人教a版高中数学必修1课时作业:作业21 2.1.1-2指数与指数幂的运算(第2课时) 含解析

合集下载

人教A版高中数学必修一2.1.1指数与指数幂的运算第一、二、三课时

人教A版高中数学必修一2.1.1指数与指数幂的运算第一、二、三课时

备用
1.要使
(5x
1
)
3 4
(x
2
1) 3
有意义,则x的取
值范围是 2
2.计算:1
(a 2
1
a2
1
)(a 2
1
a2
)(a
a2
a1)
a2
3.求值: 3 2 5 12 3 2 2
2.1.1 指数与指数幂的运算
第3课时
指数式的计算与化简
指数式的计算与化简,除了掌握定义、法则外,还 要掌握一些变形技巧.根据题目的不同结构特征,灵 活运用不同的技巧,才能做到运算合理准确快捷.
(2)在 根 式n am中,若 根 指 数n与 幂 指 数m有 公 约 数 时, 当a 0时 可约 分.当a 0时 不可 随意 约 分. 如8 32 4 3, 10 (2)2 5 2而15 (2)5 3 2.
课堂练习:课本 P54中练习第3题
课外作业:课本 P59习题2.1中A组第2,3,4题
4.下 列 各 式 中,正 确 的 是( C )
A.6 (2)2 3 2 B.4 (3 )4 3
C .(3 2 )3 2 D.6 (2a 1)6 2a 1
小结
1.n次方根的定义:
一般地,如果xn a,那么x叫做a的n次方根, 其中n 1且n N .
2.根式的简单性质: 1) 当n 1, n N *时,总有 (n a )n a.
(1)a a1 7; (2)a2 a2 47;
3
a2 (3) 1
3
a 2
1
(a
1 2
1
a2
)(a
1
a1
1
1
a2
1
a2
)

(人教a版)数学必修一课时训练:2.1.1(第2课时)指数幂及运算(含答案)

(人教a版)数学必修一课时训练:2.1.1(第2课时)指数幂及运算(含答案)

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

课时提升卷(十五)指数幂及运算(45分钟 100分)一、选择题(每小题6分,共30分)1.下列各式中正确的一项是( )A.()7=n7B.=C.=(x+yD.=2.计算[(-)-2的结果是( )A. B.- C. D.-3.下列各式中正确的是( )A.(-1)0=-1B.(-1)-1=-1C.3a-2=D.=-x24.(2013·潍坊高一检测)若(1-2x有意义,则x的取值范围是( )A.x∈RB.x≠0.5C.x>0.5D.x<0.55.下列结论中正确的个数是( )①当a<0时,(a2=a3;②=|a|;③函数y=+(3x-7)0的定义域是[2,+∞);④若100a=5,10b=2,则2a+b=1.A.0B.1C.2D.3二、填空题(每小题8分,共24分)6.对于,两数的大小关系是.7.(2013·南昌高一检测)若10m=2,10n=3,则1= .8.化简= .三、解答题(9题,10题14分,11题18分)9.化简:(×(÷.10.已知+=3,求下列各式的值:(1)a+a-1. (2)a2+a-2.11.(能力挑战题)计算:(1+)(1+)(1+)(1+)·(1+).答案解析1. 【解析】选 D.∵()7=,∴A错.而==,故B错.又=(x3+y3,故C错.而====.故D正确.2. 【解析】选A.[(-)-2=(=.3.【解析】选B.∵(-1)0=1,故A错.而3a-2=,故C错.又∵==x2,∴D错误,故选B.【误区警示】本题易忽视符号,从而出现错选D的错误.4.【解析】选D.由于(1-2x=,故1-2x>0,解得x<0.5.【变式备选】(3-2x中x的取值范围为( )A.(-∞,+∞)B.(-∞,)∪(,+∞)C.(-∞,)D.(,+∞)【解题指南】解答本题要先将分式指数幂化为根式,然后利用根式有意义的条件求解.【解析】选C.由于(3-2x=,故3-2x>0,即x<.5.【解题指南】对于④把100a=102a=5与10b=2相乘就可以判定了. 【解析】选B.对于①,应为(a2=-a3;②错是当n为奇数,a为负数时不成立;③错误,少了条件3x-7≠0,即x≠;对于④,100a=102a=5,10b=2,∴102a×10b=5×2,即102a+b=10,∴2a+b=1,正确.6.【解析】∵==(23=,==(32=.而<,∴<.答案:<7.【解析】1===.答案:8.【解析】==a+b.答案:a+b9.【解析】原式=(×(10÷1=2-1×103×1=2-1×1=.【变式备选】计算:0.25-0.5+(-6250.25.【解析】原式=(+()-1-(54=2+3-5=0.10.【解析】(1)∵+=3,∴(+)2=a+a -1+2=9,∴a+a -1=7.(2)∵a+a -1=7,∴(a+a -1)2=a 2+a -2+2=49, ∴a 2+a -2=47.11.【解题指南】先观察所要化简式子的特点,再根据分数的特性,将分子分母同时乘以1-,从而连续利用平方差公式灵活求解.【解析】原式=将分子分母同时乘以1-, 由于(1-)(1+)=1-,(1-)(1+)=1-;(1-)(1+)=1-;(1-)(1+)=1-;111122132113232(12)(12)121(12).21212--------+-===---从而原式。

人教A版高中数学必修一2.1.1.1指数与指数幂的运算(1)

人教A版高中数学必修一2.1.1.1指数与指数幂的运算(1)

(2)2 学科网 4
-8 -2
(2)3 8
9 ±3 00
(3)2 9 02 0
-1 -1
0
0
(1)3 1 03 0
-4 无
8
2
23 8
-9 无
27 3
33 27
类比分析, 可是个好 方法哟!
3.若x4=a, 则 x 叫做 a 的 四次方根(a≥0 )
4.若x5=a, 则 x 叫做 a 的五 次方根
(3)利用(2)的规律,你能表示下列式子吗?
4 53 , 5 a7
n xm (x 0, m, n N *,且n 1)
(4)你能用方根的意义来解释(3)的式子吗? (5)你能推广到一般情形吗?
讨论结果:形式变了,本质没变,方根的结 果和分数指数幂是相通的。综上我们得到正 数的正分数指数幂的意义。
提出问题
分数指数幂
(1).整数指数幂的运算性质是什么?
(2).观察以下式子,并总结出规律:

5 a10
10
5 (a2 )5 a2 a 5

8
a8 (a4)2 a4 a2

12
4 a12 4 (a3 )4 a3 a 4
④ 10
2 a10 2 (a5 )2 a5 a 2
高中数学课件
(金戈铁骑 整理制作)
第1课时
根式与分数指数幂
1. 理解n次方根与根式的概念;理解分数 指数幂的概念 2. 正确运用根式运算性质化简、求值;掌 握分数指数幂和根式之间的互化;分数指 数幂的运算性质。 3. 分类讨论思想,观察分析、抽象概括等 的能力。
(1) 整数指数幂的概念:

人教A版数学必修一2.1.1指数与指数幂的运算

人教A版数学必修一2.1.1指数与指数幂的运算

② 3-2 2 + 3 (1- 2)3 + 4 (1- 2)4 = _____2_-__1.
2.1.1 │ 考点类析
[解析] ①8 (x-3)8=|x-3|,当 x≥3 时,原式=x-3; 当 x<3 时,原式=3-x.
所以8 (x-3)8=x3--3x,,xx≥<33. , ②因为 3-2 2=2-2 2+1=( 2)2-2 2+1=( 2-1)2, 所 以 3-2 2 + 3 (1- 2)3 + 4 (1- 2)4 = ( 2-1)2+ 3 (1- 2)3+ 4 (1- 2)4= 2-1+1- 2+ 2-1= 2-1.
2.1.1 │ 考点类析
[小结] 有理指数幂运算的基本原则和常规方法: (1)基本原则:式子里既有分数指数幂又有根式时,
一般把根式统一化为分数指数幂的形式,再用有理指数 幂的运算性质化简.
(2)常规方法:①化负指数幂为正指数幂;②化根式 为分数指数幂;③化小数为分数.
2.1.1 │ 考点类析
考点四 条件求值 重点探究型 [导入] 已知 x+1x=a(a≥2),如何求 x2+x12的值?
[ 解 析 ] (1)① 4 (-8)4 = | - 8| = 8 ;
②3 (-8)3=-8.
6 (2)①
1-π3 6=1-π3 =π3 -1;② 5
1-π3 5
=1-π3 .
2.1.1 │ 考点类析
(3)计算下列各式的值:
①8
x-3,x≥3,
(x-3)8=_3_-__x_,_x_<_3,
2.1.1 │ 考点类析
【变式】 (1)设 10m=2,10n=3,则 10-2m-10-n=_-_1_12_____.
[解析] 由 10m=2 得 10-2m=(101m)2=14,10 -n=110n=13, 所以 10-2m-10-n=14-13=-112.

