带电粒子在电场中运动

合集下载

高考物理带电粒子在电场中的运动

高考物理带电粒子在电场中的运动

带电粒子在电场中的运动1.研究带电粒子在电场中运动的方法带电粒子在电场中的运动,是一个综合电场力、电势能的力学问题,研究的方法与质点动力学相同,它同样遵循运动的合成与分解、牛顿运动定律、动量定理、动能定理等力学规律,处理问题的要点是要注意区分不同的物理过程,弄清在不同的物理过程中物体的受力情况及运动性质,并选用相应的物理规律,在解题时,主要可以选用下面两种方法.(1)力和运动关系——牛顿第二定律:根据带电粒子受到电场力,用牛顿第二定律找出加速度,结合运动学公式确定带电粒子的速度、位移等.这种方法通常适用于受恒力作用下做匀变速运动的情况.(2)功和能的关系——动能定理:根据电场力对带电粒子所做的功,引起带电粒子的能量发生变化,利用动能定理研究全过程中能量的转化,研究带电粒子的速度变化、经历的位移等.这种方法同样也适用于不均匀的电场.注意事项:带电粒子的重力是否忽略的问题是否考虑带电粒子的重力要根据具体情况而定,一般说来:(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外一般都不考虑重力(但并不忽略质量).(2)带电粒子:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力,2. 带电粒子的加速(1)运动状态分析:带电粒子沿平行电场线的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做匀加(减)速直线运动.(2)用功能观点分析:粒子动能的变化量等于电场力做的功(电场可以是匀强电场或非匀强电场).若粒子的初速度为零,则:mqU v qU mv 2,212==若粒子的初速度不为零,则:mqU v v qU mv mv 2,212120202+==-例1.(多选)如图所示,在P 板附近有一质子由静止开始向Q 板运动,则关于质子在两板间的运动情况,下列叙述正确的是( ) A.两板间距越大,加速的时间越长B.两板间距越小,加速度就越大,质子到达Q 板时的 速度就越大C.质子到达Q 板时的速度与板间距离无关,与板间 电压U 有关D.质子的加速度和末速度都与板间距离无关例2.如图甲所示平行板电容器A 、B 两板上加上如图乙所示的交变电压,开始B 板的电势比A 板高,这时两板中间原来静止的电子在电场力作用下开始运动,设电子在运动中不与极板发生碰撞,则下述说法正确的是(不计电子重力)( ) A.电子先向A 板运动,然后向B 板运 动,再返回A 板做周期性来回运动 B.电子一直向A 板运动 C.电子一直向B 板运动D.电子先向B 板运动,然后向A 板运 动,再返回B 板做周期性来回运动3. 带电粒子在匀强电场中的偏转(不考虑重力作用)(1)运动状态分析:带电粒子以速度0v 垂直于电场线方向飞入匀强电场时,受到恒定的与初速度方向成90°角的电场力作用而做匀变速曲线运动. (2)偏转问题的分析处理方法类似于平抛运动的分析处理,应用运动的合成和分解的方法:沿初速度方向为匀速直线运动,运动时间:0/v l t =沿电场力方向为初速度为零的匀加速直线运动:md qU m Eq m F a ///===离开电场时的偏移量:d mv qUl at y 2022221== 离开电场时的偏转角:dmv qUlv at v v y 2000tan ===θ(U 为偏转电压)(3)推论:推论①粒子从偏转电场中射出时,其速度反向延长线与初速度方向交于一 点,此点平分沿初速度方向的位移.推论②以相同的初速度0v 进入同一偏转电场的带电粒子,不论m 、q 是否相同,只要q/m 相同,即荷质比相间,则偏转距离y 和偏转角θ都相同.推论③若以相同的初动能0k E 进入同一偏转电场,只要q 相同,不论m 是否相同,则偏转距离y 和偏转角θ都相同.推论④若以相同的初动量0p 进人同一偏转电场,不论m 、q 是否相同,只要mq 相同,即质量与电荷量的乘积相同,则偏转距离y 和偏转角θ都相同. 推论①可根据类平抛直接得到结论,这里我们给出后几个推论的证明d p Ul mq d v m mqUl d E Ul q d mv Ul q d Ul v m q d mv qUl y k ⋅⋅==⋅⋅=⋅⋅⋅=⋅⋅⋅==222022220222020222421412120 dp Ulmq d v m mqUl d E Ul q d mv Ul q d Ul v m q d mv qUl k ⋅⋅==⋅⋅=⋅⋅⋅=⋅⋅==2202202020022121tan θ 推论⑤不同的带电粒子由静止经同一加速电场加速后(即加速电压1U 相同),进人同一偏转电场2U ,则偏转距离y 和偏转角θ相同,但这里必须注意,粒子必须是静止开始加速,只有这样120210qU mv E k ==带入上面的式子得: d U l U d qU l qU d E l qU y k 122122224440=== d U lU d qU l qU d E l qU k 12122222tan 0===θ(4)如果对于一些带电粒子在不能忽略重力时,则上面的推导公式无法使用,这时可以先求出合外力得到加速度(一般是重力与电场力的合力产生偏转加速度),结合类平抛规律特点处理问题,本质上与上面的问题是相同的(5)带电粒于能否飞出偏转电场的条件及求解方法带电粒子能否飞出偏转电场,关键看带电粒子在电场中的侧移量y.如质量为m 、电荷量为q 的带电粒子沿中线以0v 垂直射入板长为l 、板间距为d 的匀强电场中,要使粒子飞出电场,则应满足:0v l t =时,2dy ≤;若当0v l t =时,2dy >,则粒子打在板上,不能飞出电场. 由此可见,这类问题的分析方法及求解关键是抓住“刚好”射出(或不射出)这一临界状态(即2dy =)分析求解即可.(6)矩形波电压问题的处理对于这类问题一般先根据粒子的受力特点,找到加速度变化规律,进而作出在加速度方向上运动的v —t 图像,通过图像特点分析计算位移变化,可将问题的处理大大简化例3.(多选)如图所示,一个质量为m 带电荷量为q 的粒子(重力不计),从两平行板左侧中点沿垂直场强方向射入,当人射速度为v 时,恰好穿过电场而不碰金属板。

带电粒子在电场中的运动笔记

带电粒子在电场中的运动笔记

带电粒子在电场中的运动笔记摘要:一、带电粒子在电场中的运动规律1.匀强电场中的运动2.非匀强电场中的运动二、带电粒子在电场中的受力分析1.电场力的作用2.重力的影响三、带电粒子在电场中的运动实例1.匀变速直线运动2.类平抛运动3.平衡状态正文:一、带电粒子在电场中的运动规律带电粒子在电场中的运动规律取决于电场强度和粒子的初速度。

