(全国通用)2019届高考数学大一轮复习第八章立体几何与空间向量8.2空间几何体的表面积与体积学案
2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算
2024年高考数学总复习第八章《立体几何与空间向量》§8.5空间向量及其运算最新考纲1.经历向量及其运算由平面向空间推广的过程.2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.4.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a =b相反向量方向相反且模相等的向量a 的相反向量为-a共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.空间向量中的有关定理(1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb .(2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量.(3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律①(λa )·b =λ(a ·b );②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c .4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示坐标表示数量积a·ba 1b 1+a 2b 2+a 3b 3共线a =λb (b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3垂直a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模|a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示不相同.平行于同一平面的向量就为共面向量.2.零向量能作为基向量吗?提示不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两个非零向量a ,b 共面.(√)(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).(×)(3)对于非零向量b ,由a ·b =b ·c ,则a =c .(×)(4)两向量夹角的范围与两异面直线所成角的范围相同.(×)(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.(√)(6)若a·b <0,则〈a ,b 〉是钝角.(×)题组二教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是()A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案A解析BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________.答案2解析|EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,∴|EF →|=2,∴EF 的长为2.题组三易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是()A .垂直B .平行C .异面D .相交但不垂直答案B解析由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________.答案26解析∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0,∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C四点共面,则实数t =______.答案18解析∵P ,A ,B ,C 四点共面,∴34+18+t =1,∴t =18.题型一空间向量的线性运算例1如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.解(1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP→=-12a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→+12b ++12c =32a +12b +32c .思维升华用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1(1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案12AB →+12AD →+AA 1→解析∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.(2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于()A.12(-a +b +c )B.12(a +b -c )C.12(a -b +c )D.12(-a -b +c )答案B解析NM →=NA →+AM →=(OA →-ON →)+12AB→=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC→=12(a +b -c ).题型二共线定理、共面定理的应用例2如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证:BD ∥平面EFGH .证明(1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH→=EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .思维升华证明三点共线和空间四点共面的方法比较三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA →=λPB →且同过点P MP →=xMA →+yMB→对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB→对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB→跟踪训练2如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面?(2)直线MN 是否与平面ABB 1A 1平行?解(1)∵AM →=kAC 1→,BN →=kBC →,∴MN →=MA →+AB →+BN →=kC 1A →+AB →+kBC →=k (C 1A →+BC →)+AB →=k (C 1A →+B 1C 1→)+AB →=kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →)=(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面.(2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内,又由(1)知MN →与AB →,AA 1→共面,∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内;当0<k ≤1时,MN ∥平面ABB 1A 1.题型三空间向量数量积的应用例3如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值.(1)证明设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB→=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0.∴MN →⊥AB →,即MN ⊥AB .同理可证MN ⊥CD .(2)解设向量AN →与MC →的夹角为θ.∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r -12p2-12q ·p +r ·q -12r ·2-12a 2cos 60°+a 2cos 60°-12a 2cos2-a 24+a 22-=a 22.又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cosθ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华(1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值.解(1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2+12+6,∴|AC 1→|=6,即AC 1的长为6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1,→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于()A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)答案B解析由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面;③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是()A .0B .1C .2D .3答案A解析a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于()A.32B .-2C .0 D.32或-2答案B解析当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m ,解得m =-2.4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为()A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)答案C 解析设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3.5.已知a =(1,0,1),b =(x ,1,2),且a·b =3,则向量a 与b 的夹角为()A.5π6 B.2π3 C.π3 D.π6答案D解析∵a·b =x +2=3,∴x =1,∴b =(1,1,2),∴cos 〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是()A.3B.2C .1 D.3-2答案D 解析∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,故|BD→|=3-2.7.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ=________.答案-9解析由题意知c=x a+y b,即(7,6,λ)=x(2,1,-3)+y(-1,2,3),x-y=7,+2y=6,3x+3y=λ,解得λ=-9.8.已知a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,则c=________.答案(3,-2,2)解析因为a∥b,所以x-2=4y=1-1,解得x=2,y=-4,此时a=(2,4,1),b=(-2,-4,-1),又因为b⊥c,所以b·c=0,即-6+8-z=0,解得z=2,于是c=(3,-2,2).9.已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,VP→=13VC→,VM→=23VB→,VN→=23VD→.则VA与平面PMN的位置关系是________.答案平行解析如图,设VA→=a,VB→=b,VC→=c,则VD→=a+c-b,由题意知PM→=23b-13c,PN→=23VD→-13VC→=23a-23b+13c.因此VA→=32PM→+32PN→,∴VA→,PM→,PN→共面.又VA⊄平面PMN,∴VA∥平面PMN.10.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2;②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确的序号是________.答案①②解析①中,(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确;②中,A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面;(2)判断点M 是否在平面ABC 内.解(1)由题意知OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M ,∴M ,A ,B ,C 四点共面.∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点)解(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2.(2)令AE →=tAB →(t ∈R ),所以OE →=OA →+AE →=OA →+tAB→=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t ,4-2t ),若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b ,此时E -65,-145,13.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案56解析连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN →=12a+12c -12a =16a +13b +13c .又OG →=xOA →+yOB →+zOC →,所以x =16y =13,z =13,因此x +y +z =16+13+13=56.14.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是()A .钝角三角形B .锐角三角形C .直角三角形D .不确定答案C 解析∵M 为BC 中点,∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0.∴AM ⊥AD ,△AMD 为直角三角形.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB→取最小值时,点Q 的坐标是________.答案(1,1,2)解析由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明设CA →=a ,CB →=b ,CC ′→=c ,根据题意得|a |=|b |=|c |,且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a ,∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=AC ′,→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010,即异面直线CE 与AC ′所成角的余弦值为1010.。
2019高考数学一轮复习第8章立体几何第8课时空间向量的应用(二)空间的角与距离练习理
第8课时 空间向量的应用(二) 空间的角与距离1.在正方体ABCD -A 1B 1C 1D 1中,M 是AB 的中点,则sin 〈DB 1→,CM →〉的值等于( ) A.12 B.21015 C.23D.1115答案 B解析 分别以DA ,DC ,DD 1为x ,y ,z 轴建系, 令AD =1,∴DB 1→=(1,1,1),CM →=(1,-12,0).∴cos 〈DB 1→,CM →〉=1-123·52=1515. ∴sin 〈DB 1→,CM →〉=21015.2.已知直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为正方形,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( ) A.1010B.15C.31010D.35答案 C解析 如图,以D 为坐标原点建立如图所示空间直角坐标系.设AA 1=2AB =2,则B(1,1,0),E(1,0,1),C(0,1,0),D 1(0,0,2). ∴BE →=(0,-1,1),CD 1→=(0,-1,2). ∴cos 〈BE →,CD 1→〉=1+22·5=31010.3.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A .120° B .60° C .30° D .150°答案 C解析 设直线l 与平面α所成的角为θ,则sin θ=|cos120°|=12,又0°≤θ≤90°.∴θ=30°.4.(2018·天津模拟)已知长方体ABCD -A 1B 1C 1D 1中,AB =BC =4,CC 1=2,则直线BC 1与平面DBB 1D 1所成角的正弦值为( )A.32B.52C.105D.1010答案 C解析 由题意,连接A 1C 1,交B 1D 1于点O ,连接BO.∵在长方体ABCD -A 1B 1C 1D 1中,AB =BC =4,∴C 1O ⊥B 1D 1.易得C 1O ⊥平面DBB 1D 1,∴∠C 1BO 即为直线BC 1与平面DBB 1D 1所成的角.在Rt △OBC 1中,OC 1=22,BC 1=25,∴直线BC 1与平面DBB 1D 1所成角的正弦值为105,故选C.5.(2018·辽宁沈阳和平区模拟)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,BB 1=4,则直线BB 1与平面ACD 1所成角的正弦值为( ) A.13 B.33 C.63D.223答案 A解析 如图所示,建立空间直角坐标系.则A(2,0,0),C(0,2,0),D 1(0,0,4),B(2,2,0),B 1(2,2,4),AC →=(-2,2,0),AD 1→=(-2,0,4),BB 1→=(0,0,4).设平面ACD 1的法向量为n =(x ,y ,z),则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎪⎨⎪⎧-2x +2y =0,-2x +4z =0,取x =2,则y =2,z =1,故n =(2,2,1)是平面ACD 1的一个法向量.设直线BB 1与平面ACD 1所成的角是θ,则sin θ=|cos 〈n ,BB 1→〉|=|n ·BB 1→||n |·|BB 1→|=49×4=13.故选A.6.若正三棱柱ABC -A 1B 1C 1的所有棱长都相等,D 是A 1C 1的中点,则直线AD 与平面B 1DC 所成角的正弦值为( ) A.35 B.45 C.34 D.55答案 B解析 间接法:由正三棱柱的所有棱长都相等,依据题设条件,可知B 1D ⊥平面ACD ,∴B 1D ⊥DC ,故△B 1DC 为直角三角形. 设棱长为1,则有AD =52,B 1D =32,DC =52,∴S △B 1DC =12×32×52=158. 设A 到平面B 1DC 的距离为h ,则有VA -B 1DC =VB 1-ADC , ∴13×h ×S △B 1DC =13×B 1D ×S △ADC .∴13×h ×158=13×32×12,∴h =25. 设直线AD 与平面B 1DC 所成的角为θ,则sin θ=h AD =45.向量法:如图,取AC 的中点为坐标原点,建立空间直角坐标系. 设各棱长为2,则有A(0,-1,0),D(0,0,2),C(0,1,0),B 1(3,0,2). 设n =(x ,y ,z)为平面B 1CD 的法向量,则有⎩⎪⎨⎪⎧n ·CD →=0,n ·CB 1→=0⇒⎩⎨⎧-y +2z =0,3x -y +2z =0⇒n =(0,2,1).∴sin 〈AD →,n 〉=AD →·n |AD →|·|n |=45.7.(2018·山东师大附中模拟,理)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB ∥CD ,AD =CD =102,AB =10,PA =6,DA ⊥AB ,点Q 在PB 上,且满足PQ∶QB=1∶3,则直线CQ 与平面PAC 所成角的正弦值为________. 答案13052解析 方法一:如图,过点Q 作QH∥CB 交PC 于点H. ∵DA ⊥AB ,DC ∥AB ,∴在Rt △ADC 中,AC =AD 2+CD 2= 5. ∵PA ⊥平面ABCD ,∴在Rt △PAC 中,PC =PA 2+AC 2=11. 取AB 的中点M ,连接CM ,∵DC ∥AB ,CM =AD =102, ∴在Rt △CMB 中,CB =CM 2+MB 2=5,又PB 2=PA 2+AB 2=16,∴PC 2+CB 2=PB 2,∴CB ⊥PC. ∵QH ∥BC ,∴QH ⊥PC.① ∵PA ⊥CB ,∴PA ⊥QH.②由①②可得,QH ⊥平面PAC ,∴∠QCH 是直线CQ 与平面PAC 所成的角.∵QH =14BC =54,HC =34PC =3114,∴CQ =QH 2+HC 2=262,∴sin ∠QCH =QH CQ =13052.方法二:以A 为坐标原点,AD ,AB ,AP 所在的直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A(0,0,0),P(0,0,6),C(102,102,0),B(0,10,0), ∵PQ =14PB ,∴Q(0,104,364),可知平面PAC 的一个法向量为m =(-1,1,0),又CQ →=(-102,-104,364),∴|cos 〈m ,CQ →〉|=|m ·CQ →||m ||CQ →|=13052,故直线CQ 与平面PAC 所成角的正弦值为13052.8.(2018·上海八校联考)如图所示为一名曰“堑堵”的几何体,已知AE⊥底面BCFE ,DF ∥AE ,DF =AE =1,CE =7,四边形ABCD 是正方形.(1)《九章算术》中将四个面都是直角三角形的四面体称为鳖臑,判断四面体EABC 是否为鳖臑,若是,写出其每一个面的直角,并证明;若不是,请说明理由. (2)记AB 与平面AEC 所成的角为θ,求cos2θ的值. 答案 (1)略 (2)17解析 (1)∵AE⊥底面BCFE ,EC ,EB ,BC 都在底面BCFE 上,∴AE ⊥EC ,AE ⊥EB ,AE ⊥BC.∵四边形ABCD 是正方形,∴BC ⊥AB ,∴BC ⊥平面ABE.又∵BE ⊂平面ABE ,∴BC ⊥BE ,∴四面体EABC 是鳖臑,∠AEB ,∠AEC ,∠CBE ,∠ABC 为直角.(2)∵AE =1,CE =7,AE ⊥EC , ∴AC =22,又ABCD 为正方形. ∴BC =2,∴BE = 3.作BO⊥EC 于O ,则BO⊥平面AEC ,连接OA ,则OA 为AB 在面AEC 上的射影.∴θ=∠BAO,由等面积法得BE·BC =EC·OB. ∴OB =3·27,sin θ=OB AB =217,cos2θ=1-2sin 2θ=17.提示 本题也可用向量法求解.9.(2016·课标全国Ⅲ,理)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明:MN∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值. 答案 (1)略 (2)8525解析 (1)由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN.由N 为PC 的中点知TN∥BC,TN =12BC =2.又AD∥BC,故TN 綊AM ,所以四边形AMNT 为平行四边形,于是MN∥AT. 因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN∥平面PAB.(2)取BC 的中点E ,连接AE.由AB =AC 得AE⊥BC,从而AE⊥AD,且AE =AB 2-BE 2=AB 2-(BC 2)2= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系A -xyz.由题意知,P(0,0,4),M(0,2,0),C(5,2,0),N(52,1,2),PM →=(0,2,-4),PN →=(52,1,-2),AN →=(52,1,2).设n =(x ,y ,z)为平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525.所以直线AN 与平面PMN 所成角的正弦值为8525.10.如图所示,在四棱台ABCD -A 1B 1C 1D 1中,AA 1⊥底面ABCD ,四边形ABCD 为菱形,∠BAD =120°,AB =AA 1=2A 1B 1=2.(1)若M 为CD 中点,求证:AM⊥平面AA 1B 1B ; (2)求直线DD 1与平面A 1BD 所成角的正弦值. 答案 (1)略 (2)15解析 (1)四边形ABCD 为菱形,∠BAD =120°,连接AC ,如图,则△ACD 为等边三角形, 又M 为CD 中点,∴AM ⊥CD ,由CD∥AB,得AM⊥AB, ∵AA 1⊥底面ABCD ,AM ⊂平面ABCD ,∴AM ⊥AA 1, 又AB∩AA 1=A , ∴AM ⊥平面AA 1B 1B.(2)∵四边形ABCD 为菱形,∠BAD =120°,AB =AA 1=2A 1B 1=2,∴DM =1,AM =3,∴∠AMD =∠BAM=90°,又AA 1⊥底面ABCD ,∴以AB ,AM ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系A -xyz , 则A 1(0,0,2),B(2,0,0),D(-1,3,0),D 1(-12,32,2),∴DD 1→=(12,-32,2),BD →=(-3,3,0),A 1B →=(2,0,-2),设平面A 1BD 的法向量为n =(x ,y ,z),则⎩⎪⎨⎪⎧n ·BD →=0,n ·A 1B →=0,⇒⎩⎨⎧-3x +3y =0,2x -2z =0,⇒y =3x =3z ,令x =1,则n =(1,3,1),∴直线DD 1与平面A 1BD 所成角θ的正弦值为 sin θ=|cos 〈n ,DD 1→〉|=|n ·DD 1→|n |·|DD 1→||=15.11.(2018·山西太原一模)如图,在几何体ABCDEF 中,四边形ABCD 是菱形,BE ⊥平面ABCD ,DF ∥BE ,且DF =2BE =2,EF =3. (1)证明:平面ACF⊥平面BEFD ;(2)若二面角A -EF -C 是直二面角,求直线AE 与平面ABCD 所成角的正切值. 答案 (1)略 (2)12解析 (1)∵四边形ABCD 是菱形,∴AC ⊥BD. ∵BE ⊥平面ABCD ,∴BE ⊥AC , ∵BD ∩BE =B ,∴AC⊥平面BEFD , ∴平面ACF⊥平面BEFD.(2)设AC 与BD 的交点为O ,由(1)得AC⊥BD,分别以OA ,OB 为x 轴和y 轴,过点O 作垂直于平面ABCD 的直线为z ,建立如图所示的空间直角坐标系O -xyz ,∵BE ⊥平面ABCD ,∴BE ⊥BD ,∵DF ∥BE ,∴DF ⊥BD , ∴BD 2=EF 2-(DF -BE)2=8,∴BD =2 2.设OA =a(a>0),则A(a ,0,0),C(-a ,0,0),E(0,2,1),F(0,-2,2),∴EF →=(0,-22,1),AE →=(-a ,2,1),CE →=(a ,2,1).设m =(x 1,y 1,z 1)是平面AEF 的法向量,则⎩⎪⎨⎪⎧m ·EF →=0,m ·AE →=0,即⎩⎨⎧-22y 1+z 1=0,-ax 1+2y 1+z 1=0,令z 1=22,∴m =(32a ,1,22)是平面AEF 的一个法向量,设n =(x 2,y 2,z 2)是平面CEF 的法向量,则⎩⎪⎨⎪⎧n ·EF →=0,n ·CE →=0,即⎩⎨⎧-22y 2+z 2=0,ax 2+2y 2+z 2=0,令z 2=22,∴n =(-32a,1,22)是平面CEF 的一个法向量,∵二面角A -EF -C 是直二面角,∴m ·n =-18a 2+9=0,∴a = 2.∵BE ⊥平面ABCD ,∴∠BAE 是直线AE 与平面ABCD 所成的角, ∵AB =OA 2+OB 2=2,∴tan ∠BAE =BE AB =12.故直线AE 与平面ABCD 所成角的正切值为12.1.(2017·山西临汾一模)如图所示,点P 在正方形ABCD 所在平面外,PA ⊥平面ABCD ,PA =AB ,则PB 与AC 所成的角是( )A .90° .60° C .45° .30°答案 B解析 将其还原成正方体ABCD -PQRS ,显然PB∥SC,△ACS 为正三角形,∴∠ACS =60°.2.(2018·成都一诊)如图,正四棱锥P -ABCD 的体积为2,底面积为6,E 为侧棱PC 的中点,则直线BE 与平面PAC 所成的角为( ) A .60° B .30° C .45° D .90°答案 A解析 如图,正四棱锥P -ABCD 中,根据底面积为6可得,BC = 6.连接BD ,交AC 于点O ,连接PO ,则PO 为正四棱锥P -ABCD 的高,根据体积公式可得,PO =1.因为PO⊥底面ABCD ,所以PO⊥BD,又BD⊥AC,PO ∩AC =O ,所以BD⊥平面PAC ,连接EO ,则∠BEO 为直线BE 与平面PAC 所成的角.在Rt △POA 中,因为PO =1,OA =3,所以PA =2,OE =12PA =1,在Rt △BOE 中,因为BO =3,所以tan ∠BEO =BOOE=3,即∠BEO=60°.3.如图,平面ABCD⊥平面ABEF ,四边形ABCD 是正方形,四边形ABEF 是矩形,且AF =12AD =a ,G 是EF 的中点,则GB 与平面AGC 所成角的正弦值为( )A.23B.33C.63D.13答案 C解析 设GB 与平面AGC 所成的角为θ. 如图,以A 为原点建立空间直角坐标系,则A(0,0,0),B(0,2a ,0),C(0,2a ,2a),G(a ,a ,0),AG →=(a ,a ,0),AC →=(0,2a ,2a),BG →=(a ,-a ,0),设平面AGC 的法向量为n 1=(x 1,y 1,1),由⎩⎪⎨⎪⎧AG →·n 1=0,AC →·n 1=0⇒⎩⎪⎨⎪⎧ax 1+ay 1=0,2ay 1+2a =0⇒⎩⎪⎨⎪⎧x 1=1,y 1=-1⇒n 1=(1,-1,1).sin θ=|BG →·n 1||BG →||n 1|=2a 2a×3=63.4.已知直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为正方形,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( ) A.23 B.33C.23D.13答案 A解析 如图,连接AC 交BD 于点O ,连接C 1O ,过C 作CH⊥C 1O 于点H. ∵⎩⎪⎨⎪⎧BD⊥AC BD⊥AA 1AC ∩AA 1=A ⇒⎩⎪⎨⎪⎧BD⊥平面ACC 1A 1CH ⊂平面ACC 1A 1⇒⎩⎪⎨⎪⎧CH⊥BD CH⊥C 1O BD ∩C 1O =O ⇒CH ⊥平面C 1BD ,∴∠HDC 为CD 与平面BDC 1所成的角.5.(2018·黑龙江大庆实验中学期末)在正三棱柱ABC -A 1B 1C 1中,AB =4,点D 在棱BB 1上,若BD =3,则AD 与平面AA 1C 1C 所成角的正切值为( ) A.235B.23913C.54D.43答案 B解析 取AC 的中点E ,连接BE ,如图所示,可得AD →·EB →=(AB →+BD →)·EB →=AB →·EB →,即5×23×cos θ=4×23×32(θ为AD →与EB →的夹角),∴cos θ=235,sin θ=135,tan θ=396,又BE⊥平面AA 1C 1C ,∴所求角的正切值为23913.6.(2016·北京东城质量调研)在直三棱柱ABC -A 1B 1C 1中,底面是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D ,E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G.则A 1B 与平面ABD 所成角的余弦值是( ) A.23 B.73 C.32D.37答案 B解析 以C 为坐标原点,CA 所在直线为x 轴,CB 所在直线为y 轴,CC 1所在直线为z 轴,建立直角坐标系,设CA =CB =a ,则A(a ,0,0),B(0,a ,0),A 1(a ,0,2),D(0,0,1),∴E(a 2,a 2,1),G(a 3,a 3,13),GE →=(a6,a 6,23),BD →=(0,-a,1),∵点E 在平面ABD 上的射影是△ABD 的重心G , ∴GE →⊥平面ABD ,∴GE →·BD →=0,解得a =2.∴GE →=(13,13,23),BA 1→=(2,-2,2),∵GE →⊥平面ABD ,∴GE →为平面ABD 的一个法向量.∵cos<GE →,BA 1→>=GE →·BA 1→|GE →|·|BA 1→|=4363×23=23,∴A 1B 与平面ABD 所成的角的余弦值为73.7.(2018·太原模拟)在三棱锥A -BCD 中,底面BCD 为边长是2的正三角形,顶点A 在底面BCD 上的射影为△BCD 的中心,若E 为BC 的中点,且直线AE 与底面BCD 所成角的正切值为22,则三棱锥A -BCD 外接球的表面积为( ) A .3π B .4π C .5π D .6π答案 D解析 ∵顶点A 在底面BCD 上的射影为△BCD 的中心,而且△BCD 是正三角形,∴三棱锥A -BCD 是正三棱锥,∴AB =AC =AD.令底面△BCD 的重心(即中心)为P ,∵△BCD 是边长为2的正三角形,DE 是BC 边上的高,∴DE =3,PE =33,DP =233.∵直线AE 与底面BCD 所成角的正切值为22,即tan ∠AEP =22,∴AP =263,∵AE 2=AP 2+EP 2,∴AD =2,于是AB =AC =AD =BC =CD =DB =2,∴三棱锥A -BCD 为正四面体.构造正方体,由面上的对角线构成正四面体,故正方体的棱长为2,∴正方体的体对角线长为6,∴外接球的半径为62,∴外接球的表面积为4π(62)2=6π.8.(2018·江西临海上一中一模)已知在正方体ABCD -A 1B 1C 1D 1中,棱长为1.点E 是棱A 1B 1的中点,则直线AE 与平面BDD 1B 1所成角的正弦值是________. 答案1010解析 取AB 的中点为F ,连接B 1F ,过点F 作FG⊥BD,垂足为G ,连接B 1G ,由正方体性质知BB 1⊥FG ,BD ∩BB 1=B ,BD ⊂平面BDD 1B 1,BB 1⊂平面BDD 1B 1,所以FG⊥平面BDD 1B 1,故∠FB 1G为FB 1与平面BDD 1B 1所成的角,所以FG =24,B 1F =52,所以sin ∠FB 1G =2452=1010.又因为AE∥B 1F ,所以直线AE 与平面BDD 1B 1所成角的正弦值是1010. 9.(2014·福建,理)在平面四边形ABCD 中.AB =BD =CD =1,AB ⊥BD ,CD ⊥BD.将△ABD 沿BD 折起,使得平面ABD⊥平面BCD ,如图所示. (1)求证:AB⊥CD;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值. 答案 (1)略 (2)63解析 (1)∵平面ABD⊥平面BCD ,平面ABD∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD , ∴AB ⊥平面BCD.又CD ⊂平面BCD ,∴AB ⊥CD.(2)过点B 在平面BCD 内作BE⊥BD,如图所示. 由(1)知AB⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD , ∴AB ⊥BE ,AB ⊥BD.以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意,得B(0,0,0),C(1,1,0),D(0,1,0),A(0,0,1),M ⎝ ⎛⎭⎪⎫0,12,12, 则BC →=(1,1,0),BM →=⎝ ⎛⎭⎪⎫0,12,12,AD →=(0,1,-1).设平面MBC 的法向量n =(x 0,y 0,z 0),则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0,取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). 设直线AD 与平面MBC 所成角为θ,则sin θ=|cos 〈n ,AD →〉|=|n ·AD →||n |·|AD →|=63,即直线AD与平面MBC 所成角的正弦值为63.11 10.(2017·浙江)如图,已知四棱锥P -ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(1)证明:CE∥平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值.解析 (1)如图,设PA 中点为F ,连接EF ,FB.因为E ,F 分别为PD ,PA 中点,所以EF∥AD 且EF =12AD , 又因为BC∥AD,BC =12AD ,所以EF∥BC 且EF =BC , 即四边形BCEF 为平行四边形,所以CE∥BF,因此CE∥平面PAB.(2)分别取BC ,AD 的中点为M ,N.连接PN 交EF 于点Q ,连接MQ.因为E ,F ,N 分别是PD ,PA ,AD 的中点,所以Q 为EF 中点,在平行四边形BCEF 中,MQ ∥CE.由△PAD 为等腰直角三角形得P N⊥AD.由DC⊥AD,N 是AD 的中点得BN⊥AD.所以AD⊥平面PBN ,由BC∥AD 得BC⊥平面PBN ,那么平面PBC⊥平面PBN.过点Q 作PB 的垂线,垂足为H ,连接MH.MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角.设CD =1.在△PCD 中,由PC =2,CD =1,PD =2得CE =2,在△PBN 中,由PN =BN =1,PB =3得QH =14, 在Rt △MQH 中,QH =14,MQ =2, 所以sin ∠QMH =28, 所以,直线CE 与平面PBC 所成角的正弦值是28.。
