北偏东150方向,此时灯塔M 与渔船的距离是( ) A .27海里 B .214海里 C .7海里 D .14海里3.如图,从山顶A 望地面C .D 两点,测得它们的俯角分别为450和300,已知CD =100米,点C 在BD 上,则山高AB =( ) A .100米 B .350米 C .250米 D .)13(50+米 4.重庆市“旧城改造”中,计划在市内一块如图所示的三角形空地上种植某种草皮,以美化环境.已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( ) A .a 450元 B .a 225元 C .a 150元 D .a 300元5.如图,某地夏季中午,当太阳移至房顶上方偏南时,光线与地面成80°角,房屋朝南的窗子高AB =1.8 m ,要在窗子外面上方安装水平挡光板AC ,使午间光线不能直接射入室内,那么挡光板的宽度AC 为( ) A .1.8tan80°m B .1.8cos80°m C .︒80sin 8.1 mD .︒80tan 8.1 m6.身高相同的三个小朋友甲.乙.丙放风筝,他们放出的线长分别为300 m ,250 m ,200 m ;线与地面所成的角度分别为30°,45°,60°(假设风筝线是拉直的),则三人所放的风筝( )A .甲的最高B .乙的最低C .丙的最低D .乙的最高 7.如图,为了测量一河岸相对两电线杆A .B 间的距离,在距A 点15米的C 处 (AC ⊥AB )测得∠ACB =50°,则A .B 间的距离应为( )第1题 第2题 第3题 第4题 第5题 第7题 第8题A .15sin50°米B .15tan50°米C .15tan40°米D .15cos50°米8.如图,在离地面高度5 m 处引拉线固定电线杆,拉线和地面成60°角,则拉线AC 的长是( )A .10 mB .3310 m C .225 m D .53 m二、填空题9.如图,一架梯子斜靠在墙上,若梯子底端到墙的距离AC =3米,3cos 4BAC ∠=,则梯子长AB = 米. 10.小明要在坡度为53的山坡上植树,要想保证水平株距为5 m ,则相邻两株树植树地点的高度差应为_____m.11.有一拦水坝的横断面是等腰梯形,它的上底长为6米,下底长为10米,高为23米,那么此拦水坝斜坡的坡度为_____,坡角为_____.12.如图,从楼顶A 点测得电视塔CD 的仰角为α,俯角为β,若楼房与电视塔之间的水平距离为m ,求电视塔的高度.将这个实际问题写成数学形式:已知在△ADC 中,AB _____CD 于B ,∠_____=α,∠_____=β,m =_____,求_____. 13.要把5米长的梯子上端放在距地面3米高的阳台边沿上,猜想一下梯子摆放坡度最小为______. 14.如图,某建筑物BC 直立于水平地面,AC =9米,要建造阶梯AB ,使每阶高不超过20 cm ,则此阶梯最少要建_____阶.(最后一阶的高度不足20 cm 时,按一阶算,3取1.732) 15.如图,小刚在一山坡上依次插了三根木杆,第一根木杆与第二根木杆插在倾斜角为30°,且坡面距离是6米的坡面上,而第二根与第三根又在倾斜角为45°,且坡面距离是8米的坡面上.则第一根与第三根木杆的水平距离是______. (精确到0.01米)16.如图,小明想测量电线杆AB 的高度,发现电线杆的影子恰好落在土坡的坡面CD 和地面BC 上,量得CD =4 m ,BC =10 m ,CD 与地面成30°角,且此时测得1 m 杆的影子长为2 m ,则电线杆的高度约为_____m.(结果保留两位有效数字,2≈1.41,3≈1.73)第9题 第12题 第14题ABC第15题 第16题 第17题17.如图,在△ABC 中,∠C =90°,cosA =54,CD 是高.若BD =9,则CD = ,S △ABC = .18.四边形ABCD 的对角线AC BD ,的长分别为m n ,,可以证明当AC BD ⊥时(如图1),四边形ABCD 的面积12S mn =,那么当AC BD ,所夹的锐角为θ时(如图2),四边形ABCD 的面积S = .(用含m n θ,,的式子表示)三、解答题(共46分)19.(6分)某校在周一举行升国旗仪式,小明同学站在离旗杆20米处(如图所示), 随着国旗响起,五星红旗冉冉升起,当小明同学目视国旗的仰角为37°(假设该同学的眼睛距地面的高度为1.6米),求此时国旗离地面的距离.20.(6分)如图,甲、乙两船同时从港口O 出发,甲船以16.1海里/时的速度向东偏西32°方向航行,乙船向西偏南58°方向航行,航行了两小时,甲船到达A 处并观测到B 处的乙船恰好在其正西方向,求乙船的速度(精确到0.1海里/时).21.(8分)如图,一勘测人员从B 点出发,沿坡角为15°的坡面以5千米/时的速度行至D处,用了12分钟,然后沿坡角为20°的坡面以3千米/时的速度到达山顶A 点处,用了10 分钟,求山高(即AC 的长度)及A ,B 两点间的水平距离(即BC 的长)(精确到0.01千米).22.(8分)苏州的虎丘塔身倾斜,却经历千年而不例,被誉为“中国第一斜塔”,如图,BC是过塔底中心B 的铅垂线,AC 是塔顶A 偏离BC 的距离,据测量,AC 约为2.34m ,塔身AB 的长为47.9m ,求塔身倾斜的角度∠ABC 的度数.(精确到1′).B图1图2第18题 第19题 B O 东北A 第20题B 20︒D A 15︒CE第21题23.(8分)如图,在平面镜的同侧,有相隔15cm 的A ,B 两点, 它们与平面镜的距离分别为5cm 和7cm ,现要使由A 点射出的光线经平面镜反射后通过点B ,求光线的入射角θ的度数.24.(10分)气象台发布的卫星云图显示,代号为W 的台风在某海岛(设为点O )的南偏东45方向的B点生成,测得OB =.台风中心从点B 以40km/h 的速度向正北方向移动,经5h 后到达海面上的点C 处.因受气旋影响,台风中心从点C 开始以30km/h 的速度向北偏西60方向继续移动.以O 为原点建立如图所示的直角坐标系. (1)台风中心生成点B 的坐标为 ,台风中心转折点C 的坐标为 ;(结果保留根号)(2)已知距台风中心20km 的范围内均会受到台风的侵袭.如果某城市(设为点A )位于点O 的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?θB 7515DAEF第23题BC6045第24题答案一、选择题1.C 2.A 3.D 4.C 5.D 6.D 7.B 8.B 二、填空题9.4 10.3 11.3 600 12.⊥ BAC BAD AB CD 13.4314.26 15.10.85 16.8.7 17.12、150 18.1sin 2mn θ 三、解答题19.约16.7米. 20.10.1海里/时 21.AC≈0.43(千米),BC≈1.44(千米) 22.2°48′23.θ≈51.1° 24.(1)B -,C -;(2)经过11小时.。
人教版九年级数学下册28.1 锐角三角函数同步练习(填空题) 含答案
