2014年高考数学试题分类汇编 D数列

合集下载

2014高考数列真题汇编

2014高考数列真题汇编

2014高考数列真题汇编一、选择题1.在等差数列{a n }中,若a 2+2a 6+a 10=120,则a 3+a 9等于 ( )A .30B .40C .60D .802.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列,若a 1=1,则S 4等于 ( )A .7B .8C .15D .163.等比数列{a n }中,a 1=512,公比q =-12,用Πn 表示它的前n 项之积:Πn =a 1·a 2·…·a n ,则Πn 中最大的是 ( )A .Π11B .Π10C .Π9D .Π84.设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1f (n )(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1C.n n -1D.n +1n 5.如果数列{a n }满足a 1=2,a 2=1,且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2,n ∈N *),则这个数列的 第10项等于 ( ) A.1210 B.129 C.110 D.156.数列{a n }中,a 1=1,a n 、a n +1是方程x 2-(2n +1)x +1b n=0的两个根,则数列{b n }的前 n 项和S n = ( )A.12n +1B.1n +1C.n 2n +1D.n n +1二、填空题7.数列{a n }的构成法则如下:a 1=1,如果a n -2为自然数且该自然数之前未出现过,则 用递推公式a n +1=a n -2,否则用递推公式a n +1=3a n ,则a 6=________.8.已知数列{a n }满足a n +1a n=n +2n (n ∈N *),且a 1=1,则a n =________. 9.如图,它满足:(1)第n 行首尾两数均为n ;(2)图中的递推关系类似杨辉三角,则第n (n ≥2)行的第2个数是________.10.对正整数n ,设曲线y =x n (1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n +1的前n 项和的公式是________.三、解答题11.等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列, b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)求1S 1+1S 2+…+1S n的值.12.已知数列{a n }满足a 1=0,a 2=2,且对任意m ,n ∈N *都有a 2m -1+a 2n -1=2a m +n -1+2(m -n )2.(1)求a 3,a 5; (2)设b n =a 2n +1-a 2n -1(n ∈N *),证明:{b n }是等差数列;13.已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.14.在等比数列{a n }中,a 2=3,a 5=81.(1)求a n ; (2)设b n =log 3a n ,求数列{b n }的前n 项和S n .15.已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式. (2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.16. 已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *.(1)求数列{a n }的通项公式; (2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.17. 数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.(1)设b n =a n +1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.18. 已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根.(1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.。

2014年高考理科数学真题分类——数列

2014年高考理科数学真题分类——数列

2014年高考数学真题汇编——数列一.选择题1. (2014大纲)等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( )A .6B .5C .4D .3【答案】C .2. (2014重庆)对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列248.,,C a a a 成等比数列 239.,,D a a a 成等比数列【答案】D【解析】.∴D 选要求角码成等差3. (2014北京)设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件.C 充分必要条件 .D 既不充分也不必要条件D试题分析:对等比数列}{n a ,若1>q ,则当0,1a 时数列}{n a 是递减数列;若数列}{n a 是递增数列,则4. (2014福建)等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ).8A .10B .12C .14DC5. (2014辽宁)设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( )A .0d <B .0d >C .10a d <D .10a d >【答案】C【解析】 ..0.00;00:.,1111111C d a d a d a a a a a a a n n n 选且或且分情况解得即递减由同增异减知,<∴><<><+二.填空题1. (2014江苏) 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 ▲ .2(2014安徽)数列{}n a 是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q= . 12.13(2014北京)若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.4(2014广东)若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= .51011912101112202019151201011:50,,ln ln ln ,ln ln ln ,220ln 20ln 20ln 100,50.a a a a a a e S a a a S a a a S a a a a e S =∴==+++=+++∴====∴=答案提示:设则5 (2014天津)设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a 的值为__________. 【答案】21-【解析】 解:12-依题意得2214S S S =,所以()()21112146a a a -=-,解得112a =-.6. (2014上海)设无穷等比数列{n a }的公比为q ,若)(lim 431 ++=∞→a a a n ,则q= 。

专题21 数列解答题丨十年(2014-2023)高考数学真题分项汇编(解析版)(共84页)

专题21 数列解答题丨十年(2014-2023)高考数学真题分项汇编(解析版)(共84页)

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好! 经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!1十年(2014-2023)高考真题分项汇编—数列解答题目录题型一:数列的概念和通项公式...............................................................1题型二:等差数列的定义与性质...............................................................9题型三:等比数列的定义与性质.............................................................12题型四:数列的求和..................................................................................13题型五:数列中的新定义问题.................................................................15题型六:数列中的证明问题.....................................................................45题型七:数列与其他知识的交汇.............................................................62题型八:数列的综合应用. (81)题型一:数列的概念和通项公式1.(2021年新高考Ⅰ卷·第17题)已知数列{}n a 满足11a =,11,,2,.n n n a n a a n +⎧+=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.【答案】122,5b b ==;300.解析:(1)由题设可得121243212,1215b a a b a a a ==+===+=++=又22211k k a a ++=+,2122k k a a +=+,故2223k k a a +=+即13n n b b +=+即13n n b b +-=所以{}n b 为等差数列,故()21331n b n n =+-⨯=-.(2)设{}n a 的前20项和为20S ,则2012320S a a a a =++++ ,因为123419201,1,,1a a a a a a =-=-=- ,所以()20241820210S a a a a =++++- ()1291091021021023103002b b b b ⨯⎛⎫=++++-=⨯⨯+⨯-= ⎪⎝⎭.2.(2014高考数学湖南理科·第20题)已知数列{}n a 满足*+∈=-=N n p a a a nn n ,,111,(Ⅰ)若{}n a 是递增数列,且3213,2,a a a 成等差数列,求p 的值;(Ⅱ)若21=p ,且{}12-n a 是递增数列,{}n a 2是递减数列,求数列{}n a 的通项公式.【答案】(1)13p =(2)141(1)332nn n a --=+⋅解析:(I)因为{}n a 是递增数列,所以11nn n n n a a a a p ++-=-=。

2014年全国高考试卷数列部分汇编

2014年全国高考试卷数列部分汇编

2014年全国高考试卷数列部分汇编1. (2014安徽理12)数列{}n a 是等差数列,若135135a a a +++,,构成公比为q 的等比数列,则q =________. 【解析】1 设{}n a 的公差为d ,则315131225144a a d a a d +=++++=+++,,由题意可得23(3)a+=15(1)(5)a a ++.∴2111[(1)2(1)](1)[(1)4(1)]a d a a d +++=++++,∴2221111(1)4(1)(1)[2(1)](1)4(1)(1)a d a d a a d ++++++=++++, ∴1d =-,∴3131a a +=+,∴公比31311a qa +==+. 2. (2014安徽文12)如图,在等腰直角三角形ABC 中,斜边22BC =,过点A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1A C 的垂线,垂足为3A ;…,依此类推,设1BA a =,12123567AA a A A a A A a ===,,…,,则7a =______________.【解析】 14由22BC =得112123222212AB a AA a A A a ==Þ==Þ==´=,由此可归纳出{}n a 是以12a =为首项,22为公比的等比数列,因此667121224a a q æö=´=´=ç÷ç÷èø.3. (2014安徽文18)数列{}n a 满足111(1)(1)n n a na n a n n n *+=,=+++,ÎN .⑴证明:数列n a n ìüíýîþ是等差数列;是等差数列;⑵设3nnnb a =×,求数列{}nb 的前n 项和nS .【解析】 ⑴ 由已知可得111n n a a n n +=++,即111n n a a n n+-=-. 所以n a n ìüíýîþ是以111a =为首项,1为公差的等差数列. ⑵ 由⑴得()111na n n n=+-×=,所以2n a n =. 从而3nn b n =×. 1231323333nn S n =×+×+×++×,①()23131323133n nn S n n +=×+×++-×+×.② A 1A 4A 3A 2第(12)题图ABC①-②得12123333n n n S n +-=+++-×()()1131312333132nn nn n n ++×--×-=-×=-..所以()121334nn n S +-×+=.评析 本题考查等差数列定义的应用,错位相减法求数列的前n 项和,解题时利用题⑴提示对递推关系进行变形是关键.4. (2014北京理5)设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a ”为递增数列的(”为递增数列的( ) A .充分而不必要条件 B .必要而不充分条件.必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件.既不充分也不必要条件 【解析】D 对于等比数列{}na ,若1q >,则当10a <时有{}na 为递减数列.故“1q >”不能推出“{}n a 为递增数列”.若{}n a 为递增数列,则{}n a 有可能满足10a <且01q <<,推不出1q >. 综上,“1q >”为“{}n a 为递增数列”的既不充分也不必要条件,即选D .5. (2014北京理12)若等差数列{}n a 满足7890a a a ++> ,7100a a +<,则当n =____时,{}n a 的前n 项和最大.最大.【解析】8 由等差数列的性质,78983a a a a ++=,71089a a a a +=+,于是有80a >,890a a +<,故90a <.故87S S >,98S S <,8S 为{}n a 的前n 项和n S 中的最大值6. (2014北京文15)已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -为等比数列.为等比数列.⑴求数列{}n a 和{}n b 的通项公式;的通项公式; ⑵求数列{}n b 的前n 项和.项和.【解析】 ⑴ 设等差数列{}n a 的公差为d ,由题意得41123333a a d --===所以()()11312n a a n d n n =+-==,,.设等比数列{}n n b a -的公比为q ,由题意得344112012843b a qb a --===--,解得2q =. 所以()11112n n n n b a b a q ---=-=. 从而()13212n n b n n -=+=,, ⑵ 由⑴知()13212n nn b n n -=+=,,.数列{}3n 的前n 项和为()312n n +,数列{}12n -的前n 项和为1212112nn -=--×.所以,数列{}n b 的前n项和为()31212n n n ++-.7. (2014大纲理10)等比数列{}n a 中,4525a a ==,,则数列{}lg n a 的前8项和等于(项和等于() A .6 B .5 C .4 D .3【解析】C8. (2014大纲理18)等差数列{}n a 的前n 项和为n S ,已知110a =,2a 为整数,且4n S S ≤⑴求{}n a 的通项公式;的通项公式; ⑵设11n n n b a a +=,求数列{}n b 的前n 项和n T . 【解析】 ⑴ 由110a =,2a 为整数知,等差数列{}n a 的公差d 为整数.又4n S S … 故4500a a ,厔于是10301040d d ++≥,≤ 解得10532d --≤≤. 因此3d =-.数列{}n a 的通项公式为133n a n =-.⑵ ()()1111331033103133n b n n n n æö==-ç÷----èø1.于是12n T b b =++…nb 1111111371047103103n n éùæöæöæö=-+-+-ç÷ç÷ç÷êú--èøèøèøëû…+ 111310310n æö=-ç÷-èø()10103n n =-.9. (2014大纲文8)设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S =( ) A .31 B .32 C .63 D .64 【解析】C 10. (2014大纲文17)数列{}n a 满足12211222n n na a a a a ++===-+,, ⑴设1nn nb a a +=-,证明{}nb 是等差数列;是等差数列;⑵求{}n a 的通项公式.的通项公式.【解析】 ⑴ 由2122n n n a a a ++=-+得2112n n n n a a a a +++-=-+ 即12n n b b +=+又1211b a a =-=所以{}n b 是首项为1,公差为2的等差数列. ⑵ 由⑴得12(-1)n b n =+ 即+121n n a a n -=- 于是111()(21)nnk k k k aa k +==-=-åå所以211n a a n +-=,即211n a n a +=+.又11a =,所以{}n a 的通项公式为222n a n n =-+.11. (2014福建理3)等差数列{}n a 的前n 项和n S ,若13212a S ==,,则6a =( ) A .8B .10C .12D .14【解析】C12. (2014福建文17)在等比数列{}n a 中,25381a a ==,.⑴求n a ;⑵设3log n n b a =,求数列{}n b 的前n 项和n S .【解析】 本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力,考查化归与转化思想.⑴ 设{}n a 公比为q ,依题意得141381a q a q =ìïí=ïî,, 解得113a q =ìí=î,.因此,13nn a -=.⑵ 因为3log 1n n b a n ==-,所以数列{}n b 的前n 项和21()=22n nn b b n n S +-=.13. (2014广东理13)若等比数列{}n a 的各项均为正数,且510119122e a a a a +=,则1220l n l n l n a a a +++=__________.【解析】50. 由等比数列性质可知,51202193189121011e a a a a a a a a a a =====,可求得1220120219912l n l n l n l n l n l n l n 10550a a a a a a a a a a a +++=++++=´=. 14. (2014广东理19) 设数列{}n a 的前n 项和为n S ,满足21234n n S na n n +=--,*n ÎN ,且315S =.⑴求1a ,2a ,3a 的值;的值;⑵求数列{}n a 的通项公式.的通项公式.【解析】 ⑴ 取2n =得到23420S a =-,又233315S S a a =-=-,于是3342015a a -=-,得37a =取1n =得到11227a S a ==-,又1322158a a a a =--=-, 于是22212785,3a a a a -=-Þ==;⑵ 猜测21na n =+,用归纳法证明:1°1n =时,显然成立;2°假设n k =时,成立,即21k a k =+;3°由22111(1)23432234232k k k k k k S ka k k k ka k k a k +++-=--Þ+×=--Þ=+; 故结论成立,即21n a n =+.15. (2014广东文13)等比数列{}n a 的各项均为正数,且154a a =,则2122232425l og l o g l o g l o g l o g a a a a a ++++=_____.【解析】5. 16. (2014广东文19)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足满足222(3)3()0n n S n n S n n n *-+--+=ÎN ,.⑴求1a 的值;的值;⑵求数列{}n a 的通项公式;的通项公式;⑶证明:对一切正整数n ,有()()()112211111113nna a a a a a+++<+++. 【解析】 ⑴ ∵()()222330n n S n n S n n -+--+=,∴令1n =,得21160a a +-=,解得12a =得13a =-. 又0na >,∴12a =.⑵ 由()()222330n n S n n S n n -+--+=,得()()230n n S n n S éù-++=ëû, 又0n a >,所以30n S +≠,所以2n S n n =+,所以当2n ≥时,()221112n n n a S S n n n n n -éù=-=+--+-=ëû,又由⑴知,12a =,符合上式.所以2n a n =.⑶ 由⑵知,()()111221n n a a n n =++, 所以()()()1122111111n n a a a a a a ++++++… ()1112345221n n =+++´´+…()()11112335572121n n <++++´´´-+…111111116235572121n n éùæöæöæö<+-+-++-ç÷ç÷ç÷êú-+èøèøèøëû… 111162321n æö=+-ç÷+èø11116233<+´=17. (2014湖北理18文19)已知等差数列{}n a 满足:12a =,且125a a a ,,成等比数列.成等比数列.⑴求数列{}n a 的通项公式.的通项公式.⑵记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+?若存在,求n 的最小值;若不存在,说明理由.小值;若不存在,说明理由.【解析】 ⑴ 设数列{}n a 的公差为d ,依题意,2224d d ++,,成等比数列,故有 2(2)2(24)d d +=+,化简得240d d -=,解得0d =或4d =.当0d =时,2na =;当4d =时,2(1)442n a n n =+-×=-,从而得数列{}n a 的通项公式为2n a =或42n a n =-. ⑵ 当2na =时,2nS n =.显然260800n n +<,此时不存在正整数n ,使得60800n S n >+成立.当42na n =-时,[]22(42)22n n n S n +-==.令2260800n n >+,即2304000n n -->,解得40n >或10n <-(舍去),此时存在正整数n ,使得60nS n >+800成立,n 的最小值为41.综上,当2na =时,不存在满足题意的n ;当42na n =-时,存在满足题意的n ,其最小值为41.18. (2014湖南理20)已知数列{}n a 满足111||n n n a a a p +=-=,,*n ÎN .⑴若{}n a 是递增数列,且1a ,22a ,33a 成等差数列,求p 的值;的值;⑵若12p =,且{}21n a -是递增数列,{}2n a 是递减数列,求数列{}n a 的通项公式.的通项公式. 【解析】 ⑴ 因为数列{}n a 为递增数列,所以10n n a a +-≥,则11n nn n n n a a p a a p ++-=Þ-=,分别令12n =,可得22132a a p a a p -=-=,22311a p a p p Þ=+=++,, 因为12323a a a ,,成等差数列, 所以21343a a a =+()()224113130p p p p p Þ+=+++Þ-=13p Þ=或0, 当0p =时,数列n a 为常数数列不符合数列{}n a 是递增数列,所以13p =.⑵ 由题可得122122212121111222n n n n n n n n n a a a a a a +-++-+-=Þ-=-=,, 因为{}21n a -是递增数列且{}2n a 是递减数列,所以2121n n a a +->且222n n a a +<,则有22222122212121n nn n n n n n a a a a a a a a +-++-+-<-ìÞ->-í<î, 又因为2212112n n n a a ---=22212112n n n a a +++>-=,所以2210n n a a -->,即2212112n n n a a ---=, 同理可得2322212n n n n a a a a +++->-且2322212n n n n a a a a +++-<-,所以212212n nn a a +-=-,则当2n m =()*m ÎN 时,21324322123211111,2222m m m a a a a a a a a ---=-=--=-=,,,,这21m -个等式相加可得2113212422111111222222m m m a a --æöæö-=+++-+++ç÷ç÷èøèø212222111111111224224113321144m m m ----×-×=-=+×--22141332m m a -Þ=+×. 当21n m =+时,2132432122321111,2222m m m a a a a a a a a +-=-=--=-=-,,,,这2m 个等式相加可得2111321242111111222222m m m a a +-æöæö-=+++-+++ç÷ç÷èøèø2122211111111224224113321144m m m--×-×=-=-×-- 21241332m m a +=-×,当0m =时,11a =符合,故212241332m m a --=-×综上()1141332nn n a --=+×. 19. (2014湖南文16)已知数列{}n a 的前n 项和22n n n S n *+=ÎN ,.⑴求数列{}n a 的通项公式;的通项公式;⑵设()21nna n nb a =+-,求数列{}n b 的前2n 项和.项和.【解析】 ⑴ 当1n =时,111a S ==;当2n ≥时,()()2211122n n n n n n n aS Sn--+-+=-=-=. 故数列{}n a 的通项公式为n a n =. ⑵ 由⑴知,()21nn nb n =+-,记数列{}n b 的前2n 项和为2nT ,则()()122222212342nn T n =++++-+-+-+.记122222nA =+++,12342B n =-+-+-+,则()2212122212nn A +-==--,()()()1234212B n n n=-++-+++--+=éùëû. 故数列{}n b 的前2n 项和21222n n T A B n +=+=+-.20. (2014江苏理7)在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值为_____.【解析】 4设公比为q (0)q >,则由8642a a a =+得266622a a q a q =+,解得22q =,故4624a a q ==21. (2014江苏理20)设数列{}n a 的前n 项和为nS .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”. ⑴若数列{}n a 的前n 项和*2()n nS n =ÎN ,证明:{}n a 是“H 数列”; ⑵设{}n a 是等差数列,其首项11a =,公差0d <,若{}n a 是“H 数列”,求d 的值;的值;⑶证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}nc ,使得n n n a b c =+成立.成立.【解析】 ⑴ 当2n ≥时,111222n n n nnn a S S ---=-=-=当1n =时,112a S ==∴1n =时,11S a =,当2n ³时,1n n S a += ∴{}n a 是“H 数列”⑵1(1)(1)22n n n n n S na d n d --=+=+ 对*n "ÎN ,*m $ÎN 使n m S a =,即(1)1(1)2n n dn m d -+=+-取2n =得1(1)d m d +=-,12md =+∵0d <,∴2m <,又*m ÎN ,∴1m =,∴1d =- ⑶ 设{}na 的公差为d令111(1)(2)n b a n a n a =--=-,对*n "ÎN ,11n n b b a +-=-1(1)()n c n a d =-+,对*n "ÎN ,11n n c c a d +-=+则1(1)n n n b c a n d a +=+-=,且{}n b 、{}n c 为等差数列{}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+ 当1n =时1m =;当2n =时1m = 当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,*m ÎN 因此对n ",都可找到*m ÎN ,使n m T b =成立,即{}n b 为H 数列 {}n c 的前n 项和1(1)()2n n n R a d -=+,令1(1)()m n c m a d R =-+=,则(1)12n n m -=+ ∵对*n "ÎN ,(1)n n -是非负偶数,∴*m ÎN即对*n "ÎN ,都可找到*m ÎN ,使得n m R c =成立,即{}n c 为H 数列因此命题得证22. (2014江西理17)已知首项都是1的两个数列{}n a ,{}n b *0n b n ¹ÎN ,,满足11120n n n n n n a b a b b b +++-+=.⑴令n n na cb =,求数列{}nc 的通项公式;的通项公式;⑵若13n n b -=,求数列{}n a 的前n 项和n S .【解析】 ⑴ 因为()*111200n n n n n n n a ba b b b b n +++-+=¹ÎN ,, 所以112n n n na ab b ++-=,即12n nc c +-= 所以数列{}n c 是以1为首项,2为公差的等差数列. 故21nc n =-.⑵ 由13n nb -=知()1213n n n n a c b n -==-,于是数列{}n a 的前n 项和()0121133353213n n S n -=×+×+×++-×…. ()()12131333233213n n n S n n -=×+×+-×+-×…+. 相减得()()()1212123332132223n n nn S n n --=+×++--×=---…+, 所以()131nn S n =-+.23. (2014江西文13)在等差数列{}n a 中,17a =,公差为d ,前n 项和为n S ,当且仅当8n =时n S 取最大值,取最大值,则则d 的取值范围_________. 【解析】 718æö--ç÷èø, 24. (2014江西文17) 已知数列{}n a 的前n 项和232n n nS n *-=ÎN ,. ⑴求数列{}n a 的通项公式;的通项公式;⑵证明:对任意1n >,都有m *ÎN ,使得1n m a a a ,,成等比数列.成等比数列.【解析】 ⑴ 由232n n nS -=得111a S ==,当2n ≥时,132n n n a S S n -=-=-.所以数列{}na 的通项公式为32na n =-.⑵ 要使1n m a a a ,,成等比数列,只需要21n m a a a =×,即()()232132n m-=×-,即2342m n n =-+,而因此时m *ÎN ,且m n >,所以对任意的1n >,都存在m *ÎN ,使得1n m a a a ,,成等比数列.25. (2014辽宁理8文9) 设等差数列{}n a 的公差为d .若数列{}12n a a 为递减数列,则()为递减数列,则()A .0d <B .0d >C .10a d <D .10a d >【解析】C 26. (2014山东理19)已知等差数列{}n a 的公差为2,前n 项和为n S ,且124S S S ,,成等比数列.⑴求数列{}n a 的通项公式;的通项公式;⑵令114(1)n n n n n b a a -+=-,求数列{}n b 的前n 项和n T . 【解析】 ⑴ 1121412S S 246d a a d S a d ===+=+,,,124S S S ,,成等比数列,2214S S S \=解得1121n a a n =\=-,⑵111411(1)(1)()2121n n n n n n b a a n n --+=-=-+-+ 当n 为偶数时,111111111(1)()()()()3355723212121nT n n n n =+-+++-++-+---+1212121n nT n n \=-=++ 当n 为奇数时,111111111(1)()()()()3355723212121n T n n n n =+-+++--+++---+12212121n n T n n +\=+=++2212221n n n n T n n n ìïï+\=í+ï+î,为偶数,为奇数27. (2014山东文19)在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项.的等比中项.⑴求数列{}na 的通项公式;的通项公式;⑵设(1)2n n n b a +=,记1234(1)n n n T b b b b b =-+-+-+-…,求n T .【解析】 ⑴ 由题意知{}n a 为等差数列,设1(1)n a a n d =+-,2a 为1a 与4a 的等比中项2214a a a \=´且()()2111103a a d a a d ¹Þ+=+,2d =解得:12a =()2122n a n n \=+-´=.⑵ 由⑴知:2n a n =,∴()()121n n n b a n n +==+①当n 为偶数时:()()()()()()()()()()2122334+1213435+11224262+22246+222222n T n n n n n n n nn n n=-´+´-´++=´-++-++--++éùëû=´+´+´+´=´++++×+=´=②当n 为奇数时:()()()()()()()()()()()()()21223341213435+(1)21224262+(1)212246+111212122122n T n n n n n n n n n n n n n n n n n n n =-´+´-´+-+=´-++-++---+-+éùëû=´+´+´+-´-+=´+++--+-+-×++=´-+=-综上:2221222n n n n T n n n ì++-ïï=í+ïïî为为数,奇数,偶.28. (2014陕西文8) 原命题为“若12n n n a aa ++<,+n N ∈”,则{}n a 为递减数列,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( ) A .真,真,真.真,真,真 B .假,假,真.假,假,真 C .真,真,假.真,真,假 D .假,假,假.假,假,假【解析】A 29. (2014上海理23)已知数列{}n a 满足1133n n n a a a +≤≤,*n ÎN ,11a =。

2014年高考数学(理)试题分项版解析专题06数列(分类汇编)Word版含解析

2014年高考数学(理)试题分项版解析专题06数列(分类汇编)Word版含解析

1. 【2014高考北京版理第5题】设{}n a 是公比为q 的等比数列,则“1>q ”是“{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2. 【2014高考福建卷第3题】等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ).8A .10B .12C .14D3. 【2014高考江苏卷第7题】在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是 .4. 【2014辽宁高考理第8题】设等差数列{}n a 的公差为d ,若数列1{2}n a a 为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d >5. 【2014重庆高考理第2题】对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列248.,,C a a a 成等比数列 369.,,D a a a 成等比数列6. 【2014天津高考理第11题】设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a 的值为__________.7. 【2014大纲高考理第10题】等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( )A .6B .5C .4D .3【答案】C .8. 【2014高考广东卷理第13题】若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= .9. 【2014高考安徽卷理第12题】数列{}n a 是等差数列,若1351,3,5a a a +++构成公比为q 的等比数列,则q =________.10. 【2014高考北京版理第12题】若等差数列{}n a 满足7897100,0a a a a a ++>+<,则当n = 时,{}n a 的前n 项和最大.【答案】8。