高中数学必修1全册课时训练含答案

高中数学必修1全册课时训练含答案

人教A版高中数学必修1 全册课时训练目录1.1.1(第1课时)集合的含义1.1.1(第2课时)集合的表示1.1.2集合间的基本关系1.1.3(第1课时)并集、交集1.1.3(第2课时)补集及综合应用1.2.1(第1课时)函数的概念1.2.1(第2课时)函数概念的综合应用1.2.2(第1课时)函数的表示法1.2.2(第2课时)分段函数及映射1.3.1(第1课时)函数的单调性1.3.1(第2课时)函数的最大值、最小值1.3.2(第1课时)函数奇偶性的概念1.3.2(第2课时)函数奇偶性的应用集合与函数的概念-单元评估试题2.1.1(第1课时)根式2.1.1(第2课时)指数幂及运算2.1.2(第1课时)指数函数的图象及性质2.1.2(第2课时)指数函数及其性质的应用2.2.1(第1课时)对数2.2.1(第2课时)对数的运算2.2.2(第1课时)对数函数的图象及性质2.2.2(第2课时)对数函数及其性质的应用2.3幂函数基本初等函数-单元评估试题3.1.1方程的根与函数的零点3.1.2用二分法求方程的近似解3.2.1几类不同增长的函数模型3.2.2(第1课时)一次函数、二次函数应用举例3.2.2(第2课时)指数型、对数型函数的应用举例函数的应用-单元评估试题第1-3章-全册综合质量评估试卷课时提升卷(一)集合的含义(45分钟 100分)一、选择题(每小题6分,共30分)1.下列各项中,不能组成集合的是( )A.所有的正整数B.等于2的数C.接近于0的数D.不等于0的偶数2.(2013·冀州高一检测)若集合M中的三个元素a,b,c是△ABC的三边长,则△ABC一定不是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形3.已知集合M具有性质:若a∈M,则2a∈M,现已知-1∈M,则下列元素一定是M中的元素的是( )A.1B.0C.-2D.24.已知2a∈A,a2-a∈A,若A只含这2个元素,则下列说法中正确的是( )A.a可取全体实数B.a可取除去0以外的所有实数C.a可取除去3以外的所有实数D.a可取除去0和3以外的所有实数5.下列四种说法中正确的个数是( )①集合N中的最小数为1;②若a∈N,则-a∉N;③若a∈N,b∈N,则a+b的最小值为2;④所有小的正数组成一个集合.A.0B.1C.2D.3二、填空题(每小题8分,共24分)6.(2013·天津高一检测)设集合A中含有三个元素2x-5,x2-4x,12,若-3∈A,则x的值为.7.(2013·济宁高一检测)若集合P含有两个元素1,2,集合Q含有两个元素1,a2,且P,Q相等,则a= .8.若a,b∈R,且a≠0,b≠0,则+的可能取值所组成的集合中元素的个数为.三、解答题(9题,10题14分,11题18分)9.集合A的元素由kx2-3x+2=0的解构成,其中k∈R,若A中的元素只有一个,求k的值.10.数集M满足条件,若a∈M,则∈M(a≠±1且a≠0),已知3∈M,试把由此确定的集合M的元素全部求出来.11.(能力挑战题)设P,Q为两个数集, P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,求P+Q中元素的个数.答案解析1.【解析】选C.怎样才是接近于0的数没有统一的标准,即不满足集合元素的确定性,故选C.2.【解析】选D.由集合元素的互异性可知,a,b,c三个数一定全不相等,故△ABC一定不是等腰三角形.3.【解析】选C.∵-1∈M,∴2×(-1)∈M,即-2∈M.4.【解析】选D.由集合元素的互异性可知,2a≠a2-a,解得a≠0且a≠3,故选D.5.【解析】选A.①中最小数应为0;②中a=0时,- a∈N;③中a+b的最小值应为0;④中“小的正数”不确定.因此①②③④均不对.6.【解析】∵-3∈A,∴-3=2x-5或-3=x2-4x.①当-3=2x-5时,解得x=1,此时2x-5=x2-4x=-3,不符合元素的互异性,故x≠1;②当-3=x2-4x时,解得x=1或x=3,由①知x≠1,且x=3时满足元素的互异性.综上可知x=3.答案:37.【解析】由于P,Q相等,故a2=2,从而a=±.答案:±8.【解题指南】对a,b的取值情况分三种情况讨论求值,即同正,一正一负和同负,以确定集合中的元素,同时注意集合元素的互异性.【解析】当a>0,b>0时,+=2;当ab<0时,+=0;当a<0,b<0时,+=-2.所以集合中的元素为2,0,-2.即集合中元素的个数为3.答案:39.【解析】由题知A中元素即方程kx2-3x+2=0(k∈R)的解,若k=0,则x=,知A中有一个元素,符合题意;若k≠0,则方程为一元二次方程.当Δ=9-8k=0即k=时,kx2-3x+2=0有两个相等的实数解,此时A中有一个元素.综上所述,k=0或.10.【解析】∵a=3∈M,∴==-2∈M,∴=-∈M,∴=∈M,∴=3∈M.再把3代入将重复上面的运算过程,由集合中元素的互异性可知M中含有元素3,-2,-,.【拓展提升】集合中元素互异性的应用集合中的元素是互异的,它通常被用作检验所求未知数的值是否符合题意.只要组成两个集合的元素是一样的,这两个集合就是相等的,与两个集合中元素的排列顺序无关.11.【解析】∵当a=0时,b依次取1,2,6,得a+b的值分别为1,2,6;当a=2时,b依次取1,2,6,得a+b的值分别为3,4,8;当a=5时,b依次取1,2,6,得a+b的值分别为6,7,11.由集合元素的互异性知P+Q中元素为1,2,3,4,6,7,8,11,共8个.课时提升卷(二)集合的表示(45分钟 100分)一、选择题(每小题6分,共30分)1.(2013·临沂高一检测)设集合M={x∈R|x≤3},a=2,则( )A.a∉MB.a∈MC.{a}∈MD.{a}∉M2.集合{x∈N*|x-3<2}的另一种表示方法是( )A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5}3.下列集合中,不同于另外三个集合的是( )A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}4.下列集合的表示法正确的是( )A.第二、四象限内的点集可表示为{(x,y)|xy≤0,x∈R,y∈R}B.不等式x-1<4的解集为{x<5}C.整数集可表示为{全体整数}D.实数集可表示为R5.设x=,y=3+π,集合M={m|m=a+b,a∈Q,b∈Q},那么x,y与集合M的关系是( )A.x∈M,y∈MB.x∈M,y∉MC.x∉M,y∈MD. x∉M,y∉M二、填空题(每小题8分,共24分)6.设A={4,a},B={2,ab},若A=B,则a+b= .7.已知集合A={x|∈N,x∈N},则用列举法表示为.8.已知集合A={(x,y)|y=2x+1},B={(x,y)|y=x+3},a∈A且a∈B,则a 为.三、解答题(9题,10题14分,11题18分)9.用适当的方法表示下列集合:(1)所有被3整除的整数.(2)满足方程x=|x|的所有x的值构成的集合B.10.下面三个集合:A={x|y=x2+1}; B={y|y=x2+1};C={(x,y)|y=x2+1}.问:(1)它们是不是相同的集合?(2)它们各自的含义是什么?11.(能力挑战题)集合P={x|x=2k,k∈Z},M={x|x=2k+1,k∈Z},a∈P,b ∈M,设c=a+b,则c与集合M有什么关系?答案解析1.【解析】选B.(2)2-(3)2=24-27<0,故2<3.所以a∈M.2.【解析】选B.集合中元素满足x<5且x∈N*,所以集合的元素有1,2,3,4.3.【解析】选D.A是列举法,B,C是描述法,而D表示该集合含有一个元素,即“x=0”.4.【解析】选D.选项A中应是xy<0;选项B的本意是想用描述法表示,但不符合描述法的规范格式,缺少了竖线和竖线前面的代表元素x;选项C的“{ }”与“全体”意思重复.5.【解析】选B.∵x==--.y=3+π中π是无理数,而集合M中,b ∈Q,得x∈M,y M.6.【解析】两个集合相等,则两集合的元素完全相同,则有a=2,ab=4,将a=2代入ab=4,得b=2.∴a+b=4.答案:47.【解题指南】结合条件,可按x的取值分别讨论求解.【解析】根据题意,5-x应该是12的正因数,故其可能的取值为1,2,3,4,6,12,从而可得到对应x的值为4,3,2,1,-1,-7.因为x∈N,所以x 的值为4,3,2,1.答案:{1,2,3,4}8.【解析】∵a∈A且a∈B,∴a是方程组的解,解方程组,得∴a为(2,5).答案:(2,5)9.【解析】(1){x|x=3n,n∈Z}.(2)B={x|x=|x|,x∈R}.【变式备选】集合A={x2,3x+2,5y3-x},B={周长为20cm的三角形},C={x|x-3<2,x∈Q},D={(x,y) |y=x2-x-1}.其中用描述法表示的集合个数为( ) A.1 B.2 C.3 D.4【解析】选C.集合A为列举法表示集合,集合B,C,D均为描述法表示集合,其中B选项省略了代表元素和竖线.10.【解析】(1)在A,B,C三个集合中,虽然代表元素满足的表达式一致,但代表元素互不相同,所以它们是互不相同的集合.(2)集合A的代表元素是x,满足y=x2+1,故A={x|y=x2+1}=R.集合B的代表元素是y,满足y=x2+1,所以y≥1,故B={y|y=x2+1}={y|y≥1}.集合C的代表元素是(x,y),满足条件y=x2+1,即表示满足y=x2+1的实数对(x,y);也可认为是满足条件y=x2+1的坐标平面上的点.【拓展提升】三种集合语言的优点及应用集合语言包括符号语言、图形语言和自然语言三种.(1)符号语言比较简洁、严谨且内涵丰富有利于推理计算.(2)图形语言能够引起直观的视觉感受,便于理清关系,有利于直观地表达概念、定理的本质及相互关系,使得抽象的思维关系明朗化. (3)自然语言往往比较生动,能将问题研究对象的含义更加明白地叙述出来.集合的三种语言之间相互转化,在解决集合问题时,一般是将符号语言转化为图形语言、自然语言,这样有助于弄清集合是由哪些元素构成的,有助于提高分析问题和解决问题的能力.11.【解析】∵a∈P,b∈M,c=a+b,设a=2k1,k1∈Z,b=2k2+1,k2∈Z,∴c=2k1+2k2+1=2(k1+k2)+1,又k1+k2∈Z,∴c∈M.课时提升卷(三)集合间的基本关系(45分钟 100分)一、选择题(每小题6分,共30分)1.下列四个结论中,正确的是( )A.0={0}B.0∈{0}C.0⊆{0}D.0=∅2.(2013·宝鸡高一检测)如果M={x|x+1>0},则( )A.∅∈MB.0MC.{0}∈MD.{0}⊆M3.(2013·长沙高一检测)已知集合A={x|3≤x2≤5,x∈Z},则集合A的真子集个数为( )A.1个B.2个C.3个D.4个4.设A={a,b},B={x|x∈A},则( )A.B∈AB.B AC.A∈BD.A=B5.(2013·潍坊高一检测)设A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是( )A.a≤2B.a≤1C.a≥1D.a≥2二、填空题(每小题8分,共24分)6.(2013·汕头高一检测)已知集合A={-1,3,2m-1},集合B={3,m2},若B⊆A,则实数m= .7.已知集合A={x|x<3},集合B={x|x<m},且A B,则实数m满足的条件是.8.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M与P 的关系为.三、解答题(9题,10题14分,11题18分)9.设集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠ ,B⊆A,求a,b的值.10.已知集合A={x|1≤x≤2},B={x|1≤x≤a,a≥1}.(1)若A B,求a的取值范围.(2)若B⊆A,求a的取值范围.11.(能力挑战题)已知A={x||x-a|=4},B={1,2,b},是否存在实数a,使得对于任意实数b(b≠1,且b≠2),都有A⊆B?若存在,求出对应的a的值;若不存在,说明理由.答案解析1.【解析】选B.{0}是含有1个元素0的集合,故0∈{0}.2.【解析】选D.M={x|x+1>0}={x|x>-1},∴{0}⊆M.3.【解析】选C.由题意知,x=-2或2,即A={-2,2},故其真子集有3个. 【误区警示】本题易忽视真子集这一条件而误选D.4.【解析】选D.因为集合B中的元素x∈A,所以x=a或x=b,所以B={a,b},因此A=B.5.【解析】选D.∵A⊆B,∴a≥26.【解析】∵B⊆A,∴m2=2m-1,∴m=1.答案:17.【解析】将数集A标在数轴上,如图所示,要满足A B,表示数m的点必须在表示3的点的右边,故m>3.答案: m>38.【解析】∵xy>0,∴x,y同号,又x+y<0,∴x<0,y<0,即集合M表示第三象限内的点.而集合P表示第三象限内的点,故M=P.答案:M=P9.【解析】由B⊆A知,B中的所有元素都属于集合A,又B≠ ,故集合B有三种情形:B={-1}或B={1}或B={-1,1}.当B={-1}时,B={x|x2+2x+1=0},故a=-1,b=1;当B={1}时,B={x|x2-2x+1=0},故a=b=1;当B={-1,1}时,B={x|x2-1=0},故a=0,b=-1.综上所述,a,b的值为或或10.【解题指南】利用数轴分析法求解.【解析】(1)若A B,由图可知,a>2.(2)若B⊆A,由图可知,1≤a≤2.11.【解析】不存在.要使对任意的实数b都有A⊆B,所以1,2是A中的元素,又∵A={a-4,a+4},∴或这两个方程组均无解,故这样的实数a不存在.课时提升卷(四)并集、交集(45分钟 100分)一、选择题(每小题6分,共30分)1.(2013·衡水高一检测)若集合A,B,C满足A∩B=A,B∪C=C,则A与C 之间的关系为( )A.C AB.A CC.C⊆AD.A⊆C2.