在匀强电场中,带电粒子受到的电场力是恒力,因此其运动状态是匀变速运动。

具体来说,当带电粒子的初速度与电场强度方向相同时,粒子将做匀变速直线运动;当带电粒子的初速度与电场强度方向垂直时,粒子将做类平抛运动。

在非匀强电场中,带电粒子受到的电场力是变力,因此其运动状态是变加速运动。

此时,带电粒子的运动轨迹可能呈现出曲线,具体取决于电场强度的分布情况。

二、带电粒子在电场中的受力分析在电场中,带电粒子受到的主要力是电场力。

电场力的大小与粒子的电荷量、电场强度以及粒子与电场之间的夹角有关。

另外,如果带电粒子在地球表面附近运动,还需要考虑重力的影响。

三、带电粒子在电场中的运动实例在匀强电场中,带电粒子可能做匀变速直线运动或类平抛运动。

例如,当一个带正电的粒子在垂直于电场方向的初速度为零时,其在匀强电场中将做直线运动;而当其初速度与电场方向不垂直时,粒子将做类平抛运动。

在非匀强电场中,带电粒子的运动轨迹可能呈现出曲线。

例如,在示波管中,带电粒子在非匀强电场中运动时,其轨迹可能呈现出复杂的波形。

总之,带电粒子在电场中的运动规律取决于电场强度和粒子的初速度。

在匀强电场中,带电粒子可能做匀变速直线运动或类平抛运动;在非匀强电场中,带电粒子的运动轨迹可能呈现出曲线。

高中物理精品课件: 带电粒子在电场中的运动

高中物理精品课件: 带电粒子在电场中的运动
圆环的中点),轨道的水平部分与半圆环相切于C点,D为水平轨道上的
一点,而且CD=2R,把一质量m=100 g、带电荷量q=10-4 C的带负
电小球,放在水平轨道的D点,由静止释放后,在轨道的内侧运动.g
=10 m/s2,则:
(1)小球到达B点时的速度是多大?
(2)小球到达B点时对轨道的压力是多大?
解析:(1)小球从 D 至 B 的过程中,由动能定理:
v

0

0
=

02
=
02 + 2
tan 2 tan
如图所示,有一带电粒子贴着A板沿水平方向射入匀强电场,当
偏转电压为U1时,带电粒子沿①轨迹从两板正中间飞出;当偏转
电压为U2时,带电粒子沿②轨迹落到B板中间;设粒子两次射入电
场的水平速度相同,则两次偏转电压之比为( A )
偏转距离 y= at ④
2
d
能飞出的条件为 y≤ ⑤
2
2Ud2
联立①~⑤式解得 U′≤ 2 =4.0×102 V
l
即要使电子能飞出,所加电压最大为 400 V.
[答案]
400 V
如图所示为真空示波管的示意图,电子从灯丝K发出(初速度不计),经
灯丝与A板间的加速电压U1加速,从A板中心孔沿中心线KO射出,然后进
双光子医用直线加速
器是用于癌症放射治
疗的大型医疗设备,
它通过产生X射线和
电子线,对病人体内
的肿瘤进行直接照射,
从而达到消除或减小
肿瘤的目的。
一、带电粒子的加速
+
+q
++
m
+ +
V0=0

带电粒子在电场中的运动

带电粒子在电场中的运动

2 mv = qU第一章9带电粒子在电场中的运动带电粒子在电场中受到静电力的作用,因此要产生加速度,速度的大小和方向都可能 发生变化。

对于质量很小的带电粒子,如电子、质子等,虽然它们也会受到万有引力(重 力)的作用,但万有引力(重力)一般远小于静电力,可以忽略。

在现代科学实验和技术设备中,常常利用电场来改变或控制带电粒子的运动。

利用电 场使带电粒子加速、利用电场使带电粒子偏转,就是两种最简单的情况。

带电粒子的加速如图1.9-1所示,在真空中有一对平行金属板,由于接上电池组而带电,两板间的电 势差为U 。

若一个质量为 m ,带正电荷q 的粒子,在静电力的作用下由静止开始从正极板 向负极板运动,计算它到达负极板时的速度。

在带电粒子的运动过程中,静电力对它做的功是W = qU设带电粒子到达负极板时的速率为 v ,其动能可以写为2 mv由动能定理可知于是求出思考与讨论 上述问题中,两块金属板是平行的,两板间的电场是匀强电场。

如果两极板是其他形 状,中间的电场不再均匀,上面的结果是否仍然适用?为什么?【例题1】炽热的金属丝可以发射电子。

在金属丝和金属板之间加以电压U = 2 500 V(图1.9-2),发射出的电子在真空中加速后,从金属板的小孔穿出。

电子穿出时的速度有图1.9-1 计算粒子到达另一个极板时的速度2qU v = mv= ,2eU 2X 1.6 X 10-19X 2500\ 0.9 X 10-30=3.0 X 107 m/s电子的质量多大?设电子刚刚离开金属丝时的速度为零。

H >1图1.9-2 带电粒子的加速。

电池E用来给金属丝加热【解】电荷量为e的电子从金属丝移动到金属板,两处的电势差为U,电势能的减少量是eU。

减少的电势能全部转化为电子的动能,所以1 mv2= eU解出速度v并把数值代入,得m= 0.9X 10-30 kg和电子的电荷量e= 1.6 X 10-19 C可以作为已知数据使用。

高中物理电容公式带电粒子在电场中的运动

高中物理电容公式带电粒子在电场中的运动

高中物理电容公式带电粒子在电场中的运动
下面是高中物理电容器常见公式,以及带电粒子在电场中的运动问题
1、带电粒子在电场中的加速公式是):
W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 其中(Vo=0)
2、带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏
转(不考虑重力作用的情况下)
在垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
在平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
带电小球接触后,电量分配3、两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
常见电场的电场线分布要求熟记〔[第二册P98];
电容单位换算:1F=106μF=1012PF;
电子伏(eV)是能量的单位,1eV=1.60×10-19J;。