2014年高考数学分类汇编(数列),教师版

2014年高考数学分类汇编(数列),教师版

2014年全国高考数学试题分类汇编(数列)1.【2014·陕西卷(理文4)】根据右边框图,对大于2的整数N , 得出数列的通项公式是( ).2n Aa n = .2(1)n B a n =-.2n n C a = 1.2n n D a -=【答案】C2.【2014·安徽卷(文12)】如图,在等腰直角三角形ABC中,斜边BC =A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1A C 的垂线,垂足为3A ;…,以此类推,设1BA a =,12AA a =,123A A a =,…,567A A a =,则7a =_____ ___.【答案】143.【2014·江西卷(文13)】在等差数列{}n a 中,17a =,公差为d ,前n 项和为n S ,当且仅当8n =时n S 取最大值,则d 的取值范围_________. 【答案】718d -<<-4.【2014·全国卷Ⅰ(理17)】已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数.(Ⅰ)证明:2n n a a λ+-=;(Ⅱ)是否存在λ,使得{n a }为等差数列?并说明理由.【解析】:(Ⅰ)由题设11n n n a a S λ+=-,1211n n n a a S λ+++=-,两式相减()121n n n n a a a a λ+++-=,由于0n a ≠,所以2n n a a λ+-= …………6分(Ⅱ)由题设1a =1,1211a a S λ=-,可得211a λ=-,由(Ⅰ)知31a λ=+BA 1C第12题图AA 2A 3 A 4A 5A6假设{n a }为等差数列,则123,,a a a 成等差数列,∴1322a a a +=,解得4λ=; 证明4λ=时,{n a }为等差数列:由24n n a a +-=知数列奇数项构成的数列{}21m a -是首项为1,公差为4的等差数列2143m a m -=- 令21,n m =-则12n m +=,∴21n a n =-(21)n m =- 数列偶数项构成的数列{}2m a 是首项为3,公差为4的等差数列241m a m =- 令2,n m =则2nm =,∴21n a n =-(2)n m = ∴21n a n =-(*n N ∈),12n n a a +-=因此,存在存在4λ=,使得{n a }为等差数列. ………12分 5.【2014·全国卷Ⅱ(理17)】已知数列{}n a 满足1a =1,131n n a a +=+. (Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1231112na a a ++<…+.【解析】 (1)的等比数列。

2014-2019年高考数学真题分类汇编专题7:数列2(基础解答题)带详细答案

2014-2019年高考数学真题分类汇编专题7:数列2(基础解答题)带详细答案

2014-2019年高考数学真题分类汇编 专题7:数列(基础解答题)1.(2014•新课标Ⅱ理)已知数列{}n a 满足11a =,131n n a a +=+. (Ⅰ)证明1{}2n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1211132n a a a ++⋯+<.【考点】等比数列的性质;数列的求和【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即1n nb b +=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{}n a 的通项公式; (Ⅱ)将1na 进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式. 【解答】证明(Ⅰ)1111313()2223111222n n n n n n a a a a a a +++++===+++, 113022a +=≠, ∴数列1{}2n a +是以首项为32,公比为3的等比数列; 11333222n n n a -∴+=⨯=,即312n n a -=; (Ⅱ)由(Ⅰ)知1231n n a =-,当2n …时,13133n n n -->-,∴11122131333n n n n n a --=<=--, ∴当1n =时,11312a =<成立, 当2n …时,211211()11111131331(1)133323213nn n n a a a --++⋯+<+++⋯+==-<-. ∴对n N +∈时,1211132n a a a ++⋯+<. 【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.2.(2014•新课标Ⅰ文)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根. (1)求{}n a 的通项公式; (2)求数列{}2nna 的前n 项和. 【考点】等差数列的通项公式;数列的求和【分析】(1)解出方程的根,根据数列是递增的求出2a ,4a 的值,从而解出通项; (2)将第一问中求得的通项代入,用错位相减法求和.【解答】解:(1)方程2560x x -+=的根为2,3.又{}n a 是递增的等差数列, 故22a =,43a =,可得21d =,12d =, 故112(2)122n a n n =+-⨯=+, (2)设数列{}2nna 的前n 项和为n S , 3112123122222n n n n na a a a a S --=+++⋯++,① 311223411222222n n n n n a a a a a S -+=+++⋯++,② ①-②得1123411311(1)111111242()1222222222212n n n n n n n a a a S d -++-=++++⋯+-=+⨯--, 解得11131124(1)222222n n n n n n S -++++=+--=-. 【点评】本题考查等的性质及错位相减法求和,是近几年高考对数列解答题考查的主要方式.3.(2014•新课标Ⅰ理)已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数. (Ⅰ)证明:2n n a a λ+-=(Ⅱ)是否存在λ,使得{}n a 为等差数列?并说明理由. 【考点】等差数列的性质;数列递推式【分析】(Ⅰ)利用11n n n a a S λ+=-,1211n n n a a S λ+++=-,相减即可得出;(Ⅱ)假设存在λ,使得{}n a 为等差数列,设公差为d .可得2211()()2n n n n n n a a a a a a d λ++++=-=-+-=,2d λ=.得到222()2442n S n n λλλλλ=+-+-,根据{}n a 为等差数列的充要条件是0202λλ≠⎧⎪⎨-=⎪⎩,解得λ即可.【解答】(Ⅰ)证明:11n n n a a S λ+=-,1211n n n a a S λ+++=-,121()n n n n a a a a λ+++∴-= 10n a +≠,2n n a a λ+∴-=.(Ⅱ)解:假设存在λ,使得{}n a 为等差数列,设公差为d . 则2211()()2n n n n n n a a a a a a d λ++++=-=-+-=,∴2d λ=.∴(1)12n n a λ-=+,112n na λ+=+,222(1)1[1][1]()222442n n n S n n λλλλλλλ-∴=+++=+-+-,根据{}n a 为等差数列的充要条件是0202λλ≠⎧⎪⎨-=⎪⎩,解得4λ=. 此时可得2n S n =,21n a n =-. 因此存在4λ=,使得{}n a 为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n 项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题. 4.(2014•大纲版文)数列{}n a 满足11a =,22a =,2122n n n a a a ++=-+. (Ⅰ)设1n n n b a a +=-,证明{}n b 是等差数列;(Ⅱ)求{}n a 的通项公式. 【考点】等差数列的性质;等差数列的通项公式;数列递推式【分析】(Ⅰ)将2122n n n a a a ++=-+变形为:2112n n n n a a a a +++-=-+,再由条件得12n n b b +=+,根据条件求出1b ,由等差数列的定义证明{}n b 是等差数列;(Ⅱ)由(Ⅰ)和等差数列的通项公式求出n b ,代入1n n n b a a +=-并令n 从1开始取值,依次得(1)n -个式子,然后相加,利用等差数列的前n 项和公式求出{}n a 的通项公式n a . 【解答】解:(Ⅰ)由2122n n n a a a ++=-+得, 2112n n n n a a a a +++-=-+,由1n n n b a a +=-得,12n n b b +=+,即12n n b b +-=, 又1211b a a =-=,所以{}n b 是首项为1,公差为2的等差数列.(Ⅱ)由(Ⅰ)得,12(1)21n b n n =+-=-, 由1n n n b a a +=-得,121n n a a n +-=-,则211a a -=,323a a -=,435a a -=,⋯,12(1)1n n a a n --=--, 所以,11352(1)1n a a n -=+++⋯+-- 2(1)(123)(1)2n n n -+-==-,又11a =,所以{}n a 的通项公式22(1)122n a n n n =-+=-+.【点评】本题考查了等差数列的定义、通项公式、前n 项和公式,及累加法求数列的通项公式和转化思想,属于中档题.5.(2014•大纲版理)等差数列{}n a 的前n 项和为n S ,已知113a =,2a 为整数,且4n S S …. (1)求{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 【考点】数列的求和【分析】(1)通过4n S S …得40a …,50a …,利用113a =、2a 为整数可得4d =-,进而可得结论; (2)通过133n a n =-,分离分母可得111()3133103n b n n=---,并项相加即可.【解答】解:(1)在等差数列{}n a 中,由4n S S …得: 40a …,50a …,又113a =,∴13301340d d +⎧⎨+⎩……,解得131334d --剟,2a 为整数,4d ∴=-,{}n a ∴的通项为:174n a n =-;(2)174n a n =-, 111111()(174)(214)4417421n n n b a a n n n n +∴===------, 于是12n n T b b b =++⋯⋯+1111111[()()()]41317913417421n n =--+-+⋯⋯+-------111()441717n =----17(174)n n =-. 【点评】本题考查求数列的通项及求和,考查并项相加法,注意解题方法的积累,属于中档题.6.(2014•北京文)已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -为等比数列.(1)求数列{}n a 和{}n b 的通项公式;(2)求数列{}n b 的前n 项和. 【考点】数列的求和【分析】(1)利用等差数列、等比数列的通项公式先求得公差和公比,即得结论; (2)利用分组求和法,有等差数列及等比数列的前n 项和公式即可求得数列的和. 【解答】解:(1){}n a 是等差数列,满足13a =,412a =, 3312d ∴+=,解得3d =, 3(1)33n a n n ∴=+-⨯=.设等比数列{}n n b a -的公比为q ,则 344112012843b a q b a --===--,2q ∴=, 1111()2n n n n b a b a q --∴-=-=,132(1n n b n n -∴=+=,2,)⋯. (2)由(1)知132(1n n b n n -=+=,2,)⋯. 数列{}n a 的前n 项和为3(1)2n n +,数列1{2}n -的前n 项和为1212112nn -⨯=--,∴数列{}n b 的前n 项和为3(1)212n n n ++-.【点评】本题考查数列的通项公式和前n 项和的求法,是中档题,解题时要认真审题,注意等差数列和等比数列的性质的合理运用.7.(2014•安徽文)数列{}n a 满足11a =,1(1)(1)n n na n a n n +=+++,*n N ∈. (Ⅰ)证明:数列{}n an是等差数列;(Ⅱ)设3n n n b a =,求数列{}n b 的前n 项和n S .【考点】等比数列的性质;数列的求和【分析】(Ⅰ)将1(1)(1)n n na n a n n +=+++的两边同除以(1)n n +得111n na a n n+=++,由等差数列的定义得证.(Ⅱ)由(Ⅰ)求出33nn n n b a n ==,利用错位相减求出数列{}n b 的前n 项和n S .【解答】证明(Ⅰ)1(1)(1)n n na n a n n +=+++,∴111n n a a n n +=++,∴111n n a an n+-=+, ∴数列{}na n是以1为首项,以1为公差的等差数列; (Ⅱ)由(Ⅰ)知,1(1)1n a n n n=+-=,∴2n a n =, 33nn n n b a n ==,∴231132333(1)33n n n S n n -=⨯+⨯+⨯+⋯+-+①23413132333(1)33n n n S n n +=⨯+⨯+⨯+⋯+-+② ①-②得2323333n S -=+++⋯+13n n n +-1133313n n n ++-=--1123322n n +-=- ∴1213344n n n S +-=+【点评】本题考查利用等差数列的定义证明数列是等差数列;考查数列求和的方法:错位相减法.求和的关键是求出通项选方法.8.(2014•福建文)在等比数列{}n a 中,23a =,581a =. (Ⅰ)求n a ;(Ⅱ)设3log n n b a =,求数列{}n b 的前n 项和n S . 【考点】等差数列与等比数列的综合【分析】(Ⅰ)设出等比数列的首项和公比,由已知列式求解首项和公比,则其通项公式可求;(Ⅱ)把(Ⅰ)中求得的n a 代入3log n n b a =,得到数列{}n b 的通项公式,由此得到数列{}n b 是以0为首项,以1为公差的等差数列,由等差数列的前n 项和公式得答案. 【解答】解:(Ⅰ)设等比数列{}n a 的公比为q , 由23a =,581a =,得141381a q a q =⎧⎨=⎩,解得113a q =⎧⎨=⎩.∴13n n a -=; (Ⅱ)13n n a -=,3log n n b a =,∴1331n n b log n -==-.则数列{}n b 的首项为10b =, 由11(2)1(2)n n b b n n n --=---=…, 可知数列{}n b 是以1为公差的等差数列.∴1(1)(1)22n n n d n n S nb --=+=. 【点评】本题考查等比数列的通项公式,考查了等差数列的前n 项和公式,是基础的计算题. 9.(2014•湖北文)已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+?若存在,求n 的最小值;若不存在,说明理由.【考点】等差数列的性质;数列的求和【分析】(Ⅰ)设出数列的公差,利用等比中项的性质建立等式求得d ,则数列的通项公式可得. (Ⅱ)利用(Ⅰ)中数列的通项公式,表示出n S 根据60800n S n >+,解不等式根据不等式的解集来判断. 【解答】解:(Ⅰ)设数列{}n a 的公差为d ,依题意,2,2d +,24d +成比数列,故有2(2)2(24)d d +=+, 化简得240d d -=,解得0d =或4, 当0d =时,2n a =,当4d =时,2(1)442n a n n =+-=-.(Ⅱ)当2n a =时,2n S n =,显然260800n n <+, 此时不存在正整数n ,使得60800n S n >+成立, 当42n a n =-时,2[2(42)]22n n n S n +-==,令2260800n n >+,即2304000n n -->, 解得40n >,或10n <-(舍去),此时存在正整数n ,使得60800n S n >+成立,n 的最小值为41, 综上,当2n a =时,不存在满足题意的正整数n , 当42n a n =-时,存在满足题意的正整数n ,最小值为41【点评】本题主要考查了等差数列和等比数列的性质.要求学生对等差数列和等比数列的通项公式,求和公式熟练记忆.10.(2014•湖南文)已知数列{}n a 的前n 项和22n n n S +=,*n N ∈.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2(1)n a n n n b a =+-,求数列{}n b 的前2n 项和. 【考点】数列的求和;数列递推式【分析】(Ⅰ)利用公式法即可求得; (Ⅱ)利用数列分组求和即可得出结论. 【解答】解:(Ⅰ)当1n =时,111a s ==,当2n …时,221(1)(1)22n n n n n n n a s s n -+-+-=-=-=,∴数列{}n a 的通项公式是n a n =.(Ⅱ)由(Ⅰ)知,2(1)n n n b n =+-,记数列{}n b 的前2n 项和为2n T ,则1222(222)(12342)n n T n =++⋯++-+-+-⋯+2212(12)2212n n n n +-=+=+--.∴数列{}n b 的前2n 项和为2122n n ++-.【点评】本题主要考查数列通项公式的求法-公式法及数列求和的方法-分组求和法,考查学生的运算能力,属中档题.11.(2014•江西文)已知数列{}n a 的前n 项和232n n nS -=,*n N ∈.(1)求数列{}n a 的通项公式;(2)证明:对任意的1n >,都存在*m N ∈,使得1a ,n a ,m a 成等比数列. 【考点】等比数列的性质;数列递推式【分析】(1)利用“当2n …时,1n n n a S S -=-;当1n =时,11a S =”即可得出;(2)对任意的1n >,假设都存在*m N ∈,使得1a ,n a ,m a 成等比数列.利用等比数列的定义可得21nm a a a =,即2(32)1(32)n m -=⨯-,解出m 为正整数即可.【解答】(1)解:232n n nS -=,*n N ∈.∴当2n …时,22133(1)(1)3222n n n n n n n a S S n -----=-=-=-,(*)当1n =时,21131112a S ⨯-===.因此当1n =时,(*)也成立.∴数列{}n a 的通项公式32n a n =-.(2)证明:对任意的1n >,假设都存在*m N ∈,使得1a ,n a ,m a 成等比数列.则21nm a a a =,2(32)1(32)n m ∴-=⨯-, 化为2342m n n =-+, 1n >,22223423()133m n n n ∴=-+=-+>,因此对任意的1n >,都存在2*342m n n N =-+∈,使得1a ,n a ,m a 成等比数列.【点评】本题考查了递推式的意义、等差数列与等比数列的通项公式、二次函数的单调性等基础知识与基本技能方法,考查了恒成立问题的等价转化方法,考查了反证法,考查了推理能力和计算能力,属于难题.12.(2014•江西理)已知首项是1的两个数列{}n a ,{}(0n n b b ≠,*)n N ∈满足11120n n n n n n a b a b b b +++-+=. (1)令nn na b =ð,求数列{}n ð的通项公式; (2)若13n n b -=,求数列{}n a 的前n 项和n S . 【考点】数列的求和;数列递推式【分析】(1)由11120n n n n n n a b a b b b +++-+=,nn na b =ð,可得数列{}n ð是以1为首项,2为公差的等差数列,即可求数列{}n ð的通项公式; (2)用错位相减法来求和.【解答】解:(1)11120n n n n n n a b a b b b +++-+=,nn na b =ð, 120n n c +∴-+=ð,12n n c +∴-=ð,首项是1的两个数列{}n a ,{}n b ,∴数列{}n ð是以1为首项,2为公差的等差数列,21n n ∴=-ð;(2)13n n b -=,nn na b =ð,1(21)3n n a n -∴=-, 0111333(21)3n n S n -∴=⨯+⨯+⋯+-⨯,231333(21)3n n S n ∴=⨯+⨯+⋯+-⨯, 11212(33)(21)3n n n S n -∴-=++⋯+--, (1)31n n S n ∴=-+.【点评】本题为等差等比数列的综合应用,用好错位相减法是解决问题的关键,属中档题.13.(2014•浙江文)已知等差数列{}n a 的公差0d >,设{}n a 的前n 项和为n S ,11a =,2336S S =. (Ⅰ)求d 及n S ;(Ⅱ)求m ,*(,)k m k N ∈的值,使得1265m m m m k a a a a ++++++⋯+=. 【考点】等差数列的前n 项和;数列的求和【分析】(Ⅰ)根据等差数列通项公式和前n 项和公式,把条件转化为关于公差d 的二次方程求解,注意d 的范围对方程的根进行取舍;(Ⅱ)由(Ⅰ)求出等差数列{}n a 的通项公式,利用等差数列的前n 项和公式,对1265m m m m k a a a a ++++++⋯+=化简,列出关于m 、k 的方程,再由m ,*k N ∈进行分类讨论,求出符合条件的m 、k 的值.【解答】解:(Ⅰ)由11a =,2336S S =得, 12123()()36a a a a a +++=,即(2)(33)36d d ++=,化为23100d d +-=, 解得2d =或5-, 又公差0d >,则2d =, 所以2*1(1)()2n n n S na d n n N -=+=∈. (Ⅱ)由(Ⅰ)得,12(1)21n a n n =+-=-, 由1265m m m m k a a a a ++++++⋯+=得,(1)()652m m k k a a +++=,即(1)(21)65k m k ++-=,又m ,*k N ∈,则(1)(21)513k m k ++-=⨯,或(1)(21)165k m k ++-=⨯, 下面分类求解:当15k +=时,2113m k +-=,解得4k =,5m =;当113k +=时,215m k +-=,解得12k =,3m =-,故舍去; 当11k +=时,2165m k +-=,解得0k =,故舍去;当165k +=时,211m k +-=,解得64k =,31m =-,故舍去; 综上得,4k =,5m =.【点评】本题考查了等差数列的通项公式、前n 项和公式,及分类讨论思想和方程思想,难度较大,考查了分析问题和解决问题的能力.14.(2014•重庆文)已知{}n a 是首项为1,公差为2的等差数列,n S 表示{}n a 的前n 项和. (Ⅰ)求n a 及n S ;(Ⅱ)设{}n b 是首项为2的等比数列,公比为q 满足244(1)0q a q S -++=.求{}n b 的通项公式及其前n 项和n T .【考点】等差数列的性质;数列的求和【分析】(Ⅰ)直接由等差数列的通项公式及前n 项和公式得答案;(Ⅱ)求出4a 和4S ,代入244(1)0q a q S -++=求出等比数列的公比,然后直接由等比数列的通项公式及前n 项和公式得答案.【解答】解:(Ⅰ){}n a 是首项为1,公差为2的等差数列, 1(1)12(1)21n a a n d n n ∴=+-=+-=-.2(121)13(21)2n n n S n n +-=++⋯+-==; (Ⅱ)由(Ⅰ)得,47a =,416S =.244(1)0q a q S -++=,即28160q q -+=,2(4)0q ∴-=,即4q =. 又{}n b 是首项为2的等比数列,∴11211242n n n n b b q ---===. 1(1)2(41)13n nn b q T q -==--.【点评】本题考查等差数列的性质,考查了等差数列和等比数列的通项公式、前n 项和公式的求法,是基础题.15.(2015•新课标Ⅰ理)n S 为数列{}n a 的前n 项和,已知0n a >,2243nn n a a S +=+ ()I 求{}n a 的通项公式:(Ⅱ)设11n n n b a a +=,求数列{}n b 的前n 项和. 【考点】数列的求和;数列递推式【分析】()I 根据数列的递推关系,利用作差法即可求{}n a 的通项公式: (Ⅱ)求出11n n n b a a +=,利用裂项法即可求数列{}n b 的前n 项和. 【解答】解:()I 由2243n n n a a S +=+,可知2111243n n n a a S ++++=+两式相减得221112()4n n n n n a a a a a +++-+-=,即2211112()()()n n n n n n n n a a a a a a a a +++++=-=+-,0n a >,12n n a a +∴-=,2111243a a a +=+,11a ∴=-(舍)或13a =, 则{}n a 是首项为3,公差2d =的等差数列, {}n a ∴的通项公式32(1)21:n a n n =+-=+(Ⅱ)21n a n =+, 111111()(21)(23)22123n n n b a a n n n n +∴===-++++, ∴数列{}n b 的前n 项和1111111111()()23557212323233(23)n nT n n n n =-+-+⋯+-=-=++++. 【点评】本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键. 16.(2015•北京文)已知等差数列{}n a 满足1210a a +=,432a a -= (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等? 【考点】等差数列的性质【分析】()I 由432a a -=,可求公差d ,然后由1210a a +=,可求1a ,结合等差数列的通项公式可求 ()II 由238b a ==,3716b a ==,可求等比数列的首项及公比,代入等比数列的通项公式可求6b ,结合()I 可求【解答】解:()I 设等差数列{}n a 的公差为d . 432a a -=,所以2d =1210a a +=,所以1210a d +=14a ∴=, 42(1)22(1n a n n n ∴=+-=+=,2,)⋯()II 设等比数列{}n b 的公比为q , 238b a ==,3716b a ==,∴121816b q b q =⎧⎨=⎩2q ∴=,14b =∴61642128b -=⨯=,而12822n =+63n ∴=6b ∴与数列{}n a 中的第63项相等【点评】本题主要考查了等差数列与等比数列通项公式的简单应用,属于对基本公式应用的考查,试题比较容易.17.(2015•天津文)已知{}n a 是各项均为正数的等比数列,{}n b 是等差数列,且111a b ==,2332b b a +=,5237a b -=.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设n n n a b =ð,*n N ∈,求数列{}n ð的前n 项和. 【考点】等差数列与等比数列的综合【分析】(Ⅰ)设出数列{}n a 的公比和数列{}n b 的公差,由题意列出关于q ,d 的方程组,求解方程组得到q ,d 的值,则等差数列和等比数列的通项公式可求;(Ⅱ)由题意得到1(21)2n n c n -=-,然后利用错位相减法求得数列{}n ð的前n 项和. 【解答】解:(Ⅰ)设数列{}n a 的公比为q ,数列{}n b 的公差为d ,由题意,0q >, 由已知有24232310q d q d ⎧-=⎨-=⎩,消去d 整理得:42280q q --=.0q >,解得2q =,2d ∴=,∴数列{}n a 的通项公式为12n n a -=,*n N ∈;数列{}n b 的通项公式为21n b n =-,*n N ∈. (Ⅱ)由(Ⅰ)有1(21)2n n c n -=-, 设{}n ð的前n 项和为n S ,则01221123252(23)2(21)2n n n S n n --=⨯+⨯+⨯+⋯+-⨯+-⨯, 12312123252(23)2(21)2n n n S n n -=⨯+⨯+⨯+⋯+-⨯+-⨯,两式作差得:2311222(21)223(21)2(23)23n n n n n n S n n n +-=+++⋯+--⨯=---⨯=--⨯-.∴*(23)23,n n S n n N =-+∈.【点评】本题主要考查等差数列、等比数列及其前n 项和,考查数列求和的基本方法和运算求解能力,是中档题.18.(2015•天津理)已知数列{}n a 满足2(n n a qa q +=为实数,且1)q ≠,*n N ∈,11a =,22a =,且23a a +,34a a +,45a a +成等差数列(1)求q 的值和{}n a 的通项公式; (2)设2221log nn n a b a -=,*n N ∈,求数列{}n b 的前n 项和. 【考点】数列的求和【分析】(1)通过2n n a qa +=、1a 、2a ,可得3a 、5a 、4a ,利用23a a +,34a a +,45a a +成等差数列,计算即可;(2)通过(1)知12n n nb -=,*n N ∈,写出数列{}n b 的前n 项和n T 、2n T 的表达式,利用错位相减法及等比数列的求和公式,计算即可.【解答】解:(1)2(n n a qa q +=为实数,且1)q ≠,*n N ∈,11a =,22a =, 3a q ∴=,25a q =,42a q =,又23a a +,34a a +,45a a +成等差数列,22323q q q ∴⨯=++, 即2320q q -+=,解得2q =或1q =(舍),1222,2,n n n n a n -⎧⎪∴=⎨⎪⎩为奇数为偶数;(2)由(1)知2221121log 222n n n n n n a log nb a ---===,*n N ∈, 记数列{}n b 的前n 项和为n T , 则2321111111234(1)22222n n n T n n --=++++⋯+-+, 233211111222345(1)22222n n n T n n --∴=+++++⋯+-+, 两式相减,得232111111322222n n n T n --=++++⋯+- 2111[1()]12231212n n n ---=+--21113122n n n --=+--1242n n -+=-.