2019版高考数学大一轮复习江苏专版文档:第八章 立体几何与空间向量8.2
§8.2 空间点、直线、平面之间的位置关系考情考向分析 主要考查与点、线、面位置关系有关的命题真假判断,题型主要以填空题的形式出现,解题要求有较强的空间想象能力和逻辑推理能力.1.四个公理、三个推论公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论1:经过一条直线和这条直线外的一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.公理4:平行于同一条直线的两条直线互相平行.2.直线与直线的位置关系(1)位置关系的分类⎩⎨⎧ 共面直线⎩⎪⎨⎪⎧ 平行直线相交直线异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a ,b 是异面直线,经过空间任一点O ,作直线a ′∥a ,b ′∥b ,把直线a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2. 3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.定理如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.1.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.2.异面直线的判定定理经过平面内一点的直线与平面内不经过该点的直线互为异面直线.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.(√)(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(×)(3)两个平面ABC与DBC相交于线段BC.(×)(4)经过两条相交直线,有且只有一个平面.(√)(5)没有公共点的两条直线是异面直线.(×)(6)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线.(×) 题组二教材改编2.[P29例1]如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为________.解析 连结B 1D 1,D 1C ,则B 1D 1∥EF ,故∠D 1B 1C 即为所求的角.又B 1D 1=B 1C =D 1C , ∴△B 1D 1C 为等边三角形,∴∠D 1B 1C =60°.3.[P31习题T15]如图,在三棱锥A —BCD 中,E ,F ,G ,H 分别是棱AB ,BC ,CD ,DA 的中点,则(1)当AC ,BD 满足条件________时,四边形EFGH 为菱形;(2)当AC ,BD 满足条件________时,四边形EFGH 为正方形.答案 (1)AC =BD (2)AC =BD 且AC ⊥BD解析 (1)∵四边形EFGH 为菱形,∴EF =EH ,故AC =BD .(2)∵四边形EFGH 为正方形,∴EF =EH 且EF ⊥EH ,∵EF 綊12AC ,EH 綊12BD , ∴AC =BD 且AC ⊥BD .题组三 易错自纠4.已知l ,m ,n 为不同的直线,α,β,γ为不同的平面,则下列判断正确的是________.(填序号)①若m ∥α,n ∥α,则m ∥n ;②若m ⊥α,n ∥β,α⊥β,则m ⊥n ;③若α∩β=l ,m ∥α,m ∥β,则m ∥l ;④若α∩β=m,α∩γ=n,l⊥m,l⊥n,则l⊥α.答案③解析①中,m,n可能的位置关系为平行、相交、异面,故①错误;②中,m与n也有可能平行,②错误;③中,根据线面平行的性质可知③正确;④中,若m∥n,根据线面垂直的判定可知④错误.5.设直线m与平面α相交但不垂直,则下列说法中正确的是________.(填序号)①在平面α内有且只有一条直线与直线m垂直;②过直线m有且只有一个平面与平面α垂直;③与直线m垂直的直线不可能与平面α平行;④与直线m平行的平面不可能与平面α垂直.答案②解析对于①,在平面α内有且只有一条直线与直线m垂直,过交点与直线m垂直的直线只有一条,在平面内与此直线平行的直线都与m垂直,不正确;对于②,过直线m有且只有一个平面与平面α垂直,在直线m上取一点作平面α的垂线,两条直线确定一个平面与平面α垂直,正确;对于③,与直线m垂直的直线不可能与平面α平行,不正确;对于④,与直线m平行的平面不可能与平面α垂直,不正确.6. 如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为______.答案 3解析平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行.故互为异面的直线有且只有3对.题型一平面基本性质的应用典例如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,连结EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.思维升华共面、共线、共点问题的证明(1)证明点或线共面问题的两种方法:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.(2)证明点共线问题的两种方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练如图,在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E,F,G,H四点共面;(2)设EG与FH交于点P,求证:P,A,C三点共线.证明(1)∵E,F分别为AB,AD的中点,∴EF∥BD.∵在△BCD中,BGGC=DHHC=12,∴GH∥BD,∴EF∥GH.∴E,F,G,H四点共面.(2)∵EG∩FH=P,P∈EG,EG⊂平面ABC,∴P∈平面ABC.同理P∈平面ADC.∴P为平面ABC与平面ADC的公共点.又平面ABC∩平面ADC=AC,∴P∈AC,∴P,A,C三点共线.题型二判断空间两直线的位置关系典例(1)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是________.(填序号)①l与l1,l2都不相交;②l与l1,l2都相交;③l至多与l1,l2中的一条相交;④l至少与l1,l2中的一条相交.答案④解析方法一由于l与直线l1,l2分别共面,故直线l与l1,l2要么都不相交,要么至少与l1,l2中的一条相交.若l∥l1,l∥l2,则l1∥l2,这与l1,l2是异面直线矛盾.故l至少与l1,l2中的一条相交.方法二如图1,l1与l2是异面直线,l1与l平行,l2与l相交,故①②不正确;如图2,l1与l2是异面直线,l1,l2都与l相交,故③不正确.(2)如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________.(填上所有正确答案的序号)答案②④解析在图①中,直线GH∥MN;在图②中,G,H,N三点共面,但M∉平面GHN,N∉GH,因此直线GH与MN异面;在图③中,连结GM,GM∥HN,因此GH与MN共面;在图④中,G,M,N共面,但H∉平面GMN,G∉MN,因此GH与MN异面.所以在图②④中GH与MN异面.思维升华空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直或面面垂直的性质来解决.跟踪训练(1)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的________条件.答案充分不必要解析若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a和直线b可能平行或异面或相交.(2)已知a,b,c为三条不重合的直线,已知下列结论:①若a⊥b,a⊥c,则b∥c;②若a⊥b,a⊥c,则b⊥c;③若a∥b,b⊥c,则a⊥c.其中正确的个数为________.答案 1解析在空间中,若a⊥b,a⊥c,则b,c可能平行,也可能相交,还可能异面,所以①②错,③显然成立.题型三 求异面直线所成的角(选讲)典例 如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为________.答案 45解析 连结BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连结A 1C 1,由AB =1,AA 1=2,易得A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45,即异面直线A 1B 与AD 1所成角的余弦值为45. 思维升华 用平移法求异面直线所成的角的三步法(1)一作:根据定义作平行线,作出异面直线所成的角;(2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出所作的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.跟踪训练 如图所示,在正三棱柱ABC —A 1B 1C 1中,D 是AC 的中点,AA 1∶AB =2∶1,则异面直线AB 1与BD 所成的角为________.答案60°解析取A1C1的中点E,连结B1E,ED,AE,在Rt△AB1E中,∠AB1E为异面直线AB1与BD所成的角.设AB=1,则A1A=2,AB1=3,B1E=3 2,故∠AB1E=60°.构造模型判断空间线面位置关系典例已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m⊥α,n⊥β,m⊥n,则α⊥β;②若m∥α,n∥β,m⊥n,则α∥β;③若m⊥α,n∥β,m⊥n,则α∥β;④若m⊥α,n∥β,α∥β,则m⊥n.其中所有正确的命题是________.(填序号)思想方法指导本题可通过构造模型法完成,构造法实质上是结合题意构造符合题意的直观模型,然后利用模型直观地对问题作出判断,这样减少了抽象性,避免了因考虑不全面而导致解题错误.对于线面、面面平行、垂直的位置关系的判定,可构造长方体或正方体化抽象为直观去判断.解析借助于长方体模型来解决本题,对于①,可以得到平面α,β互相垂直,如图(1)所示,故①正确;对于②,平面α,β可能垂直,如图(2)所示,故②不正确;对于③,平面α,β可能垂直,如图(3)所示,故③不正确;对于④,由m⊥α,α∥β可得m⊥β,因为n∥β,所以过n作平面γ,且γ∩β=g,如图(4)所示,所以n与交线g平行,因为m⊥g,所以m⊥n,故④正确.答案①④1.在下列命题中,不是公理的是________.(填序号)①平行于同一个平面的两个平面相互平行;②过不在同一条直线上的三点,有且只有一个平面;③如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内;④如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.答案①解析①是由公理推证出来的,而公理是不需要证明的.2.在三棱柱ABC-A1B1C1中,E,F分别为棱AA1,CC1的中点,则在空间中与直线A1B1,EF,BC都相交的直线有________条.答案无数解析在EF上任意取一点M,直线A1B1与M确定一个平面,这个平面与BC有且仅有1个交点N,当M的位置不同时确定不同的平面,从而与BC有不同的交点N,而直线MN与A1B1,EF,BC分别有交点P,M,N,如图,故有无数条直线与直线A1B1,EF,BC都相交.3.(2017·江苏昆山中学质检)已知平面α⊥平面β,α∩β=l,点A∈α,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是________.①AB∥m;②AC⊥m;③AB∥β;④AC⊥β.答案④解析如图所示,AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β,只有④不一定成立.4.直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角为________.答案60°解析如图,延长CA到点D,使得AD=AC,连结DA1,BD,则四边形ADA1C1为平行四边形,所以∠DA1B就是异面直线BA1与AC1所成的角.又A1D=A1B=DB,所以△A1DB为等边三角形,所以∠DA1B=60°.5.下列命题中,正确的是________.(填序号)①若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线;②若a,b是两条直线,且a∥b,则直线a平行于经过直线b的所有平面;③若直线a与平面α不平行,则此直线与平面内的所有直线都不平行;④若直线a∥平面α,点P∈α,则平面α内经过点P且与直线a平行的直线有且只有一条.答案④解析对于①,当α∥β,a,b分别为第三个平面γ与α,β的交线时,由面面平行的性质可知a∥b,故①错误.对于②,设a,b确定的平面为α,显然a⊂α,故②错误.对于③,当a⊂α时,直线a与平面α内的无数条直线都平行,故③错误.知④正确.6.以下四个命题中,①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.正确命题的个数是________.答案 1解析①显然是正确的;②中若A,B,C三点共线,则A,B,C,D,E五点不一定共面;③中构造长方体(或正方体),如图所示,显然b,c异面,故不正确;④中空间四边形中四条线段不共面,故只有①正确.7.给出下列命题,其中正确的命题为________.(填序号)①如果线段AB在平面α内,那么直线AB在平面α内;②两个不同的平面可以相交于不在同一直线上的三个点A,B,C;③若三条直线a,b,c互相平行且分别交直线l于A,B,C三点,则这四条直线共面;④若三条直线两两相交,则这三条直线共面;⑤两组对边相等的四边形是平行四边形.答案①③8.如图是正四面体(各面均为正三角形)的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中:①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.答案②③④解析把正四面体的平面展开图还原,如图所示,GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE⊥MN.9.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.答案 4解析EF与正方体左、右两侧面均平行,所以与EF相交的平面有4个.10. 如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.答案 2解析取圆柱下底面弧AB的另一中点D,连结C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D⊥圆柱下底面,所以C1D⊥AD.因为圆柱的轴截面ABB 1A 1是正方形, 所以C 1D =2AD ,所以直线AC 1与AD 所成角的正切值为2, 所以异面直线AC 1与BC 所成角的正切值为 2.11.如图,在正方体ABCD —A 1B 1C 1D 1中,O 为正方形ABCD 的中心,H 为直线B 1D 与平面ACD 1的交点.求证:D 1,H ,O 三点共线.证明 如图,连结BD ,B 1D 1,则BD ∩AC =O ,∵BB 1綊DD 1,∴四边形BB 1D 1D 为平行四边形,又H ∈B 1D , B 1D ⊂平面BB 1D 1D , 则H ∈平面BB 1D 1D ,∵平面ACD 1∩平面BB 1D 1D =OD 1,∴H ∈OD 1. 即D 1,H ,O 三点共线.12.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与四边形ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC ∥AD 且BC =12AD ,BE ∥AF 且BE =12AF ,G ,H 分别为F A ,FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C ,D ,F ,E 四点是否共面?为什么? (1)证明 由已知FG =GA ,FH =HD , 可得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC .∴四边形BCHG 为平行四边形.(2)解 ∵BE 綊12AF ,G 是F A 的中点,∴BE 綊FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG . 由(1)知BG 綊CH ,∴EF ∥CH ,∴EF 与CH 共面. 又D ∈FH ,∴C ,D ,F ,E 四点共面.13.若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是________.(填序号) ①l 1⊥l 4; ②l 1∥l 4;③l 1与l 4既不垂直也不平行; ④l 1与l 4的位置关系不确定. 答案 ④解析 如图,在长方体ABCD —A 1B 1C 1D 1中,记l 1=DD 1,l 2=DC ,l 3=DA .若l 4=AA 1,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,此时l 1∥l 4,可以排除①③.若取C 1D 为l 4,则l 1与l 4相交;若取BA 为l 4,则l 1与l 4异面;若取C 1D 1为l 4,则l 1与l 4相交且垂直.因此l 1与l 4的位置关系不能确定.14.如图,在矩形ABCD 中,AB =2AD ,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE .若M 为线段A 1C 的中点,则在△ADE 翻折过程中,下列四个命题中不正确的是________.(填序号)①BM 是定值;②点M 在某个球面上运动; ③存在某个位置,使DE ⊥A 1C ; ④存在某个位置,使MB ∥平面A 1DE . 答案 ③解析 取DC 的中点F ,连结MF ,BF ,则MF ∥A 1D 且MF =12A 1D ,FB ∥ED 且FB =ED ,所以∠MFB =∠A 1DE .由余弦定理可得MB 2=MF 2+FB 2-2MF ·FB ·cos ∠MFB 是定值,所以M 是在以B 为球心,MB 为半径的球上,可得①②正确;由MF ∥A 1D 与FB ∥ED 可得平面MBF ∥平面A 1DE ,又MB ⊂平面MBF ,所以MB ∥平面A 1DE .可得④正确;若存在DE ⊥A 1C ,则因为DE 2+CE 2=CD 2,即CE ⊥DE ,因为A 1C ∩CE =C ,则DE ⊥平面A 1CE ,所以DE ⊥A 1E ,与DA 1⊥A 1E 矛盾,故③不正确.15.两条相交直线l,m都在平面α内且都不在平面β内.命题甲:l和m中至少有一条与β相交;命题乙:平面α与β相交.则甲是乙成立的________条件.(填写“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)答案充要解析若l和m中至少有一条与β相交,不妨设l∩β=A,则由于l⊂α,所以A∈α.而A∈β,所以α与β相交.反之,若α∩β=a,若l和m都不与β相交,由于它们都不在平面β内,则l∥β且m∥β.所以l∥a且m∥a,进而得到l∥m,这与已知l,m是相交直线矛盾.因此l 和m中至少有一条与β相交.16.空间四边形ABCD中,各边长均为1,若BD=1,则AC的取值范围是________.答案(0,3)解析如图1所示,△ABD与△BCD均为边长为1的正三角形,当△ABD与△CBD重合时,点A与点C重合.将△ABD以BD为轴转动,到A,B,C,D四点共面时,AC=3,如图2.故AC的取值范围是0<AC< 3.。
高考数学一轮复习 第八章 立体几何与空间向量8
高考数学一轮复习第八章立体几何与空间向量8.2球的切、接问题题型一特殊几何体的切、接问题例1(1)已知正方体的棱长为a,则它的外接球半径为________,与它各棱都相切的球的半径为________.答案32a22a解析∵正方体的外接球的直径为正方体的体对角线长,为3a,∴它的外接球的半径为32a,∵球与正方体的各棱都相切,则球的直径为面对角线,而正方体的面对角线长为2a,∴与它各棱都相切的球的半径为2 2a.(2)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案2 3π解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面P AB,如图所示,则△P AB的内切圆为圆锥的内切球的大圆.在△P AB中,P A=PB=3,D为AB的中点,AB=2,E为切点,则PD=22,△PEO∽△PDB,故POPB=OEDB,即22-r3=r1,解得r=2 2,故内切球的体积为43π⎝⎛⎭⎫223=23π.思维升华 (1)正方体与球的切、接常用结论 正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)长方体的共顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球的半径R =64a ,内切球的半径r =612a ,其半径R ∶r =3∶1(a 为该正四面体的棱长).跟踪训练1 (1)(2022·成都模拟)已知圆柱的两个底面的圆周在体积为32π3的球O 的球面上,则该圆柱的侧面积的最大值为( ) A .4π B .8π C .12π D .16π 答案 B解析 如图所示,设球O 的半径为R ,由球的体积公式得43πR 3=32π3,解得R =2. 设圆柱的上底面半径为r ,球的半径与上底面夹角为α,则r =2cos α, 圆柱的高为4sin α,∴圆柱的侧面积为4πcos α×4sin α=8πsin 2α, 当且仅当α=π4,sin 2α=1时,圆柱的侧面积最大,∴圆柱的侧面积的最大值为8π.(2)(2022·长沙检测)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是________. 答案9π2解析 易知AC =10.设△ABC 的内切圆的半径为r , 则12×6×8=12×(6+8+10)·r , 所以r =2. 因为2r =4>3,所以最大球的直径2R =3,即R =32,此时球的体积V =43πR 3=9π2.题型二 补形法例2 (1)在四面体ABCD 中,若AB =CD =3,AC =BD =2,AD =BC =5,则四面体ABCD 的外接球的表面积为( ) A .2π B .4π C .6π D .8π 答案 C解析 由题意可采用补形法,考虑到四面体ABCD 的对棱相等,所以将四面体放入一个长、宽、高分别为x ,y ,z 的长方体,并且x 2+y 2=3,x 2+z 2=5,y 2+z 2=4,则有(2R )2=x 2+y 2+z 2=6(R 为外接球的半径),得2R 2=3,所以外接球的表面积为S =4πR 2=6π.(2)(2022·重庆实验外国语学校月考)如图,在多面体中,四边形ABCD 为矩形,CE ⊥平面ABCD ,AB =2,BC =CE =1,通过添加一个三棱锥可以将该多面体补成一个直三棱柱,那么添加的三棱锥的体积为________,补形后的直三棱柱的外接球的表面积为________.答案 136π解析 如图添加的三棱锥为直三棱锥E -ADF ,可以将该多面体补成一个直三棱柱ADF -BCE , 因为CE ⊥平面ABCD ,AB =2,BC =CE =1, 所以S △CBE =12CE ×BC =12×1×1=12,直三棱柱ADF -BCE 的体积为 V =S △EBC ·DC =12×2=1,添加的三棱锥的体积为13V =13;如图,分别取AF ,BE 的中点M ,N ,连接MN ,与AE 交于点O ,因为四边形AFEB 为矩形,所以O 为AE ,MN 的中点,在直三棱柱ADF -BCE 中,CE ⊥平面ABCD ,FD ⊥平面ABCD ,即∠ECB =∠FDA =90°,所以上、下底面为等腰直角三角形,直三棱柱的外接球的球心即为点O ,连接DO ,DO 即为球的半径, 连接DM ,因为DM =12AF =22,MO =1,所以DO 2=DM 2+MO 2=12+1=32,所以外接球的表面积为4π·DO 2=6π. 思维升华 补形法的解题策略(1)侧面为直角三角形,或正四面体,或对棱均相等的模型,可以还原到正方体或长方体中去求解;(2)直三棱锥补成三棱柱求解.跟踪训练2 已知三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且P A =1,PB =2,PC =3,则三棱锥P -ABC 的外接球的表面积为( ) A.7143π B .14π C .56π D.14π答案 B解析 以线段P A ,PB ,PC 为相邻三条棱的长方体P AB ′B -CA ′P ′C ′被平面ABC 所截的三棱锥P -ABC 符合要求,如图,长方体P AB ′B -CA ′P ′C ′与三棱锥P -ABC 有相同的外接球,其外接球直径为长方体体对角线PP ′,设外接球的半径为R , 则(2R )2=PP ′2=P A 2+PB 2+PC 2 =12+22+32=14,则所求表面积S =4πR 2=π·(2R )2=14π. 题型三 定义法例3 (1)已知∠ABC =90°,P A ⊥平面ABC ,若P A =AB =BC =1,则四面体P ABC 的外接球(顶点都在球面上)的体积为( ) A .π B.3π C .2π D.3π2答案 D解析 如图,取PC 的中点O ,连接OA ,OB ,由题意得P A ⊥BC ,又因为AB ⊥BC ,P A ∩AB =A ,P A ,AB ⊂平面P AB , 所以BC ⊥平面P AB , 所以BC ⊥PB ,在Rt △PBC 中,OB =12PC ,同理OA =12PC ,所以OA =OB =OC =12PC ,因此P ,A ,B ,C 四点在以O 为球心的球面上, 在Rt △ABC 中,AC =AB 2+BC 2= 2. 在Rt △P AC 中,PC =P A 2+AC 2=3, 球O 的半径R =12PC =32,所以球的体积为43π⎝⎛⎭⎫323=3π2.延伸探究 本例(1)条件不变,则四面体P -ABC 的内切球的半径为________. 答案2-12解析 设四面体P -ABC 的内切球半径为r . 由本例(1)知,S△P AC=12P A·AC=12×1×2=22,S△P AB=12P A·AB=12×1×1=12,S△ABC=12AB·BC=12×1×1=12,S△PBC=12PB·BC=12×2×1=22,V P-ABC=13×12AB·BC·P A=13×12×1×1×1=16,V P-ABC=13(S△P AC+S△P AB+S△ABC+S△PBC)·r=13⎝⎛⎭⎫22+12+12+22·r=16,∴r=2-1 2.(2)在矩形ABCD中,BC=4,M为BC的中点,将△ABM和△DCM分别沿AM,DM翻折,使点B与点C重合于点P,若∠APD=150°,则三棱锥M-P AD的外接球的表面积为() A.12π B.34πC.68π D.126π答案 C解析如图,由题意可知,MP⊥P A,MP⊥PD.且P A∩PD=P,P A⊂平面P AD,PD⊂平面P AD,所以MP⊥平面P AD.设△ADP的外接圆的半径为r,则由正弦定理可得ADsin ∠APD =2r ,即4sin 150°=2r ,所以r =4.设三棱锥M -P AD 的外接球的半径为R , 则(2R )2=PM 2+(2r )2,即(2R )2=4+64=68,所以4R 2=68, 所以外接球的表面积为4πR 2=68π.思维升华 到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据到其他顶点距离也是半径,列关系式求解即可. 跟踪训练3 (1)一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为________.答案4π3解析 设正六棱柱的底面边长为x ,高为h , 则有⎩⎪⎨⎪⎧ 6x =3,98=6×34x 2h ,∴⎩⎪⎨⎪⎧x =12,h = 3. ∴正六棱柱的底面外接圆的半径r =12,球心到底面的距离d =32.∴外接球的半径R =r 2+d 2=1.∴V 球=4π3.(2)(2022·哈尔滨模拟)已知四棱锥P -ABCD 的底面ABCD 是矩形,其中AD =1,AB =2,平面P AD ⊥平面ABCD ,△P AD 为等边三角形,则四棱锥P -ABCD 的外接球表面积为( ) A.16π3 B.76π3 C.64π3 D.19π3 答案 A解析 如图所示,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,P A =PD ,取AD 的中点E ,则PE ⊥AD ,PE ⊥平面ABCD ,则PE ⊥AB ,由AD ⊥AB ,AD ∩PE =E ,AD ,PE ⊂平面P AD ,可知AB ⊥平面P AD , 由△P AD 为等边三角形,E 为AD 的中点知,PE 的三等分点F (距离E 较近的三等分点)是三角形的中心,过F 作平面P AD 的垂线,过矩形ABCD 的中心O 作平面ABCD 的垂线,两垂线交于点I ,则I 即外接球的球心. OI =EF =13PE =13×32=36,AO =12AC =52,设外接球半径为R , 则R 2=AI 2=AO 2+OI 2=⎝⎛⎭⎫522+⎝⎛⎭⎫362=43, 所以四棱锥P -ABCD 的外接球表面积为S =4πR 2=4π×43=16π3.课时精练1.正方体的外接球与内切球的表面积之比为( ) A. 3 B .3 3 C .3 D.13答案 C解析 设正方体的外接球的半径为R ,内切球的半径为r ,棱长为1,则正方体的外接球的直径为正方体的体对角线长,即2R =3,所以R =32,正方体内切球的直径为正方体的棱长,即2r =1,即r =12,所以R r =3,正方体的外接球与内切球的表面积之比为4πR 24πr 2=R 2r2=3.2.(2022·开封模拟)已知一个圆锥的母线长为26,侧面展开图是圆心角为23π3的扇形,则该圆锥的外接球的体积为( ) A .36π B .48π C .36 D .24 2答案 A解析 设圆锥的底面半径为r ,由侧面展开图是圆心角为23π3的扇形,得2πr =23π3×26,解得r =2 2.作出圆锥的轴截面如图所示.设圆锥的高为h , 则h =262-222=4.设该圆锥的外接球的球心为O ,半径为R ,则有R =h -R 2+r 2,即R =4-R2+222,解得R =3,所以该圆锥的外接球的体积为 4πR 33=4π×333=36π. 3.已知各顶点都在一个球面上的正四棱锥的高为3,体积为6,则这个球的表面积为( ) A .16π B .20π C .24π D .32π 答案 A解析 如图所示,在正四棱锥P -ABCD 中,O 1为底面对角线的交点,O 为外接球的球心.V P -ABCD =13×S 正方形ABCD ×3=6,所以S 正方形ABCD =6,即AB = 6. 因为O 1C =126+6= 3.设正四棱锥外接球的半径为R , 则OC =R ,OO 1=3-R ,所以(3-R )2+(3)2=R 2,解得R =2. 所以外接球的表面积为4π×22=16π.4.已知棱长为1的正四面体的四个顶点都在一个球面上,则这个球的体积为( ) A.68π B.64π C.38π D.34π 答案 A解析 如图将棱长为1的正四面体B 1-ACD 1放入正方体ABCD -A 1B 1C 1D 1中,且正方体的棱长为1×cos 45°=22, 所以正方体的体对角线 AC 1=⎝⎛⎭⎫222+⎝⎛⎭⎫222+⎝⎛⎭⎫222=62, 所以正方体外接球的直径2R =AC 1=62, 所以正方体外接球的体积为 43πR 3=43π×⎝⎛⎭⎫643=68π, 因为正四面体的外接球即为正方体的外接球,所以正四面体的外接球的体积为68π. 5.(2021·天津)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为32π3,两个圆锥的高之比为1∶3,则这两个圆锥的体积之和为( ) A .3π B .4π C .9π D .12π 答案 B解析 如图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3∶1, 即AD =3BD ,设球的半径为R ,则4πR 33=32π3,可得R =2,所以AB =AD +BD =4BD =4, 所以BD =1,AD =3,因为CD ⊥AB ,AB 为球的直径, 所以△ACD ∽△CBD ,所以AD CD =CDBD ,所以CD =AD ·BD =3,因此,这两个圆锥的体积之和为 13π×CD 2·(AD +BD )=13π×3×4=4π. 6.(2022·蚌埠模拟)粽子,古时北方也称“角黍”,是由粽叶包裹糯米、泰米等馅料蒸煮制成的食品,是中国汉族传统节庆食物之一,端午食粽的风俗,千百年来在中国盛行不衰,粽子形状多样,馅料种类繁多,南北方风味各有不同,某四角蛋黄粽可近似看成一个正四面体,蛋黄近似看成一个球体,且每个粽子里仅包裹一个蛋黄,若粽子的棱长为9 cm ,则其内可包裹的蛋黄的最大体积约为(参考数据:6≈2.45,π≈3.14)( )A .20 cm 3B .22 cm 3C .26 cm 3D .30 cm 3答案 C解析 如图,正四面体ABCD ,其内切球O 与底面ABC 切于O 1,设正四面体棱长为a ,内切球半径为r ,连接BO 1并延长交AC 于F ,易知O 1为△ABC 的中心,点F 为边AC 的中点.易得BF =32a , 则S △ABC =34a 2,BO 1=23BF =33a , ∴DO 1=BD 2-BO 21=63a , ∴V D -ABC =13·S △ABC ·DO 1=212a 3,∵V D -ABC =V O -ABC +V O -BCD +V O -ABD +V O -ACD =4V O -ABC =4×13×34a 2·r =33a 2r ,∴33a 2r =212a 3⇒r =612a , ∴球O 的体积V =43π·⎝⎛⎭⎫612a 3=43π·⎝⎛⎭⎫612×93=2768π≈278×2.45×3.14≈26(cm 3). 7.已知三棱锥P -ABC 的四个顶点都在球O 的表面上,P A ⊥平面ABC ,P A =6,AB ⊥AC ,AB =2,AC =23,点D 为AB 的中点,过点D 作球的截面,则截面的面积不可以是( ) A.π2 B .π C .9π D .13π答案 A解析 三棱锥P -ABC 的外接球即为以AB ,AC ,AP 为邻边的长方体的外接球, ∴2R =62+22+232=213,∴R =13,取BC 的中点O 1,∴O 1为△ABC 的外接圆圆心,∴OO 1⊥平面ABC ,如图. 当OD ⊥截面时,截面的面积最小,∵OD =OO 21+O 1D 2=32+32=23,此时截面圆的半径为r =R 2-OD 2=1, ∴截面面积为πr 2=π,当截面过球心时,截面圆的面积最大为πR 2=13π, 故截面面积的取值范围是[π,13π].8.(2021·全国甲卷)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC ⊥BC ,AC =BC =1,则三棱锥O -ABC 的体积为( ) A.212 B.312 C.24 D.34答案 A解析 如图所示,因为AC ⊥BC ,所以AB 为截面圆O 1的直径,且AB = 2.连接OO 1,则OO 1⊥平面ABC , OO 1=1-⎝⎛⎭⎫AB 22=1-⎝⎛⎭⎫222=22, 所以三棱锥O -ABC 的体积V =13S △ABC ×OO 1=13×12×1×1×22=212.9.已知三棱锥S -ABC 的三条侧棱两两垂直,且SA =1,SB =SC =2,则三棱锥S -ABC 的外接球的半径是________. 答案 32解析 如图所示,将三棱锥补为长方体,则该棱锥的外接球直径为长方体的体对角线,设外接球半径为R ,则(2R )2=12+22+22=9, ∴4R 2=9,R =32.即这个外接球的半径是32.10.已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则正三棱锥的内切球的半径为________. 答案2-1解析 如图,过点P 作PD ⊥平面ABC 于点D ,连接AD 并延长交BC 于点E ,连接PE .因为△ABC 是正三角形,所以AE 是BC 边上的高和中线,D 为△ABC 的中心. 因为AB =BC =23,所以S △ABC =33,DE =1,PE = 2. 所以S 三棱锥表=3×12×23×2+3 3=36+3 3. 因为PD =1,所以三棱锥的体积V =13×33×1= 3.设球的半径为r ,以球心O 为顶点,三棱锥的四个面为底面,把正三棱锥分割为四个小三棱锥,由13S 三棱锥表·r =3, 得r =3336+33=2-1.11.等腰三角形ABC 的腰AB =AC =5,BC =6,将它沿高AD 翻折,使二面角B -AD -C 成60°,此时四面体ABCD 外接球的体积为________. 答案2873π 解析 由题意,设△BCD 所在的小圆为O 1,半径为r ,又因为二面角B -AD -C 为60°,即∠BDC =60°,所以△BCD 为边长为3的等边三角形,由正弦定理可得,2r =3sin 60°=23,即DE =23,设外接球的半径为R ,且AD =4,在Rt △ADE 中,(2R )2=AD 2+DE 2⇒4R 2=42+(23)2=28, 所以R =7, 所以外接球的体积为 V =43πR 3=43π×(7)3=2873π.12.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为________.答案32π3解析 设△ABC 的外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23, ∠BAC =2π3,∴2r =AB sin ∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,即直三棱柱ABC -A 1B 1C 1的外接球半径R =2, ∴V 球=43π×23=32π3.。
