重庆市2001-2012年中考数学试题分类解析专题5:数量和位置变化
北京市2001-2012年中考数学试题分类解析 专题5 数量和位置变化
市2001-2012年中考数学试题分类解析专题5 数量和位置变化一、选择题1. (2001年市4分)已知点P(-1,3),那么与点P关于原点对称的点的坐标是【】A.(-1,-3) B.(1,-3) C.(1,3) D.(3,-1)2. (2003年市4分)三峡工程在6月1日于6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间,假设水库水位匀速上升,那么下列图象中,能正确反映这10某某位h(米)随时间t(天)变化的是【】3. (2005年市4分)如下图,在平行四边形ABCD中,∠DAB=60°,AB=5,BC=3,点P从起点D出发,沿DC、CB向终点B匀速运动.设点P所走过的路程为x,点P所经过的线段与线段AD、AP所围成图形的面积为y,y随x的变化而变化.在下列图象中,能正确反映y与x的函数关系的是【】4. (2006年市大纲4分)点P(3,-4)关于原点对称的点的坐标是【 】A 、(3,4)B 、(-3,4)C 、(4,-3)D 、(-4,3)5. (2006年市大纲4分)如图,在梯形ABCD 中,AD∥BC,∠B=90°,AD=1,AB=23,BC=2, P 是BC 边上的一个动点(点P 与点B 不重合),DE⊥AP 于点E 。
设AP=x ,DE=y 。
在下列图象中,能正确 反映y 与x 的函数关系的是【 】∴32<x≤52。
故选B 。
6. (2006年市课标4分)在函数1y x 3=-中,自变量x 的取值X 围是【 】 A.x 3≠ B.x 0≠ C.x 3> D.x 3≠-7. (2011年市4分)如图在Rt△ABC 中,∠ACB=90°,∠BAC=30°,AB=2,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD=x,CE=y,则下列图象中,能表示y 与x 的函数关系图象大致是【 】8. (2012年市4分)小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t (单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的【】二、填空题1. (2001年市4分)函数xyx3=-的自变量x的取值X围为▲ .【答案】x3≠。
2012年重庆市中考数学试卷及解析
年重庆市中考数学试卷一.选择题<本大题个小题,每小题分,共分)在每个小题地下面,都给出了代号为...地四个答案,其中只有一个是正确地,请将答题卡上题号右侧正确答案所对应地方框涂黑<或将正确答案地代号填人答题卷中对应地表格内)..<重庆)在﹣,﹣,,这四个数中,最小地数是< ).﹣.﹣..考点:有理数大小比较.解答:解:这四个数在数轴上地位置如图所示:由数轴地特点可知,这四个数中最小地数是﹣.故选..<重庆)下列图形中,是轴对称图形地是< )....考点:轴对称图形.解答:解:、不是轴对称图形,故本选项错误;、是轴对称图形,故本选项正确;、不是轴对称图形,故本选项错误;、不是轴对称图形,故本选项错误.故选..<重庆)计算地结果是< )....考点:幂地乘方与积地乘方.解答:解:原式.故选..<重庆)已知:如图,,是⊙地两条半径,且⊥,点在⊙上,则∠地度数为< ).°.°.°.°考点:圆周角定理.解答:解:∵⊥,∴∠°,∴∠°.故选..<重庆)下列调查中,适宜采用全面调查<普查)方式地是< ).调查市场上老酸奶地质量情况.调查某品牌圆珠笔芯地使用寿命.调查乘坐飞机地旅客是否携带了危禁物品.调查我市市民对伦敦奥运会吉祥物地知晓率考点:全面调查与抽样调查.解答:解:、数量较大,普查地意义或价值不大时,应选择抽样调查;、数量较大,具有破坏性地调查,应选择抽样调查;、事关重大地调查往往选用普查;、数量较大,普查地意义或价值不大时,应选择抽样调查.故选..<重庆)已知:如图,平分∠,点在上,∥.若∠°,则∠地度数为< ).°.°.°.°考点:平行线地性质;角平分线地定义.解答:解:∵∥,∠°,∴∠∠°,∵平分∠,∴∠∠×°°.故选..<重庆)已知关于地方程地解是,则地值为< )....考点:一元一次方程地解.解答:解;∵方程地解是,∴×﹣,解得.故选..<重庆)年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为,小丽与比赛现场地距离为.下面能反映与地函数关系地大致图象是< )....考点:函数地图象.解答:解:根据题意可得,与地函数关系地大致图象分为四段,第一段,小丽从出发到往回开,与比赛现场地距离在减小,第二段,往回开到遇到妈妈,与比赛现场地距离在增大,第三段与妈妈聊了一会,与比赛现场地距离不变,第四段,接着开往比赛现场,与比赛现场地距离逐渐变小,直至为,纵观各选项,只有选项地图象符合.故选..<重庆)下列图形都是由同样大小地五角星按一定地规律组成,其中第①个图形一共有个五角星,第②个图形一共有个五角星,第③个图形一共有个五角星,…,则第⑥个图形中五角星地个数为< )....考点:规律型:图形地变化类.解答:解:第①个图形一共有个五角星,第②个图形一共有个五角星,第③个图形一共有个五角星,…,则所以第⑥个图形中五角星地个数为×;故选..<重庆)已知二次函数地图象如图所示对称轴为.下列结论中,正确地是< )....考点:二次函数图象与系数地关系.解答:解:、∵开口向上,∴>,∵与轴交与负半轴,∴<,∵对称轴在轴左侧,∴﹣<,∴>,∴<,故本选项错误;、∵对称轴:﹣﹣,∴,故本选项错误;、当时,<,故本选项错误;、∵对称轴为﹣,与轴地一个交点地取值范围为>,∴与轴地另一个交点地取值范围为<﹣,∴当﹣时,﹣<,即<,故本选项正确.故选.二.填空题<本大题个小题,每小题分,共分)请将每小题地答案直接填在答题卡<卷)中对应地横线上,.<重庆)据报道,年重庆主城区私家车拥有量近辆.将数用科学记数法表示为.考点:科学记数法—表示较大地数.解答:解:×.故答案为:×..<重庆)已知△∽△,△地周长为,△地周长为,则与△地面积之比为.考点:相似三角形地性质.解答:解:∵△∽△,△地周长为,△地周长为,∴三角形地相似比是:,∴△与△地面积之比为:.故答案为::..<重庆)重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销地人数分别为:,,,,,,,则这组数据地中位数是.考点:中位数.解答:解:把这一组数据从小到大依次排列为,,,,,,,最中间地数字是,所以这组数据地中位数是;故答案为:..<重庆)一个扇形地圆心角为°,半径为,则这个扇形地面积为 <结果保留π)考点:扇形面积地计算.解答:解:由题意得,°,,故扇形π.故答案为:π..<重庆)将长度为厘地木棍截成三段,每段长度均为整数厘.如果截成地三段木棍长度分别相同算作同一种截法<如:,,和,,),那么截成地三段木棍能构成三角形地概率是.考点:概率公式;三角形三边关系.解答:解:因为将长度为厘地木棍截成三段,每段长度均为整数厘,共有种情况,分别是,,;,,;,,;,,;其中能构成三角形地是:,,一种情况,所以截成地三段木棍能构成三角形地概率是;故答案为:..<重庆)甲、乙两人玩纸牌游戏,从足够数量地纸牌中取牌.规定每人最多两种取法,甲每次取张或<﹣)张,乙每次取张或<﹣)张<是常数,<<).经统计,甲共取了次,乙共取了次,并且乙至少取了一次张牌,最终两人所取牌地总张数恰好相等,那么纸牌最少有张.考点:应用类问题.解答:解:设甲次取<﹣)张,乙次取<﹣)张,则甲<﹣)次取张,乙<﹣)次取张,则甲取牌<﹣)张,乙取牌<﹣)张则总共取牌:<﹣)<﹣)<﹣)<﹣)﹣<),从而要使牌最少,则可使最小,因为为正数,函数为减函数,则可使<)尽可能地大,由题意得,≤,≤,又最终两人所取牌地总张数恰好相等,故<﹣),而<<,﹣为整数,则由整除地知识,可得可为,,,①当时,﹣,因为≤,≤,所以这种情况舍去;②当时,﹣,因为≤,≤,所以这种情况舍去;③当时,﹣,此时可以符合题意,综上可得:要保证≤,≤,﹣,<)值最大,则可使,;,;,;当,时,最大,,继而可确定,<),所以﹣×张.