第28章锐角三角函数 同步学习检测(一)一、填空题:注意:填空题的答案请写在下面的横线上, (每小题3分,共96分) 1、 ;2、 ;3、 ;4、 ;5、 ; 6、 ;7、 ;8、 ;9、 ;10、 ; 11、 ;12、 ;13、 ;14、 ;15、 ; 16、 ;17、 ;18、 ;19、 ;20、 、 ;21、 ; 22、 ;23、 ; 24、 ; 25、 ;26、 ;27、 ;28、 ;29、 ;30、 ;31、 ;32、 ;1.(2009年济南)如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠的值是 .2.(2009年济南)九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米.根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.1米,3 1.73≈) 3. (2009仙桃)如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点.C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)4.(2009年安徽)长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了 m .5.(2009年桂林市.百色市)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电 线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).6.(2009湖北省荆门市)计算:104cos30sin 60(2)(20092008)-︒︒+---=______. 7.(2009年宁波市)如图,在坡屋顶的设计图中,AB AC =,屋顶的宽度l 为10米,坡角α为35°,则坡屋顶高度h 为 米.(结果精确到0.1米)8.(2009桂林百色)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).9.(2009丽水市)将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知AB =AC =8 cm,将△MED 绕点A (M )逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积约是 ▲ cm 2(结果 精确到0.1,73.13≈)10.(09湖南怀化)如图,小明从A 地沿北偏东ο30方向走1003m 到B 地,再从B 地向正南方向走200m 到C 地,此时小明离A 地 m .11.(2009年孝感)如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .12.(2009泰安)如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 的值为 . 13.(2009年南宁市)如图,一艘海轮位于灯塔P 的东北方向,距离灯塔402A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则海轮行驶 的路程AB为 _____________海里(结果保留根号).14.(2009年衡阳市)某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个破面的坡度为_________.15.2009年鄂州)小明同学在东西方向的沿江大道A 处,测得江中灯塔P 在北偏东60°方向上,在A 处正东400米的B 处,测得江中灯塔P 在北偏东30°方向上,则灯塔P 到沿江大道的距离为____________米.16.(2009年广西梧州)在△ABC 中,∠C =90°, BC =6 cm ,53sin =A , 则AB 的长是 cm .17.(2009宁夏)10.在Rt ABC △中,903C AB BC ∠===°,,, 则cos A 的值是 .18.(2009年包头)如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π). 19.(2009年包头)如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根号).20.(2009年山东青岛市)如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要 cm .ANBM21.(2009年益阳市)如图,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△C B A ''',使点B '与C 重合,连结B A ',则C B A ''∠tan 的值为 . 22.(2009白银市)如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B .C ,那么线段AO = cm .23. (2009年金华市) “赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4,大正方形的面积为100,直角三角形中较小的锐角为α,则tan α的值等于 .24.(2009年温州)如图,△ABC 中,∠C=90°,AB=8,cosA=43,则AC 的长是 25.(2009年深圳市)如图,小明利用升旗用的绳子测量学校旗杆BC 的高度,他发现 绳子刚好比旗杆长11米,若把绳子往外拉直,绳子接触地面A 点并与地面形成30º角时,绳子末端D 距A 点还有1米,那么旗杆BC 的高度为 .26.(2009年深圳市)如图,在Rt △ABC 中,∠C=90º,点D 是BC 上一点,AD=BD , 若AB=8,BD=5,则CD= .27.(2009年黄石市)计算:1132|20093tan 303-⎛⎫+--+ ⎪⎝⎭°= .28..(2009年中山)计算:19sin 30π+32-0°+()= .29.(2009年遂宁)计算:()3208160cot 33+--o -= .30.(2009年湖州)计算:()02cos602009π9--+°= . 31.(2009年泸州)︒+--+-30sin 29)2009()21(01= . 32.(2009年安徽)计算:|2-|o 2o 12sin30(3)(tan 45)-+--+= . 二、解答题(每小题4分,24分)1.(2009年河北)图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin∠DOE = 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?OEC D2.(2009年新疆乌鲁木齐市)九(1)班的数学课外小组,对公园人工湖中的湖心亭A 处到笔直的南岸的距离进行测量.他们采取了以下方案:如图7,站在湖心亭的A 处测得南岸的一尊石雕C 在其东南方向,再向正北方向前进10米到达B 处,又测得石雕C 在其南偏东30°方向.你认为此方案能够测得该公园的湖心亭A 处到南岸的距离吗?若可以,请计算此距离是多少米(结果保留到小数点后一位)?3.(2009年哈尔滨)如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.(结果保留根号)BADC北东西南4. (2009山西省太原市)如图,从热气球C 上测得两建筑物A .B 底部的俯角分别为30°和60°.如果这时气球的高度CD 为90米.且点A .D .B 在同一直线上,求建筑物A .B 间的距离.5.(2009年中山)如图所示,A .B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏ABC EF60°30°CDBA 北60°30°西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:3≈1.732,2≈1.414)6.(2009河池)如图,为测量某塔AB 的高度,在离该塔底部20米处目测其顶A ,仰角为60o ,目高1.5米,试求该塔的高度(3 1.7)≈.1.5C 60oA1.51.22 2. 16.1 3. 3.5 4. 2(32)- 5. 43 6. 327. 3.5 8. 43 9. 20.3 10. 100 11. 45(或0.8); 12. 33 13.. ()40340+ 14.1:215. 3200 16. 10 17. 53 18. π33-19..532 20. 10,22916n +(或23664n +)21. 3122. 5 23。
