2019版高考数学(理科)全国通用(PPT版)(含最新2018年模拟题):周周测01
2019年全国统一高考数学试卷(理科)(新课标Ⅰ)(解析版)
2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A. }{43x x -<<B. }{42x x -<<-C. }{22x x -<<D. }{23x x <<【答案】C 【解析】 【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A. 22+11()x y += B. 22(1)1x y -+=C. 22(1)1x y +-=D. 22(+1)1y x +=【答案】C 【解析】 【分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【详解】,(1),z x yi z i x y i =+-==+-1,z i -=则22(1)1x y +-=.故选C .【点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.3.已知0.20.32log 0.2,2,0.2a b c ===,则A. a b c <<B. a c b <<C. c a b <<D. b c a <<【答案】B 【解析】 【分析】运用中间量0比较,a c ,运用中间量1比较,b c 【详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.4.≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm【答案】B 【解析】 【分析】理解黄金分割比例的含义,应用比例式列方程求解.【详解】设人体脖子下端至腿根的长为x cm ,肚脐至腿根的长为y cm ,则262611052x x y +==+,得42.07, 5.15x cm y cm ≈≈.又其腿长为105cm ,头顶至脖子下端的长度为26cm ,所以其身高约为42.07+5.15+105+26=178.22,接近175cm .故选B .【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.5.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为A.B.C. D.【答案】D 【解析】 【分析】先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案.【详解】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422()1,2()2f πππππ++==>2()01f πππ=>-+.故选D . 【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.1116【答案】A 【解析】 【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有2中情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.7.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为A.π6B.π3C.2π3D.5π6【答案】B 【解析】 【分析】本题主要考查利用平面向量数量积数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥得出向量,a b 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【详解】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.8.如图是求112122++的程序框图,图中空白框中应填入A. A =12A+ B. A =12A+C. A =112A+D. A =112A+【答案】A 【解析】 【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.【详解】执行第1次,1,122A k ==≤是,因为第一次应该计算1122+=12A +,1k k =+=2,循环,执行第2次,22k =≤,是,因为第二次应该计算112122++=12A +,1k k =+=3,循环,执行第3次,22k =≤,否,输出,故循环体为12A A=+,故选A .【点睛】秒杀速解 认真观察计算式子的结构特点,可知循环体为12A A=+.9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A. 25n a n =- B. 310n a n =- C. 228n S n n =-D. 2122n S n n =- 【答案】A 【解析】 【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C.对D,2455410,4240052S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A . 【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A. 2212x y +=B. 22132x y +=C. 22143x y +=D. 22154x y += 【答案】B 【解析】 【分析】可以运用下面方法求解:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 【详解】如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a B F B F n A FaA F n =+=∴=-=.在1A FB △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得n =22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]ππ-有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A. ①②④ B. ②④C. ①④D. ①③【答案】C 【解析】 【分析】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案.12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A. B.C.D.【答案】D 【解析】 【分析】本题也可用解三角形方法,达到求出棱长的目的.适合空间想象能力略差学生.设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆为边长为2等边三角形,CF ∴=又90CEF ∠=︒1,2CE AE PA x ∴=== AEC ∆中余弦定理()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D Q 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,22121222x x x ∴+=∴==,PA PB PC ∴===,又===2A B B C A C ,,,PA PB PC ∴两两垂直,2R ∴==2R ∴=,344338V R ∴=π=π⨯=,故选D . 【详解】,PA PB PC ABC ==∆为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又E F C E ⊥,,CEAC C EF =∴⊥平面PAC ,PB ⊥平面PAC ,PAB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,2R ==34433R V R =∴=π==π,故选D .【点睛】本题考查学生空间想象能力,补型法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补型成正方体解决.二、填空题:本题共4小题,每小题5分,共20分。
2019年高考数学(理)模拟试题(三)含答案及解析
2019年高考数学(理)模拟试题(三)含答案及解析2019年高考数学(理)模拟试题(三)注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数z满足(1-i)z=2+i,则z的共轭复数在复平面内对应的点在()A。
第一象限B。
第二象限C。
第三象限D。
第四象限2.设集合M={x|x<36},N={2,4,6,8},则M∩N=()A。
{2,4}B。
{2,4,6}C。
{2,6}D。
{2,4,6,8}3.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是()A。
1/4B。
1/3C。
1/2D。
2/34.将5个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A。
42种B。
48种C。
54种D。
60种5.如图所示是一个几何体的三视图,则这个几何体外接球的体积为()A。
32π/3B。
64π/3C。
32πD。
64π/26.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后入称之为三角形的欧拉线.已知△ABC的顶点A(2,0),B(0,4),AC=BC,则△ABC的欧拉线方程为()A。
2x+y-3=0B。
2x-y+3=0C。
x-2y-3=0D。
x-2y+3=07.执行如图所示的程序框图,则输出S的值为()A。
2019年全国统一高考数学试卷(理科)(新课标Ⅰ)(解析版)
【答案】2.
【思路引导】
通过向量关系得到 和 ,得到 ,结合双曲线的渐近线可得 从而由 可求离心率.
【解析】如图,
由 得 又 得OA是三角形 的中位线,即 由 ,得 则 有 ,
【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.
7.已知非零向量a,b满足 =2 ,且(a–b) b,则a与b的夹角为
A. B. C. D.
【答案】B
【思路引导】
本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由 得出向量 数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.
【解为 ,故选B.
【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为 .
1.已知集合 ,则 =
A. B. C. D.
【答案】C
【思路引导】
本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.
【解析】由题意得, ,则
.故选C.
【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.
2.设复数z满足 ,z在复平面内对应的点为(x,y),则
【点睛】本题主要考查等差数列通项公式与前n项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.