故答案为:.三.解答题<共小题).<重庆)计算:.考点:实数地运算;零指数幂;负整数指数幂.解答:解:原式﹣..<重庆)已知:如图,,∠∠,∠∠.求证:.考点:全等三角形地判定与性质.解答:证明:∵∠∠,∴∠∠∠∠,即:∠∠,在△和△中,∴△≌△<),∴..<重庆)解方程:.考点:解分式方程.解答:解:方程两边都乘以<﹣)<﹣)得,<﹣)﹣,﹣﹣,,经检验,是原方程地解,所以,原分式方程地解是..<重庆)如图,在△中,∠°,点在边上,且△是等边三角形.若,求△地周长.<结果保留根号)考点:解直角三角形;三角形内角和定理;等边三角形地性质;勾股定理.解答:解:∵△是等边三角形,∴∠°,∵∠°,∴∠°﹣°﹣°°,∴,在△中,由勾股定理得:,∴△地周长是.答:△地周长是.四、解答题:<本大题个小题,每小题分,共分)解答时每小题必须给出必要地演算过程或推理步骤,请将解答书写在答题卡<卷)中对应地位置上..<重庆)先化简,再求值:,其中是不等式组地整数解.考点:分式地化简求值;一元一次不等式组地整数解.解答:解:原式•••,又,由①解得:>﹣,由②解得:<﹣,∴不等式组地解集为﹣<<﹣,其整数解为﹣,当﹣时,原式..<重庆)已知:如图,在平面直角坐标系中,一次函数地图象与反比例函数地图象交于一、三象限内地.两点,与轴交于点,点地坐标为<>,点地坐标为<,-),∠=.<)求该反比例函数和一次函数地解读式;<)在轴上有一点<点除外),使得△与△地面积相等,求出点地坐标.考点:反比例函数综合题.解答:解:<)过点作⊥轴,垂足为,∵<,﹣),∴,在△在,∠,即,解得,又∵点在第三象限,∴<﹣,﹣),将<﹣,﹣)代入中,得,∴反比例函数解读式为,将<,)代入中,得,∴<,),将<,),<﹣,﹣)代入中,得,解得,则一次函数解读式为;<)由得<﹣,),即,∵△△,∴,∴,即<﹣,)..<重庆)高中招生指标到校是我市中考招生制度改革地一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整地统计图:<)该校近四年保送生人数地极差是.请将折线统计图补充完整;<)该校年指标到校保送生中只有位女同学,学校打算从中随机选出位同学了解他们进人高中阶段地学习情况.请用列表法或画树状图地方法,求出所选两位同学恰好是位男同学和位女同学地概率.考点:折线统计图;扇形统计图;极差;列表法与树状图法.解答:解:<)因为该校近四年保送生人数地最大值是,最小值是,所以该校近四年保送生人数地极差是:﹣,折线统计图如下:<)列表如下:由图表可知,共有种情况,选两位同学恰好是位男同学和位女同学地有种情况,所以选两位同学恰好是位男同学和位女同学地概率是..<重庆)已知:如图,在菱形中,为边地中点,与对角线交于点,过作⊥于点,∠∠.<)若,求地长;<)求证:.考点:菱形地性质;全等三角形地判定与性质.解答:<)解:∵四边形是菱形,∴∥,∴∠∠,∵∠∠,∴∠∠,∴,∵⊥,∴,∵,∴,∴;<)证明:如图,∵为边地中点,∴,∴,在菱形中,平分∠,∴∠∠,在△和△中,∵,∴△≌△<),∴,延长交于点,∵∥,∴∠∠,∵∠∠,∴∠∠,∴,在△和△中,∵,∴△≌△<),∴,由图形可知,,∴..<重庆)企业地污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业地自身设备进行处理.某企业去年每月地污水量均为吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.至月,该企业向污水厂输送地污水量<吨)与月份<≤≤,且取整数)之间满足地函数关系如下表:至月,该企业自身处理地污水量<吨)与月份<≤≤,且取整数)之间满足二次函数关系式为.其图象如图所示.至月,污水厂处理每吨污水地费用:<元)与月份之间满足函数关系式:,该企业自身处理每吨污水地费用:<元)与月份之间满足函数关系式:;至月,污水厂处理每吨污水地费用均为元,该企业自身处理每吨污水地费用均为元.<)请观察题中地表格和图象,用所学过地一次函数、反比例函数或二次函数地有关知识,分别直接写出与之间地函数关系式;<)请你求出该企业去年哪个月用于污水处理地费用<元)最多,并求出这个最多费用;<)今年以来,由于自建污水处理设备地全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月地污水量都将在去年每月地基础上增加,同时每吨污水处理地费用将在去年月份地基础上增加<﹣),为鼓励节能降耗,减轻企业负担,财政对企业处理污水地费用进行地补助.若该企业每月地污水处理费用为元,请计算出地整数值.<参考数据:≈,≈,≈)考点:二次函数地应用.解答:解:<)根据表格中数据可以得出定值,则与之间地函数关系为反比例函数关系:,将<,)代入得:×,故<≤≤,且取整数);根据图象可以得出:图象过<,),<,)点,代入得:,解得:,故<≤≤,且取整数);<)当≤≤,且取整数时:<﹣)••<﹣)•<﹣),﹣﹣,∵﹣<,﹣,≤≤,∴当时,最大<元),当≤≤时,且取整数时,×<﹣)×<﹣﹣)<),﹣,∵﹣<,﹣,当≤≤时,随地增大而减小,∴当时,最大<元),∵>,∴去年月用于污水处理地费用最多,最多费用是元;<)由题意得:<)×××<﹣),设,整理得:﹣,解得:,∵≈,∴≈,≈﹣<舍去),∴≈,答:地值是..<重庆)已知:如图,在直角梯形中,∥,∠°,,,.为边上一点,以为边作正方形,使正方形和梯形在地同侧.<)当正方形地顶点恰好落在对角线上时,求地长;<)将<)问中地正方形沿向右平移,记平移中地正方形为正方形′,当点与点重合时停止平移.设平移地距离为,正方形′地边与交于点,连接′,′,,是否存在这样地,使△′是直角三角形?若存在,求出地值;若不存在,请说明理由;<)在<)问地平移过程中,设正方形′与△重叠部分地面积为,请直接写出与之间地函数关系式以及自变量地取值范围.考点:相似三角形地判定与性质;勾股定理;正方形地性质;直角梯形. 解答:解:<)如图①,设正方形地边长为,则,∵,,∴﹣﹣,∵∥,∴△∽△,∴,即,解得:,即;<)存在满足条件地,理由:如图②,过点作⊥于,则,,由题意得:′,′﹣,﹣,在△′中,′′<﹣)﹣,∵∥,∴△∽△,∴,即,∴﹣,在△′中,′′<﹣)﹣,过点作⊥于,∴﹣﹣<﹣),在△中,,<Ⅰ)若∠′°,则′′,即<﹣)<﹣),解得:,<Ⅱ)若∠′°,则′′,即﹣<﹣)<),解得:﹣,﹣﹣<舍去),∴﹣;<Ⅲ)若∠′°,则′′,即:﹣<﹣)<),此方程无解,综上所述,当或﹣时,△′是直角三角形;<)①如图③,当在上时,::,即::,∴,∴′﹣′﹣﹣﹣,∵﹣,∴,当≤≤时,△××,②当在上时,,∵•∠•<﹣)﹣,∴﹣﹣,∵,∴当<≤时,△﹣△﹣<﹣)<﹣)﹣﹣;③如图⑤,当在上时,′:′:,即′::,解得:′,∴﹣′﹣,∴,∵′′<﹣)﹣,∵′﹣′﹣,∴当<≤时,梯形﹣△××<﹣)﹣<﹣)<﹣)﹣﹣,④如图⑥,当<≤时,∵′′<﹣),<﹣),′′<﹣)<﹣),梯形梯形′﹣梯形′﹣.综上所述:当≤≤时,,当<≤时,﹣﹣;当<≤时,﹣﹣,当<≤时,﹣.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。
重庆市2001-2012年中考数学试题分类解析专题2:代数式和因式分解
一、选择题1. (重庆市2001年4分)若(a m +1b n +2)·(a 2n -1b 2m )=a 5b 3,则m +n 的值为【 】.A .1B .2C .3D .-32. (重庆市2001年4分)如果表示a 、b 两个实数的点在数轴上的位置如图所示,那么化简()2a b a b -++的结果等于【 】.A .2aB .2bC .-2aD .-2b3. (重庆市2001年4分)已知1a 1a -=,则1a a+的值为【 】. A .5± B .5 C .3± D .5或1 【答案】B 。