湘教版九年级上册第4章《锐角三角函数》检测卷 含答案
湘教版2020年九年级上册第4章《锐角三角函数》检测卷满分120分姓名:___________班级:___________学号:___________题号一二三总分得分一.选择题(共12小题,满分36分,每小题3分)1.在Rt△ABC中,∠C=90°,BC=5,AC=12,则sin B的值是()A.B.C.D.2.已知sin A=0.9816,运用科学计算器求锐角A时(在开机状态下),按下的第一个键是()A.B.C.D.3.如图,在△ABC中,∠ACB=90°,D是AB的中点,若CD=5,AC=8,则tan A=()A.B.C.D.4.如图,有一斜坡AB的长AB=10米,坡角∠B=36°,则斜坡AB的铅垂高度AC为()A.10tan36°B.10cos36°C.10sin36°D.5.已知cosα=,则锐角α的取值范围是()A.0°<α<30°B.30°<α<45°C.45°<α<60°D.60°<α<90°6.在Rt△ABC中,∠C=90°,BC:AB=5:13,则下列等式正确的是()A.tan A=B.sin A=C.cos A=D.tan A=7.sin58°、cos58°、cos28°的大小关系是()A.cos28°<cos58°<sin58°B.sin58°<cos28°<cos58°C.cos58°<sin58°<cos28°D.sin58°<cos58°<cos28°8.如图,△ABC的三个顶点均在格点上,则tan A的值为()A.B.C.2 D.9.在Rt△ABC中,∠C=90°,则下列式子定成立的是()A.sin A=sin B B.cos A=cos B C.tan A=tan B D.sin A=cos B 10.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点D到OB的距离等于()A.a sin x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a cos x+b sin x11.若角α,β都是锐角,以下结论:①若α<β,则sinα<sinβ;②若α<β,则cosα<cosβ;③若α<β,则tanα<tanβ;④若α+β=90°,则sinα=cosβ.其中正确的是()A.①②B.①②③C.①③④D.①②③④12.我国北斗导航装备的不断更新,极大方便人们的出行.某中学组织学生利用导航到C 地进行社会实践活动,到达A地时,发现C地恰好在A地正北方向,导航显示路线应沿北偏东60°方向走到B地,再沿北偏西37°方向走才能到达C地.如图所示,已知A,B两地相距6千米,则A,C两地的距离为()(参考数据sin53°≈0.80,cos53°≈0.60,tan53°≈1.32)A.12千米B.(3+4)千米C.(3+5)千米D.(12﹣4)千米二.填空题(共6小题,满分24分,每小题4分)13.已知tan(α+15°)=,则锐角α的度数为°.14.比较大小:sin81°tan47°(填“<”、“=”或“>”).15.如图,在△ABC中,∠C=90°,AC=6,若cos A=,则BC的长为.16.如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是.17.小致为了测量楼房AB的高度,他从楼底的B处沿着斜坡行走20m,达到坡顶D处.已知斜坡的坡角为15°,小致的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,则楼房AB的高度为m.(计算结果精确到1m,参考数据:sin15°=,cos15°=,tan15°=.)18.如图,BE是△ABC的角平分线,F是AB上一点,∠ACF=∠EBC,BE、CF相交于点G.若sin∠AEB=,BG=4,EG=5,则S△ABE=.三.解答题(共7小题,满分60分)19.(12分)计算:(1)2sin30°+3cos60°﹣4tan45°(2)+tan260°20.(6分)如图,锐角△ABC中,AB=10cm,BC=9cm,△ABC的面积为27cm2.求tan B 的值.21.(6分)在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.若a=2,sin,求b和c.22.(8分)2019年4月18日,台湾省花莲县发生里氏6.7级地震,救援队救援时,利用生命探测仪在某建筑物废墟下方探测到点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距6米,探测线与地面的夹角分别为30°和60°,如图所示,试确定生命所在点C的深度.(结果精确到0.1米,参考数据≈1.41,≈1.73)23.(9分)嘉琪在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°=()2+()2=1.据此,嘉琪猜想:在Rt△ABC中,∠C=90°,设∠A=α,有sin2α+sin2(90°﹣α)=1.(1)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立.(2)请你对嘉琪的猜想进行证明.24.(9分)如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB,在观测点C处测得大桥主架顶端A的仰角为30°,测得大桥主架与水面交汇点B的俯角为14°,观测点与大桥主架的水平距离CM为60米,且AB垂直于桥面.(点A,B,C,M在同一平面内)(1)求大桥主架在桥面以上的高度AM;(结果保留根号)(2)求大桥主架在水面以上的高度AB.(结果精确到1米)(参考数据sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,≈1.73)25.(10分)已知△ABC,AB=AC,∠BAC=90°,D是AB边上一点,连接CD,E是CD 上一点,且∠AED=45°.(1)如图1,若AE=DE,①求证:CD平分∠ACB;②求的值;(2)如图2,连接BE,若AE⊥BE,求tan∠ABE的值.参考答案一.选择题(共12小题,满分36分,每小题3分)1.解:如图所示:∵∠C=90°,BC=5,AC=12,∴AB==13,∴sin B==.故选:D.2.解:∵已知sin A=0.9816,运用科学计算器求锐角A时(在开机状态下)的按键顺序是:2ndF,sin,0,∴按下的第一个键是2ndF.故选:D.3.解:∵∠ACB=90°,D是AB的中点,CD=5,∴AB=2CD=10,∵AC=8,AB=10,∴BC==6,∴tan A===.故选:C.4.解:在Rt△ABC中,sin B=,∴AC=AB•sin B=10sin36°,故选:C.5.解:∵cos30°=,cos45°=,∵<<,∴30°<α<45°,6.解:设BC=5x,则AB=13x,由勾股定理得,AC==12x,则tan A==,A、D错误;sin A==,B错误;cos A==,C正确;故选:C.7.