2019年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)
M2 2M13α r绝密★启用前2019 年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12 小题,每小题5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2-5x+6>0},B={ x|x-1<0},则A∩B=A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)2.设z=-3+2i,则在复平面内z 对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.已知AB =(2,3),AC =(3,t),BC =1,则AB ⋅BC =A.-3 B.-2C.2 D.34.2019 年1 月3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2 点到月球的距离为r,根据牛顿运动定律和万有引力定律,r 满足方程:M1 +M2 = (R +r)M1 .(R +r)2r2R3α=r α3α3+ 3α4+α5≈3设,由于R 的值很小,因此在近似计算中(1+α)2,则的近似值为A.M2 RM1B.RD .3M2 R 3M15.演讲比赛共有9 位评委分别给出某选手的原始评分,评定该选手的成绩时,从9 个原始评分中去掉1 个最高分、1 个最低分,得到7 个有效评分.7 个有效评分与9 个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差D.极差6.若a>b,则A.ln(a−b)>0 B.3a<3bC.a3−b3>0 D.│a│>│b│7.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面8.若抛物线y2=2px(p>0)的焦点是椭圆x y2+=1 的一个焦点,则p= 3 p pA.2 B.3 C.4 D.8π 9.下列函数中,以2ππ为周期且在区间( ,4 2)单调递增的是A.f(x)=│cos 2x│B.f(x)=│sin 2x│C.f(x)=cos│x│D.f(x)= sin│x│π10.已知α∈(0,2 A.15),2sin 2α=cos 2α+1,则sin α=B.5C.3x2 y2 D.2 5511.设F 为双曲线C:a2 -=1(a > 0, b > 0) 的右焦点,O 为坐标原点,以OF 为直径的b2圆与圆x2+y2=a2交于P,Q 两点.若PQ =OF A.,则C 的离心率为B.C.3 3M2 RM15 3232C.2 D.12.设函数f (x) 的定义域为R,满足f (x +1) = 2 f (x) ,且当x ∈ (0,1] 时,f (x) =x(x -1) .若对任意x ∈(-∞, m] ,都有f (x) ≥-8,则m 的取值范围是9A.⎛-∞,9 ⎤B.⎛-∞,7 ⎤4 ⎥ 3 ⎥ ⎝⎦C.⎛-∞,5 ⎤⎝⎦D.⎛-∞,8 ⎤2 ⎥ 3⎥ ⎝⎦⎝⎦二、填空题:本题共4 小题,每小题5 分,共20 分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10 个车次的正点率为0.97,有20 个车次的正点率为0.98,有10 个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.14.已知f (x) 是奇函数,且当x < 0 时,f (x) =-e ax.若f (ln 2) = 8 ,则a =.15.△ABC 的内角A, B, C 的对边分别为a, b, c .若b = 6, a = 2c, B =π,则△ABC 的面积3为.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2 是一个棱数为48 的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为(.本题第一空2 分,第二空3 分.)三、解答题:共70 分。
2019年全国统一高考数学试卷(理科)(新课标Ⅱ)-解析版
2019年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(本大题共12小题,共60.0分)1. 设集合A ={x|x 2−5x +6>0},B ={x|x −1<0},则A ∩B =( )A. (−∞,1)B. (−2,1)C. (−3,−1)D. (3,+∞) 2. 设z =−3+2i ,则在复平面内z 对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知AB ⃗⃗⃗⃗⃗ =(2,3),AC ⃗⃗⃗⃗⃗ =(3,t),|BC ⃗⃗⃗⃗⃗ |=1,则AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =( )A. −3B. −2C. 2D. 34. 2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:M 1(R+r)2+M 2r 2=(R +r)M1R 3.设α=rR .由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( ).A. √M2M 1RB. √M22M1R C. 3√3M 2M 1RD. 3√M23M1R 5. 演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A. 中位数 B. 平均数 C. 方差 D. 极差 6. 若a >b ,则( )A. ln(a −b)>0B. 3a <3bC. a 3−b 3>0D. |a|>|b| 7. 设α,β为两个平面,则α//β的充要条件是( )A. α内有无数条直线与β平行B. α内有两条相交直线与β平行C. α,β平行于同一条直线D. α,β垂直于同一平面 8. 若抛物线y 2=2px(p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =( )A. 2B. 3C. 4D. 89. 下列函数中,以π2为周期且在区间(π4,π2)单调递增的是( )A. f(x)=|cos2x|B. f(x)=|sin2x|C. f(x)=cos|x|D. f(x)=sin|x|10. 已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( )A. 15B. √55 C. √33 D. 2√5511. 设F 为双曲线C :x 2a −y 2b =1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ|=|OF|,则C 的离心率为( ) A. √2 B. √3 C. 2 D. √512. 设函数f(x)的定义域为R ,满足f(x +1)=2f(x),且当x ∈(0,1]时,f(x)=x(x −1).若对任意x ∈(−∞,m],都有f(x)≥−89,则m 的取值范围是( )A. (−∞,94]B. (−∞,73]C. (−∞,52]D. (−∞,83]二、填空题(本大题共4小题,共20.0分)13. 我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______.14. 已知f(x)是奇函数,且当x <0时,f(x)=−e ax .若f(ln2)=8,则a = . 15. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若b =6,a =2c ,B =π3,则△ABC 的面积为______.16. 中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.三、解答题(本大题共7小题,共84.0分)17. 如图,长方体ABCD −A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1. (1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B −EC −C 1的正弦值.18. 11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P(X =2);(2)求事件“X =4且甲获胜”的概率.19.已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n−b n+4,4b n+1=3b n−a n−4.(1)证明:{a n+b n}是等比数列,{a n−b n}是等差数列;(2)求{a n}和{b n}的通项公式.20.已知函数.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线y=lnx在点A(x0,lnx0)处的切线也是曲线y=e x的切线..记M的21.已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−12轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.(i)证明:△PQG是直角三角形;(ii)求△PQG面积的最大值.22.在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sinθ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=π时,求ρ0及l的极坐标方程;3(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.23.已知f(x)=|x−a|x+|x−2|(x−a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(−∞,1)时,f(x)<0,求a的取值范围.答案和解析1.【答案】A【解析】 【分析】本题考查交集的计算,关键是掌握交集的定义,涉及到不等式的求解,属于基础题. 根据题意,求出集合A 、B ,由交集的定义计算可得答案. 【解答】解:根据题意,A ={x|x 2−5x +6>0}={x|x >3或x <2}, B ={x|x −1<0}={x|x <1}, 则A ∩B ={x|x <1}, 即A ∩B =(−∞,1). 故选A .2.【答案】C【解析】 【分析】本题主要考查共轭复数的代数表示及其几何意义,属于基础题.求出z 的共轭复数,根据复数的几何意义求出复数所对应点的坐标即可. 【解答】解:∵z =−3+2i , ∴z =−3−2i ,∴在复平面内z 对应的点为(−3,−2),在第三象限. 故选C .3.【答案】C【解析】【分析】本题主要考查了向量数量积的定义及性质的坐标表示,属于基础题. 由BC⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ 先求出BC ⃗⃗⃗⃗⃗ 的坐标,然后根据|BC ⃗⃗⃗⃗⃗ |=1,可求t ,结合向量数量积定义的坐标表示即可求解. 【解答】解:∵AB ⃗⃗⃗⃗⃗ =(2,3),AC⃗⃗⃗⃗⃗ =(3,t), ∴BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =(1,t −3).