已知M={0,1,2, 4,5,7},N={1,4,6,8,9},P={4,7,9},则(M∩N)∪(M ∩P)等于( )A.{1,4}B.{1,7}C.{1, 4,7}D.{4,7}3.(2013·本溪高一检测)A={x∈N︱1≤x≤10},B={x∈R︱x2+x-6=0},则图中阴影表示的集合为( )A.{2}B.{3}C.{-3,2}D.{-2,3}4.(2013·德州高一检测)设集合A={x|x≤1},B={x|x>p},要使A∩B=∅,则p应满足的条件是( )A.p>1B.p≥1C.p<1D.p≤15.(2012·新课标全国卷)已知集合A={1,3,},B={1,m},A∪B=A,则m=( )A.0或B.0或3C.1或D.1或3二、填空题(每小题8分,共24分)6.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N= .7.(2013·清远高一检测)已知集合A={x|x≤1},集合B={x|a≤x},且A∪B=R,则实数a的取值范围是.8.(2013·西安高一检测)设集合A={5,a+1},集合B={a,b}.若A∩B={2},则A∪B= .三、解答题(9题,10题14分,11题18分)9.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A ∩B.10.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=∅,求a的取值范围.11.(能力挑战题)已知:A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.(1)若A∪B=B,求a的值.(2)若A∩B=B,求a的值.答案解析1.【解析】选D.∵A∩B=A,B∪C=C,∴A⊆B,B⊆C,∴A⊆C.2.【解析】选C.M∩N={1,4},M∩P={4,7},故(M∩N)∪(M∩P)={1,4,7}.3.【解析】选A.A={1,2,3,4,5,6,7,8,9,10},B={-3,2},由题意可知,阴影部分即为A∩B,故A∩B={2}.4.【解析】选B.∵A∩B= ,∴结合数轴分析可知应满足的条件是p≥1. 【误区警示】本题易漏掉p=1的情况而误选A.5.【解析】选B.由A∪B=A得B⊆A,所以有m=3或m=.由m=得m=0或1,经检验,m=1时B={1,1}不符合集合元素的互异性,m=0或3时符合.6.【解析】由题意联立方程组得x=3,y=-1,故M∩N={(3,-1)}.答案:{(3,-1)}7.【解析】∵A∪B=R,∴a≤1.答案:a≤18.【解析】∵A∩B={2},∴2∈A,故a+1=2,a=1,即A={5,2};又2∈B,∴b=2,即B={1,2},∴A∪B={1,2,5}.答案:{1,2,5}9.【解析】∵B⊆(A∪B),∴x2-1∈A∪B.∴x2-1=3或x2-1=5.解得x=±2或x=±.若x2-1=3,则A∩B={1,3}.若x2-1=5,则A∩B={1,5}.10.【解题指南】通过数轴直观表示,并结合A∩B=∅分析列不等式(组)求解.【解析】A∩B=∅,A={x|2a≤x≤a+3}.(1)若A=∅,有2a>a+3,∴a>3.(2)若A≠∅,如图所示.则有解得-≤a≤2.综上所述,a的取值范围是-≤a≤2或a>3.【拓展提升】数轴在解含参不等式(组)中的作用数轴是解不等式(组)的重要工具,它是实现数形结合解决数学问题的桥梁,在求解不等式(组)待定字母值或范围时,借助数轴的直观性,很轻松地将各变量间的关系表示出来,进而列出不等式(组),更能显示出它的优越性.11.【解析】(1)A={-4,0},若A∪B=B,则B=A={-4,0},解得a=1.(2)若A∩B=B,则①若B为空集,则Δ=4(a+1)2-4(a2-1)=8a+8<0,则a<-1;②若B为单元素集合,则Δ=4(a+1)2-4(a2-1)=8a+8=0, 解得a=-1,将a=-1代入方程x2+2(a+1)x+a2-1=0,得x2=0得,x=0,即B={0},符合要求;③若B=A={-4,0},则a=1,综上所述,a≤-1或a=1.课时提升卷(五)补集及综合应用(45分钟 100分)一、选择题(每小题6分,共30分)1.设全集U={x∈N*|x<6},集合A={1,3},B={3,5},则ð(A∪B)=( )UA.{1,4}B.{1,5}C.{2,4}D.{2,5}2.已知全集U=R,集合A={x|-1≤x≤2},B={x|x<1},则A∩(ðB)=( )RA.{x|x>1}B.{x|x≥1}C.{x|1<x≤2}D.{x|1≤x≤2}3.已知全集U={1,2,3,4,5,6,7},A={1,3,5,7},B={3,5},则下列式子一定成立的是( )A.ðB⊆UðA B.(UðA)∪(UðB)=UUC.A∩ðB=∅ D.B∩UðA=∅U4.设全集U(U≠∅)和集合M,N,P,且M=UðN,N=UðP,则M与P的关系是( )A.M=ðP B.M=PUC.M PD.M P5.(2013·广州高一检测)如图,I是全集,A,B,C是它的子集,则阴影部分所表示的集合是( )A.(ðA∩B)∩C B.(IðB∪A)∩CIC.(A∩B)∩ðC D.(A∩IðB)∩CI二、填空题(每小题8分,共24分)6.已知集合A={1,3,5,7,9},B={0,3,6,9, 12},则A∩(ðB)= .N7.已知全集为R,集合M={x∈R|-2<x<2},P={x|x≥a},并且M⊆ðP,则Ra的取值范围是.8.设集合A,B都是U={1,2,3,4}的子集,已知(ðA)∩(UðB)={2},(UðA)U∩B={1},且A∩B=∅,则A= .三、解答题(9题,10题14分,11题18分)9.(2013·济南高一检测)已知全集U=R,集合A={x|1≤x≤2},若B∪ðA=R,RB∩ðA={x|0<x<1或2<x<3},求集合B.R10.已知集合A={x|2a-2<x<a},B={x|1<x<2},且AðB,求a的取值范R围.11.(能力挑战题)设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(ðA)∩B=∅,求m的值.U答案解析1.【解析】选C.由题知U={1,2,3,4,5},A∪B={1,3,5},故ð(A∪B)={2,4}.U2.【解析】选D.∵B={x|x<1},∴ðB={x|x≥1},R∴A∩ðB={x|1≤x≤2}.R3.【解析】选D.逐一进行验证.ðB={1,2,4,6,7},UðA={2,4, 6},显然UðAU⊆ðB,显然A,B错误;A∩UðB={1,7},故C错误,所以只有D正确.U4.【解析】选B.利用补集的性质:M=ðN=Uð(UðP)=P,所以M=P.U【拓展提升】一个集合与它的补集的关系集合与它的补集是一组相对的概念,即如果集合A是B相对于全集U 的补集,那么,集合B也是A相对于全集U的补集.同时A与B没有公共元素,且它们的并集正好是全集,即A∪B=U,A∩B= .5.【解析】选D.由图可知阴影部分是A的元素,且是C的元素,但不属于B,故所表示的集合是(A∩ðB)∩C.I6.【解析】∵A={1,3,5,7,9},B={0,3,6,9,12},∴ðB={1,2,4,5,7,8,…}.N∴A∩ðB={1,5,7}.N答案:{1,5,7}7.【解析】M={x|-2<x<2},ðP={x|x<a}.R∵M⊆ðP,∴由数轴知a≥2.R答案:a≥28.【解析】根据题意画出Venn图,得A={3,4}.答案:{3,4}9.【解析】∵A={x|1≤x≤2},∴ðA={x|x<1或x>2}.R又B∪ðA=R,A∪RðA=R,可得A⊆B.R而B∩ðA={x|0<x<1或2<x<3},R∴{x|0<x<1或2<x<3}⊆B.借助于数轴可得B=A∪{x|0<x<1或2<x<3}={x|0<x<3}.10.【解题指南】解答本题的关键是利用AðB,对A=∅与A≠∅进行R分类讨论,转化为等价不等式(组)求解,同时要注意区域端点的问题. 【解析】ðB={x|x≤1或x≥2}≠∅,R∵AðB.R∴分A=∅和A≠∅两种情况讨论.(1)若A=∅,则有2a-2≥a,∴a≥2.(2)若A≠∅,则有或∴a≤1.综上所述,a≤1或a≥2.11.【解题指南】本题中的集合A,B均是一元二次方程的解集,其中集合B中的一元二次方程含有不确定的参数m,需要对这个参数进行分类讨论,同时需要根据(ðA)∩B=∅对集合A,B的关系进行转化.U【解析】A={-2,-1},由(ðA)∩B=∅,得B⊆A,U∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠∅.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则应有-(m+1)=(-2)+(-2)=-4,且m=(-2)·(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)·(-2)=2,由这两式得m=2.经检验知m=1和m=2符合条件.∴m=1或m=2.【变式备选】已知集合A={x|x2-5x+6=0},B={x|ax-6=0}且ðA⊆RðB,R求实数a的取值集合.【解析】∵A={x|x2-5x+6=0},∴A={2,3}.又ðA⊆RðB,R∴B⊆A,∴有B=∅,B={2},B={3}三种情形.当B={3}时,有3a-6=0,∴a=2;当B={2}时,有2a-6=0,∴a=3; 当B= 时,有a=0,∴实数a的取值集合为{0,2,3}.课时提升卷(六)函数的概念(45分钟 100分)一、选择题(每小题6分,共30分)1.设全集U=R,集合A=[3,7),B=(2,10),则ð(A∩B)=( )RA.[3,7)B.(-∞,3)∪[7,+∞)C.(-∞,2)∪[10,+∞)D.2.(2013·西安高一检测)下列式子中不能表示函数y=f(x)的是( )A.x=y2+1B.y=2x2+1C.x-2y=6D.x=3.(2013·红河州高一检测)四个函数:(1)y=x+1.(2)y=x3.(3)y=x2-1.(4)y=.其中定义域相同的函数有( )A.(1),(2)和(3)B.(1)和(2)C.(2)和(3)D.(2),(3)和(4)4.下列集合A到集合B的对应f是函数的是( )A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A=R,B={正实数},f:A中的数取绝对值5.(2013·盘锦高一检测)函数f(x)=的定义域为M,g(x)=的定义域为N,则M∩N=( )A.[-2,+∞)B.[-2,2)C.(-2,2)D.(-∞,2)二、填空题(每小题8分,共24分)6.若[a,3a-1]为一确定区间,则a的取值范围是.7.函数y=f(x)的图象如图所示,那么f(x)的定义域是;其中只与x的一个值对应的y值的范围是.8.函数f(x)定义在区间[-2,3]上,则y=f(x)的图象与直线x=a的交点个数为.三、解答题(9题,10题14分,11题18分)9.(2013·烟台高一检测)求下列函数的定义域.(1)y=+.(2)y=.10.已知函数f(x)=,(1)求f(x)的定义域.(2)若f(a)=2,求a的值.(3)求证:f()=-f(x).11.(能力挑战题)已知函数y=(a<0且a为常数)在区间(-∞,1]上有意义,求实数a的取值范围.答案解析1.【解析】选B.∵A∩B=[3,7),∴ð(A∩B)=(-∞,3)∪[7,+∞).R2.【解析】选A.一个x对应的y值不唯一.3.【解析】选A.(1),(2)和(3)的定义域都是R,(4)的定义域是{x∈R|x≠0}.4.【解析】选A.按照函数定义,选项B中,集合A中的元素1对应集合B中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C中的元素0取倒数没有意义,也不符合函数定义中集合A中任意元素都对应唯一函数值的要求;选项D中,集合A中的元素0在集合B中没有元素与其对应,也不符合函数定义,只有选项A符合函数定义.5.【解析】选B.由题意得M=(-∞,2),N=[-2,+∞),所以M∩N=(-∞,2)∩[-2,+∞)=[-2,2).6.【解析】由题意3a-1>a,则a>.答案:(,+∞)【误区警示】本题易忽略区间概念而得出3a-1≥a,则a≥的错误.7.【解析】观察函数图象可知f(x)的定义域是[-3,0]∪[2,3];只与x的一个值对应的y值的范围是[1,2)∪(4,5].答案:[-3,0]∪[2,3] [1,2)∪(4,5]【举一反三】本题中求与x的两个值对应的y值的范围.【解析】由函数图象可知y值的范围是[2,4].8.【解题指南】根据函数的定义,对应定义域中的任意一个自变量x 都有唯一的函数值与之对应.利用此知识可以结合函数图象分析. 【解析】当a∈[-2,3]时,由函数定义知,y=f(x)的图象与直线x=a只有一个交点;当a [-2,3]时,y=f(x)的图象与直线x=a没有交点.答案:0或19.【解析】(1)由已知得∴函数的定义域为[-,].(2)由已知得:∵|x+2|-1≠0,∴|x+2|≠1,得x≠-3,x≠-1.∴函数的定义域为(-∞,-3)∪(-3,-1)∪(-1,+∞).10.【解析】(1)要使函数f(x)=有意义,只需1-x2≠0,解得x≠±1,所以函数的定义域为{x|x≠±1}.(2)因为f(x)=,且f(a)=2,所以f(a)==2,即a2=,解得a=±.(3)由已知得f()==,-f(x)=-=,∴f()=-f(x).11.【解题指南】由题意得,(-∞,1]是函数y=的定义域的子集. 【解析】函数y=(a<0且a为常数).∵ax+1≥0,a<0,∴x≤-,即函数的定义域为(-∞,-].∵函数在区间(-∞,1]上有意义,∴(-∞,1] (-∞,-],∴-≥1,而a<0,∴-1≤a<0.即a的取值范围是[-1,0).关闭Word文档返回原板块。