【点评】本题考查求数列的通项与前n 项和,考查分类讨论的思想,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.19.(2015•福建文)等差数列{}n a 中,24a =,4715a a +=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设22n a n b n -=+,求12310b b b b +++⋯+的值. 【考点】等差数列的性质【分析】(Ⅰ)建立方程组求出首项与公差,即可求数列{}n a 的通项公式; (Ⅱ)222n a n n b n n -=+=+,利用分组求和求12310b b b b +++⋯+的值. 【解答】解:(Ⅰ)设公差为d ,则1114(3)(6)15a d a d a d +=⎧⎨+++=⎩,解得131a d =⎧⎨=⎩,所以3(1)2n a n n =+-=+; (Ⅱ)222n a n n b n n -=+=+,所以21012310(21)(22)(210)b b b b +++⋯+=++++⋯++210(222)(1210)=++⋯++++⋯+102(12)(110)102101122-+⨯=+=-.【点评】本题考查等差数列的通项,考查数列的求和,求出数列的通项是关键. 20.(2015•广东文)设数列{}n a 的前n 项和为n S ,*n N ∈.已知11a =,232a =,354a =,且当2n …时,211458n n n n S S S S ++-+=+.(1)求4a 的值;(2)证明:11{}2n n a a +-为等比数列;(3)求数列{}n a 的通项公式.【考点】数列递推式【分析】(1)直接在数列递推式中取2n =,求得478a =; (2)由211458(2)n n n n S S S S n ++-+=+…,变形得到2144(2)n n n a a a n +++=…,进一步得到211112122n n n n a a a a +++-=-,由此可得数列11{}2n n a a +-是以2112a a -为首项,公比为12的等比数列;(3)由11{}2n n a a +-是以2112a a -为首项,公比为12的等比数列,可得1111()22n n n a a -+-=.进一步得到11411()()22n n n n a a ++-=,说明{}1()2n n a 是以1212a =为首项,4为公差的等差数列,由此可得数列{}n a 的通项公式.【解答】(1)解:当2n =时,4231458S S S S +=+,即4353354(1)5(1)8(1)124224a +++++=+++, 解得:478a =; (2)证明:211458(2)n n n n S S S S n ++-+=+…,21114444(2)n n n n n n S S S S S S n ++-+∴-+-=-…, 即2144(2)n n n a a a n +++=…,3125441644a a a +=⨯+==,2144n n n a a a ++∴+=.2121111111114242212142422(2)22n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a +++++++++++-----====----.∴数列11{}2n n a a +-是以21112a a -=为首项,公比为12的等比数列; (3)解:由(2)知,11{}2n n a a +-是以2112a a -为首项,公比为12的等比数列,∴1111()22n n n a a -+-=.即11411()()22n n n n a a++-=, {}1()2n n a ∴是以1212a=为首项,4为公差的等差数列, ∴2(1)4421()2n n a n n =+-⨯=-,即111(42)()(21)()22n n n a n n -=-⨯=-⨯, ∴数列{}n a 的通项公式是11(21)()2n n a n -=-⨯.【点评】本题考查了数列递推式,考查了等比关系的确定,考查了等比数列的通项公式,关键是灵活变形能力,是中档题.21.(2015•广东理)数列{}n a 满足:1212242n n n a a na -+++⋯=-,n N +∈. (1)求3a 的值;(2)求数列{}n a 的前n 项和n T ; 【考点】数列的求和;数列与不等式的综合 【分析】(1)利用数列的递推关系即可求3a 的值;(2)利用作差法求出数列{}n a 的通项公式,利用等比数列的前n 项和公式即可求数列{}n a 的前n 项和n T ; (3)利用构造法,结合裂项法进行求解即可证明不等式.【解答】解:(1)1212242n n n a a na -+++⋯=-,n N +∈. 1431a ∴=-=,2212212422a -++=-=, 解得212a =, 1212242n n n a a na -+++⋯+=-,n N +∈. 121212(1)42n n n a a n a --+∴++⋯+-=-,n N +∈. 两式相减得121214(4)222n n n n n n nna ---++=---=,2n …, 则112n n a -=,2n …, 当1n =时,11a =也满足,112n n a -∴=,1n …, 则321124a ==; (2)112n n a -=,1n …,∴数列{}n a 是公比12q =, 则数列{}n a 的前n 项和111()222112nn n T --==--. 【点评】本题主要考查数列通项公式以及前n 项和的计算,以及数列和不等式的综合,利用作差法求出数列的通项公式是解决本题的关键.考查学生的计算能力,综合性较强,难度较大.22.(2015•湖北文理)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q ,已知11b a =,22b =,q d =,10100S =.(1)求数列{}n a ,{}n b 的通项公式 (2)当1d >时,记nn na b =ð,求数列{}n ð的前n 项和n T . 【考点】数列的求和【分析】(1)利用前10项和与首项、公差的关系,联立方程组计算即可; (2)当1d >时,由(1)知1212n n n --=ð,写出n T 、12n T 的表达式,利用错位相减法及等比数列的求和公式,计算即可.【解答】解:(1)设1a a =,由题意可得10451002a d ad +=⎧⎨=⎩,解得12a d =⎧⎨=⎩,或929a d =⎧⎪⎨=⎪⎩,当12a d =⎧⎨=⎩时,21n a n =-,12n nb -=; 当929a d =⎧⎪⎨=⎪⎩时,1(279)9n a n =+,129()9n n b -=;(2)当1d >时,由(1)知21n a n =-,12n n b -=, 1212n n n n a n b --∴==ð, 23411111113579(21)22222n n T n -∴=+++++⋯+-, ∴234111111111357(23)(21)2222222n n n T n n -=++++⋯+-+-, ∴23421111111232(21)322222222n n n nn T n -+=+++++⋯+--=-, 12362n n n T -+∴=-. 【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.23.(2015•湖南文)设数列{}n a 的前n 项和为n S ,已知11a =,22a =,2133n n n a S S ++=-+,*n N ∈, (Ⅰ)证明23n n a a +=;(Ⅱ)求n S . 【考点】数列的求和;数列递推式【分析】(Ⅰ)当2n …时,通过2133n n n a S S ++=-+与1133n n n a S S +-=-+作差,然后验证当1n =时命题也成立即可;(Ⅱ)通过()I 写出奇数项、偶数项的通项公式,分奇数项的和、偶数项的和计算即可. 【解答】(Ⅰ)证明:当2n …时,由2133n n n a S S ++=-+, 可得1133n n n a S S +-=-+,两式相减,得2113n n n n a a a a +++-=-, 23n n a a +∴=,当1n =时,有3123331(12)33a S S =-+=⨯-++=, 313a a ∴=,命题也成立,综上所述:23n n a a +=;(Ⅱ)解:由()I 可得11211112233323k k k k k ka a a a -----⎧=⨯=⎪⎨=⨯=⨯⎪⎩,其中k 是任意正整数, 211234232221()()()k k k k S a a a a a a a ----∴=++++⋯+++2113333k k --=++⋯++113(13)313k k ---=+-153322k -=⨯-,111221253333232222k k k k k k S S a +---=+=⨯-+⨯=-,综上所述,1222533,2233,22n n n n S n -+⎧⨯-⎪⎪=⎨⎪-⎪⎩为奇数为偶数.【点评】本题考查求数列的通项及求和,考查分类讨论的思想,注意解题方法的积累,属于中档题. 24.(2015•山东文)已知数列{}n a 是首项为正数的等差数列,数列11{}n n a a +的前n 项和为21nn +. (1)求数列{}n a 的通项公式;(2)设(1)2n a n n b a =+,求数列{}n b 的前n 项和n T . 【考点】数列的求和 【分析】(1)通过对11n n n a a +=ð分离分母,并项相加并利用数列11{}n n a a +的前n 项和为21nn +即得首项和公差,进而可得结论;(2)通过4n n b n =,写出n T 、4n T 的表达式,两式相减后利用等比数列的求和公式即得结论. 【解答】解:(1)设等差数列{}n a 的首项为1a 、公差为d ,则10a >, 1(1)n a a n d ∴=+-,11n a a nd +=+,令11n n n a a +=ð,则11111111[][(1)]()(1)n a n d a nd d a n d a nd==-+-++-+ð,1211111111111111[]2(1)n n c c c d a a d a d a d a n d a nd-∴++⋯++=-+-+⋯+-++++-+ð 11111[]d a a nd=-+11()n a a nd =+211n a a dn =+, 又数列11{}n n a a +的前n 项和为21nn +,∴21112a a d ⎧=⎪⎨=⎪⎩,11a ∴=或1-(舍),2d =,12(1)21n a n n ∴=+-=-;(2)由(1)知21(1)2(211)24n a n n n n b a n n -=+=-+=,121214244n n n T b b b n ∴=++⋯+=++⋯+, 23141424(1)44n n n T n n +∴=++⋯+-+, 两式相减,得121113434444433n n n n n T n ++--=++⋯+-=-, 1(31)449n n n T +-+∴=. 【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.25.(2015•山东理)设数列{}n a 的前n 项和为n S ,已知233n n S =+.(Ⅰ)求{}n a 的通项公式;(Ⅱ)若数列{}n b ,满足3log n n n a b a =,求{}n b 的前n 项和n T . 【考点】数列的求和【分析】(Ⅰ)利用233n n S =+,可求得13a =;当1n >时,11233n n S --=+,两式相减1222n n n a S S -=-,可求得13n n a -=,从而可得{}n a 的通项公式;(Ⅱ)依题意,3log n n n a b a =,可得113b =,当1n >时,133log 3n n b -=11(1)3n n n --=-⨯,于是可求得1113T b ==;当1n >时,121121(1323(1)3)3n n n T b b b n ---=++⋯+=+⨯+⨯+⋯+-⨯,利用错位相减法可求得{}n b 的前n 项和n T .【解答】解:(Ⅰ)因为233n n S =+,所以112336a =+=,故13a =, 当1n >时,11233n n S --=+,此时,1112223323n n n n n n a S S ---=-=-=⨯,即13n n a -=, 所以13,13, 1.n n n a n -=⎧=⎨>⎩.(Ⅱ)因为3log n n n a b a =,所以113b =,当1n >时,133log 3n n b -=11(1)3n n n --=-⨯,所以1113T b ==;当1n >时,121121(1323(1)3)3n n n T b b b n ---=++⋯+=+⨯+⨯+⋯+-⨯,所以012231(132333(1)3)n n T n ---=+⨯+⨯+⨯+⋯+-⨯,两式相减得:10122111221313632(3333(1)3)(1)33313623n n n nn nn T n n --------+=++++⋯+--⨯=+--⨯=--⨯, 所以13631243n nn T +=-⨯,经检验,1n =时也适合,综上可得13631243n nn T +=-⨯. 【点评】本题考查数列的求和,着重考查数列递推关系的应用,突出考查“错位相减法”求和,考查分析、运算能力,属于中档题.26.(2015•四川文)设数列{}(1n a n =,2,3)⋯的前n 项和n S ,满足12n n S a a =-,且1a ,21a +,3a 成等差数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T .【考点】等差数列的通项公式;等差数列的前n 项和【分析】(Ⅰ)由条件n S 满足12n n S a a =-,求得数列{}n a 为等比数列,且公比2q =;再根据1a ,21a +,3a 成等差数列,求得首项的值,可得数列{}n a 的通项公式.(Ⅱ)由于112n n a =,利用等比数列的前n 项和公式求得数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n T . 【解答】解:(Ⅰ)由已知12n n S a a =-,有 1122(2)n n n n n a S S a a n --=-=-…,即12(2)n n a a n -=…,从而212a a =,32124a a a ==. 又因为1a ,21a +,3a 成等差数列,即1322(1)a a a +=+ 所以11142(21)a a a +=+,解得:12a =.所以,数列{}n a 是首项为2,公比为2的等比数列. 故2n n a =. (Ⅱ)由(Ⅰ)得112n n a =,所以11(1)1111122112482212n n n nT -=+++⋯+==--. 【点评】本题主要考查数列的前n 项和与第n 项的关系,等差、等比数列的定义和性质,等比数列的前n 项和公式,属于中档题.27.(2015•四川理)设数列{}(1n a n =,2,3,)⋯的前n 项和n S 满足12n n S a a =-,且1a ,21a +,3a 成等差数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记数列1{}n a 的前n 项和为n T ,求使得1|1|1000n T -<成立的n 的最小值.【考点】数列的求和【分析】(Ⅰ)由已知数列递推式得到12(2)n n a a n -=…,再由已知1a ,21a +,3a 成等差数列求出数列首项,可得数列{}n a 是首项为2,公比为2的等比数列,则其通项公式可求;(Ⅱ)由(Ⅰ)求出数列1{}n a 的通项公式,再由等比数列的前n 项和求得n T ,结合1|1|1000n T -<求解指数不等式得n 的最小值.【解答】解:(Ⅰ)由已知12n n S a a =-,有1122n n n n n a S S a a --=-=- (2)n …,即12(2)n n a a n -=…,从而212a a =,32124a a a ==, 又1a ,21a +,3a 成等差数列,11142(21)a a a ∴+=+,解得:12a =.∴数列{}n a 是首项为2,公比为2的等比数列.故2n n a =;(Ⅱ)由(Ⅰ)得:112n n a =, ∴211[1()]11112211222212n n n nT -=++⋯+==--. 由1|1|1000n T -<,得11|11|21000n --<,即21000n >. 9102512100010242=<<=,10n ∴….于是,使1|1|1000n T -<成立的n 的最小值为10.【点评】本题考查等差数列与等比数列的概念、等比数列的通项公式与前n 项和公式等基础知识,考查运算求解能力,是中档题.28.(2015•浙江文)已知数列{}n a 和{}n b 满足12a =,11b =,*12()n n a a n N +=∈,*12311111()23n n b b b b b n N n++++⋯+=-∈(Ⅰ)求n a 与n b ;(Ⅱ)记数列{}n n a b 的前n 项和为n T ,求n T . 【考点】数列的求和【分析】(Ⅰ)直接由12a =,12n n a a +=,可得数列{}n a 为等比数列,由等比数列的通项公式求得数列{}n a 的通项公式;再由11b =,1231111123n n b b b b b n++++⋯+=-,取1n =求得22b =,当2n …时,得另一递推式,作差得到11n n n b b b n +=-,整理得数列{}n b n为常数列,由此可得{}n b 的通项公式; (Ⅱ)求出2n n n a b n =,然后利用错位相减法求数列{}n n a b 的前n 项和为n T . 【解答】解:(Ⅰ)由12a =,12n n a a +=,得*2()n n a n N =∈. 由题意知,当1n =时,121b b =-,故22b =,当2n …时,12311111231n n b b b b b n -+++⋯+=--,和原递推式作差得,11n n n b b b n+=-,整理得:11n n b b n n +=+,∴*()n b n n N =∈;(Ⅱ)由(Ⅰ)知,2n n n a b n =, 因此23222322n n T n =+++⋯+23412222322n n T n +=+++⋯+, 两式作差得:2112(12)2222212n nn n n T n n ++--=++⋯+-=--,1*(1)22()n n T n n N +=-+∈.【点评】本题主要考查等差数列的通项公式、等差数列和等比数列等基础知识,同时考查数列求和等基本思想方法,以及推理论证能力,是中档题.29.(2015•重庆文)已知等差数列{}n a 满足32a =,前3项和392S =. (Ⅰ)求{}n a 的通项公式;(Ⅱ)设等比数列{}n b 满足11b a =,415b a =,求{}n b 前n 项和n T .【考点】数列的求和;数列递推式【分析】()I 设等差数列{}n a 的公差为d ,由32a =,前3项和392S =.可得122a d +=,19332a d +=,解得1a ,d .即可得出.11()1II b a ==,4158b a ==,可得等比数列{}n b 的公比q 满足38q =,解得q .利用求和公式即可得出.【解答】解:()I 设等差数列{}n a 的公差为d ,32a =,前3项和392S =. 122a d ∴+=,19332a d +=,解得11a =,12d =. 111(1)22n n a n +∴=+-=. 11()1II b a ==,4158b a ==,可得等比数列{}n b 的公比q 满足38q =,解得2q =.{}n b ∴前n 项和212121n nn T -==--. 【点评】本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.30.(2015•安徽文)已知数列{}n a 是递增的等比数列,且149a a +=,238a a =. (1)求数列{}n a 的通项公式; (2)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T . 【考点】数列的求和【分析】(1)根据等比数列的通项公式求出首项和公比即可,求数列{}n a 的通项公式; (2)求出11n n n n a b S S ++=,利用裂项法即可求数列{}n b 的前n 项和n T . 【解答】解:(1)数列{}n a 是递增的等比数列,且149a a +=,238a a =. 149a a ∴+=,14238a a a a ==.解得11a =,48a =或18a =,41a =(舍), 解得2q =,即数列{}n a 的通项公式12n n a -=; (2)1(1)211n n n a q S q -==--, 1111111n n n n n n n n n n a S S b S S S S S S +++++-∴===-,∴数列{}n b 的前n 项和11223111111111111121n n n n n T S S S S S S S S +++=-+-+⋯+-=-=--. 【点评】本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.31.(2016•新课标Ⅰ文)已知{}n a 是公差为3的等差数列,数列{}n b 满足11b =,213b =,11n n n n a b b nb +++=.(Ⅰ)求{}n a 的通项公式;(Ⅱ)求{}n b 的前n 项和. 【考点】数列递推式【分析】(Ⅰ)令1n =,可得12a =,结合{}n a 是公差为3的等差数列,可得{}n a 的通项公式; (Ⅱ)由(1)可得:数列{}n b 是以1为首项,以13为公比的等比数列,进而可得:{}n b 的前n 项和.【解答】解:(Ⅰ)11n n n n a b b nb +++=. 当1n =时,1221a b b b +=. 11b =,213b =,12a ∴=,又{}n a 是公差为3的等差数列, 31n a n ∴=-,(Ⅱ)由()I 知:11(31)n n n n b b nb ++-+=. 即13n n b b +=.即数列{}n b 是以1为首项,以13为公比的等比数列,{}n b ∴的前n 项和111()3313(13)1222313nn n n S ---==-=--. 【点评】本题考查的知识点是数列的递推式,数列的通项公式,数列的前n 项和公式,难度中档. 32.(2016•新课标Ⅱ文)等差数列{}n a 中,344a a +=,576a a +=. (Ⅰ)求{}n a 的通项公式;(Ⅱ)设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]0=,[2.6]2=. 【考点】等差数列的性质;等差数列的通项公式【分析】(Ⅰ)设等差数列{}n a 的公差为d ,根据已知构造关于首项和公差方程组,解得答案; (Ⅱ)根据[]n n b a =,列出数列{}n b 的前10项,相加可得答案.【解答】解:(Ⅰ)设等差数列{}n a 的公差为d , 344a a +=,576a a +=.∴112542106a d a d +=⎧⎨+=⎩,解得:1125a d =⎧⎪⎨=⎪⎩,2355n a n ∴=+;(Ⅱ)[]n n b a =,1231b b b ∴===, 452b b ==,6783b b b ===,9104b b ==.故数列{}n b 的前10项和103122332424S =⨯+⨯+⨯+⨯=.【点评】本题考查的知识点是等差数列的通项公式,等差数列的性质,难度中档.33.(2016•新课标Ⅱ理)n S 为等差数列{}n a 的前n 项和,且11a =,728S =,记[]n n b lga =,其中[]x 表示不超过x 的最大整数,如[0.9]0=,[99]1lg =. (Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{}n b 的前1000项和. 【考点】等差数列的性质;数列的求和【分析】(Ⅰ)利用已知条件求出等差数列的公差,求出通项公式,然后求解1b ,11b ,101b ; (Ⅱ)找出数列的规律,然后求数列{}n b 的前1000项和.【解答】解:(Ⅰ)n S 为等差数列{}n a 的前n 项和,且11a =,728S =,4728a =. 可得44a =,则公差1d =. n a n =,[]n b lgn =,则1[1]0b lg ==, 11[11]1b lg ==, 101[101]2b lg ==.(Ⅱ)由(Ⅰ)可知:12390b b b b ===⋯==,101112991b b b b ===⋯==. 1001011021039992b b b b b ====⋯==,10,003b =.数列{}n b 的前1000项和为:90901900231893⨯+⨯+⨯+=.【点评】本题考查数列的性质,数列求和,考查分析问题解决问题的能力,以及计算能力.34.(2016•新课标Ⅲ文)已知各项都为正数的数列{}n a 满足11a =,211(21)20nn n n a a a a ++---=. (1)求2a ,3a ;(2)求{}n a 的通项公式. 【考点】数列递推式【分析】(1)根据题意,由数列的递推公式,令1n =可得21212(21)20a a a a ---=,将11a =代入可得2a 的值,进而令2n =可得22323(21)20a a a a ---=,将212a =代入计算可得3a 的值,即可得答案; (2)根据题意,将211(21)20n n n n a a a a ++---=变形可得11(2)()0n n n n a a a a ++-+=,进而分析可得12n n a a +=或1n n a a +=-,结合数列各项为正可得12n n a a +=,结合等比数列的性质可得{}n a 是首项为11a =,公比为12的等比数列,由等比数列的通项公式计算可得答案.【解答】解:(1)根据题意,211(21)20nn n n a a a a ++---=, 当1n =时,有21212(21)20a a a a ---=, 而11a =,则有221(21)20a a ---=,解可得212a =, 当2n =时,有22323(21)20a a a a ---=, 又由212a =,解可得314a =, 故212a =,314a =; (2)根据题意,211(21)20nn n n a a a a ++---=, 变形可得1(2)(1)0n n n a a a +-+=,即有12n n a a +=或1n a =-, 又由数列{}n a 各项都为正数,则有12n n a a +=, 故数列{}n a 是首项为11a =,公比为12的等比数列,则11111()()22n n n a --=⨯=, 故11()2n n a -=.【点评】本题考查数列的递推公式,关键是转化思路,分析得到n a 与1n a +的关系. 35.(2016•新课标Ⅲ理)已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠. (1)证明{}n a 是等比数列,并求其通项公式;(2)若53132S =,求λ. 【考点】等比数列的性质;数列递推式【分析】(1)根据数列通项公式与前n 项和公式之间的关系进行递推,结合等比数列的定义进行证明求解即可.(2)根据条件建立方程关系进行求解就可. 【解答】解:(1)1n n S a λ=+,0λ≠. 0n a ∴≠.当2n …时,11111n n n n n n n a S S a a a a λλλλ---=-=+--=-, 即1(1)n n a a λλ--=,0λ≠,0n a ≠.10λ∴-≠.即1λ≠,即11n n a a λλ-=-,(2)n …, {}n a ∴是等比数列,公比1q λλ=-,当1n =时,1111S a a λ=+=, 即111a λ=-, 11()11n n a λλλ-∴=--. (2)若53132S =, 则若451311[()]1132S λλλλ=+=--, 即5311()113232λλ=-=--, 则112λλ=--,得1λ=-. 【点评】本题主要考查数列递推关系的应用,根据2n …时,1n n n a S S -=-的关系进行递推是解决本题的关键.考查学生的运算和推理能力.36.(2016•天津文)已知{}n a 是等比数列,前n 项和为*()n S n N ∈,且123112a a a -=,663S =. (1)求{}n a 的通项公式;(2)若对任意的*n N ∈,n b 是2log n a 和21log n a +的等差中项,求数列2{(1)}n nb -的前2n 项和. 【考点】等差数列与等比数列的综合【分析】(1)根据等比数列的通项公式列方程解出公比q ,利用求和公式解出1a ,得出通项公式; (2)利用对数的运算性质求出n b ,使用分项求和法和平方差公式计算. 【解答】解:(1)设{}n a 的公比为q ,则2111112a a q a q -=,即2121q q -=,解得2q =或1q =-.若1q =-,则60S =,与663S =矛盾,不符合题意.2q ∴=, 616(12)6312a S -∴==-,11a ∴=.12n n a -∴=.(2)n b 是2log n a 和21log n a +的等差中项,221211(log log )(log 222n n n b a a +∴=+=12log 2n -+1)2n n =-.11n n b b +∴-=. {}n b ∴是以12为首项,以1为公差的等差数列. 设2{(1)}n nb -的前2n 项和为n T ,则 2222221234212()()()n n n T b b b b b b -=-++-++⋯+-+1234212n n b b b b b b -=+++⋯++12112222222nn b b n n +-+==22n =. 【点评】本题考查了等差数列,等比数列的性质,分项求和的应用,属于中档题.37.(2016•山东文)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+. (Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a b ++=+ð,求数列{}n ð的前n 项和n T .【考点】数列的求和;数列递推式【分析】(Ⅰ)求出数列{}n a 的通项公式,再求数列{}n b 的通项公式; (Ⅱ)求出数列{}n ð的通项,利用错位相减法求数列{}n ð的前n 项和n T . 【解答】解:(Ⅰ)238n S n n =+,2n ∴…时,165n n n a S S n -=-=+,。