2019版高考数学大一轮复习人教B版全国通用文档:第八章 立体几何与空间向量8.7
§8.7 立体几何中的向量方法(一)——证明平行与垂直1.用向量表示直线或点在直线上的位置(1)给定一个定点A 和一个向量a ,再任给一个实数t ,以A 为起点作向量AP →=t a ,则此向量方程叫做直线l 以t 为参数的参数方程.向量a 称为该直线的方向向量.(2)对空间任一确定的点O ,点P 在直线l 上的充要条件是存在唯一的实数t ,满足等式OP →=(1-t )OA →+tOB →,叫做空间直线的向量参数方程. 2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2.3.用向量证明空间中的垂直关系(1)设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔v1⊥v2⇔v1·v2=0.(2)设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔v∥u.(3)设平面α和β的法向量分别为u1和u2,则α⊥β⇔u1⊥u2⇔u1·u2=0.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确定的.(×)(2)平面的单位法向量是唯一确定的.(×)(3)若两平面的法向量平行,则两平面平行.(√)(4)若两直线的方向向量不平行,则两直线不平行.(√)(5)若a∥b,则a所在直线与b所在直线平行.(×)(6)若空间向量a平行于平面α,则a所在直线与平面α平行.(×)题组二教材改编2.设u,v分别是平面α,β的法向量,u=(-2,2,5),当v=(3,-2,2)时,α与β的位置关系为__________;当v=(4,-4,-10)时,α与β的位置关系为________.答案α⊥βα∥β解析当v=(3,-2,2)时,u·v=(-2,2,5)·(3,-2,2)=0⇒α⊥β.当v=(4,-4,-10)时,v=-2u⇒α∥β.3.如图所示,在正方体ABCD-A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线ON,AM的位置关系是________.答案 垂直解析 以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴建立空间直角坐标系,如图所示.设正方体的棱长为1,则A (0,0,0),M ⎝⎛⎭⎫0,1,12, O ⎝⎛⎭⎫12,12,0,N ⎝⎛⎭⎫12,0,1, AM →·ON →=⎝⎛⎭⎫0,1,12·⎝⎛⎭⎫0,-12,1=0, ∴ON 与AM 垂直. 题组三 易错自纠4.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A .(-1,1,1) B .(1,-1,1) C.⎝⎛⎭⎫-33,-33,-33 D.⎝⎛⎭⎫33,33,-33 答案 C解析 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x=y=z.故选C.5.直线l的方向向量a=(1,-3,5),平面α的法向量n=(-1,3,-5),则有()A.l∥αB.l⊥αC.l与α斜交D.l⊂α或l∥α答案 B解析由a=-n知,n∥a,则有l⊥α,故选B.6.已知平面α,β的法向量分别为n1=(2,3,5),n2=(-3,1,-4),则()A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对答案 C解析∵n1≠λn2,且n1·n2=2×(-3)+3×1+5×(-4)=-23≠0,∴α,β既不平行,也不垂直.题型一利用空间向量证明平行问题典例(2018·大理月考)如图所示,平面P AD⊥平面ABCD,ABCD为正方形,△P AD是直角三角形,且P A=AD=2,E,F,G分别是线段P A,PD,CD的中点.求证:PB∥平面EFG.证明∵平面P AD⊥平面ABCD,ABCD为正方形,△P AD是直角三角形,且P A=AD,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0), D (0,2,0),P (0,0,2),E (0,0,1), F (0,1,1),G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), ∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2,∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 引申探究若本例中条件不变,证明平面EFG ∥平面PBC . 证明 ∵EF →=(0,1,0),BC →=(0,2,0), ∴BC →=2EF →,∴BC ∥EF .又∵EF ⊄平面PBC ,BC ⊂平面PBC ,∴EF ∥平面PBC , 同理可证GF ∥PC ,从而得出GF ∥平面PBC . 又EF ∩GF =F ,EF ,GF ⊂平面EFG ,∴平面EFG ∥平面PBC .思维升华 (1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算. 跟踪训练 如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC . 证明:PQ ∥平面BCD .证明 方法一 如图,取BD 的中点O ,以O 为原点,OD ,OP 所在直线分别为y ,z 轴的正半轴,建立空间直角坐标系Oxyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,所以Q ⎝⎛⎭⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1).又P 为BM 的中点,故P ⎝⎛⎭⎫0,0,12, 所以PQ →=⎝⎛⎭⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .方法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同方法一建立空间直角坐标系,写出点A ,B ,C 的坐标,设点C 坐标为(x 0,y 0,0). 因为CF →=14CD →,设点F 的坐标为(x ,y ,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0),所以⎩⎨⎧x =34x 0,y =24+34y 0,所以OF →=⎝⎛⎭⎫34x 0,24+34y 0,0.又由方法一知PQ →=⎝⎛⎭⎫34x 0,24+34y 0,0,所以OF →=PQ →,所以PQ ∥OF . 又PQ ⊄平面BCD ,OF ⊂平面BCD , 所以PQ ∥平面BCD .题型二 利用空间向量证明垂直问题命题点1 证线面垂直典例 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 方法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a·c =0,b·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎡⎦⎤⎝⎛⎭⎫λ+12μa +μb +λc =4⎝⎛⎭⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证. 方法二 取BC 的中点O ,连接AO .因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 且平面ABC ∩平面BCC 1B 1=BC , 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB ,OO 1,OA 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B (1,0,0),D (-1,1,0),A 1(0,2,3), A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,即⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD . 命题点2 证面面垂直典例 如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面P AD ⊥底面ABCD ,且P A =PD =22AD ,设E ,F 分别为PC ,BD 的中点.(1)求证:EF ∥平面P AD ; (2)求证:平面P AB ⊥平面PDC .证明 (1)如图,取AD 的中点O ,连接OP ,OF . 因为P A =PD ,所以PO ⊥AD .因为侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD , PO ⊂平面P AD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点,所以OF ∥AB . 又ABCD 是正方形,所以OF ⊥AD .因为P A =PD =22AD ,所以P A ⊥PD ,OP =OA =a 2. 以O 为原点,OA ,OF ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 则A ⎝⎛⎭⎫a 2,0,0,F ⎝⎛⎭⎫0,a 2,0,D ⎝⎛⎭⎫-a2,0,0, P ⎝⎛⎭⎫0,0,a 2,B ⎝⎛⎭⎫a 2,a ,0,C ⎝⎛⎭⎫-a2,a ,0. 因为E 为PC 的中点,所以E ⎝⎛⎭⎫-a 4,a 2,a4. 易知平面P AD 的一个法向量为OF →=⎝⎛⎭⎫0,a 2,0, 因为EF →=⎝⎛⎭⎫a 4,0,-a 4, 且OF →·EF →=⎝⎛⎭⎫0,a 2,0·⎝⎛⎭⎫a4,0,-a 4=0, 又因为EF ⊄平面P AD ,所以EF ∥平面P AD . (2)因为P A →=⎝⎛⎭⎫a 2,0,-a 2,CD →=(0,-a,0), 所以P A →·CD →=⎝⎛⎭⎫a2,0,-a 2·(0,-a,0)=0, 所以P A →⊥CD →,所以P A ⊥CD .又P A ⊥PD ,PD ∩CD =D ,PD ,CD ⊂平面PDC , 所以P A ⊥平面PDC .又P A ⊂平面P AB ,所以平面P AB ⊥平面PDC . 思维升华 证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.跟踪训练如图所示,已知四棱锥P—ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB =BC=PB=PC=2CD,侧面PBC⊥底面ABCD.证明:(1)P A⊥BD;(2)平面P AD⊥平面P AB.证明(1)取BC的中点O,连接PO,∵平面PBC⊥底面ABCD,△PBC为等边三角形,平面PBC∩底面ABCD=BC,PO⊂平面PBC,∴PO⊥底面ABCD.以BC的中点O为坐标原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,OP 所在直线为z轴,建立空间直角坐标系,如图所示.不妨设CD=1,则AB=BC=2,PO=3,∴A(1,-2,0),B(1,0,0),D(-1,-1,0),P(0,0,3),∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD →, ∴P A ⊥BD .(2)取P A 的中点M ,连接DM ,则M ⎝⎛⎭⎫12,-1,32.∵DM →=⎝⎛⎭⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,P A ,PB ⊂平面P AB , ∴DM ⊥平面P AB . ∵DM ⊂平面P AD , ∴平面P AD ⊥平面P AB .题型三 利用空间向量解决探索性问题典例 (2018·桂林模拟)如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3). 由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1, 设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设平面DA 1C 1的法向量为n 3=(x 3,y 3,z 3),则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1—→=(0,2,0),DA 1→=(3,0,3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →, 即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .思维升华 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.跟踪训练 (2016·北京)如图,在四棱锥P ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AM AP 的值;若不存在,说明理由.(1)证明 ∵平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,AB ⊥AD ,AB ⊂平面ABCD , ∴AB ⊥平面P AD .∵PD ⊂平面P AD ,∴AB ⊥PD .又P A ⊥PD ,P A ∩AB =A ,且P A ,PB ⊂平面P AB , ∴PD ⊥平面P AB .(2)解 取AD 的中点O ,连接CO ,PO .∵P A =PD , ∴PO ⊥AD .又∵PO ⊂平面P AD , 平面P AD ⊥平面ABCD , 平面P AD ∩平面ABCD =AD , ∴PO ⊥平面ABCD ,∵CO ⊂平面ABCD ,∴PO ⊥CO , 又∵AC =CD ,∴CO ⊥AD .以O 为原点,OC ,OA ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系, 易知P (0,0,1),B (1,1,0),D (0,-1,0),C (2,0,0),则PB →=(1,1,-1),PD →=(0,-1,-1),PC →=(2,0,-1), CD →=(-2,-1,0).设n =(x 0,y 0,1)为平面PCD 的一个法向量. 由⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0得⎩⎪⎨⎪⎧-y 0-1=0,2x 0-1=0,解得⎩⎪⎨⎪⎧y 0=-1,x 0=12. 即n =⎝⎛⎭⎫12,-1,1. 设PB 与平面PCD 的夹角为θ, 则sin θ=|cos 〈n ,PB →〉|=|n ·PB →||n ||PB →|=⎪⎪⎪⎪12-1-114+1+1×3=33. (3)解 设M 是棱P A 上一点,则存在λ∈[0,1]使得AM →=λAP →,因此点M (0,1-λ,λ),BM →=(-1,-λ,λ),∵BM ⊄平面PCD ,∴BM ∥平面PCD , 当且仅当BM →·n =0,即(-1,-λ,λ)·⎝⎛⎭⎫12,-1,1=0,解得λ=14,∴在棱P A 上存在点M 使得BM ∥平面PCD ,此时AM AP =14.利用向量法解决立体几何问题典例 (12分)如图1所示,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B ,如图2所示.(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?证明你的结论. 思想方法指导 对于较复杂的立体几何问题可采用向量法(1)用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.(2)两种思路:①选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.②建立空间直角坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题. 规范解答解 (1)AB ∥平面DEF ,理由如下:在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB . 又AB ⊄平面DEF ,EF ⊂平面DEF , ∴AB ∥平面DEF .[1分](2)以D 为原点,分别以DB ,DC ,DA 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),[3分]易知平面CDF 的法向量为DA →=(0,0,2), 设平面EDF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧DF →·n =0,DE →·n =0,即⎩⎨⎧x +3y =0,3y +z =0,取n =(3,-3,3),则cos 〈DA →,n 〉=DA →·n |DA →||n |=217,∴二面角E -DF -C 的余弦值为217.[6分] (3)设P (x ,y,0),则AP →·DE →=3y -2=0,∴y =233.又BP →=(x -2,y,0),PC →=(-x,23-y,0), ∵BP →∥PC →,∴(x -2)(23-y )=-xy ,∴3x +y =2 3.[9分]把y =233代入上式得x =43,∴P ⎝⎛⎭⎫43,233,0,∴BP →=13BC →,∴点P 在线段BC 上.∴在线段BC 上存在点P ⎝⎛⎭⎫43,233,0,使AP ⊥DE .[12分]1.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( ) A .P (2,3,3) B .P (-2,0,1) C .P (-4,4,0) D .P (3,-3,4)答案 A解析 逐一验证法,对于选项A ,MP →=(1,4,1),∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内. 2.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量.若α⊥β,则t 等于( ) A .3 B .4 C .5 D .6 答案 C解析 ∵α⊥β,则u ·v =-2×6+2×(-4)+4t =0,∴t =5.3.(2017·西安模拟)如图,F 是正方体ABCD —A 1B 1C 1D 1的棱CD 的中点,E 是BB 1上一点,若D 1F ⊥DE ,则有( )A .B 1E =EB B .B 1E =2EBC .B 1E =12EBD .E 与B 重合 答案 A解析 以D 为坐标原点,分别以DA ,DC ,DD 1为x ,y ,z 轴建立空间直角坐标系,设正方形的边长为2,则D (0,0,0),F (0,1,0),D 1(0,0,2),设E (2,2,z ),则D 1F →=(0,1,-2),DE →=(2,2,z ),∵D 1F →·DE →=0×2+1×2-2z =0, ∴z =1,∴B 1E =EB .4.(2017·广州质检)已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________________________. 答案 α∥β解析 设平面α的法向量为m =(x ,y ,z ), 由m ·AB →=0,得x ·0+y -z =0,即y =z , 由m ·AC →=0,得x -z =0,即x =z ,取x =1, ∴m =(1,1,1),m =-n ,∴m ∥n ,∴α∥β.5.(2017·青岛模拟)已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x +y =________. 答案257解析 由条件得⎩⎪⎨⎪⎧3+5-2z =0,x -1+5y +6=0,3(x -1)+y -3z =0,解得x =407,y =-157,z =4,∴x +y =407-157=257.6.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的序号是________. 答案 ①②③解析 ∵AB →·AP →=0,AD →·AP →=0, ∴AB ⊥AP ,AD ⊥AP ,则①②正确; 又AB ∩AD =A ,∴AP ⊥平面ABCD , ∴AP →是平面ABCD 的法向量,则③正确; ∵BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1), ∴BD →与AP →不平行,故④错误.7.(2018·青海质检)正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1C ,B 1C 1的中点.求证:MN ∥平面A 1BD .证明 如图所示,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),M ⎝⎛⎭⎫0,1,12,N ⎝⎛⎭⎫12,1,1, 于是MN →=⎝⎛⎭⎫12,0,12,DA 1→=(1,0,1),DB →=(1,1,0). 设平面A 1BD 的法向量为n =(x ,y ,z ),则n ·DA 1→=0,且n ·DB →=0,得⎩⎪⎨⎪⎧x +z =0,x +y =0. 取x =1,得y =-1,z =-1.所以n =(1,-1,-1).又MN →·n =⎝⎛⎭⎫12,0,12·(1,-1,-1)=0, 所以MN →⊥n .又MN ⊄平面A 1BD ,所以MN ∥平面A 1BD .8.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .证明 如图,以D 为坐标原点,线段DA 的长为单位长度,DA ,DP ,DC 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz .由题意得Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0).∴PQ →·DQ →=0,PQ →·DC →=0,即PQ ⊥DQ ,PQ ⊥DC .又DQ ∩DC =D ,DQ ,DC ⊂平面DCQ ,∴PQ ⊥平面DCQ ,又PQ ⊂平面PQC ,∴平面PQC ⊥平面DCQ .9.(2017·郑州调研)如图所示,四棱锥P —ABCD 的底面是边长为1的正方形,P A ⊥CD ,P A =1,PD =2,E 为PD 上一点,PE =2ED .(1)求证:P A ⊥平面ABCD ;(2)在侧棱PC 上是否存在一点F ,使得BF ∥平面AEC ?若存在,指出F 点的位置,并证明;若不存在,请说明理由.(1)证明 ∵P A =AD =1,PD =2,∴P A 2+AD 2=PD 2,即P A ⊥AD .又P A ⊥CD ,AD ∩CD =D ,AD ,CD ⊂平面ABCD ,∴P A ⊥平面ABCD .(2)解 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,0,1),E ⎝⎛⎭⎫0,23,13,AC →=(1,1,0),AE →=⎝⎛⎭⎫0,23,13. 设平面AEC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·AC →=0,n ·AE →=0, 即⎩⎪⎨⎪⎧x +y =0,2y +z =0, 令y =1,则n =(-1,1,-2).假设侧棱PC 上存在一点F ,且CF →=λCP →(0≤λ≤1),使得BF ∥平面AEC ,则BF →·n =0.又∵BF →=BC →+CF →=(0,1,0)+(-λ,-λ,λ)=(-λ,1-λ,λ),∴BF →·n =λ+1-λ-2λ=0,∴λ=12, ∴存在点F ,使得BF ∥平面AEC ,且F 为PC 的中点.10.(2017·成都调研)如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是()A .相交B .平行C .垂直D .MN 在平面BB 1C 1C 内答案 B解析 以点C1为坐标原点,分别以C 1B 1,C 1D 1,C 1C 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,由于A 1M =AN =2a3,则M ⎝⎛⎭⎫a ,2a3,a3,N ⎝⎛⎭⎫2a 3,2a3,a ,MN →=⎝⎛⎭⎫-a3,0,2a3.又C 1D 1⊥平面BB 1C 1C ,所以C 1D 1—→=(0,a,0)为平面BB 1C 1C 的一个法向量.因为MN →·C 1D 1—→=0,所以MN →⊥C 1D 1—→,又MN ⊄平面BB 1C 1C ,所以MN ∥平面BB 1C 1C .11.如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和为________.答案 1 解析 以D 1为原点,D 1A 1,D 1C 1,D 1D 所在直线分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1),∴B 1E →=(x -1,0,1),FB →=(1,1,y ),∵B 1E ⊥平面ABF ,∴FB →·B 1E →=(1,1,y )·(x -1,0,1)=0,即x +y =1.12.(2018·长沙模拟)如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1)B.⎝⎛⎭⎫23,23,1 C.⎝⎛⎭⎫22,22,1 D.⎝⎛⎭⎫24,24,1答案 C解析 设AC 与BD 相交于O 点,连接OE ,∵AM ∥平面BDE ,且AM⊂平面ACEF ,平面ACEF ∩平面BDE =OE ,∴AM ∥EO ,又O 是正方形ABCD 对角线的交点,∴M 为线段EF 的中点.在空间直角坐标系中,E (0,0,1),F (2,2,1).由中点坐标公式,知点M 的坐标为⎝⎛⎭⎫22,22,1. 13.(2018·东莞质检)如图,圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周).若AM ⊥MP ,则点P 形成的轨迹长度为________.答案 72解析 以O 点为坐标原点,OB ,OS 所在直线分别为y 轴,z 轴,建立空间直角坐标系,如图所示,则A (0,-1,0),B (0,1,0),S ()0,0,3,M ⎝⎛⎭⎫0,0,32, 设P (x ,y,0),∴AM →=⎝⎛⎭⎫0,1,32,MP →=⎝⎛⎭⎫x ,y ,-32, 由AM →·MP →=y -34=0,得y =34, ∴点P 的轨迹方程为y =34.根据圆的弦长公式,可得点P 形成的轨迹长度为2 1-⎝⎛⎭⎫342=72.。
2019届高考大一轮复习备考资料之数学人教A版全国用讲
§8.7 立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × ) (2)平面的单位法向量是唯一确定的.( × ) (3)若两平面的法向量平行,则两平面平行.( √ ) (4)若两直线的方向向量不平行,则两直线不平行.( √ ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( × )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( × ) 题组二 教材改编2.[P104T2]设u ,v 分别是平面α,β的法向量,u =(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为__________;当v =(4,-4,-10)时,α与β的位置关系为________. 答案 α⊥β α∥β解析 当v =(3,-2,2)时, u ·v =(-2,2,5)·(3,-2,2)=0⇒α⊥β. 当v =(4,-4,-10)时,v =-2u ⇒α∥β.3.[P111T3]如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.答案 垂直解析 以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴建立空间直角坐标系,如图所示.设正方体的棱长为1,则A (0,0,0),M ⎝⎛⎭⎫0,1,12, O ⎝⎛⎭⎫12,12,0,N ⎝⎛⎭⎫12,0,1,AM →·ON →=⎝⎛⎭⎫0,1,12·⎝⎛⎭⎫0,-12,1=0, ∴ON 与AM 垂直. 题组三 易错自纠4.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A .(-1,1,1) B .(1,-1,1) C.⎝⎛⎭⎫-33,-33,-33 D.⎝⎛⎭⎫33,33,-33 答案 C解析 设n =(x ,y ,z )为平面ABC 的法向量,则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .故选C.5.直线l 的方向向量a =(1,-3,5),平面α的法向量n =(-1,3,-5),则有( ) A .l ∥α B .l ⊥α C .l 与α斜交 D .l ⊂α或l ∥α答案 B解析 由a =-n 知,n ∥a ,则有l ⊥α,故选B.6.已知平面α,β的法向量分别为n 1=(2,3,5),n 2=(-3,1,-4),则( ) A .α∥βB .α⊥βC .α,β相交但不垂直D .以上均不对 答案 C解析 ∵n 1≠λn 2,且n 1·n 2=2×(-3)+3×1+5×(-4)=-23≠0,∴α,β既不平行,也不垂直.题型一 利用空间向量证明平行问题典例 如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG .证明 ∵平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD ,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0), D (0,2,0),P (0,0,2),E (0,0,1), F (0,1,1),G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), ∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2,∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 引申探究若本例中条件不变,证明平面EFG ∥平面PBC . 证明 ∵EF →=(0,1,0),BC →=(0,2,0), ∴BC →=2EF →,∴BC ∥EF .又∵EF ⊄平面PBC ,BC ⊂平面PBC ,∴EF ∥平面PBC , 同理可证GF ∥PC ,从而得出GF ∥平面PBC . 又EF ∩GF =F ,EF ,GF ⊂平面EFG , ∴平面EFG ∥平面PBC .思维升华 (1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算. 跟踪训练 如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC . 证明:PQ ∥平面BCD .证明 方法一 如图,取BD 的中点O ,以O 为原点,OD ,OP 所在直线分别为y ,z 轴的正半轴,建立空间直角坐标系Oxyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,所以Q ⎝⎛⎭⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝⎛⎭⎫0,0,12, 所以PQ →=⎝⎛⎭⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .方法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同方法一建立空间直角坐标系,写出点A ,B ,C 的坐标,设点C 坐标为(x 0,y 0,0). 因为CF →=14CD →,设点F 的坐标为(x ,y ,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0),所以⎩⎨⎧x =34x 0,y =24+34y 0,所以OF →=⎝⎛⎭⎫34x 0,24+34y 0,0.又由方法一知PQ →=⎝⎛⎭⎫34x 0,24+34y 0,0,所以OF →=PQ →,所以PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , 所以PQ ∥平面BCD .题型二 利用空间向量证明垂直问题命题点1 证线面垂直典例 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 方法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a·c =0,b·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎡⎦⎤⎝⎛⎭⎫λ+12μa +μb +λc =4⎝⎛⎭⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证. 方法二 取BC 的中点O ,连接AO .因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 且平面ABC ∩平面BCC 1B 1=BC , 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB ,OO 1,OA 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B (1,0,0),D (-1,1,0),A 1(0,2,3), A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,即⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD . 命题点2 证面面垂直典例 如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面P AD ⊥底面ABCD ,且P A =PD =22AD ,设E ,F 分别为PC ,BD 的中点.(1)求证:EF ∥平面P AD ; (2)求证:平面P AB ⊥平面PDC .证明 (1)如图,取AD 的中点O ,连接OP ,OF . 因为P A =PD ,所以PO ⊥AD .因为侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD , PO ⊂平面P AD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点,所以OF ∥AB . 又ABCD 是正方形,所以OF ⊥AD . 因为P A =PD =22AD ,所以P A ⊥PD ,OP =OA =a 2. 以O 为原点,OA ,OF ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 则A ⎝⎛⎭⎫a 2,0,0,F ⎝⎛⎭⎫0,a 2,0,D ⎝⎛⎭⎫-a2,0,0, P ⎝⎛⎭⎫0,0,a 2,B ⎝⎛⎭⎫a 2,a ,0,C ⎝⎛⎭⎫-a2,a ,0.因为E 为PC 的中点,所以E ⎝⎛⎭⎫-a 4,a 2,a 4. 易知平面P AD 的一个法向量为OF →=⎝⎛⎭⎫0,a 2,0, 因为EF →=⎝⎛⎭⎫a 4,0,-a 4, 且OF →·EF →=⎝⎛⎭⎫0,a 2,0·⎝⎛⎭⎫a4,0,-a 4=0, 又因为EF ⊄平面P AD ,所以EF ∥平面P AD . (2)因为P A →=⎝⎛⎭⎫a 2,0,-a 2,CD →=(0,-a,0), 所以P A →·CD →=⎝⎛⎭⎫a2,0,-a 2·(0,-a,0)=0, 所以P A →⊥CD →,所以P A ⊥CD .又P A ⊥PD ,PD ∩CD =D ,PD ,CD ⊂平面PDC , 所以P A ⊥平面PDC .又P A ⊂平面P AB ,所以平面P AB ⊥平面PDC . 思维升华 证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然 ,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可. 跟踪训练 如图所示,已知四棱锥P —ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .证明 (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, 平面PBC ∩底面ABCD =BC ,PO ⊂平面PBC , ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO =3,∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3), ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD →, ∴P A ⊥BD .(2)取P A 的中点M ,连接DM ,则M ⎝⎛⎭⎫12,-1,32.∵DM →=⎝⎛⎭⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,P A ,PB ⊂平面P AB , ∴DM ⊥平面P AB . ∵DM ⊂平面P AD , ∴平面P AD ⊥平面P AB .题型三 利用空间向量解决探索性问题典例 (2018·桂林模拟)如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3). 