带电粒子在电场中的运动

带电粒子在电场中的运动

第15课时 带电粒子在电场中的运动:偏转问题一、知识内容:1、受力:不计重力,只受电场力。

2、运动性质:(类平抛运动)水平方向:不受力-----匀速直线运动;竖直方向:受电场力(恒力)----初速为0的匀加速;3、规律:(记住推导过程)电场中运动时间:0v l t =; 加速度:md qU m qE m F a ===; 侧向位移:dmv qUl v l md qU at y 2022022)(2121===; 侧向速度:dmv qUl v l md qU at v y 00=⨯==; 出电场速度:220y v v v +=; 速度偏向角θ:dmv qUl v v y200tan ==θ;从进电场到出电场:y qE W ⨯=电; 4、推论:(1)粒子出电场时v 方向的反向延长线过水平线的中点: xy v v y==0tan θ; 2l x =∴; (2)不论何种粒子,经同一加速电场和同一偏转电场后偏转情况相同(θ,y 相同),打 在屏上同一点。

d U l U d mv l qU at y 122202224221===; d U l U d mv l qU 1220222tan ==θ; 二、例题分析:【例1】如图所示,有三个质量相等,分别带正电、带负电和不带电的小球,从平行板电场的中点以相同的初速度垂直于电场方向进入电场,它们分别落在A 、B 、C 三点,可以判断( )A .落在A 点的小球带正电,落在B 点的小球不带电B .三个小球在电场中运动的时间相等C .三个小球到达极板时的动能关系为E kA >E kB >E kCD .三个小球在电场中运动时的加速度关系为a A >a B >a C【例2】如图,电子在电势差为U 1的加速电场中由静止开始运动,然后射入电势差为U 2的两块平行金属板间的电场中,射入方向与极板平行,整个装置处于真空中,重力不计,在满足电子射出的条件下,一定能使电子的偏转角θ变大的是:( )A 、U 1变大,U 2变大;B 、U 1变小,U 2变大;C 、U 1变大,U 2变小;D 、U 1变小,U 2变小【例3】两平行金属板水平放置,相距为d ,离板右端相距板长处放一挡板,高度等于d ,与板等高,与挡板相距板长处有一竖直长屏,一群正负粒子以不同初速沿极板中线水平射入,求:屏上发光的长度?三、课堂练习:1、如图所示,一电子枪发射出的电子(初速度很小,可视为零)进入加速电场加速后,垂直射入偏转电场,射出后偏转位移为y ,要使偏转位移增大,下列哪些措施是可行的( )A .增大偏转电压UB .减小加速电压U 0C .增大极板间距离D .将发射电子改成发射负离子2、一平行板电容器中存在匀强电场,电场沿竖直方向.两个比荷(即粒子的电荷量与质量之比)不同的带正电的粒子a 和b ,从电容器边缘的P点(如图所示)以相同的水平速度射入两平行板之间.测得a 和b 与电容器极板的撞击点到入射点之间的水平距离之比为1∶2.若不计重力,则a 和b 的比荷之比是( )A .1∶2B .1∶8C .2∶1D .4∶13、真空中的某装置如图所示,其中平行金属板A 、B 之间有加速电场,C 、D 之间有偏转 电场,M 为荧光屏.今有质子、氘核和α粒子均由A 板从静止开始被加速电场加速后垂 直于电场方向进入偏转电场,最后打在荧光屏上.已知质子、氘核和α粒子的质量之比 为1∶2∶4,电荷量之比为1∶1∶2,则下列判断中正确的是( )A .三种粒子从B 板运动到荧光屏经历的时间相同B .三种粒子打到荧光屏上的位置相同C .偏转电场的电场力对三种粒子做功之比为1∶2∶2D .偏转电场的电场力对三种粒子做功之比为1∶2∶44、如图所示,质量相同的两个带电粒子P 、Q 以相同的速度沿垂直于电场方向射入两平行板间的匀强电场中,P 从两极板正中央射入,Q 从下极板边缘处射入,它们最后打在同一点(重力不计),则从开始射入到打到上极板的过程中( )A .它们运动的时间t Q >t PB .它们运动的加速度a Q <a PC .它们所带的电荷量之比q P ∶q Q =1∶2D .它们的动能增加量之比ΔE kP ∶ΔE kQ =1∶25、如图所示,带电的粒子以一定的初速度v 0沿两板的中线进入水平放置的平行金属板内, 恰好沿下板的边缘飞出,已知板长为L ,板间距离为d ,板间电压为U ,带电粒子的电 荷量为q ,粒子通过平行金属板的时间为t(不计粒子的重力),则( )A .在前t 2时间内,电场力对粒子做的功为Uq 4B .在后t 2时间内,电场力对粒子做的功为38Uq C .在粒子下落前d 4和后d 4的过程中,电场力做功之比为1∶2 D .在粒子下落前d 4和后d 4的过程中,电场力做功之比为2∶16、如图所示,A 板发出的电子经加速后,水平射入水平放置的两平行金属板间,金属板间所加的电压为U ,电子最终打在光屏P 上,关于电子的运动,则下列说法中正确的是:( )A .滑动触头向右移动时,其他不变,则电子打在荧光屏上的位置上升B .滑动触头向左移动时,其他不变,则电子打在荧光屏上的位置上升C .电压U 增大时,其他不变,则电子打在荧光屏上的速度大小不变D .电压U 增大时,其他不变,则电子从发出到打在荧光屏上的时间不变第15课时带电粒子在电场中的运动:偏转问题参考答案【例1】:A【例2】:B5;【例3】:上下发光长度相等:d3课堂练习:题号 1 2 3 4 5 6答案AB D B C B BD。

专题1.9 带电粒子在电场中的运动

专题1.9 带电粒子在电场中的运动

第一章静电场第9节 带电粒子在电场中的运动一、带电粒子在电场中运动时是否考虑重力1.基本粒子:如电子、质子、离子、α粒子等在没有明确指出或暗示的情况下重力一般忽略不计。

2.带电颗粒:如油滴、液滴、尘埃、带电小球等在没有明确指出或暗示的情况下重力一般不能忽略。

二、带电粒子在电场中的加速运动带电粒子沿与电场线平行的方向进入电场,带电粒子将做 运动。

有两种分析方法:用动力学的观点分析, , , 。

用功能的观点分析:粒子只受电场力作用,电场力做的功等于物体动能的变化, 。

三、带电粒子在匀强电场中的偏转1.研究条件:带电粒子 电场的方向进入匀强电场。

2.处理方法:类似于平抛运动,应用运动的 解题。

(1)沿初速度的方向做 。

(2)沿电场力的方向,做 。

2220200122tan =y F qE qU a m m md qUl y at mdv v qUl v mdv θ⎧⎪===⎪⎪⎪==⎨⎪⎪⎪=⎪⎩离开电场时偏移的距离:离开电场加速度: 时的偏转角度:结论:结论:(1)粒子以一定的速度v0垂直射入偏转电场。