∵|BC ⃗⃗⃗⃗⃗ |=1,∴t −3=0,即BC ⃗⃗⃗⃗⃗ =(1,0), 则AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =2. 故选C .4.【答案】D【解析】 【分析】本题考查点到月球的距离的求法,考查函数在我国航天事业中的灵活运用,考查化归与转化思想、函数与方程思想,考查运算求解能力,是中档题.由α=rR ,推导出M2M1=3α3+3α4+α5(1+α)2≈3α3,由此能求出r=αR=√M23M13R.【解答】解:∵α=rR,∴r=αR,且r满足方程M1(R+r)2+M2r2=(R+r)M1R3,∴M2M1=3α3+3α4+α5(1+α)2≈3α3,∴r=αR=√M23M13R.故选:D.5.【答案】A【解析】解:根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变,故选:A.根据题意,由数据的数字特征的定义,分析可得答案.本题考查数据的数字特征,关键是掌握数据的平均数、中位数、方差、极差的定义以及计算方法,属于基础题.6.【答案】C【解析】【分析】本题考查了不等式的基本性质,利用特殊值法可迅速得到正确选项,属基础题.取a=0,b=−1,利用特殊值法可得正确选项.【解答】解:取a=0,b=−1,则:ln(a−b)=ln1=0,排除A;3a=30=1>3b=3−1=13,排除B;令f(x)=x3,则f(x)在上单调递增,又a>b,故C对;|a|=0<|−1|=|b|,排除D.故选C.7.【答案】B【解析】【分析】本题考查了充要条件的定义和面面平行的判定定理,考查了推理能力,属于基础题.由充要条件的定义结合面面平行的判定定理可得结论.【解答】解:对于A,α内有无数条直线与β平行,α与β相交或α//β;对于B,α内有两条相交直线与β平行,则α//β;对于C,α,β平行于同一条直线,α与β相交或α//β;对于D,α,β垂直于同一平面,α与β相交或α//β.故选B.8.【答案】D【解析】【分析】本题考查了抛物线与椭圆的性质,属基础题.根据抛物线的性质以及椭圆的性质列方程可解得.【解答】解:由题意可得3p−p=(p2)2,解得p=8.故选D.9.【答案】A【解析】【分析】本题主要考查了正弦函数、余弦函数的周期性及单调性,属于基础题.根据正弦函数、余弦函数的周期性及单调性依次判断,结合排除法即可求解.【解答】解:f(x)=sin|x|不是周期函数,可排除D选项;f(x)=cos|x|的周期为2π,可排除C选项;f(x)=|sin2x|在π4处取得最大值,不可能在区间(π4,π2)上单调递增,可排除B.故选A.10.【答案】B【解析】【分析】本题主要考查了二倍角的三角函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.由二倍角公式化简已知条件可得4sinαcosα=2cos2α,结合角的范围可求得sinα>0,cosα>0,可得cosα=2sinα,根据同角三角函数基本关系式即可解得sinα的值.【解答】解:∵2sin2α=cos2α+1,由二倍角公式可得4sinαcosα=2cos2α,∵α∈(0,π2),∴sinα>0,cosα>0,∴cosα=2sinα,则有sin2α+cos2α=sin2α+(2sinα)2=5sin2α=1,解得sinα=√55.故选B.11.【答案】A【解析】【分析】本题考查双曲线的简单性质,考查数形结合的解题思想方法,属于中档题.方法一:根据题意画图,由图形的对称性得出P点坐标,代入圆的方程得到c与a的关系,可求双曲线的离心率.方法二:由题意画出图形,先求出PQ,再由|PQ|=|OF|列式求C的离心率.【解答】方法一:解:设PQ与x轴交于点A,由对称性可知PQ⊥x轴又∵|PQ|=|OF|=c,∴|PA|=c2,∴PA为以OF为直径的圆的半径,∴A为圆心,|OA|=c2∴P(c2,c2),又P点在圆x2+y2=a2上,∴c24+c24=a2,即c22=a2,∴e2=c2a2=2∴e=√2,故选A.方法二:如图,以OF为直径的圆的方程为x2+y2−cx=0,又圆O的方程为x2+y2=a2,∴PQ所在直线方程为.把x=代入x2+y2=a2,得PQ=,再由|PQ|=|OF|,得,即4a2(c2−a2)=c4,∴e2=2,解得e=.故选A.12.【答案】B【解析】【分析】本题考查了函数与方程的综合运用,属中档题.由f(x+1)=2f(x),得f(x)=2f(x−1),分段求解析式,结合图象可得.【解答】解:因为f(x +1)=2f(x), ∴f(x)=2f(x −1),∵x ∈(0,1]时,f(x)=x(x −1)∈[−14,0],∴x ∈(1,2]时,x −1∈(0,1],f(x)=2f(x −1)=2(x −1)(x −2)∈[−12,0]; ∴x ∈(2,3]时,x −1∈(1,2],f(x)=2f(x −1)=4(x −2)(x −3)∈[−1,0], 当x ∈(2,3]时,由4(x −2)(x −3)=−89解得x =73或x =83, 若对任意x ∈(−∞,m],都有f(x)≥−89,则m ≤73. 故选B .13.【答案】0.98【解析】 【分析】本题考查加权平均数公式等基础知识,属于基础题. 利用加权平均数公式直接求解. 【解答】解:∵经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97, 有20个车次的正点率为0.98,有10个车次的正点率为0.99, ∴经停该站高铁列车所有车次的平均正点率的估计值为: x −=110+20+10(10×0.97+20×0.98+10×0.99)=0.98.故答案为0.98.14.【答案】−3【解析】 【分析】本题考查函数的奇偶性,属于基础题. 根据奇函数的定义,可得结果. 【解答】解:∵f(x)是奇函数,∴−f(ln2)=f(−ln2)=−8, 又∵当x <0时,f(x)=−e ax ,∴f(−ln2)=−e−aln2=−8,∴−aln2=ln8,∴a=−3.故答案为−3.15.【答案】6√3【解析】【分析】本题考查了余弦定理和三角形的面积公式,属基础题.利用余弦定理得到c2,然后根据面积公式求出结果即可.【解答】解:由余弦定理有,∵b=6,a=2c,B=π3,∴36=(2c)2+c2−4c2cosπ3,∴c2=12,.故答案为6√3.16.【答案】26;√2−1【解析】【分析】本题考查了几何体的内接多面体,属中档题.中间层是一个正八棱柱,有8个侧面,上层是有8+1个面,下层也有8+1个面,故共有26个面;中间层正八棱柱的棱长加上两个棱长的√22倍等于正方体的棱长.【解答】解:该半正多面体中间层是一个正八棱柱,有8个侧面,故该半正多面体共有8+8+8+ 2=26个面;设其棱长为x,因为每个顶点都在边长为1的正方体上,则x+√22x+√22x=1,解得x=√2−1.故答案为26;√2−1.17.【答案】证明:(1)长方体ABCD−A1B1C1D1中,B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,∴B1C1⊥BE,∵BE⊥EC1,∵B1C1∩EC1=C1,B1C1,EC1⊂平面EB1C1,∴BE⊥平面EB1C1,解:(2)以C为坐标原点,建立如图所示的空间直角坐标系,设AE =A 1E =1,则BB 1=2,∵BE ⊥平面EB 1C 1,EB 1⊂平面EB 1C 1, ∴BE ⊥EB 1,又BE =EB 1=√2, ∴AB =1,则E(1,1,1),A(1,1,0),B 1(0,1,2), C 1(0,0,2),C(0,0,0),∵BC ⊥平面ABB 1A 1,EB 1⊂平面ABB 1A 1,∴BC ⊥EB 1, ∵BE ⊥EB 1,且BC ∩BE =E ,BC,BE ⊂平面EBC , ∴EB 1⊥平面EBC ,故取平面EBC 的法向量为m ⃗⃗⃗ =EB 1⃗⃗⃗⃗⃗⃗⃗ =(−1,0,1),设平面ECC 1 的法向量n⃗ =(x,y ,z), 由{n ⃗ ⋅CC 1⃗⃗⃗⃗⃗⃗⃗ =0n⃗ ⋅CE ⃗⃗⃗⃗⃗ =0,得{z =0x +y +z =0, 取x =1,得n⃗ =(1,−1,0), ∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ |⋅|n ⃗⃗ |=−12, ∴二面角B −EC −C 1的正弦值为√32.【解析】本题主要考查线面垂直的证明,考查二面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,属于中档题. (1)推导出B 1C 1⊥BE ,BE ⊥EC 1,由此能证明BE ⊥平面EB 1C 1.(2)以C 为坐标原点,建立如图所示的空间直角坐标系,利用向量法能求出二面角B −EC −C 1的正弦值.18.【答案】解:(1)设双方10:10平后的第k 个球甲获胜为事件A k (k =1,2,3,…),则P(X =2)=P(A 1A 2)+P(A 1−A 2−) =P(A 1)P(A 2)+P(A 1−)P(A 2−) =0.5×0.4+0.5×0.6=0.5;(2)P(X =4且甲获胜)=P(A 1−A 2A 3A 4)+P(A 1A 2−A 3A 4)=P(A 1−)P(A 2)P(A 3)P(A 4)+P(A 1)P(A 2−)P(A 3)P(A 4) =(0.5×0.4+0.5×0.6)×0.5×0.4=0.1.【解析】本题考查相互独立事件同时发生的概率,考查推理能力与计算能力,是中档题. (1)设双方10:10平后的第k 个球甲获胜为事件A k (k =1,2,3,…),则P(X =2)=P(A 1A 2)+P(A 1−A 2−)=P(A 1)P(A 2)+P(A 1−)P(A 2−),由此能求出结果;(2)P(X =4且甲获胜)=P(A 1−A 2A 3A 4)+P(A 1A 2−A 3A 4)=P(A 1−)P(A 2)P(A 3)P(A 4)+P(A 1)P(A 2−)P(A 3)P(A 4),由此能求出事件“X =4且甲获胜”的概率.19.【答案】(1)证明:∵4a n+1=3a n −b n +4,4b n+1=3b n −a n −4,∴4(a n+1+b n+1)=2(a n +b n ),4(a n+1−b n+1)=4(a n −b n )+8, 即a n+1+b n+1=12(a n +b n ),a n+1−b n+1=a n −b n +2; 又a 1+b 1=1,a 1−b 1=1,∴{a n +b n }是首项为1,公比为12的等比数列, {a n −b n }是首项为1,公差为2的等差数列;(2)解:由(1)可得:a n +b n =(12)n−1,a n −b n =1+2(n −1)=2n −1, ∴a n =(12)n +n −12,b n =(12)n −n +12.【解析】本题主要考查了等差、等比数列的定义和通项公式,考查学生的计算能力和推理能力,属于简单题. (1)定义法证明即可;(2)由(1)结合等差、等比的通项公式可得.20.