由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1, 设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设平面DA 1C 1的法向量为n 3=(x 3,y 3,z 3), 则⎩⎪⎨⎪⎧n 3⊥A 1C 1—→,n 3⊥DA 1→,又A 1C 1—→=(0,2,0),DA 1→=(3,0,3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →, 即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .思维升华 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.跟踪训练 (2016·北京)如图,在四棱锥P ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.(1)证明 ∵平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,AB ⊥AD ,AB ⊂平面ABCD , ∴AB ⊥平面P AD .∵PD ⊂平面P AD ,∴AB ⊥PD .又P A ⊥PD ,P A ∩AB =A ,且P A ,PB ⊂平面P AB , ∴PD ⊥平面P AB .(2)解 取AD 的中点O ,连接CO ,PO .∵P A =PD , ∴PO ⊥AD .又∵PO ⊂平面P AD , 平面P AD ⊥平面ABCD , 平面P AD ∩平面ABCD =AD , ∴PO ⊥平面ABCD ,∵CO ⊂平面ABCD ,∴PO ⊥CO , 又∵AC =CD ,∴CO ⊥AD .以O 为原点,OC ,OA ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系, 易知P (0,0,1),B (1,1,0),D (0,-1,0),C (2,0,0),则PB →=(1,1,-1),PD →=(0,-1,-1),PC →=(2,0,-1), CD →=(-2,-1,0).设n =(x 0,y 0,1)为平面PCD 的一个法向量.由⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0得⎩⎪⎨⎪⎧-y 0-1=0,2x 0-1=0,解得⎩⎪⎨⎪⎧y 0=-1,x 0=12. 即n =⎝⎛⎭⎫12,-1,1.设PB 与平面PCD 的夹角为θ, 则sin θ=|cos 〈n ,PB →〉|=|n ·PB →||n ||PB →|=⎪⎪⎪⎪12-1-114+1+1×3=33. (3)解 设M 是棱P A 上一点,则存在λ∈[0,1]使得AM →=λAP →,因此点M (0,1-λ,λ),BM →=(-1,-λ,λ),∵BM ⊄平面PCD ,∴BM ∥平面PCD , 当且仅当BM →·n =0,即(-1,-λ,λ)·⎝⎛⎭⎫12,-1,1=0,解得λ=14,∴在棱P A 上存在点M 使得BM ∥平面PCD ,此时AM AP =14.利用向量法解决立体几何问题典例 (12分)如图1所示,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B ,如图2所示.(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?证明你的结论. 思想方法指导 对于较复杂的立体几何问题可采用向量法(1)用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.(2)两种思路:①选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.②建立空间直角坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题. 规范解答解 (1)AB ∥平面DEF ,理由如下:在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB . 又AB ⊄平面DEF ,EF ⊂平面DEF , ∴AB ∥平面DEF .[1分](2)以D 为原点,分别以DB ,DC ,DA 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),[3分]易知平面CDF 的法向量为DA →=(0,0,2), 设平面EDF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧DF →·n =0,DE →·n =0,即⎩⎨⎧x +3y =0,3y +z =0,取n =(3,-3,3),则cos 〈DA →,n 〉=DA →·n |DA →||n |=217,∴二面角E -DF -C 的余弦值为217.[6分] (3)设P (x ,y,0),则AP →·DE →=3y -2=0,∴y =233.又BP →=(x -2,y,0),PC →=(-x,23-y,0), ∵BP →∥PC →,∴(x -2)(23-y )=-xy , ∴3x +y =2 3.[9分]把y =233代入上式得x =43,∴P ⎝⎛⎭⎫43,233,0,∴BP →=13BC →,∴点P 在线段BC 上.∴在线段BC 上存在点P ⎝⎛⎭⎫43,233,0,使AP ⊥DE .[12分]1.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( ) A .P (2,3,3) B .P (-2,0,1) C .P (-4,4,0) D .P (3,-3,4)答案 A解析 逐一验证法,对于选项A ,MP →=(1,4,1),∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内. 2.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量.若α⊥β,则t 等于( ) A .3 B .4 C .5 D .6 答案 C解析 ∵α⊥β,则u ·v =-2×6+2×(-4)+4t =0,∴t =5.3.(2017·西安模拟)如图,F 是正方体ABCD —A 1B 1C 1D 1的棱CD 的中点,E 是BB 1上一点,若D 1F ⊥DE ,则有( )A .B 1E =EB B .B 1E =2EBC .B 1E =12EBD .E 与B 重合 答案 A解析 以D 为坐标原点,分别以DA ,DC ,DD 1为x ,y ,z 轴建立空间直角坐标系,设正方形的边长为2,则D (0,0,0),F (0,1,0),D 1(0,0,2),设E (2,2,z ),则D 1F →=(0,1,-2),DE →=(2,2,z ),∵D 1F →·DE →=0×2+1×2-2z =0, ∴z =1,∴B 1E =EB .4.(2017·广州质检)已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________________________.答案 α∥β解析 设平面α的法向量为m =(x ,y ,z ), 由m ·AB →=0,得x ·0+y -z =0,即y =z , 由m ·AC →=0,得x -z =0,即x =z ,取x =1, ∴m =(1,1,1),m =-n ,∴m ∥n ,∴α∥β.5.(2017·青岛模拟)已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x +y =________. 答案257解析 由条件得⎩⎪⎨⎪⎧3+5-2z =0,x -1+5y +6=0,3(x -1)+y -3z =0,解得x =407,y =-157,z =4,∴x +y =407-157=257.6.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的序号是________. 答案 ①②③解析 ∵AB →·AP →=0,AD →·AP →=0, ∴AB ⊥AP ,AD ⊥AP ,则①②正确; 又AB ∩AD =A ,∴AP ⊥平面ABCD , ∴AP →是平面ABCD 的法向量,则③正确; ∵BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1), ∴BD →与AP →不平行,故④错误.7.(2018·青海质检)正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1C ,B 1C 1的中点.求证:MN ∥平面A 1BD .证明 如图所示,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),M ⎝⎛⎭⎫0,1,12,N ⎝⎛⎭⎫12,1,1, 于是MN →=⎝⎛⎭⎫12,0,12,DA 1→=(1,0,1),DB →=(1,1,0).设平面A 1BD 的法向量为n =(x ,y ,z ),则n ·DA 1→=0,且n ·DB →=0,得⎩⎪⎨⎪⎧x +z =0,x +y =0.取x =1,得y =-1,z =-1. 所以n =(1,-1,-1).又MN →·n =⎝⎛⎭⎫12,0,12·(1,-1,-1)=0, 所以MN →⊥n .又MN ⊄平面A 1BD ,所以MN ∥平面A 1BD .8.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .证明 如图,以D 为坐标原点,线段DA 的长为单位长度,DA ,DP ,DC 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz .由题意得Q (1,1,0),C (0,0,1),P (0,2,0), 则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0). ∴PQ →·DQ →=0,PQ →·DC →=0,即PQ ⊥DQ ,PQ ⊥DC . 又DQ ∩DC =D ,DQ ,DC ⊂平面DCQ , ∴PQ ⊥平面DCQ ,又PQ ⊂平面PQC , ∴平面PQC ⊥平面DCQ .9.(2017·郑州调研)如图所示,四棱锥P —ABCD 的底面是边长为1的正方形,P A ⊥CD ,P A =1,PD =2,E 为PD 上一点,PE =2ED .(1)求证:P A ⊥平面ABCD ;(2)在侧棱PC 上是否存在一点F ,使得BF ∥平面AEC ?若存在,指出F 点的位置,并证明;若不存在,请说明理由.(1)证明 ∵P A =AD =1,PD =2, ∴P A 2+AD 2=PD 2,即P A ⊥AD .又P A ⊥CD ,AD ∩CD =D ,AD ,CD ⊂平面ABCD , ∴P A ⊥平面ABCD .(2)解 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,0,1),E ⎝⎛⎭⎫0,23,13,AC →=(1,1,0),AE →=⎝⎛⎭⎫0,23,13. 设平面AEC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0, 即⎩⎪⎨⎪⎧x +y =0,2y +z =0,令y =1,则n =(-1,1,-2).假设侧棱PC 上存在一点F ,且CF →=λCP →(0≤λ≤1), 使得BF ∥平面AEC ,则BF →·n =0.又∵BF →=BC →+CF →=(0,1,0)+(-λ,-λ,λ)=(-λ,1-λ,λ), ∴BF →·n =λ+1-λ-2λ=0,∴λ=12,∴存在点F ,使得BF ∥平面AEC ,且F 为PC 的中点.10.(2017·成都调研)如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .MN 在平面BB 1C 1C 内答案 B解析 以点C1为坐标原点,分别以C 1B 1,C 1D 1,C 1C 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系, 由于A 1M =AN =2a 3, 则M ⎝⎛⎭⎫a ,2a 3,a 3,N ⎝⎛⎭⎫2a 3,2a3,a , MN →=⎝⎛⎭⎫-a 3,0,2a 3. 又C 1D 1⊥平面BB 1C 1C ,所以C 1D 1—→=(0,a,0)为平面BB 1C 1C 的一个法向量. 因为MN →·C 1D 1—→=0,所以MN →⊥C 1D 1—→,又MN ⊄平面BB 1C 1C , 所以MN ∥平面BB 1C 1C .11.如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和为________.答案 1解析 以D 1为原点,D 1A 1,D 1C 1,D 1D 所在直线分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1), ∴B 1E →=(x -1,0,1),FB →=(1,1,y ),∵B 1E ⊥平面ABF , ∴FB →·B 1E →=(1,1,y )·(x -1,0,1)=0,即x +y =1.12.(2018·长沙模拟)如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1)B.⎝⎛⎭⎫23,23,1C.⎝⎛⎭⎫22,22,1 D.⎝⎛⎭⎫24,24,1 答案 C解析 设AC 与BD 相交于O 点,连接OE ,∵AM ∥平面BDE ,且AM ⊂平面ACEF ,平面ACEF ∩平面BDE =OE ,∴AM ∥EO , 又O 是正方形ABCD 对角线的交点,∴M 为线段EF 的中点. 在空间直角坐标系中,E (0,0,1),F (2,2,1). 由中点坐标公式,知点M 的坐标为⎝⎛⎭⎫22,22,1. 13.(2018·东莞质检)如图,圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周).若AM ⊥MP ,则点P 形成的轨迹长度为________.答案72解析 以O 点为坐标原点,OB ,OS 所在直线分别为y 轴,z 轴,建立空间直角坐标系,如图所示, 则A (0,-1,0),B (0,1,0), S ()0,0,3,M ⎝⎛⎭⎫0,0,32, 设P (x ,y,0),∴AM →=⎝⎛⎭⎫0,1,32,MP →=⎝⎛⎭⎫x ,y ,-32,由AM →·MP →=y -34=0,得y =34,∴点P 的轨迹方程为y =34.根据圆的弦长公式,可得点P 形成的轨迹长度为21-⎝⎛⎭⎫342=72.。
2019版高考数学大一轮复习人教B版全国通用文档:第八
§8.6 空间向量及其运算1.空间向量的有关概念及定理2.两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则角∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,通常规定0≤〈a ,b 〉≤π. 3.两条异面直线所成的角把异面直线平移到一个平面内,这时两条直线的夹角(锐角或直角)叫做两条异面直线所成的角. 4.数量积及坐标运算 (1)两个向量的数量积: ①a·b =|a||b |cos 〈a ,b 〉;②a ⊥b ⇔a·b =0(a ,b 为非零向量); ③|a |2=a·a ,|a |=x 2+y 2+z 2. (2)向量的坐标运算:知识拓展1.向量三点共线定理在平面中A ,B ,C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点.2.向量四点共面定理在空间中P ,A ,B ,C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x +y +z =1),O 为空间中任意一点.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两个非零向量a ,b 共面.( √ ) (2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( × ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( × )(4)两向量夹角的范围与两异面直线所成角的范围相同.( × )(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( √ ) (6)若a·b <0,则〈a ,b 〉是钝角.( × ) 题组二 教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案 A解析 BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________. 答案2解析 |EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2, ∴|EF →|=2,∴EF 的长为 2. 题组三 易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( ) A .垂直 B .平行C .异面D .相交但不垂直答案 B解析 由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.与向量(-3,-4,5)共线的单位向量是__________________________________________. 答案 ⎝⎛⎭⎫3210,225,-22和⎝⎛⎭⎫-3210,-225,22 解析 因为与向量a 共线的单位向量是±a|a |,又因为向量(-3,-4,5)的模为(-3)2+(-4)2+52=52,所以与向量(-3,-4,5)共线的单位向量是 ±152(-3,-4,5)=±210(-3,-4,5).6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C四点共面,则实数t =______. 答案 18解析 ∵P ,A ,B ,C 四点共面, ∴34+18+t =1,∴t =18.题型一 空间向量的线性运算1.如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点. 用AB →,AD →,AA 1→表示OC 1→,则 OC 1→=________________.答案 12AB →+12AD →+AA 1→解析 ∵OC →=12AC →=12(AB →+AD →), ∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→. 2.(2017·上饶期中)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于( )A.12(-a +b +c ) B.12(a +b -c ) C.12(a -b +c ) D.12(-a -b +c ) 答案 B解析 NM →=NA →+AM →=(OA →-ON →)+12AB →=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC →=12(a +b -c ). 思维升华 用已知向量表示某一向量的方法用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.在立体几何中三角形法则、平行四边形法则仍然成立. 题型二 共线定理、共面定理的应用典例 (2018·唐山质检)如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面? (2)直线MN 是否与平面ABB 1A 1平行? 解 (1)∵AM →=kAC 1→,BN →=kBC →, ∴MN →=MA →+AB →+BN → =kC 1A →+AB →+kBC → =k (C 1A →+BC →)+AB → =k (C 1A →+B 1C 1→)+AB →=kB 1A →+AB →=AB →-kAB 1→ =AB →-k (AA 1→+AB →) =(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面. (2)当k =0时,点M ,A 重合,点N ,B 重合, MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内, 又由(1)知MN →与AB →,AA 1→共面, ∴MN ∥平面ABB 1A 1.思维升华 (1)证明空间三点P ,A ,B 共线的方法 ①P A →=λPB →(λ∈R );②对空间任一点O ,OP →=OA →+tAB →(t ∈R ); ③对空间任一点O ,OP →=xOA →+yOB →(x +y =1). (2)证明空间四点P ,M ,A ,B 共面的方法 ①MP →=xMA →+yMB →;②对空间任一点O ,OP →=OM →+xMA →+yMB →;③对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); ④PM →∥AB →(或P A →∥MB →或PB →∥AM →).跟踪训练 (2017·抚州模拟)如图,在四棱柱ABCD —A 1B 1C 1D 1中,底面ABCD 是平行四边形,E ,F ,G 分别是A 1D 1,D 1D ,D 1C 1的中点.(1)试用向量AB →,AD →,AA 1→表示AG →; (2)用向量方法证明平面EFG ∥平面AB 1C . (1)解 设AB →=a ,AD →=b ,AA 1→=c . 由图得AG →=AA 1—→+A 1D 1—→+D 1G —→=c +b +12DC →=12a +b +c =12AB →+AD →+AA 1→. (2)证明 由题图,得AC →=AB →+BC →=a +b , EG →=ED 1—→+D 1G —→=12b +12a =12AC →,∵EG 与AC 无公共点,∴EG ∥AC ,∵EG ⊄平面AB 1C ,AC ⊂平面AB 1C , ∴EG ∥平面AB 1C .又∵AB 1—→=AB →+BB 1—→=a +c , FG →=FD 1—→+D 1G —→=12c +12a =12AB 1—→,∵FG 与AB 1无公共点, ∴FG ∥AB 1,∵FG ⊄平面AB 1C ,AB 1⊂平面AB 1C , ∴FG ∥平面AB 1C ,又∵FG ∩EG =G ,FG ,EG ⊂平面EFG , ∴平面EFG ∥平面AB 1C . 题型三 空间向量数量积的应用典例 (2017·济南月考)如图,已知平行六面体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,AA 1=2,∠A 1AB =∠A 1AD =120°.(1)求线段AC 1的长;(2)求异面直线AC 1与A 1D 所成角的余弦值; (3)求证:AA 1⊥BD .(1)解 设AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=1,|c |=2,a ·b =0,c ·a =c ·b =2×1×cos 120°=-1. ∵AC 1→=AC →+CC 1→=AB →+AD →+AA 1→=a +b +c , ∴|AC 1→|=|a +b +c |=(a +b +c )2=|a |2+|b |2+|c |2+2(a ·b +b ·c +c ·a ) =12+12+22+2(0-1-1)= 2. ∴线段AC 1的长为 2.(2)解 设异面直线AC 1与A 1D 所成的角为θ, 则cos θ=|cos 〈AC 1→,A 1D →〉|=|AC 1→·A 1D →||AC 1→||A 1D →|.∵AC 1→=a +b +c ,A 1D →=b -c , ∴AC 1→·A 1D →=(a +b +c )·(b -c )=a ·b -a ·c +b 2-c 2=0+1+12-22=-2, |A 1D →|=(b -c )2=|b |2-2b ·c +|c |2 =12-2×(-1)+22=7. ∴cos θ=|AC 1→·A 1D →||AC 1→||A 1D →|=|-2|2×7=147.故异面直线AC 1与A 1D 所成角的余弦值为147. (3)证明 ∵AA 1→=c ,BD →=b -a ,∴AA 1→·BD →=c ·(b -a )=c ·b -c ·a =(-1)-(-1)=0,∴AA 1→⊥BD →,即AA 1⊥BD .思维升华 (1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角. (3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练 如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值. 解 (1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝⎛⎭⎫12+12+12=6, ∴|AC 1→|=6,即AC 1的长为 6. (2)BD 1→=b +c -a ,AC →=a +b , ∴|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b ) =b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.坐标法在立体几何中的应用典例 (12分)如图,已知直三棱柱ABC -A 1B 1C 1,在底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的模;(2)求cos 〈BA 1→,CB 1→〉的值; (3)求证:A 1B ⊥C 1M .思想方法指导 利用向量解决立体几何问题时,首先要将几何问题转化成向量问题,通过建立坐标系利用向量的坐标进行求解.规范解答 (1)解 如图,以点C 作为坐标原点O ,CA ,CB ,CC 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系. 由题意得B (0,1,0),N (1,0,1),所以|BN →|=(1-0)2+(0-1)2+(1-0)2= 3.[2分](2)解 由题意得A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2),所以BA 1→=(1,-1,2),CB 1→=(0,1,2), BA 1→·CB 1→=3,|BA 1→|=6,|CB 1→|=5, 所以cos 〈BA 1→,CB 1→〉=BA 1→·CB 1→|BA 1→||CB 1→|=3010.[6分](3)证明 由题意得C 1(0,0,2),M ⎝⎛⎭⎫12,12,2, A 1B →=(-1,1,-2),C 1M →=⎝⎛⎭⎫12,12,0,[9分] 所以A 1B →·C 1M →=-12+12+0=0,所以A 1B →⊥C 1M →,即A 1B ⊥C 1M .[12分]1.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是( ) A .0 B .1 C .2 D .3 答案 A解析 a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.2.(2017·黄冈模拟)已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于( ) A.32 B .-2 C .0 D.32或-2 答案 B解析 当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m,解得m =-2. 3.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α斜交 答案 B解析 ∵a =(1,0,2),n =(-2,0,-4),∴n =-2a ,即a ∥n ,∴l ⊥α.4.已知a =(1,0,1),b =(x,1,2),且a·b =3,则向量a 与b 的夹角为( )A.5π6B.2π3C.π3D.π6 答案 D解析 ∵a·b =x +2=3,∴x =1,∴b =(1,1,2),∴cos 〈a ,b 〉=a·b |a||b |=32×6=32, 又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D. 5.(2017·郑州调研)已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ等于( )A .9B .-9C .-3D .3答案 B解析 由题意知c =x a +y b ,即(7,6,λ)=x (2,1,-3)+y (-1,2,3),∴⎩⎪⎨⎪⎧ 2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9.6.(2018·绵阳质检)如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A. 3B. 2 C .1 D.3- 2答案 D解析 ∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2, 故|BD →|=3- 2.7.已知2a +b =(0,-5,10),c =(1,-2,-2),a·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为________.答案 60°解析 由题意,得(2a +b )·c =0+10-20=-10,即2a·c +b·c =-10.又∵a·c =4,∴b·c =-18,∴cos 〈b ,c 〉=b·c |b||c |=-1812×1+4+4=-12, 又∵〈b ,c 〉∈[0°,180°],∴〈b ,c 〉=120°,∴两直线的夹角为60°.8.如图所示,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x ,y ,z 的值分别为______.答案 16,13,13解析 ∵OG →=OM →+MG →=12OA →+23MN → =12OA →+23(ON →-OM →)=12OA →+23ON →-23OM → =12OA →+23×12(OB →+OC →)-23×12OA → =16OA →+13OB →+13OC →, 又OG →=xOA →+yOB →+zOC →,∴x =16,y =z =13. 9.A ,B ,C ,D 是空间不共面四点,且AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 的形状是________三角形.(填锐角、直角、钝角中的一个)答案 锐角解析 因为BC →·BD →=(AC →-AB →)·(AD →-AB →)=AC →·AD →-AC →·AB →-AB →·AD →+AB →2=AB →2>0,所以∠CBD 为锐角.同理∠BCD ,∠BDC 均为锐角.10.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1—→+A 1B 1—→)2=3A 1B 1—→2;②A 1C →·(A 1B 1—→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确的序号是________.答案 ①②解析 ①中,(A 1A →+A 1D 1—→+A 1B 1—→)2=A 1A →2+A 1D 1—→2+A 1B 1—→2=3A 1B 1—→2,故①正确;②中,A 1B 1—→-A 1A→=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.(2018·遵义调研)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)若|c |=3,且c ∥BC →,求向量c ;(2)求向量a 与向量b 的夹角的余弦值.解 (1)∵c ∥BC →,BC →=(-3,0,4)-(-1,1,2)=(-2,-1,2),∴c =mBC →=m (-2,-1,2)=(-2m ,-m,2m ),∴|c |=(-2m )2+(-m )2+(2m )2=3|m |=3,∴m =±1,∴c =(-2,-1,2)或(2,1,-2).(2)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1,又∵|a |=12+12+02=2,|b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a·b |a||b |=-110=-1010, 即向量a 与向量b 的夹角的余弦值为-1010. 12.如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →;(2)EG 的长;(3)异面直线AG 与CE 所成角的余弦值.解 设AB →=a ,AC →=b ,AD →=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°.(1)EF →=12BD →=12c -12a ,BA →=-a , EF →·BA →=⎝⎛⎭⎫12c -12a ·(-a )=12a 2-12a·c =14. (2)EG →=EB →+BC →+CG →=12AB →+(AC →-AB →)+12(AD →-AC →) =-12AB →+12AC →+12AD → =-12a +12b +12c , 所以EG →2=14(-a +b +c )2 =14(a 2+b 2+c 2-2a·b -2a·c +2b·c )=12, 所以|EG →|=22,即EG 的长为22. (3)AG →=12(AC →+AD →)=12b +12c , CE →=CA →+AE →=-b +12a , AG →·CE →=⎝⎛⎭⎫12b +12c ⎝⎛⎭⎫-b +12a =12⎝⎛⎭⎫12a·b -|b |2+12a·c -b·c =-12, |AG →|=32,|CE →|=32,cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=-23, 由于异面直线所成角的范围是⎝⎛⎦⎤0,π2, 所以异面直线AG 与CE 所成角的余弦值为23.13.在空间四边形ABCD 中,AB →·CD →+AC →·DB →+AD →·BC →等于( )A .-1B .0C .1D .不确定 答案 B解析 如图,令AB →=a ,AC →=b ,AD →=c ,则AB →·CD →+AC →·DB →+AD →·BC →=a ·(c-b )+b·(a -c )+c·(b -a )=a·c -a·b +b·a -b·c +c·b -c·a =0.14.若{a ,b ,c }是空间的一个基底,且向量p =x a +y b +z c ,则(x ,y ,z )叫向量p 在基底{a ,b ,c }下的坐标,已知{a ,b ,c }是空间的一个基底,{a +b ,a -b ,c }是空间的另一个基底,一向量p 在基底{a ,b ,c }下的坐标为(4,2,3),则向量p 在基底{a +b ,a -b ,c }下的坐标是( )A .(4,0,3)B .(3,1,3)C .(1,2,3)D .(2,1,3) 答案 B解析 设p 在基底{a +b ,a -b ,c }下的坐标为x ,y ,z ,则p =x (a +b )+y (a -b )+z c=(x +y )a +(x -y )b +z c ,①∵p 在{a ,b ,c }下的坐标为(4,2,3),∴p =4a +2b +3c ,②由①②得⎩⎪⎨⎪⎧ x +y =4,x -y =2,z =3,∴⎩⎪⎨⎪⎧ x =3,y =1,z =3,即p 在{a +b ,a -b ,c }下的坐标为(3,1,3).15.(2018·吉林模拟)已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,则该四边形为( )A .平行四边形B .梯形C .长方形D .空间四边形答案 D 解析 由已知得BA →·BC →<0,CB →·CD →<0,DC →·DA →<0,AB →·AD →<0,由夹角的定义知∠B ,∠C ,∠D ,∠A 均为钝角,故A ,B ,C 不正确.16.(2017·郑州调研)已知O 点为空间直角坐标系的原点,向量OA →=(1,2,3),OB →=(2,1,2),OP→=(1,1,2),且点Q 在直线OP 上运动,当QA →·QB →取得最小值时,OQ →的坐标是____________.答案 ⎝⎛⎭⎫43,43,83解析 ∵点Q 在直线OP 上,∴设点Q (λ,λ,2λ),则QA →=(1-λ,2-λ,3-2λ),QB →=(2-λ,1-λ,2-2λ),QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)(2-2λ)=6λ2-16λ+10=6⎝⎛⎭⎫λ-432-23. 即当λ=43时,QA →·QB →取得最小值-23. 此时OQ →=⎝⎛⎭⎫43,43,83.。
高考理科数学一轮复习《第8章立体几何与空间向量》8.6 空间向量及其运算
第八章 立体几何与空间向量 =21O→A+32×12(O→B+O→C)-23×21O→A =61O→A+31O→B+31O→C =61a+31b+31c. 【答案】 16a+13b+13c
高考总复习·数学理科(RJ)
第八章 立体几何与空间向量
2.若本例(2)中条件不变,问题改为:设 E 是棱 DD1 上的点, 且D→E=23D→D1,若E→O=xA→B+yA→D+zA→A1,试求 x,y,z 的值.
第八章 立体几何与空间向量
§8.6 空间向量及其运算 [考纲要求]1.了解空间向量的概念,了解空间向量的 基本定理及其意义,掌握空间向量的正交分解及其坐标表 示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向 量的数量积及其坐标表示,能运用向量的数量积判断向量 的共线与垂直.
高考总复习·数学理科(RJ)
高考总复习·数学理科(RJ)
第八章 立体几何与空间向量 =-61O→A+31O→B+31O→C. O→G=O→M+M→G=21O→A-61O→A+13O→B+13O→C =31O→A+31O→B+31O→C.
高考总复习·数学理科(RJ)
第八章 立体几何与空间向量 题型二 共线定理、共面定理的应用 【例2】 已知E,F,G,H分别是空间四边形ABCD的
第八章 立体几何与空间向量 【证明】 (1)如图,连接BG,
高考总复习·数学理科(RJ)
第八章 立体几何与空间向量 则E→G=E→B+B→G=E→B+12(B→C+B→D) =E→B+B→F+E→H=E→F+E→H, 由共面向量定理的推论知: E,F,G,H 四点共面. (2)因为E→H=A→H-A→E =21A→D-21A→B=21(A→D-A→B)=21B→D, 所以 EH∥BD.