解:sin58°=cos32°.∵58°>32°>28°,∴cos58°<cos32°<cos28°,∴cos58°<sin58°<cos28°.故选:C.8.解:如图所示:连接BD,BD==,AD==2,AB==,∵BD2+AD2=2+8=10=AB2,∴△ADB为直角三角形,∴∠ADB=90°,则tan A===.故选:A.9.解:∵∠C=90°,∴∠A+∠B=90°,∴sin A=cos B.10.解:如图,过点D作DE⊥OC于点E,则点D到OB的距离等于OE的长.∵四边形ABCD是矩形,∴∠BCD=90°,CD=AB=a,AD=BC=b,∴∠CDE=∠BCO=x,∴OC=BC•cos x=b cos x,CE=CD•sin x=a sin x,∴OE=OC+CE=b cos x+a sin x.则点D到OB的距离等于b cos x+a sin x.故选:C.11.解:①∵sinα随α的增大而增大,∴若α<β,则sinα<sinβ,此结论正确;②∵cosα随α的增大而减小,∴若α<β,则cosα>cosβ,此结论错误;③∵tanα随α的增大而增大,∴若α<β,则tanα<tanβ,此结论正确;④若α+β=90°,则sinα=cosβ,此结论正确;综上,正确的结论为①③④,故选:C.12.解:如图,作BD⊥AC于点D,根据题意可知:在Rt△ADB中,∠A=60°,AB=6,∴AD=3,BD=3,在Rt△CDB中,∠CBD=53°,∴CD=BD•tan53°≈3×1.32≈3×≈4,∴AC=AD+CD=3+4.则A,C两地的距离为(3+4)千米.故选:B.二.填空题(共6小题,满分24分,每小题4分)13.解:∵tan30°=,∴α+15°=30°,∴α=15°,故答案为:15.14.解:∵sin81°<sin90°=1,tan47°>tan45°=1,∴sin81°<1<tan47°,∴sin81°<tan47°.故答案为<.15.解:∵在△ABC中,∠C=90°,AC=6,cos A=,∴cos A===,∴AB=10,∴BC====8.故答案为:8.16.解:如图,连接AB.∵OA=AB=,OB=2,∴OB2=OA2+AB2,∴∠OAB=90°,∴△AOB是等腰直角三角形,∴∠AOB=45°,∴sin∠AOB=,故答案为:.17.解:作DH⊥AB于H,∵∠DBC=15°,BD=20m,∴BC=BD•cos∠DBC=20×=19.2(m),CD=BD•sin∠DBC=20×=5(m),由题意得,四边形ECBF和四边形CDHB是矩形,∴EF=BC=19.2m,BH=CD=5m,∵∠AEF=45°,∴AF=EF=19.2m,∴AB=AF+FH+HB=19.2+1.6+5=25.8≈26(m),答:楼房AB的高度约为26m.故答案是:26.18.解:如图,过点B作BT⊥AC于T,连接EF.∵BE平分∠ABC,∴∠ABE=∠CBE,∵∠ECG=∠ABE,∴∠ECG=∠CBE,∵∠CEG=∠CEB,∴△ECG∽△EBC,∴==,∴EC2=EG•EB=5×(5+4)=45,∵EC>0,∴EC=3,在Rt△BET中,∵sin∠AEB==,BE=9,∴BT=,∴ET===,∴CT=ET+CE=,∴BC===6,∴CG==10,∵∠ECG=∠FBG,∴E,F,B,C四点共圆,∴∠EFG=∠CBG,∵∠FGE=∠BGC,∴△EGF∽△CGB,∴=,∴=,∴EF=3,∵∠AFE=∠ACB,∠EAF=∠BAC,∴△EAF∽△BAC,∴===,设AE=x,则AB=2x,∵∠FBG=∠ECG,∠BGF=∠CGE,∴△BGF∽△CGE,∴=,∴=,∴BF=,∵AE•AC=AF•AB,∴x(x+3)=(2x﹣)•2x,解得x=,∴AE=ET=,∴点A与点T重合,∴AB=2AE=,∴S△ABE=×AB×AE=××=.故答案为.三.解答题(共7小题,满分60分)19.解:(1)原式===;(2)原式==+3=.20.解:过点A作AH⊥BC于H,∵S△ABC=27,∴,∴AH=6,∵AB=10,∴BH===8,∴tan B===.21.解:如图,∵a=2,sin,∴c===6,则b===4.22.解:过点C作CD⊥AB,交AB的延长线于D,在Rt△ACD中,∠CAD=30°,tan∠CAD=,∴AD==CD,在Rt△ACD中,∠CBD=60°,tan∠CBD=,∴BD==CD,由题意得,AD﹣BD=AB=6,∴CD﹣CD=6,解得,CD=3≈5.2(米),答:生命所在点C的深度约为5.2米.23.解:(1)当α=30°时,sin2α+sin2(90°﹣α)=sin230°+sin260°=()2+()2=+=1;(2)嘉琪的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°﹣α,∴sin2α+sin2(90°﹣α)=()2+()2===1.24.解:(1)∵AB垂直于桥面,∴∠AMC=∠BMC=90°,在Rt△AMC中,CM=60,∠ACM=30°,tan∠ACM=,∴AM=CM•tan∠ACM=60×=20(米),答:大桥主架在桥面以上的高度AM为20米;(2)在Rt△BMC中,CM=60,∠BCM=14°,tan∠BCM=,∴MB=CM•tan∠BCM≈60×0.25=15,∴AB=AM+MB=15+20≈50(米)答:大桥主架在水面以上的高度AB约为50米.25.(1)①证明:∵AE=DE,∴∠ADE=∠DAE,∵∠CAD=90°,∴∠ADC+∠ACD=90°,∠DAE+∠CAE=90°,∴∠CAE=∠ACD,∴EA=EC,∵∠AED=45°=∠CAE+∠ACD,∴∠ACD=22.5°,∵AB=AC,∠BAC=90°,∴∠ACB=45°,∴∠BCD=∠ACD=22.5°,∴CD平分∠ACB.②解:如图1中,过点D作DT⊥BC于T.∵CD平分∠ACB,DT⊥CB,DA⊥CA,∴DA=DT,∵AB=AC,∠BAC=90°,∴∠B=45°,∴BD=DT=AD,∴=.(2)解:如图2中,连接BE,过点C作CT⊥AT交AE的延长线于T.∵AE⊥BE,CT⊥AT,∴∠AEB=∠T=∠BAC=90°,∴∠BAE+∠ABE=90°,∠BAE+∠CAE=90°,∴∠ABE=∠CAT,∵AB=AC,∴△ABE≌△CAT(AAS),∴AE=CT,BE=AT,∵∠AED=∠CET=45°,∠T=90°,∴ET=CT=AE,∴BE=2AE,∴tan∠ABE==。
九年级)三角函数(含答案
数学试题卷1一、选择题:(本题有15小题,每小题3分,共45分) 1.下列各组数中,互为相反数的是 ( ) (A ) -3与3 (B)|-3|与一31 (C)|-3|与31 (D) -3与2(-3) 2.函数12--=x y 的自变量x 的取值范围是 ( ) (A ) x <21 (B) x ≥21 (C) x ≤21 (D) x ≠213.下列运算:①3322=-a a ②236a a a =÷ ③3332a a a =+ ④()623a a =- ⑤()()22y x y x y x +-=--+- 正确的有( )(A )2个 (B) 3个 (C) 4个 (D) 5个4.若一次函数()11-++=m x m y 的图象不经过第一象限,则方程022=--m x x的根的情况是 ( )(A )有两个相等的实根 (B) 有两个不相等的实根 (C) 无实根 (D)不能确定 5.下列图案是几种轿车的标志,在这几个图案中,是轴对称图形有( )(A )1个 (B) 2个 (C) 3个 (D)4个 6.将二次三项式267x x ++进行配方,正确的结果应为( )(A ) 2(3)2x ++ (B) 2(3)2x +- (C) 2(3)2x -+ (D)2(3)2x -- 7.过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm ,则OM 的长等于( )(A )3cm (B) 5cmCyyyyOOOOx x x xABCD8.1996年版人民币一角硬币正面图案中有一个正九边形,如果这个正九边形的半径是R ,那么它的边长是( ) (A )Rsin20°(B) Rsin40°(C)2Rsin20°(D)2Rsin40°9.下列命题中,正确命题的个数是( )①一个锐角的余角还是一个锐角;②垂直于半径的直线是圆的切线; ③一个数的算术平方根一定比这个数小;④平分弦的直径垂直于这条弦. (A ) 0 (B) 1 (C) 2 (D) 310.图1是饮水机的图片。