【答案】解析:(1)函数f(x)=lnx −x+1x−1,定义域为:(0,1)∪(1,+∞);f′(x)=1x +2(x−1)2>0,(x >0且x ≠1), ∴f(x)在(0,1)和(1,+∞)上单调递增,①在(0,1)区间取值1e 2,1e 代入函数,由函数零点的定义得, ∵f(1e 2)<0,f(1e )>0,f(1e 2)⋅f(1e )<0,∴f(x)在(0,1)有且仅有一个零点,②在(1,+∞)区间取值e ,e 2代入函数,由函数零点的定义得, 又∵f(e)<0,f(e 2)>0,f(e)⋅f(e 2)<0, ∴f(x)在(1,+∞)上有且仅有一个零点, 故f(x)在定义域内有且仅有两个零点;(2)x 0是f(x)的一个零点,则有lnx 0=x 0+1x 0−1,曲线y =lnx ,则有y′=1x ,曲线y =lnx 在点A(x 0,lnx 0)处的切线方程为:y −lnx 0=1x 0(x −x 0),即y =1x 0x −1+lnx 0,可得y =1x 0x +2x0−1,而曲线y =e x 的切线在点(ln 1x 0,1x 0)处的切线方程为:y −1x 0=1x 0(x −ln 1x 0),即y =1x 0x +2x 0−1,故曲线y =lnx 在点A(x 0,lnx 0)处的切线也是曲线y =e x 的切线.故得证.【解析】本题考查f(x)的单调性,函数导数,在定义域内根据零点存在性定理求零点个数,以及利用曲线的切线方程定义证明.(1)讨论f(x)的单调性,求函数导数,在定义域内根据零点存在性定理求零点个数, (2)运用曲线的切线方程定义可证明y =lnx 在点A(x 0,lnx 0)处的切线方程为y =1x 0x +2x 0−1,曲线y =e x 在点(ln 1x 0,1x 0)处的切线方程为y = 1x 0x +2x 0−1,得证.21.【答案】解:(1)由题意得y x+2·y x−2=−12,整理得曲线C 的方程:x 24+y 22=1(y ≠0),∴曲线C 是焦点在x 轴上不含长轴端点的椭圆;(2)(i)设P(x 0,y 0),则Q(−x 0,−y 0), E(x 0,0),G(x G ,y G ),∴直线QE 的方程为:y =y2x 0(x −x 0),与x 24+y 22=1联立消去y ,得(2x 02+y 02)x 2−2x 0y 02x +x 02y 02−8x 02=0,∴−x 0x G =x 02y 02−8x 022x 02+y 02,∴x G =(8−y 02)x 02x 02+y 02,∴y G =y 02x 0(x G −x 0)=y 0(4−x 02−y 02)2x 02+y 02, ∴k PG =y G −y 0x G −x 0=y 0(4−x 02−y 02)2x 02+y 02−y 0x 0(8−y 02)2x 02+y 02−x 0 =4y 0−y 0x 02−y 03−2y 0x 02−y 038x 0−x 0y 02−2x 03−x 0y 02=y 0(4−3x 02−2y 02)2x 0(4−y 02−x 02),把x 02+2y 02=4代入上式,得k PG =y 0(4−3x 02−4+x 02)2x 0(4−y 02−4+2y 02)=−y 0×2x 022x 0y 02=−x0y,∴k PQ ·k PG =y 0x 0·(−x0y 0)=−1,∴PQ ⊥PG ,故△PQG 为直角三角形;(ii)S △PQG =12|PE|·(x G −x Q )=12y 0(x G +x 0) =12y 0[(8−y 02)x 02x 02+y 02+x 0] =1y 0x 0×8−y 02+2x 02+y 020202 =y 0x 0(4+x 02)2x 02+y 02 =y 0x 0(x 02+2y 02+x 02)2x 02+y 02=2y 0x 0(x 02+y 02)2x 02+y 02=8y 0x 0(x 02+y 02)(2x 02+y 02)(x 02+2y 02)=8(y 0x 03+x 0y 03)04040202 =8(x0y 0+y 0x0)2(x 0y 0+y 0x 0)2+1 令t =x 0y 0+yx 0,则t ≥2,S △PQG =8t 2t 2+1=82t +1t利用“对勾”函数f(t)=2t +1t 在[2,+∞)的单调性可知,f(t)≥4+12=92(t=2时取等号),∴S△PQG≤892=169(此时x=y0=2√33),故△PQG面积的最大值为169.【解析】此题考查了直接法求曲线方程,直线与椭圆的综合,换元法等,对运算能力考查尤为突出,计算难度大.(1)利用直接法不难得到方程;(2)(i)设P(x0,y0),则Q(−x0,−y0),E(x0,0),利用直线QE的方程与椭圆方程联立求得G点坐标,进而证得PQ,PG斜率之积为−1;(ii)利用S=12|PE|×(x G+x0),代入已得数据,并对x0y0+y0x0换元,利用“对勾”函数可得最值.22.【答案】解:(1)如图:∵M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sinθ上,当θ0=π3时,,且由图得|OP|=|OA|cosθ0=2,在直线l上任取一点(ρ,θ),则有,即,故l的极坐标方程为ρcos(θ−π3)=2;(2)设P(ρP,θP),则在Rt△OAP中,有|OP|=|OA|cosθP即ρP=4cosθP,∵P在线段OM上,且AP⊥OM,∴θP∈[π4,π2 ],其中π4为P点与M点重合时的角度,由4cosθP=4sinθP得到,故P点轨迹的极坐标方程为ρ=4cosθ,θ∈[π4,π2 ].【解析】本题考查曲线的极坐标方程及其应用,数形结合能力,是中档题.(1)由θ0=π3可得|OP|=2,在直线l上任取一点(ρ,θ),利用三角形中边角关系即可求得l的极坐标方程;(2)设P(ρ,θ),在Rt△OAP中,根据边与角的关系得答案.23.【答案】解:(1)当a=1时,f(x)=|x−1|x+|x−2|(x−1),∵f(x)<0,∴当x<1时,f(x)=−2(x−1)2<0,恒成立,∴x<1;当x≥1时,f(x)=(x−1)(x+|x−2|)≥0恒成立,∴x∈⌀;综上,不等式的解集为(−∞,1).(2)∵x∈(−∞,1)时,f(x)=|x−a|x−(x−2)(x−a).当a≥1时,f(x)=2(a−x)(x−1)<0在x∈(−∞,1)上恒成立;当a<1时,若x∈(−∞,a),f(x)=2(a−x)(x−1)<0,∴f(x)<0,成立;若x∈(a,1),则f(x)=2(x−a)>0,不满足题意;所以当a<1时,不满足题意;综上,a的取值范围为[1,+∞).【解析】本题考查了绝对值不等式的解法,考查了分类讨论思想,关键是掌握相关知识,逐一分析解答即可,属于中档题.(1)将a=1代入得f(x)=|x−1|x+|x−2|(x−1),然后分x<1和x≥1两种情况讨论f(x)<0即可;(2)根据条件分a≥1和a<1两种情况讨论即可.。
2019年全国统一高考数学试卷(理科)真题解析(解析版)
状元考前提醒拿到试卷:熟悉试卷刚拿到试卷一般心情比较紧张,建议拿到卷子以后看看考卷一共几页,有多少道题,了解试卷结构,通览全卷是克服“前面难题做不出,后面易题没时间做”的有效措施,也从根本上防止了“漏做题”。
答题策略答题策略一共有三点:1. 先易后难、先熟后生。
先做简单的、熟悉的题,再做综合题、难题。
2. 先小后大。
先做容易拿分的小题,再做耗时又复杂的大题。
3. 先局部后整体。
把疑难问题划分成一系列的步骤,一步一步的解决,每解决一步就能得到一步的分数。
立足中下题目,力争高水平考试时,因为时间和个别题目的难度,多数学生很难做完、做对全部题目,所以在答卷中要立足中下题目。
中下题目通常占全卷的80%以上,是试题的主要构成,学生能拿下这些题目,实际上就是有了胜利在握的心理,对攻克高档题会更放得开。
确保运算正确,立足一次性成功在答卷时,要在以快为上的前提下,稳扎稳打,步步准确,尽量一次性成功。
不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤。
试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,格式是否规范。
要学会“挤”分考试试题大多分步给分,所以理科要把主要方程式和计算结果写在显要位置,文科尽量把要点写清晰,作文尤其要注意开头和结尾。
考试时,每一道题都认真思考,能做几步就做几步,对于考生来说就是能做几分是几分,这是考试中最好的策略。
检查后的涂改方式要讲究发现错误后要划掉重新写,忌原地用涂黑的方式改,这会使阅卷老师看不清。
如果对现有的题解不满意想重新写,要先写出正确的,再划去错误的。
有的同学先把原来写的题解涂抹了,写新题解的时间又不够,本来可能得的分数被自己涂掉了。
考试期间遇到这些事,莫慌乱!绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
2019年全国统一高考数学试卷(理科)(新课件Ⅰ)
2019年全国统一高考数学试卷(理科)(新课件Ⅰ)参考答案【一】选择题:1.C2.B3.A4.B5.D6.A7.B8.D9.C10.A11.B12.A【二】填空题:13.614.-6315.1616.【三】解答题:17.【解答】解:〔1〕∵∠ADC=90°,∠A=45°,AB=2,BD=5、∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==、〔2〕∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5、18.【解答】〔1〕证明:由题意,点E、F分别是AD、BC的中点,那么,,由于四边形ABCD为正方形,因此EF⊥BC、由于PF⊥BF,EF∩PF=F,那么BF⊥平面PEF、又因为BF⊂平面ABFD,因此:平面PEF⊥平面ABFD、〔2〕在平面DEF中,过P作PH⊥EF于点H,连接DH,由于EF为面ABCD和面PEF的交线,PH⊥EF,那么PH⊥面ABFD,故PH⊥DH、在三棱锥P﹣DEF中,能够利用等体积法求PH,因为DE∥BF且PF⊥BF,因此PF⊥DE,又因为△PDF≌△CDF,因此∠FPD=∠FCD=90°,因此PF⊥PD,由于DE∩PD=D,那么PF⊥平面PDE,=,故VF﹣PDE因为BF∥DA且BF⊥面PEF,因此DA⊥面PEF,因此DE⊥EP、设正方形边长为2a,那么PD=2a,DE=a在△PDE中,,因此,=,故VF﹣PDE又因为,因此PH==,因此在△PHD中,sin∠PDH==,即∠PDH为DP与平面ABFD所成角的正弦值为:、19.【解答】解:〔1〕c==1,∴F〔1,0〕,∵l与x轴垂直,∴x=1,由,解得或,∴A〔1.〕,或〔1,﹣〕,∴直线AM的方程为y=﹣x+,y=x﹣,证明:〔2〕当l与x轴重合时,∠OMA=∠OMB=0°,当l与x轴垂直时,OM为AB的垂直平分线,∴∠OMA=∠OMB,当l与x轴不重合也不垂直时,设l的方程为y=k〔x﹣1〕,k≠0,A〔x1,y1〕,B〔x2,y2〕,那么x1<,x2<,直线MA,MB的斜率之和为kMA ,kMB之和为kMA+kMB=+,由y1=kx1﹣k,y2=kx2﹣k得kMA+kMB=,将y=k〔x﹣1〕代入+y2=1可得〔2k2+1〕x2﹣4k2x+2k2﹣2=0,∴x1+x2=,x1x2=,∴2kx1x2﹣3k〔x1+x2〕+4k=〔4k3﹣4k﹣12k3+8k3+4k〕=0从而kMA +kMB=0,故MA,MB的倾斜角互补,∴∠OMA=∠OMB,综上∠OMA=∠OMB、20.【解答】解:〔1〕记20件产品中恰有2件不合格品的概率为f〔p〕,那么f〔p〕=,∴=,令f′〔p〕=0,得p=0.1,当p∈〔0,0.1〕时,f′〔p〕>0,当p∈〔0.1,1〕时,f′〔p〕<0,=0.1、∴f 〔p〕的最大值点p〔2〕〔i〕由〔1〕知p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B〔180,0.1〕,X=20×2+25Y,即X=40+25Y,∴E〔X〕=E〔40+25Y〕=40+25E〔Y〕=40+25×180×0.1=490、〔ii〕假如对余下的产品作检验,由这一箱产品所需要的检验费为400元,∵E〔X〕=490>400,∴应该对余下的产品进行检验、21.