2019版高考数学大一轮复习人教B版全国通用文档:第八章 立体几何与空间向量8.1
§8.1空间几何体的结构、三视图和直观图1.多面体的结构特征2.旋转体的形成3.三视图与直观图知识拓展1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的主视图和左视图均为全等的等腰三角形.(3)水平放置的圆台的主视图和左视图均为全等的等腰梯形.(4)水平放置的圆柱的主视图和左视图均为全等的矩形.2.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x ,z 轴平行的线段的长度不改变,相对位置不改变.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台.( × ) (4)正方体、球、圆锥各自的三视图中,三视图均相同.( × ) (5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.( × ) (6)菱形的直观图仍是菱形.( × ) 题组二 教材改编2.下列说法正确的是( ) A .相等的角在直观图中仍然相等 B .相等的线段在直观图中仍然相等 C .正方形的直观图是正方形D .若两条线段平行,则在直观图中对应的两条线段仍然平行 答案 D解析 由直观图的画法规则知,角度、长度都有可能改变,而线段的平行性不变. 3.在如图所示的几何体中,是棱柱的为________.(填写所有正确的序号)答案③⑤题组三易错自纠4.某空间几何体的主视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱答案 A解析由三视图知识知,圆锥、四面体、三棱柱(放倒看)都能使其主视图为三角形,而圆柱的主视图不可能为三角形.5.(2018·珠海质检)将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的左视图为()答案 B解析左视图中能够看到线段AD1,应画为实线,而看不到B1C,应画为虚线.由于AD1与B1C不平行,投影为相交线,故选B.6.正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.答案616a 2 解析 画出坐标系x ′O ′y ′,作出△OAB 的直观图O ′A ′B ′(如图),D ′为O ′A ′的中点.易知D ′B ′=12DB (D 为OA 的中点),∴S △O ′A ′B ′=12×22S △OAB =24×34a 2=616a 2.题型一 空间几何体的结构特征1.给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( ) A .0 B .1 C .2 D .3 答案 A解析 ①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.2.(2018·青岛模拟)以下命题:①以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;②圆柱、圆锥、圆台的底面都是圆面;③一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为()A.0 B.1 C.2 D.3答案 B解析由圆台的定义可知①错误,②正确.对于命题③,只有平行于圆锥底面的平面截圆锥,才能得到一个圆锥和一个圆台,③不正确.思维升华(1)关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一反例即可.(2)圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.(3)既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.题型二简单几何体的三视图命题点1已知几何体,识别三视图典例(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤答案 B解析主视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此主视图是①,左视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此左视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.命题点2已知三视图,判断几何体的形状典例(2017·全国Ⅰ)某多面体的三视图如图所示,其中主视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12C.14 D.16答案 B解析 观察三视图可知,该多面体是由直三棱柱和三棱锥组合而成的,且直三棱柱的底面是直角边长为2的等腰直角三角形,侧棱长为2.三棱锥的底面是直角边长为2的等腰直角三角形,高为2,如图所示.因此该多面体各个面中有两个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2,故这两个梯形的面积之和为2×12×(2+4)×2=12.故选B.命题点3 已知三视图中的两个视图,判断第三个视图典例 (2017·汕头模拟)一个锥体的主视图和左视图如图所示,下列选项中,不可能是该锥体的俯视图的是( )答案 C解析 A ,B ,D 选项满足三视图作法规则,C 不满足三视图作法规则中的宽相等,故C 不可能是该锥体的俯视图.思维升华 三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形状,然后再找其剩下部分三视图的可能形状.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.跟踪训练 (1)(2017·全国Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π 答案 B解析 方法一 (割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π.故选B.方法二 (估值法)由题意知,12V圆柱<V几何体<V圆柱,又V圆柱=π×32×10=90π,∴45π<V几何体<90π.观察选项可知只有63π符合.故选B.(2)如图,网格纸的各小格都是正方形,粗实线画出的是一个锥体的左视图和俯视图,则该锥体的主视图可能是( )答案 A解析 由俯视图和左视图可知原几何体是四棱锥,底面是长方形,内侧的侧面垂直于底面,所以正视图为A.题型三 空间几何体的直观图典例 (2018·福州调研)已知等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.答案22解析 如图所示,作出等腰梯形ABCD 的直观图.因为OE =(2)2-1=1,所以O ′E ′=12,E ′F =24,则直观图A ′B ′C ′D ′的面积S ′=1+32×24=22.思维升华 用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.跟踪训练 (2017·贵阳联考)有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这块菜地的面积为________.答案 2+22解析 如图1,在直观图中,过点A 作AE ⊥BC ,垂足为E .在Rt △ABE 中,AB =1,∠ABE =45°,∴BE =22. 又四边形AECD 为矩形,AD =EC =1,∴BC =BE +EC =22+1, 由此还原为原图形如图2所示,是直角梯形A ′B ′C ′D ′.在梯形A ′B ′C ′D ′中,A ′D ′=1,B ′C ′=22+1,A ′B ′=2. ∴这块菜地的面积S =12(A ′D ′+B ′C ′)·A ′B ′=12×⎝⎛⎭⎫1+1+22×2=2+22.1.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱答案 D解析球、正方体的三视图形状都相同、大小均相等.当三棱锥的三条侧棱相等且两两垂直时,其三视图的形状都相同、大小均相等.不论圆柱如何放置,其三视图的形状都不会完全相同,故选D.2.如图为几何体的三视图,根据三视图可以判断这个几何体为()A.圆锥B.三棱锥C.三棱柱D.三棱台答案 C3.“牟合方盖”(如图1)是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图2所示,图中四边形是为体现其直观性所作的辅助线,其实际直观图中四边形不存在,当其主视图和左视图完全相同时,它的主视图和俯视图分别可能是()A.a,b B.a,c C.c,b D.b,d答案 A解析当主视图和左视图完全相同时,“牟合方盖”相对的两个曲面正对前方,主视图为一个圆,俯视图为一个正方形,且两条对角线为实线,故选A.4.(2018·成都质检)如图,在长方体ABCD-A1B1C1D1中,点P是棱CD上一点,则三棱锥P-A1B1A的左视图是()答案 D解析在长方体ABCD-A1B1C1D1中,从左侧看三棱锥P-A1B1A,B1,A1,A的射影分别是C1,D1,D;AB1的射影为C1D,且为实线,P A1的射影为PD1,且为虚线.故选D.5.(2018·武汉调研)一个四面体的顶点在空间直角坐标系Oxyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的主视图时,以zOx平面为投影面,则得到的主视图可以为()答案 A解析设O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),将以O,A,B,C为顶点的四面体补成一正方体后,由于OA⊥BC,所以该几何体以zOx平面为投影面的主视图为A.6.(2017·黄山质检)一个正方体截去两个角后所得几何体的主视图、俯视图如图所示,则其左视图为()答案 C解析根据一个正方体截去两个角后所得几何体的主视图、俯视图可得几何体的直观图如图所示.所以左视图如图所示.故选C.7.(2017·东北师大附中、吉林一中等五校联考)如图所示,在三棱锥D —ABC 中,已知AC =BC =CD =2,CD ⊥平面ABC ,∠ACB =90°.若其主视图、俯视图如图所示,则其左视图的面积为( )A. 6 B .2 C. 3 D. 2答案 D解析 由几何体的结构特征和主视图、俯视图,得该几何体的左视图是一个直角三角形,其中一直角边为CD ,其长度为2,另一直角边为底面△ABC 的边AB 上的中线,其长度为2,则其左视图的面积S =12×2×2= 2.8.如图,在一个正方体内放入两个半径不相等的球O 1,O 2,这两个球外切,且球O 1与正方体共顶点A 的三个面相切,球O 2与正方体共顶点B 1的三个面相切,则两球在正方体的面AA 1C 1C 上的正投影是( )答案 B解析 由题意可以判断出两球在正方体的面上的正投影与正方形相切.由于两球球心连线AB 1与面ACC 1A 1不平行,故两球球心射影所连线段的长度小于两球半径的和,即两个投影圆相交,即为图B.9.(2017·龙岩联考)一水平放置的平面四边形OABC ,用斜二测画法画出它的直观图O ′A ′B ′C ′如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC 的面积为________.答案 2 2解析 因为直观图的面积是原图形面积的24倍,且直观图的面积为1,所以原图形的面积为2 2.10.(2017·南昌一模)如图,在正四棱柱ABCD —A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P —BCD 的主视图与左视图的面积之比为________.答案 1∶1解析 根据题意,三棱锥P —BCD 的主视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;左视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高,故三棱锥P —BCD 的主视图与左视图的面积之比为1∶1.11.如图,点O 为正方体ABCD —A ′B ′C ′D ′的中心,点E 为平面B ′BCC ′的中心,点F 为B ′C ′的中点,则空间四边形D ′OEF 在该正方体的各个面上的射影可能是________.(填出所有可能的序号)答案①②③解析空间四边形D′OEF在正方体的平面DCC′D′上的射影是①;在平面BCC′B′上的射影是②;在平面ABCD上的射影是③,而不可能出现的射影为④中的情况.12.(2018·长沙调研)某四面体的三视图如图所示,则该四面体的六条棱的长度中,最大的是________.答案27解析由三视图可知该四面体为三棱锥V—ABC,如图,其中EC=CB=2,AE=23,VC=2,AE⊥BE,VC⊥平面ABE,所以在六条棱中,最大的棱为VA或者AB.AC2=AE2+EC2=(23)2+22=16,所以VA2=AC2+VC2=16+22=20,此时VA=20=25,AB2=AE2+EB2=(23)2+42=28,所以AB=28=27>25,所以棱长最大的为27.13.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是()A .8B .7C .6D .5答案 C解析 画出直观图,共六块.14.(2017·湖南省东部六校联考)某三棱锥的三视图如图所示,则该三棱锥的四个面的面积中,最大的面积是( )A .4 3B .8 3C .47D .8答案 C解析 如图,设该三棱锥为P —ABC ,其中P A ⊥平面ABC ,P A =4,则由三视图可知△ABC 是边长为4的等边三角形,故PB =PC =42,所以S △ABC =12×4×23=43,S △P AB =S △P AC =12×4×4=8,S △PBC =12×4×(42)2-22=47,故四个面中面积最大的为S △PBC =47,故选C.15.(2017·泉州二模)某几何体的三视图如图所示,则该几何体的左视图中的虚线部分是( )A.圆弧B.抛物线的一部分C.椭圆的一部分D.双曲线的一部分答案 D解析根据几何体的三视图,可得左视图中的虚线部分是由平行于旋转轴的平面截圆锥所得,故左视图中的虚线部分是双曲线的一部分,故选D.16.(2018·济南模拟)一只蚂蚁从正方体ABCD—A1B1C1D1的顶点A出发,经正方体的表面,按最短路线爬行到顶点C1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的主视图的是()A.①②B.①③C.③④D.②④答案 D解析由点A经正方体的表面,按最短路线爬行到达顶点C1的位置,共有6种路线(对应6种不同的展开方式),若把平面ABB1A1和平面BCC1B1展开到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过BB1的中点,此时对应的主视图为②;若把平面ABCD和平面CDD1C1展开到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过CD的中点,此时对应的主视图为④.而其他几种展开方式对应的主视图在题中没有出现.故选D.。
2019版高考数学大一轮复习人教B版全国通用文档:第八章 立体几何与空间向量8.8 Word版含答案
§8.8 立体几何中的向量方法(二)——求空间角和距离 最新考纲考情考向分析 1.能用向量方法解决直线与直线、直线与平面、平面与平面所成角的计算问题.2.了解向量方法在研究立体几何问题中的应用. 本节是高考中的必考内容,涉及用向量法计算空间异面直线所成角、直线和平面所成角、二面角及空间距离等内容,考查热点是空间角的求解.题型以解答题为主,要求有较强的运算能力,广泛应用函数与方程的思想、转化与化归思想.1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则l 1与l 2所成的角θ a 与b 的夹角β 范围⎝⎛⎦⎤0,π2 [0,π] 求法cos θ=|a ·b ||a ||b |cos β=a ·b |a ||b |2.斜线和平面所成的角(1)斜线和它在平面内的射影的所成的角叫做斜线和平面所成的角(或斜线和平面的夹角).(2)斜线和它在平面内的射影所成的角,是斜线和这个平面内所有直线所成角中最小的角.3.二面角(1)从一条直线出发的两个半平面所组成的图形叫做二面角.(2)在二面角α—l —β的棱上任取一点O ,在两半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α—l —β的平面角.4.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|.(3)求二面角的大小1°如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.2°如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉. 知识拓展利用空间向量求距离(供选用)(1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB →|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2.(2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO →|=|AB →·n ||n |.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.( × )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × )(3)两个平面的法向量所成的角是这两个平面所成的角.( × )(4)两异面直线夹角的范围是⎝⎛⎦⎤0,π2,直线与平面所成角的范围是⎣⎡⎦⎤0,π2,二面角的范围是[0,π].( √ )(5)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.( × )题组二 教材改编2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( )A .45°B .135°C .45°或135°D .90°。
2019版高考数学大一轮复习人教B版全国通用文档:第八章 立体几何与空间向量8.2
§8.2空间几何体的表面积与体积1.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式3.柱、锥、台、球的表面积和体积知识拓展1.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差.(2)底面面积及高都相等的两个同类几何体的体积相等.2.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=3a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R=2a.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.(3)正四面体的外接球与内切球的半径之比为3∶1.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)多面体的表面积等于各个面的面积之和.(√)(2)锥体的体积等于底面积与高之积.( × ) (3)球的体积之比等于半径比的平方.( × )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( √ ) (5)长方体既有外接球又有内切球.( × )(6)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .( × ) 题组二 教材改编2.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( ) A .1 cm B .2 cm C .3 cm D.32 cm答案 B解析 S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, ∴r 2=4,∴r =2.3.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.答案 1∶47解析 设长方体的相邻三条棱长分别为a ,b ,c ,它截出棱锥的体积V 1=13×12×12a ×12b ×12c=148abc ,剩下的几何体的体积V 2=abc -148abc =4748abc ,所以V 1∶V 2=1∶47. 题组三 易错自纠4.(2017·陕西西安一中月考)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+4答案 D解析 由几何体的三视图可知,该几何体为半圆柱,直观图如图所示.表面积为2×2+2×12×π×12+π×1×2=4+3π.5.(2016·全国Ⅱ)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A .12π B.323π C .8π D .4π答案 A解析 由题意可知正方体的棱长为2,其体对角线23即为球的直径,所以球的表面积为4πR 2=(2R )2π=12π,故选A.6.(2018·大连调研)如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去部分的体积之比为________.答案 1∶1解析 由三视图可知半球的半径为2,圆锥底面圆的半径为2,高为2,所以V 圆锥=13×π×23=83π,V 半球=12×43π×23=163π,所以V 剩余=V 半球-V 圆锥=83π,故剩余部分与挖去部分的体积之比为1∶1.题型一 求空间几何体的表面积1.(2016·全国Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π 答案 A解析 由题意知,该几何体的直观图如图所示,它是一个球(被过球心O 且互相垂直的三个平面)切掉左上角的18后得到的组合体,其表面积是球面面积的78和三个14圆面积之和.由43πR 3-18×43πR 3=28π3,得球的半径R =2. 则得S =78×4π×22+3×14π×22=17π,故选A.2.(2017·黑龙江哈师大附中一模)已知某几何体的三视图如图所示,则该几何体的表面积为( )A.73B.172 C .13 D.17+3102答案 C解析 由三视图可知几何体为三棱台,作出直观图如图所示.则CC ′⊥平面ABC ,上、下底均为等腰直角三角形,AC ⊥BC ,AC =BC =1,A ′C ′=B ′C ′=C ′C =2,∴AB =2,A ′B ′=2 2.∴棱台的上底面面积为12×1×1=12,下底面面积为12×2×2=2,梯形ACC ′A ′的面积为12×(1+2)×2=3,梯形BCC ′B ′的面积为12×(1+2)×2=3,过A 作AD ⊥A ′C ′于点D ,过D 作DE ⊥A ′B ′,则AD =CC ′=2,DE 为△A ′B ′C ′斜边高的12,∴DE =22,∴AE =AD 2+DE 2=32, ∴梯形ABB ′A ′的面积为12×(2+22)×32=92,∴几何体的表面积S =12+2+3+3+92=13,故选C.思维升华 空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (3)旋转体的表面积问题注意其侧面展开图的应用.题型二 求空间几何体的体积命题点1 以三视图为背景的几何体的体积典例 (2017·浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1 B.π2+3C.3π2+1 D.3π2+3 答案 A解析 由几何体的三视图可知,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长是2的等腰直角三角形,高为3的三棱锥的组合体, ∴该几何体体积为V =13×12π×12×3+13×12×2×2×3=π2+1.故选A.命题点2 求简单几何体的体积典例 (2018·广州调研)已知E ,F 分别是棱长为a 的正方体ABCD —A 1B 1C 1D 1的棱AA 1,CC 1的中点,则四棱锥C 1—B 1EDF 的体积为________. 答案 16a 3解析 方法一 如图所示,连接A 1C 1,B 1D 1交于点O 1,连接B 1D ,EF ,过点O 1作O 1H ⊥B 1D 于点H .因为EF ∥A 1C 1,且A 1C 1⊄平面B 1EDF ,EF ⊂平面B 1EDF , 所以A 1C 1∥平面B 1EDF .所以C 1到平面B 1EDF 的距离就是A 1C 1到平面B 1EDF 的距离. 易知平面B 1D 1D ⊥平面B 1EDF , 又平面B 1D 1D ∩平面B 1EDF =B 1D , 所以O 1H ⊥平面B 1EDF ,所以O 1H 等于四棱锥C 1—B 1EDF 的高. 因为△B 1O 1H ∽△B 1DD 1, 所以O 1H =B 1O 1·DD 1B 1D =66a .所以VC 1-B 1EDF O 1H =13×12·EF ·B 1D ·O 1H =13×12·2a ·3a ·66a =16a 3.方法二 连接EF ,B 1D .设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2,则h 1+h 2=B 1D 1=2a . 由题意得,11111C B EDF B C EFD C EF V V V ---=+四棱锥三棱锥三棱锥=13·1C EF S ∆·(h 1+h 2)=16a 3. 思维升华 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解. 跟踪训练 (1)(2017·新乡二模)已知一个几何体的三视图如图所示,则该几何体的体积为( )A.323B.163C.83D.43答案 C解析 该几何体由一个三棱锥和一个三棱柱组合而成,直观图如图所示,V =V 柱+V 锥=12×(1+1)×1×2+13×12×(1+1)×1×2=83,故选C.(2)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( ) A.23 B.33 C.43 D.32答案 A解析 如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12,AG =GD =BH =HC =32, 取AD 的中点O ,连接GO ,易得GO =22,∴S △AGD =S △BHC =12×22×1=24,∴多面体的体积V =V 三棱锥E -ADG +V 三棱锥F -BCH +V 三棱柱AGD -BHC =2V 三棱锥E -ADG +V 三棱柱AGD -BHC =13×24×12×2+24×1=23.故选A. 题型三 与球有关的切、接问题典例 (2016·全国Ⅲ)在封闭的直三棱柱ABC —A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A .4πB.9π2 C .6π D.32π3答案 B解析 由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V 的最大值为9π2.引申探究1.若将本例中的条件变为“直三棱柱ABC —A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积. 解 将直三棱柱补形为长方体ABEC —A 1B 1E 1C 1, 则球O 是长方体ABEC —A 1B 1E 1C 1的外接球. ∴体对角线BC 1的长为球O 的直径. 因此2R =32+42+122=13. 故S 球=4πR 2=169π.2.若将本例中的条件变为“正四棱锥的顶点都在球O 的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积.解 如图,设球心为O ,半径为r ,则在Rt △AOF 中,(4-r )2+(2)2=r 2, 解得r =94,则球O 的体积V 球=43πr 3=43π×⎝⎛⎭⎫943=243π16.思维升华 空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解. (2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解. 跟踪训练 (2018·深圳调研)如图所示,在平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,则该球的体积为( )A.3π2 B .3πC.2π3D .2π答案 A解析 如图,取BD 的中点为E ,BC 的中点为O ,连接AE ,OD ,EO ,AO .因为AB =AD ,所以AE ⊥BD .由于平面ABD ⊥平面BCD , 所以AE ⊥平面BCD .因为AB =AD =CD =1,BD =2,所以AE =22,EO =12.所以OA =32. 在Rt △BDC 中,OB =OC =OD =12BC =32,所以四面体ABCD 的外接球的球心为O ,半径为32. 所以该球的体积V =43π×⎝⎛⎭⎫323=3π2.三视图(基本的、和球联系的)考点分析 三视图是高考重点考查的一个知识点,主要考查由几何体的三视图还原几何体的形状,进而求解表面积、体积等知识,所涉及的几何体既包括柱、锥、台、球等简单几何体,也包括一些组合体,处理此类题目的关键是通过三视图准确还原几何体. 典例 (1)已知某几何体的三视图如图所示,则该几何体的体积等于( )A.1603 B .160 C .64+32 2D .60(2)某组合体的三视图如图所示,则该组合体的体积为________.解析 (1)由题意知该几何体是由一个直三棱柱和一个四棱锥组成的组合体,如图所示,其中直三棱柱的高为8-4=4,故V 直三棱柱=8×4=32,四棱锥的底面为边长为4的正方形,高为4,故V 四棱锥=13×16×4=643,故该几何体的体积V =V 直三棱柱+V 四棱锥=32+643=1603,故选A.(2)如图所示,该组合体由一个四棱锥和四分之一个球组成,球的半径为1,四棱锥的高为球的半径,四棱锥的底面为等腰梯形,上底为2,下底为1,高为32,所以该组合体的体积V =13×12×(2+1)×32×1+14×43π×13=34+π3.答案 (1)A (2)34+π31.(2017·太原一模)某几何体的三视图如图所示,则该几何体的表面积为( )A .6π+1 B.(24+2)π4+1C.(23+2)π4+12D.(23+2)π4+1答案 D解析 由几何体的三视图知,该几何体为一个组合体,其中下部是底面直径为2,高为2的圆柱,上部是底面直径为2,高为1的圆锥的四分之一,所以该几何体的表面积为4π+π+3π4+2π4+1=(23+2)π4+1,故选D. 2.(2017·安徽安师大附中、马鞍山二中测试)某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .30答案 C解析 由三视图知,该几何体是一个长方体的一半再截去一个三棱锥后得到的,如图所示,该几何体的体积V =12×4×3×5-13×12×4×3×(5-2)=24,故选C.3.(2017·宝鸡质检)已知A ,B ,C 三点都在以O 为球心的球面上,OA ,OB ,OC 两两垂直,三棱锥O —ABC 的体积为43,则球O 的表面积为( )A.16π3 B .16πC.32π3 D .32π答案 B解析 设球O 的半径为R ,以球心O 为顶点的三棱锥的三条侧棱两两垂直且都等于球的半径R ,另外一个侧面是边长为2R 的等边三角形.因此根据三棱锥的体积公式,得13×12R 2·R =43,∴R =2,∴S 球的表面积=4π×22=16π,故选B.4.(2017·昆明质检)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .24πB .30πC .42πD .60π答案 A解析 由三视图知,该几何体是半径为3的半球与底面半径为3、高为4的半圆锥的组合体,所以该几何体的体积V =12×43π×33+12×13π×32×4=24π,故选A.5.(2018·九江一模)如图,网格纸上小正方形的边长为1,粗线是一个棱锥的三视图,则此棱锥的表面积为( )A .6+42+2 3B .8+4 2C .6+6 2D .6+22+4 3 答案 A解析 直观图是四棱锥P —ABCD ,如图所示,S △P AB =S △P AD =S △PDC =12×2×2=2,S △PBC =12×22×22×sin 60°=23,S 四边形ABCD =22×2=42,因此所求棱锥的表面积为6+42+2 3.故选A.6.(2017·广州市高中毕业班综合测试)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P —ABC 为鳖臑,P A ⊥平面ABC ,P A =AB =2,AC =4,三棱锥P —ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π答案 C解析 方法一 将三棱锥P —ABC 放入长方体中,如图(1),三棱锥P —ABC 的外接球就是长方体的外接球.因为P A =AB =2,AC =4,△ABC 为直角三角形,所以BC =42-22=2 3.设外接球的半径为R ,由题意可得(2R )2=22+22+(23)2=20,故R 2=5,则球O 的表面积为4πR 2=20π,故选C.方法二 利用鳖臑的特点求解,如图(2),因为四个面都是直角三角形,所以PC 的中点到每一个顶点的距离都相等,即PC 的中点为球心O ,易得2R =PC =20,所以球O 的表面积为4πR 2=20π,故选C.7.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________. 答案7解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7.8.(2017·天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________. 答案 92π解析 设正方体棱长为a ,则6a 2=18,∴a = 3. 设球的半径为R ,则由题意知2R =a 2+a 2+a 2=3, ∴R =32.故球的体积V =43πR 3=43π×⎝⎛⎭⎫323=92π.9.(2017·南昌一模)如图所示,在直角梯形ABCD 中,AD ⊥DC ,AD ∥BC ,BC =2CD =2AD =2,若将该直角梯形绕BC 边旋转一周,则所得的几何体的表面积为______.答案 (2+3)π解析 根据题意可知,此旋转体的上半部分为圆锥(底面半径为1,高为1),下半部分为圆柱(底面半径为1,高为1),如图所示.则所得几何体的表面积为圆锥的侧面积、圆柱的侧面积以及圆柱的下底面积之和,即表面积为12·2π·1·12+12+2π·12+π·12=(2+3)π. 10.(2018·长沙质检)如图所示,一个底面半径为R 的圆柱形量杯中装有适量的水.若放入一个半径为r 的实心铁球,水面高度恰好升高r ,则Rr=________.答案233解析 由水面高度升高r ,得圆柱体积增加了πR 2r ,恰好是半径为r 的实心铁球的体积,因此有43πr 3=πR 2r .故R r =233.11.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥EACD 的体积为63,求该三棱锥的侧面积. (1)证明 因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,AC ⊂平面ABCD , 所以BE ⊥AC .而BD ∩BE =B ,BD ,BE ⊂平面BED , 所以AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)解 设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x2. 因为AE ⊥EC ,所以在Rt△AEC中,可得EG=3 2x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=2 2x.由已知得,三棱锥EACD的体积V三棱锥EACD=13×12AC·GD·BE=624x3=63,故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5.故三棱锥EACD的侧面积为3+2 5.12.(2018·贵阳质检)如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2,EB= 3.(1)求证:DE⊥平面ACD;(2)设AC=x,V(x)表示三棱锥B-ACE的体积,求函数V(x)的解析式及最大值.(1)证明∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE.∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC.∵AB是圆O的直径,∴BC⊥AC,且DC∩AC=C,DC,AC⊂平面ADC,∴BC⊥平面ADC.∵DE ∥BC ,∴DE ⊥平面ADC .(2)解 ∵DC ⊥平面ABC ,∴BE ⊥平面ABC .在Rt △ABE 中,AB =2,EB = 3.在Rt △ABC 中,∵AC =x ,∴BC =4-x 2(0<x <2),∴S △ABC =12AC ·BC =12x ·4-x 2, ∴V (x )=V 三棱锥E -ABC =36x ·4-x 2(0<x <2). ∵x 2(4-x 2)≤⎝⎛⎭⎫x 2+4-x 222=4,当且仅当x 2=4-x 2,即x =2时取等号,∴当x =2时,体积有最大值33.13.(2017·青岛模拟)如图,四棱锥P —ABCD 的底面ABCD 为平行四边形,NB =2PN ,则三棱锥N —P AC 与三棱锥D —P AC 的体积比为( )A .1∶2B .1∶8C .1∶6D .1∶3答案 D解析 设点P ,N 在平面ABCD 内的射影分别为点P ′,N ′,则PP ′⊥平面ABCD ,NN ′⊥平面ABCD ,所以PP ′∥NN ′.连接BP ′,则在△BPP ′中,由BN =2PN ,得NN ′PP ′=23.V 三棱锥N —P AC =V 三棱锥P —ABC -V 三棱锥N —ABC=13S △ABC ·PP ′-13S △ABC ·NN ′ =13S △ABC ·(PP ′-NN ′) =13S △ABC ·13PP ′ =19S △ABC ·PP ′, V 三棱锥D —P AC =V 三棱锥P —ACD =13S △ACD ·PP ′ =13S △ABC ·PP ′. ∴V 三棱锥N —P AC ∶V 三棱锥D —P AC =19∶13=1∶3. 14.(2017·唐山统考)在三棱锥P —ABC 中,P A ⊥平面ABC 且P A =2,△ABC 是边长为3的等边三角形,则该三棱锥外接球的表面积为( )A.4π3B .4πC .8πD .20π答案 C解析 由题意得,此三棱锥外接球即为以△ABC 为底面、以P A 为高的正三棱柱的外接球,因为△ABC 的外接圆半径r =32×3×23=1,外接球球心到△ABC 的外接圆圆心的距离d =1,所以外接球的半径R =r 2+d 2=2,所以三棱锥外接球的表面积S =4πR 2=8π,故选C.15.(2017·云南师范大学附属中学适应性考试)已知三棱锥O —ABC 的顶点A ,B ,C 都在半径为2的球面上,O 是球心,∠AOB =120°,当△AOC 与△BOC 的面积之和最大时,三棱锥O —ABC 的体积为( )A.32B.233C.23D.13 答案 B解析 设球O 的半径为R ,因为S △AOC +S △BOC =12R 2(sin ∠AOC +sin ∠BOC ), 所以当∠AOC =∠BOC =90°时,S △AOC +S △BOC 取得最大值,此时OA ⊥OC .OB ⊥OC ,OB ∩OA =O ,OA ,OB ⊂平面AOB ,所以OC ⊥平面AOB ,所以V 三棱锥O —ABC =V 三棱锥C —OAB=13OC ·12OA ·OB sin ∠AOB =16R 3sin ∠AOB =233, 故选B.16.(2016·浙江)如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体P —BCD 的体积的最大值是________.答案 12解析 设PD =DA =x ,在△ABC 中,AB =BC =2,∠ABC =120°,∴AC =AB 2+BC 2-2·AB ·BC ·cos ∠ABC =4+4-2×2×2×cos 120°=23,∴CD =23-x ,且∠ACB =12(180°-120°)=30°, ∴S △BCD =12BC ·DC ·sin ∠ACB =12×2×(23-x )×12=12(23-x ). 要使四面体体积最大,当且仅当点P 到平面BCD 的距离最大,而P 到平面BCD 的最大距离为x .则V 四面体P —BCD =13×12(23-x )x =16[-(x -3)2+3], 由于0<x <23,故当x =3时,V 四面体P —BCD 取最大值为16×3=12.。