粒子从偏转电场中射出时,就像是从极板间的1 2 l处沿直线射出的。

(2)经过相同的加速电场,又经过相同的偏转电场的带电粒子,其运动轨迹重合,与粒子的带电荷量和质量无关。

四、带电粒子在电场中运动的实际应用——示波管1.构造及功能(如图所示)(1)电子枪:发射并加速电子。

(2)偏转电极Y、Y′:使电子束(加信号电压);偏转电极X、X′:使电子束水平偏转(加)。

2.工作原理偏转电极X、X′和Y、Y′不加电压,电子打到屏幕的;若只在X、X′之间加电压,只在方向偏转;若只在Y、Y′之间加电压,只在方向偏转;若X、X′加扫描电压,Y、Y′加信号电压,屏上会出现随信号而变化的图象。

加(减)速qEam=UEd=222v v ad-=221122qU mv mv=-垂直于合成与分解匀速直线运动匀加速直线运动竖直偏转扫描电压中心X Y一、带电粒子在交变电场中的运动1.带电粒子在交变电场中的运动,通常只讨论电压的大小不变、方向做周期性变化(如方波)且不计粒子重力的情形。

带电粒子在电场中的运动

带电粒子在电场中的运动

带电粒子在电场中的运动
带电粒子在匀强电场中运动时,若初速度与场强方向平行,它的运动是匀加速直线运动,其加速度大小为。

若初速度与场强方向成某一角度,它的运动是类似于物体在重力场中的斜抛运动。

若初速度与场强方向垂直,它的运动是类似于物体在重力场中的平抛运动,是x 轴方向的匀速直线运动和y 轴方向的初速度为零的匀加速直线运动的叠加,在任一时刻,x 轴方向和y 轴方向的速度分别为
位置坐标分别为
从上两式中消去t,得带电粒子在电场中的轨迹方程
若带电粒子在离开匀强电场区域时,它在x轴方向移动了距离l,它在y轴方向偏移的距离为
这个偏移距离h与场强E成正比,因此只要转变电场强度的大小,就可以调整偏移距离。

带电粒子进入无电场区域后,将在与原来运动方向偏离某一角度的方向作匀速直线运动。

可知

所以偏转角为
示波管中,就是利用上下、左右两对平行板(偏转电极)产生的匀强电场,使阴极射出的电子发生上下、左右偏转。

转变平行板间的电压,就能转变平行板间的场强,使电子的运动发生相应的变化,从而转变荧光屏上亮点的位置。

带电粒子在电场中的运动(含解析)

带电粒子在电场中的运动(含解析)