高中数学 2.1.1指数与指数幂的运算课时作业 新人教a版必修1

高中数学 2.1.1指数与指数幂的运算课时作业 新人教a版必修1

第二章 基本初等函数(Ⅰ)§2.1 指数函数 2.1.1 指数与指数幂的运算课时目标 1.了解指数函数模型的实际背景,体会引入有理数指数幂的必要性.2.理解有理数指数幂的含义,知道实数指数幂的意义,掌握幂的运算.1.如果____________________,那么x 叫做a 的n 次方根.2.式子na 叫做________,这里n 叫做__________,a 叫做____________. 3.(1)n ∈N *时,(na )n=____.(2)n 为正奇数时,na n=____;n 为正偶数时,na n=______.4.分数指数幂的定义:(1)规定正数的正分数指数幂的意义是:m na =__________(a >0,m 、n ∈N *,且n >1);(2)规定正数的负分数指数幂的意义是:m na -=_______________(a >0,m 、n ∈N *,且n >1);(3)0的正分数指数幂等于____,0的负分数指数幂________________. 5.有理数指数幂的运算性质:(1)a r a s=______(a >0,r 、s ∈Q );(2)(a r )s=______(a >0,r 、s ∈Q );(3)(ab )r=______(a >0,b >0,r ∈Q ).一、选择题1.下列说法中:①16的4次方根是2;②416的运算结果是±2;③当n 为大于1的奇数时,n a 对任意a ∈R 都有意义;④当n 为大于1的偶数时,na 只有当a ≥0时才有意义.其中正确的是( )A .①③④B .②③④C .②③D .③④ 2.若2<a <3,化简 2-a 2+4 3-a 4的结果是( ) A .5-2a B .2a -5 C .1 D .-1 3.在(-12)-1、122-、1212-⎛⎫⎪⎝⎭、2-1中,最大的是( ) A .(-12)-1B .122-C .1212-⎛⎫⎪⎝⎭D .2-14.化简3a a 的结果是( )A .aB .12a C .a 2D .13a 5.下列各式成立的是( )A.3m 2+n 2=()23m n + B .(b a)2=12a 12bC.6-3 2=()133- D.34=1326.下列结论中,正确的个数是( ) ①当a <0时,()322a=a 3;②na n=|a |(n >0);③函数y =()122x --(3x -7)0的定义域是(2,+∞);④若100a =5,10b=2,则2a +b =1.A .0B .1C .二、填空题 7.614-3338+30.125的值为________. 8.若a >0,且a x=3,a y=5,则22y x a+=________.9.若x >0,则(214x +323)(214x -323)-412x -·(x -12x )=________.三、解答题10.(1)化简:3xy 2·xy -1·xy ·(xy )-1(xy ≠0); (2)计算:122-+ -4 02+12-1- 1-5 0·238-.11.设-3<x <3,求x 2-2x +1-x 2+6x +9的值.能力提升 12.化简:4133223384a a b b a-+÷(1-23b a)×3a .13.若x >0,y >0,且x -xy -2y =0,求2x -xyy +2xy的值.§2.1 指数函数2.1.1 指数与指数幂的运算知识梳理1.x n =a(n>1,且n ∈N *) 2.根式 根指数 被开方数 3.(1)a (2)a |a | 4.(1)n a m(2)1a m n(3)0 没有意义5.(1)a r +s (2)a rs (3)a r b r作业设计1.D [①错,∵(±2)4=16, ∴16的4次方根是±2;②错,416=2,而±416=±2.] 2.C [原式=|2-a |+|3-a |, ∵2<a <3,∴原式=a -2+3-a =1.] 3.C [∵(-12)-1=-2, 122-=22,1212-⎛⎫ ⎪⎝⎭=2,2-1=12,∵2>22>12>-2, ∴1212-⎛⎫ ⎪⎝⎭>122->2-1>(-12)-1.]4.B [12a =.]5.D [被开方数是和的形式,运算错误,A 选项错;(b a )2=b 2a2,B 选项错;6 -3 2>0,()133-<0,C 选项错.故选D.]6.B [①中,当a <0时,()()3312222a a ⎡⎤=⎢⎥⎣⎦=(-a )3=-a 3, ∴①不正确;②中,若a =-2,n =3,则3 -2 3=-2≠|-2|,∴②不正确;③中,有⎩⎪⎨⎪⎧x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞),∴③不正确;④中,∵100a =5,10b=2,∴102a =5,10b =2,102a ×10b =10,即102a +b=10. ∴2a +b =1.④正确.] 7.32 解析 原式= 52 2-3 32 3+3 123 =52-32+12=32. 8.9 5 解析 22y x a+=(a x )2·()12y a=32·125=9 5.9.-23解析 原式=412x -33-412x +4=-23.10.解 (1)原式=()()11132122xy xyxy -⎡⎤⎢⎥⎣⎦·(xy )-1 =13x ·2111136622y x yxy---=13x ·13x -=⎩⎪⎨⎪⎧1, x >0-1, x <0.(2)原式=12+12+2+1-22=22-3.11.解 原式= x -1 2- x +3 2=|x -1|-|x +3|,∵-3<x <3,∴当-3<x <1时,原式=-(x -1)-(x +3)=-2x -2; 当1≤x <3时,原式=(x -1)-(x +3)=-4.∴原式=⎩⎪⎨⎪⎧-2x -2 -3<x <1-4 1≤x <3 .12.解 原式=()111333212133338242aa b a b b a aa--÷++×13a13.解 ∵x -xy -2y =0,x >0,y >0,∴(x )2-xy -2(y )2=0, ∴(x +y )(x -2y )=0, 由x >0,y >0得x +y >0, ∴x -2y =0,∴x =4y , ∴2x -xy y +2xy =8y -2y y +4y =65.。

