高中数学集合间的基本关系教案1 新课标 人教版 必修1(A)
新人教A版高中数学必修一1.1.2《集合间的基本关系》Word精品教案
课题:§1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课 型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用V enn 图表达集合间的关系;(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn 图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;教学过程:一、引入课题1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N ;(2;(3)-1.5 R2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、新课教学(一) 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:)(A B B A ⊇⊆或读作:A 包含于(is contained in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作A B用Venn)(A B B A ⊇⊆或(二)A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=AB B A B A 练习结论:任何一个集合是它本身的子集(三) 真子集的概念⊆若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。
记作:A B (或A )读作:A 真包含于B (或B 真包含A )举例(由学生举例,共同辨析)(四) 空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set ),记作:∅规定:空集是任何集合的子集,是任何非空集合的真子集。
(五) 结论:○1A A ⊆ ○2B A ⊆,且C B ⊆,则C A ⊆ (六) 例题(1)写出集合{a ,b}的所有的子集,并指出其中哪些是它的真子集。
最新人教版高中数学必修一集合间的基本关系优质教案
1.1.2集合间的基本关系教学设计(师)一、教学目标1.知识与技能(1)了解集合之间包含与相等的含义,能识别给定集合的子集.(2)理解子集.真子集的概念.(3)能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用.2.过程与方法让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.3.情感、态度与价值观(1)树立数形结合的思想.(2)体会类比对发现新结论的作用.二、教学重点.难点重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.三、学法让学生通过观察.类比.思考.交流.讨论,发现集合间的基本关系.四、教学过程:(一)复习回顾:(1)元素与集合之间的关系(2)集合的三性:确定性,互异性,无序性(3)集合的常用表示方法:列举法,描述法(4)常见的数集表示(二)创设情景,新课引入:问题l :实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?让学生自由发言,教师不要急于做出判断。
而是继续引导学生;欲知谁正确,让我们一起来观察.研探.(三)师生互动,新课讲解:问题1:观察下面几个例子,你能发现两个集合间有什么关系了吗?(1){1,2,3},{1,2,3,4,5}A B ==;(2)设A 为我班第一组男生的全体组成的集合,B 为我班班第一组的全体组成的集合;(3)设{|},{|};C x x D x x ==是两条边相等的三角形是等腰三角形(4){2,4,6},{6,4,2}E F ==.组织学生充分讨论.交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系:归纳:①一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A ⊆⊇或读作:A 包含于B(或B 包含A).②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.教师引导学生类比表示集合间关系的符号与表示两个实数大小关系的等号之间有什么类似之处,强化学生对符号所表示意义的理解。
新人教A版高中数学(必修1)1.1《集合》(集合间基本关系)word教案
B
写出集合{a,b,c}的所有子集并指出,
后附:1.教师评课,2.板书设计
1.教师评课:
1)优点:i教态自然、语言表达较清楚;
ii讲练结合、课堂、课件思路比较连贯,有条不紊;
iii运用了类比的数学思想。
2)不足:i老师讲的过多,学生自己思考的少,练习不够;
ii进度有些慢,对子集真子集强调的不够;
A = B
A
B
A B
iii口头语较多、课件速度有些快,师生互动,让学生多
写。
举例应更具体;
iv子集、真子集、非空真子集,让学生说更好,例子引
入更好一些;
v有老师一言堂的感觉,多让学生回答问题。
该让学生
答的教案中应该有体现,例题不应该让学生答;
vi学生老师需要磨合,初中学生对课程深度广度理解不
够,课堂容量大。
对学生的了解不够,课堂容量大。
2.高一年级数学人教(A版)1.1.2集合间的基本关系板书设计
B。
集合间的基本关系 教学设计(1)-人教A版高中数学必修第一册
第一章 集合与常用逻辑用语 第2节 集合间的基本关系本节内容来自人教版高中数学必修一第一章第一节集合第二课时的内容。
集合论是现代数学的一个重要基础,是一个具有独特地位的数学分支。
高中数学课程是将集合作为一种语言来学习,在这里它是作为刻画函数概念的基础知识和必备工具。
本小节内容是在学习了集合的含义、集合的表示方法以及元素与集合的属于关系的基础上,进一步学习集合与集合之间的关系,同时也是下一节学习集合间的基本运算的基础,因此本小节起着承上启下的关键作用.通过本节内容的学习,可以进一步帮助学生利用集合语言进行交流的能力,帮助学生养成自主学习、合作交流、归纳总结的学习习惯,培养学生从具体到抽象、从一般到特殊的数学思维能力,通过Venn 图理解抽象概念,培养学生数形结合思想。
1.教学重点:集合间的包含与相等关系,子集与其子集的概念;2.教学难点:属于关系与包含关系的区别.多媒体(2)A={四边形}, B={多边形}。
2.定义:如果集合A ⊆B,但存在元素x ∈B,且x ∉A ,并且A≠B,称集合A 是集合B 的真子集. 记作: A B (或B A )读作:“A 真含于B ”(或B 真包含A )。
韦恩图表示:探究四 空 集1.我们把不含任何元素的集合叫做空集,记为φ,并规定:空集是任何集合的子集。
空集是任何非空集合的真子集。
即φB ,(B φ≠)例如:方程x 2+1=0没有实数根,所以方程 x 2+1=0的实数根组成的集合为φ。
问题:你还能举几个空集的例子吗?2.深化概念:(1)包含关系{}a A ⊆与属于关系a A ∈有什么区别? 【解析】前者为集合之间关系,后者为元素与集合之间的关系. (2)集合 A B 与集合B A ⊆有什么区别 ? 【解析】A =B 或A B.(3).0,{0}与 Φ三者之间有什么关系?【解析】{0}与Φ :{0}是含有一个元素0的集合, Φ是不含任何元素的集合。
如 Φ{0}不能写成Φ ={0},Φ ∈{0} 3.结论:由上述集合之间的基本关系,可以得到下列结论: (1)任何一个集合是它本身的子集,即A A ⊆。