2019版高考数学大一轮复习人教B版全国通用文档:第八章 立体几何与空间向量8.4
§8.4空间中的平行关系1.平行直线平行公理:过直线外一点有且只有一条直线和已知直线平行.基本性质4:平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边与另一个角的两边分别对应平行,并且方向相同,那么这两个角相等.2.直线与平面平行3.平面与平面平行知识拓展 重要结论:(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b . (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( × ) (2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.( × ) (3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( × ) (4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( √ )(5)若直线a与平面α内无数条直线平行,则a∥α.(×)(6)若α∥β,直线a∥α,则a∥β.(×)题组二教材改编2.下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α答案 D解析A中,a可以在过b的平面内;B中,a与α内的直线也可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知b∥α,正确.3.如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.答案平行解析连接BD,设BD∩AC=O,连接EO,在△BDD1中,E为DD1的中点,O为BD的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE,所以BD1∥平面ACE.题组三易错自纠4.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中() A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线答案 A解析当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.5.设α,β,γ为三个不同的平面,a,b为直线,给出下列条件:①a⊂α,b⊂β,a∥β,b∥α;②α∥γ,β∥γ;③α⊥γ,β⊥γ;④a⊥α,b⊥β,a∥b.其中能推出α∥β的条件是________.(填上所有正确的序号)答案②④解析在条件①或条件③中,α∥β或α与β相交;由α∥γ,β∥γ⇒α∥β,条件②满足;在④中,a⊥α,a∥b⇒b⊥α,又b⊥β,从而α∥β,④满足.6.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.答案平行四边形解析 ∵平面ABFE ∥平面DCGH ,又平面EFGH ∩平面ABFE =EF ,平面EFGH ∩平面DCGH =HG , ∴EF ∥HG .同理EH ∥FG , ∴四边形EFGH 是平行四边形.题型一 直线与平面平行的判定与性质命题点1 直线与平面平行的判定典例 如图,在四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面P AD . 证明 (1)连接EC ,∵AD ∥BC ,BC =12AD ,∴BC綊AE,∴四边形ABCE是平行四边形,∴O为AC的中点.又F是PC的中点,∴FO∥AP,又FO⊂平面BEF,AP⊄平面BEF,∴AP∥平面BEF.(2)连接FH,OH,∵F,H分别是PC,CD的中点,∴FH∥PD,又PD⊂平面P AD,FH⊄平面P AD,∴FH∥平面P AD.又O是BE的中点,H是CD的中点,∴OH∥AD,又AD⊂平面P AD,OH⊄平面P AD,∴OH∥平面P AD.又FH∩OH=H,∴平面OHF∥平面P AD.又GH⊂平面OHF,∴GH∥平面P AD.命题点2直线与平面平行的性质典例(2017·长沙调研)如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为217.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(1)证明:GH∥EF;(2)若EB=2,求四边形GEFH的面积.(1)证明 因为BC ∥平面GEFH ,BC ⊂平面PBC , 且平面PBC ∩平面GEFH =GH ,所以GH ∥BC . 同理可证EF ∥BC ,因此GH ∥EF .(2)解 如图,连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为P A =PC ,O 是AC 的中点,所以PO ⊥AC , 同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD ⊂底面ABCD , 所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD , 且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,且GK ⊥底面ABCD , 从而GK ⊥EF .所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4, 从而KB =14DB =12OB ,即K 为OB 的中点.再由PO ∥GK 得GK =12PO ,即G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6, 所以GK =3.故四边形GEFH 的面积S =GH +EF 2·GK =4+82×3=18.思维升华 判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α). (3)利用面面平行的性质(α∥β,a ⊂α⇒a ∥β).(4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).跟踪训练 (2016·全国Ⅲ)如图,四棱锥P-ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面P AB ; (2)求四面体N-BCM 的体积. (1)证明 由已知得AM =23AD =2.如图,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM , 所以四边形AMNT 为平行四边形, 于是MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)解 因为P A ⊥平面ABCD ,N 为PC 的中点, 所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5. 由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体NBCM 的体积 V 四面体N-BCM =13×S △BCM ×P A 2=453.题型二 平面与平面平行的判定与性质典例 如图所示,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.又∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,A1E,EF⊂平面EF A,∴平面EF A1∥平面BCHG.引申探究在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明如图所示,连接A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵A1B⊂平面A1BD1,DM⊄平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1.又∵DC1∩DM=D,DC1,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.思维升华证明面面平行的方法(1)面面平行的定义.(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用垂直于同一条直线的两个平面平行.(4)两个平面同时平行于第三个平面,那么这两个平面平行.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.跟踪训练(2018·唐山质检)如图所示,四边形ABCD与四边形ADEF都为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明(1)如图所示,设DF与GN交于点O,连接AE,则AE必过点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.因为BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN.因为DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.因为M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN.因为BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG.因为DE∩BD=D,BD,DE⊂平面BDE,所以平面BDE∥平面MNG.题型三平行关系的综合应用典例如图所示,在三棱柱ABC-A1B1C1中,D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,请确定点E的位置;若不存在,请说明理由.解方法一存在点E,且E为AB的中点时,DE∥平面AB1C1.下面给出证明:如图,取BB1的中点F,连接DF,则DF∥B1C1,∵AB的中点为E,连接EF,DE,则EF∥AB1,B1C1∩AB1=B1,∴平面DEF∥平面AB1C1.而DE⊂平面DEF,∴DE∥平面AB1C1.方法二假设在棱AB上存在点E,使得DE∥平面AB1C1,如图,取BB1的中点F,连接DF,EF,DE,则DF∥B1C1,又DF⊄平面AB1C1,B1C1⊂平面AB1C1,∴DF∥平面AB1C1,又DE∥平面AB1C1,DE∩DF=D,∴平面DEF∥平面AB1C1,∵EF⊂平面DEF,∴EF∥平面AB1C1,又∵EF⊂平面ABB1,平面ABB1∩平面AB1C1=AB1,∴EF∥AB1,∵点F是BB1的中点,∴点E是AB的中点.即当点E是AB的中点时,DE∥平面AB1C1.思维升华利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.跟踪训练如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.(1)求证:AB ∥平面EFGH ,CD ∥平面EFGH ;(2)若AB =4,CD =6,求四边形EFGH 周长的取值范围. (1)证明 ∵四边形EFGH 为平行四边形, ∴EF ∥HG .∵HG ⊂平面ABD ,EF ⊄平面ABD , ∴EF ∥平面ABD .又∵EF ⊂平面ABC ,平面ABD ∩平面ABC =AB , ∴EF ∥AB ,又∵AB ⊄平面EFGH ,EF ⊂平面EFGH , ∴AB ∥平面EFGH .同理可证,CD ∥平面EFGH . (2)解 设EF =x (0<x <4), ∵EF ∥AB ,FG ∥CD ,∴CF CB =x 4,则FG 6=BF BC =BC -CF BC =1-x 4. ∴FG =6-32x .∵四边形EFGH 为平行四边形,∴四边形EFGH 的周长l =2⎝⎛⎭⎫x +6-32x =12-x . 又∵0<x <4,∴8<l <12,即四边形EFGH 周长的取值范围是(8,12).1.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α与直线l至少有两个公共点D.α内的直线与l都相交答案 B解析因为l⊄α,直线l不平行于平面α,所以直线l只能与平面α相交,于是直线l与平面α只有一个公共点,所以平面α内不存在与l平行的直线.2.已知直线a和平面α,那么a∥α的一个充分条件是()A.存在一条直线b,a∥b且b⊂αB.存在一条直线b,a⊥b且b⊥αC.存在一个平面β,a⊂β且α∥βD.存在一个平面β,a∥β且α∥β答案 C解析在A,B,D中,均有可能a⊂α,错误;在C中,两平面平行,则其中一个平面内的任一条直线都平行于另一平面,故C正确.3.(2018·攀枝花质检)平面α∥平面β,点A,C∈α,点B,D∈β,则直线AC∥直线BD的充要条件是()A.AB∥CD B.AD∥CBC.AB与CD相交D.A,B,C,D四点共面答案 D解析充分性:A,B,C,D四点共面,由平面与平面平行的性质知AC∥BD.必要性显然成立.4.一条直线l上有相异的三个点A,B,C到平面α的距离相等,那么直线l与平面α的位置关系是()A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α答案 D解析当l∥α时,直线l上任意点到α的距离都相等;当l⊂α时,直线l上所有的点到α的距离都是0;当l⊥α时,直线l上有两个点到α的距离相等;当l与α斜交时,也只能有两个点到α的距离相等.故选D.5.对于空间中的两条直线m,n和一个平面α,下列命题中的真命题是()A.若m∥α,n∥α,则m∥n B.若m∥α,n⊂α,则m∥nC.若m∥α,n⊥α,则m∥n D.若m⊥α,n⊥α,则m∥n答案 D解析对A,直线m,n可能平行、异面或相交,故A错误;对B,直线m与n可能平行,也可能异面,故B错误;对C,m与n垂直而非平行,故C错误;对D,垂直于同一平面的两直线平行,故D正确.6.如图,L,M,N分别为正方体对应棱的中点,则平面LMN与平面PQR的位置关系是()A.垂直B.相交不垂直C.平行D.重合答案 C解析如图,分别取另三条棱的中点A,B,C,将平面LMN延展为平面正六边形AMBNCL,因为PQ∥AL,PR∥AM,且PQ与PR相交,AL与AM相交,所以平面PQR∥平面AMBNCL,即平面LMN∥平面PQR.7.(2018·重庆模拟)在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.答案平面ABD与平面ABC解析如图,取CD的中点E,连接AE,BE,则EM∶MA=1∶2,EN∶BN=1∶2,所以MN∥AB.所以MN∥平面ABD,MN∥平面ABC.8.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有________.答案①或③解析由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.9.(2017·承德模拟)如图所示,在正四棱柱ABCD—A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件______时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)答案点M在线段FH上(或点M与点H重合)解析连接HN,FH,FN,则FH∥DD1,HN∥BD,∴平面FHN∥平面B1BDD1,只需M∈FH,则MN⊂平面FHN,∴MN∥平面B1BDD1.10.(2018·海口调研)将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是________.(填序号)答案①③解析由线面垂直的性质定理可知①是真命题,且垂直于同一直线的两平面平行也是真命题,故①是“可换命题”;因为垂直于同一平面的两平面可能平行或相交,所以②是假命题,不是“可换命题”;由基本性质4可知③是真命题,且平行于同一平面的两平面平行也是真命题,故③是“可换命题”;因为平行于同一平面的两条直线可能平行、相交或异面,故④是假命题,故④不是“可换命题”.11.(2017·南昌模拟)如图,在四棱锥P—ABCD中,平面P AD⊥平面ABCD,底面ABCD为梯形,AB∥CD,AB=2DC=23,且△P AD与△ABD均为正三角形,E为AD的中点,G 为△P AD的重心.(1)求证:GF ∥平面PDC ; (2)求三棱锥G —PCD 的体积.(1)证明 方法一 连接AG 并延长交PD 于点H ,连接CH .由梯形ABCD 中AB ∥CD 且AB =2DC 知,AF FC =21.又E 为AD 的中点,G 为△P AD 的重心, ∴AG GH =21. 在△AHC 中,AG GH =AF FC =21,故GF ∥HC .又HC ⊂平面PCD ,GF ⊄平面PCD , ∴GF ∥平面PDC .方法二 过G 作GN ∥AD 交PD 于N ,过F 作FM ∥AD 交CD 于M ,连接MN ,∵G 为△P AD 的重心,GN ED =PG PE =23, ∴GN =23ED =233. 又ABCD 为梯形,AB ∥CD , CD AB =12,∴CF AF =12, ∴MF AD =13,∴MF =233,∴GN =FM . 又由所作GN ∥AD ,FM ∥AD ,得GN ∥FM ,∴四边形GNMF 为平行四边形.∴GF ∥MN ,又∵GF ⊄平面PCD ,MN ⊂平面PCD ,∴GF ∥平面PDC .方法三 过G 作GK ∥PD 交AD 于K ,连接KF ,GK ,由△P AD 为正三角形,E 为AD 的中点,G 为△P AD 的重心,得DK =23DE , ∴DK =13AD , 又由梯形ABCD 中AB ∥CD ,且AB =2DC ,知AF FC =21,即FC =13AC , ∴在△ADC 中,KF ∥CD ,又∵GK ∩KF =K ,PD ∩CD =D ,∴平面GKF ∥平面PDC ,又GF ⊂平面GKF ,∴GF ∥平面PDC .(2)解 方法一 由平面P AD ⊥平面ABCD ,△P AD 与△ABD 均为正三角形,E 为AD 的中点,知PE ⊥AD ,BE ⊥AD ,又∵平面P AD ∩平面ABCD =AD ,PE ⊂平面P AD ,∴PE ⊥平面ABCD ,且PE =3,由(1)知GF ∥平面PDC ,∴V 三棱锥G —PCD =V 三棱锥F —PCD =V 三棱锥P —CDF=13×PE ×S △CDF . 又由梯形ABCD 中AB ∥CD ,且AB =2DC =23,知DF =13BD =233, 又△ABD 为正三角形,得∠CDF =∠ABD =60°,∴S △CDF =12×CD ×DF ×sin ∠BDC =32, 得V 三棱锥P —CDF =13×PE ×S △CDF =32, ∴三棱锥G —PCD 的体积为32. 方法二 由平面P AD ⊥平面ABCD ,△P AD 与△ABD 均为正三角形,E 为AD 的中点,知 PE ⊥AD ,BE ⊥AD ,又∵平面P AD ∩平面ABCD =AD ,PE ⊂平面P AD ,∴PE ⊥平面ABCD ,且PE =3,连接CE ,∵PG =23PE , ∴V 三棱锥G —PCD =23V 三棱锥E —PCD =23V 三棱锥P —CDE=23×13×PE ×S △CDE , 又△ABD 为正三角形,得∠EDC =120°,得S △CDE =12×CD ×DE ×sin ∠EDC =334. ∴V 三棱锥G —PCD =23×13×PE ×S △CDE =23×13×3×334=32, ∴三棱锥G —PCD 的体积为32. 12.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC =PD =2,E 为PC 的中点,CB =3CG .(1)求证:PC ⊥BC ;(2)AD 边上是否存在一点M ,使得P A ∥平面MEG ?若存在,求出AM 的长;若不存在,请说明理由.(1)证明 因为PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD ⊥BC .因为四边形ABCD 是正方形,所以BC ⊥CD .又PD ∩CD =D ,PD ,CD ⊂平面PCD ,所以BC ⊥平面PCD .因为PC ⊂平面PDC ,所以PC ⊥BC .(2)解 连接AC ,BD 交于点O ,连接EO ,GO ,延长GO 交AD 于点M ,连接EM ,则P A ∥平面MEG .证明如下:因为E 为PC 的中点,O 是AC 的中点,所以EO ∥P A .因为EO ⊂平面MEG ,P A ⊄平面MEG ,所以P A ∥平面MEG .因为△OCG ≌△OAM ,所以AM =CG =23, 所以AM 的长为23.13.(2017·山西太原五中月考)过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条.答案 6解析 过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线只可能落在平面DEFG 中(其中D ,E ,F ,G 分别为AC ,BC ,B 1C 1,A 1C 1的中点).易知经过D ,E ,F ,G 中任意两点的直线共有6条. 14.(2018届桂林模拟)在正四棱柱ABCD —A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,若存在实数λ,使得CQ =λCC 1时,平面D 1BQ ∥平面P AO ,则λ=________.答案 12解析 当Q 为CC1的中点时,平面D 1BQ ∥平面P AO .理由如下:当Q为CC1的中点时,∵Q为CC1的中点,P为DD1的中点,∴QB∥P A.∵P,O为DD1,DB的中点,∴D1B∥PO.又PO∩P A=P,D1B∩QB=B,D1B∥平面P AO,QB∥平面P AO,∴平面D1BQ∥平面P AO.15.如图所示,侧棱与底面垂直,且底面为正方形的四棱柱ABCD—A1B1C1D1中,AA1=2,AB=1,M,N分别在AD1,BC上移动,始终保持MN∥平面DCC1D1,设BN=x,MN=y,则函数y=f(x)的图象大致是()答案 C解析过M作MQ∥DD1,交AD于点Q,连接QN.∵MN ∥平面DCC 1D 1,MQ ∥平面DCC 1D 1,MN ∩MQ =M ,∴平面MNQ ∥平面DCC 1D 1.又平面ABCD 与平面MNQ 和DCC 1D 1分别交于QN 和DC ,∴NQ ∥DC ,可得QN =CD =AB =1,AQ =BN =x ,∵MQ AQ =DD 1AD=2,∴MQ =2x . 在Rt △MQN 中,MN 2=MQ 2+QN 2,即y 2=4x 2+1,∴y 2-4x 2=1(x ≥0,y ≥1),∴函数y =f (x )的图象为焦点在y 轴上的双曲线上支的一部分.故选C.16.(2018·哈尔滨模拟)在三棱锥S -ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =15,平面DEFH 分别与AB ,BC ,SC ,SA 交于点D ,E ,F ,H .D ,E 分别是AB ,BC 的中点,如果直线SB ∥平面DEFH ,那么四边形DEFH 的面积为________.答案 452解析 如图,取AC 的中点G ,连接SG ,BG .易知SG ⊥AC ,BG ⊥AC ,SG ∩BG =G ,SG ,BG ⊂平面SGB ,故AC ⊥平面SGB ,所以AC ⊥SB .因为SB ∥平面DEFH ,SB ⊂平面SAB ,平面SAB ∩平面DEFH =HD ,则SB ∥HD .同理SB ∥FE .又D ,E 分别为AB ,BC 的中点,则H ,F 也为AS ,SC 的中点,从而得HF 綊12AC 綊DE , 所以四边形DEFH 为平行四边形.又AC ⊥SB ,SB ∥HD ,DE ∥AC ,所以DE ⊥HD , 所以四边形DEFH 为矩形,其面积S =HF ·HD =⎝⎛⎭⎫12AC ·⎝⎛⎭⎫12SB =452.。
高考数学一轮复习 第八章 立体几何与空间向量 高考专题突破四 高考中的立体几何问题教学案 理
高考专题突破四 高考中的立体几何问题空间角的求法命题点1 求线线角例1 (2019·安徽知名示范高中联合质检)若在三棱柱ABC -A 1B 1C 1中,∠A 1AC =∠BAC =60°,平面A 1ACC 1⊥平面ABC ,AA 1=AC =AB ,则异面直线AC 1与A 1B 所成角的余弦值为________. 答案 24解析 方法一 令M 为AC 的中点,连接MB ,MA 1, 由题意知△ABC 是等边三角形,所以BM ⊥AC , 同理,A 1M ⊥AC ,因为平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,BM ⊂平面ABC ,所以BM ⊥平面A 1ACC 1,因为A 1M ⊂平面A 1ACC 1,所以BM ⊥A 1M ,所以AC ,BM ,A 1M 两两垂直,以M 为原点,MA →,MB →,MA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系. 设AA 1=AC =AB =2,则A (1,0,0),B (0,3,0),A 1(0,0,3),C 1(-2,0,3),所以AC 1→=(-3,0,3),A 1B →=(0,3,-3), 所以cos 〈AC 1→,A 1B →〉=-323×6=-24,故异面直线AC 1与A 1B 所成角的余弦值为24.方法二 如图,在平面ABC ,平面A 1B 1C 1中分别取点D ,D 1,连接BD ,CD ,B 1D 1,C 1D 1,使得四边形ABDC ,A 1B 1D 1C 1为平行四边形,连接DD 1,BD 1,则AB =C 1D 1,且AB ∥C 1D 1,所以AC 1∥BD 1,故∠A 1BD 1或其补角为异面直线AC 1与A 1B 所成的角.连接A 1D 1,过点A 1作A 1M ⊥AC 于点M ,连接BM ,设AA 1=2,由∠A 1AM =∠BAC =60°,得AM =1,BM =3,A 1M =3, 因为平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,A 1M ⊂平面A 1ACC 1,所以A 1M ⊥平面ABC ,又BM ⊂平面ABC , 所以A 1M ⊥BM ,所以A 1B =6,在菱形A 1ACC 1中,可求得AC 1=23=BD 1, 同理,在菱形A 1B 1D 1C 1中,求得A 1D 1=23,所以cos∠A 1BD 1=A 1B 2+BD 21-A 1D 212A 1B ·BD 1=6+12-1226×23=24,所以异面直线AC 1与A 1B 所成角的余弦值为24.思维升华 (1)求异面直线所成角的思路: ①选好基底或建立空间直角坐标系. ②求出两直线的方向向量v 1,v 2.③代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解.(2)两异面直线所成角的关注点: 两异面直线所成角的范围是θ∈⎝ ⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.跟踪训练1 (2019·龙岩月考)若正四棱柱ABCD -A 1B 1C 1D 1的体积为3,AB =1,则直线AB 1与CD 1所成的角为( ) A .30°B.45°C.60°D.90° 答案 C解析 ∵正四棱柱ABCD -A 1B 1C 1D 1的体积为3,AB =1,∴AA 1=3, 以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴,建立空间直角坐标系,则A (1,0,0),B 1(1,1,3),C (0,1,0),D 1(0,0,3), AB1→=(0,1,3),CD 1→=(0,-1,3), 设直线AB 1与CD 1所成的角为θ, 则cos θ=|AB 1→·CD 1→||AB 1→|·|CD 1→|=24·4=12,又0°<θ≤90°,∴θ=60°,∴直线AB 1与CD 1所成的角为60°.故选C. 命题点2 求线面角例2 (2018·浙江)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.方法一 (1)证明 由AB =2,AA 1=4,BB 1=2,AA 1⊥AB ,BB 1⊥AB ,得AB 1=A 1B 1=22,所以A 1B 21+AB 21=AA 21, 故AB 1⊥A 1B 1.由BC =2,BB 1=2,CC 1=1,BB 1⊥BC ,CC 1⊥BC , 得B 1C 1= 5.由AB =BC =2,∠ABC =120°,得AC =2 3. 由CC 1⊥AC ,得AC 1=13, 所以AB 21+B 1C 21=AC 21, 故AB 1⊥B 1C 1.又因为A 1B 1∩B 1C 1=B 1,A 1B 1,B 1C 1⊂平面A 1B 1C 1, 所以AB 1⊥平面A 1B 1C 1.(2)解 如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D , 连接AD .由AB 1⊥平面A 1B 1C 1, 得平面A 1B 1C 1⊥平面ABB 1.由C 1D ⊥A 1B 1,平面A 1B 1C 1∩平面ABB 1=A 1B 1,C 1D ⊂平面A 1B 1C 1,得C 1D ⊥平面ABB 1.所以∠C 1AD 即为AC 1与平面ABB 1所成的角. 由B 1C 1=5,A 1B 1=22,A 1C 1=21, 得cos∠C 1A 1B 1=427,sin∠C 1A 1B 1=77, 所以C 1D =3,故sin∠C 1AD =C 1D AC 1=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913.方法二 (1)证明 如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系.由题意知各点坐标如下:A (0,-3,0),B (1,0,0),A 1(0,-3,4),B 1(1,0,2),C 1(0,3,1).因此AB 1→=(1,3,2),A 1B 1——→=(1,3,-2),A 1C 1——→=(0,23,-3).由AB 1→·A 1B 1——→=0,得AB 1⊥A 1B 1. 由AB 1→·A 1C 1——→=0,得AB 1⊥A 1C 1.又A 1B 1∩A 1C 1=A 1,A 1B 1,A 1C 1⊂平面A 1B 1C 1, 所以AB 1⊥平面A 1B 1C 1.(2)解 设直线AC 1与平面ABB 1所成的角为θ. 由(1)可知AC 1→=(0,23,1),AB →=(1,3,0),BB 1→=(0,0,2). 设平面ABB 1的一个法向量为n =(x ,y ,z ). 由⎩⎨⎧n ·AB →=0,n ·BB1→=0,得⎩⎪⎨⎪⎧x +3y =0,2z =0,可取n =(-3,1,0).所以sin θ=|cos 〈AC 1→,n 〉|=|AC 1→·n ||AC 1→||n |=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913.思维升华 (1)利用向量求直线与平面所成的角有两个思路:①分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).②通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.(2)若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l ·n ||l ||n |.跟踪训练2 如图,已知三棱柱ABC -A 1B 1C 1中,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.方法一 (1)证明 如图,连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F , 又A 1E ,A 1F ⊂平面A 1EF ,A 1E ∩A 1F =A 1, 所以BC ⊥平面A 1EF .又EF ⊂平面A 1EF ,因此EF ⊥BC .(2)解 取BC 的中点G ,连接EG ,GF , 则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.连接A 1G 交EF 于O ,由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt△A 1EG 中,A 1E =23,EG = 3. 由于O 为A 1G 的中点,故EO =OG =A 1G2=152,所以cos∠EOG =EO 2+OG 2-EG 22EO ·OG =35.因此,直线EF 与平面A 1BC 所成角的余弦值是35.方法二 (1)证明 连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点, 所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .如图,以E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系.不妨设AC =4,则A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝⎛⎭⎪⎪⎫32,32,23,C (0,2,0). 因此,EF →=⎝ ⎛⎭⎪⎪⎫32,32,23,BC →=(-3,1,0).由EF →·BC→=0得EF ⊥BC . (2)解 设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC →=(-3,1,0),A 1C →=(0,2,-23). 设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎨⎧BC →·n =0,A 1C →·n =0,得⎩⎪⎨⎪⎧-3x +y =0,y -3z =0.