2014年全国高考数学分类汇编--数列

2014年全国高考数学分类汇编--数列

2014年全国高考数学分类汇编-数列全国2014年高考数学(理科)分类汇编1(2014福建理)3.等差数列{a n}的前n项和S.,若a i 2,S3 12,贝V a6 ()A.8B.10C.12D.142(2014广西理)10.等比数列3”}中,a4 2,35 5,则数列{lg a…}的前8项和等于()A. 6 B . 5 C . 4 D . 33(2014广西文)8.设等比数列{a”}的前”项和为S n,若S2 3,S4 15,贝V S6 ()A. 31 B . 32 C . 63 D ・644(2014重庆文)2.在等差数列{a…}中,印2,a3 a5 10,则a7 ()A.5B.8C.10D.145(2014辽宁文理)8.设等差数列啣的公差为d, 若数列{2宀为递减数列,则(A. d 0B. d 0C. a-|d 0D. a1d 06(2014天津文)5.设a…是首项为a,,公差为1的等差数列,S n为其前n项和,若s, S2, S4,成等比数列,则a1=(A.2B.-2C. 1 D . 12 27(2014课标2文)(5)等差数列a n的公差为2,若a 2, 34, a 8成等比数列,则a 的前n 项和S.= () (A ) n n 1 ( B ) n n 18(2014重庆理)2.对任意等比数列{a n},下列说法 一定正确的是 ( ) A. 31,33,39成等比数列 B. a 2,a 3,a 6成等比数列成等比数列 D -a 3,a 6,a 9成等比数列9(2014安徽理)12.数列a n是等差数列,若311, 333, 355构成公比为q 的等比数列,贝y q _____________________ .10(2014安徽文)12.如图,学科网在等腰直角三 角形ABC 中,斜边BC 2迈,过点A 作BC 的垂线,垂足为 几;过点片作AC 的垂线,垂足为 A 2;过点A 作AC的垂线,垂足为A 3;…, 以此类推,设BA 31 , AA 1 32, A 1A 2 33,•…, A 5A 6 37,贝U 37.11(2014北京理)9.若等差数列a n满足a-i a 8 a90 , a 7 a io0 , 则当n _____________________(C )呼(D) n n 12~时a”的前n项和最大.12(2014广东理)13 .若等比数列a n的各项均为正数,且a0a” a g a>2 2e5,则ln a1 In a2In a2n_________ . ______13(2014广东文)13.等比数列a n的各项均为正数,且时 5 4 ,贝U Iog2 a1 Iog2a2 Iog2a3Iog2 a4 Iog2 a5 ___________________________________14(2014江苏文理)7.在各项均为正数的等比数列{a n}中,a2 1, a8 a6 2a4,则a6 的值是____15(2014江西文)14.在等差数列{a…}中,& i,公差为d,前n项和为{an},当且仅当n 8时S取最大值,则d 的取值范围___________ .16(2014天津理)(11)设a n是首项为&,公差为-1的等差数列,S n为其前n项和.若S0S4成等比数列,则a 的值为_______________ .17(2014课标2文)(16)数列a n满足a n 1,a2=2,贝H a i = __________【答案】CCCBC DAD 9. 1 10. 111. 816.仃.1全国2014年咼考数学(文史)分类汇编 1(2014重庆文)16.已知a n 是首项为1, 公差为2的等差数列,S n表示a n的前n 项和.(I )求 a n 及 S ;(H )设b n是首项为2的等比数列,公比q 满足 q 2色1 q S 0,求b n的通项公式 及其前n 项和T n.【点拨】⑴a 2n 1,S n 2;(n )由 q 2a 41 q S 0得 q 4 ,所以 b n22n1,T n 2(4n 1)2(2014重庆理)22.设a 1 1,0.1 .a : 2a n 2b (n N*)(1)若b 1,求a 2,a 3及数列{%}的通项公式;⑵ 若b 〔,冋:是否存在实数C 使得a 2nc a 2n 1对所有 n N*成立?证明你的结论.5n2【点拨】(1) a 1,a2 2,a3 5.2 1,& 1,猜想a n 1 1(可数归完成);(2)设函数f(x) x2 2x 2 1,令f(x) x 得不动点x 4.仿(1)得a1 1,a2 0,a3 2 1,用数学归纳法可证明:a2n 1 a2m. 事实上,1O当n 1 时,32 0 4 v2 1 a3显然成立.2o.假定当n k时,a2k : 32k 1成立,那么「"当n k 1 时,Qa2k 2 f (a2k 1) (a2k 1 1)21 1(a2k 2 1)2 (32k 1 1)21 (32k 2 1)2([ 1)2 1这就是说当n k 1时,a2k2 1 a2k 3也成立.3(2014浙江文)19、已知等差数列{a n}的公差d 0, 设{a n}的前n 项和为S n,a1 1,S2 S3 36.(1)求d及S n ;⑵求m,k (m,k N*)的值,使得i 3m 1 3m 2 L 3m k 65【点拨】(1) d 2,S n n2;⑵Q3m 2m 1, (k 1)(2m 1)冬严 2 654(2014浙江理)19.已知数列{3n}和{b n}满足a&L 3n( 2)s(n N ).若{a n}为等比数列,且 3 2,& 6 b又32k 3 f (32k 2) (32k 3 1)2(32k 2 1)2 11 43k2a(k 1)(2m k 1) 5 13 k 1 5 k 4 ... 2m k 1 13 m 5⑴求a n与b n;(2)设c a _L(n N).记数列{c n}的前n 项和为S n. ( i ) 求 S ; (ii )求正整数k ,使得对任意nN ,均有& 【点拨】(1)aa 2a 3 \2 ,a i a 2得 a 3268 .从而 q 2, a n a sqn 32n.由 a i a 2L a n( 2户 2 2)2【b n(n 1)(2) G 丄1吉(丄斗).所以a n t n 2n n n 1(i) S cia a L a 古》(分组裂项)(ii)Q^ ML 1 i)鳥 1)2",易见",C 2,C 3,C 4 0,当n 5寸,c n0. 可见S 4最大,即S 4 S n . k 4■5(2014 a n 13a n1 .(I)证明(U)证明: 【点拨】(I)在a n 1 3(『2),可见数列a 1是以3为公比,以a 1 3为首项 的等比数列.故a n 2贰1叮.(H)法1(放缩法)Q^尹课标2理)17.已知数列a n满足a=1, 1是等比数列,并求a n的通项公式; 丄1…+丄3a 1 a 2 a n2 -a n1 3a n 1中两边加2:a2 3n 1 1 2 1 2 1 L 2 1 1 1 32 1 1 33 1 1 3n 1 1 12 (本题用的是"加点糖定理")法2(数学归纳法)先证一个条件更強的结论20■假疋对于n 新命题成立,即1 3 1 3a 2 2 3n1 2天津文理)19.已知q 和n 均为给定的大于 1的自然数■设集合M 0,1,2丄,q 1,集合A xx X 1 X 2q L x!q n 1,x M ,i 1,2,L ,n(1) 当q 2 , n 3时,用列举法表示集合A ; (2) ^设 s,t ? A , s ai a 2q L a nq n 1,t b bq L bq n1,其中 a,b M , i 1,2,L ,n .证明:若 3nb ,则 s< t . 【点拨】(I )解:当q 2 , n 3时,M 0,1 ,2x 2 4x s ,x 酣弓卑,2,3为 x ^x 中^ x,x 2,X 30 0 0 0勺 10 0 1 1 0 1 0 1 0 1 1 0 10 0 1 1 11 a2 31 2 1 1 L 132 93a n L 1a3 1氏1al13n0 ^1 2 3 2 2 1 1 a新命题成立.T,那么对于n一23 21al L 1a1al1al a1-a 1a3 1al3n3n3n6(2014 _ 2 3 2 4 3 5 4 1a2可得, A 0,12,3,4,5,6,7 .(H)证明:由 s,t?A , s a a 2q L a nq n 1, t bi bq L b nq n 1, Q,b Ms ta ib a 2 b ? q L an i b n i q n 2a nq n 1.q 1 q 1 q L q 1 q n 2 q n 17(2014四川文)19.设等差数列{a n}的公差为d ,点 (命)在函数f(x) 2x的图象上(nN ). (I)证明:数列⑹为等比数列;(H) 若& 1 ,函数f(x)的图象在点(a 2,b 2)处的切线在x 轴 上的截距为2侖,求数列{a nb 2}的前n 项和S n.【点拨】(I) 丫亍2d…(H) f (x) 2xln2 , k 刀2勺n2.切线方程y 2a2 2判n2(x a 2),依题设有a 2爲2爲a 2 2, b 24 . ^从a nb n 2 n 4n(等比差数列,乘公比、错位相减)得(3n 1)4n1 4$ 98(2014四川理)19.设等差数列{a n}的公差为d , 点®,b n)在函数f(x) 2x的图象上(nN *).(I) 若4 2,点(a 8,4b 7)在函数f(x)的图象上,求数列{a n}i 1,2丄,n 及an bn,可得q 1 1 q n 1q n 1 1 o.所以, s< t .的前n 项和S n;(2) 若 a 1,函数f(x)的图象在点(a 2,b 2)处的切线在X 轴 上的截距为2需,求数列©的前n 项和T n.【点拨】(1) Q4b 72a82a8 2b r2a7d 2. S n 23n ;(2) f (x) 2Xln2, k 切2Tn2 . 切线方程 y 2a2魯n2(x a 2),依题设有a 2爲2爲 比 2 , b24 .从而 b n 21(等比差数列,乘公比、错位相减)得T n2n2n29(2014上海文)23.已知数列满足3a n a n 1 3a n ,n N 1(1) 若322,83x,a 49,求x的取值范围;(2) 若{a n}是等比数列,且a m血,求正整数m 的最小值,以及m取最小值时相应{aj 的公比;(3) 若a 1,a 2,L ,a 100成等差数列,求数列 a 1,B 2,L ,9!00的公差的取值范围.⑵易见 an0,3a n a n 1 3a n3 q 3又am10k 1 qm1 (3)m1 m 8,m 8.q 宦10 -(3) ^①当 n 1 时,a 1, [a a 1d 3a13【点拨】(1)由a 2 a 3 3a 2 a 3 a 4 3a 3x [3,6];②当 2 n 100时,印 iga.! a n3am d 2器取 n1gd i99.综上島d 2・10(2014上海理)23.已知数列{a n }满足1 3a n an 1 3环门 N 1 -(1)若 a 22,a 3x,a 49 ,⑵没a n是公比为q 等比数列,S n a 1 a> a j L a n,ig,S, 1 3S,n N求q 的取值范围;3(3)若a 1,a 2,L ,ak成等差数列,且a 32L a k1000,求正整数k 的最大值,以及k 取最大值 时相应数列a 1,a 2,L 耳的公差.【点拨】(1)由3:(2)由加 a n q 3a n,ai 1 [3S S a 1q 3S i ,1 q 2.下面证明任意的n 2,上式都成立. ①当q 1时,显然成立. ②当q 1时,显然成立.对于右不等式等价于 亡严 0.令f (x )—q 二X1),1 q 1 q f (x) q; l J q(q 3) 0,要使 f(x) 0,只需 f(1) 0即書0 q 2 .结合q /a 3 3a2 ”x [3,6]; a 4 3a3,结合 11 (1 q n) 1(1 q n 1)3 1 q 1 q3罟,其中左不等式11(2014山东文)(19)在等差数列{a n}中,已知公 差 d 2, a 2是a 1与a 4的等比中项. (I )求数列{a n}的通项公式;(1)nb ,求 T n.【点拨】(I ) 212 , an 2n(D ) h n (n 1)(分奇偶讨论求和)(n 为奇数)1 n (n 2)(为偶数)12(2014山东理)19.已知等差数列{a n}的公差为 2,前n 项和为S n,且S 1,S 2,S 4成等比数列.(I )求数列{a n}的通项公式;(H )令b ( 1厂盘,求数列{b n}的前n 项和T n.得到【点拨】(I ) a 1,a n2n 1;n取2n1 1000 k a i(2 1) dk(k 1) 2 2 2k 1)k 1999,从而当 k 1999时,q2 1999 -(II )设 b,记T nqa3kS n3n 2 n(n ) b n ( 1叱1 2n 1 1](分奇偶讨论,最后合并)Tn2n;m ( 1)n.13(2014课标1文)17.已知a n是递增的等差数 列,a 2,a 4是方程X 25x 6 0的根。

2014年全国高考数学分类汇编--数列

2014年全国高考数学分类汇编--数列

2014年全国高考数学分类汇编-数列全国2014年高考数学(理科)分类汇编1(2014福建理)3.等差数列{a n}的前n项和S.,若a i 2,S3 12,贝V a6 ()A.8B.10C.12D.142(2014广西理)10.等比数列3”}中,a4 2,35 5,则数列{lg a…}的前8项和等于()A. 6 B . 5 C . 4 D . 33(2014广西文)8.设等比数列{a”}的前”项和为S n,若S2 3,S4 15,贝V S6 ()A. 31 B . 32 C . 63 D ・644(2014重庆文)2.在等差数列{a…}中,印2,a3 a5 10,则a7 ()A.5B.8C.10D.145(2014辽宁文理)8.设等差数列啣的公差为d, 若数列{2宀为递减数列,则(A. d 0B. d 0C. a-|d 0D. a1d 06(2014天津文)5.设a…是首项为a,,公差为1的等差数列,S n为其前n项和,若s, S2, S4,成等比数列,则a1=(A.2B.-2C. 1 D . 12 27(2014课标2文)(5)等差数列a n的公差为2,若a 2, 34, a 8成等比数列,则a 的前n 项和S.= () (A ) n n 1 ( B ) n n 18(2014重庆理)2.对任意等比数列{a n},下列说法 一定正确的是 ( ) A. 31,33,39成等比数列 B. a 2,a 3,a 6成等比数列成等比数列 D -a 3,a 6,a 9成等比数列9(2014安徽理)12.数列a n是等差数列,若311, 333, 355构成公比为q 的等比数列,贝y q _____________________ .10(2014安徽文)12.如图,学科网在等腰直角三 角形ABC 中,斜边BC 2迈,过点A 作BC 的垂线,垂足为 几;过点片作AC 的垂线,垂足为 A 2;过点A 作AC的垂线,垂足为A 3;…, 以此类推,设BA 31 , AA 1 32, A 1A 2 33,•…, A 5A 6 37,贝U 37.11(2014北京理)9.若等差数列a n满足a-i a 8 a90 , a 7 a io0 , 则当n _____________________(C )呼(D) n n 12~时a”的前n项和最大.12(2014广东理)13 .若等比数列a n的各项均为正数,且a0a” a g a>2 2e5,则ln a1 In a2In a2n_________ . ______13(2014广东文)13.等比数列a n的各项均为正数,且时 5 4 ,贝U Iog2 a1 Iog2a2 Iog2a3Iog2 a4 Iog2 a5 ___________________________________14(2014江苏文理)7.在各项均为正数的等比数列{a n}中,a2 1, a8 a6 2a4,则a6 的值是____15(2014江西文)14.在等差数列{a…}中,& i,公差为d,前n项和为{an},当且仅当n 8时S取最大值,则d 的取值范围___________ .16(2014天津理)(11)设a n是首项为&,公差为-1的等差数列,S n为其前n项和.若S0S4成等比数列,则a 的值为_______________ .17(2014课标2文)(16)数列a n满足a n 1,a2=2,贝H a i = __________【答案】CCCBC DAD 9. 1 10. 111. 816.仃.1全国2014年咼考数学(文史)分类汇编 1(2014重庆文)16.已知a n 是首项为1, 公差为2的等差数列,S n表示a n的前n 项和.(I )求 a n 及 S ;(H )设b n是首项为2的等比数列,公比q 满足 q 2色1 q S 0,求b n的通项公式 及其前n 项和T n.【点拨】⑴a 2n 1,S n 2;(n )由 q 2a 41 q S 0得 q 4 ,所以 b n22n1,T n 2(4n 1)2(2014重庆理)22.设a 1 1,0.1 .a : 2a n 2b (n N*)(1)若b 1,求a 2,a 3及数列{%}的通项公式;⑵ 若b 〔,冋:是否存在实数C 使得a 2nc a 2n 1对所有 n N*成立?证明你的结论.5n2【点拨】(1) a 1,a2 2,a3 5.2 1,& 1,猜想a n 1 1(可数归完成);(2)设函数f(x) x2 2x 2 1,令f(x) x 得不动点x 4.仿(1)得a1 1,a2 0,a3 2 1,用数学归纳法可证明:a2n 1 a2m. 事实上,1O当n 1 时,32 0 4 v2 1 a3显然成立.2o.假定当n k时,a2k : 32k 1成立,那么「"当n k 1 时,Qa2k 2 f (a2k 1) (a2k 1 1)21 1(a2k 2 1)2 (32k 1 1)21 (32k 2 1)2([ 1)2 1这就是说当n k 1时,a2k2 1 a2k 3也成立.3(2014浙江文)19、已知等差数列{a n}的公差d 0, 设{a n}的前n 项和为S n,a1 1,S2 S3 36.(1)求d及S n ;⑵求m,k (m,k N*)的值,使得i 3m 1 3m 2 L 3m k 65【点拨】(1) d 2,S n n2;⑵Q3m 2m 1, (k 1)(2m 1)冬严 2 654(2014浙江理)19.已知数列{3n}和{b n}满足a&L 3n( 2)s(n N ).若{a n}为等比数列,且 3 2,& 6 b又32k 3 f (32k 2) (32k 3 1)2(32k 2 1)2 11 43k2a(k 1)(2m k 1) 5 13 k 1 5 k 4 ... 2m k 1 13 m 5⑴求a n与b n;(2)设c a _L(n N).记数列{c n}的前n 项和为S n. ( i ) 求 S ; (ii )求正整数k ,使得对任意nN ,均有& 【点拨】(1)aa 2a 3 \2 ,a i a 2得 a 3268 .从而 q 2, a n a sqn 32n.由 a i a 2L a n( 2户 2 2)2【b n(n 1)(2) G 丄1吉(丄斗).所以a n t n 2n n n 1(i) S cia a L a 古》(分组裂项)(ii)Q^ ML 1 i)鳥 1)2",易见",C 2,C 3,C 4 0,当n 5寸,c n0. 可见S 4最大,即S 4 S n . k 4■5(2014 a n 13a n1 .(I)证明(U)证明: 【点拨】(I)在a n 1 3(『2),可见数列a 1是以3为公比,以a 1 3为首项 的等比数列.故a n 2贰1叮.(H)法1(放缩法)Q^尹课标2理)17.已知数列a n满足a=1, 1是等比数列,并求a n的通项公式; 丄1…+丄3a 1 a 2 a n2 -a n1 3a n 1中两边加2:a2 3n 1 1 2 1 2 1 L 2 1 1 1 32 1 1 33 1 13n 1 112 (本题用的是"加点糖定理")法2(数学归纳法)先证一个条件更強的结论20■假疋对于n 新命题成立,即1 3 1 3a 2 2 3n1 2天津文理)19.已知q 和n 均为给定的大于 1的自然数■设集合M 0,1,2丄,q 1,集合A xx X 1 X 2q L x!q n 1,x M ,i 1,2,L ,n(1) 当q 2 , n 3时,用列举法表示集合A ; (2) ^设 s,t ? A , s ai a 2q L a nq n 1,t b bq L bq n1,其中 a,b M , i 1,2,L ,n .证明:若 3nb ,则 s< t . 【点拨】(I )解:当q 2 , n 3时,M 0,1 ,2x 2 4x s ,x 酣弓卑,2,3为 x ^x 中^ x,x 2,X 30 0 0 0勺 10 0 1 1 0 1 0 1 0 1 1 0 10 01 1 11 a2 31 2 1 1 L 132 93a n L1a3 1氏1al13n0 ^1 2 3 2 2 1 1 a新命题成立.T,那么对于n一23 21al L 1a1al1al a1-a 1a3 1al3n3n3n6(2014 _ 2 3 2 4 3 5 4 1a2可得, A 0,12,3,4,5,6,7 .(H)证明:由 s,t?A , s a a 2q L a nq n 1, t bi bq L b nq n 1, Q,b Ms ta ib a 2 b ? q L an i b n i q n 2a nq n 1.q 1 q 1 q L q 1 q n 2 q n 17(2014四川文)19.设等差数列{a n}的公差为d ,点 (命)在函数f(x) 2x的图象上(nN ). (I)证明:数列⑹为等比数列;(H) 若& 1 ,函数f(x)的图象在点(a 2,b 2)处的切线在x 轴 上的截距为2侖,求数列{a nb 2}的前n 项和S n.【点拨】(I) 丫亍2d…(H) f (x) 2xln2 , k 刀2勺n2 .切线方程y 2a2 2判n2(x a 2),依题设有a 2爲2爲a 2 2, b 24 . ^从a n bn2n 4n(等比差数列,乘公比、错位相减)得(3n 1)4n1 4$ 98(2014四川理)19.设等差数列{a n}的公差为d , 点®,b n)在函数f(x) 2x的图象上(nN *).(I) 若4 2,点(a 8,4b 7)在函数f(x)的图象上,求数列{a n}i 1,2丄,n 及an bn,可得q 1 1 q n 1q n 1 1 o.所以, s< t .的前n 项和S n;(2) 若 a 1,函数f(x)的图象在点(a 2,b 2)处的切线在X 轴 上的截距为2需,求数列©的前n 项和T n.【点拨】(1) Q4b 72a82a8 2b r2a7d 2. S n 23n ;(2) f (x) 2Xln2, k 切2Tn2 . 切线方程 y 2a2魯n2(x a 2),依题设有a 2爲2爲 比 2 , b24 .从而 b n 21(等比差数列,乘公比、错位相减)得T n2n2n29(2014上海文)23.已知数列满足3a n a n 1 3a n ,n N 1(1) 若322,83x,a 49,求x的取值范围;(2) 若{a n}是等比数列,且a m血,求正整数m 的最小值,以及m取最小值时相应{aj 的公比;(3) 若a 1,a 2,L ,a 100成等差数列,求数列 a 1,B 2,L ,9!00的公差的取值范围.⑵易见 an0,3a n a n 1 3a n3 q 3又am10k 1 qm1 (3)m1 m 8,m 8.q 宦10 -(3) ^①当 n 1 时,a 1, [a a 1d 3a13【点拨】(1)由a 2 a 3 3a 2 a 3 a 4 3a 3x [3,6];②当 2 n 100时,印 iga.! a n3am d 2器取 n1gd i99.综上島 d 2・10(2014上海理)23.已知数列{a n }满足1 3a n an 1 3环门 N 1 -(1)若 a 22,a 3x,a 49 ,⑵没a n是公比为q 等比数列,S n a 1 a> a j L a n,ig,S, 1 3S,n N求q 的取值范围;3(3)若a 1,a 2,L ,ak成等差数列,且a 32L a k1000,求正整数k 的最大值,以及k 取最大值 时相应数列a 1,a 2,L 耳的公差.【点拨】(1)由3:(2)由加 a n q 3a n,ai 1 [3S S a 1q 3S i ,1 q 2.下面证明任意的n 2,上式都成立. ①当q 1时,显然成立. ②当q 1时,显然成立.对于右不等式等价于 亡严 0.令f (x )—q 二X1),1 q 1 q f (x) q; l J q(q 3) 0,要使 f(x) 0,只需 f(1) 0即書0 q 2 .结合q /a 3 3a2 ”x [3,6]; a 4 3a3,结合 11 (1 q n) 1(1 q n 1)3 1 q 1 q3罟,其中左不等式11(2014山东文)(19)在等差数列{a n}中,已知公 差 d 2, a 2是a 1与a 4的等比中项. (I )求数列{a n}的通项公式;(1)nb ,求 T n.【点拨】(I ) 212 , an 2n(D ) h n (n 1)(分奇偶讨论求和)(n 为奇数)1 n (n 2)(为偶数)12(2014山东理)19.已知等差数列{a n}的公差为 2,前n 项和为S n,且S 1,S 2,S 4成等比数列.(I )求数列{a n}的通项公式;(H )令b ( 1厂盘,求数列{b n}的前n 项和T n.得到【点拨】(I ) a 1,a n2n 1;n取2n1 1000 k a i(2 1) dk(k 1) 2 2 2k 1)k 1999,从而当 k 1999时,q2 1999 -(II )设 b,记T nqa3k2S n3n 2 n(n ) b n ( 1叱1 2n 1 1](分奇偶讨论,最后合并)Tn2n;m ( 1)n.13(2014课标1文)17.已知a n是递增的等差数 列,a 2,a 4是方程X 25x 6 0的根。