人教A版高中数学高一必修1教案1集合间的基本关系
1.1.2集合间的基本关系[读教材·填要点]1.子集的概念文字语言符号语言图形语言集合A中任意一个元素都是集合B中的元素,就说这两个集合有包含关系,则称集合A是集合B的子集A⊆B(或B⊇A)2.集合相等与真子集的概念定义符号表示图形表示集合相等如果A⊆B,且B⊆A,就说集合A与B相等A=B真子集如果集合A⊆B,但存在元素x∈B,且x∉A,则称集合A是B的真子集A B(或B A)3.空集(1)定义:不含任何元素的集合叫做空集.(2)用符号表示为:∅.(3)规定:空集是任何集合的子集.4.子集的有关性质(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.[小问题·大思维]1.若A B,则A⊆B且A≠B,对吗?提示:对.∵A B,首先A⊆B,其中B中至少有一个元素不属于A,即A≠B.2.任何集合都有真子集吗?提示:不是,空集∅就没有真子集.3.{0}和∅表示同一集合吗?它们之间有什么关系?提示:{0}和∅不是同一个集合.{0}表示含有一个元素0的集合,∅是不含任何元素的集合,且∅{0}.有限集合子集确定问题[例1]写出集合A={1,2,3}的所有子集和真子集.[自主解答]由0个元素构成的子集:∅;由1个元素构成的子集:{1},{2},{3};由2个元素构成的子集:{1,2},{1,3},{2,3};由3个元素构成的子集:{1,2,3}.由此得集合A的所有子集为∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.在上述子集中,除去集合A本身,即{1,2,3},剩下的都是A的真子集.——————————————————1.求解有限集合的子集问题,关键有三点:(1)确定所求集合;(2)合理分类,按照子集所含元素的个数依次写出;(3)注意两个特殊的集合,即空集和集合本身.2.一般地,若集合A中有n个元素,则其子集有2n个,真子集有2n-1个,非空真子集有2n-2个. ————————————————————————————————————————1.已知集合M满足{2,3}⊆M⊆{1,2,3,4,5},求集合M及其个数.解:当M中含有两个元素时,M为{2,3};当M中含有三个元素时,M为{2,3,1},{2,3,4},{2,3,5};当M中含有四个元素时,M为{2,3,1,4},{2,3,1,5},{2,3,4,5};当M中含有五个元素时,M为{2,3,1,4,5}.所以满足条件的集合M为{2,3},{2,3,1},{2,3,4},{2,3,5},{2,3,1,4},{2,3,1,5},{2,3,4,5},{2,3,1,4,5},集合M的个数为8.集合间关系的判定[例2]下列各式正确的是________.(1){a}⊆{a};(2){1,2,3}={3,1,2};(3)0⊆{0};(4){1}{x|x≤5};(5){1,3}{3,4}.[自主解答]题号正误原因(1)√任何一个集合都是它本身的子集.(2) √ 两集合中的元素是一样的,符合集合相等的定义. (3) × 元素0是集合{0}中的一个元素,故应为0∈{0}.(4) √ ∵1<5,∴1∈{x |x ≤5}.∴{1}⊆{x |x ≤5}.又∵{1}≠{x |x ≤5},∴{1}{x |x ≤5}.(5) ×∵1∈{1,3},但1∉{3,4},∴{1,3}⃘{3,4}.“”是“真包含于”的意思[答案] (1)(2)(4) ——————————————————集合间关系的判定的步骤:首先,判断一个集合A 中的任意元素是否属于另一集合B ,若是,则A ⊆B ,否则A B ;,其次,判断另一个集合B 中的任意元素是否属于第一个集合A ,若是,则B ⊆A ,否则B A ;,最后,下结论:若A ⊆B ,B ⊆A ,则A =B ;若A ⊆B ,B A ,则A B ;若AB ,B ⊆A ,则B A ;若上述三种情况都不成立,则AB ,BA .[注意] 有时一个集合可以看成另一个集合的元素,如{1}可以看成集合{{1},1,2,3}中的元素,也可以看成子集,因此{1}∈{{1},1,2,3}与{1}⊆{{1},1,2,3}都正确. ————————————————————————————————————————2.集合M ={x |x 2+x -6=0},N ={x |2x +7>0},试判断集合M 和N 的关系. 解:M ={-3,2},N =⎩⎨⎧⎭⎬⎫x |x >-72.∵-3>-72,2>-72,∴-3∈N,2∈N .∴M ⊆N . 又0∈N ,但0∉M ,∴M N .集合间关系的应用[例3] 已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .求实数m 的取值范围.[自主解答] ∵B ⊆A ,(1)当B =∅时,m +1≤2m -1,解得m ≥2.(2)当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1解得-1≤m <2, 综上得m ≥-1. ——————————————————(1)利用集合之间的关系时,首先要分析、简化每个集合.(2)此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实点表示,不含“=”用虚点表示.(3)此类问题还应注意“空集”这一“陷阱”,尤其是集合中含有字母参数时,初学者会想当然认为非空集合而丢解,因此分类讨论是必须的.————————————————————————————————————————3.设集合A ={1,3,a },B ={1,a 2-a +1},且A ⊇B ,求a 的值. 解:∵A ⊇B ,而a 2-a +1∈B ,∴a 2-a +1∈A . ∴a 2-a +1=3或a 2-a +1=a . 当a 2-a +1=3时,a =2或a =-1.(1)a =2时,A ={1,3,2},B ={1,3},这时满足条件A ⊇B ; (2)a =-1时,A ={1,3,-1},B ={1,3},这时也满足条件A ⊇B .当a 2-a +1=a 时,a =1,此时A ={1,3,1},B ={1,1},根据集合中元素的互异性,故舍去a =1.∴a 的值为2或-1.解题高手易错题审题要严,做题要细,一招不慎,满盘皆输,试试能否走出迷宫!已知M ={x |x 2-3x +2=0},N ={x |x 2-2x +a =0},若N ⊆M ,求实数a 的取值范围. [错解] ∵M ={x |x 2-3x +2=0}={1,2},(1)当N ={1}时,有⎩⎪⎨⎪⎧1+1=2,1×1=a ,∴a =1.(2)当N ={2}时,有⎩⎪⎨⎪⎧2+2=2,2×2=a ,不成立.(3)当N ={1,2}时,有⎩⎪⎨⎪⎧1+2=2,1×2=a ,不成立.所以,a =1.[错因] 空集是一个特殊的集合,是任何集合的子集,在解决集合关系问题时极易忽略∅,错解中没有考虑集合N 为∅的情况.[正解] ∵M ={x |x 2-3x +2=0}={1,2},又N ⊆M ,∴N =∅,或N ={1},或N ={2},或N ={1,2}. (1)当N =∅时,方程x 2-2x +a =0的判别式Δ=4-4a <0,即a >1.(2)当N ={1}时,有⎩⎪⎨⎪⎧ 1+1=2,1×1=a ,∴a =1.(3)当N ={2}时,有⎩⎪⎨⎪⎧2+2=2,2×2=a ,不成立.(4)当N ={1,2}时,有⎩⎪⎨⎪⎧1+2=2,1×2=a ,不成立.综上可知实数a 的取值范围是a ≥1.1.下列命题中,正确的有( ) ①空集是任何集合的真子集; ②若A B ,B C ,则A C ;③任何一个集合必有两个或两个以上的真子集; ④如果不属于B 的元素也不属于A ,则A ⊆B . A .①② B .②③ C .②④D .