【考点】完全平方公式,分类思想的应用。
【分析】根据绝对值的性质去掉绝对值号,然后利用完全平方公式转化未知的式子变成已知的式子,求解即可:当a 为正数时,则1a 1a -=,21a 1a ⎛⎫-= ⎪⎝⎭,即221a 3a +=,∴2222111a a a 25a a a⎛⎫⎛⎫+=+=++= ⎪ ⎪⎝⎭⎝⎭,1a 5a +=。
当a 为负数时,则1a 1a +=,21a 1a ⎛⎫+= ⎪⎝⎭,即221a 1a +=-,不成立,舍去。
综上,1a 5a+=。
故选B 。
4. (重庆市2002年4分)下列各式中,计算正确的是【 】A 326x x x ⋅=B 32x x x -=C 23(x)(x)x -⋅-=-D 623x x x ÷=5. (重庆市2002年4分)若x<2,化简2(x 2)3x -+-的正确结果是【 】 A -1 B 1 C 2x -5 D 5-2x 【答案】D 。
【考点】二次根式的性质,绝对值的性质。
【分析】根据二次根式的性质,绝对值的性质,先化简代数式,再合并:∵x <2,∴2(x 2)2x -=-,3x 3x -=-。
∴原式2x 3x 52x =-+-=-。
故选D 。
6. (重庆市2003年4分)小华利用计算机设计了一个计算程序,输入和输出的数据如下表:那么当输入数据是8时,输出的数据是【 】 输入…12345…输出 …12 25 310 417 526…A .861 B .863 C .865 D .867【答案】C 。
【中考12年】重庆市2001-中考数学试题分类解析 专题1 实数
【中考12年】重庆市2001-2012年中考数学试题分类解析 专题1 实数一、选择题1. (重庆市2001年4分)据测算,我国每天因土地沙漠化造成的经济损失为1.5亿元.若一年按365天计算,用科学记数法表示我国一年因土地沙漠化造成的经济损失为【 】.A .5.475×1011(元)B .5.475×1011(元)C .0.5475×1011 (元)D .5475×1011 (元)2. (重庆市2003年4分)下列各组数中,互为相反数的是【 】A .2与 12B .21-()与1C .1-与21-()D .2与2-3.(重庆市2004年4分)计算()32--的结果为【 】A 、-5B 、5C 、1D 、-1【答案】B 。
【考点】有理数的减法。
【分析】有理数减法运算法则,减去一个数等于加上它的相反数:2-(-3)=2+3=5。
故选B 。
4. (重庆市2004年4分)化简132121++-的结果为【 】A 、23+B 、23-C 、322+D 、223+【答案】A 。
【考点】二次根式的加减法。
【分析】先分母有理化,再合并同类二次根式即可:原式11+=A 。
5. (重庆市大纲卷2005年4分)5的相反数是【 】A 、-5B 、5C 、51D 、51-6.(重庆市大纲卷2005年4分)下列四个数中,大于-3的数是【 】A 、-5B 、-4C 、-3D 、-27. (重庆市课标卷2005年4分)计算1-2的结果是【 】A .1B .-1C .3D .-3【答案】B 。
【考点】有理数的减法。
【分析】根据有理数的减法法则直接计算:1-2=1+(-2)=-1。
故选B 。
8.(重庆市课标卷2005年4分)9的算术平方根是【 】A .3B .-3C .±3 D. 189.(重庆市课标卷2005年4分)据国家商务部消息,2005年一季度,我国进口总额达2952亿美元.用科学记数法表示这个数是【 】A .2.952×102亿美元B .0.2952×103亿美元C .2.952×103亿美元D .0.2952×104亿美元10. (重庆市2006年4分)3的倒数是【 】A.-3B.3C.13 D.13- 【答案】C 。
重庆市2001-2012年中考数学试题分类解析专题3:方程(组)和不等式(组)
一、选择题1. (重庆市2001年4分)下面是某同学在一次测验中解答的填空题:(1)若x 2=a 2,则x =a .(2)方程2x (x -1)=x -l 的解为x =0.(3)若直角三角形有两边长分别为3和4,则第三边的长为5. 其中答案完全正确的题目个数为【 】. A .0个 B .1个 C .2个 D .3个2. (重庆市2002年4分)已知关于x 的不等式2x a 3-≥-的解集如图所示,则a 的值等于【 】A 0B 1C -1D 2 【答案】B 。
【考点】解一元一次不等式,在数轴上表示不等式的解集。
【分析】把x 看成未知数,求得x 的解集,再根据数轴上的解集,来求得a 的值:由2x a 3-≥-,解得a 3x 2-≥。
∵在数轴上表示的不等式的解集为:x≥-1,∴a 312-=-,解得a=1。
故选B 。
3. (重庆市2002年4分)朝日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A 、B 两个出租车队,A 队比B 队少3辆车,若全部安排乘A 队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排坐B 队的车,每辆坐4人,车不够,每辆坐5人,有的车未满,则A 队有出租车【 】辆 A 11 B 10 C 9 D 84. (重庆市2003年4分)下列一元二次方程中,没有实数根的是【 】A .2x 2x 10+-=B .2x 22x 20++=C .2x 22x+10+=D .2x x 20++= 【答案】D 。
【考点】一元二次方程根的判别式。
【分析】判断上述方程的根的情况,只要计算每个方程的判别式△=b2-4ac 的值的符号即可:选项A :∵22b 4ac 24118∆=-=-⨯⨯-=()>0,∴有两个不相等的实根; 选项B :∵22b 4ac 224120∆=-=-⨯⨯=(),∴有两个相等的实根;选项C :∵22b 4ac 224114∆=-=-⨯⨯=()a >0,∴有两个不等的实根;选项D :∵22b 4ac 14127∆=-=-⨯⨯=-,∴方程没有实数根。
2012重庆中考数学试题及答案
2012重庆中考数学试题及答案以下是一份2012年重庆中考数学试题及答案的详细内容。
文章将按照试题的顺序进行分析和解答,以确保内容的逻辑性和易读性。
第一题:某学校共有800名学生,其中60%是男生,剩下的是女生。
男生的人数比女生的人数多多少人?解析:首先计算男生的人数,即800 * 60% = 480人。
再计算女生的人数,即800 - 480 = 320人。
男生的人数比女生多480 - 320 = 160人。
第二题:一根铁丝长240厘米,想把它剪成若干段恰好用来组成一个正方体的所有棱。
每段铁丝长10厘米。
这根铁丝最少可以被剪成几段?解析:正方体有12条棱,每条棱用铁丝2段,所以需要剪成的段数为12 * 2 = 24段。
因此,这根铁丝最少可以被剪成24段。
第三题:某公司的一辆货车原价8万元,现在降价出售。
首先降价10%,再降价10%。
现在的售价是多少元?解析:首先计算第一次降价,即8万元 * 10% = 0.8万元。
原价减去第一次降价后的价格为8 - 0.8 = 7.2万元。
再计算第二次降价,即7.2万元 * 10% = 0.72万元。
最终售价为7.2 - 0.72 = 6.48万元。
第四题:一个边长为10厘米的正方形ABCD,以AD为直径作一个半圆。
点E在AB边上,使得BE=2厘米。
连接EC,求EC的长度。
解析:连接AC,并延长以F为交点。
根据勾股定理,AF的长度为10 * √2 = 10√2厘米。
由于BE = 2厘米,所以FE = 10√2 - 2厘米。
根据勾股定理,EC的长度为(FE^2 + CF^2)开根号,即((10√2 - 2)^2 + 10^2)开根号,约为13.58厘米。
第五题:一束高15米的竹竿上,有一只青蛙。