2014高考数学(文科)一轮精练D单元数列(2013高考真题+模拟新题).DOC

2014高考数学(文科)一轮精练D单元数列(2013高考真题+模拟新题).DOC

D 单元 数列D1 数列的概念与简单表示法15.D1,D5[2013.湖南卷] 对于E ={a 1,a 2,...,a 100}的子集X ={ai 1,ai 2,...,ai k },定义X 的“特征数列”为x 1,x 2,...,x 100,其中xi 1=xi 2=...=xi k =1,其余项均为0.例如:子集{a 2,a 3}的“特征数列”为0,1,1,0,0, 0(1)子集{a 1,a 3,a 5}的“特征数列”的前3项和等于________;(2)若E 的子集P 的“特征数列”p 1,p 2,…,p 100满足p 1=1,p i +p i +1=1,1≤i ≤99;E 的子集Q 的“特征数列”q 1,q 2,…,q 100满足q 1=1,q j +q j +1+q j +2=1,1≤j ≤98,则P ∩Q 的元素个数为________.15.2 17 [解析] (1)由特征数列的定义可知,子集{a 1,a 3,a 5}的“特征数列”为1,0,1,0,1,0…,0,故可知前三项和为2.(2)根据“E 的子集P 的“特征数列”p 1,p 2,…,p 100满足p 1=1,p i +p i +1=1,1≤i ≤99”可知子集P 的“特征数列”为1,0,1,0,…,1,0.即奇数项为1,偶数项为0.根据“E 的子集Q 的“特征数列”q 1,q 2,…,q 100满足q 1=1,q j +q j +1+q j +2=1,1≤j ≤98”可知子集Q 的“特征数列为1,0,0,1,0,0,…,0,1.即项数除以3后的余数为1的项为1,其余项为0,则P ∩Q 的元素为项数除以6余数为1的项,可知有a 1,a 7,a 13,…,a 97,共17项.4.D1[2013·辽宁卷] 下面是关于公差d>0的等差数列{a n }的四个命题:p 1:数列{a n }是递增数列; p 2:数列{na n }是递增数列;p 3:数列a nn是递增数列;p 4:数列{a n +3nd}是递增数列.其中的真命题为( ) A .p 1,p 2 B .p 3,p 4 C .p 2,p 3 D .p 1,p 44.D [解析] 因为数列{a n }为d>0的数列,所以{a n }是递增数列,则p 1为真命题.而数列{a n +3nd}也是递增数列,所以p 4为真命题,故选D.D2 等差数列及等有效期数列前n 项和19.D2,D4[2013·安徽卷] 设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N *,函数f(x)=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足f′⎝ ⎛⎭⎪⎫π2=0.(1)求数列{a n }的通项公式;(2)若b n =2⎝⎛⎭⎫a n +12a n,求数列{b n }的前n 项和S n . 19.解:(1)由题设可得,f ′(x)=a n -a n +1+a n +2-a n +1sin x -a n +2cos x.对任意n ∈N *,f′π2=a n -a n +1+a n +2-a n +1=0,即a n +1-a n =a n +2-a n +1,故{a n }为等差数列.由a 1=2,a 2+a 4=8,解得{a n }的公差d =1, 所以a n =2+1·(n -1)=n +1.(2)由b n =2a n +12a n =2⎝ ⎛⎭⎪⎫n +1+12n +1=2n +12n +2知, S n =b 1+b 2+…+b n =2n +2·n (n +1)2+121-12n1-12=n 2+3n +1-12n .7.D2[2013·安徽卷] 设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6 B .-4 C .-2 D .27.A [解析] 设公差为d ,则8a 1+28d =4a 1+8d ,即a 1=-5d ,a 7=a 1+6d =-5d +6d =d =-2,所以a 9=a 7+2d =-6.20.M2,D2,D3,D5[2013·北京卷] 给定数列a 1,a 2,…,a n ,对i =1,2,…,n -1,该数列前i 项的最大值记为A i ,后n -i 项a i +1,a i +2,…,a n 的最小值记为B i ,d i =A i -B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n (n ≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n -1是等比数列;(3)设d 1,d 2,…,d n -1是公差大于0的等差数列,且d 1>0,证明:a 1,a 2,…,a n -1是等差数列.20.解:(1)d 1=2,d 2=3,d 3=6. (2)证明:因为a 1>0,公比q>1, 所以a 1,a 2,…,a n 是递增数列.因此,对i =1,2,…,n -1,A i =a i ,B i =a i +1. 于是对i =1,2,…,n -1,d i =A i -B i =a i -a i +1=a 1(1-q)q i -1.因此d i ≠0且d i +1d i=q(i =1,2,…,n -2),即d 1,d 2,…,d n -1是等比数列.(3)证明:设d 为d 1,d 2,…,d n -1的公差.对1≤i ≤n -2,因为B i ≤B i +1,d>0,所以A i +1=B i +1+d i +1≥B i +d i +d>B i +d i =A i . 又因为A i +1=max{A i ,a i +1},所以a i +1=A i +1>A i ≥a i .从而a 1,a 2,…,a n -1是递增数列,因此A i =a i (i =1,2,…,n -1). 又因为B 1=A 1-d 1=a 1-d 1<a 1,所以B 1<a 1<a 2<…<a n -1. 因此a n =B 1.所以B 1=B 2=…=B n -1=a n . 所以a i =A i =B i +d i =a n +d i .因此对i =1,2,…,n -2都有a i +1-a i =d i +1-d i =d , 即a 1,a 2,…,a n -1是等差数列. 17.D2、D4[2013·全国卷] 等差数列{a n }中,a 7=4,a 19=2a 9. (1)求{a n }的通项公式;(2)设b n =1na n,求数列{b n }的前n 项和S n .17.解:(1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d.因为⎩⎪⎨⎪⎧a 7=4,a 19=2a 9,所以⎩⎪⎨⎪⎧a 1+6d =4,a 1+18d =2(a 1+8d ),解得a 1=1,d =12.所以{a n }的通项公式为a n =n +12.(2)因为b n =1na n =2n (n +1)=2n -2n +1,所以S n =21-22+22-23+…+2n -2n +1=2nn +1. 17.D2,D3[2013·福建卷] 已知等差数列{a n }的公差d =1,前n 项和为S n . (1)若1,a 1,a 3成等比数列,求a 1; (2)若S 5>a 1a 9,求a 1的取值范围.17.解:(1)因为数列{a n }的公差d =1,且1,a 1,a 3成等比数列,所以a 21=1×(a 1+2), 即a 21-a 1-2=0,解得a 1=-1或a 1=2. (2)因为数列{a n }的公差d =1,且S 5>a 1a 9, 所以5a 1+10>a 21+8a 1, 即a 21+3a 1-10<0,解得-5<a 1<2. 17.D2,D3[2013·新课标全国卷Ⅱ] 已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式;(2)求a 1+a 4+a 7+…+a 3n -2.17.解:(1)设{a n }的公差为d.由题意,a 211=a 1a 13, 即(a 1+10d)2=a 1(a 1+12d), 于是d(2a 1+25d)=0.又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列.从而S n =n2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n. 20.D2[2013·山东卷] 设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,求{b n }的前n 项和T n .20.解:(1)设等差数列{a n }的首项为a 1,公差为d.由S 4=4S 2,a 2n =2a n +1得⎩⎪⎨⎪⎧4a 1+6d =8a 1+4d ,a 1+(2n -1)d =2a 1+2(n -1)d +1.解得a 1=1,d =2.因此a n =2n -1,n ∈N *.(2)由已知b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,当n =1时,b 1a 1=12;当n ≥2时,b n a n =1-12n -⎝ ⎛⎭⎪⎫1-12n -1=12n .所以b n a n =12n ,n ∈N *.由(1)知a n =2n -1,n ∈N *,所以b n =2n -12n ,n ∈N *.又T n =12+322+523+…+2n -12n ,12T n =122+323+…+2n -32n +2n -12n +1, 两式相减得12T n =12+⎝⎛⎭⎫222+223+…+22n -2n -12n +1 =32-12n -1-2n -12n +1, 所以T n =3-2n +32n .17.D2[2013·陕西卷] 设S n 表示数列{}a n 的前n 项和. (1)若{}a n 是等差数列,推导S n 的计算公式;(2)若a 1=1,q ≠0,且对所有正整数n ,有S n =1-q n1-q .判断{}a n 是否为等比数列,并证明你的结论.17.解: (1)方法一:设{}a n 的公差为d ,则 S n =a 1+a 2+…+a n=a 1+(a 1+d)+…+[a 1+(n -1)d],又S n =a n +(a n -d)+…+[a n -(n -1)d], ∴2S n =n(a 1+a n ), ∴S n =n (a 1+a n )2.方法二:设{}a n 的公差为d ,则 S n =a 1+a 2+…+a n=a 1+(a 1+d)+…+[a 1+(n -1)d], 又S n =a n +a n -1+…+a 1=[a 1+(n -1)d]+[a 1+(n -2)d]+…+a 1,∴2S n =[2a 1+(n -1)d]+[2a 1+(n -1)d]+…+[2a 1+(n -1)d] =2na 1+n(n -1)d , ∴S n =na 1+n (n -1)2 d.(2){}a n 是等比数列.证明如下: ∵S n =1-q n1-q ,∴a n +1=S n +1-S n=1-q n +11-q -1-q n 1-q =q n (1-q )1-q=q n.∵a 1=1,q ≠0,∴当n ≥1时,有 a n +1a n =q n q n -1=q.因此,{a n }是首项为1且公比为q 的等比数列. 16.D2,D3[2013·四川卷] 在等比数列{a n }中,a 2-a 1=2,且2a 2为3a 1和a 3的等差中项,求数列{a n }的首项、公比及前n 项和.16.解:设该数列的公比为q ,由已知,可得 a 1q -a 1=2,4a 1q =3a 1+a 1q 2,所以,a 1(q -1)=2,q 2-4q +3=0,解得q =3或q =1. 由于a 1(q -1)=2,因此q =1不合题意,应舍去. 故公比q =3,首项a 1=1.所以,数列的前n 项和S n =3n -12.17.D2、D4[2013·新课标全国卷Ⅰ] 已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a 2n -1a 2n +1的前n 项和. 17.解:(1)设{a n }的公差为d ,则S n =na 1+n (n -1)2d.由已知可得⎩⎪⎨⎪⎧3a 1+3d =0,5a 1+10d =-5,解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n.(2)由(1)知1a 2n -1a 2n +1=1(3-2n )(1-2n )=12⎝⎛⎭⎪⎫12n -3-12n -1, 数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a 2n -1a 2n +1的前n 项和为12⎝ ⎛⎭⎪⎫1-1-11+11-13+…+12n -3-12n -1=n1-2n . 19.D2[2013·浙江卷] 在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d<0,求|a 1|+|a 2|+|a 3|+…+|a n |.19.解:(1)由题意得5a 3·a 1=(2a 2+2)2, 即d 2-3d -4=0.故d =-1或d =4.所以a n =-n +11,n ∈N *或 a n =4n +6,n ∈N *.(2)设数列{a n }的前n 项和为S n ,因为d<0,由(1)得d =-1,a n =-n +11,则 当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n.当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n +110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=⎩⎨⎧-12n 2+212n ,n ≤11,12n 2-212n +110,n ≥12.16.D2和D3[2013·重庆卷] 设数列{a n }满足:a 1=1,a n +1=3a n ,n ∈N +. (1)求{a n }的通项公式及前n 项和S n ;(2)已知{b n }是等差数列,T n 为其前n 项和,且b 1=a 2,b 3=a 1+a 2+a 3,求T 20.16.解:(1)由题设知{a n }是首项为1,公比为3的等比数列,所以a n =3n -1, S n =1-3n 1-3=12(3n -1).(2)b 1=a 2=3,b 3=1+3+9=13,b 3-b 1=10=2d ,所以公差d =5,故T 20=20×3+20×192×5=1 010.12.D2[2013·重庆卷] 若2,a ,b ,c ,9成等差数列,则c -a =________.12.72 [解析] 设公差为d ,则d =9-25-1=74,所以c -a =2d =72.D3 等比数列及等比数列前n 项和20.M2,D2,D3,D5[2013·北京卷] 给定数列a 1,a 2,…,a n ,对i =1,2,…,n -1,该数列前i 项的最大值记为A i ,后n -i 项a i +1,a i +2,…,a n 的最小值记为B i ,d i =A i -B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n (n ≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n -1是等比数列;(3)设d 1,d 2,…,d n -1是公差大于0的等差数列,且d 1>0,证明:a 1,a 2,…,a n -1是等差数列.20.解:(1)d 1=2,d 2=3,d 3=6. (2)证明:因为a 1>0,公比q>1, 所以a 1,a 2,…,a n 是递增数列.因此,对i =1,2,…,n -1,A i =a i ,B i =a i +1. 于是对i =1,2,…,n -1,d i =A i -B i =a i -a i +1=a 1(1-q)q i -1.因此d i ≠0且d i +1d i=q(i =1,2,…,n -2),即d 1,d 2,…,d n -1是等比数列.(3)证明:设d 为d 1,d 2,…,d n -1的公差.对1≤i ≤n -2,因为B i ≤B i +1,d>0,所以A i +1=B i +1+d i +1≥B i +d i +d>B i +d i =A i . 又因为A i +1=max{A i ,a i +1},所以a i +1=A i +1>A i ≥a i .从而a 1,a 2,…,a n -1是递增数列,因此A i =a i (i =1,2,…,n -1). 又因为B 1=A 1-d 1=a 1-d 1<a 1,所以B 1<a 1<a 2<…<a n -1. 因此a n =B 1.所以B 1=B 2=…=B n -1=a n . 所以a i =A i =B i +d i =a n +d i .因此对i =1,2,…,n -2都有a i +1-a i =d i +1-d i =d , 即a 1,a 2,…,a n -1是等差数列. 11.D3[2013·北京卷] 若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.11.2 2n +1-2 [解析] ∵a 3+a 5=q(a 2+a 4),∴40=20q ,∴q =2,∴a 1(q +q 3)=20,∴a 1=2,∴S n =2(1-2n )1-2=2n +1-2.22.H6、H8、D3[2013·全国卷] 已知双曲线C :x 2a 2-y 2b 2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C 的两个交点间的距离为 6.(1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,证明:|AF 2|,|AB|,|BF 2|成等比数列.22.解:(1)由题设知ca =3,即a 2+b 2a 2=9,故b 2=8a 2.所以C 的方程为8x 2-y 2=8a 2. 将y =2代入上式,并求得x =±a 2+12.由题设知,2a 2+12=6,解得a 2=1.所以a =1,b =2 2.(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.①由题意可设l 的方程为y =k(x -3),|k|<22,代入①并化简得(k 2-8)x 2-6k 2x +9k 2+8=0.设A(x 1,y 1),B(x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=6k 2k 2-8,x 1x 2=9k 2+8k 2-8.于是 |AF 1|=(x 1+3)2+y 21=(x 1+3)2+8x 21-8=-(3x 1+1), |BF 1|=(x 2+3)2+y 22=(x 2+3)2+8x 22-8=3x 2+1.由|AF 1|=|BF 1|得-(3x 1+1)=3x 2+1,即x 1+x 2=-23.故6k 2k 2-8=-23,解得k 2=45,从而x 1x 2=-199. 由于|AF 2|=(x 1-3)2+y 21=(x 1-3)2+8x 21-8=1-3x 1,|BF 2|=(x 2-3)2+y 22=(x 2-3)2+8x 22-8=3x 2-1,故|AB|=|AF 2|-|BF 2|=2-3(x 1+x 2)=4,|AF 2|·|BF 2|=3(x 1+x 2)-9x 1x 2-1=16. 因而|AF 2|·|BF 2|=|AB|2,所以|AF 2|,|AB|,|BF 2|成等比数列.7.D3[2013·全国卷] 已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-310)C .3(1-3-10) D .3(1+3-10)7.C [解析] 由3a n +1+a n =0,得a n ≠0(否则a 2=0)且a n +1a n =-13,所以数列{a n }是公比为-13的等比数列,代入a 2可得a 1=4,故S 10=4×⎣⎡⎦⎤1-⎝⎛⎭⎫-13101+13=3×⎣⎡⎦⎤1-⎝⎛⎭⎫1310=3(1-3-10).17.D2,D3[2013·福建卷] 已知等差数列{a n }的公差d =1,前n 项和为S n . (1)若1,a 1,a 3成等比数列,求a 1; (2)若S 5>a 1a 9,求a 1的取值范围.17.解:(1)因为数列{a n }的公差d =1,且1,a 1,a 3成等比数列,所以a 21=1×(a 1+2), 即a 21-a 1-2=0,解得a 1=-1或a 1=2. (2)因为数列{a n }的公差d =1,且S 5>a 1a 9, 所以5a 1+10>a 21+8a 1, 即a 21+3a 1-10<0,解得-5<a 1<2. 11.D3[2013·广东卷] 设数列{a n }是首项为1,公比为-2的等比数列,则a 1+|a 2|+a 3+|a 4|=________.11.15 [解析] 方法一:易求得a 2=-2,a 3=4,a 4=-8,∴a 1+|a 2|+a 3+|a 4|=15.方法二:相当于求首项为1,公比为2的等比数列的前4项和,S 4=1-241-2=15.14.D3[2013·江苏卷] 在正项等比数列{a n }中,a 5=12,a 6+a 7=3. 则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.14.12 [解析] 设{a n }的公比为q.由a 5=12及a 5(q +q 2)=3得q =2,所以a 1=132,所以a 6=1,a 1a 2…a 11=a 116=1,此时a 1+a 2+…+a 11>1.又a 1+a 2+…+a 12=27-132,a 1a 2…a 12=26<27-132,所以a 1a 2…a 12>a 1a 2…a 12,但a 1+a 2+…+a 13=28-132,a 1a 2…a 13=26·27=25·28>28-132,所以a 1+a 2+…+a 13<a 1a 2…a 13,故最大正整数n 的值为12. 12.D3[2013·江西卷] 某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n ∈N *)等于________.12.6 [解析] S n =2(1-2n )1-2=2n +1-2≥100,得n ≥6.14.D3[2013·辽宁卷] 已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.14.63 [解析] 由题意可知a 1+a 3=5,a 1·a 3=4.又因为{a n }为递增的等比数列,所以a 1=1,a 3=4,则公比q =2,所以S 6=1×(1-26)1-2=63.17.D2,D3[2013·新课标全国卷Ⅱ] 已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式;(2)求a 1+a 4+a 7+…+a 3n -2.17.解:(1)设{a n }的公差为d.由题意,a 211=a 1a 13, 即(a 1+10d)2=a 1(a 1+12d), 于是d(2a 1+25d)=0.又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列.从而S n =n2(a 1+a 3n -2)=n2(-6n +56) =-3n 2+28n.16.D2,D3[2013·四川卷] 在等比数列{a n }中,a 2-a 1=2,且2a 2为3a 1和a 3的等差中项,求数列{a n }的首项、公比及前n 项和.16.解:设该数列的公比为q ,由已知,可得 a 1q -a 1=2,4a 1q =3a 1+a 1q 2,所以,a 1(q -1)=2,q 2-4q +3=0,解得q =3或q =1. 由于a 1(q -1)=2,因此q =1不合题意,应舍去. 故公比q =3,首项a 1=1.所以,数列的前n 项和S n =3n -12.6.D3[2013·新课标全国卷Ⅰ] 设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n6.D [解析] a n =⎝⎛⎭⎫23n -1,S n =1-23n 1-23=31-23a n =3-2a n . 16.D2和D3[2013·重庆卷] 设数列{a n }满足:a 1=1,a n +1=3a n ,n ∈N +. (1)求{a n }的通项公式及前n 项和S n ;(2)已知{b n }是等差数列,T n 为其前n 项和,且b 1=a 2,b 3=a 1+a 2+a 3,求T 20.16.解:(1)由题设知{a n }是首项为1,公比为3的等比数列,所以a n =3n -1, S n =1-3n 1-3=12(3n -1).(2)b 1=a 2=3,b 3=1+3+9=13,b 3-b 1=10=2d ,所以公差d =5,故T 20=20×3+20×192×5=1 010.D4 数列求和19.D2,D4[2013·安徽卷] 设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N *,函数f(x)=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足f′⎝ ⎛⎭⎪⎫π2=0.(1)求数列{a n }的通项公式;(2)若b n =2⎝⎛⎭⎫a n +12a n,求数列{b n }的前n 项和S n . 19.解:(1)由题设可得,f ′(x)=a n -a n +1+a n +2-a n +1sin x -a n +2cos x.对任意n ∈N *,f′π2=a n -a n +1+a n +2-a n +1=0,即a n +1-a n =a n +2-a n +1,故{a n }为等差数列.由a 1=2,a 2+a 4=8,解得{a n }的公差d =1, 所以a n =2+1·(n -1)=n +1.(2)由b n =2a n +12a n =2⎝ ⎛⎭⎪⎫n +1+12n +1=2n +12n +2知, S n =b 1+b 2+…+b n =2n +2·n (n +1)2+121-12n1-12=n 2+3n +1-12n .17.D2、D4[2013·全国卷] 等差数列{a n }中,a 7=4,a 19=2a 9. (1)求{a n }的通项公式;(2)设b n =1na n ,求数列{b n }的前n 项和S n .17.解:(1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d.因为⎩⎪⎨⎪⎧a 7=4,a 19=2a 9,所以⎩⎪⎨⎪⎧a 1+6d =4,a 1+18d =2(a 1+8d ),解得a 1=1,d =12.所以{a n }的通项公式为a n =n +12. (2)因为b n =1na n =2n (n +1)=2n -2n +1,所以S n =21-22+22-23+…+2n -2n +1=2nn +1. 16.D4[2013·江西卷] 正项数列{a n }满足:a 2n -(2n -1)a n -2n =0. (1)求数列{a n }的通项公式a n ;(2)令b n =1(n +1)a n,求数列{b n }的前n 项和T n .16.解:(1)由a 2n -(2n -1)a n -2n =0,得(a n -2n)(a n +1)=0. 由于{a n }是正项数列,所以a n =2n.(2)由a n =2n ,b n =1(n +1)a n ,则b n =12n (n +1)=12⎝⎛⎭⎪⎫1n -1n +1, T n =12⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1-1n +1n -1n +1=12⎝ ⎛⎭⎪⎫1-1n +1=n 2(n +1). 17.D2、D4[2013·新课标全国卷Ⅰ] 已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a 2n -1a 2n +1的前n 项和. 17.解:(1)设{a n }的公差为d ,则S n =na 1+n (n -1)2d.由已知可得⎩⎪⎨⎪⎧3a 1+3d =0,5a 1+10d =-5, 解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n.(2)由(1)知1a 2n -1a 2n +1=1(3-2n )(1-2n )=12⎝ ⎛⎭⎪⎫12n -3-12n -1,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a 2n -1a 2n +1的前n 项和为12⎝ ⎛⎭⎪⎫1-1-11+11-13+…+12n -3-12n -1=n 1-2n .D5 单元综合20.M2,D2,D3,D5[2013·北京卷] 给定数列a 1,a 2,…,a n ,对i =1,2,…,n -1,该数列前i 项的最大值记为A i ,后n -i 项a i +1,a i +2,…,a n 的最小值记为B i ,d i =A i -B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n (n ≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n -1是等比数列;(3)设d 1,d 2,…,d n -1是公差大于0的等差数列,且d 1>0,证明:a 1,a 2,…,a n -1是等差数列.20.解:(1)d 1=2,d 2=3,d 3=6. (2)证明:因为a 1>0,公比q>1, 所以a 1,a 2,…,a n 是递增数列.因此,对i =1,2,…,n -1,A i =a i ,B i =a i +1. 于是对i =1,2,…,n -1,d i =A i -B i =a i -a i +1=a 1(1-q)q i -1.因此d i ≠0且d i +1d i=q(i =1,2,…,n -2),即d 1,d 2,…,d n -1是等比数列.(3)证明:设d 为d 1,d 2,…,d n -1的公差.对1≤i ≤n -2,因为B i ≤B i +1,d>0,所以A i +1=B i +1+d i +1≥B i +d i +d>B i +d i =A i . 又因为A i +1=max{A i ,a i +1},所以a i +1=A i +1>A i ≥a i .从而a 1,a 2,…,a n -1是递增数列,因此A i =a i (i =1,2,…,n -1). 又因为B 1=A 1-d 1=a 1-d 1<a 1,所以B 1<a 1<a 2<…<a n -1. 因此a n =B 1.所以B 1=B 2=…=B n -1=a n . 所以a i =A i =B i +d i =a n +d i .因此对i =1,2,…,n -2都有a i +1-a i =d i +1-d i =d , 即a 1,a 2,…,a n -1是等差数列. 19.D5,E9[2013·广东卷] 设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a 2n +1-4n -1,n ∈N *,且a 2,a 5,a 14构成等比数列.(1)证明:a 2=4a 1+5;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1a 2+1a 2a 3+…+1a n a n +1<12.19.解:19.D5[2013·湖北卷] 已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18.(1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.19.解:(1)设数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得⎩⎪⎨⎪⎧S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18,即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18,解得⎩⎪⎨⎪⎧a 1=3,q =-2,故数列{a n }的通项公式为a n =3(-2)n -1.(2)由(1)有S n =3[1-(-2)n ]1-(-2)=1-(-2)n .若存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013, 即(-2)n ≤-2 012.当n 为偶数时,(-2)n >0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n ≥2 012,则n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n|n =2k +1,k ∈N ,k ≥5}. 15.D1,D5[2013.湖南卷] 对于E ={a 1,a 2,...,a 100}的子集X ={ai 1,ai 2,...,ai k },定义X 的“特征数列”为x 1,x 2,...,x 100,其中xi 1=xi 2=...=xi k =1,其余项均为0.例如:子集{a 2,a 3}的“特征数列”为0,1,1,0,0, 0(1)子集{a 1,a 3,a 5}的“特征数列”的前3项和等于________;(2)若E 的子集P 的“特征数列”p 1,p 2,…,p 100满足p 1=1,p i +p i +1=1,1≤i ≤99;E 的子集Q 的“特征数列”q 1,q 2,…,q 100满足q 1=1,q j +q j +1+q j +2=1,1≤j ≤98,则P ∩Q 的元素个数为________.15.2 17 [解析] (1)由特征数列的定义可知,子集{a 1,a 3,a 5}的“特征数列”为1,0,1,0,1,0…,0,故可知前三项和为2.(2)根据“E 的子集P 的“特征数列”p 1,p 2,…,p 100满足p 1=1,p i +p i +1=1,1≤i ≤99”可知子集P 的“特征数列”为1,0,1,0,…,1,0.即奇数项为1,偶数项为0.根据“E 的子集Q 的“特征数列”q 1,q 2,…,q 100满足q 1=1,q j +q j +1+q j +2=1,1≤j ≤98”可知子集Q 的“特征数列为1,0,0,1,0,0,…,0,1.即项数除以3后的余数为1的项为1,其余项为0,则P ∩Q 的元素为项数除以6余数为1的项,可知有a 1,a 7,a 13,…,a 97,共17项.19.D5[2013·江苏卷] 设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项的和.记b n =nS nn 2+c,n ∈N *,其中c 为实数.(1)若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *); (2)若{b n }是等差数列,证明:c =0. 19.解:由题设,S n =na +n (n -1)2d. (1)由c =0,得b n =S n n =a +n -12d.又因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即⎝⎛⎭⎫a +d 22=a ⎝⎛⎭⎫a +32d , 化简得d 2-2ad =0.因为d ≠0,所以d =2a. 因此,对于所有的m ∈N *,有S m =m 2a.从而对于所有的k ,n ∈N *,有S nk =(nk)2a =n 2k 2a =n 2S k .(2)设数列{b n }的公差是d 1,则b n =b 1+(n -1)d 1,即nS nn 2+c =b 1+(n -1)d 1,n ∈N *,代入S n 的表达式,整理得,对于所有的n ∈N *,有⎝⎛⎭⎫d 1-12d n 3+⎝⎛⎭⎫b 1-d 1-a +12d n 2+cd 1n =c(d 1-b 1).令A =d 1-12d ,B =b 1-d 1-a +12d ,D =c(d 1-b 1),则对于所有的n ∈N *,有An 3+Bn 2+cd 1n =D(*).在(*)式中分别取n =1,2,3,4,得A +B +cd 1=8A +4B +2cd 1=27A +9B +3cd 1=64A +16B +4cd 1, 从而有⎩⎪⎨⎪⎧7A +3B +cd 1=0,①19A +5B +cd 1=0,②21A +5B +cd 1=0,③由②,③得A =0,cd 1=-5B ,代入方程①,得B =0,从而cd 1=0. 即d 1-12d =0,b 1-d 1-a +12d =0,cd 1=0.若d 1=0,则由d 1-12d =0得d =0,与题设矛盾,所以d 1≠0.又因为cd 1=0,所以c =0.19.D5[2013·天津卷] 已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式;(2)证明S n +1S n ≤136(n ∈N *).19.解:(1)设等比数列{a n }的公比为q ,因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4,可得2a 4=-a 3,于是q =a 4a 3=-12.又a 1=32,所以等比数列{a n }的通项公式为a n =32×-12n -1=(-1)n -1·32n .(2)证明:S n=1--12n,S n+1S n=1--12n+11--12n=⎩⎪⎨⎪⎧2+12n (2n +1),n 为奇数,2+12n(2n-1),n 为偶数.当n 为奇数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 1+1S 1=136.当n 为偶数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 2+1S 2=2512.故对于n ∈N *,有S n +1S n ≤136.1.[2013·新乡期末] 数列{a n }中,a 1=1,a n =1a n -1+1,则a 4等于( ) A.53 B.43C .1 D.231.A [解析] 由a 1=1,a n =1a n -1+1得,a 2=1a 1+1=2,a 3=1a 2+1=12+1=32,a 4=1a 3+1=23+1=53,选A.2.[2013·合肥联考] 已知等差数列{a n }的前n 项和为S n ,a 3+a 8=13且S 7=35,则a 7=( ) A .11 B .10 C .9 D .82.D [解析] 由已知及等差数列的性质S 7=7(a 1+a 7)2=7a 4=35,所以a 4=5,又a 4+a 7=a 3+a 8=13,所以a 7=8,选D.3.[2013·天津新华中学月考] 设S n 是等差数列{a n }的前n 项和,S 5=3(a 2+a 8),则a 5a 3的值为( )A.16B.13C.35D.56 3.D [解析] 由S 5=3(a 2+a 8)及等差数列的性质得5(a 1+a 5)2=3×2a 5,即5a 3=6a 5,所以a 5a 3=56,选D. 4.[2013·岳阳模拟] 已知等比数列{a n }的前n 项和为S n =3n +a ,n ∈N *,则实数a 的值是( )A .-3B .3C .-1D .14.C [解析] 当n ≥2时,a n =S n -S n -1=3n -3n -1=2·3n -1;当n =1时,a 1=S 1=3+a ,因为{a n }是等比数列,所以有3+a =2,解得a =-1,选C.5.[2013·成都检测] 已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =( )A .4·(32)nB .4·(32)n -1C .4·(23)nD .4·(23)n -15.B [解析] 因为数列{a n }为等比数列,所以(a +1)2=(a -1)(a +4),解得a =5,即数列的前三项为4,6,9,公比为32,所以a n =a 1q n -1=4·⎝⎛⎭⎫32n -1. 6.[2013·昆明调研] 公比不为1的等比数列{a n }的前n 项和为S n ,且-3a 1,-a 2,a 3成等差数列,若a 1=1,则S 4=( )A .-20B .0C.7 D.406.A[解析] 设数列的公比为q(q≠1),因为-3a1,-a2,a3成等差数列,所以-3a1+a3=-2a2,由于a1=1,所以-3+q2+2q=0,因为q≠1,所以q=-3.故S4=1-3+9-27=-20.。

最新高考数学分类汇编(数列)资料

最新高考数学分类汇编(数列)资料

2014年全国高考数学试题分类汇编(数列)1.【2014·全国卷Ⅱ(文5)】等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S =(A ) ()1n n + (B )()1n n - (C )()12n n + (D)()12n n -【答案】A2.【2014·全国大纲卷(理10)】等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( )A .6B .5C .4D .3 【答案】C .3.【2014·全国大纲卷(文8)】设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=( ) A. 31 B. 32 C. 63 D. 64 【答案】C4.【2014·北京卷(理5)】设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件【答案】D5.【2014·天津卷(文5)】设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a =( )(A )2 (B )-2 (C )12 (D )12- 【答案】D .6.【2014·福建卷(理3)】等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ).8A .10B .12C .14D【答案】C7.【2014·辽宁卷(文9)】设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( )A .0d >B .0d <C .10a d >D .10a d <【答案】D8.【2014·陕西卷(理文4)】根据右边框图,对大于2的整数N ,得出数列的通项公式是( ).2n A a n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=【答案】C9.【2014·重庆卷(理2)】对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列【答案】D10.【2014·重庆卷(文2)】在等差数列{}n a 中,1352,10a a a =+=,则7a =( ).5A .8B .10C .14D【答案】B11.【2014·全国卷Ⅱ(文16)】数列{}n a 满足1+n a =n a -11,2a =2,则1a =_________.【答案】2112.【2014·安徽卷(理12)】数列{}a n 是等差数列,若1a 1+,3a 3+,5a 5+构成公比为q 的等比数列,则q =________. 【答案】1q =。