③④解析:①空集只是空集的子集而非真子集,故①错;②真子集具有传递性,故②正确;③若一个集合是空集,则没有真子集,故③错;④由韦恩(Venn)图易知④正确.答案:C2.设集合M ={x |x >-2},则下列选项正确的是( ) A .{0}⊆M B .{0}∈M C .∅∈MD .0⊆M解析:选项B 、C 中均是集合之间的关系,符号错误;选项D 中是元素与集合之间的关系,符号错误.答案:A3.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( )A .A ⊆B B .C ⊆B C .D ⊆CD .A ⊆D解析:选项A 错,应当是B ⊆A .选项B 对,正方形一定是矩形,但矩形不一定是正方形.选项C 错,正方形一定是菱形,但菱形不一定是正方形.选项D 错,应当是D ⊆A .答案:B4.已知∅{x |x 2-x +a =0},则实数a 的取值范围是________. 解析:∵∅{x |x 2-x +a =0}. ∴{x |x 2-x +a =0}≠∅. 即x 2-x +a =0有实根. ∴Δ=(-1)2-4a ≥0,得a ≤14.答案:a ≤145.若{a,0,1}={c ,1b ,-1},则a =________,b =________,c =________.解析:∵1b ≠0,∴c =0,∴a =-1,1b =1.∴a =-1,b =1.答案:-1 1 06.已知集合A ={-1,3,2m -1},集合B ={3,m 2},若B ⊆A ,求实数m 的值. 解:∵B ⊆A ,∴m 2=-1,或m 2=2m -1,当m 2=-1时,显然无实数根;当m 2=2m -1时,m =1.∴实数m =1.一、选择题1.已知集合M ={x ∈Z |-3<x ≤1},则它的真子集的个数为( ) A .12 B .14 C .15D .16解析:∵M ={x ∈Z |-3<x ≤1}={-2,-1,0,1}共有4个元素,∴它的真子集共有24-1=15个.答案:C2.定义集合A *B ={x |x ∈A ,且x ∉B },若A ={1,2,3,4,5},B ={2,4,5},则A *B 的子集个数为( )A .1B .2C .3D .4解析:由题意知A *B ={1,3}, ∴A *B 的子集个数为22=4个. 答案:D3.已知集合M ={x |-5<x <3,x ∈Z },则下列集合中为集合M 子集的是( ) A .P ={-3,0,1} B .Q ={-1,0,1,2}C .R ={y |-π<y <-1,y ∈Z }D .S ={x ||x |≤3,x ∈N }解析:先用列举法表示集合,再观察元素与集合的关系.集合M ={-2,-1,0,1},集合R ={-3,-2},S ={0,1},不难发现集合P 中的元素-3∉M ,集合Q 中的元素2∉M ,集合R 中的元素-3∉M ,而S ={0,1}中的任意一个元素都在集合M 中,所以S ⊆M ,且S M .答案:D4.已知集合A ⊆{0,1,2},且集合A 中至少含有一个偶数,则这样的集合A 的个数为( ) A .6 B .5 C .4D .3解析:集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.答案:A 二、填空题5.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是________.解析:∵A ⊇B ,∴⎩⎪⎨⎪⎧a -1≤3,a +2≥5,∴3≤a ≤4. 答案:3≤a ≤46.设a ,b ∈R ,集合{0,ba,b }={1,a +b ,a },则b -a =________.解析:由题意可知a ≠0,则a +b =0,a =-b ,所以ba =-1,则a =-1,b =1,故b-a =2.答案:27.下列关系中正确的是________.①∅∈{0}; ②∅{0}; ③{0,1}⊆{(0,1)}; ④{(a ,b )}={(b ,a )}.解析:∵∅{0},∴①错误;空集是任何非空集合的真子集,②正确,{(0,1)}是含有一个元素的点集,③错误;{(a ,b )}与{(b ,a )}是两个不等的点集,④错误,故正确的是②.答案:②8.已知集合P ={1,2},那么满足Q ⊆P 的集合的个数是________. 解析:∵P ={1,2},Q ⊆P ,∴集合Q 可以是∅或{1}或{2}或{1,2}. 答案:4 三、解答题9.由“2,a ,b ”三个元素构成的集合与由“2a,2,b 2”三个元素构成的集合是同一个集合,求a ,b 的值.解:根据集合相等,有⎩⎪⎨⎪⎧ a =2a ,b =b 2或⎩⎪⎨⎪⎧a =b 2,b =2a ,解得⎩⎪⎨⎪⎧ a =0,b =1或⎩⎪⎨⎪⎧a =0,b =0或⎩⎨⎧a =14,b =12.再根据集合元素的互异性,得⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =14,b =12.10.设集合A ={x |x 2-5x +6=0},B ={x |x 2-(2a +1)x +a 2+a =0},若B ⊆A ,求a 的值.解:法一:A ={x |x 2-5x +6=0}={2,3},由B ⊆A 得,B =∅,或B ={2},或B ={3},或B ={2,3},由于Δ=(2a +1)2-4a 2-4a =1>0,∴B ≠∅,且B 含有两个不同元素.∴B ={2,3},需2a +1=5和a 2+a =6同时成立, ∴a =2. 综上所述:a =2.法二:A ={x |x 2-5x +6=0}={2,3}, B ={x |x 2-(2a +1)x +a 2+a =0}={x |(x -a )· (x -a -1)=0}={a ,a +1},∵a≠a+1,∴当B⊆A时,只有a=2且a+1=3. ∴a=2.。
高中数学 (1.2集合间的基本关系)示范教案 新人教A版必修1
1.1.2 集合间的基本关系整体设计教学分析课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方法,如类比等.值得注意的问题:在集合间的关系教学中,建议重视使用Venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如∈与的区别.三维目标1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力.2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.重点难点教学重点:理解集合间包含与相等的含义.教学难点:理解空集的含义.课时安排1课时教学过程导入新课思路1.实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?(让学生自由发言,教师不要急于作出判断,而是继续引导学生)欲知谁正确,让我们一起来观察、研探.思路2.复习元素与集合的关系——属于与不属于的关系,填空:(1)0N;(2)2Q;(3)-1.5R.类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(答案:(1)∈;(2);(3)∈)推进新课新知探究提出问题(1)观察下面几个例子:②设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;③设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};④E={2,4,6},F={6,4,2}.你能发现两个集合间有什么关系吗?(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同样是子集,有什么区别?