【解答】解:〔1〕函数的定义域为〔0,+∞〕,函数的导数f′〔x〕=﹣﹣1+=﹣,设g〔x〕=x2﹣ax+1,当a≤0时,g〔x〕>0恒成立,即f′〔x〕<0恒成立,如今函数f〔x〕在〔0,+∞〕上是减函数,当a>0时,判别式△=a2﹣4,①当0<a≤2时,△≤0,即g〔x〕>0,即f′〔x〕<0恒成立,如今函数f〔x〕在〔0,+∞〕上是减函数,当a>2时,在〔0,〕,和〔,+∞〕上是减函数,那么〔,〕上是增函数、〔2〕由〔1〕知a>2,0<x1<1<x2,x1x2=1,那么f〔x1〕﹣f〔x2〕=〔x2﹣x1〕〔1+〕+a〔lnx1﹣lnx2〕=2〔x2﹣x1〕+a〔lnx1﹣lnx2〕,那么=﹣2+,那么问题转为证明<1即可,即证明lnx1﹣lnx2>x1﹣x2,那么lnx1﹣ln>x1﹣,即lnx1+lnx1>x1﹣,即证2lnx1>x1﹣在〔0,1〕上恒成立,设h〔x〕=2lnx﹣x+,〔0<x<1〕,其中h〔1〕=0,求导得h′〔x〕=﹣1﹣=﹣=﹣<0,那么h〔x〕在〔0,1〕上单调递减,∴h〔x〕>h〔1〕,即2lnx﹣x+>0,故2lnx>x﹣,那么<a﹣2成立、〔2〕另解:注意到f〔〕=x﹣﹣alnx=﹣f〔x〕,即f〔x〕+f〔〕=0,由韦达定理得x1x2=1,x1+x2=a>2,得0<x1<1<x2,x1=,可得f〔x2〕+f〔〕=0,即f〔x1〕+f〔x2〕=0,要证<a﹣2,只要证<a﹣2,即证2alnx2﹣ax2+<0,〔x2>1〕,构造函数h〔x〕=2alnx﹣ax+,〔x>1〕,h′〔x〕=≤0,∴h〔x〕在〔1,+∞〕上单调递减,∴h〔x〕<h〔1〕=0,∴2alnx﹣ax+<0成立,即2alnx2﹣ax2+<0,〔x2>1〕成立、即<a﹣2成立、选考题:22.【解答】解:〔1〕曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0、转换为直角坐标方程为:x2+y2+2x﹣3=0,转换为标准式为:〔x+1〕2+y2=4、〔2〕由于曲线C1的方程为y=k|x|+2,那么:该射线关于y轴对称,且恒过定点〔0,2〕、由于该射线与曲线C2的极坐标有且仅有三个公共点、因此:必有一直线相切,一直线相交、那么:圆心到直线y=kx+2的距离等于半径2、故:,或解得:k=或0,〔0舍去〕或k=或0经检验,直线与曲线C2没有公共点、故C1的方程为:、23、【解答】解:〔1〕当a=1时,f〔x〕=|x+1|﹣|x﹣1|=,由f〔x〕>1,∴或,解得x>,故不等式f〔x〕>1的解集为〔,+∞〕,〔2〕当x∈〔0,1〕时不等式f〔x〕>x成立,∴|x+1|﹣|ax﹣1|﹣x>0,即x+1﹣|ax﹣1|﹣x>0,即|ax﹣1|<1,∴﹣1<ax﹣1<1,∴0<ax<2,∵x∈〔0,1〕,∴a>0,∴0<x<,∴a<∵>2,∴0<a≤2,故a的取值范围为〔0,2]、。
2019年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)
绝密★启用前2019年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合,则A.B.C.D.2.若,则z=A.B.C.D.3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5B.0.6C.0.7D.0.84.(1+2x2)(1+x)4的展开式中x3的系数为A.12B.16C.20D.245.已知各项均为正数的等比数列{a n}的前4项为和为15,且a5=3a3+4a1,则a3= A.16B.8C.4D.26.已知曲线在点(1,a e)处的切线方程为y=2x+b,则A.B.a=e,b=1C.D.,7.函数在的图象大致为A.B.C.D.8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M 是线段ED的中点,则A.BM=EN,且直线BM、EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM、EN是异面直线D.BM≠EN,且直线BM,EN是异面直线9.执行下边的程序框图,如果输入的为0.01,则输出的值等于A. B. C. D.10.双曲线C:=1的右焦点为F,点P在C的一条渐进线上,O为坐标原点,若,则△PFO的面积为A.B.C.D.11.设是定义域为R的偶函数,且在单调递减,则A.(log3)>()>()B.(log3)>()>()C.()>()>(log3)D.()>()>(log3)12.设函数=sin()(>0),已知在有且仅有5个零点,下述四个结论:①在()有且仅有3个极大值点②在()有且仅有2个极小值点③在()单调递增④的取值范围是[)其中所有正确结论的编号是A.①④B.②③C.①②③D.①③④二、填空题:本题共4小题,每小题5分,共20分。
2019年全国统一高考数学试卷(理科)(新课标Ⅲ)(解析版)
2019年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题1. 已知集合A={−1, 0, 1, 2}, B={x|x2≤1},则A∩B=( )A.{−1,0,1}B.{0,1}C.{−1,1}D.{0,1,2}2. 若z(1+i)=2i,则z=( )A.−1−iB.−1+iC.1−iD.1+i3. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了了解本校小学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该学校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A.0.5B.0.6C.0.7D.0.84. (1+2x2)(1+x)4的展开式中x3的系数为( )A.12B.16C.20D.245. 已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=( )A.16B.8C.4D.26. 已知曲线y=ae x+x ln x在点(1,ae)处的切线方程为y=2x+b,则( )A.a=e, b=−1B.a=e, b=1C.a=e−1, b=1D.a=e−1,b=−17. 函数y=2x32x+2−x在[−6,6]的图象大致为()A. B.C. D.8. 如图,点N为正方形ABCD的中心,△EDC为正三角形,平面EDC⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线9. 执行下边的程序框图,如果输入的ε为0.01,则输出的值等于()A.2−124B.2−125C.2−126D.2−12710. 双曲线C :x 24−y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若|PO|=|PF|,则△PFO 的面积为( ) A.3√24B.3√22C.2√2D.3√211. 设f(x)是定义域为R 的偶函数,且在(0,+∞)单调递减,则( ) A.f (log 314)>f (2−32)>f (2−23) B.f (log 314)>f (2−23)>f (2−32) C.f (2−32)>f (2−23)>f (log 314)D.f (2−23)>f (2−32)>f (log 314)12. 设函数f(x)=sin (ωx +π5)(ω>0),已知f(x)在[0,2π]有且仅有5个零点,下述四个结论: ①f(x)在(0,2π)有且仅有3个极大值点, ②f(x)在(0,2π)有且仅有2个极小值点, ③f(x)在(0,π10)单调递增,④ω的取值范围是[125,2910). 其中所有正确结论的编号是( ) A.①④ B.②③ C.①②③ D.①③④二、填空题13. 已知a →,b →为单位向量,且a →⋅b →=0,若c →=2a →−√5b →,则cos (a →,c →)=________.14. 记S n 为等差数列{a n }项和,若a 1≠0,a 2=3a 1,则S 10S 5=________.15. 设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限,若△MF 1F 2为等腰三角形,则M 的坐标为________.16. 学生到工厂劳动实践,利用3D 打印技术制作模型,如图,该模型为长方体ABCD −A 1B 1C 1D 1,挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H ,分别为所在棱的中点,AB =BC =6cm ,AA 1=4cm ,3D 打印所用原料密度为0.9g/cm 2,不考虑打印损耗,制作该模型所需原料的质量为________g .三、解答题 17.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同. 经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比,根据试验数据分别得到如下直方图: 记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).18. △ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知a sin A+C 2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.19. 图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60∘,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的二面角B −CG −A 的大小.20. 已知函数f(x)=2x 3−ax 2+b . (1)讨论f(x)的单调性;(2)是否存在a,b ,使得f(x)在区间[0,1]的最小值为−1且最大值为1?若存在,求出a,b 的所有值;若不存在,说明理由.21. 已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A,B .(1)证明:直线AB 过定点;(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.22. 如图,在极坐标系Ox 中,A(2,0),B(√2,π4),C(√2,3π4),D(2,π),弧AB̂,BC ̂,CD ̂所在圆的圆心分别是(1,0),(1,π2),(1,π),曲线M 1是弧AB̂,曲线M 2是弧BC ̂,曲线M 3是弧CD ̂.(1)分别写出M 1,M 2,M 3的极坐标方程;(2)曲线M 由M 1,M 2,M 3构成,若点P 在M 上,且|OP|=√3,求P 的极坐标.23. 设x ,y ,z ∈R ,且x +y +z =1.(1)求(x −1)2+(y +1)2+(z +1)2的最小值;(2)若(x −2)2+(y −1)2+(z −a)2≥13成立,证明:a ≤−3或a ≥−1.参考答案与试题解析2019年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题1.