带电粒子在电场中的运动一、带电粒子在电场中的直线运动1.做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动.(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动.2.用动力学观点分析a =qE m ,E =U d,v 2-v 02=2ad . 3.用功能观点分析匀强电场中:W =Eqd =qU =12mv 2-12mv 02 非匀强电场中:W =qU =E k2-E k1●带电粒子在匀强电场中的直线运动【例1】如图所示,三块平行放置的带电金属薄板A 、B 、C 中央各有一小孔,小孔分别位于O 、M 、P 点.由O 点静止释放的电子恰好能运动到P 点.现将C 板向右平移到P ′点,则由O 点静止释放的电子( )图6A .运动到P 点返回B .运动到P 和P ′点之间返回C .运动到P ′点返回D .穿过P ′点【答案】A【解析】根据平行板电容器的电容的决定式C = εr S 4πkd 、定义式C =Q U和匀强电场的电压与电场强度的关系式U =Ed 可得E = 4πkQ εr S,可知将C 板向右平移到P ′点,B 、C 两板间的电场强度不变,由O 点静止释放的电子仍然可以运动到P 点,并且会原路返回,故选项A 正确.【变式1】 两平行金属板相距为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射入,最远到达A 点,然后返回,如图所示,OA =h ,此电子具有的初动能是( )A.edh U B .edUh C.eU dh D.eUh d【答案】D【解析】由动能定理得:-e U d h =-E k ,所以E k =eUh d,故D 正确. 二、带电粒子在交变电场中的直线运动【例2】 匀强电场的电场强度E 随时间t 变化的图象如图所示.当t =0时,在此匀强电场中由静止释放一个带电粒子(带正电),设带电粒子只受电场力的作用,则下列说法中正确的是( )A .带电粒子将始终向同一个方向运动B .2 s 末带电粒子回到原出发点C .3 s 末带电粒子的速度不为零D .0~3 s 内,电场力做的总功为零【答案】D【解析】由牛顿第二定律可知带电粒子在第1 s 内的加速度和第2 s 内的加速度的关系,因此粒子将先加速1 s 再减速0.5 s ,速度为零,接下来的0.5 s 将反向加速……,v -t 图象如图所示,根据图象可知选项A 错误;由图象可知前2 s 内的位移为负,故选项B 错误;由图象可知3 s 末带电粒子的速度为零,故选项C 错误;由动能定理结合图象可知0~3 s 内,电场力做的总功为零,故选项D 正确.●带电粒子在电场力和重力作用下的直线运动问题【例3】如图所示,在竖直放置间距为d 的平行板电容器中,存在电场强度为E 的匀强电场.有一质量为m 、电荷量为+q 的点电荷从两极板正中间处静止释放.重力加速度为g .则点电荷运动到负极板的过程( )A .加速度大小为a =Eq m+g B .所需的时间为t =dm Eq C .下降的高度为y =d 2D .电场力所做的功为W =Eqd 【答案】B【解析】点电荷受到重力、电场力的作用,所以a =(Eq )2+(mg )2m ,选项A 错误;根据运动独立性,水平方向点电荷的运动时间为t ,则d 2=12Eq mt 2,解得t =md Eq ,选项B 正确;下降高度y =12gt 2=mgd 2Eq,选项C 错误;电场力做功W =Eqd 2,选项D 错误. 【例4】如图所示,一带电液滴在重力和匀强电场对它的作用力作用下,从静止开始由b 沿直线运动到d ,且bd 与竖直方向所夹的锐角为45°,则下列结论不正确的是( )A .此液滴带负电B .液滴的加速度大小为2gC .合力对液滴做的总功等于零D .液滴的电势能减少【答案】C【解析】带电液滴由静止开始沿bd 做直线运动,所受的合力方向必定沿bd 直线,液滴受力情况如图所示,电场力方向水平向右,与电场方向相反,所以此液滴带负电,故选项A 正确;由图知液滴所受的合力F =2mg ,其加速度为a =F m =2g ,故选项B 正确;因为合力的方向与运动的方向相同,故合力对液滴做正功,故选项C 错误;由于电场力所做的功W 电=Eqx bd sin 45°>0,故电场力对液滴做正功,液滴的电势能减少,故选项D 正确.三、带电粒子在电场中的偏转1.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:由qU 0=12mv 02 y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1l mdv 02得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l 2. 2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 02,其中U y =U dy ,指初、末位置间的电势差.【例5】 质谱仪可对离子进行分析.如图所示,在真空状态下,脉冲阀P 喷出微量气体,经激光照射产生电荷量为q 、质量为m 的正离子,自a 板小孔进入a 、b 间的加速电场,从b 板小孔射出,沿中线方向进入M 、N 板间的偏转控制区,到达探测器(可上下移动).已知a 、b 板间距为d ,极板M 、N 的长度和间距均为L ,a 、b 间的电压为U 1,M 、N 间的电压为U 2.不计离子重力及进入a 板时的初速度.求:(1)离子从b 板小孔射出时的速度大小;(2)离子自a 板小孔进入加速电场至离子到达探测器的全部飞行时间;(3)为保证离子不打在极板上,U 2与U 1应满足的关系.【答案】 (1)2qU 1m (2)(2d +L )m 2qU 1(3) U 2<2U 1 【解析】(1)由动能定理qU 1=12mv 2,得v =2qU 1m (2)离子在a 、b 间的加速度a 1=qU 1md 在a 、b 间运动的时间t 1=v a 1=2m qU 1·d 在MN 间运动的时间:t 2=Lv =L m 2qU 1离子到达探测器的时间:t =t 1+t 2=(2d +L )m 2qU 1; (3)在MN 间侧移:y =12a 2t 22=qU 2L 22mLv 2=U 2L 4U 1由y <L2,得 U 2<2U 1. 【变式2】 如图所示,电荷量之比为q A ∶q B =1∶3的带电粒子A 、B 以相同的速度v 0从同一点出发,沿着跟电场强度垂直的方向射入平行板电容器中,分别打在C 、D 点,若OC =CD ,忽略粒子重力的影响,则下列说法不正确的是( )A .A 和B 在电场中运动的时间之比为1∶2B .A 和B 运动的加速度大小之比为4∶1C .A 和B 的质量之比为1∶12D .A 和B 的位移大小之比为1∶1【答案】D【解析】粒子A 和B 在匀强电场中做类平抛运动,水平方向由x =v 0t 及OC =CD 得,t A ∶t B =1∶2;竖直方向由h =12at 2得a =2h t 2,它们沿竖直方向运动的加速度大小之比为a A ∶a B =4∶1;根据a =qE m 得m =qE a ,故m A m B =112,A 和B 的位移大小不相等,故选项A 、B 、C 正确,D 错误.【变式3】 如图所示,喷墨打印机中的墨滴在进入偏转电场之前会带上一定量的电荷,在电场的作用下带电荷的墨滴发生偏转到达纸上.已知两偏转极板长度L =1.5×10-2 m ,两极板间电场强度E =1.2×106 N/C ,墨滴的质量m =1.0×10-13 kg ,电荷量q =1.0×10-16 C ,墨滴在进入电场前的速度v 0=15 m/s ,方向与两极板平行.不计空气阻力和墨滴重力,假设偏转电场只局限在平行极板内部,忽略边缘电场的影响.(1)判断墨滴带正电荷还是负电荷?(2)求墨滴在两极板之间运动的时间;(3)求墨滴离开电场时在竖直方向上的位移大小y .【答案】(1)负电荷 (2)1.0×10-3 s (3)6.0×10-4 m【解析】(1)负电荷.(2)墨滴在水平方向做匀速直线运动,那么墨滴在两板之间运动的时间t =L v 0.代入数据可得:t =1.0×10-3 s(3)离开电场前墨滴在竖直方向做初速度为零的匀加速直线运动,a =Eq m代入数据可得:a =1.2×103 m/s 2离开偏转电场时在竖直方向的位移y =12at 2 代入数据可得:y =6.0×10-4 m.。

带电粒子在电场中的运动知识点

带电粒子在电场中的运动知识点

带电粒子在电场中的运动知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN(一)带电粒子的加速1.运动状态分析带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做加速(或减速)直线运动。

2.用功能观点分析粒子动能的变化量等于电场力做的功。

(1)若粒子的初速度为零,则qU=mv 2/2, V=2qU m (2)若粒子的初速度不为零,则qU=mv 2/2- mv 02/2, V=202qU V m+ (二)带电粒子的偏转(限于匀强电场)1.运动状态分析:带电粒子以速度V 0垂直电场线方向飞入匀强电场时,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动。

2.偏转问题的分析处理方法:类似平抛运动的分析处理,应用运动的合成和分解知识分析处理。

(1)垂直电场方向的分运动为匀速直线运动:t=L/V 0;v x =v 0 ;x=v 0t(2)平行于电场方向是初速为零的匀加速运动:v y =at ,y=12 at 2经时间t 的偏转位移:y=qU 2md (x V 0 )2; 粒子在t 时刻的速度:Vt=V 02+V y 2 ;时间相等是两个分运动联系桥梁;偏转角:tg φ=V y V 0 =qUx mdv 02 (三)先加速后偏转若带电粒子先经加速电场(电压U 加)加速,又进入偏转电场(电压U 偏),射出偏转电场时的侧移22222012244qU L qU L U L y at dmV dqU dU ====偏偏偏加加偏转角:tg φ=V y V 0 =U 偏L 2U 加d带电粒子的侧移量和偏转角都与质量m 、带电量q 无关。

(四)示波管原理1.构造及功能如图8-5所示图8-2(1)电子枪:发射并加速电子.(2)偏转电极YY':使电子束竖直偏转(加信号电压)偏转电极XX':使电子束水平偏转(加扫描电压)(3)荧光屏.2.原理:○1YY'作用:被电子枪加速的电子在YY'电场中做匀变速曲线运动,出电场后做匀速直线运动打到荧光屏上,由几何知识'22L l y Ly +=,可以导出偏移20'()tan ()22L ql L y l l U mV d θ=+=+。