(3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论?(4)按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?(5)试用Venn图表示例子①中集合A和集合B.(6)已知A B,试用Venn图表示集合A和B的关系.(7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?(8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?(9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论?活动:教师从以下方面引导学生:(1)观察两个集合间元素的特点.(2)从它们含有的元素间的关系来考虑.规定:如果A⊆B,但存在x∈B,且x∉A,我们称集合A是集合B的真子集,记作A B(或B A).(3)实数中的“≤”类比集合中的⊆.(4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图.(5)封闭曲线可以是矩形也可以是椭圆等等,没有限制.(6)分类讨论:当A⊆B时,A B或A=B.(7)方程x2+1=0没有实数解.(8)空集记为∅,并规定:空集是任何集合的子集,即⊆∅A;空集是任何非空集合的真子集,即∅A(A≠∅).(9)类比子集.讨论结果:(1)①集合A中的元素都在集合B中;②集合A中的元素都在集合B中;③集合C中的元素都在集合D中;④集合E中的元素都在集合F中.可以发现:对于任意两个集合A,B有下列关系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.(2)例子①中A⊆B,但有一个元素4∈B,且4∉A;而例子②中集合E和集合F中的元素完全相同.(3)若A⊆B,且B⊆A,则A=B.(4)可以把集合中元素写在一个封闭曲线的内部来表示集合.(5)如图1121所示表示集合A,如图1122所示表示集合B.(7)不能.因为方程x2+1=0没有实数解.(8)空集.(9)若A⊆B,B⊆C,则A⊆C;若A B,B C,则A C.应用示例思路11.某工厂生产的产品在重量和长度上都合格时,该产品才合格.若用A表示合格产品的集合,B表示重量合格的产品的集合,C表示长度合格的产品的集合.已知集合A、B、C均不是空集.(1)则下列包含关系哪些成立?A⊆B,B⊆A,A⊆C,C⊆A.(2)试用Venn图表示集合A、B、C间的关系.活动:学生思考集合间的关系以及Venn图的表示形式.当集合A中的元素都属于集合B时,则A⊆B成立,否则A⊆B不成立.用相同的方法判断其他包含关系是否成立.教师提示学生以下两点:(1)重量合格的产品不一定是合格产品,但合格的产品一定重量合格;长度合格的产品不一定是合格产品,但合格的产品一定长度合格.(2)根据集合A、B、C间的关系来画出Venn图.解:(1)包含关系成立的有:B⊆A,C⊆A.变式训练课本P7练习3.点评:本题主要考查集合间的包含关系.其关键是首先明确两集合中的元素具体是什判断两个集合A、B之间是否有包含关系的步骤是:先明确集合A、B中的元素,再分析集合A、B中的元素之间的关系,得:当集合A中的元素都属于集合B时,有A⊆B;当集合A中的元素都属于集合B,当集合B中至少有一个元素不属于集合A时,有A B;当集合A中的元素都属于集合B,并且集合B中的元素也都属于集合A时,有A=B;当集合A中至少有一个元素不属于集合B,并且集合B中至少有一个元素也不属于集合A时,有A B,且B A,即集合A、B互不包含.2.写出集合{a,b}的所有子集,并指出哪些是它的真子集.活动:学生思考子集和真子集的定义,教师提示学生空集是任何集合的子集,一个集合不是其本身的真子集.按集合{a,b}的子集所含元素的个数分类讨论.解:集合{a,b}的所有子集为∅,{a},{b},{a,b}.真子集为∅,{a},{b}.变式训练2007山东济宁一模,1已知集合P={1,2},那么满足Q⊆P的集合Q的个数是( )A.4B.3C.2D.1分析:集合P={1,2}含有2个元素,其子集有22=4个,又集合Q⊆P,所以集合Q有4个.答案:A点评:本题主要考查子集和真子集的概念,以及分类讨论的思想.通常按子集中所含元素的个数来写出一个集合的所有子集,这样可以避免重复和遗漏.思考:集合A中含有n个元素,那么集合A有多少个子集?多少个真子集?解:当n=0时,即空集的子集为∅,即子集的个数是1=20;当n=1时,即含有一个元素的集合如{a}的子集为∅,{a},即子集的个数是2=21;当n=2时,即含有一个元素的集合如{a,b}的子集为∅,{a},{b},{a,b},即子集的个数是4=22.集合A 中含有n 个元素,那么集合A 有2n个子集,由于一个集合不是其本身的真子集,所以集合A 有(2n -1)个真子集.思路21.2006上海高考,理1已知集合A={-1,3,2m-1},集合B={3,m 2}.若B ⊆A,则实数m=_______.活动:先让学生思考B ⊆A 的含义,根据B ⊆A,知集合B 中的元素都属于集合A,集合元素的互异性,列出方程求实数m 的值.因为B ⊆A,所以3∈A,m 2∈A.对m 2的值分类讨论.解:∵B ⊆A,∴3∈A,m 2∈A.∴m 2=-1(舍去)或m 2=2m-1.解得m=1.∴m=1. 答案:1点评:本题主要考查集合和子集的概念,以及集合元素的互异性.本题容易出现m 2=3,其原因是忽视了集合元素的互异性.避免此类错误的方法是解得m 的值后,再代入验证.讨论两集合之间关系时,通常依据相关的定义,观察这两个集合元素的关系,转化为解方程或解不等式.变式训练已知集合M={x|2-x<0},集合N={x|ax=1},若N M,求实数a 的取值范围.分析:集合N 是关于x 的方程ax=1的解集,集合M={x|x>2}≠∅,由于NM,则N=∅或N≠∅,要对集合N 是否为空集分类讨论.解:由题意得M={x|x>2}≠∅,则N=∅或N≠∅.当N=∅时,关于x 的方程ax=1中无解,则有a=0;当N≠∅时,关于x 的方程ax=1中有解,则a≠0,此时x=a 1,又∵N M,∴a 1∈M.∴a1>2.∴0<a<21.综上所得,实数a 的取值范围是a=0或0<a<21,即实数a 的取值范围是{a|0≤a<21} 2.(1)分别写出下列集合的子集及其个数:∅,{a},{a,b},{a,b,c}.(2)由(1)你发现集合M 中含有n 个元素,则集合M 有多少个子集?活动:学生思考子集的含义,并试着写出子集.(1)按子集中所含元素的个数分类写出子集;(2)由(1)总结当n=0,n=1,n=2,n=3时子集的个数规律,归纳猜想出结论.答案:(1)∅的子集有:∅,即有1个子集;{a}的子集有:∅、{a},即{a}有2个子集;{a,b}的子集有:∅、{a}、{b}、{a,b},即{a,b}有4个子集;{a,b,c}的子集有:∅、{a}、{b}、{c}、{a,b}、{a,c}、{b,c}、{a,b,c},即{a,b,c}有8个子集.(2)由(1)可得:当n=0时,有1=20个子集;当n=1时,集合M 有2=21个子集;当n=2时,集合M 有4=22个子集;当n=3时,集合M 有8=23个子集;因此含有n 个元素的集合M 有2n 个子集.变式训练已知集合A {2,3,7},且A 中至多有一个奇数,则这样的集合A 有……( ) A.3个 B.4个 C.5个 D.6个分析:对集合A 所含元素的个数分类讨论.A=∅或{2}或{3}或{7}或{2,3}或{2,7}共有6个.答案:D点评:本题主要考查子集的概念以及分类讨论和归纳推理的能力.集合M 中含有n 个元素,则集合M 有2n 个子集,有2n-1个真子集,记住这个结论,可以提高解题速度.