高中数学必修1公开课教案2.3.1 幂函数

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 幂函数

整体设计 教学分析

幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数.学生已经有了学习指数函数和对数函数的图象和性质的学习经历,幂函数概念的引入以及图象和性质的研究便水到渠成.因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习.本节通过实例,让学生认识到幂函数同样也是一种重要的函数模型,通过研究

y =x,y =x 2,y =x 3,y =x -1

,y =x 2

1

等函数的性质和图象,让学生认识到

幂指数大于零和小于零两种情形下,幂函数的共性:当幂指数α>0时,幂函数的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增;当幂指数α<0时,幂函数的图象都经过点(1,1),且在第一象限内函数单调递减且以两坐标轴为渐近线.在方法上,我们应注意从特殊到一般地去进行类比研究幂函数的性质,并注意与指数函数进行对比学习.

将幂函数限定为五个具体函数,通过研究它们来了解幂函数的性质.其中,学生在初中已经学习了y=x,y=x 2,y=x -1等三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识.现在明确提出幂函数的概念,有助于学生形成完整的知识结构.学生已经了解了函数的基本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了基本思路和方法.因此,教材安排学习幂函数,除内容本身外,掌握研究函数的一般思想方法是另一目的,另外,应让学生了解利用信息技术来探索函数图象及性质是一个重要途径.

学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析. 三维目标

1.通过生活实例引出幂函数的概念,会画幂函数的图象,通过观察图象,了解幂函数图象的变化情况和性质,加深学生对研究函数性质的基本方法和流程的经验,培养学生概括抽象和识图能力,使学生体会到生活中处处有数学,激发学生的学习兴趣.

2.了解几个常见的幂函数的性质,通过这几个幂函数的性质,总结幂函数的性质,通过画图比较,使学生进一步体会数形结合的思想,利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望.

3.应用幂函数的图象和性质解决有关简单问题,培养学生观察分析归纳能力,了解类比法在研究问题中的作用,渗透辩证唯物主义观点和方法论,培养学生运用具体问题具体分析的方法去分析和解决问题的能力. 重点难点

教学重点:从五个具体的幂函数中认识幂函数的概念和性质. 教学难点:根据幂函数的单调性比较两个同指数的指数式的大小. 课时安排 1课时

教学过程

导入新课 思路1

1.如果张红购买了每千克1元的水果w 千克,那么她需要付的钱数p (元)和购买的水果量w (千克)之间有何关系?根据函数的定义可知,这里p 是w 的函数.

2.如果正方形的边长为a,那么正方形的面积S=a 2,这里S 是a 的函数.

3.如果正方体的边长为a,那么正方体的体积V=a 3,这里V 是a 的函数.

4.如果正方形场地面积为S,那么正方形的边长a=S 2

1,这里a 是S 的函数.

5.如果某人t s 内骑车行进了1 km,那么他骑车的速度v=t -1km/s,这里v 是t 的函数.

以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量).

(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题:幂函数).

思路2.我们前面学习了三类具体的初等函数:二次函数、指数函数和对数函数,这一节课我们再学习一种新的函数——幂函数,教师板书课题:幂函数. 推进新课 新知探究 提出问题

问题①:给出下列函数:y=x,y=x 2

1,y=x 2,y=x -1,y=x 3,考察这些解析式的特点,总结出来,是否为指数函数?

问题②:根据①,如果让我们起一个名字的话,你将会给他们起个什么名字呢?请给出一个一般性的结论.

问题③:我们前面学习指对数函数的性质时,用了什么样的思路?研究幂函数的性质呢? 问题④:画出y=x,y=x 2

1,y=x 2,y=x -1,y=x 3五个函数图象,完成下列表格.

问题⑤:通过对以上五个函数图象的观察,哪个象限一定有幂函数的图象?哪个象限一定没有幂函数的图象?哪个象限可能有幂函数的图象,这时可以通过什么途径来判断? 问题⑥:通过对以上五个函数图象的观察和填表,你能类比出一般的幂函数的性质吗?

活动:考虑到学生已经学习了指数函数与对数函数,对函数的学习、研究有了一定的经验和基本方法,所以教学流程又分两条线,一条以内容为明线,另一条以研究函数的基本内容和方法为暗线,教学过程中同时展开,学生相互讨论,必要时,教师将解析式写成指数幂形式,以启发学生归纳,学生作图,教师巡视,学生小组讨论,得到结论,必要时,教师利用几何画板演示. 讨论结果:

①通过观察发现这些函数的变量在底数位置,解析式右边都是幂,因为它们的变量都在底数位置上,不符合指数函数的定义,所以都不是指数函数.

②由于函数的指数是一个常数,底数是变量,类似于我们学过的幂的形式,因此我们称这种类型的函数为幂函数,如果我们用字母α来表示函数的指数,就能得到一般的式子,即幂函数的定义:

一般地,形如y=x α(x ∈R )的函数称为幂函数,其中x 是自变量,α是常数.

如y=x 2,y=x 2

1,y=x 3等都是幂函数,幂函数与指数函数、对数函数一样,都是基本初等函数. ③我们研究指对数函数时,根据图象研究函数的性质,由具体到一般;一般要考虑函数的定义

域、值域、单调性、奇偶性;有时也通过画函数图象,从图象的变化情况来看函数的定义域、值域、单调性、奇偶性等性质,研究幂函数的性质也应如此.

④学生用描点法,也可应用函数的性质,如奇偶性、定义域等,画出函数图象.利用描点法,在同一坐标系中画出函数y=x,y=x 2

1,y=x 2,y=x 3,y=x -1的图象. 列表: x … -3 -2 -1 0 1 2 3 … y=x … -3 -2 -1 0 1 2 3 … y=x 2

1 … 0 1 1.41 1.73 … y=x

2 … 9 4 1 0 1 4 9 … y=x

3 … -27

-8 -1 0 1 8

27

… y=x -1

31 -

21 -1

1

21 3

1 …

图2-3-1

让学生通过观察图象,分组讨论,探究幂函数的性质和图象的变化规律,教师注意引导学生用类比研究指数函数、对数函数的方法研究幂函数的性质. 函数 性质 y=x y=x 2 y=x 3 y=x 2

1 y=x -1 定义域 R R R {x|x≥0} {x|x≠0} 值域 R {y|y≥0} R {y|y≥0} {y|y≠0} 奇偶性 奇 奇 奇 非奇非偶 奇 单调性 在第Ⅰ象限单调递增

在第Ⅰ象限单调递增

在第Ⅰ象限单调递增

在第Ⅰ象限单调递增

在第Ⅰ象限单调递减

特殊点 (1,1)

(1,1)

(1,1)

(1,1) (1,1) 图象分布

第Ⅰ、Ⅲ象限 第Ⅰ、Ⅱ象限 第Ⅰ、Ⅲ象限

第Ⅰ象限

第Ⅰ、Ⅲ象限

⑤第一象限一定有幂函数的图象;第四象限一定没有幂函数的图象;而第二、三象限可能有,

也可能没有图象,这时可以通过幂函数和定义域和奇偶性来判断. ⑥幂函数y=x α的性质.

(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:1x =1);

(2)当α>0时,幂函数的图象都通过原点,并且在\[0,+∞)上是增函数(从左往右看,函数图象逐渐上升).

相关文档
最新文档