取n =(1,3,1),故sin θ=|cos 〈EF →,n 〉|=|EF→·n ||EF →|·|n |=45.因此,直线EF 与平面A 1BC 所成角的余弦值为35.命题点3 求二面角例3 如图,在四棱锥A -BCDE 中,平面BCDE ⊥平面ABC ,BE ⊥EC ,BC =2,AB =4,∠ABC =60°.(1)求证:BE ⊥平面ACE ;(2)若直线CE 与平面ABC 所成的角为45°,求二面角E -AB -C 的余弦值.(1)证明 在△ACB 中,由余弦定理得cos∠ABC =AB 2+BC 2-AC 22AB ·BC =12,解得AC =23,所以AC 2+BC 2=AB 2,所以AC ⊥BC .又因为平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,AC ⊂平面ABC ,所以AC ⊥平面BCDE .又BE ⊂平面BCDE ,所以AC ⊥BE .又BE ⊥EC ,AC ,CE ⊂平面ACE ,且AC ∩CE =C ,所以BE ⊥平面ACE .(2)解 方法一 因为直线CE 与平面ABC 所成的角为45°,平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,所以∠BCE =45°,所以△EBC 为等腰直角三角形.取BC 的中点F ,连接EF ,过点F 作FG ⊥AB 于点G ,连接EG , 则∠EGF 为二面角E -AB -C 的平面角. 易得EF =BF =1,FG =32.在Rt△EFG 中,由勾股定理,得EG =EF 2+FG 2=72,所以cos∠EGF =FG EG =217, 所以二面角E -AB -C 的余弦值为217.方法二 因为直线CE 与平面ABC 所成的角为45°,平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,所以∠BCE =45°,所以△EBC 为等腰直角三角形. 记BC 的中点为O ,连接OE ,则OE ⊥平面ABC ,以O 为坐标原点,分别以OB ,OE 所在直线为x 轴、z 轴,建立如图所示的空间直角坐标系,则A (-1,23,0),B (1,0,0),E (0,0,1), 所以BA →=(-2,23,0),BE →=(-1,0,1). 设平面ABE 的法向量m =(x ,y ,z ),则⎩⎨⎧BA →·m =0,BE →·m =0,即⎩⎪⎨⎪⎧-2x +23y =0,-x +z =0,令x =3,则m =(3,1,3)为平面ABE 的一个法向量. 易知平面ABC 的一个法向量为OE →=(0,0,1), 所以cos 〈m ,OE →〉=m ·OE→|m |·|OE →|=37=217,易知二面角E -AB -C 为锐角,所以二面角E -AB -C 的余弦值为217.思维升华 (1)求二面角最常用的方法就是分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.(2)利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量.②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解. 跟踪训练3 (2020·湖北宜昌一中模拟)如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点. (1)证明:BE ⊥PD ;(2)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -D 的余弦值.解 依题意,以点A 为原点,以AB ,AD ,AP 为轴建立空间直角坐标系如图,可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2). 由E 为棱PC 的中点,得E (1,1,1).(1)证明 向量BE →=(0,1,1),PD →=(0,2,-2), 故BE →·PD →=0,所以BE →⊥PD →,所以BE ⊥PD .(2)解 BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0),由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1,故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ), 由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ)=0,λ=34,即BF →=⎝ ⎛⎭⎪⎫-12,12,32.设n 1=(x ,y ,z )为平面FAB 的法向量,则⎩⎨⎧n 1·AB →=0,n 1·BF →=0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0,不妨令z =-1,可得n 1=(0,3,-1)为平面FAB 的一个法向量, 取平面ABD 的法向量n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-110=-1010,又因为二面角F -AB -D 为锐二面角,所以二面角F-AB-D的余弦值为10 10.立体几何中的探索性问题例4 (2019·淄博模拟)已知正方形的边长为4,E,F分别为AD,BC的中点,以EF为棱将正方形ABCD折成如图所示的60°的二面角,点M在线段AB上.(1)若M为AB的中点,且直线MF与由A,D,E三点所确定平面的交点为O,试确定点O的位置,并证明直线OD∥平面EMC;(2)是否存在点M,使得直线DE与平面EMC所成的角为60°;若存在,求此时二面角M-EC-F的余弦值,若不存在,说明理由.解(1)因为直线MF⊂平面ABFE,故点O在平面ABFE内也在平面ADE内,所以点O在平面ABFE与平面ADE的交线上(如图所示),因为AO∥BF,M为AB的中点,所以△OAM≌△FBM,所以OM=MF,AO=BF,所以点O在EA的延长线上,且AO=2,连接DF交EC于N,因为四边形CDEF为矩形,所以N是EC的中点,连接MN,因为MN为△DOF的中位线,所以MN∥OD,又因为MN⊂平面EMC,OD⊄平面EMC,所以直线OD∥平面EMC.(2)由已知可得,EF⊥AE,EF⊥DE,AE∩DE=E,所以EF⊥平面ADE,所以平面ABFE⊥平面ADE,取AE的中点H为坐标原点,以AH,DH所在直线分别为x轴,z轴,建立如图所示的空间直角坐标系,所以E (-1,0,0),D (0,0,3),C (0,4,3),F (-1,4,0), 所以ED →=(1,0,3),EC →=(1,4,3), 设M (1,t,0)(0≤t ≤4),则EM →=(2,t,0), 设平面EMC 的法向量m =(x ,y ,z ), 则⎩⎨⎧m ·EM →=0,m ·EC→=0⇒⎩⎪⎨⎪⎧2x +ty =0,x +4y +3z =0,取y =-2,则x =t ,z =8-t 3,所以m =⎝ ⎛⎭⎪⎪⎫t ,-2,8-t 3, 因为DE 与平面EMC 所成的角为60°, 所以82t 2+4+8-t 23=32, 所以23t 2-4t +19=32,所以t 2-4t +3=0,解得t =1或t =3,所以存在点M ,使得直线DE 与平面EMC 所成的角为60°, 取ED 的中点Q ,因为EF ⊥平面ADE ,AQ ⊂平面ADE , 所以AQ ⊥EF ,又因为AQ ⊥DE ,DE ∩EF =E ,DE ,EF ⊂平面CEF , 所以AQ ⊥平面CEF ,则QA →为平面CEF 的法向量,因为Q ⎝⎛⎭⎪⎪⎫-12,0,32,A (1,0,0), 所以QA →=⎝ ⎛⎭⎪⎪⎫32,0,-32,m =⎝⎛⎭⎪⎪⎫t ,-2,8-t 3, 设二面角M -EC -F 的大小为θ,所以|cos θ|=|QA →·m ||QA →|·|m |=|2t -4|3t 2+4+8-t23=|t -2|t 2-4t +19,因为当t =2时,cos θ=0,平面EMC ⊥平面CDEF , 所以当t =1时,θ为钝角,所以cos θ=-14.当t =3时,θ为锐角,所以cos θ=14.思维升华 (1)对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.(2)平面图形的翻折问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.跟踪训练4 (2019·天津市南开区南开中学月考)如图1,在边长为2的菱形ABCD 中,∠BAD =60°,DE ⊥AB 于点E ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥BE ,如图2. (1)求证:A 1E ⊥平面BCDE ;(2)求二面角E -A 1D -B 的余弦值;(3)在线段BD 上是否存在点P ,使平面A 1EP ⊥平面A 1BD ?若存在,求BPBD的值;若不存在,说明理由. (1)证明 因为A 1D ⊥BE ,DE ⊥BE ,A 1D ∩DE =D ,A 1D ,DE ⊂平面A 1DE ,所以BE ⊥平面A 1DE ,因为A 1E ⊂平面A 1DE , 所以A 1E ⊥BE ,又因为A 1E ⊥DE ,BE ∩DE =E ,BE ,DE ⊂平面BCDE , 所以A 1E ⊥平面BCDE .(2)解 以E 为原点,分别以EB ,ED ,EA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则B (1,0,0),D (0,3,0),A 1(0,0,1), 所以BA 1→=(-1,0,1),BD →=(-1,3,0), 设平面A 1BD 的法向量n =(x ,y ,z ), 由⎩⎨⎧n ·BA 1→=-x +z =0,n ·BD→=-x +3y =0得⎩⎪⎨⎪⎧x =z ,x =3y ,令y =1,得n =(3,1,3), 因为BE ⊥平面A 1DE ,所以平面A 1DE 的法向量EB→=(1,0,0),cos 〈n ,EB →〉=n ·EB→|n |·|EB →|=37=217,因为所求二面角为锐角,所以二面角E -A 1D -B 的余弦值为217. (3)解 假设在线段BD 上存在一点P ,使得平面A 1EP ⊥平面A 1BD , 设P (x ,y ,z ),BP →=λBD→(0≤λ≤1),则(x -1,y ,z )=λ(-1,3,0),所以P (1-λ,3λ,0), 所以EA 1→=(0,0,1),EP →=(1-λ,3λ,0),设平面A 1EP 的法向量m =(x 1,y 1,z 1), 由⎩⎨⎧m ·EA1→=z 1=0,m ·EP→=1-λx 1+3λy 1=0,得⎩⎪⎨⎪⎧z 1=0,1-λx 1=-3λy 1,令x 1=3λ,得m =(3λ,λ-1,0), 因为平面A 1EP ⊥平面A 1BD ,所以m ·n =3λ+λ-1=0,解得λ=14∈[0,1],所以在线段BD 上存在点P ,使得平面A 1EP ⊥平面A 1BD ,且BP BD =14.例 (12分)(2019·全国Ⅰ)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求二面角A -MA 1-N 的正弦值. (1)证明 连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .[1分]又因为N 为A 1D 的中点,所以ND =12A 1D .[2分]由题设知A 1B 1∥DC 且A 1B 1=DC ,可得B 1C ∥A 1D 且B 1C =A 1D ,故ME ∥ND 且ME =ND ,因此四边形MNDE 为平行四边形,[3分] 所以MN ∥ED .[4分]又MN ⊄平面C 1DE ,ED ⊂平面C 1DE ,[5分] 所以MN ∥平面C 1DE .[6分](2)解 由已知可得DE ⊥DA ,以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,[7分]则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).[8分]设m =(x ,y ,z )为平面A 1MA 的一个法向量,则 ⎩⎨⎧ m ·A 1M →=0,m ·A 1A →=0,所以⎩⎪⎨⎪⎧-x +3y -2z =0,-4z =0,可得m =(3,1,0).[9分]设n =(p ,q ,r )为平面A 1MN 的一个法向量,则⎩⎨⎧n ·MN →=0,n ·A 1N →=0,所以⎩⎪⎨⎪⎧-3q =0,-p -2r =0,可取n =(2,0,-1).[10分]于是cos 〈m ,n 〉=m ·n |m ||n |=232×5=155,[11分]所以二面角A -MA 1-N 的正弦值为105.[12分]利用向量求空间角的步骤第一步:建立空间直角坐标系,确定点的坐标;第二步:求向量(直线的方向向量、平面的法向量)坐标;第三步:计算向量的夹角(或函数值),并转化为所求角.1.(2019·大连模拟)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 和△AA 1C 均是边长为2的等边三角形,点O 为AC 中点,平面AA 1C 1C ⊥平面ABC .(1)证明:A 1O ⊥平面ABC ;(2)求直线AB 与平面A 1BC 1所成角的正弦值. (1)证明 ∵AA 1=A 1C ,且O 为AC 的中点, ∴A 1O ⊥AC ,又∵平面AA 1C 1C ⊥平面ABC ,平面AA 1C 1C ∩平面ABC =AC ,A 1O ⊂平面AA 1C 1C , ∴A 1O ⊥平面ABC .(2)解 如图,以O 为原点,OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.由已知可得O (0,0,0),A (0,-1,0),B (3,0,0),A 1(0,0,3),C 1(0,2,3),∴AB →=(3,1,0),A 1B →=(3,0,-3),A 1C 1——→=(0,2,0), 设平面A 1BC 1的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·A 1C 1→=0,n ·A 1B →=0,即⎩⎪⎨⎪⎧2y =0,3x -3z =0,∴平面A 1BC 1的一个法向量为n =(1,0,1), 设直线AB 与平面A 1BC 1所成的角为α, 则sin α=|cos 〈AB →,n 〉|,又∵cos〈AB →,n 〉=AB →·n|AB →||n |=322=64,∴AB 与平面A 1BC 1所成角的正弦值为64.2.如图1,在△ABC 中,BC =3,AC =6,∠C =90°,且DE ∥BC ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥CD ,如图2. (1)求证:BC ⊥平面A 1DC ;(2)若CD =2,求BE 与平面A 1BC 所成角的正弦值. (1)证明 ∵DE ⊥A 1D ,DE ∥BC ,∴BC ⊥A 1D , 又∵BC ⊥CD ,A 1D ∩CD =D ,A 1D ,CD ⊂平面A 1CD , ∴BC ⊥平面A 1DC ,(2)解 以D 为原点,分别以DE →,DA 1→,CD →为x ,y ,z 轴的正方向,建立空间直角坐标系,在直角梯形CDEB 中,过E 作EF ⊥BC ,EF =2,BF =1,BC =3, ∴B (3,0,-2),E (2,0,0),C (0,0,-2),A 1(0,4,0), BE →=(-1,0,2),CA1→=(0,4,2),BA 1→=(-3,4,2),设平面A 1BC 的法向量为m =(x ,y ,z ), ⎩⎨⎧CA 1→·m =0,BA1→·m =0,⎩⎪⎨⎪⎧4y +2z =0,-3x +4y +2z =0,⎩⎪⎨⎪⎧z =-2y ,x =0,令y =1,∴m =(0,1,-2), 设BE 与平面A 1BC 所成角为θ,∴sin θ=|cos 〈BE →,m 〉|=|BE →·m ||BE →||m |=45·5=45.3.(2020·成都诊断)如图1,在边长为5的菱形ABCD 中,AC =6,现沿对角线AC 把△ADC 翻折到△APC 的位置得到四面体P -ABC ,如图2所示.已知PB =4 2. (1)求证:平面PAC ⊥平面ABC ;(2)若Q 是线段AP 上的点,且AQ →=13AP →,求二面角Q -BC -A 的余弦值.(1)证明 取AC 的中点O ,连接PO ,BO 得到△PBO . ∵四边形ABCD 是菱形,∴PA =PC ,PO ⊥AC . ∵DC =5,AC =6,∴OC =3,PO =OB =4, ∵PB =42,∴PO 2+OB 2=PB 2, ∴PO ⊥OB .∵OB ∩AC =O ,OB ,AC ⊂平面ABC ,∴PO ⊥平面ABC . ∵PO ⊂平面PAC ,∴平面PAC ⊥平面ABC . (2)解 ∵AB =BC ,∴BO ⊥AC . 易知OB ,OC ,OP 两两垂直.以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.则B (4,0,0),C (0,3,0),P (0,0,4),A (0,-3,0). 设点Q (x ,y ,z ).由AQ →=13AP →,得Q ⎝⎛⎭⎪⎫0,-2,43.∴BC →=(-4,3,0),BQ →=⎝⎛⎭⎪⎫-4,-2,43.设n 1=(x 1,y 1,z 1)为平面BCQ 的法向量.由⎩⎨⎧n 1·BC →=0,n 1·BQ →=0,得⎩⎪⎨⎪⎧-4x 1+3y 1=0,-4x 1-2y 1+43z 1=0,解得⎩⎪⎨⎪⎧x 1=34y 1,y 1=415z 1,取z 1=15,则n 1=(3,4,15).取平面ABC 的一个法向量n 2=(0,0,1).∵cos〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1532+42+152=31010, 由图可知二面角Q -BC -A 为锐角, ∴二面角Q -BC -A 的余弦值为31010.4.如图所示,在正四棱锥P -ABCD 中,底面ABCD 的边长为2,侧棱长为2 2.(1)若点E 为PD 上的点,且PB ∥平面EAC ,试确定E 点的位置; (2)在(1)的条件下,在线段PA 上是否存在点F ,使平面AEC 和平面BDF 所成的锐二面角的余弦值为114,若存在,求线段PF 的长度,若不存在,请说明理由.解 (1)设BD 交AC 于点O ,连接OE , ∵PB ∥平面AEC ,平面AEC ∩平面BDP =OE , ∴PB ∥OE .又O 为BD 的中点,∴E 为PD 的中点.(2)连接OP ,由题意知PO ⊥平面ABCD ,且AC ⊥BD ,∴以O 为坐标原点,OC →,OD →,OP →所在直线分别为x ,y ,z 轴建立直角坐标系,如图所示.OP =PD 2-OD 2=6,∴O (0,0,0),A (-2,0,0),B (0,-2,0),C (2,0,0),D (0,2,0),P (0,0,6),则E ⎝⎛⎭⎪⎪⎫0,22,62,OC →=(2,0,0),OE →=⎝⎛⎭⎪⎪⎫0,22,62,OD →=(0,2,0).设平面AEC 的法向量为m =(x 1,y 1,z 1), 则⎩⎨⎧m ·OC→=0,m ·OE→=0,即⎩⎪⎨⎪⎧2x 1=0,22y 1+62z 1=0,令z 1=1,得平面AEC 的一个法向量m =(0,-3,1),假设在线段PA 上存在点F ,满足题设条件,不妨设PF →=λPA →(0≤λ≤1).则F (-2λ,0,6-6λ),OF →=(-2λ,0,6-6λ). 设平面BDF 的法向量n =(x 2,y 2,z 2), ∴⎩⎨⎧n ·OD →=0,n ·OF→=0,即⎩⎪⎨⎪⎧2y 2=0,-2λx 2+1-λr(6z 2=0.)令z 2=1得平面BDF的一个法向量n =⎝⎛⎭⎪⎪⎫31-λλ,0,1.由平面AEC 与平面BDF 所成锐二面角的余弦值为114,则cos 〈m ,n 〉=m ·n|m ||n |=12·1+3⎝ ⎛⎭⎪⎫1λ-12=114,解得λ=15(负值舍去).∴|PF →|=15|PA →|=225. 故在线段PA 上存在点F ,当PF =225时,使得平面AEC 和平面BDF所成的锐二面角的余弦值为114.5.如图,在四棱锥E -ABCD 中,底面ABCD 是圆内接四边形,CB =CD =CE =1,AB =AD =AE =3,EC ⊥BD .(1)求证:平面BED ⊥平面ABCD ;(2)若点P 在侧面ABE 内运动,且DP ∥平面BEC ,求直线DP 与平面ABE 所成角的正弦值的最大值.(1)证明 如图,连接AC ,交BD 于点O ,连接EO , ∵AD =AB ,CD =CB ,AC =AC , ∴△ADC ≌△ABC , 易得△ADO ≌△ABO , ∴∠AOD =∠AOB =90°, ∴AC ⊥BD .又EC ⊥BD ,EC ∩AC =C ,EC ,AC ⊂平面AEC , ∴BD ⊥平面AEC ,又OE ⊂平面AEC ,∴OE ⊥BD . 又底面ABCD 是圆内接四边形, ∴∠ADC =∠ABC =90°,在Rt△ADC 中,由AD =3,CD =1, 可得AC =2,AO =32,∴∠AEC =90°,AE AC =AO AE =32,易得△AEO ∽△ACE ,∴∠AOE =∠AEC =90°, 即EO ⊥AC .又AC ,BD ⊂平面ABCD ,AC ∩BD =O , ∴EO ⊥平面ABCD ,又EO ⊂平面BED ,∴平面BED ⊥平面ABCD .(2)解 如图,取AE 的中点M ,AB 的中点N ,连接MN ,ND ,DM , 则MN ∥BE ,由(1)知,∠DAC =∠BAC =30°, 即∠DAB =60°, ∴△ABD 为正三角形, ∴DN ⊥AB ,又BC ⊥AB ,DN ,CB ⊂平面ABCD ,∴DN ∥CB ,又MN ∩DN =N ,BE ∩BC =B ,MN ,DN ⊂平面DMN ,BE ,BC ⊂平面EBC , ∴平面DMN ∥平面EBC ,∴点P 在线段MN 上.以O 为坐标原点,OA ,OB ,OE 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A ⎝ ⎛⎭⎪⎫32,0,0,B ⎝ ⎛⎭⎪⎪⎫0,32,0,E ⎝⎛⎭⎪⎪⎫0,0,32, M ⎝⎛⎭⎪⎪⎫34,0,34,D ⎝ ⎛⎭⎪⎪⎫0,-32,0,N ⎝ ⎛⎭⎪⎪⎫34,34,0, ∴AB →=⎝ ⎛⎭⎪⎪⎫-32,32,0,AE →=⎝ ⎛⎭⎪⎪⎫-32,0,32, DM →=⎝ ⎛⎭⎪⎪⎫34,32,34,MN →=⎝⎛⎭⎪⎪⎫0,34,-34, 设平面ABE 的法向量为n =(x ,y ,z ),则⎩⎨⎧AB →·n =0,AE →·n =0,即⎩⎪⎨⎪⎧-3x +y =0,-3x +z =0,令x =1,则n =(1,3,3),设MP →=λMN →(0≤λ≤1),可得DP →=DM →+MP →=⎝ ⎛⎭⎪⎪⎫34,32+34λ,34-34λ, 设直线DP 与平面ABE 所成的角为θ,则sin θ=|cos 〈n ,DP →〉|=|n ·DP →||n |·|DP →|=1242×λ2+λ+4, ∵0≤λ≤1,∴当λ=0时,sin θ取得最大值427.故直线DP 与平面ABE 所成角的正弦值的最大值为427.。
高考数学大一轮复习 第八章 立体几何与空间向量 8.2 空间点、直线、平面之间的位置关系教师用书 理
(江苏专用)2018版高考数学大一轮复习第八章立体几何与空间向量8.2 空间点、直线、平面之间的位置关系教师用书理苏教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专用)2018版高考数学大一轮复习第八章立体几何与空间向量8.2 空间点、直线、平面之间的位置关系教师用书理苏教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专用)2018版高考数学大一轮复习第八章立体几何与空间向量8.2 空间点、直线、平面之间的位置关系教师用书理苏教版的全部内容。
第八章立体几何与空间向量 8.2 空间点、直线、平面之间的位置关系教师用书理苏教版1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.公理3:经过不在同一条直线上的三点,有且只有一个平面。
公理4:平行于同一条直线的两条直线互相平行。
2。
直线与直线的位置关系(1)位置关系的分类错误!(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任意一点O,作直线a′∥a,b′∥b,把直线a′与b′所成的锐角(或直角)叫做异面直线a,b所成的角.②范围:错误!。
3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况。
4。
平面与平面的位置关系有平行、相交两种情况.5。
等角定理如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
【知识拓展】1.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直。
2019版高考数学大一轮复习人教B版全国通用课件:第八
(2)PD⊥平面ABE. 证明 由PA=AB=BC,∠ABC=60°,可得AC=PA. ∵E是PC的中点,∴AE⊥PC. 由(1)知AE⊥CD,且PC∩CD=C,PC,CD⊂平面PCD, ∴AE⊥平面PCD, 而PD⊂平面PCD,∴AE⊥PD. ∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥AB. 又∵AB⊥AD,且PA∩AD=A, ∴AB⊥平面PAD,而PD⊂平面PAD, ∴AB⊥PD.又∵AB∩AE=A,AB,AE⊂平面ABE,∴PD⊥平面ABE.
A.α⊥β且m⊂α
C.m∥n且n⊥β √
B.α⊥β且m∥α
D.m⊥n且α∥β
解析 由线面垂直的判定定理,可知C正确.
1
2
3
4
5
6
解析
答案
5.如图所示,在正方体ABCD—A1B1C1D1中,点O,M,N分别是线段BD, DD1,D1C1的中点,则直线OM与AC,MN的位置关系是 A.与AC,MN均垂直 √ B.与AC垂直,与MN不垂直 C.与AC不垂直,与MN垂直 D.与AC,MN均不垂直
1 2 3 4 5 6
题组二 教材改编
2.下列命题中错误的是
A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β
B.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
C.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ
D.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β √
平面.
(2) 若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条
直线(证明线线垂直的一个重要方法).
(3)垂直于同一条直线的两个平面平行.
(4) 一条直线垂直于两平行平面中的一个,则这条直线与另一个平面
2019届高考大一轮复习备考资料之数学人教A版全国用课
1
2
3
4
5
6
解析
答案
6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,
3 GH在原正方体中互为异面的对数为______.
解析 平面图形的翻折应注意翻折前后相对位 置的变化,则 AB, CD, EF和GH在原正方体中, 显然 AB 与 CD , EF 与 GH , AB 与 GH 都是异面直 线,而 AB 与 EF 相交, CD 与 GH 相交, CD 与 EF 平行.故互为异面的直线有且只有3对.
B中,m与n也有可能平行,B错误;
C中,根据线面平行的性质可知C正确;
D中,若m∥n,根据线面垂直的判定可知D错误,故选C.
1 2 3 4 5 6
解析
答案
5.(2017· 湖北七市联考)设直线m与平面α相交但不垂直,则下列说法中正 确的是 A.在平面α内有且只有一条直线与直线m垂直 B.过直线m有且只有一个平面与平面α垂直 √ C.与直线m垂直的直线不可能与平面α平行 D.与直线m平行的平面不可能与平面α垂直
∴E,C,D1,F四点共面.
证明
(2)CE,D1F,DA三线共点.
证明 ∵EF∥CD1,EF<CD1,
∴CE与D1F必相交,
设交点为P,如图所示.
则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.
同理P∈平面ADD1A1.
又平面ABCD∩平面ADD1A1=DA,
∴P∈直线DA,∴CE,D1F,DA三线共点.
第八章 立体几何与空间向量
§8.3 空间点、直线、平面之间的位置关系
内容索引
基础知识
自主学习
题型分类
课时作业
深度剖析
基础知识
2019版高考数学大一轮复习江苏专版文档:第八章 立体
§8.3直线、平面平行的判定与性质考情考向分析直线、平面平行的判定及其性质是高考中的重点考查内容,涉及线线平行、线面平行、面面平行的判定及其应用等内容.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.1.线面平行的判定定理和性质定理2.面面平行的判定定理和性质定理知识拓展重要结论:(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(×)(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.(×)(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)(5)若直线a与平面α内无数条直线平行,则a∥α.(×)(6)若α∥β,直线a∥α,则a∥β.(×)题组二教材改编2.[P45练习T2]下面给出了几个结论:①若一个平面内的一条直线平行于另一个平面,则这两个平面平行;②若一个平面内任何一条直线都平行于另一个平面,则这两个平面平行;③若两个平面没有公共点,则这两个平面平行;④平行于同一条直线的两个平面必平行.其中,结论正确的是________.(请把正确结论的序号都填上)答案②③解析①错误,若一个平面内的一条直线平行于另一个平面,则这两个平面平行或相交.②正确,任何直线包括两条相交直线,故能判定两平面平行.③正确,由面面平行的定义可得知.④错误,平行于同一条直线的两个平面平行或相交.3.[P35练习T5]如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC 的位置关系为________.答案平行解析连结BD,设BD∩AC=O,连结EO,在△BDD1中,E为DD1的中点,O为BD的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE,所以BD1∥平面ACE.题组三易错自纠4.设l为直线,α,β是两个不同的平面.下列命题中正确的是________.(填序号)①若l∥α,l∥β,则α∥β;②若l⊥α,l⊥β,则α∥β;③若l⊥α,l∥β,则α∥β;④若α⊥β,l∥α,则l⊥β.答案②解析l∥α,l∥β,则α与β可能平行,也可能相交,故①项错;由“垂直于同一条直线的两个平面平行”可知②项正确;由l⊥α,l∥β可知α⊥β,故③项错;由α⊥β,l∥α可知l 与β可能平行,也可能l⊂β,也可能相交,故④项错.5.(2017·盐城二模)已知α,β为两个不同的平面,m,n为两条不同的直线,下列命题中正确的是________.(填上所有正确命题的序号)①若α∥β,m⊂α,则m∥β;②若m∥α,n⊂α,则m∥n;③若α⊥β,α∩β=n,m⊥n,则m⊥β.答案①解析①这是面面平行的性质,正确;②只能确定m,n没有公共点,有可能异面,错误;③当m⊂α时,才能保证m⊥β,错误.6.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.答案平行四边形解析 ∵平面ABFE ∥平面DCGH ,又平面EFGH ∩平面ABFE =EF ,平面EFGH ∩平面DCGH =HG , ∴EF ∥HG .同理EH ∥FG , ∴四边形EFGH 是平行四边形.题型一 直线与平面平行的判定与性质命题点1 直线与平面平行的判定典例 如图,在四棱锥E -ABCD 中,平面EAB ⊥平面ABCD ,四边形ABCD 为矩形,EA ⊥EB ,M ,N 分别是AE ,CD 的中点.求证:(1)MN ∥平面EBC ; (2)EA ⊥平面EBC . 证明 (1)取BE 的中点F , 连结CF ,MF ,因为M 是AE 的中点, 所以MF 綊12AB ,又N 是矩形ABCD 边CD 的中点, 所以NC 綊12AB ,所以MF 綊NC ,所以四边形MNCF 是平行四边形,所以MN ∥CF . 又MN ⊄平面EBC ,CF ⊂平面EBC , 所以MN ∥平面EBC .(2)在矩形ABCD 中,BC ⊥AB .又平面EAB ⊥平面ABCD ,平面ABCD ∩平面EAB =AB ,BC ⊂平面ABCD ,所以BC ⊥平面EAB .又EA ⊂平面EAB ,所以BC ⊥EA .又EA ⊥EB ,BC ∩EB =B ,EB ,BC ⊂平面EBC , 所以EA ⊥平面EBC .命题点2 直线与平面平行的性质典例 (2018届盐城中学调研)如图所示,P 为平行四边形ABCD 所在平面外一点,M ,N 分别为AB ,PC 的中点,平面P AD ∩平面PBC =l .(1)求证:BC ∥l ;(2)MN 与平面P AD 是否平行?试证明你的结论.(1)证明 因为BC ∥AD ,AD ⊂平面P AD ,BC ⊄平面P AD , 所以BC ∥平面P AD .又平面P AD ∩平面PBC =l ,BC ⊂平面PBC , 所以BC ∥l .(2)解 MN ∥平面P AD .证明如下: 如图所示,取PD 的中点E ,连结AE ,EN .因为N 为PC 的中点, 所以EN 綊12DC .又AM 綊12DC ,所以EN 綊AM ,即四边形AMNE 为平行四边形,所以AE ∥MN . 又MN ⊄平面P AD ,AE ⊂平面P AD , 所以MN ∥平面P AD .思维升华 判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α).(3)利用面面平行的性质(α∥β,a⊂α⇒a∥β).(4)利用面面平行的性质(α∥β,a⊄α,a⊄β,a∥α⇒a∥β).跟踪训练(2018届阜宁中学联考)如图,已知正三棱柱(底面是正三角形,侧面是矩形的棱柱)ABC-A′B′C′中,D是AA′上的点,E是B′C′的中点,且A′E∥平面DBC′.试判断点D在AA′上的位置,并给出证明.解D为AA′的中点.证明如下:如图,取BC的中点F,连结AF,EF,设EF与BC′交于点O,连结DO,易证A′E∥AF,A′,E,F,A共面.因为A′E∥平面DBC′,A′E⊂平面A′EF A,且平面DBC′∩平面A′EF A=DO,所以A′E∥DO.在平行四边形A′EF A中,因为O是EF的中点(因为EC′∥BC,且EC′=BF),所以D为AA′的中点.题型二平面与平面平行的判定与性质典例如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.又∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,A1E,EF⊂平面EF A1,∴平面EF A1∥平面BCHG.引申探究在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D. 证明如图所示,连结A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连结MD,∵D为BC的中点,∴A1B∥DM.∵A1B⊂平面A1BD1,DM⊄平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1.又∵DC1∩DM=D,DC1,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.思维升华证明面面平行的方法(1)面面平行的定义.(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用垂直于同一条直线的两个平面平行.(4)两个平面同时平行于第三个平面,那么这两个平面平行.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.跟踪训练如图所示,四边形ABCD与四边形ADEF都为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明(1)如图所示,设DF与GN交于点O,连结AE,则AE必过点O,连结MO,则MO为△ABE的中位线,所以BE∥MO.又因为BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN.因为DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.因为M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN.因为BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG.因为DE∩BD=D,DE⊂平面BDE,BD⊂平面BDE,所以平面BDE∥平面MNG.