带电粒子在电场中的运动

带电粒子在电场中的运动

图所示. A、B两板中心开孔,在A板的开
孔上搁有一金属容器P且与A板接触良好,
其内盛有导电液体.A板通过闭合的电键
P
与电池的正极相连,B板与电池的负极相 A
连并接地,电池提供A、B两极板电压为 U0,容器P内的液体在底部小孔O处形成
U0
O h
质量为m,带电量为q的液滴后自由下落, S
穿过B板的开孔O`落在D板上,其电荷被D B 板吸咐,液体随即蒸发,接着容器顶部又形
⑶穿越电场过程的动能增量:
ΔEK=Eqy
典型讲解
❖ 例题1:如图所示,热电子由阴极飞出时的初速忽
略不计,电子发射装置的加速电压为U0。电容
器板长和板间距离均为L=10cm,下极板接地。
电容器右端到荧光屏的距离也是L=10cm。在电
❖ 容器两 极板间接一交变电压,
上极板的电势随时间变化的图象
Hale Waihona Puke 如左图。(每个电子穿过平行板
带电粒子在电场中的运动
河北省景县中学 ——张书州
基本内容
❖ 一、带电粒子(微粒)在电场中的直线加速 问题
❖ 二、带电粒子(微粒)在电场中的偏转问题 ❖ 三、带电粒子(微粒)在交变电场中的运动
问题 ❖ 四、电场中物体运动及相互作用的问题
一、带电粒子(微粒)在电场中的 直线加速问题
❖ 基本思路: ❖ 1.在匀强电场中 ❖ (1)牛顿第二定律与运动规律综合处理; ❖ (2)动能定理、动量定理; ❖ 2.在非匀强电场中 ❖ 应用能量、动量观点分析问题. ❖ *需注意带电粒子与带电微粒的区别.
带电粒子(微粒)在电场中的偏转问题
❖ 处理电偏转问题的基本思路: ❖ 1.运动的合成与分解; ❖ 2.能量观点.

带电粒子在电场中的运动

带电粒子在电场中的运动

l
t
v0
(离开电场)
沿电场力方向为初速度为零的匀加速直线运动,
加速度:a = F/m = qU/dm
离开电场时的偏移量
y

qUL 2mdv02
2
离开电场时的速度偏转角:
tan

qUL mdV0 2

2y L
3.带电粒子在电场里先加速再偏转 不同的带电粒子从静止经过同一电场加速后进入
同一偏转电场,它们在电场中的偏转角度、偏转量y 总是相同的。即轨迹相同。
(2)粒子从a点射入金属板的时刻应满足
什么条件?
设+q
v0
(1)粒子在板间做什么运动?
审 (2)粒子沿初速度方向做什么运动?
题 (3)粒子在垂直初速度方向做什么运 析 动? 疑
(4)“欲使该粒子仍能从b点以v0射出” 隐含了粒子运动的什么状态?
播放
转解析
方法提升 利用速度图象分析带电粒子的运动过程
一是注重全面分析(分析受力特点和运动规律),抓住粒的运 动具有周期性和在空间上具有对称性的特征,求解粒子运动 过程的速度、位移、做功或确定与物理过程相关的边界.
二是分析问题时要从力和运动的关系出发,结合功能关系, 列式求解.
三是明确此类题型的三种情况:①粒子做单向的直线运动 (一般用牛顿运动定律求解);②粒子做往返运动(一般分段 研究);③粒子做偏转运动(一般根据交变电场特点分段研究).
板间的距离足够大,下列说法正确的是( )
A.电子一直向着A板运动
B.电子一直向着B板运动
C.电子先向A板运动,然后返回向B板运动,
之后在A、B两板间做周期性往复运动
D.电子先向B板运动,然后返回向A板运动,

带电粒子在电场中的运动知识点总结

带电粒子在电场中的运动知识点总结

带电粒子在电场中的运动知识点总结1.电场的概念和性质:电场是指空间中由电荷引起的一种物理量,具有方向和大小。

电场的方向由正电荷指向负电荷,电场大小由电场力对单位阳离子电荷的作用力决定。

电场具有叠加性和超远程传播性。

2.带电粒子在电场中的运动方程:带电粒子在电场中受到电场力的作用,其运动方程由牛顿第二定律给出:F = ma,其中 F 是电场力, m 是粒子的质量, a 是粒子的加速度。