北师大版 九年级数学 特殊角的三角函数值
特殊角的三角函数值课前测试【题目】课前测试1已知α为锐角,且tanα是方程x2+2x﹣3=0的一个根,求2sin2α+cos2α﹣tan(α+15°)的值。
【答案】﹣【解析】本题考查了特殊角的三角函数值以及因式分解法解一元二次方程,解方程x2+2x﹣3=0得x1=1,x2=﹣3,∵tanα>0,∴tanα=1,∴α=45°,∴2sin2α+cos2α﹣tan(α+15°)=2sin245°+cos245°﹣tan60°=2•()2+()2﹣•=1+﹣3=﹣.总结:本题属于比较简单的计算题,解答本题的关键是解方程求出tanα的值,先求出tanα的值,求出α的度数,然后将特殊角的三角函数值代入求解即可。
【难度】3【题目】课前测试2对于钝角α,定义它的三角函数值如下:sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)。
(1)求sin120°,cos120°,sin150°的值;(2)若一个三角形的三个内角的比是1:1:4,A,B是这个三角形的两个顶点,sinA,cosB是方程4x2﹣mx﹣1=0的两个不相等的实数根,求m的值及∠A和∠B的大小。
【答案】(1)sin120°=,cos120°=﹣,sin150°=;(2)m=0,∠A=30°,∠B=120°【解析】本题考查了解一元二次方程的解以及特殊角的三角函数值,(1)由题意得sin120°=sin(180°﹣120°)=sin60°=,cos120°=﹣cos(180°﹣120°)=﹣cos60°=﹣,sin150°=sin(180°﹣150°)=sin30°=;(2)∵三角形的三个内角的比是1:1:4,∴三个内角分别为30°,30°,120°,①当∠A=30°,∠B=120°时,方程的两根为,﹣,将代入方程得:4×()2﹣m×﹣1=0,解得:m=0,经检验﹣是方程4x2﹣1=0的根,∴m=0符合题意;②当∠A=120°,∠B=30°时,两根为,,不符合题意;③当∠A=30°,∠B=30°时,两根为,,将代入方程得:4×()2﹣m×﹣1=0,解得:m=0,经检验不是方程4x2﹣1=0的根.综上所述:m=0,∠A=30°,∠B=120°.总结:解答本题的关键是按照题目所给的运算法则求出三角函数的值和运用分类讨论的思想解题,(2)分三种情况进行分析:①当∠A=30°,∠B=120°时;②当∠A=120°,∠B=30°时;③当∠A=30°,∠B=30°时,根据题意分别求出m的值即可。
九年级数学单元检测卷—锐角三角函数(含答案)
九年级数学单元检测卷—锐角三角函数(含答案)一、选择题(每小题3分,共24分)1.在Rt △ABC 中,∠C =90°,若tan A =34,则sin A 等于().A.43 B.34 C.53 D.352.若10)1α+︒=,则锐角a 的度数是().A .20°B .30°C .40°D .50°3.如图所示,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取∠ABD =145°,BD =500m ,∠D =55°,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是().A .500sin 55°mB .500cos 55°mC .500tan 55°m D.500cos55︒m 4.小明沿着坡度为1∶2的山坡向上走了1000m ,则他升高了().A .B .500mC .mD .1000m5.已知在△ABC 中,∠C =90°,设sin B =n ,当∠B 是最小的内角时,n 的取值范围是().A .0<n <22B .0<n <12C .0<n <33D .0<n <326.某个水库大坝的横断面为梯形,迎水坡的坡度是1,背水坡为1∶1,那么两个坡的坡角和为().A.90°B.75°C.60°D.105°7.计算6tan45°-2cos60°的结果是()A.43B.4C.5D.538.野外生存训练中,第一小组从营地出发向北偏东60°方向前进了3km,第二小组向南偏东30°方向前进了3km,第一小组准备向第二小组靠拢,则行走方向和距离分别为().A.南偏西15°,B.北偏东15°,C.南偏西15°,3km D.南偏西45°,9.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,若AC=23,AB=42,则tan∠BCD 的值为()A.2B.153C.155D.3310.如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为()(结果精确到0.1m,3≈1.73).A.3.5m B.3.6mC.4.3m D.5.1m二、填空题(每小题4分,24共分)11.长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了__________m.12.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的投影BC的长为24米,则旗杆AB的高度是__________米.13.如图,正方形ABCD的边长为4,点M在边DC上,M,N两点关于对角线AC对称,若DM=1,则tan∠ADN=__________.14.如果方程x2-4x+3=0的两个根分别是Rt△ABC的两条边,△ABC最小的角为A,那么tan A的值为__________.15.等腰三角形的腰长为2,腰上的高为1,则它的底角等于________.16.如图,△ABC的顶点都在方格纸的格点上,则cosA=.三、解答题(共46分)17.(10分)计算:(1)sin245°+tan60°cos30°-tan45°;(2)||+(cos60°-tan30°)0.18.(7分)如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=163.3(1)求∠B的度数;(2)求边AB与BC的长.19.(7分)如图,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A处测得古塔顶端点D的仰角为45°,再沿着BA的方向后退20m至C处,测得古塔顶端点D的仰角为30°.求该古塔BD的高度≈1.732,结果保留一位小数).20.(7分)我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40m,坡角∠BAD=60°,为防夏季因暴雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米(结果保留根号)?21.(7分)已知:如图,△ABC中,AB=9,BC=6,△ABC的面积等于9,求sin B.22.