写一个集合的子集时,按子集中元素的个数来写不易发生重复和遗漏现象.知能训练课本P7练习1、2.【补充练习】1.判断正误:(1)空集没有子集. ( )(2)空集是任何一个集合的真子集. ( )(3)任一集合必有两个或两个以上子集. ( )(4)若B⊆A,那么凡不属于集合A的元素,则必不属于B. ( ) 分析:关于判断题应确实把握好概念的实质.解:该题的5个命题,只有(4)是正确的,其余全错.对于(1)、(2)来讲,由规定:空集是任何一个集合的子集,且是任一非空集合的真子集. 对于(3)来讲,可举反例,空集这一个集合就只有自身一个子集.对于(4)来讲,当x∈B时必有x∈A,则x∉A时也必有x∉B.2.集合A={x|-1<x<3,x∈Z},写出A的真子集.分析:区分子集与真子集的概念,空集是任一非空集合的真子集,一个含有n个元素的子集有2n个,真子集有2n-1个,则该题先找该集合元素,后找真子集.解:因-1<x<3,x∈Z,故x=0,1,2,即a={x|-1<x<3,x∈Z}={0,1,2}.真子集:∅、{1}、{2}、{0}、{0,1}、{0,2}、{1,2},共7个.3.(1)下列命题正确的是( )A.无限集的真子集是有限集B.任何一个集合必定有两个子集C.自然数集是整数集的真子集D.{1}是质数集的真子集(2)以下五个式子中,错误的个数为( )①{1}∈{0,1,2} ②{1,-3}={-3,1} ③{0,1,2}⊆{1,0,2}④∅∈{0,1,2} ⑤∅∈{0}A.5B.2C.3D.4(3)M={x|3<x<4},a=π,则下列关系正确的是( )A.a MB.a∉MC.{a}∈MD.{a}M分析:(1)该题要在四个选择肢中找到符合条件的选择肢,必须对概念把握准确,无限集的真子集有可能是无限集,如N是R的真子集,排除A;由于∅只有一个子集,即它本身,排除B;由于1不是质数,排除D.(2)该题涉及到的是元素与集合,集合与集合的关系.①应是{1}⊆{0,1,2},④应是∅⊆{0,1,2},⑤应是∅⊆{0}.故错误的有①④⑤.(3)M={x|3<x<4},a=π.因3<a<4,故a是M的一个元素.{a}是{x|3<x<4}的子集,那么{a}M.答案:(1)C (2)C (3)D4.判断如下集合A与B之间有怎样的包含或相等关系:(1)A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z};(2)A={x|x=2m,m∈Z},B={x|x=4n,n∈Z}.解:(1)因A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z},故A、B都是由奇数构成的,即A=B.(2)因A={x|x=2m,m∈Z},B={x|x=4n,n∈Z},又x=4n=2·2n,在x=2m 中,m 可以取奇数,也可以取偶数;而在x=4n 中,2n 只能是偶数.故集合A 、B 的元素都是偶数.但B 中元素是由A 中部分元素构成,则有BA. 点评:此题是集合中较抽象的题目.要注意其元素的合理寻求.5.已知集合P={x|x 2+x-6=0},Q={x|ax+1=0}满足QP,求a 所取的一切值. 解:因P={x|x 2+x-6=0}={2,-3},当a=0时,Q={x|ax+1=0}=∅,QP 成立. 又当a≠0时,Q={x|ax+1=0}={a 1-},要Q P 成立,则有a 1-=2或a 1-=-3,a=21-或a=31. 综上所述,a=0或a=21-或a=31. 点评:这类题目给的条件中含有字母,一般需分类讨论.本题易漏掉a=0,ax+1=0无解,即Q 为空集的情况,而当Q=∅时,满足QP. 6.已知集合A={x∈R|x 2-3x+4=0},B={x∈R|(x+1)(x 2+3x-4)=0},要使AP ⊆B,求满足条件的集合P.解:由A={x∈R|x 2-3x+4=0}=∅,由A P ⊆B 知集合P 非空,且其元素全属于B,即有满足条件的集合P 为点评:要解决该题,必须确定满足条件的集合P 的元素,而做到这点,必须明确A 、B,充分把握子集、真子集的概念,准确化简集合是解决问题的首要条件.7.设A={0,1},B={x|x ⊆A},则A 与B 应具有何种关系?解:因A={0,1},B={x|x ⊆A},故x 为∅,{0},{1},{0,1},即{0,1}是B 中一元素.故A∈B.点评:注意该题的特殊性,一集合是另一集合的元素.8.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m -1},(1)若B ⊆A,求实数m 的取值范围;(2)当x∈Z 时,求A 的非空真子集个数;(3)当x∈R 时,没有元素x 使x∈A 与x∈B 同时成立,求实数m 的取值范围. 解:(1)当m+1>2m-1即m<2时,B=∅满足B ⊆A.当m+1≤2m -1即m≥2时,要使B ⊆A 成立,需⎩⎨⎧>+-≥+51,121m m m 可得2≤m≤3.综上所得实数m 的取值范围m≤3. 所以,A 的非空真子集个数为2上标8-2=254.(3)∵x∈R,且A={x|-2≤x≤5},B={x|m+1≤x≤2m -1},又没有元素x 使x∈A 与x∈B 同时成立.则①若B≠∅即m+1>2m-1,得m<2时满足条件;②若B≠∅,则要满足条件有:⎩⎨⎧>+-≤+51,121m m m 或⎩⎨⎧-<--≤+212,121m m m 解之,得m>4. 综上有m<2或m>4.点评:此问题解决要注意:不应忽略∅;找A 中的元素;分类讨论思想的运用. 拓展提升个?活动:学生思考A ⊆B,且A ⊆C 所表达的含义.A ⊆B 说明集合A 是集合B 的子集,即集合A 中元素属于集合B,同理有集合A 中元素属于集合C.因此集合A 中的元素是集合B 和集合C 的公共元素.思路1:写出由集合B 和集合C 的公共元素所组成的集合,得满足条件的集合A; 思路2:分析题意,仅求满足条件的集合A 的个数,转化为求集合B 和集合C 的公共元素所组成的集合的子集个数.有:∅,{0},{1},{2},{3},{4},{0,1},{0,2},{2,3},{2,4},{0,3},{0,4},{1,2},{1,3},{1,4},{3,4},{0,2,4},{0,1,2},{0,又满足A ⊆C 的集合A有:∅,{0},{2},{4},{8},{0,2},{0,4},{0,8},{2,4},{2,8},{4,8},{0,2,4},其中同时满足A⊆B,A⊆C的有8个:∅,{0},{2},{4},{0,2},{0,4},{2,4},{0,2,4},实际上到此就可看出,上述解法太繁.解法二:题目只求集合A的个数,而未让说明A的具体元素,故可将问题等价转化为B、C的公共元素组成集合的子集数是多少.显然公共元素有0、2、4,组成集合的子集有23=8(个).点评:有关集合间关系的问题,常用分类讨论的思想来解决;关于集合的子集个数的结论要熟练掌握,其应用非常广泛.课堂小结本节课学习了:①子集、真子集、空集、Venn图等概念;②能判断存在子集关系的两个集合谁是谁的子集,进一步确定其是否是真子集;③清楚两个集合包含关系的确定,主要靠其元素与集合关系来说明.作业课本P11习题1.1A组5.设计感想本节教学设计注重引导学生通过类比来获得新知,在实际教学中,要留给学生适当的思考时间,使学生自己通过类比得到正确结论.丰富学生的学习方式、改进学生的学习方法是高中数学课程追求的基本理念,学生的数学学习活动不能仅限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探索、合作交流、阅读自学等都应成为学生学习数学的重要方式.。
集合间的基本关系(教学设计)高一数学(人教A版2019必修第一册)