白天它往上爬3米,晚上又下滑2.5米。
青蛙需要多少天才能够爬出竹竿的顶端?解析:每天白天青蛙向上爬3米,减去晚上下滑的2.5米,所以青蛙每天净爬升0.5米。
除了最后一天,每天爬升的高度为0.5米,所以青蛙需要15 / 0.5 - 1 = 29天才能够爬出竹竿的顶端。
黄冈2001-2012中考数学试题分类解析专题05 数量和位置变化 (1)
一、选择题1. (湖北省黄冈市2003年3分)在直角坐标系中,点P(2x-6,x-5)在第四象限,则x 的取值范围是【】.A.3<x<5 B.-3<x<5 C.-5<x<3 D.-5<x<-32. (湖北省黄冈市2004年3分)某班同学在探究弹簧的长度跟外力的变化关系时,实验记录得到的相应数据如下表,则y关于x的函数图象是【】砝码的质量(x克)0 50 100 150 200 250 300 400 500指针位置(y厘米) 2 3 4 5 6 7 7.5 7.5 7.53. (湖北省黄冈市大纲卷2005年3分)有一个装有进、出水管的容器,单位时间年7进、出的水量都是一定的。
已知容器的容积为600升,又知单开进水管10分钟可把空容器注满,若同时打开进、出水管,20分钟可把满容器的水放完,现已知水池内有水200升,先打开进水管5分钟后,再打开出水管,两管同时开放,直至把容器中的水放完,则能正确反映这一过程中容器的水量Q(升)随时间t(分)变化的图象是【】4. (湖北省黄冈市课标卷2005年3分)有一个装有进、出水管的容器,单位时间年7进、出的水量都是一定的。
已知容器的容积为600升,又知单开进水管10分钟可把空容器注满,若同时打开进、出水管,20分钟可把满容器的水放完,现已知水池内有水200升,先打开进水管5分钟后,再打开出水管,两管同时开放,直至把容器中的水放完,则能正确反映这一过程中容器的水量Q(升)随时间t(分)变化的图象是【】5. (湖北省黄冈市大纲卷2006年3分)如图,在光明中学学生耐力测试比赛中,甲、乙两学生测试的路程S(米)与时间t(秒)之间的函数关系图像分别为折线OABC和线段OD,下列说法正确的是【】A、乙比甲先到达终点B、乙测试的速度随时间增加而增大C、比赛进行到29.4秒时,两人出发后第一次相遇D、比赛全程甲的测试速度始终比乙的测试速度快6. (湖北省黄冈市课标卷2006年3分)如图,在光明中学学生耐力测试比赛中,甲、乙两学生测试的路程S(米)与时间t(秒)之间的函数关系图像分别为折线OABC和线段OD,下列说法正确的是【】A、乙比甲先到达终点B、乙测试的速度随时间增加而增大C、比赛进行到29.4秒时,两人出发后第一次相遇D、比赛全程甲的测试速度始终比乙的测试速度快【答案】C。
重庆市2001-2012年中考数学试题分类解析专题9:三角形
一、选择题1. (重庆市2001年4分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是【 】.A .带①去B .带②去C .带③去D .带①和②去2. (重庆市2002年4分)如图,⊙O 为△ABC 的内切圆,∠C=90度,OA 的延长线交BC 于点D ,AC=4,CD=1,则⊙O 的半径等于【 】A54 B45 C43 D65【答案】A 。
【考点】三角形的内切圆与内心,相似三角形的判定和性质。
【分析】设圆O 与AC 的切点为M ,圆的半径为r ,如图,连接OM 。
∵∠C=90°,∴CM=r。
∵△AOM∽△ADC,∴OM:CD=AM :AC ,即r:1=(4-r):4,解得r=45。
故选A。
3. (重庆市2003年4分)如图,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,则BC的长度为【】A.152B.154C.3 D.834. (重庆市2003年4分)如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为【】A.1个 B.2个 C.3个 D.4个5. (重庆市2003年4分)如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=15,则AD 的长是【 】A B .2 C .1 D .6. (重庆市2004年4分)如图,CD 是平面镜,光线从A 点出发经CD 上点E 反射后照射到B 点,若入射角为α (入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C 、D ,且AC =3,BD =6,CD =11,则tan α的值为【 】A 、311 B 、113 C 、119 D 、9117. (重庆市2004年4分)秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡该秋千时,秋千在最高处踩板离地面2米(左右对称),则该秋千所荡过的圆弧长为【 】A 、π米B 、π2米C 、π34米 D 、π23米8. (重庆市大纲卷2005年4分)如图,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则DMN S ∆∶ANMES 四边形等于【 】A 、1∶5 B、1∶4 C、2∶5 D、2∶7 【答案】A 。
2012年重庆市中考数学试卷及答案详细解析(word版)
2012年重庆市中考数学试卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内).1.(2012•重庆)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3B.﹣1C.0D.22.(2012•重庆)下列图形中,是轴对称图形的是()A.B.C.D.3.(2012•重庆)计算(ab)2的结果是()A.2ab B.a2b C.a2b2D.ab24.(2012•重庆)已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°5.(2012•重庆)下列调查中,适宜采用全面调查(普查)方式的是()A.调查市场上老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对伦敦奥运会吉祥物的知晓率6.(2012•重庆)已知:如图,BD平分∠ABC,点E在BC上,EF∥AB.若∠CEF=100°,则∠ABD的度数为()A.60°B.50°C.40°D.30°7.(2012•重庆)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2B.3C.4D.58.(2012•重庆)2012年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为S.下面能反映S与t的函数关系的大致图象是()A.B.C.D.9.(2012•重庆)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为()A.50B.64C.68D.7210.(2012•重庆)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为x=﹣.下列结论中,正确的是()A.abc>0B.a+b=0C.2b+c>0D.4a+c<2b二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上,11.(2012•重庆)据报道,2011年重庆主城区私家车拥有量近38000辆.将数380000用科学记数法表示为_________.12.(2012•重庆)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则ABC与△DEF的面积之比为_________.13.(2012•重庆)重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是_________.14.