对于带电粒子在电场中受到的电场力 F = qE,其中 q 是粒子的电荷量,E 是电场强度。

因此,带电粒子在电场中的运动方程可表示为 ma = qE。

3.带电粒子在一维电场中的运动:在一维电场中,带电粒子的运动方程可简化为 ma = qE。

根据牛顿第二定律和电场力 F = qE 的关系,可以得到带电粒子在电场中的加速度 a = qE/m。

解这个一阶微分方程可以得到带电粒子的速度 v(t) 和位置 x(t) 随时间的变化规律。

4.带电粒子在二维和三维电场中的运动:在二维和三维电场中,带电粒子的运动方程是基于带电粒子在电场力下的受力分析。

通过将电场力分解为x、y和z方向上的分力,可以得到带电粒子在二维和三维电场中的加速度分量。

进一步求解这些分量的微分方程,可以得到带电粒子在二维和三维电场中的速度和位置随时间的变化规律。

5.带电粒子在均匀电场中的运动:均匀电场是指电场强度在空间中处处相等的电场。

对于带电粒子在均匀电场中的运动,可以使用简化的数学模型进行分析。

例如,带电粒子在均匀电场中的运动可以等效为带电粒子在恒定加速度下的自由落体运动。

通过求解自由落体的运动方程,可以得到带电粒子的速度和位置随时间的变化规律。

6.带电粒子在非均匀电场中的运动:非均匀电场是指电场强度在空间中不均匀变化的电场。

在非均匀电场中,带电粒子受到的电场力在不同位置上有所差异,因此其运动方程也会相应变化。

分析带电粒子在非均匀电场中的运动需要考虑电场力的变化和位置的变化,可以采用微分方程求解和数值模拟等方法进行分析。

物理带电粒子在电场中的运动

物理带电粒子在电场中的运动

物理带电粒子在电场中的运动
物理带电粒子(例如带电粒子、电子等)在电场中会受到电场力的作用,从而产生运动。

电场力是一种表征电场作用的力,其大小与粒子所带电荷的大小和电场强度有关。

当一个带电粒子进入电场时,受到电场力的作用,其运动受到限制。

根据带电粒子的荷质比、初始速度和电场的方向、强度,可以确定其运动的方式。

在均匀电场中,带电粒子会受到一个恒定大小和方向的电场力,使其加速或减速。

电场力的方向取决于粒子的电荷正负与电场的方向是否相同。

如果粒子的电荷与电场方向一致,电场力将与粒子的速度方向相同,使其加速;如果电荷与电场方向相反,电场力将与粒子速度方向相反,使其减速。

在非均匀电场中,带电粒子会受到不同位置上电场力的不同大小和方向的影响,从而出现曲线或弯曲轨迹的运动。

在这种情况下,电场力将主导粒子的运动方向,并使其偏离原来的直线运动轨迹。

除了受力影响外,带电粒子还会因受到电场力而发生能量变化。

在电场力的作用下,带电粒子从高电势区移动到低电势区,其电势能发生变化。

根据能量守恒定律,粒子电势能的减小将会转化为动能的增加,从而使粒子加速度增加,进一步改变其速度和轨迹。

总之,物理带电粒子在电场中的运动受到电场力的影响,其运
动方式与粒子的荷质比、初始速度和电场的方向、强度相关。

带电粒子的运动可以是直线加速运动、曲线运动或弯曲轨迹运动,同时其速度和轨迹也会随电场力的作用发生变化。

带电粒子在电场中的运动

带电粒子在电场中的运动
(1)B点距虚线MN的距离d2; (2)带电微粒从A点运动到B点所经历的时间t.
d2=0.50 cm t=1.5×10-8s.
带电体在匀强电场中做直线运动问题的分析方法
如图所示,绝缘光滑轨
道AB部分为倾角为30°
的斜面,AC部分为竖直
平面上半径为R的圆轨道,
斜面与圆轨道相切.整个装置处于场强为
E、方向水平向右的匀强电场中.现有一个
42
例.如图所示,一带电粒子 在电场中,由M点沿虚线运 动到N点的过程中,请判断:
①电荷的带电性质
②电荷从M运动
N
到N,电势能、 动能如何变化?
M
43
44
45
第3讲 电容器和电容 带电粒子在电 场中的运动
考基自主落实 核心考点透析 思维方法技巧 高考快乐体验 活页限时训练
2.带电粒子在匀强电场中的偏转 (1)研究条件:带电粒子垂直于电场方向进入匀强电场. (2)处理方法:类似于平抛运动,应用运动的_合__成__与__分__解__ 的方法. ①②沿沿初电速场度力方方向向做,做_匀___速匀____直加____线速____直运__线_动_运,动运动时间t=vl0
质量为m的小球,带正电荷量为要使小球能
安全通过圆轨道,在O点的初速度应为多
大?
答案 v≥
10 3gR 3
如图甲所示,在真空中足够大的绝缘水平地面上, 一个质量为m=0.2 kg、带电荷量为q=+2.0×10 -6 C的小物块处于静止状态,小物块与地面间的 摩擦因数μ=0.1.从t=0时刻开始,空间上加一个 如图乙所示的电场.(取水平向右的方向为正方 向,g取10 m/s2)求: (1)4秒内小物块的位移大小; (2)4秒内电场力对小物块所做的功.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氘核与α 粒子从水平放置的平行金属板的中央沿垂直 于电场方向发射,在下列各种情况下,求它们飞出电场 时,在竖直方向上偏移的位移大小之比? ⑴射入时速度相同. ⑵射入时动量相同. ⑶射入时动能相同. ⑷经相同电压加速后射入. 求解物理量之比的程序设计 1.找出所求量的表达式
2.先确定常量
3.再确定所求量(因变量)与表达式中自变量的比例式
在平行板电场的中点处,有比荷相同的三个离子a、b、 c分别以不同的初速度水平飞入电场,经电场偏转后, 最后a落在下板的中点处,b恰好从下板边缘飞出电 场,c落在距电场右端1/2L的屏上,与a、b落点等高, 求a、b、c三个离子飞入的初速度之比。
L 1/2L
a
b
c
4.当重力与匀强电场重合,可等效重力快解
一根对称的“八字”形玻璃管置于竖直平面内,如图 所示.管所在的空间有竖直向下的匀强电场,电场强 度E=1000N/C.重力G=1.0×10-3N,带电量Q=-2×10-6C 的小物体在管内从A点由静止开始运动,它与管壁摩擦 系数为0.5,管长AB=BC=3m,管的B处为一极短的光滑 圆弧,管AB和BC与水平方向所夹的角度皆为37°,问: (1)小物体最终静止在何处? (2)从A开始计算时,小物体运动的总路程是多少?
O点左侧
m g(1 cos ) q sin
m 2 sin 2 2q

6.类斜抛
在 xOy 平面内,有沿 y 轴负方向的匀强电场,场强大小 为E(图中未画出),由A点斜射出一质量为m,带电荷 量为 +q 的粒子, B 和 C 是粒子运动轨迹上的两点,如图 所示,其中l0为常数。粒子所受重力忽略不计。求: (1)粒子从A到C过程中电场力对它做的功; (2)粒子从A到C过程所经历的时间; (3)粒子经过C点时的速率。
3 F (3 )m g 3
静态恒力走直线,绳张紧时径速失; 多个过程找联系,运动、受力及守恒
5.有重力参与时,当重力与电场力相互垂直
特点:分两垂直的方向独立立式
例:真空中,一质点m,q在A处以V0竖直向上,到B 处成水平3V0向右,求匀强电场的E=? UAB=?
3V0
V0
一个带电量为-q的液滴,从O点以速度υ射入匀强电场 中,υ的方向与电场方向成θ角,已知油滴的质量为m, 测得油滴达到运动轨道的最高点时,速度的大小为 υ, 求: (1)最高点的位置可能在O点上方的哪一侧? (2)电场强度为多大? (3)最高点处(设为N)与O点电势差绝对值为多大?
L (1)( 2 L, ) 4
L2 (2) y 4x
L2 L2 (3) y 4 x 2nx
关键:受力分析,运动分析,过程模型化,形成思路再求解
A板的电势UA=0,B板的电势UB随时间的变化规律如图
所示。则 A.若电子是在t=0时刻进入的,它将一直向B板运动 B.若电子是在t=T/8时刻进入的,它可能时而向B板 运动,时而向A板运动,最后打在B板上 C.若电子是在t=3T/8时刻进入的,它可能时而向B板 运动,时而向A板运动,最后打在B板上 D.若电子是在t=T/2时刻进入的,它可能时而向B板、 时而向A板运动 B
U0 0 UB / v
t/ s
A
-U 0
U/ v
B A
U0 0 -U0
t/ s
a/
m/s2
F=Eq=U0q/d F=ma a= U0q/md
若电子是在 t=0时刻进入的
a0
-a0 0
t/ s v/
m/s
v0
-v0 0
t/ s
U/ v
U0
-U0
0
若电子是在t = T/8时刻进入的
T/2 T 3T/2 2T
A D A
D
B
C B
C
例:某带电油滴,由A板上方h处自由 落下,进入电场s距离而返回。已知 U,h,s,d 求油滴的比荷?
q/m
h
U
s
d
U mg (h s ) q s 0 d
L1
u1 Y
L2
v0
o
u2
θ
y1
θ
v
Y`
y2
y