学生优势:学生在义务教育阶段数学学习中,已经接触过集合,对于数集、点集等有了一定的感性认识.从初中到高中,从直观到抽象,了解集合的含义及其性质,并不困难学生劣势:难点在于两种关系的识别——元素与集合、集合与集合,特别是符号语言的表述,提升了这部分内容学习的抽象度,例如,{a}A与a∈A,A B与B A、A B等. 本节课的教学难点是集合基本关系的符号表述及识别,对空集的了解.预备策略:尽量创设使学生运用集合语言进行表达和交流的情境和机会,紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生更容易理解。
问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗?(1){1,2,3},{1,2,3,4,5}A B ==; (2)设A 为新华中学高一(2)班女生的全体组成的集合,B 为这个班学生的全体组成的集合; (3)设{|},{|};C x xD x x ==是两条边相等的三角形是等腰三角形总结:判断集合间关系的常用方法(1)列举观察法:当集合中元素较少时,可列出集合中的全部元素,通过定义得出集合之间的关系.(2)集合元素特征法:首先确定集合的代表元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用V enn 图、数轴等直观地判断集合间的关系.一般地,判断不等式的解集之间的关系,适合画出数轴. 提示:若A ⊆B 和A B 同时成立,则A B 更能准确表达集合A ,B 之间的关系.子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集. 记作:()A BB A ⊆⊇或读作:A 含于B(或B 包含A).真子集:如果集合A ⊆B ,但存在元素x ∈B ,且x ∉A ,就称集合A 是集合B 的真子集,记作。
人教A版数学必修一《1.1.1集合间的基本关系》教案
四川省泸县第九中学高中数学《1.1.1集合间的基本关系》教案 新人教A 版必修1教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课 型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用Venn 图表达集合间的关系;(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn 图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;教学过程: 一、引入课题1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N ;(2);(3)-1.5 R2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、新课教学(一) 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:)(A B B A ⊇⊆或读作:A 包含于(is conta ined in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作A B 用Venn)(A B B A ⊇⊆或(二)A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=A B B A B A 练习结论:任何一个集合是它本身的子集⊆(三) 真子集的概念若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。
记作:A B (或B A )读作:A 真包含于B (或B 真包含A ) 举例(由学生举例,共同辨析)(四) 空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set ),记作:∅规定:空集是任何集合的子集,是任何非空集合的真子集。
高中数学 1.1.2集合间的基本关系教案 新人教A版必修1 教案
课题: 1.1.2集合间的基本关系教学目的:(1)使学生了解集合的包含、相等关系的意义;(2)使学生理解子集、真子集(,)的概念;(3)使学生理解补集的概念; (4)使学生了解全集的意义教学重点:子集、补集的概念教学难点:弄清元素与子集、属于与包含的关系 授课类型:新授课 课时安排:1课时 教 具:常规 内容分析在研究数的时候,通常都要考虑数与数之间的相等与不相等(大于或小于)关系,而对于集合而言,类似的关系就是“包含”与“相等”关系本节讲子集,先介绍集合与集合之间的“包含”与“相等”关系,并引出子集的概念,然后,对比集合的“包含”与“相等”关系,得出真子集的概念以及子集与真子集的有关性质 本节课讲重点是子集的概念,难点是弄清元素与子集、属于与包含之间的区别教学过程: 一、复习引入:(1)回答概念:集合、元素、有限集、无限集、空集、列举法、描述法、文氏图(2)用列举法表示下列集合:①}022|{23=+--x x x x {-1,1,2} ②数字和为5的两位数 {14,23,32,41,50} (3)用描述法表示集合}51,41,31,21,1{ }5,1|{*≤∈=n N n nx x 且 (4)集合中元素的特性是什么?(5)用列举法和描述法分别表示:“与2相差3的所有整数所组成的集合”}3|2||{=-∈x Z x {-1,5}问题:观察下列两组集合,说出集合A 与集合B 的关系(共性) (1)A={1,2,3},B={1,2,3,4,5} (2)A=N ,B=Q(3)A={-2,4},}082|{2=--=x x x B (集合A 中的任何一个元素都是集合B 的元素)二、讲解新课:(一) 子集 1 定义:(1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素, 我们就说集合A 包含于集合B ,或集合B 包含集合A记作:A B B A ⊇⊆或 ,A ⊂B 或B ⊃A 读作:A 包含于B 或B 包含AB A B x A x ⊆∈⇒∈,则若任意当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作A ⊆/B 或B ⊇/A 注:B A ⊆有两种可能(1)A 是B 的一部分,; (2)A 与B 是同一集合(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,同时集合B 的任何..一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A=B (3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集,记作:A B 或BA, 读作A 真包含于B 或B 真包含A(4)子集与真子集符号的方向不同与同义;与如B A B A A B B A ⊇⊆⊇⊆(5)空集是任何集合的子集Φ⊆A空集是任何非空集合的真子集Φ A 若A ≠Φ,则Φ A任何一个集合是它本身的子集A A ⊆(6)易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合如 Φ⊆{0}不能写成Φ={0},Φ∈{0}三、讲解范例:例1(1) 写出N ,Z ,Q ,R 的包含关系,并用文氏图表示(2) 判断下列写法是否正确①Φ⊆A ②Φ A ③A A ⊆ ④A A解(1):N ⊂Z ⊂Q ⊂R(2)①正确;②错误,因为A 可能是空集 ③正确;④错误例2 (1)填空:N___Z, N___Q, R___Z, R___Q ,Φ___{0}(2)若A={x ∈R|x 2-3x-4=0},B={x ∈Z||x|<10},则A ⊆B 正确吗? (3)是否对任意一个集合A ,都有A ⊆A ,为什么? (4)集合{a,b}的子集有那些?