高中数学必修一 人教A版·数学·必修1课时作业12指数与指数幂的运算 Word版含解析

高中数学必修一 人教A版·数学·必修1课时作业12指数与指数幂的运算 Word版含解析
【答案】A
3.若(1-2x) 有意义,则x的取值范围是()
A.x∈RB.x≠
C.x> D.x<
【解析】(1-2x) = ,要使(1-2x) 有意义,则需1-2x>0,即x< .
【答案】D
4. (a>0)的值是()
A.1B.a
C.a D.a
【解析】 .
【答案】D
5.化简( )4·( )4的结果是()
A.a16B.a8
【答案】B
12.若 + =0,则(x2017)y=________.
【解析】因为 + =0,
所以 + =|x+1|+|y+3|=0,
所以x=-1,y=-3.
∴(x2017)y=[(-1)2017]-3=(-1)-3=-1.
【答案】-1
13.已知a +a = ,求下列各式的值:
(1)a+a-1;(2)a2+a-2;(3)a2-a-2.
课时作业
|
一、选择题(每小题5分,共25分)
1.将 化为分数指数幂,其形式是()
A.2 B.-2
C.2 D.-2
【解析】 =(-2 )
=(-2×2 ) =(-2 ) =-2 .
【答案】B
2.已知m>0,则m ·m 等于()
A.mB.m
C.1 D.m
【解析】由于m>0,所以m ·m =m =m1=m.
(2) (m>0);
(3) (a>0,b>0);
(4) (x>0,y>0).
【解析】(1)m2· =m2·m =m =m .
(2) .
(3)原式=[ab3(ab5) ] =[a·a b3·(b5) ]
=(a b ) =a b .

高一数学人教A版必修1课时作业:2.1.1指数与指数幂的运算

高一数学人教A版必修1课时作业:2.1.1指数与指数幂的运算

课时作业(十二) 指数与指数幂的运算[学业水平层次]一、选择题1.化简⎣⎡⎦⎤3(-5)234的结果为( )A .5 B.5 C .-5 D .-5【解析】 ⎣⎢⎡⎦⎥⎤3(-5)234=(352)34=(523)34=512= 5.故选B. 【答案】 B2.根式1a 1a (a >0)的分数指数幂形式为( )A .a -43B .a 43C .a -34D .a 34【解析】 1a 1a =a -1·(a -1)12=a -32 =(a -32)12=a -34. 【答案】 C3.下列各式中正确的个数是( )(1)n a n =(n a )n =a (n 是奇数且n >1,a 是实数);(2)n a n =(n a )n =a (n 是正偶数,a 是实数);(3)3a 3+b 2=a +b (a ,b 是实数).A .0B .1C .2D .3【解析】 由于n 是大于1的奇数,故(1)正确;由于n 是正偶数,故n a n 中a 可取任意实数,而(n a )n 中a 只能取非负数,故(2)错误;b 2=|b |,故(3)错误.【答案】 B4.(2014·湖北孝感期中)若x +x -1=4,则x 12+x -12的值等于( )A .2或-2B .2 C.6或- 6D. 6【解析】 (x 12+x -12)2=x +2+x -1=6.∵x 12≥0,x -12>0,∴x 12+x -12= 6.【答案】 D二、填空题5.x 4=3,则x =________.【解析】 ∵x 4=3,∴x =±43.【答案】 ±436.(2014·广西桂林中学段考)2723+16-12-⎝ ⎛⎭⎪⎫12-2-⎝ ⎛⎭⎪⎫827-23=________. 【解析】 原式=(33)23+(42)-12-22-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫233-23=32+4-1-4-94=3. 【答案】 37.若10x =3,10y =4,则102x -y =________.【解析】 ∵10x =3,10y =4,∴102x -y =102x 10y =324=94.【答案】 94三、解答题8.(2014·合肥高一检测)求使等式(x -2)(x 2-4)=(2-x )x +2成立的x 的取值范围.【解】 因为(x -2)(x 2-4) =(x -2)2(x +2)=(2-x )x +2, 所以2-x ≥0且x +2≥0,故-2≤x ≤2.9.化简下列各式:(1) 6⎝ ⎛⎭⎪⎫8a 3125b 34·327b a 6(a >0,b >0); (2)5x -23y 12⎝ ⎛⎭⎪⎫-14x -1y 13⎝ ⎛⎭⎪⎫-56x 12y 16(x >0,y >0).【解】 (1) 6⎝ ⎛⎭⎪⎫8a 3125b 34·327b a 6=⎝ ⎛⎭⎪⎫8a 3125b 346·⎝ ⎛⎭⎪⎫27b a 613=(23)23a 3×23(53)23b 3×23·(33)13b 13a 2=425b 2·3b 13=1225b -53. (2)原式=245×5×x -23+1-12×y 12-13-16=24x 13-12y 0=24x -16.[能力提升层次]1.如果x =1+2b ,y =1+2-b ,那么用x 表示y 为( )A.x +1x -1B.x +1xC.x -1x +1D.x x -1【解析】 由x =1+2b ,得2b =x -1,∴y =1+2-b =1+12b =1+1x -1=x x -1. 【答案】 D2.化简(-3a 13b 34)·⎝ ⎛⎭⎪⎫12a 23·b 14÷(-6a 512·b 712)(其中a >0,b >0)的结果是( ) A.14a 712·b 512B .4a 712·b 512 C.14a 512·b 712 D .-14a 712·b 512【解析】 原式=⎣⎢⎡⎦⎥⎤(-3)×12÷(-6)a 13+23-512·b 34+14-712 =14a 1-512·b 1-712=14a 712·b 512. 【答案】 A3.a 43-8a 13b 4b 23+2a 13b 13+a 23÷⎝ ⎛⎭⎪⎫1-23b a ×3a =________.【解析】 原式=a 13(a -8b )4b 23+2a 13b 13+a 23÷a 13-2b 13a 13×a 13=a 13(a 13-2b 13)(a 23+2a 13b 13+4b 23)4b 23+2a 13b 13+a 23×a 13a 13-2b 13×a 13=a 13·a13·a13=a.【答案】a4.已知a 12-a-12=5,求下列各式的值:(1)a+a-1;(2)a2+a-2;(3)a2-a-2.【解】(1)将a 12-a-12=5两边平方,得a+a-1-2=5,则a+a-1=7.(2)由a+a-1=7两边平方,得a2+a-2+2=49,则a2+a-2=47.(3)设y=a2-a-2,两边平方,得y2=a4+a-4-2=(a2+a-2)2-4=472-4=2 205,所以y =±215,即a2-a-2=±21 5.。

人教A版高中数学必修1课时作业:作业21 2.1.1-2指数与指数幂的运算(第2课时) Word版含解析

人教A版高中数学必修1课时作业:作业21 2.1.1-2指数与指数幂的运算(第2课时) Word版含解析

课时作业(二十一)1.化简823的值为( )A.2B.4C.6D.8答案 B解析 823=(23)23=4.2.25-12等于( ) A.25B.125C.5D.15答案 D解析 25-12=(52)-12=5-1=15. 3.已知x>0,x -23=4,那么x 等于( ) A.8B.18C.344 D.232 答案 B4.已知x 2+x -2=22,且x>1,则x 2-x -2的值为( )A.2或-2B.-2C. 6D.2 答案 D解析 (x 2-x -2)2=(x 2+x -2)2-4=4,因为x>1,所以x 2>x -2,所以x 2-x -2=2. 5.设a =424,b =312,c =6,则a ,b ,c 大小关系是( )A.a>b>cB.b>c>aC.b>a>cD.a<b<c 答案 D6.设b ≠0,化简式子:(a 3b -3)12·(a -2b 2)13·(ab 5)16的结果是( )A.aB.(ab)-1C.ab -1D.a -1 答案 A7.计算(2n +1)2×(12)2n +14n ×8-2(n ∈N *)的结果是( ) A.164 B.22n +5 C.2n 2-2n +6D.(12)2n -7 答案 D解析 原式=22n+2-2n -1-2n +6=2-2n +7=(12)2n -7,选D. 8.(513)0-[1-(0.5)-2]÷(338)13的值是( ) A.0B.13C.3D.4答案 C9.设5x =4,5y =2,则52x -y =________. 答案 8解析 ∵5x =4,∴52x =16,5y =2,∴52x -y =52x ÷5y =16÷2=8. 10.若100a =5,10b =2,则2a +b =________.答案 1解析 ∵100a =5,∴102a =5,又10b =2,∴102a +b =10.∴2a +b =1. 11.若x>0,则(2x 14+332)(2x 14-332)-4x -12(x -x 12)=________. 答案 -2312.化简求值.(1)0.064-13-(-18)0+1634+0.2512; (2)a -1+b -1(ab )-1. (3)(x 14+y 14)(x 14-y 14)(x +y);(4)(0.000 1)-14+(27)23-(4964)-12+(19)-1.5. 答案 (1)10 (2)a +b (3)x -y (4)4467解析 (3)(x 14+y 14)(x 14-y 14)(x +y)=(x 12-y 12)(x 12+y 12)=x -y.(4)(0.000 1)-14+(27)23-(4964)-12+(19)-1.5=10+9-87+27=4467. 13.计算.(0.064)-13-⎝⎛⎭⎫-780+[(-2)3]-43+16-0.75+|-0.01|12. 思路 利用分数指数幂的运算性质进行化简、求值.解析 原式=(0.4)-1-1+(-2)-4+2-3+0.1 =52-1+116+18+110=14380. 14.比较大小2,33.解析 方法一:2=68,33=69,∴2<33. 方法二:233=6869=689<1,∴2<33. 15.已知a 12+a -12=2,求①a +a -1; ②a 2+a -2; ③a 3+a -3的值. 答案 ①a +a -1=2,②a 2+a -2=2,③a 3+a -3=2.1.下列运算正确的是( )A.(-a 3)4=(-a 4)3B.(-a 3)4=-a 3+4C.(-a 3)4=a 3+4 D.(-a 3)4=(-1)4a 3×4=a 12 答案 D解析 (a·b)n =a n ·b n .2.将下列各式化成指数式,正确的是( )A.6(-2)2=(-12)13B.4x 3y 3=x·y 34(x>0,y>0)C.3a 2-b 2=a 23-b 23 D.3x y =(y x )-13(x ≠0,y ≠0) 答案 D3.下列各式运算错误的是( )A.(-a 2b)2·(-ab 2)3=-a 7b 8B.(-a 2b 3)3÷(-ab 2)3=a 3b 3C.(-a 3)2·(-b 2)3=a 6b 6D.[-(a 3)2·(-b 2)3]3=a 18b 18答案 C解析 (-a 3)2·(-b 2)3=-a 6b 6.4.设-3<x<3,则x 2-2x +1-x 2+6x +9=________.答案 ⎩⎪⎨⎪⎧-2x -2(-3<x<1)-4(1≤x<3) 5.计算.(0.008 1)14-[3×(78)0]-1·[81-0.25+(338)-13]12-10×0.02713. 解析 原式=0.3-13×(13+23)12-10×0.3=-9130. 6.设13-7的整数部分为x ,小数部分为y ,求x 2+7xy +3y 的值. 解析 ∵13-7=3+72=4-1+72=2+7-12, ∴x =2,y =7-12. 原式=22+7·2·7-12+37-12=4+7-7+7+1=12.。