(2012•重庆)一个扇形的圆心角为120°,半径为3,则这个扇形的面积为_________(结果保留π)15.(2012•重庆)将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是_________.16.(2012•重庆)甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每次取4张或(4﹣k)张,乙每次取6张或(6﹣k)张(k是常数,0<k<4).经统计,甲共取了15次,乙共取了17次,并且乙至少取了一次6张牌,最终两人所取牌的总张数恰好相等,那么纸牌最少有_________张.三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.17.(2012•重庆)计算:.18.(2012•重庆)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.19.(2012•重庆)解方程:.20.(2012•重庆)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.21.(2012•重庆)先化简,再求值:,其中x是不等式组的整数解.22.(2012•重庆)已知:如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,﹣2),tan∠BOC=.(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标.23.(2012•重庆)高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:(1)该校近四年保送生人数的极差是_________.请将折线统计图补充完整;(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进人高中阶段的学习情况.请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.24.(2012•重庆)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD 于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.25.(2012•重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且月份x(月) 1 2 3 4 5 6输送的污水量y1(吨)12000 6000 4000 3000 2400 20007至12月,该企业自身处理的污水量y2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式为.其图象如图所示.1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式:,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a﹣30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.(参考数据:≈15.2,≈20.5,≈28.4)26.(2012•重庆)已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.2012年重庆市中考数学试卷参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内).1.(2012•重庆)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3B.﹣1C.0D.2考点:有理数大小比较。
重庆市2001-2012年中考数学试题分类解析专题4:图形的变换
一、选择题1. (重庆市2003年4分)在平行四边形ABCD中,AB=6,AD=8,∠B是锐角,将△ACD 沿对角线AC折叠,点D落在△ABC所在平面内的点E处.如果AE过BC的中点,则平行四边形ABCD的面积等于【】A.48 B.106C.127D.242【答案】C。
2. (重庆市2006年4分)如图,是有几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是【】A.3B.4C. 5D. 6【答案】B。
【考点】由三视图判断几何体。
【分析】从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体。
故选B。
△绕直角边AC旋转一周,所得几何体的3. (重庆市2007年4分)将如图所示的Rt ABC主视图是【】A.B.C.D.4. (重庆市2008年4分)如图是由4个大小相同的正方体搭成的几何体,其主视图是【】A、B、C、D、5. (重庆市2009年4分)由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是【】A.B.C.D.【答案】A。
【考点】简单组合体的三视图。
【分析】找到从左面看所得到的图形即可:从左面看可得到第一层为2个正方形,第二层左面有一个正方形。
故选A。
6. (重庆市2009年4分)观察下列图形,则第n 个图形中三角形的个数是【 】A .2n 2+B .4n 4+C .4n 4-D .4n7. (重庆市2009年4分)如图,在等腰Rt ABC △中,8C 90AC =∠=,°,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD=CE .连接DE 、DF 、EF .在此运动变化的过程中,下列结论: ①DEF △是等腰直角三角形; ②四边形CDFE 不可能为正方形, ③DE 长度的最小值为4; ④四边形CDFE 的面积保持不变; ⑤△CDE 面积的最大值为8. 其中正确的结论是【 】A .①②③B .①④⑤C .①③④D .③④⑤【答案】B。
2012年重庆市中考数学试卷分析
2012年重庆市中考数学试卷分析一、试卷概述由于2012年重庆市中考联招区首次实行计算机网上阅卷,以往的手工阅卷一般只能是单评加抽样复查的方式,而计算机网上阅卷可以保证每份试卷都是双评,同时为这次网阅首次使用的答题卡设计合理,确保了阅卷更加客观、公正、高效、准确。
而为兼顾非联招区县沿用的是2011年的手工阅卷方式,除了答题卡外,也保留了2011年采用的答题卷格式的答卷。
当然由于是首次使用答题卡,考生答题时也出现些问题:解答题答错位;写字笔痕太轻,扫描出来效果不好;24题辅助线未作在答题卡的图形上及未标出∠1、∠2、∠3等,这些都只是极个别现象,只要考生仔细点,完全是可以回避的。
试卷所涉及考点及分值分布如下:2012年重庆市中考数学试卷共五道大题,26个小题,满分150分,考试时间120分钟。
全卷设计选择题10个,共40分,占总分的27%;填空题6个,共24分,占总分的16%;解答题10个,共86分,占总分的57%.二、试卷考法分析 试卷十分注意体现最新版(2011版)课标的评价理知识点 题型 题号 分值 分数 比例 数与代数 数与 式 有理数的基本概念 选择题 1 4分 74 49.3% 一元一次方程 选择题 7 4分规律观察 选择题 8 4分整式运算 选择题 3 4分 科学记数法 填空题 11 4分 数式运算 解答题 17 6分分式的化简 解答题 21 10分 方 程 与 函数 分式方程 解答题 18 6分 二次函数 选择题 10 4分 识别函数图像 选择题 9 4分 一次函数与反比例函数 解答题 22 10分 函数综合 解答题 25 10分 阅读理解 填空题 16 4分统计 概 率 统计的基本方法 选择题 4 4分22 14.7%统计的特征数 填空题 13 4分 综合概率 填空题 15 4分 统计与概率 解答题 23 10分几 何 图形 对称的基本概念 选择题 2 4分5436% 平行线与相交线 选择题 5 4分解直角三角形 解答题 20 6分 相似 填空题 12 4分 证明 解答题 24 10分 圆心角与圆周角 选择题 6 4分圆中的相关计算 填空题 14 4分 简单的几何证明 解答题 19 6分图形的运动与变换 解答题 26 12分念,注重考查双基和通过应用考查基本能力,突出考查建模能力与应用意识。