题型三平行关系的综合应用典例如图所示,平面α∥平面β,点A∈α,点C∈α,点B∈β,点D∈β,点E,F分别在线段AB,CD上,且AE∶EB=CF∶FD.(1)求证:EF∥平面β;(2)若E,F分别是AB,CD的中点,AC=4,BD=6,且AC,BD所成的角为60°,求EF 的长.(1)证明①当AB,CD在同一平面内时,由平面α∥平面β,平面α∩平面ABDC=AC,平面β∩平面ABDC=BD知,AC∥BD.∵AE∶EB=CF∶FD,∴EF∥BD.又EF⊄β,BD⊂β,∴EF∥平面β.②当AB与CD异面时,如图所示,设平面ACD∩平面β=DH,且DH=AC,∵平面α∥平面β,平面α∩平面ACDH=AC,∴AC∥DH,∴四边形ACDH是平行四边形,在AH上取一点G,使AG∶GH=CF∶FD,连结EG,FG,BH.又∵AE∶EB=CF∶FD=AG∶GH,∴GF∥HD,EG∥BH.又EG∩GF=G,BH∩HD=H,∴平面EFG∥平面β.又EF⊂平面EFG,∴EF∥平面β.综合①②可知,EF∥平面β.(2)解 如图所示,连结AD ,取AD 的中点M ,连结ME ,MF .∵E ,F 分别为AB ,CD 的中点, ∴ME ∥BD ,MF ∥AC , 且ME =12BD =3,MF =12AC =2.∴∠EMF 为AC 与BD 所成的角或其补角, ∴∠EMF =60°或120°. ∴在△EFM 中,由余弦定理得 EF =ME 2+MF 2-2ME ·MF ·cos ∠EMF =32+22±2×3×2×12=13±6,即EF =7或EF =19.思维升华 利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.跟踪训练 如图所示,四边形EFGH 为空间四边形ABCD 的一个截面,若截面为平行四边形.(1)求证:AB ∥平面EFGH ,CD ∥平面EFGH ;(2)若AB =4,CD =6,求四边形EFGH 周长的取值范围. (1)证明 ∵四边形EFGH 为平行四边形, ∴EF ∥HG .∵HG ⊂平面ABD ,EF ⊄平面ABD , ∴EF ∥平面ABD .又∵EF ⊂平面ABC ,平面ABD ∩平面ABC =AB , ∴EF ∥AB ,又∵AB ⊄平面EFGH ,EF ⊂平面EFGH , ∴AB ∥平面EFGH .同理可证,CD ∥平面EFGH . (2)解 设EF =x (0<x <4), ∵EF ∥AB ,FG ∥CD ,∴CF CB =x 4,则FG 6=BF BC =BC -CF BC =1-x 4.∴FG =6-32x .∵四边形EFGH 为平行四边形,∴四边形EFGH 的周长l =2⎝⎛⎭⎫x +6-32x =12-x . 又∵0<x <4,∴8<l <12,即四边形EFGH 周长的取值范围是(8,12).1.若直线l 与平面α不平行,则下列结论正确的是________.(填序号) ①α内的所有直线都与直线l 异面; ②α内不存在与l 平行的直线; ③α内的直线都与l 相交; ④直线l 与平面α有公共点. 答案 ④解析 直线l 与平面α不平行,则直线l 与平面α有如下关系:l ⊂α或l 与α相交.若l ⊂α,则在α内存在无数条直线与之平行,故①②③均不正确,④正确.2.已知异面直线a ,b 外的一点M ,那么过点M 可以作________个平面与直线a ,b 都平行. 答案 0或1解析 过点M 分别作直线a ,b 的平行线,若其中一条平行线与已知直线a 或b 相交,则这样的平面不存在.否则过点M 的两条相交直线确定的平面与a ,b 都平行. 3.已知两个不同的平面α,β和两条不重合的直线m ,n ,有下列四个命题: ①若m ∥α,n ∥α,则m ∥n ;②若m ∥α,n ∥α,m ,n ⊂β,则α∥β; ③若m ∥n ,n ⊂α,则m ∥α; ④若α∥β,m ⊂α,则m ∥β. 其中正确命题的个数为________. 答案 1解析 由m ∥α,n ∥α,得m 与n 相交或平行或异面,所以①不正确;由m ∥α,n ∥α,m ,n ⊂β,得α,β相交或平行,所以②不正确;由m ∥n ,n ⊂α,得m ∥α或m ⊂α,所以③不正确;由α∥β,m ⊂α,得m ∥β,所以④正确.4.一条直线l 上有相异的三个点A ,B ,C 到平面α的距离相等,那么直线l 与平面α的位置关系是________.答案l∥α或l⊂α解析当l∥α时,直线l上任意点到α的距离都相等;当l⊂α时,直线l上所有的点到α的距离都是0;当l⊥α时,直线l上有两个点到α的距离相等;当l与α斜交时,也只能有两个点到α的距离相等.5.对于空间中的两条直线m,n和一个平面α,下列命题中的真命题是________.(填序号) ①若m∥α,n∥α,则m∥n;②若m∥α,n⊂α,则m∥n;③若m∥α,n⊥α,则m∥n;④若m⊥α,n⊥α,则m∥n.答案④解析对①,直线m,n可能平行、异面或相交,故①错误;对②,直线m与n可能平行,也可能异面,故②错误;对③,m与n垂直而非平行,故③错误;对④,垂直于同一平面的两直线平行,故④正确.6.如图,L,M,N分别为正方体对应棱的中点,则平面LMN与平面PQR的位置关系是________.答案平行解析如图,分别取另三条棱的中点A,B,C,将平面LMN延展为平面正六边形AMBNCL,因为PQ∥AL,PR∥AM,且PQ与PR相交,AL与AM相交,所以平面PQR∥平面AMBNCL,即平面LMN∥平面PQR.7.在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.答案平面ABD与平面ABC解析如图,取CD的中点E,连结AE,BE,则EM∶MA=1∶2,EN∶BN=1∶2,所以MN∥AB.所以MN∥平面ABD,MN∥平面ABC.8.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有________.答案①或③解析由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.9.如图所示,在正四棱柱ABCD—A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件______时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)答案点M在线段FH上(或点M与点H重合)解析连结HN,FH,FN,则FH∥DD1,HN∥BD,∴平面FHN∥平面B1BDD1,只需M∈FH,则MN⊂平面FHN,∴MN∥平面B1BDD1.10.将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是________.(填序号) 答案①③解析由线面垂直的性质定理可知①是真命题,且垂直于同一直线的两平面平行也是真命题,故①是“可换命题”;因为垂直于同一平面的两平面可能平行或相交,所以②是假命题,不是“可换命题”;由公理4可知③是真命题,且平行于同一平面的两平面平行也是真命题,故③是“可换命题”;因为平行于同一平面的两条直线可能平行、相交或异面,故④是假命题,故④不是“可换命题”.11.如图,在四棱锥P —ABCD 中,平面P AD ⊥平面ABCD ,底面ABCD 为梯形,AB ∥CD ,AB =2DC =23,且△P AD 与△ABD 均为正三角形,E 为AD 的中点,G 为△P AD 的重心.(1)求证:GF ∥平面PDC ; (2)求三棱锥G —PCD 的体积.(1)证明 方法一 连结AG 并延长交PD 于点H ,连结CH .由梯形ABCD 中AB ∥CD 且AB =2DC 知,AF FC =21.又E 为AD 的中点,G 为△P AD 的重心,∴AG GH =21. 在△AHC 中,AG GH =AF FC =21,故GF ∥HC .又HC ⊂平面PCD ,GF ⊄平面PCD , ∴GF ∥平面PDC .方法二 过G 作GN ∥AD 交PD 于N ,过F 作FM ∥AD 交CD 于M ,连结MN ,∵G 为△P AD 的重心,GN ED =PG PE =23,∴GN =23ED =233.又ABCD 为梯形,AB ∥CD ,CD AB =12,∴CF AF =12,∴MF AD =13,∴MF =233,∴GN =FM . 又由所作GN ∥AD ,FM ∥AD ,得GN ∥FM , ∴四边形GNMF 为平行四边形. ∴GF ∥MN ,又∵GF ⊄平面PCD ,MN ⊂平面PCD , ∴GF ∥平面PDC .方法三 过G 作GK ∥PD 交AD 于K ,连结KF ,GK ,由△P AD 为正三角形,E 为AD 的中点,G 为△P AD 的重心,得DK =23DE ,∴DK =13AD ,又由梯形ABCD 中AB ∥CD ,且AB =2DC , 知AF FC =21,即FC =13AC ,∴在△ADC 中,KF ∥CD , 又∵GK ∩KF =K ,PD ∩CD =D , ∴平面GKF ∥平面PDC ,又GF ⊂平面GKF ,∴GF ∥平面PDC .(2)解 方法一 由平面P AD ⊥平面ABCD ,△P AD 与△ABD 均为正三角形,E 为AD 的中点,知PE ⊥AD ,BE ⊥AD ,又∵平面P AD ∩平面ABCD =AD ,PE ⊂平面P AD , ∴PE ⊥平面ABCD ,且PE =3, 由(1)知GF ∥平面PDC ,∴V 三棱锥G —PCD =V 三棱锥F —PCD =V 三棱锥P —CDF =13×PE ×S △CDF . 又由梯形ABCD 中AB ∥CD ,且AB =2DC =23,知DF =13BD =233,又△ABD 为正三角形,得∠CDF =∠ABD =60°, ∴S △CDF =12×CD ×DF ×sin ∠BDC =32,得V 三棱锥P —CDF =13×PE ×S △CDF =32,∴三棱锥G —PCD 的体积为32. 方法二 由平面P AD ⊥平面ABCD ,△P AD 与△ABD 均为正三角形,E 为AD 的中点,知PE ⊥AD ,BE ⊥AD ,又∵平面P AD ∩平面ABCD =AD ,PE ⊂平面P AD , ∴PE ⊥平面ABCD ,且PE =3, 连结CE ,∵PG =23PE ,∴V 三棱锥G —PCD =23V 三棱锥E —PCD =23V 三棱锥P —CDE=23×13×PE ×S △CDE , 又△ABD 为正三角形,得∠EDC =120°, 得S △CDE =12×CD ×DE ×sin ∠EDC =334.∴V 三棱锥G —PCD =23×13×PE ×S △CDE=23×13×3×334=32, ∴三棱锥G —PCD 的体积为32. 12.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC =PD =2,E 为PC 的中点,CB =3CG .(1)求证:PC ⊥BC ;(2)AD 边上是否存在一点M ,使得P A ∥平面MEG ?若存在,求出AM 的长;若不存在,请说明理由.(1)证明 因为PD ⊥平面ABCD ,BC ⊂平面ABCD , 所以PD ⊥BC .因为四边形ABCD 是正方形,所以BC ⊥CD . 又PD ∩CD =D ,PD ,CD ⊂平面PCD , 所以BC ⊥平面PCD .因为PC ⊂平面PDC ,所以PC ⊥BC .(2)解 连结AC ,BD 交于点O ,连结EO ,GO ,延长GO 交AD 于点M ,连结EM ,则P A ∥平面MEG . 证明如下:因为E 为PC 的中点,O 是AC 的中点, 所以EO ∥P A .因为EO ⊂平面MEG ,P A ⊄平面MEG , 所以P A ∥平面MEG . 因为△OCG ≌△OAM ,所以AM =CG =23,所以AM 的长为23.13.在四面体ABCD 中,截面PQMN 是正方形,则在下列结论中正确的是________.(填序号)①AC ⊥BD ; ②AC ∥截面PQMN ; ③AC =BD ;④异面直线PM 与BD 所成的角为45°. 答案 ①②④解析 因为截面PQMN 是正方形,所以MN ∥QP , 又PQ ⊂平面ABC ,MN ⊄平面ABC ,则MN ∥平面ABC , 由线面平行的性质知MN ∥AC ,又MN ⊂平面PQMN ,AC ⊄平面PQMN ,则AC ∥截面PQMN ,同理可得MQ ∥BD ,又MN ⊥QM ,则AC ⊥BD ,故①②正确.又因为BD ∥MQ ,所以异面直线PM 与BD 所成的角等于PM 与QM 所成的角,即为45°,故④正确.14.过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条.答案 6解析 过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线只可能落在平面DEFG 中(其中D ,E ,F ,G 分别为AC ,BC ,B 1C 1,A 1C 1的中点).易知经过D ,E ,F ,G 中任意两点的直线共有C 24=6(条).15.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 是平面AA 1D 1D 的中心,点Q 是正方形A 1B 1C 1D 1的对角线B 1D 1上一点,且PQ ∥平面AA 1B 1B ,则线段PQ 的长为________.答案22解析 由题意,知当且仅当点Q 为B 1D 1的中点时,PQ ∥平面AA 1B 1B . 证明如下:取A 1D 1的中点O ,连结OQ ,OP , 则OQ ∥A 1B 1,OP ∥A 1A . 故平面OPQ ∥平面ABB 1A 1, 又PQ ⊂平面OPQ , 则PQ ∥平面ABB 1A 1.在Rt △POQ 中,OQ =OP =12,所以PQ =22.16.在三棱锥S -ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =15,平面DEFH 分别与AB ,BC ,SC ,SA 交于点D ,E ,F ,H .D ,E 分别是AB ,BC 的中点,如果直线SB ∥平面DEFH ,那么四边形DEFH 的面积为________. 答案452解析 如图,取AC 的中点G ,连结SG ,BG .易知SG ⊥AC ,BG ⊥AC ,SG ∩BG =G ,SG ,BG ⊂平面SGB , 故AC ⊥平面SGB , 所以AC ⊥SB .因为SB ∥平面DEFH ,SB ⊂平面SAB ,平面SAB ∩平面DEFH =HD ,则SB ∥HD . 同理SB ∥FE .又D ,E 分别为AB ,BC 的中点, 则H ,F 也为AS ,SC 的中点, 从而得HF 綊12AC 綊DE ,所以四边形DEFH 为平行四边形. 又AC ⊥SB ,SB ∥HD ,DE ∥AC , 所以DE ⊥HD ,所以四边形DEFH 为矩形,其面积S =HF ·HD =⎝⎛⎭⎫12AC ·⎝⎛⎭⎫12SB =452.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§8.2空间几何体的表面积与体积1.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式3.柱、锥、台、球的表面积和体积知识拓展1.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差. (2)底面面积及高都相等的两个同类几何体的体积相等. 2.几个与球有关的切、接常用结论 (1)正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为3∶1.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)多面体的表面积等于各个面的面积之和.( √ ) (2)锥体的体积等于底面积与高之积.( × ) (3)球的体积之比等于半径比的平方.( × )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( √ ) (5)长方体既有外接球又有内切球.( × )(6)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .( × ) 题组二 教材改编2.[P27T1]已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( ) A .1 cm B .2 cm C .3 cm D.32 cm答案 B解析 S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, ∴r 2=4,∴r =2.3.[P28A 组T3]如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.答案 1∶47解析 设长方体的相邻三条棱长分别为a ,b ,c ,它截出棱锥的体积V 1=13×12×12a ×12b ×12c=148abc ,剩下的几何体的体积V 2=abc -148abc =4748abc ,所以V 1∶V 2=1∶47. 题组三 易错自纠4.(2017·西安一中月考)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+4答案 D解析 由几何体的三视图可知,该几何体为半圆柱,直观图如图所示. 表面积为2×2+2×12×π×12+π×1×2=4+3π.5.(2016·全国Ⅱ)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A .12π B.323π C .8π D .4π答案 A解析 由题意可知正方体的棱长为2,其体对角线23即为球的直径,所以球的表面积为4πR 2=(2R )2π=12π,故选A.6.(2018·大连调研)如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去部分的体积之比为________.答案 1∶1解析 由三视图可知半球的半径为2,圆锥底面圆的半径为2,高为2,所以V 圆锥=13×π×23=83π,V 半球=12×43π×23=163π,所以V 剩余=V 半球-V 圆锥=83π,故剩余部分与挖去部分的体积之比为1∶1.题型一 求空间几何体的表面积1.(2016·全国Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π答案 A解析 由题意知,该几何体的直观图如图所示,它是一个球(被过球心O 且互相垂直的三个平面)切掉左上角的18后得到的组合体,其表面积是球面面积的78和三个14圆面积之和. 由43πR 3-18×43πR 3=28π3,得球的半径R =2. 则得S =78×4π×22+3×14π×22=17π,故选A.2.(2017·黑龙江哈师大附中一模)已知某几何体的三视图如图所示,则该几何体的表面积为( )A.73B.172 C .13 D.17+3102答案 C解析 由三视图可知几何体为三棱台,作出直观图如图所示.则CC ′⊥平面ABC ,上、下底均为等腰直角三角形,AC ⊥BC ,AC =BC =1,A ′C ′=B ′C ′=C ′C =2, ∴AB =2,A ′B ′=2 2.∴棱台的上底面面积为12×1×1=12,下底面面积为12×2×2=2,梯形ACC ′A ′的面积为12×(1+2)×2=3,梯形BCC ′B ′的面积为12×(1+2)×2=3,过A 作AD ⊥A ′C ′于点D ,过D 作DE ⊥A ′B ′,则AD =CC ′=2, DE 为△A ′B ′C ′斜边高的12,∴DE =22, ∴AE =AD 2+DE 2=32,∴梯形ABB ′A ′的面积为12×(2+22)×32=92,∴几何体的表面积S =12+2+3+3+92=13,故选C.思维升华 空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (3)旋转体的表面积问题注意其侧面展开图的应用.题型二 求空间几何体的体积命题点1 以三视图为背景的几何体的体积典例 (2017·浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1 B.π2+3 C.3π2+1 D.3π2+3 答案 A解析 由几何体的三视图可知,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长是2的等腰直角三角形,高为3的三棱锥的组合体, ∴该几何体体积为V =13×12π×12×3+13×12×2×2×3=π2+1.命题点2 求简单几何体的体积典例 (2018·广州调研)已知E ,F 分别是棱长为a 的正方体ABCD —A 1B 1C 1D 1的棱AA 1,CC 1的中点,则四棱锥C 1—B 1EDF 的体积为________. 答案 16a 3解析 方法一 如图所示,连接A 1C 1,B 1D 1交于点O 1,连接B 1D ,EF ,过点O 1作O 1H ⊥B 1D 于点H .因为EF ∥A 1C 1,且A 1C 1⊄平面B 1EDF ,EF ⊂平面B 1EDF , 所以A 1C 1∥平面B 1EDF .所以C 1到平面B 1EDF 的距离就是A 1C 1到平面B 1EDF 的距离. 易知平面B 1D 1D ⊥平面B 1EDF , 又平面B 1D 1D ∩平面B 1EDF =B 1D , 所以O 1H ⊥平面B 1EDF ,所以O 1H 等于四棱锥C 1—B 1EDF 的高. 因为△B 1O 1H ∽△B 1DD 1, 所以O 1H =B 1O 1·DD 1B 1D =66a . 所以11C B EDF V -=131B EDF S 四边形·O 1H =13×12·EF ·B 1D ·O 1H =13×12·2a ·3a ·66a =16a 3.方法二 连接EF ,B 1D .设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2,则h 1+h 2=B 1D 1=2a . 由题意得,11111C B EDF B C EFD C EF V V V ---=+四棱锥三棱锥三棱锥=13·1C EF S ∆·(h 1+h 2)=16a 3. 思维升华 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解. 跟踪训练 (1)(2017·新乡二模)已知一个几何体的三视图如图所示,则该几何体的体积为( )A.323B.163C.83D.43答案 C解析 该几何体由一个三棱锥和一个三棱柱组合而成,直观图如图所示,V =V 柱+V 锥=12×(1+1)×1×2+13×12×(1+1)×1×2=83,故选C.(2)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23 B.33 C.43 D.32答案 A解析 如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12,AG =GD =BH =HC =32, 取AD 的中点O ,连接GO ,易得GO =22, ∴S △AGD =S △BHC =12×22×1=24,∴多面体的体积V =V 三棱锥E -ADG +V 三棱锥F -BCH +V 三棱柱AGD -BHC =2V 三棱锥E -ADG +V 三棱柱AGD -BHC =13×24×12×2+24×1=23.故选A. 题型三 与球有关的切、接问题典例 (2016·全国Ⅲ)在封闭的直三棱柱ABC —A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A .4π B.9π2 C .6π D.32π3答案 B解析 由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V 的最大值为9π2.引申探究1.若将本例中的条件变为“直三棱柱ABC —A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积.解 将直三棱柱补形为长方体ABEC —A 1B 1E 1C 1, 则球O 是长方体ABEC —A 1B 1E 1C 1的外接球. ∴体对角线BC 1的长为球O 的直径.因此2R =32+42+122=13.故S 球=4πR 2=169π.2.若将本例中的条件变为“正四棱锥的顶点都在球O 的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积.解 如图,设球心为O ,半径为r ,则在Rt△AOF 中, (4-r )2+(2)2=r 2, 解得r =94,则球O 的体积V 球=43πr 3=43π×⎝ ⎛⎭⎪⎫943=243π16. 思维升华 空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解. (2)若球面上四点P ,A ,B ,C 构成的三条线段PA ,PB ,PC 两两互相垂直,且PA =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.跟踪训练 (2018·深圳调研)如图所示,在平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,则该球的体积为( )A.3π2 B .3π C.2π3D .2π答案 A解析 如图,取BD 的中点为E ,BC 的中点为O ,连接AE ,OD ,EO ,AO .因为AB =AD , 所以AE ⊥BD .由于平面ABD ⊥平面BCD ,所以AE ⊥平面BCD . 因为AB =AD =CD =1,BD =2,所以AE =22,EO =12. 所以OA =32. 在Rt△BDC 中,OB =OC =OD =12BC =32,所以四面体ABCD 的外接球的球心为O ,半径为32. 所以该球的体积V =43π×⎝ ⎛⎭⎪⎫323=3π2.三视图(基本的、和球联系的)考点分析 三视图是高考重点考查的一个知识点,主要考查由几何体的三视图还原几何体的形状,进而求解表面积、体积等知识,所涉及的几何体既包括柱、锥、台、球等简单几何体,也包括一些组合体,处理此类题目的关键是通过三视图准确还原几何体.典例1 已知某几何体的三视图如图所示,则该几何体的体积等于( )A.1603B .160C .64+32 2D .60解析 由题意知该几何体是由一个直三棱柱和一个四棱锥组成的组合体,如图所示,其中直三棱柱的高为8-4=4,故V 直三棱柱=8×4=32,四棱锥的底面为边长为4的正方形,高为4, 故V 四棱锥=13×16×4=643,故该几何体的体积V =V 直三棱柱+V 四棱锥=32+643=1603,故选A.答案 A典例2 某组合体的三视图如图所示,则该组合体的体积为________.解析 如图所示,该组合体由一个四棱锥和四分之一个球组成,球的半径为1,四棱锥的高为球的半径,四棱锥的底面为等腰梯形,上底为2,下底为1,高为32,所以该组合体的体积V =13×12×(2+1)×32×1+14×43π×13=34+π3. 答案 34+π31.(2017·太原一模)某几何体的三视图如图所示,则该几何体的表面积为( )A .6π+1 B.(24+2)π4+1 C.(23+2)π4+12D.(23+2)π4+1 答案 D解析 由几何体的三视图知,该几何体为一个组合体,其中下部是底面直径为2,高为2的圆柱,上部是底面直径为2,高为1的圆锥的四分之一,所以该几何体的表面积为4π+π+3π4+2π4+1=(23+2)π4+1,故选D. 2.(2017·安徽安师大附中、马鞍山二中测试)某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .30答案 C解析 由三视图知,该几何体是一个长方体的一半再截去一个三棱锥后得到的,如图所示,该几何体的体积V =12×4×3×5-13×12×4×3×(5-2)=24,故选C.3.(2017·宝鸡质检)已知A ,B ,C 三点都在以O 为球心的球面上,OA ,OB ,OC 两两垂直,三棱锥O —ABC 的体积为43,则球O 的表面积为( )A.16π3 B .16π C.32π3D .32π 答案 B解析 设球O 的半径为R ,以球心O 为顶点的三棱锥的三条侧棱两两垂直且都等于球的半径R ,另外一个侧面是边长为2R 的等边三角形.因此根据三棱锥的体积公式,得13×12R 2·R =43,∴R =2,∴S 球的表面积=4π×22=16π,故选B.4.(2017·昆明质检)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .24πB .30πC .42πD .60π答案 A解析 由三视图知,该几何体是半径为3的半球与底面半径为3、高为4的半圆锥的组合体,所以该几何体的体积V =12×43π×33+12×13π×32×4=24π,故选A.5.(2018·九江一模)如图,网格纸上小正方形的边长为1,粗线是一个棱锥的三视图,则此棱锥的表面积为( )A .6+42+2 3B .8+4 2C .6+6 2D .6+22+4 3答案 A解析 直观图是四棱锥P —ABCD ,如图所示,S △PAB =S △PAD =S △PDC =12×2×2=2,S △PBC =12×22×22×sin 60°=23,S四边形ABCD=22×2=42,因此所求棱锥的表面积为6+42+2 3.故选A.6.(2017·广州市高中毕业班综合测试)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P —ABC 为鳖臑,PA ⊥平面ABC ,PA =AB =2,AC =4,三棱锥P —ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( ) A .8π B .12π C .20π D .24π答案 C解析 方法一 将三棱锥P —ABC 放入长方体中,如图(1),三棱锥P —ABC 的外接球就是长方体的外接球.因为PA =AB =2,AC =4,△ABC 为直角三角形,所以BC =42-22=2 3.设外接球的半径为R ,由题意可得(2R )2=22+22+(23)2=20,故R 2=5,则球O 的表面积为4πR 2=20π,故选C.方法二 利用鳖臑的特点求解,如图(2),因为四个面都是直角三角形,所以PC 的中点到每一个顶点的距离都相等,即PC 的中点为球心O ,易得2R =PC =20,所以球O 的表面积为4πR 2=20π,故选C.7.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________. 答案7解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r=7.8.(2017·天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________. 答案 92π解析 设正方体棱长为a ,则6a 2=18, ∴a = 3.设球的半径为R ,则由题意知2R =a 2+a 2+a 2=3,∴R =32.故球的体积V =43πR 3=43π×⎝ ⎛⎭⎪⎫323=92π.9.(2017·南昌一模)如图所示,在直角梯形ABCD 中,AD ⊥DC ,AD ∥BC ,BC =2CD =2AD =2,若将该直角梯形绕BC 边旋转一周,则所得的几何体的表面积为______.答案 (2+3)π解析 根据题意可知,此旋转体的上半部分为圆锥(底面半径为1,高为1),下半部分为圆柱 (底面半径为1,高为1),如图所示.则所得几何体的表面积为圆锥的侧面积、圆柱的侧面积以及圆柱的下底面积之和,即表面积为12·2π·1·12+12+2π·12+π·12=(2+3)π. 10.(2018·长沙质检)如图所示,一个底面半径为R 的圆柱形量杯中装有适量的水.若放入一个半径为r 的实心铁球,水面高度恰好升高r ,则R r=________.答案233解析 由水面高度升高r ,得圆柱体积增加了πR 2r ,恰好是半径为r 的实心铁球的体积,因此有43πr 3=πR 2r .故R r =233.11.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E-ACD 的体积为63,求该三棱锥的侧面积.(1)证明 因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,AC ⊂平面ABCD , 所以BE ⊥AC .而BD ∩BE =B ,BD ,BE ⊂平面BED , 所以AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)解 设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x 2. 因为AE ⊥EC ,所以在Rt△AEC 中,可得EG =32x . 由BE ⊥平面ABCD ,知△EBG 为直角三角形, 可得BE =22x . 由已知得,三棱锥E-ACD 的体积V 三棱锥EACD =13×12AC ·GD ·BE =624x 3=63, 故x =2.从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5. 故三棱锥EACD 的侧面积为3+2 5.12.(2018·贵阳质检)如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,AB =2,EB = 3.(1)求证:DE ⊥平面ACD ;(2)设AC =x ,V (x )表示三棱锥B -ACE 的体积,求函数V (x )的解析式及最大值. (1)证明 ∵四边形DCBE 为平行四边形, ∴CD ∥BE ,BC ∥DE .∵DC ⊥平面ABC ,BC ⊂平面ABC ,∴DC ⊥BC . ∵AB 是圆O 的直径,∴BC ⊥AC ,且DC ∩AC =C ,DC ,AC ⊂平面ADC ,∴BC ⊥平面ADC .∵DE ∥BC ,∴DE ⊥平面ADC .(2)解 ∵DC ⊥平面ABC ,∴BE ⊥平面ABC . 在Rt△ABE 中,AB =2,EB = 3.在Rt△ABC 中,∵AC =x ,∴BC =4-x 2(0<x <2), ∴S △ABC =12AC ·BC =12x ·4-x 2,∴V (x )=V 三棱锥E -ABC =36x ·4-x 2(0<x <2). ∵x 2(4-x 2)≤⎝ ⎛⎭⎪⎫x 2+4-x 222=4,当且仅当x 2=4-x 2,即x =2时取等号,∴当x =2时,体积有最大值33.13.(2017·青岛模拟)如图,四棱锥P —ABCD 的底面ABCD 为平行四边形,NB =2PN ,则三棱锥N —PAC 与三棱锥D —PAC 的体积比为( )A .1∶2B .1∶8C .1∶6D .1∶3答案 D解析 设点P ,N 在平面ABCD 内的射影分别为点P ′,N ′,则PP ′⊥平面ABCD ,NN ′⊥平面ABCD , 所以PP ′∥NN ′.连接BP ′,则在△BPP ′中, 由BN =2PN ,得NN ′PP ′=23. V 三棱锥N —PAC =V 三棱锥P —ABC -V 三棱锥N —ABC=13S △ABC ·PP ′-13S △ABC ·NN ′ =13S △ABC ·(PP ′-NN ′)=13S △ABC ·13PP ′=19S △ABC ·PP ′, V 三棱锥D —PAC =V 三棱锥P —ACD =13S △ACD ·PP ′=13S △ABC ·PP ′. ∴V 三棱锥N —PAC ∶V 三棱锥D —PAC =19∶13=1∶3.14.(2017·唐山统考)在三棱锥P —ABC 中,PA ⊥平面ABC 且PA =2,△ABC 是边长为3的等边三角形,则该三棱锥外接球的表面积为( ) A.4π3B .4πC .8πD .20π答案 C解析 由题意得,此三棱锥外接球即为以△ABC 为底面、以PA 为高的正三棱柱的外接球,因为△ABC 的外接圆半径r =32×3×23=1,外接球球心到△ABC 的外接圆圆心的距离d =1,所以外接球的半径R =r 2+d 2=2,所以三棱锥外接球的表面积S =4πR 2=8π,故选C.15.(2017·云南师范大学附属中学适应性考试)已知三棱锥O —ABC 的顶点A ,B ,C 都在半径为2的球面上,O 是球心,∠AOB =120°,当△AOC 与△BOC 的面积之和最大时,三棱锥O —ABC 的体积为( ) A.32B.233C.23D.13答案 B解析 设球O 的半径为R ,因为S △AOC +S △BOC =12R 2(sin∠AOC +sin∠BOC ),所以当∠AOC =∠BOC =90°时,S △AOC +S △BOC 取得最大值,此时OA ⊥OC . OB ⊥OC ,OB ∩OA =O ,OA ,OB ⊂平面AOB ,所以OC ⊥平面AOB , 所以V 三棱锥O —ABC =V 三棱锥C —OAB=13OC ·12OA ·OB sin∠AOB =16R 3sin∠AOB =233, 故选B.16.如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体P —BCD 的体积的最大值是________.答案 12解析 设PD =DA =x ,在△ABC 中,AB =BC =2,∠ABC =120°, ∴AC =AB 2+BC 2-2·AB ·BC ·cos∠ABC =4+4-2×2×2×cos 120°=23,∴CD =23-x ,且∠ACB =12(180°-120°)=30°,∴S △BCD =12BC ·DC ·sin∠ACB=12×2×(23-x )×12=12(23-x ). 要使四面体体积最大,当且仅当点P 到平面BCD 的距离最大,而P 到平面BCD 的最大距离为x .则V 四面体P —BCD =13×12(23-x )x =16[-(x -3)2+3],由于0<x <23,故当x =3时,V 四面体P —BCD 取最大值为16×3=12.。