2019学年高一数学必修一课时作业:第2章 2.1 2.1.1 第2课时 指数幂及运算 (人教A版含解析)

2019学年高一数学必修一课时作业:第2章 2.1 2.1.1 第2课时 指数幂及运算 (人教A版含解析)

[课时作业] [A 组 基础巩固]1.化简[3(-5)2]34的结果是( )A .5 B. 5 C .- 5 D .-5解析:[3(-5)2]34=(352)34=52334⨯=512= 5.答案:B 2.设a 12-a 12-=m ,则a 2+1a 等于( )A .m 2-2 B.2-m 2 C .m 2+2 D .m 2解析:对a 12-a12-=m 平方得:a +1a -2=m 2,∴a 2+1a =a +1a =m 2+2. 答案:C3.222的值是( ) A .278B.258C .234D .232解析:222=278. 答案:A4.(112)0-(1-0.5-2)÷(278)23的值为( )A .-13 B.13 C.43D .73解析:原式=1-(1-1⎝ ⎛⎭⎪⎫122)÷⎝ ⎛⎭⎪⎫32233⨯=1-(-3)÷⎝ ⎛⎭⎪⎫322=1+3×49=1+43=73. 答案:D5.若102x =25,则10-x =( ) A .-15 B.15 C.150D .1625解析:102x =(10x )2=25,∵10x >0,∴10x =5,10-x =110x =15. 答案:B6.已知102m =2,10n =3,则10-2m -10-n =________. 解析:由102m =2,得10-2m =1102m =12; 由10n =3,得10-n =110n =13; ∴10-2m -10-n =12-13=16. 答案:167.已知2x =(2)y +2,且9y =3x -1,则x +y =________. 解析:2x=(2)y +2=222y +,9y =32y =3x -1, ∴⎩⎪⎨⎪⎧x =y +22,2y =x -1,解得{ x =y =0,∴x +y =1.答案:18.已知x +y =12,xy =9,且x <y ,则11221122x y x y-+的值是________.解析:∵11221122x y x y-+=()122()x y xy x y+--又∵x +y =12,xy =9,∴(x -y )2=(x +y )2-4xy =108.又x <y ,∴x -y =-108=-6 3. 代入化简后可得结果为-33. 答案:-33 9.化简求值:(1)(279)0.5+0.1-2+⎝ ⎛⎭⎪⎫2102723--3π0+3748;(2)⎝ ⎛⎭⎪⎫-338 23-+(0.002)12--10(5-2)-1+(2-3)0.解析:(1)原式=⎝ ⎛⎭⎪⎫25912+10.12+⎝ ⎛⎭⎪⎫642723--3+3748=53+100+916-3+3748=100.(2)原式=(-1)23-×(338)23-+(1500)12-105-2+1=⎝ ⎛⎭⎪⎫27823-+(500) 12-10(5+2)+1=49+105-105-20+1=-1679. 10.完成下列式子的化简: (1)(a -2b -3)·(-4a -1b )÷(12a -4b -2c ); (2)23a ÷46a ·b ×3b 3.解析:(1)原式=-4a -2-1b -3+1÷(12a -4b -2c ) =-13a -3-(-4)b -2-(-2)c -1=-13ac -1=-a 3c . (2)原式=2a 13÷(4a 16b 16)×(3b 32)=12a 1136-b 16-·3b 32=32a 16b 43.[B 组 能力提升]1.若S =(1+2132-)(1+2116-)(1+218-)(1+214-)(1+212-),则S 等于( )A.12(1-2132-)-1B.(1-2132-)-1C .1-2132-D .12(1-2132-)解析:令2132-=a ,则S =(1+a )(1+a 2)(1+a 4)(1+a 8)(1+a 16).因为1-a ≠0,所以(1-a )S =(1-a )(1+a )(1+a 2)(1+a 4)(1+a 8)(1+a 16) =(1-a 2)(1+a 2)(1+a 4)(1+a 8)(1+a 16) =…=1-a 32=1-2-1=12.所以S =12(1-a )-1=12(1-2132-)-1.故选A.答案:A2.如果x =1+2b ,y =1+2-b ,那么用x 表示y 等于( ) A.x +1x -1 B.x +1x C.x -1x +1D .x x -1解析:∵x =1+2b ,∴2b =x -1,∴2-b =12b =1x -1,∴y =1+2-b =1+1x -1=x x -1. 答案:D 3.已知10a=212-,10b=332,则1032+4a b=________.解析:1032+4a b=(10a )2·(10b )34=(212-)2·(3213)34=2-1·254=214. 答案:2144.若x 1,x 2为方程2x=(12)1+1x -的两个实数根,则x 1+x 2=________.解析:∵2x=(12)1+1x -=21-1x ,∴x =11x-,∴x 2+x -1=0. ∵x 1,x 2是方程x 2+x -1=0的两根,∴x 1+x 2=-1. 答案:-1 5.已知a =3,求11144211241111aaaa+++++-+ 的值 解析:11144211241111aaaa+++++-+ 1114422241(1)(1)1aa a a++++-+ 1122224111aaa+++-+ 1122441(1)(1)aa a +++-+ =41-a +41+a =81-a 2=-1. 6.已知x =12(51n-51n -),n ∈N +,求(x +1+x 2)n 的值.解析:∵1+x 2=1+14(51n-51n -)2=1+14(52n-2+52n -) =14(52n+2+52n-) =[12(51n+51n -)]2,∴1+x 2=12(51n +51n -),∴x +1+x 2=12(51n -51n -)+12(51n +51n -)=51n.1∴(x+1+x2)n=(5n)n=5.。

人教a版·数学·高一必修1课时作业12指数与指数幂的运算

人教a版·数学·高一必修1课时作业12指数与指数幂的运算
【答案】B
12.若 + =0,则(x2017)y=________.
【解析】因为 + =0,
所以 + =|x+1|+|y+3|=0,
所以x=-1,y=-3.
∴(x2017)y=[(-1)2017]-3=(-1)-3=-1.
【答案】-1
13.已知a +a = ,求下列各式的值:
(1)a+a-1;(2)a2+a-2;(3)a2-a-2.
C.a4D.a2
【解析】( )4·( )4
=( ) ·( )
=(a ) ·(a ) =a × ·a =a4.
【答案】C
二、填空题(每小题5分,共15分)
6. -2+(1- )0- -160.75=________.
【解析】 -2+(1- )0- -160.75
= +1- -16
= +1- -(24)
求 - 的值;
(2)已知a,b是方程x2-6x+4=0的两根,且a>b>0,求 的值.
【解析】(1) - = - = .
当x= ,y= 时,
原式= = =-24 =-8 .
(2)因为a,b是方程x2-6x+4=0的两根,
所以
因为a>b>0,所以 > ,
2= = = ,
所以 = = .
【解析】(1)将a +a = 两边平方,
得a+a-1+2=5,
则a+a-1=3.
(2)由a+a-1=3两边平方,
得a2+a-2+2=9,
则a2+a-2=7.
(3)设y=a2-a-2,两边平方,
得y2=a4+a-4-2
=(a2+a-2)2-4
=72-4
=45,
所以y=±3 ,
即a2-a-2=±3 .

人教A版·数学·必修1课时作业12指数与指数幂的运算 Word版含解析

人教A版·数学·必修1课时作业12指数与指数幂的运算 Word版含解析
课时作业
|
一、选择题(每小题5分,共25分)
1.将 化为分数指数幂,其形式是()
A.2 B.-2
C.2 D.-2
【解析】 =(-2 )
=(-2×2 ) =(-2 ) =-2 .
【答案】B
2.已知m>0,则m ·m 等于()
A.mB.m
C.1 D.m
【解析】由于m>0,所以m ·m =m =m1=m.
(2) (m>0);
(3) (a>0,b>0);
(4) (x>0,y>0).
【解析】(1)m2· =m2·m =m =m .
(2) .
(3)原式=[ab3(ab5) ] =[a·a b3·(b5) ]
=(a b ) =a b .
(4)方法一:从外向里化为分数指数幂.

.
方法二:从里向外化为分数指数幂.
【答案】B
12.若 + =0,则(x2017)y=________.
【解析】因为 + =0,
所以 + =|x+1|+|y+3|=0,
所以x=-1,y=-3.
∴(x2017)y=[(-1)2017]-3=(-1)-3=-1.
【答案】-1
13.已知a +a = ,求下列各式的值:
(1)a+a-1;(2)a2+a-2;(3)a2-a-2.
10.化简求值:
(1) ;
(2)2 ÷4 ×3 .
【解析】(1)原式= ·x ·y = x ·y .
(2)原式=2a ÷(4a b )×(3b )
= a b ·3b = a b .
|
11.化简 · 的结果是()
A. B.-
C. D.-
【解析】由题意可知a≤0,则 · =(-a) ·a =-(-a) ·(-a) =-(-a) =- =- .