【中考12年】重庆市2001中考数学试题分类解析 专题2 代数式和因式分解
【中考12年】重庆市2001-2012年中考数学试题分类解析 专题2 代数式和因式分解一、选择题1. (重庆市2001年4分)若(am +1b n +2) ·(a2n -1b 2m)=a 5b 3,则m +n 的值为【 】.A .1B .2C .3D .-32. (重庆市2001年4分)如果表示a 、b 两个实数的点在数轴上的位置如图所示,那么化简a b -+的结果等于【 】.A .2aB .2bC .-2aD .-2b3. (重庆市2001年4分)已知1a 1a -=,则1a a+的值为【 】. A .5± B .5 C .3± D .5或1 【答案】B 。
【考点】完全平方公式,分类思想的应用。
【分析】根据绝对值的性质去掉绝对值号,然后利用完全平方公式转化未知的式子变成已知的式子,求解即可:当a 为正数时,则1a 1a -=,21a 1a ⎛⎫-= ⎪⎝⎭,即221a 3a +=,∴2222111a a a 25a a a⎛⎫⎛⎫+=+=++= ⎪ ⎪⎝⎭⎝⎭,1a a +=当a 为负数时,则1a 1a +=,21a 1a ⎛⎫+= ⎪⎝⎭,即221a 1a +=-,不成立,舍去。
综上,1a a+=B 。
4. (重庆市2002年4分)下列各式中,计算正确的是【 】A 326x x x ⋅=B 32x x x -=C 23(x)(x)x -⋅-=-D 623x x x ÷=5. (重庆市2002年4分)若x<23x -的正确结果是【 】 A -1 B 1 C 2x -5 D 5-2x 【答案】D 。
【考点】二次根式的性质,绝对值的性质。
【分析】根据二次根式的性质,绝对值的性质,先化简代数式,再合并:∵x<22x =-,3x 3x -=-。
∴原式2x 3x 52x =-+-=-。
故选D 。
6. (重庆市2003年4分)小华利用计算机设计了一个计算程序,输入和输出的数据如下表:那么当输入数据是8时,输出的数据是【 】A .861 B .863 C .865 D .867【答案】C 。
天津市2001-2012年中考数学试题分类解析 专题5 数量和位置变化
2001-2012年天津市中考数学试题分类解析汇编(12专题)专题5:数量和位置变化一、选择题1. (2001天津市3分)函数1y x=的取值范围是【 】 A .全体实数 B .x≠0 C.x >0 D .x≥0 【答案】B 。
【考点】函数自变量的取值范围,分式有意义的条件。
【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使1x在实数范围内有意义,必须x 0≠。
故选B 。
2. (2001天津市3分)若点A (m ,n )在第三象限,则点B (|m|,n )所在的象限是【 】 A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D 。
【考点】点的坐标,绝对值。
【分析】∵点A (m ,n )在第三象限,∴m<0,n <0。
∴|m|>0,n <0。
∴点B (|m|,n )在第四象限。
故选D 。
3. (天津市2008年3分)把抛物线22x y =向上平移5个单位,所得抛物线的解析式为【 】 A .522+=x y B .522-=x yC .2)5(2+=x yD .2)5(2-=x y【答案】A 。
【考点】二次函数图象与几何变换。
【分析】根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加。
上下平移只改变点的纵坐标,下减上加。
原抛物线的顶点为(0,0),向上平移5个单位,那么新抛物线的顶点为(0,5),则新抛物线的解析式为:2=2+5y x 。
故选A 。
4.(天津市2008年3分)在平面直角坐标系中,已知点A (0,2),B (32-,0),C (0,2-),D (32, 0),则以这四个点为顶点的四边形ABCD 是【 】 A .矩形 B .菱形 C .正方形 D .梯形【答案】B 。
【考点】坐标与图形性质,菱形的判定。
【分析】画出草图,根据特殊四边形的判定方法判断:在平面直角坐标系中画出图后,可发现这个四边形的对角线互相平分,先判断为平行四边形,对角线还垂直,那么这样的平行四边形应是菱形。
重庆市2001-2012年中考数学试题分类解析专题6:函数的图像与性质
一、选择题1. (重庆市2002年4分)已知一次函数y ax c =+与2y ax bx c =++,它们在同一坐标系内的大致图象是【 】A B C D2. (重庆市2004年4分)二次函数2y ax bx c =++的图象如图,则点M (b ,ca)在【 】A 、第一象限B 、第二象限C 、第三象限D 、第四象限3. (重庆市大纲卷2005年4分)抛物线()2y x 23=-+的顶点坐标是【 】 A 、(-2,3) B 、(2,3) C 、(-2,-3) D 、(2,-3) 【答案】B 。
【考点】二次函数的性质。
【分析】由抛物线的顶点式()2y x 23=-+直接得出顶点坐标是(2,3)。
故选B 。
4. (重庆市课标卷2005年4分) 已知反比例函数y =a 2x-的图象在第二、四象限,则a 的取值范围是【 】A .a ≤2B .a ≥2 C.a <2 D .a >25. (重庆市2011年4分)已知抛物线()2y ax bx c a 0=++≠在平面直角坐标系中的位置如图所示,则下列结论中,正确的是【 】A 、a >0B 、b <0C 、c <0D 、a +b +c >0【答案】D 。
【考点】二次函数图象与系数的关系。
【分析】A 、∵抛物线的开口向下,∴a <0,选项错误;B 、∵抛物线的对称轴在y 轴的右侧,∴a ,b 异号,由A 、知a <0,∴b >0,选项错误;C 、∵抛物线与y 轴的交点在x 轴上方,∴c >0,选项错误;D 、x =1,对应的函数值在x 轴上方,即x =1,y a+b+c 0>=,选项正确。
故选D 。
6. (重庆市2012年4分)已知二次函数2y ax bx c(a 0)=++≠的图象如图所示对称轴为1x 2=-。
下列结论中,正确的是【 】A .abc 0>B .a b 0+=C .2b c 0>+D .4a c 2b <+C 、从图象可知,当x 0=时,y a b c 2b c 0<=++=+。
2012中考数学试题及答案分类汇编:数量和位置变化
2012中考数学试题及答案分类汇编:数量和位置变化一、选择题1.(北京4分)如图在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB边上的一个动点(不与点A、B重合),过点D作CD的垂线交射线CA于点E、设AD=x,CE=y,则下列图象中,能表示y与x的函数关系图象大致是【答案】B。
【考点】动点问题的函数图象,分类归纳。
【分析】应用排它法进行分析。
由已知在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,易得AC=3。
从图形可知,当点D接近点A,即x接近0时,点E接近点A,即y接近3,故选项D错误。
从所给的A,B,C三个选项看,x都在1附近的某-点取得最大值或最小值,从以下的图1和图2看,当x在1附近的某-点D 时CE是最短的,即y有最小值,故选项A错误。
从图2看,当x大于使y有最小值的那一点后,y 随x 增大而增大,并且是能够大于AC=3 ,故选项C 错误。
因此选B 。