(8分)已知:如图,△ABC中,∠B=30°,P为AB边上一点,PD⊥BC于D.(1)当BP∶PA=2∶1时,求sin∠1、cos∠1、tan∠1;(2)当BP∶PA=1∶2时,求sin∠1、cos∠1、tan∠1.答案一、选择题1、D2、A3、B4、A5、A6、B7、C8、A9、B 10、D二、填空题11、-12、8313、4314、13或2415、75°或15°16、55三、解答题17.解:(1)原式=2122⎛+- ⎪⎝⎭=1322+-1=1.(2)||+(cos 60°-tan 30°)0+1+=1+.18.解:(1)在Rt △ACD 中,∵cos ∠CAD=32AC AD ==,∠CAD 为锐角,∴∠CAD =30°,∠BAD =∠CAD =30°,即∠CAB =60°.∴∠B =90°-∠CAB =30°.(2)在Rt △ABC 中,∵sin B =AC AB ,∴AB =8sin sin 30AC B =︒=16.又cos B =BC AB,∴BC =AB ·cos B =16×2=.19.解:根据题意可知:∠BAD =45°,∠BCD =30°,AC =20m .在Rt △ABD 中,由∠BAD =∠BDA =45°,得AB =BD .在Rt △BDC 中,由tan ∠BCD =BD BC ,得BC.又BC -AB =AC-BD =20,∴BD∴古塔BD 的高度约为27.3m.20.解:作BG ⊥AD 于点G ,作EF ⊥AD 于点F 在Rt △ABG 中,∠BAD =60°,AB =40,∴BG =AB ·sin 60°=AG =AB ·cos 60°=20.同理,在Rt △AEF 中,∠EAD =45°,∴AF =EF =BG=BE =FG =AF -AG =1).因此BE 至少是-1)m.21.sin B=1322提示:作AE ⊥BC 于E ,设AP =2.(1)当BP ∶P A =2∶1时,求sin ∠1=23;cos ∠1=21;tan ∠(2)当BP ∶P A =1∶2时,sin ∠1=721;cos ∠1=772;tan ∠1=23.。
2021年苏科版九年级下册第七章锐角三角函数(中档题)单元测试(一)
2021年苏科版九年级下册第七章锐角三角函数(中档题)单元测试(一)2021九下第七章《锐角三角函数》(中档题)单元测试(一)班级:___________姓名:___________得分:___________一、选择题(本大题共10小题,共30分)1. 在Rt △ABC 中,∠C =90,cosA =1213,BC =10,则AB 的长为( ) A. 12 B. 13 C. 24 D. 262. 在直角坐标平面内有一点P(3,4),OP 与x 轴正半轴的夹角为α,下列结论正确的是( )A. tanα=43;B. cotα=45;C. sinα=35;D. cosα=54. 3. 如图,直径为10的⊙A 经过点C(0,5)和点O(0,0),B是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( ).A. 12B. 34C. √32 D. 454. 如图,∠AOB =45°,点M ,N 在边OA 上,OM =3,ON =7,点P 是直线OB 上的点,要使点P ,M ,N 构成等腰三角形的点P 有( )个.A. 1B. 2C. 3D. 45.如图,⊙O的半径OD⊥AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则cos∠OCE为()A. 35B. 3√1313C. 23D. 2√13136.在如图网格中,小正方形的边长为1,点A、B、C、D都在格点上,AB与CD相交于点O,则∠AOC的正切值是()A. 23B. 32C. 35D. 537.如图,已知A,B两点的坐标分别为(8,0),(0,8),点C,F分别是直线x=?5和x轴上的动点,CF=10,点D是线段CF 的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,sin∠BAD的值是()A. 817B. 717C. 4√213D. 7√2268.如图,在△ABC中,AB=AC,BC=4,tanB=2,以AB的中点D为圆心,r为半径作⊙D,如果点B在⊙D内,点C在⊙D 外,那么r可以取()A. 2B. 3C. 4D. 59.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为F,连接DF,则下列四个结论中,错误的是()A. △AEF∽△CABB. CF=2AFC. DF=DCD. tan∠CAD=3410.如图,△ABC内接于⊙O,半径为6,CD⊥AB于点D,sin∠ACD=2,则BC的长为()3A. 2√5B. 4√5C. 3√2D. 5√3二、填空题(本大题共8小题,共24分)11.如图,已知正方形ABCD的边长为1.如果将对角线BD绕着点B旋转后,点D落在CB的延长线上的D′点处,联结AD′,那么cot∠BAD′=.12.如图,在6x6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则cos∠BAC的值是______.13.如图,正三角形ABC内接于⊙O,其边长为2√3,则⊙O面积为____.14.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为5,AC=8,则cosB的值是.15.如图:在△ABC中,∠ACB=90°,CD⊥AB于D点,若AC=2√3,tan∠BCD=√2,2则AB=______.16.如图,河岸EF//MN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D 位于北偏东30°方向,此时,其他同学测得CD=10米,则河的宽度为________米.17.如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴,y轴分别交于A,B两点,点B坐标为(0,2√3),OC与⊙D交于点C,∠OCA=30°,则圆中阴影部分的面积为________.18.如图,Rt△ABC中,∠A=90°,CD平分∠ACB交AB于点D,O是BC上一点,经过C、D两点的⊙O分别交AC、BC于点E、F,AD=√3,∠ADC=60°,则劣弧CD?的长为____.三、解答题(本大题共7小题,共96分)19.如图,在矩形方格纸ABCD中,点E,F均为格点(注:组成方格纸的小正方形顶点称为格点).(1)直接写出sin∠EAF的值;(2)按下列要求画出图形:①在方格纸中找一格点P,使AP平分∠EAF,画出线段AP;②在CD边上找一格点Q,使FQ⊥AP,画出线段FQ.20.小强和小明同学在学习了“平面镜反射原理后,”自己用一个小平面镜MN做实验.他们先将平面镜放在平面上,如图,用一束与平面成30°角的光线照射平面镜上的A处,使光影正好落在对面墙面上一幅画的底边C点,他们不改变光线的角度,原地将平面镜转动了7.5°角,即∠MAM′=7.5°,使光影落在C点正上方的D 点,测得CD=10cm,求平面镜放置点与墙面的距离AB.(√3≈1.73,结果精确到0.1).21.如图,AB=AC,⊙O是△ABC的内切圆,切点为D、E、F,连接DE、CD交⊙O于G,连接EG并延长交BC于H.(1)求证:DE//BC;(2)连接AG,若EH⊥BC,求sin∠DAG的值.22.如图,以⊙O的弦AB为斜边作Rt△AB C,C点在圆内,边BC经过圆心O,过A点作⊙O的切线AD.