2014-2019年高考数学真题分类汇编专题7:数列1(选择填空基础题)

2014-2019年高考数学真题分类汇编专题7:数列1(选择填空基础题)

2014-2019年高考数学真题分类汇编专题7:数列(选择填空基础题)(一)等差数列选择题1.(2014•福建理)等差数列{}n a 的前n 项和为n S ,若12a =,312S =,则6a 等于( C ) A .8B .10C .12D .142.(2014•辽宁文理)设等差数列{}n a 的公差为d ,若数列1{2}n a a 为递减数列,则( D ) A .0d >B .0d <C .10a d >D .10a d <3.(2014•重庆文)在等差数列{}n a 中,12a =,3510a a +=,则7(a = B ) A .5B .8C .10D .144.(2015•新课标Ⅰ文)已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10(a =B ) A .172B .192C .10D .125.(2015•北京理)设{}n a 是等差数列,下列结论中正确的是( C ) A .若120a a +>,则230a a +> B .若130a a +<,则120a a +<C .若120a a <<,则2a >D .若10a <,则2123()()0a a a a --> 6.(2015•重庆理)在等差数列{}n a 中,若24a =,42a =,则6(a = B ) A .1-B .0C .1D .67.(2016•新课标Ⅰ理)已知等差数列{}n a 前9项的和为27,108a =,则100(a = C ) A .100B .99C .98D .978.(2017•新课标Ⅰ理)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为(C ) A .1B .2C .4D .89.(2017•浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是“4652S S S +>”的(C ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件10.(2017•上海)已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,*n N ∈,则“存在*k N ∈,使得100k x +、200k x +、300k x +成等差数列”的一个必要条件是( A ) A .0a …B .0b …C .0c =D .20a b c -+=11.(2018•新课标Ⅰ理4)记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则5(a = B ) A .12-B .10-C .10D .1212.(2019•新课标Ⅰ理9)记n S 为等差数列{}n a 的前n 项和.已知40S =,55a =,则( A ) A .25n a n =- B .310n a n =-C .228n S n n =-D .2122n S n n =-填空题1.(2014•北京理)若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n = 8 时,{}n a 的前n 项和最大.2.(2014•江西文)在等差数列{}n a 中,17a =,公差为d ,前n 项和为n S ,当且仅当8n =时n S 取得最大值,则d 的取值范围为 7(1,)8-- .3.(2015•广东理)在等差数列{}n a 中,若3456725a a a a a ++++=,则28a a += 10 .4.(2015•陕西文理)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为 5 . 13.(2015•安徽文)已知数列{}n a 中,11a =,11(2)2n n a a n -=+…,则数列{}n a 的前9项和等于 27 .5.(2016•江苏)已知{}n a 是等差数列,n S 是其前n 项和,若2123a a +=-,510S =,则9a 的值是 20 . 6.(2016•北京理)已知{}n a 为等差数列,n S 为其前n 项和.若16a =,350a a +=,则6S = 6 . 7.(2017•新课标Ⅱ理)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑21nn + .8.(2018•上海)记等差数列{}n a 的前n 项和为n S ,若30a =,6714a a +=,则7S = 14 . 9.(2018•北京理9)设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为 63n a n =- .10.(2019北京理科10)设等差数列{}n a 的前n 项和为n S ,若23a =-,510S =-,则5a = 0 ,n S 的最小值为 10- .11.(2019江苏8)已知数列*{}()n a n N ∈是等差数列,n S 是其前n 项和.若2580a a a +=,927S =,则8S 的值是 16 .12.(2019•新课标Ⅲ文14)记n S 为等差数列{}n a 的前n 项和.若35a =,713a =,则10S = 100 .13.(2019•新课标Ⅲ理14)记n S 为等差数列{}n a 的前n 项和,若10a ≠,213a a =,则105S S = 4 .解答题1.(2018•新课标Ⅱ文理17)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值. (二)等比数列选择题1.(2014•大纲版文)设等比数列{}n a 的前n 项和为n S .若23S =,415S =,则6(S = C ) A .31B .32C .63D .642.(2014•大纲版理)等比数列{}n a 中,42a =,55a =,则数列{}n lga 的前8项和等于( C ) A .6B .5C .4D .33.(2014•北京理)设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a 为递增数列”的( D ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.(2014•重庆理)对任意等比数列{}n a ,下列说法一定正确的是( D ) A .1a ,3a ,9a 成等比数列 B .2a ,3a ,6a 成等比数列 C .2a ,4a ,8a 成等比数列D .3a ,6a ,9a 成等比数列5.(2015•新课标Ⅱ文理)已知等比数列{}n a 满足114a =,3544(1)a a a =-,则2(a = C ) A .2B .1C .12D .186.(2015•新课标Ⅱ理)已知等比数列{}n a 满足13a =,13521a a a ++=,则357(a a a ++= B ) A .21B .42C .63D .847.(2015•湖北理)设1a ,2a ,⋯,n a R ∈,3n ….若1:p a ,2a ,⋯,n a 成等比数列;22222221212312231:()()()n n n n q a a a a a a a a a a a a --++⋯+++⋯+=++⋯+,则( A )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件8.(2016•天津理)设{}n a 是首项为正数的等比数列,公比为q ,则“0q <”是“对任意的正整数n ,2120n n a a -+<”的( C )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件9.(2016•四川文理)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( B )(参考数据: 1.120.05lg =, 1.30.11lg =,20.30)lg = A .2018年B .2019年C .2020年D .2021年10.(2016•上海理)已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且lim n n S S →∞=,下列条件中,使得*2()n S S n N <∈恒成立的是( B ) A .10a >,0.60.7q << B .10a <,0.70.6q -<<-C .10a >,0.70.8q <<D .10a <,0.80.7q -<<-11.(2017•新课标Ⅱ理)我国古代数学名著《算法统宗》中有如下问题:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( B ) A .1盏B .3盏C .5盏D .9盏12.(2018•北京文4)设a ,b ,c ,d 是非零实数,则“ad bc =”是“a ,b ,c ,d 成等比数列”的(B ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件13.(2018•北京文理5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为( D )A B C . D .14.(2019•新课标Ⅲ文理)已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3(a =C ) A .16 B .8C .4D .2填空题1.(2014•安徽文)如图,在等腰直角三角形ABC 中,斜边BC =A 作BC 的垂线,垂足为1A ,过点1A 作AC 的垂线,垂足为2A ,过点2A 作1A C 的垂线,垂足为3A ⋯,依此类推,设1BA a =,12AA a =,123A A a =,⋯,567A A a =,则7a =14.2.(2014•广东文)等比数列{}n a 的各项均为正数,且154a a =,则2122232425l o g l o g l o g l o g l o g a a a a a ++++=5 .3.(2014•广东理)若等比数列{}n a 的各项均为正数,且510119122a a a a e +=,则1220l n a l n a l n a ++⋯+= 50 .4.(2014•江苏)在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是 4 . 5.(2014•天津理)设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若1S ,2S ,4S 成等比数列,则1a 的值为 12- .6.(2015•新课标Ⅰ文)在数列{}n a 中,12a =,12n n a a +=,n S 为{}n a 的前n 项和,若126n S =,则n = 6 .7.(2015•广东文)若三个正数a ,b ,c 成等比数列,其中5a =+5c =-b = 1 . 8.(2015•安徽理)已知数列{}n a 是递增的等比数列,149a a +=,238a a =,则数列{}n a 的前n 项和等于21n - .9.(2017•新课标Ⅲ理)设等比数列{}n a 满足121a a +=-,133a a -=-,则4a = 8- . 10.(2017•江苏)等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知374S =,6634S =,则8a = 32 . 11.(2018•新课标Ⅰ理)记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S = 63- . 12.(2019•新课标Ⅰ文14)记n S 为等比数列{}n a 的前n 项和,若11a =,334S =,则4S = 58. 13.(2019•新课标Ⅰ理14)记n S 为等比数列{}n a 的前n 项和.若113a =,246a a =,则5S = 1213.解答题1.(2018•新课标Ⅰ文)已知数列{}n a 满足11a =,12(1)n n na n a +=+,设nn a b n=. (1)求1b ,2b ,3b ;(2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.2.(2018•新课标Ⅲ文理17)等比数列{}n a 中,11a =,534a a =. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .(三)数列综合选择题1.(2014•新课标Ⅱ文)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和(n S =A ) A .(1)n n +B .(1)n n -C .(1)2n n + D .(1)2n n - 2.(2014•陕西文)原命题为“若12n n n a a a ++<,n N +∈,则{}n a 为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( A ) A .真、真、真B .假、假、真C .真、真、假D .假、假、假3.(2014•天津文)设{}n a 的首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若1S ,2S ,4S 成等比数列,则1(a = D ) A .2B .2-C .12D .12-4.(2015•福建理)若a ,b 是函数2()(0,0)f x x px q p q =-+>>的两个不同的零点,且a ,b ,2-这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于( D ) A .6B .7C .8D .95.(2015•浙江理)已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( B )A .10a d >,40dS >B .10a d <,40dS <C .10a d >,40dS <D .10a d <,40dS >6.(2017•新课标Ⅲ理)等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 前6项的和为( A ) A .24-B .3-C .3D .8填空题1.(2014•新课标Ⅱ文)数列{}n a 满足111n n a a +=-,82a =,则1a = 12. 2.(2014•安徽理)数列{}n a 是等差数列,若11a +,33a +,55a +构成公比为q 的等比数列,则q = 1 . 3.(2015•新课标Ⅱ理)设数列{}n a 的前n 项和为n S ,且11a =-,11n n n a S S ++=,则n S = 1n- .4.(2015•福建文)若a ,b 是函数2()(0,0)f x x px q p q =-+>>的两个不同的零点,且a ,b ,2-这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于 9 .5.(2015•湖南理)设n S 为等比数列{}n a 的前n 项和,若11a =,且13S ,22S ,3S 成等差数列,则n a = 13n - . 6.(2015•浙江文)已知{}n a 是等差数列,公差d 不为零,若2a ,3a ,7a 成等比数列,且1221a a +=,则1a =23,d = 1- . 7.(2015•江苏)设数列{}n a 满足11a =,且*11()n n a a n n N +-=+∈,则数列1{}n a 的前10项的和为 2011.8.(2016•新课标Ⅰ理)设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a ⋯的最大值为 64 . 9.(2016•浙江理)设数列{}n a 的前n 项和为n S ,若24S =,121n n a S +=+,*n N ∈,则1a = 1 ,5S = 121 .10.(2017•北京理10)若等差数列{}n a 和等比数列{}n b 满足111a b ==-,448a b ==,则22a b = 1 .。

2014年高考数学数列

2014年高考数学数列

2014年全国高考数学试题分类汇编(数列)1.【2014·全国卷Ⅱ(文5)】等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S =(A ) ()1n n + (B )()1n n - (C )()12n n + (D)()12n n -【答案】A2.【2014·全国大纲卷(理10)】等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( )A .6B .5C .4D .3 【答案】C .3.【2014·全国大纲卷(文8)】设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=( ) A. 31 B. 32 C. 63 D. 64 【答案】C4.【2014·北京卷(理5)】设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件【答案】D5.【2014·天津卷(文5)】设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a =( )(A )2 (B )-2 (C )12 (D )12- 【答案】D .6.【2014·福建卷(理3)】等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ) .8A .10B .12C .14D 【答案】C7.【2014·辽宁卷(文9)】设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( )A .0d >B .0d <C .10a d >D .10a d <【答案】D8.【2014·陕西卷(理文4)】根据右边框图,对大于2的整数N ,得出数列的通项公式是( ).2n A a n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=【答案】C9.【2014·重庆卷(理2)】对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列【答案】D10.【2014·重庆卷(文2)】在等差数列{}n a 中,1352,10a a a =+=,则7a =( ).5A .8B .10C .14D【答案】B11.【2014·全国卷Ⅱ(文16)】数列{}n a 满足1+n a =n a -11,2a =2,则1a =_________.【答案】2112.【2014·安徽卷(理12)】数列{}a n 是等差数列,若1a 1+,3a 3+,5a 5+构成公比为q 的等比数列,则q =________. 【答案】1q =。

专题06 数列小题丨十年(2014-2023)高考数学真题分项汇编(原卷版)(共10页)

专题06 数列小题丨十年(2014-2023)高考数学真题分项汇编(原卷版)(共10页)

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好! 经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!1十年(2014-2023)年高考真题分项汇编—数列小题目录题型一:数列的概念与通项公式.......................................1题型二:等差数列...................................................2题型三:等比数列...................................................4题型四:等差与等比数列综合.........................................6题型五:数列的求和.................................................6题型六:数列与数学文化.............................................7题型七:数列的综合应用 (9)题型一:数列的概念与通项公式一、选择题1.(2016高考数学浙江理科·第6题)如图,点列{}{},n n A B 分别在某锐角的两边上,且*1122,,n n n n n n A A A A A A n ++++=≠∈N ,1n n B B +*122,,n n n n B B B B n +++=≠∈N (P Q ≠表示点P 与Q 不重合).若n n n d A B =,n S 为1n n n A B B +∆的面积,则()()A .{}n S 是等差数列B .{}2nS 是等差数列C .{}n d 是等差数列D .{}2nd 是等差数列2.(2019·浙江·第10题)已知a ,b ∈R ,数列{}n a 满足1a a =,21n n a a b +=+,*n ∈N ,则()A .当12b =时,1010a >B .当14b =时,1010a >C .当2b =-时,1010a >D .当4b =-时,1010a >3.(2017年高考数学新课标Ⅰ卷理科·第12题)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,,其中第一项是02,接下来的两项是02,12,再接下来的三项是02,12,22,依此类推.求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是()A .440B .330C .220D .1104.(2016高考数学课标Ⅲ卷理科·第12题)定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,1,2,,k a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有()A .18个B .16个C .14个D .12个5.(2021年高考浙江卷·第10题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则()A .100321S <<B .10034S <<C .100942S <<D .100952S <<二、填空题1.(2022高考北京卷·第15题)己知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3;②{}n a 为等比数列;③{}n a 为递减数列;④{}n a 中存在小于1100的项.其中所有正确结论的序号是__________.2.(2015高考数学新课标2理科·第16题)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.3.(2017年高考数学上海(文理科)·第14题)已知数列{}n a 和{}n b ,其中2n a n =,*n ∈N ,{}n b 的项是互不相等的正整数,若对于任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b =________.4.(2016高考数学浙江理科·第13题)设数列{}n a 的前n 项和为n S .若*214,21,n n S a S n +==+∈N ,则1a =,5S =.题型二:等差数列一、选择题1.(2020北京高考·第8题)在等差数列{}n a 中,19a =-,31a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ().A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项2.(2019·全国Ⅰ·理·第9题)记n S 为等差数列{}n a 的前n 项和.已知40S =,55a =,则()A .25n a n =-B .310n a n =-C .228n S n n=-D .2122n S n n =-3.(2018年高考数学课标卷Ⅰ(理)·第4题)记n S 为等差数列{}n a 的前n 项和,3243S S S =+,12a =.则5a =()A .12-B .10-C .10D .124.设{}n a 是等差数列,1359a a a ++=,69a =,则这个数列的前6项和等于()A.12B.24C.36D.485.(2016高考数学课标Ⅰ卷理科·第3题)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a ()A100B99C98D976.(2014高考数学福建理科·第3题)等差数列{}n a 的前n 项和为n S ,若132,12a S ==,则6a 等于()A .8B .10C .12D .147.(2015高考数学重庆理科·第2题)在等差数列{}n a 中,若24a =,42a =,则6a =()A .1-B .0C .1D .68.(2015高考数学北京理科·第6题)设{}n a 是等差数列.下列结论中正确的是()A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则2a >D .若10a <,则()()21230a a a a -->9.(2017年高考数学新课标Ⅰ卷理科·第4题)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为()A .1B .2C .4D .810.(2014高考数学辽宁理科·第8题)设等差数列{}n a 的公差为d ,若数列1{2}na a 为递减数列,则()A .0d <B .0d >C .10a d <D .10a d >二、填空题1.(2019·全国Ⅲ·理·第14题)记n S 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________.【点评】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案.2.(2019·江苏·第8题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是.3.(2019·北京·理·第10题)设等差数列{}n a 的前n n 项和为n S ,若23a =-a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为__________.4.(2018年高考数学上海·第6题)记等差数列{}n a 的前n 项和为n S .若30a =,6714a a +=,则7S =.5.(2018年高考数学北京(理)·第9题)设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为__________.6.(2014高考数学北京理科·第12题)若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =时,{}n a 的前n 项和最大.7.(2015高考数学陕西理科·第13题)中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为.8.(2015高考数学广东理科·第10题)在等差数列{n a }中,若2576543=++++a a a a a ,则82a a +=.9.(2016高考数学江苏文理科·第8题)已知{}n a 是等差数列,n S 是其前n 项和.若2123a a +=-,510S =,则9a 的值是.10.(2016高考数学北京理科·第12题)已知{}n a 为等差数列,n S 为其前n 项和,若1356,0a a a =+=,则6S =__________.题型三:等比数列一、选择题1.(2023年天津卷·第6题)已知{}n a 为等比数列,n S 为数列{}n a 的前n 项和,122n n a S +=+,则4a 的值为()A .3B .18C .54D .1522.(2023年新课标全国Ⅱ卷·第8题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =().A .120B .85C .85-D .120-3.(2023年全国甲卷理科·第5题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =()A .158B .658C .15D .404.(2022年高考全国乙卷数学(理)·第8题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =()A .14B .12C .6D .35.(2019·全国Ⅲ·理·第5题)已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =()A .16B .8C .4D .26.(2018年高考数学浙江卷·第10题)已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++,若11a >,则()A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>7.(2014高考数学重庆理科·第2题)对任意等比数列}{n a ,下列说法一定正确的是()A .139,,a a a 成等比数列B .236,,a a a 成等比数列C .248,,a a a 成等比数列D .963,,a a a 成等比数列8.(2015高考数学新课标2理科·第4题)已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=()A .21B .42C .63D .849.(2015高考数学湖北理科·第5题)设12,,,n a a a ∈R ,3n ≥.若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++ ,则()A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件二、填空题1.(2023年全国乙卷理科·第15题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =______.2.(2019·全国Ⅰ·理·第14题)记n S 为等比数列{}n a 的前n 项和.若113a =,246a a =,则5S =.3.(2014高考数学广东理科·第13题)若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++=4.(2014高考数学江苏·第7题)在各项均为正数的等比数列{}n a 中,21,a =8642a a a =+,则6a 的值是.5.(2015高考数学安徽理科·第14题)已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于.6.(2017年高考数学课标Ⅲ卷理科·第14题)设等比数列{}n a 满足121a a +=-,133a a -=-,则4a =.7.(2017年高考数学江苏文理科·第9题)等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知3676344S S ==,,则8a =____.8.(2016高考数学课标Ⅰ卷理科·第15题)设等比数列满足1310a a +=,245a a +=,则12...n a a a 的最1.(2015高考数学浙江理科·第3题)已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则()A .140,0a d dS >>B .140,0a d dS <<C .140,0a d dS ><D .140,0a d dS <>2.(2017年高考数学课标Ⅲ卷理科·第9题)等差数列{}n a 的首项为1,公差不为0.若236,,a a a 成等比数列,则{}n a 前6项的和为()A .24-B .3-C .3D .8二、填空题3.(2014高考数学天津理科·第11题)设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a 的值为_________.4.(2014高考数学安徽理科·第12题)数列{}n a 是等差数列,若1351,3,5a a a +++构成公比为q 的等比数列,则q =.5.(2015高考数学湖南理科·第14题)设n S 为等比数列{}n a 的前n 项和.若11a =,且13S ,22S ,3S 成等差数列,则n a =.6.(2017年高考数学北京理科·第10题)若等差数列{}n a 和等比数列{}n b 满足111a b ==-,448a b ==,则22a b =_______.7.(2020江苏高考·第11题)设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列.已知数列{}n n a b +的前n 项和221()n n S n n n +=-+-∈N ,则d q +的值是_______.题型五:数列的求和一、选择题1.(2014高考数学大纲理科·第10题)等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于()A .6B .5C .4D .32.(2020年高考课标Ⅱ卷理科·第6题)数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=- ,则k =()A .2B .3C .4D .5二、填空题1.(2020年浙江省高考数学试卷·第11题)已知数列{a n }满足(1)=2n n n a +,则S 3=________.2.(2020年新高考全国卷Ⅱ数学(海南)·第15题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.3.(2019·上海·第8题)已知数列{}n a 前n 项和为n S ,且满足2n n S a +=,则5S =______.4.(2018年高考数学课标卷Ⅰ(理)·第14题)记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =.5.(2015高考数学江苏文理·第14题)设向量(cos,sin cos )666k k k k πππ=+a (0,1,2,,12k = ),则1110()kk k +=⋅∑aa 的值为_______.6.(2015高考数学江苏文理·第11题)设数列{}n a 满足11a =,且11n n a a n +-=+(*n N ∈),则数列1n a ⎧⎫⎨⎬⎩⎭前10项的和为_______.7.(2017年高考数学课标Ⅱ卷理科·第15题)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑.8.(2016高考数学上海理科·第11题)无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________.题型六:数列与数学文化一、选择题1.(2020年高考课标Ⅱ卷理科·第0题)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()()A .3699块B .3474块C .3402块D .3339块2.(2022新高考全国II 卷·第3题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =()()A .0.75B .0.8C .0.85D .0.93.(2021高考北京·第6题)《中国共产党党旗党徽制作和使用的若干规定》指出,中国共产党党旗为旗面缀有金黄色党徽图案的红旗,通用规格有五种.这五种规格党旗的长12345,,,,a a a a a (单位:cm)成等差数列,对应的宽为12345,,,,b b b b b (单位:cm),且长与宽之比都相等,已知1288a =,596=a ,1192b =,则3b =A.64B.96C.128D.1604.(2018年高考数学北京(理)·第4题)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为()A .B .fC .D .5.(2017年高考数学课标Ⅱ卷理科·第3题)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏二、填空题1.(2023年北京卷·第14题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a =___________;数列{}n a 所有项的和为____________.2.(2021年新高考Ⅰ卷·第16题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折n 次,那么1nk k S ==∑______2dm .题型七:数列的综合应用一、选择题1.(2023年北京卷·第10题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则()A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立2.(2020年浙江省高考数学试卷·第7题)已知等差数列{a n }的前n 项和S n ,公差d ≠0,11a d≤.记b 1=S 2,b n +1=S n +2–S 2n ,n *∈N ,下列等式不可能成立的是()A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a =D .2428b b b =3.(2022高考北京卷·第6题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.(2020年高考课标Ⅱ卷理科·第11题)0-1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是()A .11010B .11011C .10001D .110015.(2023年全国乙卷理科·第10题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A .-1B .12-C .0D .12二、填空题1.(2018年高考数学江苏卷·第14题)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为.。

2014年高中数学题型分析(数列大题)

2014年高中数学题型分析(数列大题)

2014年全国高考理科数学试题分类汇编:数列大题(教师)1、(本小题满分12分) 已知等比数列{}n a 中,31,311==q a , (1)n s 为数列{}n a 前n 项的和,证明:21nn a s -=(2)设n n a a a b 32313log log log +++= ,求数列{}n b 的通项公式;17.分析:(1)直接用等比数列通项公式与求和公式;(2)代人化简得到等差数列在求其和。

解:(1)21,31)31(311n n n n n a s a -=∴=⨯=- 2)1()21(log log log )2(32313+-=+++-=+++=n n n a a a b n n2、(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列. (1)求n a d ,; (2)若0<d ,求.||||||||321n a a a a ++++【答案】解:(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+224112122125253404611n n d d d d d d d a n a n==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或;(Ⅱ)由(1)知,当0d<时,11n a n =-,①当111n ≤≤时,123123(1011)(21)0||||||||22n n n n n n n a a a a a a a a a +--≥∴++++=++++==②当12n ≤时,1231231112132123111230||||||||()11(2111)(21)212202()()2222n n n n a a a a a a a a a a a a n n n n a a a a a a a a ≤∴++++=++++-+++---+=++++-++++=⨯-=所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧≤≤⎪⎪++++=⎨-+⎪≥⎪⎩;3、(2013年高考湖北卷(理))已知等比数列{}n a 满足:2310a a -=,123125a a a =.(I)求数列{}n a 的通项公式; (II)是否存在正整数m ,使得121111ma a a +++≥?若存在,求m 的最小值;若不存在,说明理由.【答案】解:(I)由已知条件得:25a =,又2110a q -=,13q ∴=-或,所以数列{}n a 的通项或253n n a -=⨯(II)若1q =-,12111105m a a a +++=-或,不存在这样的正整数m ; 若3q =,12111919110310mm a a a ⎡⎤⎛⎫+++=-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,不存在这样的正整数m . 4、(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))设等差数列{}n a 的前n 项和为n S ,且424S S =,221n n a a =+. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 前n 项和为n T ,且 12n n na T λ++=(λ为常数).令2n n cb =*()n N ∈.求数列{}n c 的前n 项和n R .【答案】解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d ,由424S S =,221n n a a =+得11114684(21)22(1)1a d a d a n a n d +=+⎧⎨+-=+-+⎩,解得,11a =,2d =因此21n a n =-*()n N ∈(Ⅱ)由题意知:12n n n T λ-=-所以2n ≥时,112122n n n n n n n b T T ----=-=-+故,1221221(1)()24n n n n n c b n ---===-*()n N ∈ 所以01231111110()1()2()3()(1)()44444n n R n -=⨯+⨯+⨯+⨯+⋅⋅⋅+-⨯, 则12311111110()1()2()(2)()(1)()444444n nn R n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯ 两式相减得1231311111()()()()(1)()444444n nn R n -=+++⋅⋅⋅+--⨯ 11()144(1)()1414nn n -=---整理得1131(4)94n n n R -+=-所以数列数列{}n c 的前n 项和1131(4)94n n n R -+=-5、(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))等差数列{}n a 的前n 项和为n S ,已知232=S a ,且124,,S S S 成等比数列,求{}n a 的通项式.【答案】2014年全国高考理科数学试题分类汇编:数列大题(学生)1、(2011年全国)(本小题满分12分) 已知等比数列{}n a 中,31,311==q a , (1)n s 为数列{}n a 前n 项的和,证明:21nn a s -=(2)设n n a a a b 32313log log log +++= ,求数列{}n b 的通项公式;2、(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列. (1)求n a d ,; (2)若0<d ,求.||||||||321n a a a a ++++3、(2013年高考湖北卷(理))已知等比数列{}n a 满足:2310a a -=,123125a a a =.(I)求数列{}n a 的通项公式; (II)是否存在正整数m ,使得121111ma a a +++≥?若存在,求m 的最小值;若不存在,说明理由.4、(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))设等差数列{}n a 的前n 项和为n S ,且424S S =,221n n a a =+. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 前n 项和为n T ,且 12n n na T λ++=(λ为常数).令2n n cb =*()n N ∈.求数列{}nc 的前n 项和n R .5、(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))等差数列{}n a 的前n 项和为n S ,已知232=S a ,且124,,S S S 成等比数列,求{}n a 的通项式.【答案】。