实际上,通过作辅助线DF ⊥AC 于F,利用相似三角形和勾股定理是可以得到y 与x 的函数关系式的:22333=32x x y x ⎛⎫-+ ⎪-⎝⎭,但由此函数关系式是不能直接判定它的图象的。
2.(山西省2分)点(一2、1)所在的象限是A 、第一象限B 、第二象限C 、第三象限D 、第四象限【答案】B 。
【考点】平面直角坐标系中各象限点的特征。
【分析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)。
故点(一2、1)位于第二象限。
故选B 。
3.(内蒙古巴彦淖尔、赤峰3分)早晨,小张去公园晨练,右图是他离家的距离y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法正确的是A、小张去时所用的时间多于回家所用的时间B、小张在公园锻炼了20分钟C、小张去时的速度大于回家的速度D、小张去时走上坡路,回家时走下坡路【答案】C。
【中考12年】重庆市2001-2012年中考数学试题分类解析 专题3 方程(组)和不等式(组)
【中考12年】某某市2001-2012年中考数学试题分类解析 专题3 方程(组)和不等式(组)一、选择题1. (某某市2001年4分)下面是某同学在一次测验中解答的填空题:(1)若x 2=a 2,则x =a .(2)方程2x (x -1)=x -l 的解为x =0.(3)若直角三角形有两边长分别为3和4,则第三边的长为5. 其中答案完全正确的题目个数为【 】. A .0个 B .1个 C .2个 D .3个2. (某某市2002年4分)已知关于x 的不等式2x a 3-≥-的解集如图所示,则a 的值等于【 】A 0B 1C -1D 2 【答案】B 。
【考点】解一元一次不等式,在数轴上表示不等式的解集。
【分析】把x 看成未知数,求得x 的解集,再根据数轴上的解集,来求得a 的值:由2x a 3-≥-,解得a 3x 2-≥。
∵在数轴上表示的不等式的解集为:x≥-1, ∴a 312-=-,解得a=1。
故选B 。
3. (某某市2002年4分)朝日“世界杯”期间,某某球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A 、B 两个出租车队,A 队比B 队少3辆车,若全部安排乘A 队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排坐B 队的车,每辆坐4人,车不够,每辆坐5人,有的车未满,则A 队有出租车【 】辆 A 11 B 10 C 9 D 84.(某某市2003年4分)下列一元二次方程中,没有实数根的是【 】A .2x 2x 10+-=B .2x 22x 20++=C .2x 22x+10+=D .2x x 20++= 【答案】D 。
【考点】一元二次方程根的判别式。
【分析】判断上述方程的根的情况,只要计算每个方程的判别式△=b2-4ac 的值的符号即可:选项A :∵22b 4ac 24118∆=-=-⨯⨯-=()>0,∴有两个不相等的实根;选项B :∵22b 4ac 224120∆=-=-⨯⨯=(),∴有两个相等的实根;选项C :∵22b 4ac 224114∆=-=-⨯⨯=()a >0,∴有两个不等的实根;选项D :∵22b 4ac 14127∆=-=-⨯⨯=-,∴方程没有实数根。
上海市2001-2012年中考数学试题分类解析专题5:数量和位置变化
2001-2012年上海市中考数学试题分类解析汇编(12专题)专题5:数量和位置变化锦元数学工作室 编辑一、选择题 二、填空题1。
(2001上海市2分)点A (1,3)关于原点的对称点坐标是 ▲ . 【答案】(-1,-3)。
【考点】关于原点对称的点的坐标特征.【分析】关于原点对称的点的坐标是横、纵坐标都互为相反数,从而点A(1,3)关于原点对称的点的坐标是(-1,-3)。
2。
(2001上海市2分)函数y的定义域是 ▲ .【答案】x 1>.【考点】函数自变量的取值范围,二次根式和分式有意义的条件。
【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须x 10x 1x 1x 10x 1>-≥≥⎧⎧⇒⇒⎨⎨-≠≠⎩⎩。
3. (上海市2002年2分)如果()f x =kx ,()24f =-,那么k = ▲ . 【答案】-2。
【考点】函数值的意义,解一元一次方程.【分析】根据函数值的意义得到关于k 的一元一次方程,解出即可:由题意可得:2k =-4,化系数为1得:k =-2。
4(上海市2003年2分)已知函数xx x f 1)(+=,那么)12(-f = ▲ 。
【答案】2+【考点】求函数值,二次根式化简.【分析】把1x 直接代入函数xx x f 1)(+=即可求出函数值:()()()2212112(21)====2221212121f +-+-+---+。
7。
(上海市2004年2分)已知a b <<0,则点A a b b ()-,在第 ▲ _象限。
【答案】三. 【考点】点的坐标。
【分析】由a b <<0判断出A a b b ()-,点坐标的符号,根据点在坐标系中各象限的坐标特点即可解答:∵a b <<0,∴a b -<0,b <0, ∴点A a b b ()-,的横坐标和纵坐标都要小于0,符合点在第三象限的条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1. (重庆市2001年4分)函数x2yx1+=+的定义域为【】A.x≥-2 B.-2≤x<l C.x>1 D.x≥-2且x≠-12. (重庆市2001年4分)如图,某产品的生产流水线每小时可生产100件产品.生产前没有产品积压.生产3小时后安排工人装箱,若每小时装产品150件,未装箱的产品数量(y)是时间(t)的函数,那么,这个函数的大致图象只能是【】.(A)(B)(C)(D)【答案】A。
【考点】函数的图象。
【分析】开始生产时没有积压,前三小时只生产,图象为正比例函数图象,由于装箱速度多于生产速度,最终未装箱的产品数y=0.根据这一过程进行判断:某海产品深加工厂的生产流水线每小时可生产100件产品,生产前没有产品积压,则函数是正比例函数,图象经过原点,因而B、D错误;生产3小时后安排工人装箱,若每小时可以装产品150件,多于每小时的生产量,则未装箱的产品数y(件)随时间的增大而减小,最终变为0,排除C。
因而第一个图象符合题意。
故选A。
3. (重庆市2002年4分)如图,OA、BA分别表示甲、乙两名学生运动的一次函数图象,图中s和t分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快【】A 2.5米B2米粉C1.5米 D 1米4. (重庆市2003年4分)三峡大坝从6月1日开始下闸蓄水,如果平均每天流入库区的水量为a立方米,平均每天流出的水量控制为b立方米.当蓄水位低于135米时b,b<a;当蓄水位达到135米时,b=a;设库区的蓄水量y(立方米)是时间t(天)的函数,那么这个函数的大致图象是【】A.B.C.D .5. (重庆市大纲卷2005年4分)函数y x 3=-中自变量x 的取值范围是【 】A 、x >3B 、x ≥3C 、x >-3D 、x ≥-36. (重庆市大纲卷2005年4分)点A (m 4-,12m -)在第三象限,则m 的取值范围是【 】A 、1m 2> B 、m 4< C 、1m 42<< D 、m 4> 【答案】C 。
【考点】平面直角坐标系中各象限点的特征,解一元一次不等式组。
【分析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)。
因此,由A (m 4-,12m -)在第三象限,得m 4m 401m 4112m 02m 2<<<<<>⎧-⎧⎪⇒⇒⎨⎨-⎩⎪⎩。
故选C 。