高中数学I2.1.1.2指数幂及运算课时作业新人教版必修1

高中数学I2.1.1.2指数幂及运算课时作业新人教版必修1

【创新设计】(浙江专用)2016-2017学年高中数学 第二章 基本初等函数(I )2.1.1.2 指数幂及运算课时作业 新人教版必修11.已知a m=4,a n=3,则a m -2n的值为( )A.23B.6C.32D.2解析am -2n=a m (a n )2=49=23. 答案 A2.如果x =1+2b,y =1+2-b,那么用x 表示y 等于( ) A.x +1x -1B.x +1xC.x -1x +1D.xx -1解析 由x =1+2b ,得2b =x -1,y =1+2-b=1+12b =1+1x -1=x x -1.答案 D3.化简(36a 9)4(63a 9)4的结果为( )A.a 16B.a 8C.a 4D.a 2解析 (36a 9)4(63a 9)4=⎝⎛⎭⎪⎫3a 964⎝ ⎛⎭⎪⎫6a 934=⎝ ⎛⎭⎪⎫a 124⎝ ⎛⎭⎪⎫a 124=a 4. 答案 C4.(3×223×512)(-4×212×513)-3×216×556=________. 解析 原式=223+2+12-16×512+13-56=23=8. 答案 85.下列根式、分数指数幂的互化中,正确命题的序号是______. ①-x =(-x )12 (x ≠0);②x -13=-3x ;③⎝ ⎛⎭⎪⎫x y -34=4⎝ ⎛⎭⎪⎫y x 3(x ,y ≠0);④⎝ ⎛⎭⎪⎫4b -32-23=b 19. 解析 ①不正确,∵-x =-x 12;②不正确,∵x -13=13x;③正确,∵⎝ ⎛⎭⎪⎫x y -34=⎝ ⎛⎭⎪⎫y x 43=4⎝ ⎛⎭⎪⎫y x 3;④不正确,∵b ≠0时,⎝ ⎛⎭⎪⎫4b -23-23=b 19.答案 ③6.计算下列各式的值或化简:(1)(0.027)13-⎝ ⎛⎭⎪⎫61412+25634+(22)23-3-1+π0;(2)化简:44x ⎝⎛⎭⎪⎪⎫-34x ·13y ÷⎝⎛⎭⎪⎪⎫-63y 2x . 解 (1)原式=[(0.3)3]13-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫52212+(44) 34+⎝ ⎛⎭⎪⎫23223-13+1=0.3-52+43+2-13+1=96715.(2)原式=4×(-3)-6x 14+14-(-12)y -13-23=2x ·y -1=2xy .7.化简:3xy 2·xy -1·xy ·(xy )-1(xy ≠0).解 原式=⎣⎢⎡⎦⎥⎤xy 2(xy -1)1213·(xy )12·(xy )-1=x 13·y 23|x |16|y |-16·|x |-12·|y |-12=x 13·|x |-13=⎩⎪⎨⎪⎧1,x >0,-1,x <0.8.化简:a 43-8a 13b4b 23+23ab +a 23÷⎝⎛⎭⎪⎫1-23b a ×3a . 解 原式=a 13(a -8b )4b 23+2a 13b 13+a 23÷a 13-2b 13a 13·a 13=a 13(a -8b )4b 23+2a 13b 13+a 23·a 13a 13-2b 13·a 13 =a (a -8b )⎝ ⎛⎭⎪⎫a 133-⎝ ⎛⎭⎪⎫2b 133=a (a -8b )a -8b=a .能 力 提 升9.(2016·宜春高一检测)计算2-12+(-4)02+12-1-(1-5)0,结果是( )A.1B.2 2C. 2D.2-12解析 原式=12+12+2+1(2+1)(2-1)-1 =22+22+2+1-1=2 2. 答案 B10.(2016·长沙长郡中学模块检测)化简(a 2-2+a -2)÷(a 2-a -2)的结果为( ) A.1B.-1C.a 2-1a 2+1D.a 2+1a 2-1解析 (a 2-2+a -2)÷(a 2-a -2)=(a -a -1)2(a +a -1)(a -a -1)=a -a -1a +a -1=a (a -a -1)a (a +a -1)=a 2-1a 2+1. 答案 C11.设α,β是方程5x 2+10x +1=0的两个根,则2α·2β=________,(2α)β=________. 解析 利用一元二次方程根与系数的关系,得α+β=-2,αβ=15.则2α·2β=2α+β=2-2=14,(2α)β=2αβ=2-15.答案 1421512.(2016·湖北襄阳五中月考)⎝ ⎛⎭⎪⎫21412-(-9.6)0-⎝ ⎛⎭⎪⎫338-23+(1.5)-2=________.解析 原式=⎝ ⎛⎭⎪⎫9412-1-⎝ ⎛⎭⎪⎫278-23+⎝ ⎛⎭⎪⎫232=32-1-⎝ ⎛⎭⎪⎫827-23+⎝ ⎛⎭⎪⎫232=12-⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫232=12. 答案 1213.(2016·天津高一检测)已知a >1,b <0,且a b +a -b =22,求a b -a -b的值. 解 由a b +a -b =22,得(a b +a -b )2=8. 所以a 2b+a-2b+2=8,即a 2b +a-2b=6.同理(a b -a -b )2=a 2b+a-2b-2=6-2=4又a >1,b <0知a b-a -b<0. 故a b -a -b=-2.探 究 创 新14.已知a ,b 是方程x 2-6x +4=0的两根,且a >b >0,求a -ba +b的值. 解 因为a ,b 是方程x 2-6x +4=0的两根,所以⎩⎪⎨⎪⎧a +b =6,ab =4,因为a >b >0,所以a >b >0.所以a -ba +b>0. 所以⎝ ⎛⎭⎪⎫a -b a +b 2=a +b -2ab a +b +2ab =6-246+24=210=15, 所以a -ba +b=15=55.。

2021年高中数学 2.1.1指数与指数幂的运算课时作业 新人教A版必修1

2021年高中数学 2.1.1指数与指数幂的运算课时作业 新人教A版必修1

2021年高中数学 2.1.1指数与指数幂的运算课时作业 新人教A 版必修1课时目标 1.了解指数函数模型的实际背景,体会引入有理数指数幂的必要性.2.理解有理数指数幂的含义,知道实数指数幂的意义,掌握幂的运算.1.如果____________________,那么x 叫做a 的n 次方根.2.式子na 叫做________,这里n 叫做__________,a 叫做____________. 3.(1)n ∈N *时,(na )n=____.(2)n 为正奇数时,na n=____;n 为正偶数时,na n=______.4.分数指数幂的定义:(1)规定正数的正分数指数幂的意义是:=__________(a >0,m 、n ∈N *,且n >1);(2)规定正数的负分数指数幂的意义是:=_______________(a >0,m 、n ∈N *,且n >1); (3)0的正分数指数幂等于____,0的负分数指数幂________________. 5.有理数指数幂的运算性质:(1)a r a s=______(a >0,r 、s ∈Q );(2)(a r )s=______(a >0,r 、s ∈Q );(3)(ab )r=______(a >0,b >0,r ∈Q ).一、选择题1.下列说法中:①16的4次方根是2;②416的运算结果是±2;③当n 为大于1的奇数时,n a 对任意a ∈R 都有意义;④当n 为大于1的偶数时,na 只有当a ≥0时才有意义.其中正确的是( )A .①③④B .②③④C .②③D .③④ 2.若2<a <3,化简2-a 2+43-a 4的结果是( ) A .5-2a B .2a -5 C .1 D .-13.在(-12)-1、、、2-1中,最大的是( )A .(-12)-1B .C .D .2-14.化简3a a 的结果是( )A .aB .C .a 2D .5.下列各式成立的是( )A.3m 2+n 2= B .(b a)2=C.6-32=D.34=6.下列结论中,正确的个数是( )①当a <0时,=a 3;②na n=|a |(n >0);③函数y =-(3x -7)0的定义域是(2,+∞);④若100a =5,10b=2,则2a +b =1.A .0B .1C .2D .3题 号 1 2 3 4 5 6 答 案二、填空题7.614-3338+30.125的值为________.8.若a >0,且a x =3,a y=5,则=________.9.若x >0,则(2+)(2-)-4·(x -)=________. 三、解答题10.(1)化简:3xy 2·xy -1·xy ·(xy )-1(xy ≠0);(2)计算:+-402+12-1-1-50·.11.设-3<x <3,求x 2-2x +1-x 2+6x +9的值.能力提升12.化简:÷(1-23b a)×3a .13.若x >0,y >0,且x -xy -2y =0,求2x -xyy +2xy的值.1.na n与(na )n的区别(1)na n 是实数a n的n 次方根,是一个恒有意义的式子,不受n 的奇偶性限制,a ∈R ,但这个式子的值受n 的奇偶性限制:当n 为大于1的奇数时,na n=a ;当n 为大于1的偶数时,na n=|a |.(2)(na )n是实数a 的n 次方根的n 次幂,其中实数a 的取值由n 的奇偶性决定:当n 为大于1的奇数时,(na )n=a ,a ∈R ;当n 为大于1的偶数时,(na )n=a ,a ≥0,由此看只要(na )n有意义,其值恒等于a ,即(na )n=a . 2.有理指数幂运算的一般思路化负指数为正指数,化根式为分数指数幂,化小数为分数,灵活运用指数幂的运算性质.同时要注意运用整体的观点、方程的观点处理问题,或利用已知的公式、换元等简化运算过程.3.有关指数幂的几个结论(1)a >0时,a b>0;(2)a ≠0时,a 0=1;(3)若a r =a s,则r =s ;(4)a ±2+b =(±)2(a >0,b >0); (5)( +)(-)=a -b (a >0,b >0).第二章 基本初等函数(Ⅰ)§2.1 指数函数2.1.1 指数与指数幂的运算知识梳理1.x n =a(n>1,且n ∈N *) 2.根式 根指数 被开方数 3.(1)a (2)a |a | 4.(1)n a m(2)1a m n(3)0 没有意义5.(1)a r +s (2)a rs (3)a r b r作业设计1.D [①错,∵(±2)4=16, ∴16的4次方根是±2;②错,416=2,而±416=±2.] 2.C [原式=|2-a |+|3-a |, ∵2<a <3,∴原式=a -2+3-a =1.]3.C [∵(-12)-1=-2, =22,=2,2-1=12,∵2>22>12>-2, ∴>>2-1>(-12)-1.]4.B [原式==.] 5.D [被开方数是和的形式,运算错误,A 选项错;(b a )2=b 2a2,B 选项错;6-32>0,<0,C 选项错.故选D.]6.B [①中,当a <0时,=(-a )3=-a 3, ∴①不正确;②中,若a =-2,n =3, 则3-23=-2≠|-2|,∴②不正确; ③中,有⎩⎪⎨⎪⎧x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞),∴③不正确;④中,∵100a =5,10b=2,∴102a =5,10b =2,102a ×10b =10,即102a +b=10. ∴2a +b =1.④正确.]7.32 解析 原式=522-3323+3123=52-32+12=32. 8.9 5解析 =(a x )2·=32·=9 5. 9.-23解析 原式=4-33-4+4=-23.10.解 (1)原式=·(xy )-1=·=·=⎩⎪⎨⎪⎧1, x >0-1, x <0.(2)原式=12+12+2+1-22=22-3. 11.解 原式=x -12-x +32=|x -1|-|x +3|,∵-3<x <3,∴当-3<x <1时,原式=-(x -1)-(x +3)=-2x -2; 当1≤x <3时,原式=(x -1)-(x +3)=-4.∴原式=⎩⎪⎨⎪⎧-2x -2 -3<x <1-4 1≤x <3.12.解 原式=×13.解 ∵x -xy -2y =0,x >0,y >0,∴(x )2-xy -2(y )2=0, ∴(x +y )(x -2y )=0, 由x >0,y >0得x +y >0, ∴x -2y =0,∴x =4y , ∴2x -xy y +2xy=8y -2y y +4y =65.20864 5180 冀27562 6BAA 殪30687 77DF 矟37916 941C 鐜:39533 9A6D 驭% 31580 7B5C 筜Rk20056 4E58 乘36938 904A 遊39086 98AE 颮。