(1)求证:∠DAC=2∠B;(2)若sinB=3,AC=6,求⊙O的半径.523.图1是一台实物投影仪,图2是它的示意图,折线O?A?B?C 表示支架,支架的一部分O?A?B是固定的,另一部分BC是可旋转的,线段CD表示投影探头,OM表示水平桌面,AO⊥OM,垂足为点O,且AO=7cm,∠BAO=160°,BC//OM,CD=8cm.将图2中的BC绕点B向下旋转45°,使得BCD落在BC′D′的位置(如图3所示),此时C′D′⊥OM,AD′//OM,AD′=16cm,求点B 到水平桌面OM的距离,(参考数据:sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,结果精确到1cm)24.如图,AB是⊙O的直径,P是BA延长线上一点,过点P作⊙O的切线,切点为D,连接BD,过点B作射线PD的垂线,垂足为C.(1)求证:BD平分∠ABC;(2)如果AB=6,sin∠CBD=1,求PD的长.325.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB、DC、DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=2√5DE,求tan∠ABD的值.答案和解析1.D解:Rt△ABC中,∠C=90,∵cosA=ACAB =1213,∴可以假设AC=12k,AB=13k,∴BC=5k=10,∴k=2,∴AB=26,2.A3.C解:如图,作直径OE,连接CE,则OE=10,根据圆周角定理得:∠E=∠B,∵OE为直径,∴∠OCE=90°,∵C(0,5),∴OC=5,根据勾股定理CE=√OE2?OC2=√102?52=5√3,,4.C解:过M作MM′⊥OB于M′,过N作NN′⊥OB于N′,∵OM=3,ON=7,∠AOB=45°,∴MN=4,MM′=OM×sin45°=32√2<4,NN′=ON×sin45°=72√2>4,MH=M′N′=4×sin45°=2√2<4,所以只有两种情况:①以M为圆心,以4为半径画弧,交直线OB 于P1、P2,此时△NP1M 和△NMP2都是等腰三角形;②作线段MN的垂直平分线,交直线PB于P3,此时△MNP3是等腰三角形,即有3个点P符合,5.B解:如图,过点E作EH⊥DO交DO的延长线于H,设OA=r.∵OD⊥AB,∴AC=BC=4,在Rt△ACO中,∵∠ACO=90°,∴r2=42+(r?2)2,解得r=5,∴OA=OE=5,OC=3,∵∠H=∠ACO,∠EOH=∠AOC,AO=EO,∴△EOH≌△AOC(AAS),∴EH =AC =4,OH =OC =3,CH =6,∴EC =√EH 2+CH 2=2√13,∴cos∠OCE =CH EC =62√13=3√1313, 6. A解:如图取格点K ,连接BK ,则CD//BK .过点K 作KH ⊥AB 于H .∵S △ABK =12?AK ?4=12AB ?KH ,AB =√42+72=√65,∴HK =20√65=4√6513,∵BH =√BK 2?HK 2=√20?(4√6513)2=6√6513,∵CD//BK ,∴∠AOC =∠ABK ,∴tan∠AOC =tan∠ABK =HK BH =4√65136√6513=23, 7. D解:如图,设直线x =?5交x 轴于K.由题意KD =12CF =5,∴点D 的运动轨迹是以K 为圆心,5为半径的圆,∴当直线AD 与⊙K 相切时,△ABE 的面积最小,∵AD 是切线,点D 是切点,∴AD ⊥KD ,∵AK =13,DK =5,∴AD =12,∵tan∠EAO =OE OA =DK AD ,∴OE 8=512,∴OE =103,∴AE =√OE 2+OA 2=263,作EH ⊥AB 于H .∵S △ABE =12?AB ?EH =S △AOB ?S △AOE ,∴EH =7√23,∴sin∠BAD =EH AE=7√23263=7√226.8. B解:如图,过点A 作AF ⊥BC 于点F ,连接CD 交AF 于点G ,∵AB =AC ,BC =4,∴BF =CF =2,∵tanB =2,∴AFBF =2,即AF =4,∴AB =√22+42=2√5,∵D 为AB 的中点,∴BD =√5,G 是△ABC 的重心,∴GF =13AF =43,∴CG =√(43)2+22=2√133,∴CD =32CG =√13,∵点B 在⊙D 内,点C 在⊙D 外,∴√5<√13,<="" p="">9.D解:如图,作DK//BE交BC于K,交AC于H.∵四边形ABCD是矩形,∴∠ABC=90°,AD//BC,∴∠EAF=∠ACB,∵BE⊥AC,∴∠AFE=∠ABC=90°,∴△AEF∽△CAB,故A正确,∵BE//DK,∵DE//BK,∴四边形BEDK是平行四边形,∴DE=BK,∵AE=DE,AD=BC,∴BK=KC,∵KH//BF,∴CH=FH,∵AE=DE,EF//DH,∴AF=FH,∴CF=2AF,故B正确,∵FH=CH,DH⊥CF,∴DF=DC,故C正确,10.B解:作直径BE,连接CE,作CF⊥BE于点F.∵CF⊥BE,CD⊥AB又∵∠A=∠E,∴∠ECF=∠ACD.∵BE是直径,CF⊥BE,∴∠BCE=90°,∠EBC=∠ECF=∠ACD,∴sin∠EBC=sin∠ACD=2 3,∴CEBE =23,∵BE=12,∴CE=8,∴BC=√BE2?CE2=4√5.11.√22∵四边形ABCD是正方形,AB=1,∴BD=√AB2+AD2=√12+12=√2,∵BD绕着点B旋转后,点D落在CB的延长线上的D′点处,∴D′B=BD=√2,∴cot∠BAD′=ABD′B =√2=√22.12.45解:如图,过点B作BD⊥AC于D.∵AB=√32+42=5,在Rt△ABD中,cos∠BAC=ADAB =45,解:连接OC,作OH⊥AC于H,则CH=HA=12AC=√3,∵△ABC是正三角形,∴∠OCH=30°,∴OC=CHcos30=2,∴⊙O的面积为:4π.14.35解:如图,连接CD,∵AD是⊙O的直径,∴∠ACD=90°,且∠B=∠D,在Rt△ACD中,AD=5×2=10,AC=8,由勾股定理得CD=6,∴cosD=CDAD =610=35,∴cosB=cosD=35,解:∵CD⊥AB,∴∠B+∠BCD=90°;∵∠ACB=90°,∴∠B+∠A=90,∴∠A=∠BCD.在Rt△ABC中,tanA=BCAC,∴BC=AC?tanA=√6,∴AB=√AC2+BC2=3√2.16.(30+10√3)解:如图作BH⊥EF,CK⊥MN,垂足分别为H、K,则四边形BHCK是矩形,设CK=HB=x,∵∠CKA=90°,∠CAK=45°,∴∠CAK=∠ACK=45°,∴AK=CK=x,BK=HC=AK?AB=x?30,∴HD=x?30+10=x?20,在RT△BHD中,∵∠BHD=90°,∠HBD=30°,∴tan30°=HDHB,∴√33=x?20x,解得:x=30+10√3.故答案为(30+10√3)米.17.解:连接AB,∵∠AOB=90°,∴AB是直径,根据同弧对的圆周角相等得∠OBA=∠C=30°,∵OB=2√3,=2,AB=AO÷sin30°=4,即圆的半∴OA=OBtan∠ABO=OBtan30°=2√3×√33径为2,.π18.43解:如图,连接DF,OD,∵CF是⊙O的直径,∴∠CDF=90°,∵∠ADC=60°,∠A=90°,∴∠ACD=30°,∵CD平分∠ACB交AB于点D,∴∠DCF=30°,∵OC=OD,∴∠OCD=∠ODC=30°,∴∠COD=120°,在Rt△CAD中,CD=2AD=2√3,在Rt△FCD中,CF=CDcos30°=2√3√32=4,∴⊙O的半径=2,∴劣弧CD?