7. (重庆市大纲卷2005年4分)为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(到少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水。
则一定正确的论断是【】A、①③B、②③C、③D、①②③8. (重庆市课标卷2005年4分)如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B、C、E、F在同一直线上.现从点C、E重合的位置出发,让△ABC 在直线EF上向右作匀速运动,而△DEF的位置不动.设两个三角形重合部分的面积为y,运动的距离为x.下面表示y与x的函数关系式的图象大致是【】A .B .C .D .9. (重庆市2007年4分)如图,在矩形ABCD 中,AB=3,BC=4,点P 在BC 边上运动,连接DP ,过点A 作AE ⊥DP ,垂足为E .设DP x =,AE y =,则能反映y 与x 之间函数关系的大致图象是【 】A .B .C .D .【答案】C 。
【考点】动点问题的函数图象,矩形的性质。
【分析】连接AP ,则∵APD 11S PD AE AD AB 22∆=⋅=⋅,∴xy=3·4。
∴xy=12,即12y x=,为反比例函数。
∴应从C ,D 里面进行选择。
∵x 最小应不小于CD ,最大不超过BD ,∴3≤x≤5。
故选C 。
10. (重庆市2008年4分)如图,在直角梯形ABCD 中,DC ∥AB ,∠A=90°,AB=28cm ,DC=24cm ,AD=4cm ,点M 从点D 出发,以1cm/s 的速度向点C 运动,点N 从点B 同时出发,以2cm/s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形AMND 的面积y(cm 2)与两动点运动的时间t (s )的函数图象大致是【 】A 、B 、C 、D 、∴自变量t 的取值范围是0<t <14。
故选D 。
11. (重庆市2009年4分)函数1y x 3=+的自变量x 的取值范围是【 】 A .x 3>- B .x 3<- C .x 3≠- D .x 3≥-12. (重庆市2009年4分)如图,在矩形ABCD 中,AB=2,BC=1,动点P 从点B 出发,沿路线B C D →→作匀速运动,那么ABP △的面积S 与点P 运动的路程x 之间的函数图象大致是【 】A .B .C .D .【答案】C 。
【考点】动点问题的函数图象。
【分析】运用动点函数进行分段分析,当P 在BC 上与CD 上时,分别求出函数解析式,再结合图象得出符合要求的解析式:∵AB=2,BC=1,动点P 从点B 出发,P 点在BC 上时,BP=x ,AB=2,∴△ABP 的面积S=12·AB·BP=12·2x=x 。
动点P 从点B 出发,P 点在CD 上时,△ABP 的高是1,底边是2,所以面积是1,即s=1。
∴s=x时是正比例函数,且y随x的增大而增大,s=1时,是一个常数函数,是一条平行于x轴的直线。
所以只有C符合要求。
故选C。
13. (重庆市2010年4分)小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。
下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图象是【】A.B.C.D.14. (重庆市2011年4分)为了建设社会主义新农村,我市积极推进“行政村通畅工程”.张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间的道路改造.下面能反映该工程尚未改造的道路里程y(公里)与时间x(天)的函数关系的大致图象是【】A、B、C、D、15. (2012重庆市4分)2012年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为S.下面能反映S与t的函数关系的大致图象是【】A.B.C.D.二、填空题2,斜边AB在x轴1. (重庆市2004年4分)如图,在△ABC中,∠ACB=900,AC=5上,点C在y轴的正半轴上,点A的坐标为(2,0)。
则直角边BC所在直线的解析式为▲ 。
2. (重庆市课标卷2005年3分)已知甲运动方式为:先竖直向上运动1个单位长度后,再水平向右运动2个单位长度;乙运动方式为:先竖直向下运动2个单位长度后,再水平向左运动3个单位长度.在平面直角坐标系内,现有一动点P第1次从原点O出发按甲方式运动到点P1,第2次从点P1出发按乙方式运动到点P2,第3次从点P2出发再按甲方式运动到点P3,第4次从点P3出发再按乙方式运动到点P4,…….依此运动规律,则经过第11次运动后,动点P所在位置P11的坐标是▲.【答案】(-3,-4)。
【考点】探索规律题(图形的变化类),点的坐标。
【分析】先根据P点运动的规律求出经过第11次运动后分别向甲,向乙运动的次数,再分别求出其横纵坐标即可:由题意:动点P 经过第11次运动,那么向甲运动了6次,向乙运动了5次,横坐标即为:2×6-3×5=-3,纵坐标为:1×6-2×5=-4,即P 11的坐标是(-3,-4)。
3. (重庆市2007年3分)若点M (12a 1) ,在第四象限内,则a 的取值范围是 ▲ .4. (重庆市2007年3分)已知:如图,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A ,C 的坐标分别为A (100),,C (04),,点D 是OA 的中点,点P 在BC 边上运动.当ODP △是腰长为5的等腰三角形时,点P 的坐标为 ▲ .【答案】(3,4)或(2,4)或(7,4)。
【考点】动点问题,点的坐标,矩形的性质,等腰三角形的判定,勾股定理,分类思想的应用。
【分析】分OP=OD=5和PD=OD=5两种情况讨论:若OP=OD=5,如图,以点O 为圆心OD=5为半径画圆交BC 于点P ,过点P 作PE ⊥OA 于点E 。
则根据勾股定理,得OE=3。
∴P (3,4)。
若PD=OD=5,如图,以点D 为圆心OD=5为半径画圆交BC 于点P ,过点D 作DF ⊥BC 于点F 。
则根据勾股定理,得PF=3。
∴CP=5-3=2或CP=5+3=7。
∴P (2,4)或(7,4)。
综上所述,当ODP△是腰长为5的等腰三角形时,点P的坐标为(3,4)或(2,4)或(7,4)。
三、解答题1. (重庆市2004年12分)如图,在直角坐标系中,正方形ABOD的边长为a,O为原点,点B在x轴的负半轴上,点D在y轴的正半轴上,直线OE的解析式为y2x=,直线CF过x轴上的一点C(3a5-,0)且与OE平行,现正方形以每秒a10的速度匀速沿x轴正方向平行移动,设运动时间为t秒,正方形被夹在直线OE和CF间的部分的面积为S。
(1)当0≤t<4时,写出S与t的函数关系式。
(2)当4≤t≤5时,写出S与t的函数关系式,在这个范围内S有无最大值?若有,请求出最大值,若没有请说明理由。
其面积为:平行四边形COPG-△NPQ的面积。
∵CO=3a5,OD=a,∴四边形COPG面积=23a5。
又∵点P的纵坐标为a,代入y=2x得P(1a2,a),∴DP=1a 2,NP=a a t 210-。
由y=2x 知:NQ=2NP ,∴△NPQ 面积=21a a NP NQ t 2210⋅⋅=-()。
∴S=22222223a a 3a a a t a 5t [605t ]52105100100--=--=--()()()。
【考点】二次函数综合题,平移问题,二次函数的最值。
【分析】(1)易知BC= 52a ,根据时间的取值范围和正方形的速度可知当0≤t <4时,B 位于C 点左侧.那么重合部分的多边形的面积可用平行四边形的面积-△NPQ 的面积来求解.可先求出P 、C 的坐标,然后根据△PNQ 与△PDO 相似,用相似比求出面积比,进而得出△PNQ 的面积.然后按上面所说的多边形的面积计算方法得出S ,t 的函数关系式。