【答案】A【考点】一元二次不等式的解法交集及其运算【解析】此题暂无解析【解答】解:∵x2≤1,∴−1≤x≤1,∴B={x|−1≤x≤1},∴A∩B={−1,0,1}.故选A.2.【答案】D【考点】复数代数形式的乘除运算【解析】此题暂无解析【解答】解:z(1+i)=2i,z=2i1+i,z=2i(1−i)(1+i)(1−i),z=1+i,故选D.3.【答案】C【考点】生活中概率应用【解析】此题暂无解析【解答】解:只阅读过《红楼梦》或《西游记》的人数为:90−60=30,只阅读过《红楼梦》的人数为:80−60=20,只阅读过《西游记》的人数为30−20=10,阅读过《西游记》的人数为:10+60=70,与该校学生总数比值为70100=0.7.故选C.4.【答案】A【考点】二项式定理的应用【解析】此题暂无解析【解答】解:(1+x)4展开式中x3项的系数:C43=4;(1+x)4展开式中x项的系数:C41=4;所以(1+2x2)(1+x)4展开式中x3项的系数为:4+2×4=12. 故选A.5.【答案】C【考点】等比数列的前n项和【解析】此题暂无解析【解答】解:a1q4=3a1q2+4a1,q4−3q2−4=0,解得q=2或−2(舍)a1(1−q4)1−q=15,解得a1=1,所以a3=a1q2=4.故选C.6.【答案】D【考点】利用导数研究曲线上某点切线方程【解析】此题暂无解析【解答】解:y′=ae x+ln x+1,∵曲线y=ae x+x ln x在点(1,ae)处的切线方程为y=2x+b,∴ae+ln1+1=2,解得a=e−1.∴切线方程为y=2x−1,解得b=−1.故选D.7.【答案】B【考点】函数奇偶性的判断函数的图象【解析】此题暂无解析【解答】解:将−x代入题中函数,可得y1=2(−x)32−x+2−(−x)=−y,故原函数为奇函数,关于原点对称,因此排除选项C.将x=1代入函数,得y=45>0,排除选项D.将x=4代入函数,得y=2⋅4324+2−4≈23=8,排除选项A. 故选B.8.【答案】B【考点】空间中直线与直线之间的位置关系【解析】此题暂无解析【解答】解:连接M,N,∵ MN为△DBE的中位线,∴ MN//EB,∴ M,N,E,B四点共线,∴ BM,EN相交;设AB=4,则AD=DC=CB=DE=CE=4;设P为CD中点,Q为DP中点,连接EP,MQ;∵ EP⊥DC,平面ECD⊥平面ABCD,EP⊂平面ECD,平面ECD∩平面ABCD=CD;∴ EP⊥平面ABCD,∴ EP⊥PN,同理MQ⊥QB,在△EPN中,EP=2√3,PN=2,则EN=4;在△MQB中,MQ=√3,BQ=5,则BM=2√7.∴ BM≠EN;故选B.9.【答案】C【考点】程序框图【解析】此题暂无解析【解答】解:∵ ε=0.01,①输入x=1,s=0,有s=1+0=1,x=12,x>ε;②输入x=12,s=1+12=2−12,x=122,x>ε;③输入x=122,s=2−12+122=2−122,x=123,x>ε;④输入x=123,s=2−122+123=2−123,x=124,x>ε;⑤输入x=124,s=2−123+124=2−124,x=125,x>ε;⑥输入x=125,s=2−124+125=2−125,x=126,x>ε;⑦输入x=126,s=2−125+126=2−126,x=127<ε,此时输出s=2−126.故选C . 10.【答案】 A【考点】双曲线的渐近线 【解析】 此题暂无解析 【解答】解:设点P =(x 0,y 0), ∵ a =2,b =√2, ∴ c =√6.由题知x 02+y 02=(x 0−√6)2+y 02,解得x 0=√62, 由于双曲线的渐近线方程为y =±√22, ∴ y 0=√32, ∴ S △PFO =12×√6×√32=3√24. 故选A. 11.【答案】 C【考点】幂函数的单调性、奇偶性及其应用 【解析】 此题暂无解析 【解答】解:|log 34−1|=|−log 34|>1, 2−32=√23<23=2−23,又∵ f(x)为偶函数,且在(0,+∞)上单调递减, ∴ f (2−32)>f (2−23)>f (log 314). 故选C.12.【答案】D【考点】正弦函数的周期性由y=Asin (ωx+φ)的部分图象确定其解析式 正弦函数的单调性 正弦函数的定义域和值域 【解析】 此题暂无解析 【解答】解:作出f(x)的大致图像,由图知f(x)在(0,2π)上有3个极大值点,①对;f(x)在(0,2π)上有2个或3个极小值点,②错; 5π−π5≤2πω<6π−π5,解得125≤ω<2910,④对;24π100≤π10ω<29100π,∵ π2−π5=310π.∴ f(x)在(0,π10)单调递增,③对.故选D .二、填空题 13.【答案】23【考点】数量积判断两个平面向量的垂直关系 数量积表示两个向量的夹角 单位向量 【解析】 此题暂无解析 【解答】解:由题可知, ∵ a →⋅b →=0,∴ a →⊥b →, ∵ c →=2a →−√5b →,∴ |c →|=√22+(√5)2=3,且c →与a →夹角小于π2,故cos (a →,c →)=a →⋅c→|a →|⋅|c →|=(2a →−√5b →)⋅a →|a →|⋅|c →|=23,故答案为:23. 14.【答案】 4【考点】等差数列的前n 项和 【解析】 此题暂无解析 【解答】解:∵ 数列{a n }为等差数列,a 2=3a 1, ∴ a 1+d =3a 1, 即d =2a 1, S n =na 1+n(n−1)d2, ∴S 10S 5=10a 1+(10×9)2d 5a 1+(5×4)2d,将d =2a 1代入,得S10S 5=4.故答案为:4. 15. 【答案】 (3,√15)【考点】 椭圆的应用 椭圆的定义 【解析】 此题暂无解析 【解答】解:因为M 在椭圆上,设M 横坐标为t ,则M(t,√180−5t 29);又因为△MF 1F 2为等腰三角形且M 在第一象限, 则MF 1=F 1F 2, 由题意得F 1F 2=8. (t +4)2+(√180−5t 29)2=64,解得t =3或t =−21(舍去). 当t =3时,M 的坐标为(3,√15).故答案为:(3,√15). 16.【答案】 118.8 【考点】柱体、锥体、台体的体积计算 【解析】 此题暂无解析 【解答】解:模型的体积为长方体的体积减去四棱锥的体积, 正方体的体积为:6×6×4=144cm 3, 四棱锥的体积为:13×6×4×12×3=12cm 3. 模型的体积为:144−12=132cm 3. 模型的质量为:132×0.9=118.8g . 故答案为:118.8. 三、解答题17.【答案】解:(1)由题意得:0.7=a +0.2+0.15, 解得:a =0.35.b =1−0.05−0.15−0.7=0.1.(2)甲离子残留百分比的平均值的估计值为:2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为:3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00. 【考点】众数、中位数、平均数 频率分布直方图【解析】 此题暂无解析 【解答】解:(1)由题意得:0.7=a +0.2+0.15,解得:a=0.35.b=1−0.05−0.15−0.7=0.1.(2)甲离子残留百分比的平均值的估计值为:2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为:3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.18.【答案】解:(1)由题设及正弦定理可得,sin A sin A+C2=sin B sin A,∵sin A≠0,∴sin A+C2=sin B,∵ A+B+C=180∘,可得sin A+C2=cos B2,故cos B2=2sin B2cos B2.∵cos B2≠0,故sin B2=12,∴ B=60∘.(2)由题设及(1)可知,S△ABC=12ac sin B=√34a,由正弦定理得a=c sin Asin C =sin(120∘−C)sin C=√32tan C+12,∵ △ABC为锐角三角形,故0∘<A<90∘,0∘<C<90∘,由(1)知A+C=120∘,∴30∘<C<90∘,故12<a<2,从而√38<S△ABC<√32.答:△ABC面积的取值范围为(√38,√32).【考点】解三角形三角函数中的恒等变换应用【解析】此题暂无解析【解答】解:(1)由题设及正弦定理可得,sin A sin A+C2=sin B sin A,∵sin A≠0,∴sin A+C2=sin B,∵ A+B+C=180∘,可得sin A+C2=cos B2,故cos B2=2sin B2cos B2.∵cos B2≠0,故sin B2=12,∴ B=60∘.(2)由题设及(1)可知,S△ABC=12ac sin B=√34a,由正弦定理得a=c sin Asin C=sin(120∘−C)sin C=√32tan C+12,∵ △ABC为锐角三角形,故0∘<A<90∘,0∘<C<90∘,由(1)知A+C=120∘,∴30∘<C<90∘,故12<a<2,从而√38<S△ABC<√32.答:△ABC面积的取值范围为(√38,√32).19.【答案】(1)证明:由已知得AD//BE,CG//BE,所以AD//CG,故AD,CG确定一平面,从而A,C,G,D四点共面,由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE,又因为AB⊂平面ABC,所以平面ABC ⊥平面BCGE . (2)解:作EH ⊥BC ,垂足为H , 因为EH ⊂平面BCGE , 平面BCGE ⊥平面ABC , 所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60∘, 可求得BH =1,EH =√3.以H 为坐标原点,HC →的方向为x 轴的正方向, 建立如图所示的空间直角坐标系H −xyz ,则A (−1,1,0),C (1,0,0),G (2,0,√3), CG →=(1,0,√3),AC →=(2,−1,0), 设平面ACGD 的法向量为n →=(x ,y ,z), 则{CG →⋅n →=0,AC →⋅n →=0,即{x +√3z =0,2x −y =0.所以可取n →=(3,6,−√3).又平面BCGE 的法向量可取为m →=(0,1,0), 所以cos <n →,m →>=n →⋅m→|n →||m →|=√32. 因此二面角B −CG −A 的大小为30∘. 【考点】用空间向量求平面间的夹角 平面与平面垂直的判定【解析】 此题暂无解析 【解答】(1)证明:由已知得AD//BE ,CG//BE , 所以AD//CG , 故AD ,CG 确定一平面, 从而A ,C ,G ,D 四点共面, 由已知得AB ⊥BE ,AB ⊥BC , 故AB ⊥平面BCGE , 又因为AB ⊂平面ABC , 所以平面ABC ⊥平面BCGE . (2)解:作EH ⊥BC ,垂足为H , 因为EH ⊂平面BCGE , 平面BCGE ⊥平面ABC , 所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60∘,可求得BH =1,EH =√3.