2014年高考数学文科(高考真题+模拟新题)分类汇编:D单元 数列

2014年高考数学文科(高考真题+模拟新题)分类汇编:D单元 数列

数 学D 单元 数列1.[2014·新课标全国卷Ⅱ] 数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________.1.12 [解析] 由题易知a 8=11-a 7=2,得a 7=12;a 7=11-a 6=12,得a 6=-1;a 6=11-a 5=-1,得a 5=2,于是可知数列{a n }具有周期性,且周期为3,所以a 1=a 7=12.2.[2014·重庆卷] 在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A .5 B .8 C .10 D .142.B [解析] 由题意,得a 1+2d +a 1+4d =2a 1+6d =4+6d =10,解得d =1,所以a 7=a 1+6d =2+6=8.3.[2014·天津卷] 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( )A .2B .-2 C.12 D .-123.D [解析] ∵S 2=2a 1-1,S 4=4a 1+4×32×(-1)=4a 1-6,且S 1,S 2,S 4成等比数列,∴(2a 1-1)2=a 1(4a 1-6),解得a 1=-12.4.[2014·新课标全国卷Ⅱ] 等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( )A .n (n +1)B .n (n -1)C.n (n +1)2D.n (n -1)24.A [解析] 由题意,得a 2,a 2+4,a 2+12成等比数列,即(a 2+4)2=a 2(a 2+12),解得a 2=4,即a 1=2,所以S n =2n +n (n -1)2×2=n (n +1).5.、[2014·广东卷] 等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.5.5 [解析] 在等比数列中,a 1a 5=a 2a 4=a 23=4.因为a n >0,所以a 3=2,所以a 1a 2a 3a 4a 5=(a 1a 5)(a 2a 4)a 3=a 53=25,所以log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5.6.[2014·江西卷] 在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.6.⎝⎛⎭⎫-1,-78 [解析] 由题可知a 8>0且a 9<0,即7+7d >0且7+8d <0,所以-1<d <-78. 7.[2014·辽宁卷] 设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列,则( ) A .d >0 B .d <0 C .a 1d >0 D .a 1d <07.D [解析] 令b n =2a 1a n ,因为数列{2a 1a n }为递减数列,所以 b n +1b n =2a 1a n +12a 1a n=2a 1(a n+1-a n )=2a 1d <1,所以a 1d <0.8.、、[2014·江西卷] 已知数列{a n }的前n 项和S n =3n 2-n2,n ∈N *.(1)求数列{a n }的通项公式;(2)证明:对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列.8.解:(1)由S n =3n 2-n2,得a 1=S 1=1.当n ≥2时,a n =S n -S n -1=3n -2,a 1也符合上式,所以数列{a n }的通项公式为a n =3n -2.(2)证明:要使得a 1,a n ,a m 成等比数列,只需要a 2n =a 1·a m ,即(3n -2)2=1·(3m -2),即m =3n 2-4n +2.而此时m ∈N *,且m >n ,所以对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列. 9.、[2014·北京卷] 已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.9.解:(1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=12-33=3.所以a n =a 1+(n -1)d =3n (n =1,2,…). 设等比数列{b n -a n }的公比为q ,由题意得 q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2.所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n =1,2,…).(2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1×1-2n 1-2=2n -1,所以,数列{b n }的前n 项和为32n (n +1)+2n -1.10.,[2014·福建卷] 在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n . 10.解:(1)设{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧a 1q =3,a 1q 4=81,解得⎩⎪⎨⎪⎧a 1=1,q =3.因此,a n =3n -1.(2)因为b n =log 3a n =n -1,所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n2.11.、、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.11.解:(1)设数列{a n }的公差为d ,依题意知,2,2+d ,2+4d 成等比数列,故有(2+d )2=2(2+4d ), 化简得d 2-4d =0,解得d =0或d =4, 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41.12.、[2014·湖南卷] 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 12.解:(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .故数列{a n }的通项公式为a n =n .(2)由(1)知,b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2. 13.[2014·全国卷] 数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. (1)设b n =a n +1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.13.解:(1)由a n +2=2a n +1-a n +2,得 a n +2-a n +1=a n +1-a n +2, 即b n +1=b n +2. 又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列. (2)由(1)得b n =1+2(n -1), 即a n +1-a n =2n -1.于是所以a n +1-a 1=n 2, 即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式a n =n 2-2n +2.14.、、[2014·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,且c =2a ,求cos B 的值.14.解: (1)∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B . ∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ). (2)由题设有b 2=ac ,c =2a , ∴b =2a .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34.15.[2014·浙江卷] 已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n ;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 15.解:(1)由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5. 因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1), 所以(2m +k -1)(k +1)=65.由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧2m +k -1=13,k +1=5,所以⎩⎪⎨⎪⎧m =5,k =4. 16.、[2014·重庆卷] 已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和.(1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .16.解:(1)因为{a n }是首项a 1=1,公差d =2的等差数列,所以 a n =a 1+(n -1)d =2n -1.故S n =1+3+…+(2n -1)=n (a 1+a n )2=n (1+2n -1)2=n 2.(2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0, 所以(q -4)2=0,从而q =4.又因为b 1=2,{b n }是公比q =4的等比数列,所以b n =b 1q n -1=2×4n -1=22n -1.从而{b n }的前n 项和T n =b 1(1-q n )1-q=23(4n-1).17.,[2014·福建卷] 在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n . 17.解:(1)设{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧a 1q =3,a 1q 4=81,解得⎩⎪⎨⎪⎧a 1=1,q =3.因此,a n =3n -1.(2)因为b n =log 3a n =n -1,所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n2.18.、、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.18.解:(1)设数列{a n }的公差为d ,依题意知,2,2+d ,2+4d 成等比数列,故有(2+d )2=2(2+4d ), 化简得d 2-4d =0,解得d =0或d =4, 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41.19.、、[2014·江西卷] 已知数列{a n }的前n 项和S n =3n 2-n2,n ∈N *.(1)求数列{a n }的通项公式;(2)证明:对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列.19.解:(1)由S n =3n 2-n2,得a 1=S 1=1.当n ≥2时,a n =S n -S n -1=3n -2,a 1也符合上式,所以数列{a n }的通项公式为a n =3n -2.(2)证明:要使得a 1,a n ,a m 成等比数列,只需要a 2n =a 1·a m ,即(3n -2)2=1·(3m -2),即m =3n 2-4n +2.而此时m ∈N *,且m >n ,所以对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列. 20.、[2014·重庆卷] 已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和.(1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .20.解:(1)因为{a n }是首项a 1=1,公差d =2的等差数列,所以 a n =a 1+(n -1)d =2n -1.故S n =1+3+…+(2n -1)=n (a 1+a n )2=n (1+2n -1)2=n 2.(2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0, 所以(q -4)2=0,从而q =4.又因为b 1=2,{b n }是公比q =4的等比数列,所以b n =b 1q n -1=2×4n -1=22n -1.从而{b n }的前n 项和T n =b 1(1-q n )1-q=23(4n-1).21.、[2014·北京卷] 已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.15.解:(1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=12-33=3.所以a n =a 1+(n -1)d =3n (n =1,2,…). 设等比数列{b n -a n }的公比为q ,由题意得 q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2.所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n =1,2,…).(2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1×1-2n 1-2=2n -1,所以,数列{b n }的前n 项和为32n (n +1)+2n -1.21.、[2014·湖南卷] 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 16.解:(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .故数列{a n }的通项公式为a n =n .(2)由(1)知,b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.。