课时作业1:2.1.1 指数与指数幂的运算(二)

课时作业1:2.1.1 指数与指数幂的运算(二)

一、基础过关1.x -2+x 2=22且x >1,则x 2-x-2的值为( )A .2或-2B .-2 C. 6 D .2 答案 D解析 因为x -2+x 2=22且x >1, 所以x 2>x -2,x 2-x -2>0,故x 2-x -2=(x 2+x -2)2-4=8-4=2. 2.设a 21-a21-=m ,则a 2+1a等于( )A .m 2-2B .2-m 2C .m 2+2D .m 2 答案 C 解析 将a 21-a21-=m 平方得(a 21-a21-)2=m 2,即a -2+a -1=m 2,所以a +a -1=m 2+2,即a +1a =m 2+2⇒a 2+1a=m 2+2.3.在(-12)-1、221-、(12)21-、2-1中,最大的数是( )A .(-12)-1B .221-C .(12)21-D .2-1答案 C解析 ∵(-12)-1=-2,221-=22,(12)21-=2,2-1=12, 又∵2>22>12>-2, ∴(12)21->221->2-1>(-12)-1. 4.化简3a a 的结果是( ) A .a B .a 21 C .a2 D .a 31答案 B解析 原式=321aa =323a =a 21. 5.614- 3338+30.125的值为________. 答案 32解析 原式= (52)2- 3(32)3+ 3(12)3 =52-32+12=32. 6.若a >0,且a x =3,a y =5,则a 22y x +=________.答案 95 解析 a22y x +=(a x )2·(a y )21=32·521=9 5. 7.(1)化简:3xy 2·xy -1·xy ·(xy )-1(xy ≠0); (2)计算:221-+(-4)02+12-1-(1-5)0·832.解 (1)原式=[xy 2·(xy -1) 21]31·(xy )21·(xy )-1=x 31·y 32|x |61|y |61-·|x |21-·|y |21-=x 31·|x |31-=⎩⎪⎨⎪⎧1, x >0-1, x <0. (2)原式=12+12+2+1-22=22-3. 二、能力提升8.下列各式成立的是( ) A.3m 2+n 2=(m +n )32 B .(ba )2=a 21b 21C.6(-3)2=(-3)31 D.34=231答案 D解析 被开方数是和的形式,运算错误,A 选项错;(b a )2=b 2a 2,B 选项错;6(-3)2>0,(-3)31<0,C 选项错.故选D.9.如果x =1+2b ,y =1+2-b ,那么用x 表示y 等于( ) A.x +1x -1 B.x +1x C.x -1x +1 D.x x -1答案 D解析 由x =1+2b ,得2b =x -1,y =1+2-b =1+12b =1+1x -1=x x -1.10.若10x=2,10y=3,则10243y x -=________.答案229解析 由10x =2,10y =3,得10x 23=(10x )23=223,102y =(10y )2=32,∴10243y x -=yx 2231010=22332=229.11.根据已知条件求下列值:(1)已知x =12,y =23,求x +y x -y -x -y x +y 的值;(2)已知a ,b 是方程x 2-6x +4=0的两根,且a >b >0,求a -ba +b的值. 解 (1)x +y x -y -x -yx +y=(x +y )2x -y -(x -y )2x -y=4xy x -y. 将x =12,y =23代入上式得:原式=4 12×2312-23=4 13-16=-2413=-83; (2)∵a ,b 是方程x 2-6x +4=0的两根,∴⎩⎪⎨⎪⎧a +b =6ab =4, ∵a >b >0,∴a >b .⎝ ⎛⎭⎪⎫a -b a +b 2=a +b -2aba +b +2ab=6-246+24=210=15,∴a -ba +b=15=55. 12.化简:323323134248aab b b a a ++-÷(1-23b a)×3a . 解 原式=313131313231313231224)8(a ab a ab a b b a a ⋅⋅-÷++-=313131313231313232313132313131224)42)(2(a ba aab a b b b a a b a a ⋅-⋅++++-=313131a a a ⋅⋅=a . 三、探究与拓展13.已知x =12(5n 1-5n 1-),n ∈N *,求(x +1+x 2)n 的值.解 ∵1+x 2=1+14(5n 1-5n 1-)2=1+14(5n2-2+5n 2-)=14(5n2+2+5n 2-) =211)55(21⎥⎦⎤⎢⎣⎡+-n n , ∴1+x 2=12)55(11n n -+,∴x +1+x 2=12)55(11n n -++12)55(11nn -+ =5n1.∴(x +1+x 2)n =(5n 1)n=5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业
1.化简8 的值为()
A.2B.4
C.6D.8
答案B
解析8 =(23) =4.
2.25- 等于()
A.25B.
C.5D.
答案D
解析25- =(52)- =5-1= .
3.已知x>0,x- =4,那么x等于()
A.8B.
C. D.2
答案B
4.已知x2+x-2=2 ,且x>1,则x2-x-2的值为()
思路 利用分数指数幂的运算性质进行化简、求值.
解析 原式=(0.4)-1-1+(-2)-4+2-3+0.1
= -1+ + + = .
14.比较大小 , .
解析 方法一: = , = ,∴ < .
方法二: = = <1,∴ < .
15.已知a +a- =2,求
①a+a-1;②a2+a-2;③a3+a-3的值.
A.2或-2B.-2
C. D.2
答案D
解析(x2-x-2)2=(x2+x-2)2-4=4,因为x>1,所以x2>x-2,所以x2-x-2=2.
5.设a= ,b= ,c= ,则a,b,c大小关系是()
A.a>b>cB.b>c>a
C.b>a>cD.a<b<c
答案D
6.设b≠0,化简式子:(a3b-3) ·(a-2b2) ·(ab5) 的结果是()
A.aB.(ab)-1
C.ab-1D.a-1
答案A
7.计算 (n∈N*)的结果是()
A. B.22n+5
C.2n2-2n+6D.( )2n-7
答案D
解析 原式=22n+2-2n-1-2n+6=2-2n+7=( )2n-7,选D.
8.(5 )0-[1-(0.5)-2]÷(3 ) 的值是()
A.0B.
C.3D.4
答案C
9.设5x=4,5y=2,则52x-y=________.
答案8
解析∵5x=4,∴52x=16,5y=2,∴52x-y=52x÷5y=16÷2=8.
10.若100a=5,10b=2,则2a+b=________.
答案1
解析∵100a=5,∴102a=5,又10b=2,
∴102a+b=10.∴2a+b=1.
4.设-3<x<3,则 - =________.
答案Βιβλιοθήκη 5.计算.(0.008 1) -[3×( )0]-1·[81-0.25+(3 )- ] -10×0.027 .
解析 原式=0.3- ×( + ) -10×0.3=- .
6.设 的整数部分为x,小数部分为y,求x2+ xy+ 的值.
解析∵ = = =2+ ,
∴x=2,y= .
原式=22+ ·2· + =4+7- + +1=12.
答案①a+a-1=2,②a2+a-2=2,③a3+a-3=2.
1.下列运算正确的是()
A.(-a3)4=(-a4)3B.(-a3)4=-a3+4
C.(-a3)4=a3+4D.(-a3)4=(-1)4a3×4=a12
答案D
解析(a·b)n=an·bn.
2.将下列各式化成指数式,正确的是()
A. =(- ) B. =x·y (x>0,y>0)
答案(1)10(2)a+b(3)x-y(4)44
解析(3)(x +y )(x -y )( + )=(x -y )(x +y )=x-y.
(4)(0.000 1)- +(27) -( )- +( )-1.5=10+9- +27=44 .
13.计算.
(0.064)- - +[(-2)3]- +16-0.75+|-0.01| .
11.若x>0,则(2x +3 )(2x -3 )-4x- (x-x )=________.
答案 -23
12.化简求值.
(1)0.064- -(- )0+16 +0.25 ;
(2) .
(3)(x +y )(x -y )( + );
(4)(0.000 1)- +(27) -( )- +( )-1.5.
C. =a -b D. =( )- (x≠0,y≠0)
答案D
3.下列各式运算错误的是()
A.(-a2b)2·(-ab2)3=-a7b8B.(-a2b3)3÷(-ab2)3=a3b3
C.(-a3)2·(-b2)3=a6b6D.[-(a3)2·(-b2)3]3=a18b18
答案C
解析(-a3)2·(-b2)3=-a6b6.
相关文档
最新文档