以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H −xyz ,则A (−1,1,0),C (1,0,0),G (2,0,√3), CG →=(1,0,√3),AC →=(2,−1,0), 设平面ACGD 的法向量为n →=(x ,y ,z),则{CG →⋅n →=0,AC →⋅n →=0,即{x +√3z =0,2x −y =0.所以可取n →=(3,6,−√3).又平面BCGE 的法向量可取为m →=(0,1,0), 所以cos <n →,m →>=n →⋅m→|n →||m →|=√32. 因此二面角B −CG −A 的大小为30∘. 20.【答案】解:(1)f ′(x)=6x 2−2ax =2x(3x −a). 令f ′(x)=0,得x =0或x =a3.若a >0,则当x ∈(−∞,0)∪(a3,+∞)时,f ′(x)>0;当x ∈(0,a3)时,f ′(x)<0.故f(x)在(−∞,0),(a3,+∞)单调递增,在(0,a3)单调递减; 若a =0,f(x)在(−∞,+∞)单调递增;若a <0,则当x ∈(−∞,a3)∪(0,+∞)时,f ′(x)>0; 当x ∈(a3,0)时,f ′(x)<0.故f(x)在(−∞,a3),(0,+∞)单调递增,在(a3,0)单调递减.(2)满足题设条件的a,b 存在.i 当a ≤0时,由(1)知,f(x)在[0,1]单调递增,所以f(x)在区间[0,1]的最小值为f(0)=b ,最大值为f(1)=2−a +b , 此时a ,b 满足题设条件当且仅当b =−1, 2−a +b =1,即a =0,b =−1. ii 当a ≥3时,由(1)知,f(x)在[0,1]单调递减,所以f(x)在区间[0,1]的最大值为f(0)=b ,最小值为f(1)=2−a +b . 此时a,b 满足题设条件当且仅当2−a +b =−1, b =1,即a =4,b =1.iii 当0<a <3时,由(1)知,f(x)在[0,1]的最小值为f (a3)=−a 327+b ,最大值为b 或2−a +b . 若−a 327+b =−1, b =1,则a =3√23,与0<a <3矛盾.若−a 327+b =−1,2−a +b =1,则a =3√3或a =−3√3或a =0,与0<a <3矛盾.综上,当且仅当a =0, b =−1或a =4, b =1时, f(x)在[0,1]的最小值为−1,最大值为1.【考点】利用导数研究函数的最值 利用导数研究函数的单调性【解析】 此题暂无解析 【解答】解:(1)f ′(x)=6x 2−2ax =2x(3x −a). 令f ′(x)=0,得x =0或x =a3.若a >0,则当x ∈(−∞,0)∪(a3,+∞)时,f ′(x)>0;当x ∈(0,a3)时,f ′(x)<0.故f(x)在(−∞,0),(a3,+∞)单调递增,在(0,a3)单调递减; 若a =0,f(x)在(−∞,+∞)单调递增;若a <0,则当x ∈(−∞,a3)∪(0,+∞)时,f ′(x)>0;当x ∈(a3,0)时,f ′(x)<0.故f(x)在(−∞,a 3),(0,+∞)单调递增,在(a3,0)单调递减. (2)满足题设条件的a,b 存在.i 当a ≤0时,由(1)知,f(x)在[0,1]单调递增, 所以f(x)在区间[0,1]的最小值为f(0)=b ,最大值为f(1)=2−a +b ,此时a ,b 满足题设条件当且仅当b =−1, 2−a +b =1, 即a =0,b =−1.ii 当a ≥3时,由(1)知,f(x)在[0,1]单调递减,所以f(x)在区间[0,1]的最大值为f(0)=b ,最小值为f(1)=2−a +b . 此时a,b 满足题设条件当且仅当2−a +b =−1, b =1,即a =4,b =1. iii 当0<a <3时,由(1)知,f(x)在[0,1]的最小值为f (a3)=−a 327+b ,最大值为b 或2−a +b . 若−a 327+b =−1, b =1,则a =3√23,与0<a <3矛盾. 若−a 327+b =−1,2−a +b =1,则a =3√3或a =−3√3或a =0,与0<a <3矛盾. 综上,当且仅当a =0, b =−1或a =4, b =1时, f(x)在[0,1]的最小值为−1,最大值为1. 21. 【答案】解:(1)设D (t,−12), A (x 1,y 1),则x 12=2y 1.由于y ′=x ,所以切线DA 的斜率为x 1, 故y 1+12x 1−t=x 1.整理得2tx 1−2y 1+1=0.设B (x 2,y 2),同理可得2tx 2−2y 2+1=0. 故直线AB 的方程为2tx −2y +1=0. 所以直线AB 过定点(0,12).(2)由(1)得直线AB 的方程为y =tx +12.由{y =tx +12,y =x22可得x 2−2tx −1=0. 于是x 1+x 2=2t, x 1x 2=−1, y 1+y 2=t (x 1+x 2)+1=2t 2+1, |AB|=√1+t 2|x 1−x 2| =√1+t 2×√(x 1+x 2)2−4x 1x 2=2(t 2+1).设d 1,d 2分别为点D,E 到直线AB 的距离, 则d 1=√t 2+1, d 2=√t 2+1.因此,四边形ADBE 的面积S =12|AB|(d 1+d 2)=(t 2+3)√t 2+1. 设M 为线段AB 的中点,则M (t,t 2+12).由于EM →⊥AB →,而EM →=(t,t 2−2), AB →与向量(1,t)平行, 所以t +(t 2−2)t =0, 解得t =0或t =±1.当t =0时,S =3;当t =±1时S =4√2, 因此,四边形ADBE 的面积为3或4√2. 【考点】 直线恒过定点利用导数研究曲线上某点切线方程 直线与圆的位置关系【解析】 此题暂无解析 【解答】解:(1)设D (t,−12), A (x 1,y 1),则x 12=2y 1.由于y ′=x ,所以切线DA 的斜率为x 1, 故y 1+12x 1−t=x 1.整理得2tx 1−2y 1+1=0.设B (x 2,y 2),同理可得2tx 2−2y 2+1=0. 故直线AB 的方程为2tx −2y +1=0. 所以直线AB 过定点(0,12).(2)由(1)得直线AB 的方程为y =tx +12.由{y =tx +12,y =x22可得x 2−2tx −1=0. 于是x 1+x 2=2t, x 1x 2=−1, y 1+y 2=t (x 1+x 2)+1=2t 2+1, |AB|=√1+t 2|x 1−x 2|=√1+t 2×√(x 1+x 2)2−4x 1x 2=2(t 2+1). 设d 1,d 2分别为点D,E 到直线AB 的距离,则d 1=√t 2+1, d 2=√t 2+1.因此,四边形ADBE 的面积S =12|AB|(d 1+d 2)=(t 2+3)√t 2+1.设M 为线段AB 的中点,则M (t,t 2+12).由于EM →⊥AB →,而EM →=(t,t 2−2), AB →与向量(1,t)平行, 所以t +(t 2−2)t =0, 解得t =0或t =±1.当t =0时,S =3;当t =±1时S =4√2, 因此,四边形ADBE 的面积为3或4√2. 22. 【答案】解:(1)由题设可得,弧AB̂,BC ̂,CD ̂所在圆的极坐标方程分别为, ρ=2cos θ, ρ=2sin θ, ρ=−2cos θ, 所以M 1的极坐标方程为ρ=2cos θ(0≤θ≤π4),M 2的极坐标方程为ρ=2sin θ(π4≤θ≤3π4),M 3的极坐标方程为ρ=−2cos θ(3π4≤θ≤π). (2)设P(ρ,θ),由题设及(1)知, 若0≤θ≤π4,则2cos θ=√3, 解得θ=π6; 若π4≤θ≤3π4,则2sin θ=√3,解得θ=π3或θ=2π3;若3π4≤θ≤π,则−2cos θ=√3,解得θ=5π6.综上,P 的极坐标为(√3,π6)或(√3,π3)或(√3,2π3)或(√3,5π6). 【考点】圆的极坐标方程 极坐标刻画点的位置 【解析】 此题暂无解析【解答】解:(1)由题设可得,弧AB̂,BC ̂,CD ̂所在圆的极坐标方程分别为, ρ=2cos θ, ρ=2sin θ, ρ=−2cos θ, 所以M 1的极坐标方程为ρ=2cos θ(0≤θ≤π4),M 2的极坐标方程为ρ=2sin θ(π4≤θ≤3π4),M 3的极坐标方程为ρ=−2cos θ(3π4≤θ≤π).(2)设P(ρ,θ),由题设及(1)知, 若0≤θ≤π4,则2cos θ=√3,解得θ=π6; 若π4≤θ≤3π4,则2sin θ=√3,解得θ=π3或θ=2π3;若3π4≤θ≤π,则−2cos θ=√3,解得θ=5π6.综上,P 的极坐标为(√3,π6)或(√3,π3)或(√3,2π3)或(√3,5π6).23.【答案】(1)解:由于[(x −1)+(y +1)+(z +1)]2 =(x −1)2+(y +1)2+(z +1)2+2[(x −1)(y +1)+(y +1)(z +1)+(z +1)(x −1)] ≤3[(x −1)2+(y +1)2+(z +1)2],故由已知得(x −1)2+(y +1)2+(z +1)2≥43,当且仅当x =53, y =−13, z =−13时等号成立.(2)证明:由于[(x −2)+(y −1)+(z −a)]2=(x −2)2+(y −1)2+(z −a)2+2[(x −2)(y −1)+(y −1)(z −a)+(z −a)(x −2)] ≤3[(x −2)2+(y −1)2+(z −a)2], 由已知得,(x −2)2+(y −1)2+(z −a)2≥(2+a)23,当且仅当x =4−a 3, y =1−a 3, z =2a−23时等号成立,因此(x −2)2+(y −1)2+(z −a)2的最小值为(2+a)23,由题设知(2+a)23≥13,解得a ≤−3或a ≥−1.【考点】 柯西不等式 【解析】 此题暂无解析 【解答】(1)解:由于[(x −1)+(y +1)+(z +1)]2 =(x −1)2+(y +1)2+(z +1)2+2[(x −1)(y +1)+(y +1)(z +1)+(z +1)(x −1)] ≤3[(x −1)2+(y +1)2+(z +1)2],故由已知得(x −1)2+(y +1)2+(z +1)2≥43, 当且仅当x =53, y =−13, z =−13时等号成立. (2)证明:由于[(x −2)+(y −1)+(z −a)]2 =(x −2)2+(y −1)2+(z −a)2+2[(x −2)(y −1)+(y −1)(z −a)+(z −a)(x −2)] ≤3[(x −2)2+(y −1)2+(z −a)2], 由已知得,(x −2)2+(y −1)2+(z −a)2≥(2+a)23,当且仅当x =4−a 3, y =1−a 3, z =2a−23时等号成立,因此(x −2)2+(y −1)2+(z −a)2的最小值为(2+a)23,由题设知(2+a)23≥13,解得a ≤−3或a ≥−1.。
2019版高考数学(理科)全程训练计划全国通用(PPT版)(含最新2018年模拟题):天天练42
②假设当 n=k(k∈N*)时,等式成立,即 12-22+32-42+…+(-1)k-1k2=(-1)k-1kk+2 1, 则当 n=k+1 时, 12 - 22 + 32 - 42 + … + ( - 1)k - 1k2 + ( - 1)k(k + 1)2 = ( - 1)k - 1·kk+2 1 + ( - 1)k(k + 1)2 = ( - 1)k(k + 1) k+1-2k = ( - 1)kk+1[k2+1+1], ∴当 n=k+1 时,等式也成立. 根据①②可知,对于任何 n∈N*等式均成立.