α 粒子
β 粒子
中子
1 1
H
2 1
H
3 1
H
4 2
He
d c
E
a
b
如图所示为研究电子枪中电子在电场中运动的简化模型示 意图.在Oxy平面的ABCD区域内,存在两个场强大小均为E的 匀强电场Ⅰ和Ⅱ,两电场的边界均是边长为L的正方形(不 计电子所受重力). (1)在该区域AB边的中点处由静止释放 电子,求电子离开ABCD区域的位置. (2)在电场Ⅰ区域内适当位置由静止释放电子,电子恰能从 ABCD区域左下角D处离开,求所有释放点的位置. (3)若将左侧电场Ⅱ整体水平向右移动 (n≥1),仍使电 子从ABCD区域左下角D处离开(D不随电场移动),求在电场 Ⅰ区域内由静止释放电子的所有位置.
F=1.25mg
vD F m R
2
35R 8 6 cot
3 1 2 mg (h R R cos 37 ) mg (h cot 2 R R sin 37 ) mv D 4 2
在某竖直平面内有一水平向右的匀强电场,场强 E=1×104N/C.场内有一半径R=2m的光滑竖直绝缘 环形轨道,轨道的内侧有一质量为m=0.4kg、带电 量为q = +3×10- 4C的小球,它恰能沿圆环作圆周 运动.取圆环的最低点为重力势能和电势能的零 势能点.求:⑴小球机械能的最小值.⑵重力势 能和电势能的和的最小值. ⑴17J
0 1
e
1 0
n
质子 P
电子
质量数
电荷数
1 1
H
1. 粒子飞出电场
特点:L一定
常涉及偏距Y,偏角φ
1 qu L Y 2 dm v0
2
tan
qUL 2 dm v 0
例:让质子和氘核的混合物沿着与电场垂直的方向进入匀强 电场,要使它们最后偏转角相同,这些粒子进入电场时必须 具有相同的( B ) A.初速度 B.动能 C.质量
B点
4.5m
质量m、带电量+q的滑块,在竖直放置的光滑绝缘圆形 轨道上运动,轨道半径为r,现在该区域加一竖直向下 的匀强电场,场强为E,为使滑块在运动中不离开圆形 轨道,求:滑块在最低点的速度应满足什么条件?
思考:若电场强度E的方向向上,结果如何?
B
mg qE
O
+q m
C
A
E
如图的装置是在竖直平面内放置的光滑绝缘轨道,处于 水平向右的匀强电场中,一带负电荷的小球从高h的A处 由静止开始下滑,沿轨道ABC运动后进入圆环内做圆周 运动.已知小球所受的电场力是其重力的3/4,圆环半径 为R,斜面倾角为θ,xBC=2R.若使小球在圆环内能做完整 的圆周运动,h至少为多少?

d 2
2
2 m
v
2 mdv2
答案为D。

1 qE 2 m
( )
L 2 v
2 1 qUL 2 mdv2
模型无新意:“字母化推理方法掌握不到位”是出错根源!
2.落在极板上
特点:h一定
s1
s2
例:两离子q1q2, 由同一点以相同的v0垂直飞入电场,最后 都落在极板上,水平位移为s1s2,求:两离子 (1)飞行时间 (2)电场力做功比
4.代入数值求解.
如图所示.氕核、氘核、氚核三种粒子从同一位置无 初速地飘入电场线水平向右的加速电场E1 ,之后进入 电场线竖直向下的匀强电场 E2 发生偏转,最后打在屏 上。整个装置处于真空中,不计粒子重力及其相互作 用,那么 AD A.偏转电场E2对三种粒子做功一样多 B.三种粒子打到屏上的速度一样大 C.三种粒子运动到屏上所用的时间相同 D.三种粒子一定打到屏上的同一位置
高速粒子轰击荧光屏可致其发光.如图,在竖直放置 的铅屏A的右表面上贴着β射线放射源P,放射出β粒 子(实质是电子)的速度大小为v0.足够大的荧光屏 M与铅屏A平行放置,相距d,其间有水平向右的匀强 电场,电场强度大小E.已知电子电荷量为-e,质量 为m.不考虑相对论效应,则( )
边长为 L 的正方形区域 abcd 内存在着匀强电场。电 量为 q、动能为 Ek的带电粒子从 a点沿 ab方向进入电 场,不计重力。 (1)若粒子从c点离开电场,求电场强度的大小和 粒子离开电场时的动能; (2)若粒子离开电场时动能为Ek' ,则电场强度为 多大?
C B A O
如图所示,光滑绝缘细杆竖直放置,它与正电荷Q 为圆心的某圆交与B,C两点,质量为m,带点量为 -q的有孔小球从杆上A点无初速度下滑,已知q远 小于Q,AB=h,BC=3h,小球滑到B点时速度大小 为 3gh ,则
(1)小球到C时的速度
(2)A,C两点电势差
+Q r
M
A
B
C N
在水平地面上放置的光滑金属板的上表面绝缘,在其中心 正上方有一带正电Q的金属小球(可视为质点,且不影响 原电场)自左以初速度v0向右运动,则在运动过程中 ( BC ) +Q A.小球做先减速后加速运动 v0 B.小球做匀速直线运动 C.小球受到电场力做的功为零
E
⑵-2J
一条长为L的细绳,上端固定,下端拴一个质量为m的 带电小球,将它置于一匀强电场中,电场强度的大小 为E,方向水平向右,已知细线离开竖直位置的偏角 为α时,小球处于平衡。(1)小球带何种电荷?求 出小球所带的电量。(2)如果使细线的偏角由α增 大到φ,然后将小球由静止释放,则φ为多大时才能 使在细线到达竖直位置时,小球的速度刚好为0?
预备知识 1、基本粒子:如电子、质子、离子、α 粒子等在没 有明确指出或暗示下重力一般忽略不计 (但并不忽略质量) 2、带电颗粒:如油滴、液滴、尘埃、带电小球在没有明 确指出或暗示下重力一般不能忽略。
相关文档
最新文档