(5)高一(1)班同学组成的集合A ,高一年级同学组成的集合B ,则A 、B 的关系为 . 解:(1)N ⊂Z, N ⊂Q, R ⊃Z, R ⊃Q , Φ{0}(2)∵A={x ∈R|x 2-3x-4=0}={-1,4},B={x ∈Z||x|<10}={-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9}∴A ⊆B 正确(3)对任意一个集合A ,都有A ⊆A ,(4)集合{a,b}的子集有:Φ、{a}、{b}、{a,b}(5)A 、B 的关系为B A ⊆.例3 解不等式x+3<2,并把结果用集合表示出来. 解:{x ∈R|x+3<2}={x ∈R|x<-1}. 四、练习:写出集合{1,2,3}的所有子集解:Φ、{1}、{2}、{3}、{1,2}、{1,3}、{2,3}、{1,2,3} 五、子集的个数: 由例与练习题,可知(1)集合{a,b}的所有子集的个数是4个,即 Ø,{a},{b},{a,b}(2) 集合{a,b,c}的所有子集的个数是8个,即 Ø,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}猜想:(1)集合{a,b,c,d}的所有子集的个数是多少?(1624=)(2)集合{}n a a a ,,21 的所有子集的个数是多少?(n2 结论:含n 个元素的集合{}n a a a ,,21 的所有子集的个数是n 2,所有真子集的个数是n 2-1,非空真子集数为2-n 六、小结:本节课学习了以下内容:1.概念:子集、集合相等、真子集 2.性质:(1)空集是任何集合的子集⊆A(2)空集是任何非空集合的真子集Φ A (A ≠Φ)(3)任何一个集合是它本身的子集A A ⊆(4)含n 个元素的集合的子集数为n 2;非空子集数为12-n ;真子集数为12-n;非空n真子集数为2七、作业:习题1.1A组4,5八、板书设计九、课后记:。
高中数学1.1.2集合间的基本关系教案新人教版必修1
1.1.2集合间的基本关系教学设计(师)一、教学目标1.知识与技能(1)了解集合之间包含与相等的含义,能识别给定集合的子集.(2)理解子集.真子集的概念.(3)能使用venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用.2.过程与方法让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.3.情感、态度与价值观(1)树立数形结合的思想.(2)体会类比对发现新结论的作用.二、教学重点.难点重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.三、学法让学生通过观察.类比.思考.交流.讨论,发现集合间的基本关系.四、教学过程:(一)复习回顾:(1)元素与集合之间的关系(2)集合的三性:确定性,互异性,无序性(3)集合的常用表示方法:列举法,描述法(4)常见的数集表示(二)创设情景,新课引入:问题l :实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?让学生自由发言,教师不要急于做出判断。
而是继续引导学生;欲知谁正确,让我们一起来观察.研探.(三)师生互动,新课讲解:问题1:观察下面几个例子,你能发现两个集合间有什么关系了吗?(1){1,2,3},{1,2,3,4,5}A B ==;(2)设A 为我班第一组男生的全体组成的集合,B 为我班班第一组的全体组成的集合;(3)设{|},{|};C x x D x x ==是两条边相等的三角形是等腰三角形(4){2,4,6},{6,4,2}E F ==.组织学生充分讨论.交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系: 归纳:①一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A ⊆⊇或读作:A 包含于B(或B 包含A).②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.教师引导学生类比表示集合间关系的符号与表示两个实数大小关系的等号之间有什么类似之处,强化学生对符号所表示意义的理解。
高中数学 第一章《集合间的基本关系》教案 新人教A版必修1
课题:§1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课 型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用Venn 图表达集合间的关系;(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn 图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;教学过程:一、引入课题1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N ;(2)2 Q ;(3)-1.5 R2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、新课教学(一) 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:)(A B B A ⊇⊆或读作:A 包含于(is contained in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作A B 用Venn 图表示两个集合间的“包含”关系)(A B B A ⊇⊆或(二) 集合与集合之间的 “相等”关系;A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=A B B A B A 练习结论:任何一个集合是它本身的子集(三) 真子集的概念⊆B A若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。
记作:A B (或B A )读作:A 真包含于B (或B 真包含A )举例(由学生举例,共同辨析)(四) 空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set ),记作:∅规定:空集是任何集合的子集,是任何非空集合的真子集。
高中数学 第2课时 集合间的基本关系教案 新人教A版必修1
高中数学第2课时集合间的基本关系教案新人教A版必修1(一)教学目标;1.知识与技能(1)理解集合的包含和相等的关系.(2)了解使用Venn图表示集合及其关系.(3)掌握包含和相等的有关术语、符号,并会使用它们表达集合之间的关系.2.过程与方法(1)通过类比两个实数之间的大小关系,探究两个集合之间的关系.(2)通过实例分析,获知两个集合间的包含与相等关系,然后给出定义.(3)从自然语言,符号语言,图形语言三个方面理解包含关系及相关的概念.3.情感、态度与价值观应用类比思想,在探究两个集合的包含和相等关系的过程中,培养学习的辨证思想,提高学生用数学的思维方式去认识世界,尝试解决问题的能力.(二)教学重点与难点重点:子集的概念;难点:元素与子集,即属于与包含之间的区别.(三)教学方法在从实践到理论,从具体到抽象,从特殊到一般的原则下,一方面注意利用生活实例,引入集合的包含关系. 从而形成子集、真子集、相等集合等概念. 另一方面注意几何直观的应用,即Venn图形象直观地表示、理解集合的包含关系,子集、真子集、集合相等概念及有关性质.