的长19.解:(1)sin∠EAF=45,(2)如图所示:20.解:作AE⊥M′N′,设AB=x米,∵∠PAE=∠DAE,∴∠N′AD=∠M′AP=7.5°+30°= 37.5°,∴∠DAB=37.5°+7.5°=45°,∴在Rt△ABD中,DB=AB=x,又∵在Rt△ABC中,BC=AB?tan∠CAB=x?√33=√33x,∴x?√33x=10,解得,x=5(3+√3)≈23.7(米),答:平面镜放置点与墙面的距离AB是23.7米.21.(1)证明:∵AB=AC,∴∠B=∠ACB,∵AB,AC切⊙O于D,E,∴AD=AE,∴∠ADE=∠AED,∵2∠ADE+∠DAE=180°,2∠B+∠BAC=180°,∴∠ADE=∠B,∴DE//BC.(2)解:∵EH⊥BC,DE//BC,∴EH⊥DE,∴DG是⊙O的直径,∵CF,CE是⊙O的切线,CF=CE,∠DCF=∠DCE,∵∠EDC=∠DCF,∴∠EDC=∠ECD,∴DE=EC=CF,同法可证:BD=BF=CE=DE,∵DE//BC,DE=12BC,∴DE是△ABC的中位线,∴AD=BD=BF=CF,∴AB=AC=BC,∴△ABC是等边三角形,∴∠ACB=60°,∴∠ECG=∠CEG=∠EDC=30°,∴GE=GC,设GE=GC=m,则DG=2m,CD=3m,AD=√3m,∴AG=√AD2+DG2=√(√3m)2+(2m)2=√7m,∴sin∠DAG=DGAG =√72.。
2024年数学九年级三角函数专项练习题1(含答案)
2024年数学九年级三角函数专项练习题1(含答案)试题部分一、选择题:1. 已知角A是锐角,sinA = 3/5,则cosA的值为()A. 4/5B. 3/4C. 4/3D. 2/32. 在直角三角形ABC中,∠C=90°,若sinA = cosB,则∠A的度数是()A. 30°B. 45°C. 60°D. 90°3. 下列函数中,最小正周期为π的是()A. y = sin2xB. y = cos3xC. y = tanxD. y = cot2x4. 若0°<α<90°,则下列各式中正确的是()A. sinα<cosαB. tanα<cotαC. sinα<tanαD. cosα<tanα5. 已知0°<θ<90°,且sinθ = √3/2,则cosθ的值为()A. 1/2B. √3/2C. 1/√2D. 1/√36. 在直角坐标系中,点P(2,√3)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 已知sinα = 1/2,则cosα的值可能是()A. √3/2B. √3/2C. 1/2D. 1/28. 若0°<θ<90°,且tanθ = 1,则sinθ的值为()A. 1B. 1/√2C. √2/2D. √3/29. 在直角三角形中,若一个锐角的正弦值等于另一个锐角的余弦值,则这两个角的度数之和为()A. 45°B. 90°C. 135°D. 180°10. 已知sinα = cos(90° α),则α的取值范围是()A. 0°<α<45°B. 45°<α<90°C. 90°<α<135°D. 135°<α<180°二、判断题:1. 在直角三角形中,锐角的正弦值随着角度的增大而增大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013—2014初四数学第一次阶段性检测试题
一、选择(每小题3分,共30分)
1、在Rt △ABC 中,∠C=90°,AC=3,BC=4,那么cosB 的值是( ) A.4/5 B.3/5 C.3/4 D.4/3
2、在Rt △ABC 中,如果各边长度都扩大为原来的2倍,那么锐角A 的正弦值( )A.扩大2倍 B.缩小2倍 C.扩大4倍 D.没有变化
3、等腰三角形的底角为30
°,底边长为 ) A .4 B
. C .2 D
.4、如图1,在菱形ABCD 中,∠ABC =60°,AC =4,则BD 长为( ) A
. B
. C
. D .8 5、在△ABC 中,∠C =90°,下列式子一定能成立的是( ) A .sin a c B = B .cos a b B = C .tan c a B = D .tan a b A =
6、△ABC 中,∠A ,∠B
均为锐角,且有2
|tan 2sin 0B A +=(, 则△ABC 是( )
A .直角(不等腰)三角形
B .等腰直角三角形
C .等腰(不等边)三角形
D .等边三角形
7、已知tan 1α=,那么2sin cos 2sin cos αα
αα
-+的值等于( )
A .13
B .12
C .1
D .16
8、如图2,沿AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工.从AC 上的一点B ,取∠ABD =145°,BD =500米,∠D =55°,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( )
A .500sin55°米
B .500cos55°米
C .500tan55°米
D .500tan35°米
9、如图3,在矩形ABCD 中,D E ⊥AC ,垂足为E ,设∠ADE =α,且cos α=3
5
,
AB =4, 则AD 的长为( )
A .3
B .163
C .203
D .16
5
10、如图4,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于( )
A .1
B
C
D
二、填空(把答案填放相应的空格里。
每小题4分,共32分)。
11.等腰直角三角形的一个锐角的余弦值等于( ) 12、在△ABC 中,∠C =90°,sinA=3
5
,cosA=( )
13、比较下列三角函数值的大小:sin400 sin500 14、化简:
sin 30tan 60sin 60︒
-︒=︒
( ) 15、对于函数y= ,自变量x 的取值范围是( ) 16、小芳为了测量旗杆高度,在距棋杆底部6米处测得顶端的仰角是600,小芳的身高不计,则旗杆高 米。
17、在ABC ∆中,若90C ∠=︒,1
sin 2
A =
,2AB =,则ABC ∆的周长为( ) 18、二次函数y=-x 2的图象经过点p (-6,m ),则m=( ) 三、计算题(每题5分,共20分).
19.︒-︒45sin 260cos 2
1
20.︒⋅︒-︒30tan 60tan 45cos 22
C
B
A
20cm
30cm
9.︒-︒45sin 260cos 2
1
10.︒⋅︒-︒30tan 60tan 45cos 22
四、解答题:
21、(8分)如图,在300m 高的峭壁上测得塔顶与 塔基的俯角分别为30°和60°,求塔高多少米?
22.(8分)如图,小红同学用仪器测量一棵大树AB 的高度,在C 处测得∠ADG=30°,在E 处测得∠AFG=60°,CE=8米,仪器高度CD=1.5米,求这棵树AB 的高度(结果保留两位有效数字,≈1.732).
10.(10分)如图,苏州某公园入口处原有三阶台阶,每级台阶高为20cm ,深为30cm .为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现将斜坡的坡角∠BCA 设计为12°,求AC 的长度.(精确到1cm )
7.(12分)如图所示,在边长为正方形ABCD 的边上有一个动点P ,点P 由点A (起点)出发,沿着折线ABCD 向点D (终点)移动,设点P 移动的路程为x ,以点D,A,P 为顶点的△DAP 的面积为S ,试求出S 与x 之间的关系式。