2014年高考数学(理)真题分类汇编:D单元-数列

2014年高考数学(理)真题分类汇编:D单元-数列

2014年高考数学(理)真题分类汇编:D单元-数列Da2n-2a n+2+b(n∈N*).(1)若b=1,求a2,a3及数列{a n}的通项公式.(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.22.解:(1)方法一:a2=2,a3=2+1.再由题设条件知(a n+1-1)2=(a n-1)2+1.从而{(a n-1)2}是首项为0,公差为1的等差数列,故(a n-1)2=n-1,即a n=n-1+1(n∈N*).方法二:a2=2,a3=2+1.可写为a1=1-1+1,a2=2-1+1,a3=3-1+1.因此猜想a n=n-1+1.下面用数学归纳法证明上式.当n=1时,结论显然成立.假设n=k时结论成立,即a k=k-1+1,则a k+1=(a k-1)2+1+1=(k-1)+1+1=(k+1)-1+1,这就是说,当n=k+1时结论成立.所以a n=n-1+1(n∈N*).(2)方法一:设f(x)=(x-1)2+1-1,则a n+1=f(a n).令c=f(c),即c=(c-1)2+1-1,解得c =14. 下面用数学归纳法证明命题a 2n <c <a 2n +1<1.当n =1时,a 2=f (1)=0,a 3=f (0)=2-1,所以a 2<14<a 3<1,结论成立. 假设n =k 时结论成立,即a 2k <c <a 2k +1<1. 易知f (x )在(-∞,1]上为减函数,从而 c =f (c )>f (a 2k +1)>f (1)=a 2,即1>c >a 2k +2>a 2.再由f (x )在(-∞,1]上为减函数,得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1,故c <a 2k +3<1,因此a 2(k +1)<c <a 2(k +1)+1<1,这就是说,当n =k +1时结论成立.综上,存在 c =14使a 2n <C <a 2a +1对所有n ∈N *成立.方法二:设f (x )=(x -1)2+1-1,则a n +1=f (a n ).先证:0≤a n ≤1(n ∈N *). ①当n =1时,结论明显成立.假设n =k 时结论成立,即0≤a k ≤1. 易知f (x )在(-∞,1]上为减函数,从而 0=f (1)≤f (a k )≤f (0)=2-1<1.即0≤a k +1≤1.这就是说,当n =k +1时结论成立.故①成立.再证:a 2n <a 2n +1(n ∈N *). ②当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,所以a 2<a 3,即n =1时②成立.假设n =k 时,结论成立,即a 2k <a 2k +1. 由①及f (x )在(-∞,1]上为减函数,得 a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2,a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N *成立.由②得a 2n <a 22n -2a 2n +2-1,即(a 2n +1)2<a 22n -2a 2n +2,因此a 2n <14. ③ 又由①②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2.所以a 2n +1>a 22n +1-2a 2n +1+2-1,解得a 2n +1>14. ④ 综上,由②③④知存在c =14使a 2n <c <a 2n +1对一切n ∈N *成立.D2 等差数列及等差数列前n 项和5、[2014·安徽卷] 数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q=________.12.16.[2014·北京卷] 若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=________时,{a n}的前n项和最大.12.87.[2014·福建卷] 等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6等于() A.8 B.10 C.12 D.143.C8.、、[2014·湖北卷] 已知等差数列{a n}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{a n}的通项公式.(2)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n的最小值;若不存在,说明理由.18.解:(1)设数列{a n}的公差为d,依题意得,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4.当d=0时,a n=2;当d=4时,a n=2+(n-1)·4=4n-2.从而得数列{a n}的通项公式为a n=2或a n=4n-2.(2)当a n=2时,S n=2n,显然2n<60n+800,此时不存在正整数n,使得S n>60n+800成立.当a n=4n-2时,S n=n[2+(4n-2)]2=2n2.令2n2>60n+800,即n2-30n-400>0,解得n>40或n<-10(舍去),此时存在正整数n,使得S n>60n+800成立,n的最小值为41.综上,当a n=2时,不存在满足题意的正整数n;当a n=4n-2时,存在满足题意的正整数n,其最小值为41.9.、[2014·湖南卷] 已知数列{a n}满足a1=1,|a n+1-a n|=p n,n∈N*.(1)若{a n}是递增数列,且a1,2a2,3a3成等差数列,求p的值;(2)若p=12,且{a2n-1}是递增数列,{a2n}是递减数列,求数列{a n}的通项公式.20.解:(1)因为{a n}是递增数列,所以a n+1-a n=|a n+1-a n|=p n.而a1=1,因此a2=p+1,a3=p2+p+1.又a1,2a2,3a3成等差数列,所以4a2=a1+3a3,因而3p2-p=0,解得p=13或p=0.当p =0时,a n +1=a n ,这与{a n }是递增数列矛盾,故p =13. (2)由于{a 2n -1}是递增数列,因而a 2n +1-a 2n -1>0,于是(a 2n +1-a 2n )+(a 2n -a 2n -1)>0.①因为122n <122n -1,所以|a 2n +1-a 2n |<|a 2n -a 2n -1|.②由①②知,a 2n -a 2n -1>0,因此a 2n -a 2n -1=⎝ ⎛⎭⎪⎪⎫122n -1=(-1)2n 22n -1.③ 因为{a 2n }是递减数列,同理可得,a 2n +1-a 2n <0,故a 2n +1-a 2n =-⎝ ⎛⎭⎪⎪⎫122n =(-1)2n +122n .④ 由③④可知,a n +1-a n =(-1)n +12n . 于是a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+12-122+…+(-1)n 2n -1=1+12·1-⎝ ⎛⎭⎪⎪⎫-12n -11+12=43+13·(-1)n 2n -1. 故数列{a n }的通项公式为a n =43+13·(-1)n2n -1.10[2014·辽宁卷] 设等差数列{a n }的公差为d .若数列{2a 1a n }为递减数列,则( )A .d <0B .d >0C .a 1d <0D .a 1d >08.C11.、[2014·全国卷] 等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n . 18.解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数.又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0,解得-103≤d ≤-52, 因此d =-3.故数列{a n }的通项公式为a n =13-3n .(2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎝ ⎛⎭⎪⎪⎫17-110+⎝ ⎛⎭⎪⎪⎫14-17+…+⎝ ⎛⎭⎪⎫110-3n -113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n 10(10-3n ). 12、[2014·新课标全国卷Ⅰ] 已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ.(2)是否存在λ,使得{a n }为等差数列?并说明理由.17.解:(1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1,两式相减得a n +1(a n +2-a n )=λa n +1. 因为a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得 a 2=λ-1,由(1)知,a 3=λ+1.若{a n }为等差数列,则2a 2=a 1+a 3,解得λ=4,故a n +2-a n =4.由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.13.,,[2014·山东卷] 已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(1)求数列{a n}的通项公式;(2)令b n=(-1)n-14na n a n+1,求数列{b n}的前n 项和T n.19.解:(1)因为S1=a1,S2=2a1+2×1 2×2=2a1+2,S4=4a1+4×32×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以a n=2n-1.(2)由题意可知,b n=(-1)n-14na n a n+1=(-1)n-14n(2n-1)(2n+1)=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1. 当n 为偶数时,T n =⎝ ⎛⎭⎪⎪⎫1+13-⎝ ⎛⎭⎪⎪⎫13+15+…+⎝ ⎛12n -3+⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1 =1-12n +1=2n 2n +1. 当n 为奇数时,T n =⎝⎛⎭⎪⎪⎫1+13-⎝ ⎛⎭⎪⎪⎫13+15+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1 =1+12n +1=2n +22n +1.所以T n =⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n 2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n =2n +1+(-1)n -12n +1 14.,,[2014·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C );(2)若a ,b ,c 成等比数列,求cos B 的最小值.16.解:(1)∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B . ∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac . 由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac=12,当且仅当a=c时等号成立,∴cos B的最小值为12.15.、[2014·天津卷] 设{a n}是首项为a1,公差为-1的等差数列,S n为其前n项和.若S1,S2,S4成等比数列,则a1的值为________.11.-1 216,,[2014·重庆卷] 设a1=1,a n+1=a2n-2a n+2+b(n∈N*).(1)若b=1,求a2,a3及数列{a n}的通项公式.(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.22.解:(1)方法一:a2=2,a3=2+1.再由题设条件知(a n+1-1)2=(a n-1)2+1.从而{(a n-1)2}是首项为0,公差为1的等差数列,故(a n-1)2=n-1,即a n=n-1+1(n∈N*).方法二:a2=2,a3=2+1.可写为a1=1-1+1,a2=2-1+1,a3=3-1+1.因此猜想a n=n-1+1.下面用数学归纳法证明上式.当n =1时,结论显然成立.假设n =k 时结论成立,即a k =k -1+1,则 a k +1=(a k -1)2+1+1=(k -1)+1+1=(k +1)-1+1,这就是说,当n =k +1时结论成立. 所以a n =n -1+1(n ∈N *).(2)方法一:设f (x )=(x -1)2+1-1,则a n +1=f (a n ).令c =f (c ),即c =(c -1)2+1-1,解得c =14. 下面用数学归纳法证明命题a 2n <c <a 2n +1<1. 当n =1时,a 2=f (1)=0,a 3=f (0)=2-1,所以a 2<14<a 3<1,结论成立. 假设n =k 时结论成立,即a 2k <c <a 2k +1<1. 易知f (x )在(-∞,1]上为减函数,从而 c =f (c )>f (a 2k +1)>f (1)=a 2,即1>c >a 2k +2>a 2.再由f (x )在(-∞,1]上为减函数,得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1,故c <a 2k +3<1,因此a 2(k +1)<c <a 2(k +1)+1<1,这就是说,当n =k +1时结论成立.综上,存在 c =14使a 2n <C <a 2a +1对所有n ∈N *成立.方法二:设f (x )=(x -1)2+1-1,则a n +1=f (a n ).先证:0≤a n ≤1(n ∈N *). ① 当n =1时,结论明显成立.假设n =k 时结论成立,即0≤a k ≤1. 易知f (x )在(-∞,1]上为减函数,从而 0=f (1)≤f (a k )≤f (0)=2-1<1.即0≤a k +1≤1.这就是说,当n =k +1时结论成立.故①成立.再证:a 2n <a 2n +1(n ∈N *). ②当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,所以a 2<a 3,即n =1时②成立.假设n =k 时,结论成立,即a 2k <a 2k +1. 由①及f (x )在(-∞,1]上为减函数,得 a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2,a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N *成立.由②得a 2n <a 22n -2a 2n +2-1,即(a 2n +1)2<a 22n -2a 2n +2,因此a 2n <14. ③ 又由①②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2.所以a2n+1>a22n+1-2a2n+1+2-1,解得a2n+1>14.④综上,由②③④知存在c=14使a2n<c<a2n+1对一切n∈N*成立.D3 等比数列及等比数列前n项和14[2014·重庆卷] 对任意等比数列{a n},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9,成等比数列2.D18、[2014·安徽卷] 数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=________.12.119.、[2014·广东卷] 若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则ln a1+ln a2+…+ln a20=________.13.5020.[2014·全国卷] 等比数列{a n}中,a4=2,a5=5,则数列{lg a n}的前8项和等于() A.6 B.5C.4 D.310.C18.、、[2014·湖北卷] 已知等差数列{a n}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{a n}的通项公式.(2)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n的最小值;若不存在,说明理由.18.解:(1)设数列{a n}的公差为d,依题意得,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4.当d=0时,a n=2;当d=4时,a n=2+(n-1)·4=4n-2.从而得数列{a n}的通项公式为a n=2或a n=4n-2.(2)当a n=2时,S n=2n,显然2n<60n+800,此时不存在正整数n,使得S n>60n+800成立.当a n=4n-2时,S n=n[2+(4n-2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去), 此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41.综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41.17.、、[2014·新课标全国卷Ⅱ] 已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.17.解:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎪⎪⎫a n +12. 又a 1+12=32,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +12是首项为32,公比为3的等比数列,所以a n +12=3n2,因此数列{a n }的通项公式为a n =3n -12.(2)证明:由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1,即1a n =23n-1≤13n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝⎛⎭⎪⎪⎫1-13n <32. 所以1a 1+1a 2+…+1a n <32.19.,,[2014·山东卷] 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .19.解: (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1,所以a n =2n -1.(2)由题意可知, b n =(-1)n -14na n a n +1=(-1)n -14n(2n -1)(2n +1)=(-1)n -1⎝⎛⎭⎪⎫12n -1+12n +1. 当n 为偶数时,T n =⎝⎛⎭⎪⎪⎫1+13-⎝ ⎛⎭⎪⎪⎫13+15+…+⎝ ⎛12n -3+⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1 =1-12n +1=2n 2n +1. 当n 为奇数时,T n =⎝⎛⎭⎪⎪⎫1+13-⎝ ⎛⎭⎪⎪⎫13+15+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1. 所以T n =⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n 2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n =2n +1+(-1)n -12n +116.,,[2014·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C );(2)若a ,b ,c 成等比数列,求cos B 的最小值.16.解:(1)∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B . ∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ). (2)∵a ,b ,c 成等比数列,∴b 2=ac .由余弦定理得cos B=a2+c2-b22ac=a2+c2-ac2ac≥2ac-ac2ac=12,当且仅当a=c时等号成立,∴cos B的最小值为12.11.、[2014·天津卷] 设{a n}是首项为a1,公差为-1的等差数列,S n为其前n项和.若S1,S2,S4成等比数列,则a1的值为________.11.-1 219.、、[2014·天津卷] 已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+x n q n-1,x i∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+a n q n-1,t =b1+b2q+…+b n q n-1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.19.解:(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,x i∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}.(2)证明:由s,t∈A,s=a1+a2q+…+a n q n -1,t=b1+b2q+…+b n q n-1,a i,b i∈M,i=1,2,…,n及a n<b n,可得s-t=(a1-b1)+(a2-b2)q+…+(a n-1-b n-1)q n-2+(a n-b n)q n-1≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=(q-1)(1-q n-1)1-q-q n-1=-1<0,所以s<t.D4 数列求和17.、、[2014·江西卷] 已知首项都是1的两个数列{a n},{b n}(b n≠0,n∈N*)满足a n b n+1-a n+1b n+2b n+1b n=0.(1)令c n=a nb n,求数列{c n}的通项公式;(2)若b n=3n-1,求数列{a n}的前n项和S n. 17.解:(1)因为a n b n+1-a n+1b n+2b n+1b n=0,b n ≠0(n ∈N *),所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以c 1=1为首项,d =2为公差的等差数列,故c n =2n -1.(2)由b n =3n -1,知a n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ,将两式相减得-2S n=1+2×(31+32+…+3n -1)-(2n -1)×3n =-2-(2n -2)×3n ,所以S n =(n -1)3n +1.18.、[2014·全国卷] 等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .18.解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数.又S n ≤S 4,故a 4≥0,a 5≤0, 于是10+3d ≥0,10+4d ≤0, 解得-103≤d ≤-52,因此d =-3.故数列{a n }的通项公式为a n =13-3n . (2)b n=1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎝⎛⎭⎪⎪⎫17-110+⎝ ⎛⎭⎪⎪⎫14-17+…+⎝⎛⎭⎪⎫110-3n -113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n10(10-3n ). 19.,,[2014·山东卷] 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .19.解: (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1,所以a n =2n -1. (2)由题意可知, b n =(-1)n -14na n a n +1=(-1)n -14n(2n -1)(2n +1)=(-1)n -1⎝⎛⎭⎪⎫12n -1+12n +1. 当n 为偶数时,T n =⎝⎛⎭⎪⎪⎫1+13-⎝ ⎛⎭⎪⎪⎫13+15+…+⎝ ⎛12n -3+⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1 =1-12n +1=2n 2n +1. 当n 为奇数时,T n =⎝⎛⎭⎪⎪⎫1+13-⎝ ⎛⎭⎪⎪⎫13+15+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1 =1+12n +1=2n +22n +1. 所以T n =⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n 2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n =2n +1+(-1)n -12n +1D5 单元综合20.、[2014·湖南卷] 已知数列{a n }满足a 1=1,|a n +1-a n |=p n ,n ∈N *.(1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;(2)若p =12,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式.20.解:(1)因为{a n }是递增数列,所以a n +1-a n =|a n +1-a n |=p n .而a 1=1,因此 a 2=p +1,a 3=p 2+p +1.又a 1,2a 2,3a 3成等差数列,所以4a 2=a 1+3a 3,因而3p 2-p =0,解得p =13或p =0.当p =0时,a n +1=a n ,这与{a n }是递增数列矛盾,故p =13.(2)由于{a 2n -1}是递增数列,因而a 2n +1-a 2n-1>0,于是(a 2n +1-a 2n )+(a 2n -a 2n -1)>0.①因为122n <122n -1,所以|a 2n +1-a 2n |<|a 2n -a 2n -1|.②由①②知,a 2n -a 2n -1>0,因此a 2n -a 2n -1=⎝ ⎛⎭⎪⎪⎫122n -1=(-1)2n 22n -1.③ 因为{a 2n }是递减数列,同理可得,a 2n +1-a 2n <0,故a 2n +1-a 2n =-⎝ ⎛⎭⎪⎪⎫122n=(-1)2n +122n.④ 由③④可知,a n +1-a n =(-1)n +12n. 于是a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+12-122+…+(-1)n2n -1=1+12·1-⎝ ⎛⎭⎪⎪⎫-12n -11+12=43+13·(-1)n2n -1.故数列{a n }的通项公式为a n =43+13·(-1)n 2n -1.21.、、[2014·安徽卷] 设实数c >0,整数p >1,n ∈N *.(1)证明:当x >-1且x ≠0时,(1+x )p >1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-pn ,证明:a n >a n +1>c 1p.21.证明:(1)用数学归纳法证明如下. ①当p =2时,(1+x )2=1+2x +x 2>1+2x ,原不等式成立.②假设p =k (k ≥2,k ∈N *)时,不等式(1+x )k >1+kx 成立.当p =k +1时,(1+x )k +1=(1+x )(1+x )k >(1+x )(1+kx )=1+(k +1)x +kx 2>1+(k +1)x .所以当p =k +1时,原不等式也成立. 综合①②可得,当x >-1,x ≠0时,对一切整数p >1,不等式(1+x )p >1+px 均成立.(2)方法一:先用数学归纳法证明a n >c 1p .①当n =1时,由题设知a 1>c 1p 成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p成立.由a n +1=p -1p a n +c p a 1-pn 易知a n >0,n ∈N *.当n =k +1时,a k +1a k =p -1p +c pa -pk =1+1p ⎝ ⎛⎭⎪⎪⎫c a p k -1. 由a k >c 1p >0得-1<-1p <1p ⎝ ⎛⎭⎪⎪⎫c a p k -1<0.由(1)中的结论得⎝ ⎛⎭⎪⎫a k +1a k p=⎣⎢⎢⎡⎦⎥⎥⎤1+1p ⎝ ⎛⎭⎪⎪⎫c a p k -1p>1+p · 1p ⎝ ⎛⎭⎪⎪⎫c a p k -1=c a p k .因此a pk +1>c ,即a k +1>c 1p,所以当n =k +1时,不等式a n >c 1p也成立.综合①②可得,对一切正整数n ,不等式a n >c 1p均成立.再由a n +1a n =1+1p ⎝ ⎛⎭⎪⎪⎫c a p n -1可得a n +1a n <1,即a n +1<a n .综上所述,a n >a n +1>c 1p,n ∈N *.方法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1p ,则x p ≥c ,所以f ′(x )=p -1p +c p (1-p )x -p=p -1p⎝⎛⎭⎪⎪⎫1-c x p >0. 由此可得,f (x )在[c 1p,+∞)上单调递增,因而,当x >c 1p 时,f (x )>f (c 1p )=c 1p.①当n =1时,由a 1>c 1p>0,即a p 1>c 可知a 2=p -1p a 1+c p a 1-p 1=a 1⎣⎢⎢⎡⎦⎥⎥⎤1+1p ⎝ ⎛⎭⎪⎪⎫c a p 1-1<a 1,并且a 2=f (a 1)>c 1p ,从而可得a 1>a 2>c 1p,故当n =1时,不等式a n >a n +1>c 1p 成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >a k+1>c 1p 成立,则当n =k +1时,f (a k )>f (a k +1)>f (c 1p), 即有a k +1>a k +2>c 1p,所以当n =k +1时,原不等式也成立. 综合①②可得,对一切正整数n ,不等式a n >a n +1>c 1p均成立.18.、、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.18.解:(1)设数列{a n }的公差为d ,依题意得,2,2+d ,2+4d 成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4.当d=0时,a n=2;当d=4时,a n=2+(n-1)·4=4n-2.从而得数列{a n}的通项公式为a n=2或a n=4n-2.(2)当a n=2时,S n=2n,显然2n<60n+800,此时不存在正整数n,使得S n>60n+800成立.当a n=4n-2时,S n=n[2+(4n-2)]2=2n2.令2n2>60n+800,即n2-30n-400>0,解得n>40或n<-10(舍去),此时存在正整数n,使得S n>60n+800成立,n的最小值为41.综上,当a n=2时,不存在满足题意的正整数n;当a n=4n-2时,存在满足题意的正整数n,其最小值为41.17.、、[2014·江西卷] 已知首项都是1的两个数列{a n},{b n}(b n≠0,n∈N*)满足a n b n+1-a n+1b n+2b n+1b n=0.(1)令c n=a nb n,求数列{c n}的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .17.解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以c 1=1为首项,d =2为公差的等差数列,故c n =2n -1.(2)由b n =3n -1,知a n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n-3)×3n -1+(2n -1)×3n ,将两式相减得-2S n =1+2×(31+32+…+3n -1)-(2n -1)×3n =-2-(2n -2)×3n ,所以S n =(n -1)3n +1. 17.、、[2014·新课标全国卷Ⅱ] 已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.17.解:(1)由a n +1=3a n +1得a n +1+12=3⎝ ⎛⎭⎪⎪⎫a n +12.又a 1+12=32,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +12是首项为32,公比为3的等比数列,所以a n +12=3n2,因此数列{a n }的通项公式为a n =3n -12.(2)证明:由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1,即1a n =23n-1≤13n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝⎛⎭⎪⎪⎫1-13n <32. 所以1a 1+1a 2+…+1a n <32.19.,[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图像上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 的前n 项和T n .19.解:(1)由已知得,b 7=2a 7,b 8=2a 8=4b 7,所以2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2, 所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),其在x 轴上的截距为a 2-1ln 2.由题意有a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1. 从而a n =n ,b n =2n ,所以数列{a n b n }的通项公式为a n b n =n2n ,所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n2n -1,因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n . 所以,T n =2n +1-n -22n . 19.[2014·浙江卷] 已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2.(1)求a n 与b n .(2)设c n =1a n -1b n(n ∈N *).记数列{c n }的前n 项和为S n .(i)求S n ;(ii)求正整数k ,使得对任意n ∈均有S k ≥S n .19.解:(1)由题意a 1a 2a 3…a n =(2)b n ,b 3-b 2=6,知a 3=(2)b 3-b 2=8.又由a 1=2,得公比q =2(q =-2舍去),所以数列{a n }的通项为a n =2n (n ∈N *).所以,a 1a 2a 3…a n =2n (n +1)2=(2)n (n +1). 故数列{b n }的通项为b n =n (n +1)(n ∈N *).(2)(i)由(1)知c n =1a n -1b n =12n -⎝ ⎛⎭⎪⎫1n -1n +1(n ∈N *).所以S n =1n +1-12n (n ∈N *).(ii)因为c 1=0,c 2>0,c 3>0,c 4>0,当n ≥5时,c n =1n (n +1)⎣⎢⎡⎦⎥⎤n (n +1)2n -1, 而n (n +1)2n -(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0,得n (n +1)2n ≤5×(5+1)25<1,所以,当n ≥5时,c n <0.综上,若对任意n ∈N *恒有S k ≥S n ,则k =4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数 学D 单元 数列D1 数列的概念与简单表示法 17.、、[2014·江西卷] 已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n ,求数列{c n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .17.解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以c 1=1为首项,d =2为公差的等差数列,故c n =2n -1.(2)由b n =3n -1,知a n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ,将两式相减得-2S n =1+2×(31+32+…+3n -1)-(2n -1)×3n =-2-(2n -2)×3n ,所以S n =(n -1)3n +1. 17.、[2014·新课标全国卷Ⅰ] 已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n-1,其中λ为常数.(1)证明:a n +2-a n =λ.(2)是否存在λ,使得{a n }为等差数列?并说明理由.17.解:(1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 两式相减得a n +1(a n +2-a n )=λa n +1. 因为a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得 a 2=λ-1, 由(1)知,a 3=λ+1.若{a n }为等差数列,则2a 2=a 1+a 3,解得λ=4,故a n +2-a n =4. 由此可得{a 2n -1}是首项为1,公差为4的等差数列, a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列. 17.、、[2014·新课标全国卷Ⅱ] 已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.17.解:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎫a n +12. 又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列,所以a n +12=3n2,因此数列{a n }的通项公式为a n =3n -12.(2)证明:由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n 1,即1a n =23n-1≤13n 1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝⎛⎫1-13n <32. 所以1a 1+1a 2+…+1a n <32.22.,,[2014·重庆卷] 设a 1=1,a n +1=a 2n -2a n +2+b (n ∈N *). (1)若b =1,求a 2,a 3及数列{a n }的通项公式.(2)若b =-1,问:是否存在实数c 使得a 2n <c <a 2n +1对所有n ∈N *成立?证明你的结论. 22.解:(1)方法一:a 2=2,a 3=2+1. 再由题设条件知(a n +1-1)2=(a n -1)2+1.从而{(a n -1)2}是首项为0,公差为1的等差数列, 故(a n -1)2=n -1,即a n =n -1+1(n ∈N *). 方法二:a 2=2,a 3=2+1.可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1. 下面用数学归纳法证明上式. 当n =1时,结论显然成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1=(a k -1)2+1+1=(k -1)+1+1=(k +1)-1+1, 这就是说,当n =k +1时结论成立. 所以a n =n -1+1(n ∈N *).(2)方法一:设f (x )=(x -1)2+1-1,则a n +1=f (a n ).令c =f (c ),即c =(c -1)2+1-1,解得c =14.下面用数学归纳法证明命题 a 2n <c <a 2n +1<1.当n =1时,a 2=f (1)=0,a 3=f (0)=2-1,所以a 2<14<a 3<1,结论成立.假设n =k 时结论成立,即a 2k <c <a 2k +1<1. 易知f (x )在(-∞,1]上为减函数,从而 c =f (c )>f (a 2k +1)>f (1)=a 2,即 1>c >a 2k +2>a 2.再由f (x )在(-∞,1]上为减函数,得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1,故c <a 2k +3<1,因此a 2(k +1)<c <a 2(k +1)+1<1,这就是说,当n =k +1时结论成立.综上,存在 c =14使a 2n <C <a 2a +1对所有n ∈N *成立.方法二:设f (x )=(x -1)2+1-1,则a n +1=f (a n ). 先证:0≤a n ≤1(n ∈N *). ① 当n =1时,结论明显成立.假设n =k 时结论成立,即0≤a k ≤1. 易知f (x )在(-∞,1]上为减函数,从而 0=f (1)≤f (a k )≤f (0)=2-1<1.即0≤a k +1≤1.这就是说,当n =k +1时结论成立.故①成立. 再证:a 2n <a 2n +1(n ∈N *). ②当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,所以a 2<a 3,即n =1时②成立. 假设n =k 时,结论成立,即a 2k <a 2k +1. 由①及f (x )在(-∞,1]上为减函数,得 a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2, a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N *成立. 由②得a 2n <a 22n -2a 2n +2-1,即(a 2n +1)2<a 22n -2a 2n +2,因此a 2n <14. ③又由①②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2.所以a 2n +1>a 22n +1-2a 2n +1+2-1,解得a 2n +1>14. ④ 综上,由②③④知存在c =14使a 2n <c <a 2n +1对一切n ∈N *成立.D2 等差数列及等差数列前n 项和 12.、[2014·安徽卷] 数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.12.112.[2014·北京卷] 若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.12.8 3.[2014·福建卷] 等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14 3.C 18.、、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.18.解:(1)设数列{a n }的公差为d ,依题意得,2,2+d ,2+4d 成等比数列, 故有(2+d )2=2(2+4d ),化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2.从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41. 20.、[2014·湖南卷] 已知数列{a n }满足a 1=1,|a n +1-a n |=p n ,n ∈N *. (1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;(2)若p =12,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式.20.解:(1)因为{a n }是递增数列,所以a n +1-a n =|a n +1-a n |=p n .而a 1=1,因此 a 2=p +1,a 3=p 2+p +1.又a 1,2a 2,3a 3成等差数列,所以4a 2=a 1+3a 3,因而3p 2-p =0,解得p =13或p =0.当p =0时,a n +1=a n ,这与{a n }是递增数列矛盾,故p =13.(2)由于{a 2n -1}是递增数列,因而a 2n +1-a 2n -1>0,于是(a 2n +1-a 2n )+(a 2n -a 2n -1)>0.①因为122n <122n -1,所以|a 2n +1-a 2n |<|a 2n -a 2n -1|.②由①②知,a 2n -a 2n -1>0,因此a 2n -a 2n -1=⎝⎛⎭⎫122n -1=(-1)2n 22n -1.③ 因为{a 2n }是递减数列,同理可得,a 2n +1-a 2n <0,故a 2n +1-a 2n =-⎝⎛⎭⎫122n=(-1)2n +122n.④由③④可知,a n +1-a n =(-1)n +12n.于是a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+12-122+…+(-1)n2n -1=1+12·1-⎝⎛⎭⎫-12n -11+12=43+13·(-1)n2n -1. 故数列{a n }的通项公式为a n =43+13·(-1)n2n -1. 8.[2014·辽宁卷] 设等差数列{a n }的公差为d .若数列{2a 1a n }为递减数列,则( ) A .d <0 B .d >0 C .a 1d <0 D .a 1d >0 8.C 18.、[2014·全国卷] 等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .18.解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0, 于是10+3d ≥0,10+4d ≤0, 解得-103≤d ≤-52,因此d =-3.故数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝⎛⎭⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎝⎛⎭⎫17-110+⎝⎛⎭⎫14-17+…+⎝⎛⎭⎫110-3n -113-3n =13⎝⎛⎭⎫110-3n -110=n 10(10-3n ).17.、[2014·新课标全国卷Ⅰ] 已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ.(2)是否存在λ,使得{a n }为等差数列?并说明理由.17.解:(1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 两式相减得a n +1(a n +2-a n )=λa n +1. 因为a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得 a 2=λ-1, 由(1)知,a 3=λ+1.若{a n }为等差数列,则2a 2=a 1+a 3,解得λ=4,故a n +2-a n =4. 由此可得{a 2n -1}是首项为1,公差为4的等差数列, a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列. 19.,,[2014·山东卷] 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n-14na n a n +1,求数列{b n }的前n 项和T n . 19.解: (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)由题意可知, b n =(-1)n -14na n a n +1=(-1)n-14n(2n -1)(2n +1)=(-1)n -1⎝⎛⎭⎫12n -1+12n +1.当n 为偶数时,T n =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…+⎝⎛12n -3+⎭⎫12n -1-⎝⎛⎭⎫12n -1+12n +1 =1-12n +1=2n2n +1. 当n 为奇数时,T n =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…-⎝⎛⎭⎫12n -3+12n -1+⎝⎛⎭⎫12n -1+12n +1 =1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n =2n +1+(-1)n -12n +116.,,[2014·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C );(2)若a ,b ,c 成等比数列,求cos B 的最小值. 16.解:(1)∵a ,b ,c 成等差数列,∴a +c =2b . 由正弦定理得sin A +sin C =2sin B . ∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac . 由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立, ∴cos B 的最小值为12.11.、[2014·天津卷] 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.11.-1222.,,[2014·重庆卷] 设a 1=1,a n +1=a 2n -2a n +2+b (n ∈N *). (1)若b =1,求a 2,a 3及数列{a n }的通项公式.(2)若b =-1,问:是否存在实数c 使得a 2n <c <a 2n +1对所有n ∈N *成立?证明你的结论. 22.解:(1)方法一:a 2=2,a 3=2+1. 再由题设条件知(a n +1-1)2=(a n -1)2+1.从而{(a n -1)2}是首项为0,公差为1的等差数列, 故(a n -1)2=n -1,即a n =n -1+1(n ∈N *). 方法二:a 2=2,a 3=2+1.可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1. 下面用数学归纳法证明上式. 当n =1时,结论显然成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1=(a k -1)2+1+1=(k -1)+1+1=(k +1)-1+1, 这就是说,当n =k +1时结论成立. 所以a n =n -1+1(n ∈N *).(2)方法一:设f (x )=(x -1)2+1-1,则a n +1=f (a n ).令c =f (c ),即c =(c -1)2+1-1,解得c =14.下面用数学归纳法证明命题 a 2n <c <a 2n +1<1.当n =1时,a 2=f (1)=0,a 3=f (0)=2-1,所以a 2<14<a 3<1,结论成立.假设n =k 时结论成立,即a 2k <c <a 2k +1<1. 易知f (x )在(-∞,1]上为减函数,从而 c =f (c )>f (a 2k +1)>f (1)=a 2,即 1>c >a 2k +2>a 2.再由f (x )在(-∞,1]上为减函数,得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1,故c <a 2k +3<1,因此a 2(k +1)<c <a 2(k +1)+1<1,这就是说,当n =k +1时结论成立.综上,存在 c =14使a 2n <C <a 2a +1对所有n ∈N *成立.方法二:设f (x )=(x -1)2+1-1,则a n +1=f (a n ).先证:0≤a n ≤1(n ∈N *). ① 当n =1时,结论明显成立.假设n =k 时结论成立,即0≤a k ≤1. 易知f (x )在(-∞,1]上为减函数,从而 0=f (1)≤f (a k )≤f (0)=2-1<1.即0≤a k +1≤1.这就是说,当n =k +1时结论成立.故①成立. 再证:a 2n <a 2n +1(n ∈N *). ②当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,所以a 2<a 3,即n =1时②成立. 假设n =k 时,结论成立,即a 2k <a 2k +1. 由①及f (x )在(-∞,1]上为减函数,得 a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2, a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N *成立. 由②得a 2n <a 22n -2a 2n +2-1,即(a 2n +1)2<a 22n -2a 2n +2,因此a 2n <14. ③又由①②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2.所以a 2n +1>a 22n +1-2a 2n +1+2-1,解得a 2n +1>14. ④ 综上,由②③④知存在c =14使a 2n <c <a 2n +1对一切n ∈N *成立.D3 等比数列及等比数列前n 项和 2.[2014·重庆卷] 对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9,成等比数列 2.D 12.、[2014·安徽卷] 数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.12.1 13.、[2014·广东卷] 若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.13.50 10.[2014·全国卷] 等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4 D .3 10.C 18.、、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.18.解:(1)设数列{a n }的公差为d ,依题意得,2,2+d ,2+4d 成等比数列, 故有(2+d )2=2(2+4d ),化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2.从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41. 17.、、[2014·新课标全国卷Ⅱ] 已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.17.解:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎫a n +12. 又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列,所以a n +12=3n2,因此数列{a n }的通项公式为a n =3n-12.(2)证明:由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1,即1a n =23n-1≤13n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝⎛⎭⎫1-13n <32. 所以1a 1+1a 2+…+1a n <32.19.,,[2014·山东卷] 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n-14na n a n +1,求数列{b n }的前n 项和T n . 19.解: (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)由题意可知, b n =(-1)n -14na n a n +1=(-1)n-14n(2n -1)(2n +1)=(-1)n -1⎝⎛⎭⎫12n -1+12n +1.当n 为偶数时,T n =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…+⎝⎛12n -3+⎭⎫12n -1-⎝⎛⎭⎫12n -1+12n +1 =1-12n +1=2n2n +1. 当n 为奇数时,T n =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…-⎝⎛⎭⎫12n -3+12n -1+⎝⎛⎭⎫12n -1+12n +1 =1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n=2n +1+(-1)n -12n +116.,,[2014·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,求cos B 的最小值. 16.解:(1)∵a ,b ,c 成等差数列,∴a +c =2b . 由正弦定理得sin A +sin C =2sin B . ∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac . 由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立, ∴cos B 的最小值为12.11.、[2014·天津卷] 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.11.-1219.、、[2014·天津卷] 已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n q n -1,x i ∈M ,i =1,2,…,n }. (1)当q =2,n =3时,用列举法表示集合A .(2)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,其中a i ,b i ∈M ,i =1,2,…,n .证明:若a n <b n ,则s <t .19.解:(1)当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3},可得A ={0,1,2,3,4,5,6,7}.(2)证明:由s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,a i ,b i ∈M ,i =1,2,…,n 及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )q n -1≤(q -1)+(q -1)q +…+(q -1)q n -2-q n -1=(q -1)(1-q n -1)1-q-q n -1=-1<0, 所以s <t .D4 数列求和 17.、、[2014·江西卷] 已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n ,求数列{c n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .17.解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以c 1=1为首项,d =2为公差的等差数列,故c n =2n -1.(2)由b n =3n -1,知a n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ,将两式相减得-2S n =1+2×(31+32+…+3n -1)-(2n -1)×3n =-2-(2n -2)×3n ,所以S n =(n -1)3n +1. 18.、[2014·全国卷] 等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .18.解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0, 于是10+3d ≥0,10+4d ≤0, 解得-103≤d ≤-52,因此d =-3.故数列{a n }的通项公式为a n =13-3n .(2)b n =1(13-3n )(10-3n )=13⎝⎛⎭⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎝⎛⎭⎫17-110+⎝⎛⎭⎫14-17+…+⎝⎛⎭⎫110-3n -113-3n =13⎝⎛⎭⎫110-3n -110=n 10(10-3n ).19.,,[2014·山东卷] 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n-14na n a n +1,求数列{b n }的前n 项和T n . 19.解: (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)由题意可知, b n =(-1)n -14na n a n +1=(-1)n-14n(2n -1)(2n +1)=(-1)n -1⎝⎛⎭⎫12n -1+12n +1.当n 为偶数时,T n =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…+⎝⎛12n -3+⎭⎫12n -1-⎝⎛⎭⎫12n -1+12n +1 =1-12n +1=2n2n +1. 当n 为奇数时,T n =⎝⎛⎫1+13-⎝⎛⎫13+15+…-⎝⎛⎭⎫12n -3+12n -1+⎝⎛⎭⎫12n -1+12n +1 =1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n=2n +1+(-1)n -12n +1D5 单元综合20.、[2014·湖南卷] 已知数列{a n }满足a 1=1,|a n +1-a n |=p n ,n ∈N *. (1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;(2)若p =12,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式.20.解:(1)因为{a n }是递增数列,所以a n +1-a n =|a n +1-a n |=p n .而a 1=1,因此 a 2=p +1,a 3=p 2+p +1.又a 1,2a 2,3a 3成等差数列,所以4a 2=a 1+3a 3,因而3p 2-p =0,解得p =13或p =0.当p =0时,a n +1=a n ,这与{a n }是递增数列矛盾,故p =13.(2)由于{a 2n -1}是递增数列,因而a 2n +1-a 2n -1>0,于是(a 2n +1-a 2n )+(a 2n -a 2n -1)>0.①因为122n <122n 1,所以|a 2n +1-a 2n |<|a 2n -a 2n -1|.②由①②知,a 2n -a 2n -1>0,因此a 2n -a 2n -1=⎝⎛⎭⎫122n -1=(-1)2n 22n -1.③ 因为{a 2n }是递减数列,同理可得,a 2n +1-a 2n <0,故a 2n +1-a 2n =-⎝⎛⎭⎫122n=(-1)2n +122n.④由③④可知,a n +1-a n =(-1)n +12n.于是a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+12-122+…+(-1)n2n -1=1+12·1-⎝⎛⎭⎫-12n -11+12=43+13·(-1)n2n -1. 故数列{a n }的通项公式为a n =43+13·(-1)n2n 1.21.、、[2014·安徽卷] 设实数c >0,整数p >1,n ∈N *. (1)证明:当x >-1且x ≠0时,(1+x )p >1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p. 21.证明:(1)用数学归纳法证明如下.①当p =2时,(1+x )2=1+2x +x 2>1+2x ,原不等式成立. ②假设p =k (k ≥2,k ∈N *)时,不等式(1+x )k >1+kx 成立.当p =k +1时,(1+x )k +1=(1+x )(1+x )k >(1+x )(1+kx )=1+(k +1)x +kx 2>1+(k +1)x . 所以当p =k +1时,原不等式也成立.综合①②可得,当x >-1,x ≠0时,对一切整数p >1,不等式(1+x )p >1+px 均成立. (2)方法一:先用数学归纳法证明a n >c 1p .①当n =1时,由题设知a 1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p成立. 由a n +1=p -1p a n +c p a 1-p n 易知a n >0,n ∈N *. 当n =k +1时,a k +1a k =p -1p +c p a -p k =1+1p ⎝⎛⎭⎫c a p k-1. 由a k >c 1p >0得-1<-1p <1p ⎝⎛⎭⎫c a p k-1<0. 由(1)中的结论得⎝⎛⎭⎫a k +1a k p=⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p k -1p>1+p · 1p ⎝⎛⎭⎫c a p k -1=c a p k . 因此a p k +1>c ,即a k +1>c 1p,所以当n =k +1时,不等式a n >c 1p也成立.综合①②可得,对一切正整数n ,不等式a n >c 1p 均成立.再由a n +1a n =1+1p ⎝⎛⎭⎫c a p n -1可得a n +1a n <1, 即a n +1<a n .综上所述,a n >a n +1>c 1p,n ∈N *.方法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1p ,则x p ≥c ,所以f ′(x )=p -1p +c p (1-p )x -p =p -1p ⎝⎛⎭⎫1-c x p >0. 由此可得,f (x )在[c 1p ,+∞)上单调递增,因而,当x >c 1p 时,f (x )>f (c 1p )=c 1p .①当n =1时,由a 1>c 1p>0,即a p 1>c 可知 a 2=p -1p a 1+c p a 1-p 1=a 1⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p 1-1<a 1,并且a 2=f (a 1)>c 1p ,从而可得a 1>a 2>c 1p , 故当n =1时,不等式a n >a n +1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >a k +1>c 1p 成立,则当n =k +1时,f (a k )>f (a k +1)>f (c 1p ),即有a k +1>a k +2>c 1p,所以当n =k +1时,原不等式也成立.综合①②可得,对一切正整数n ,不等式a n >a n +1>c 1p均成立.18.、、[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.18.解:(1)设数列{a n }的公差为d ,依题意得,2,2+d ,2+4d 成等比数列, 故有(2+d )2=2(2+4d ),化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2.从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41. 17.、、[2014·江西卷] 已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n ,求数列{c n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .17.解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以c 1=1为首项,d =2为公差的等差数列,故c n =2n -1.(2)由b n =3n -1,知a n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ,将两式相减得-2S n =1+2×(31+32+…+3n -1)-(2n -1)×3n =-2-(2n -2)×3n ,所以S n =(n -1)3n +1. 17.、、[2014·新课标全国卷Ⅱ] 已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.17.解:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎫a n +12. 又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列,所以a n +12=3n2,因此数列{a n }的通项公式为a n =3n-12.(2)证明:由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1,即1a n =23n-1≤13n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝⎛⎭⎫1-13n <32. 所以1a 1+1a 2+…+1a n <32.19.,[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图像上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a n b n 的前n 项和T n .19.解:(1)由已知得,b 7=2a 7,b 8=2a 8=4b 7,所以 2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2,所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 其在x 轴上的截距为a 2-1ln 2.由题意有a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1.从而a n =n ,b n =2n ,所以数列{a n b n }的通项公式为a n b n =n2n ,所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n2n -1,因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n .所以,T n =2n +1-n -22n.19.[2014·浙江卷] 已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2.(1)求a n 与b n .(2)设c n =1a n -1b n(n ∈N *).记数列{c n }的前n 项和为S n .(i)求S n ;(ii)求正整数k ,使得对任意n ∈均有S k ≥S n .19.解:(1)由题意a 1a 2a 3…a n =(2)b n ,b 3-b 2=6, 知a 3=(2)b 3-b 2=8.又由a 1=2,得公比q =2(q =-2舍去),所以数列{a n }的通项为a n =2n (n ∈N *).所以,a 1a 2a 3…a n =2n (n +1)2=(2)n (n +1).故数列{b n }的通项为b n =n (n +1)(n ∈N *).(2)(i)由(1)知c n =1a n -1b n =12n -⎝⎛⎭⎫1n -1n +1(n ∈N *).所以S n =1n +1-12n (n ∈N *).(ii)因为c 1=0,c 2>0,c 3>0,c 4>0,当n ≥5时,c n =1n (n +1)⎣⎡⎦⎤n (n +1)2n -1, 而n (n +1)2n -(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0, 得n (n +1)2n ≤5×(5+1)25<1,所以,当n ≥5时,c n <0.综上,若对任意n ∈N *恒有S k ≥S n ,则k =4.新课标第一网系列资料 。

相关文档
最新文档