备选训练题例1 能满足关系{a,b}{a,b,c,d,e}的集合的数目是( A )A.8个B.6个C.4个D.3个【解析】由关系式知集合A中必须含有元素a,b,且为{a,b,c,d,e}的子集,所以A中元素就是在a,b元素基础上,把{c,d,e}的子集中元素加上即可,故A= {a,b},A= {a,b,c},A = {a,b,d},A = {a,b,e},A = {a,b,c,d},A = {a,b,c,e},A = {a,b,d,e},A = {a,b,c,d,e},共8个,故应选A.例2 已知A = {0,1}且B = {x |},求B.【解析】集合A的子集共有4个,它们分别是:,{0},{1},{0,1}.由题意可知B = {,{0},{1},{0,1}}.例3 设集合A = {x–y,x + y,xy},B = {x2 + y2,x2–y2,0},且A = B,求实数x和y的值及集合A、B.【解析】∵A = B,0∈B,∴0∈A.若x + y = 0或x–y = 0,则x2–y2 = 0,这样集合B = {x2 + y2,0,0},根据集合元素的互异性知:x + y≠0,x–y≠0.∴(I)或(II)由(I)得:或或由(II)得:或或∴当x = 0,y = 0时,x–y = 0,故舍去.当x = 1,y = 0时,x–y = x + y = 1,故也舍去.∴或,∴A = B = {0,1,–1}.例4 设A = {x | x2– 8x + 15 = 0},B = {x | ax– 1 = 0},若,求实数a组成的集合,并写出它的所有非空真子集.【解析】A = {3,5},∵,所以(1)若B =,则a = 0;(2)若B≠,则a≠0,这时有或,即a =或a =.综上所述,由实数a组成的集合为.其所有的非空真子集为:{0},共6个.。
人教A版高中数学必修一集合的基本关系教学案新
1.1.2集合间的基本关系教案【教学目标】(1)了解集合之间包含与相等的含义,能识别给定集合的子集。
(2)理解子集.真子集的概念。
(3)能使用venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用.【教学重难点】重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.【教学过程】一、导入新课问题l :实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?让学生自由发言,教师不要急于做出判断。
而是继续引导学生;欲知谁正确,让我们一起来观察.研探.二、新知探究问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗?(1){1,2,3},{1,2,3,4,5}A B ==;(2)设A 为某中学高一(3)班男生的全体组成的集合,B 为这个班学生的全体组成的集合;(3)设{|},{|};C x x D x x ==是两条边相等的三角形是等腰三角形(4){2,4,6},{6,4,2}E F ==.组织学生充分讨论.交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系:①一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A ⊆⊇或读作:A 含于B(或B 包含A).②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.教师引导学生类比表示集合间关系的符号与表示两个实数大小关系的等号之间有什么类似之处,强化学生对符号所表示意义的理解。
并指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn 图。
如图l 和图2分别是表示问题2中实例1和实例3的Venn 图.问题3:与实数中的结论“若,,a b b a a b ≥≥=且则”相类比,在集合中,你能得出什么结论?教师引导学生通过类比,思考得出结论: 若,,A B B A A B ⊆⊆=且则.3、核对预习学案的答案 学生发言、补充,教师完整归纳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合间的基本关系
教学目标:1.理解子集、真子集概念;
2.会判断和证明两个集合包含关系;
3
.
理解 ”、“⊆”的含义; 4.会判断简单集合的相等关系; 5.渗透问题相对的观点。
教学重点:子集的概念、真子集的概念
教学难点:元素与子集、属于与包含间区别、描述法给定集合的运算
教学方法:讲、议结合法
教学过程:
(I )复习回顾
问题1:元素与集合之间的关系是什么?
问题2:集合有哪些表示方法?集合的分类如何?
(Ⅱ)讲授新课
观察下面几组集合,集合A 与集合B 具有什么关系?
(1) A={1,2,3},B={1,2,3,4,5}.
(2) A={x|x>3},B={x|3x-6>0}.
(3) A={正方形},B={四边形}.
(4) A=∅,B={0}.
(5)A={银川九中高一(11)班的女生},B={银川九中高一(11)班的学生}。
通过观察就会发现,这五组集合中,集合A 都是集合B 的一部分,从而有:
1.子集
定义:一般地,对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A ,记作A ⊆B (或B ⊇A ),即若任意x ∈A,有x ∈B ,则A ⊆B(或A ⊂B)。
这时我们也说集合A 是集合B 的子集(subset )。
如果集合A 不包含于集合B ,或集合B 不包含集合A,就记作A ⊈B (或B ⊉A ),即:若存在x ∈A,有x ∉B ,则A ⊈B(或B ⊉A)
说明:A ⊆B 与B ⊇A 是同义的,而A ⊆B 与B ⊆A 是互逆的。
规定:空集∅是任何集合的子集,即对于任意一个集合A 都有∅⊆A 。
问题3:观察(7)和(8),集合A 与集合B 的元素,有何关系? ⇒集合A 与集合B 的元素完全相同,从而有:
2.集合相等
问题4:(1)集合A 是否是其本身的子集?(由定义可知,是)
(2)除去∅与A 本身外,集合A 的其它子集与集合A 的关系如何?(包含于A ,但不等于A )
3.真子集:
由“包含”与“相等”的关系,可有如下结论:
(1)A ⊆A (任何集合都是其自身的子集);
(2)若A ⊆B ,而且A ≠B (即B 中至少有一个元素不在A 中),则称集合A 是集合B 的真子集(proper s
u b s e t )
(
3)对
于
集
即可得出A ⊆C ;对
B , C
,
同
样
有
C, 即:包含关系具有“传递性”。
4.证明集合相等的方法:
(1) 证明集合A ,B 中的元素完全相同;(具体数据)
(2) 分别证明A ⊆B 和B ⊆A 即可。
(抽象情况) 对于集合A ,B ,若A ⊆B 而且B ⊆A ,则A=B 。
(III ) 例题分析: (IV)
课堂练习 (V )课时小结
1. 能判断存在子集关系的两个集合,谁是谁的子集,进一步确定其是否为真子集;
注意:子集并不是由原来集合中的部分元素组成的集合。
(因为:“空集是任何集合的子集”,但空集中不含任何元素;“A 是A 的子集”,但A 中含有A 的全部元素,而不是部分元素)。
2. 空集是任何集合的子集,是任何非空集合的真子集;
3. 注意区别“包含于”,“包含”,“真包含”,“不包含”;
4. 注意区别“∈”与“⊆”的不同涵义。
(∅与{∅}的关系)
(VI
)课后作业 1. 书面作业
(1)课本P 13,习题1.1A 组题第5、6题。
(2)用图示法表示 (1)A ⊆B (2)A ⊈B
2. 预习作业
(1)预习内容:课本P 9—P 12
(2)预习提纲:
(1)并集和交集的含义及求法。
(2)求一个集合的补集应具备条件是什么? (3)能正确表示一个集合的补集。
.。