解析:(1)第 5 个等式:1-4+9-16+25=1+2+3+4+5; 第 6 个等式:1-4+9-16+25-36=-(1+2+3+4+5+ 6); 猜测第 n(n∈N*)个等式为 12-22+32-42+…+(-1)n-1n2= (-1)n-1(1+2+3+…+n). (2) 证 明 : ① 当 n = 1 时 , 左 边 = 12 = 1 , 右 边 = ( - 1)0×1×21+1=1, 左边=右边,等式成立;
5.(2018·山东菏泽模拟)设 m,n,t 都是正数,则 m+4n,n
+4t ,t+m4 三个数( )
A.都大于 4
B.都小于 4C.至少Leabharlann 一个大于 4 D.至少有一个不小于 4
答案:D 解析:依题意,令 m=n=t=2,则三个数为 4,4,4,排除 A, B,C 选项,故选 D.
6.用三段论推理:“任何实数的绝对值大于 0,因为 a 是 实数,所以 a 的绝对值大于 0”,你认为这个推理( )
一、选择题 1.要证明 3+ 7<2 5可选择的方法有以下几种,其中最合 理的是( ) A.综合法 B.分析法 C.反证法 D.归纳法
2019年高考数学理科全国三卷课件.doc
2019 年普通高等学校招生全国统一考试理科数学( 全国三卷)一、选择题:(本题共12 小题,每小题 5 分,共60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知集合 A 1,0,1,2 , 2B x |x 1 ,则A B ()A. { 1,0,1}B.{0,1}C.{ 1,1}D. {0,1,2}2.若z(1 i) 2i ,则z=()A. 1 iB. 1 iC. 1 iD. 1 i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100名学生,其中阅读过《西游记》或《红楼梦》的学生共有90 位,阅读过《红楼梦》的学生共有80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有60 位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A. 0.5B. 0.6C. 0.7D. 0.84. 3 的系数为()2 4(1 2x )(1 x) 的展开式中xA. 12B. 16C. 20D. 245.已知各项均为正数的等比数列{ a n}的前4 项和为15,且a5=3 a3+4a1,则a3=()A. 16B. 8C. 4D. 2x6.已知曲线lny ae x x 在(1,ae) 处的切线方程为y=2x +b,则()A. a e,b 1B. a e, b 1C.a e bD. 1, 11, 1 a e b1, 11, 17.函数32xy 在[ 6,6] 的图像大致为()x x2 2A. B. C. D.8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD⊥平面ABCD,M 是线段ED 的中点,则()EA. BM=EN,且直线BM,EN 是相交直线B. BM≠EN,且直线BM,EN 是相交直线C. BM =EN,且直线BM,EN 是异面直线MC BD. BM≠EN,且直线BM,EN 是异面直线ND A9.执行右边的程序框图,如果输入的ε为0.01,则输出s 的值等于()1 A.2 421B. 2 521C. 2 621D. 2 7210.双曲线C:2 2x y4 21 的右焦点为F,点P 在C 的一条渐近线上,O为坐标原点.若|PO|=|PF|,则△PFO 的面积为()A. 3 24B.3 22C. 2 2D.3 211.设f(x)是定义域为R 的偶函数,且在(0,+ ∞单)调递减,则()A.3 212 3f (log ) f (2 ) f (2 ) B.342 313 2f (log ) f (2 ) f (2 )34C.3 21f 2 f f D.(2 ) (2 ) (log )3342 313 2f (2 ) f (2 ) f (log )3412.设函数 f ( x) sin( x )( 0) ,已知f ( x)在[0,2 π有]且仅有 5 个零点,下述四个结论:① f5(x)在(0,2 π有)且仅有 3 个极大值点;②f (x)在(0,2 π有)且仅有 2 个极小值点;③f (x)在(0, )10单调递增;④的取值范围是12 29[ , )5 10.其中所有正确结论的编号是()A.①④B.②③C.①②③D.①③④二、填空题:本题共 4 小题,每小题 5 分,共20分.13.已知a,b为单位向量,且a·b=0,若c2a5b,则cos<a,c>=_____________.14.记S n 为等差数列{a n} 的前n 项和,若a1≠0,a2=3 a1,则S10S5=_____________.15.设F1,F2 为椭圆C:2 2x y36 201的两个焦点,M 为C 上一点且在第一象限,若△MF1F2 为等腰三角形,则M 的坐标为______________.D1C1G 16.学生到工厂劳动实践,利用3D 打印技术制作模型,如图,该模型为长方体ABCD- A1B1C1D1 挖去四棱锥O- EFGH 后所得的几何体,其中O 为长方体的中心,E,F,G,H 分别为所在棱的A1O中点,AB=BC=6cm,AA1=4cm.3D 打印所用的材料密度为HDB1FC EA B3,不考虑打印损耗,制作该模型所需原料的质量为__________g.0.9g/cm三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21 题为必考题,每个试题考生都必须作答。
2019版高考数学(理科)(5年高考+3年模拟)全国卷1地区通用版3.1 导数与积分精选ppt版本
3.(2018课标Ⅱ,13,5分)曲线y=2ln(x+1)在点(0,0)处的切线方程为
.
答案 y=2x
解析 本题主要考查导数的几何意义.
因为y'= x 21 ,所以y'|x=0=2,又(0,0)为切点,
所以曲线在点(0,0)处的切线方程为y=2x.
4.(2018课标Ⅲ,14,5分)曲线y=(ax+1)ex在点(0,1)处的切线的斜率为-2,则a=
答案 D 本题主要考查函数的奇偶性及导数的几何意义. ∵f(x)=x3+(a-1)x2+ax为奇函数,∴a-1=0,解得a=1,∴f(x)=x3+x,∴f '(x)=3x2+1,∴f '(0)=1,故曲线y= f(x)在点(0,0)处的切线方程为y=x,故选D.
解后反思 求曲线的切线方程需注意的几个问题: (1)首先应判断所给的点是不是切点,如果不是,那么需要设出切点. (2)切点既在原函数的图象上,又在切线上,可先设出切线方程,再将切点代入两者的解析式建 立方程组. (3)切点处的导数值等于切线的斜率,这是求切线方程最重要的条件.
上单调递减,在 1e ,
上单调递增,从而g(x)在(0,+∞)上的最小值为g 1e
=- 1 .
e
设函数h(x)=xe-x- 2e ,则h'(x)=e-x(1-x).
所以当x∈(0,1)时,h'(x)>0;当x∈(1,+∞)时,h'(x)<0.
故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=- 1 . e
k 1 b, k
2019年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)
即 ,可得 .
由于 ,所以 ,故
.
18.解:(1)连结B1C,ME.
因为M,E分别为BB1,BC的中点,
所以ME∥B1C,且ME= B1C.
又因为N为A1D的中点,所以ND= A1D.
由题设知A1B1 DC,可得B1C A1D,故ME ND,
因此四边形MNDE为平行四边形,MN∥ED.
1.已知集合 ,则 =
A. B. C. D.
【答案】C
【解析】
【分析】
本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.
【详解】由题意得, ,则
.故选C.
【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.
2.设复数z满足 ,z在复平面内对应的点为(x,y),则
A. B. C. D.
11.关于函数 有下述四个结论:
①f(x)是偶函数②f(x)在区间( , )单调递增
③f(x)在 有4个零点④f(x)的最大值为2
其中所有正确结论的编号是
A.①②④B.②④C.①④D.①③
12.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,PB的中点,∠CEF=90°,则球O的体积为
22.[选修4—4:坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C的参数方程为 (t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为 .
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.
23.[选修4—5:不等式选讲](10分)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:A 解析:设命题 s:“若 p,则 q”,可知命题 s 是祖暅原理的 逆否命题,由命题的性质可知必然成立,故 p 是 q 的充分条件; 设命题 t:“若 q,则 p”,对此可以举出反例,若在某些等高处 A 比 B 的截面积小一些,在另一些等高处 A 比 B 的截面积多一 些,且多的总量与少的总量相等,则它们的体积还是一样的,所 以命题 t:“若 q,则 p”是假命题,即 p 不是 q 的必要条件.综 上所述,p 是 q 的充分不必要条件,故选 A.
9 . (2018· 河南豫北名校联盟精英对抗赛 ) 设 a , b∈R ,则 a-b “log2a>log2b”是“2 >1”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
答案:A 解 析 : log2a>log2b ⇔ a>b>0,2a - b>1 ⇔ a>b , 所 以 a-b “log2a>log2b”是“2 >1”的充分不必要条件.故选 A.
答案:C 解析:通解 ∵集合 A={x∈N|1<x<log2k},集合 A 中至少 有 3 个元素,∴log2k>4,解得 k>16.故选 C. 优 解 取 k = 16 , 则 集 合 A = {x∈N|1<x<log2k} = {x∈N|1<x<4}={2,3},所以排除 A、B、D,故选 C.
答案:B 解析:因为 P∩Q={3,5},所以集合 M 的子集个数为 4.故 选 B.
2.(2017· 新课标全国Ⅰ文,1)已知集合 A={x|x<2},B={x|3 -2x>0},则( ) 3 A.A∩B=xx<2 B.A∩B=∅ 3 C.A∪B=xx<2 D.A∪B=R
12.下列四种说法中,正确的是( ) A.A={-1,0}的子集有 3 个 2 2 B.“若 am <bm ,则 a<b”的逆命题为真 C.“命题 p∨q 为真”是“命题 p∧q 为真”的必要不充分 条件 D.命题“∀x∈R,x2-3x-2≥0” 的否定是“∃x∈R,使 得 x2-3x-2≥0”
答案:B 解析: 因为 A = {x|0<x<9 , x∈R} ,所以 ∁ UA = {x|x≤0 或 x≥9}.题图中阴影部分表示的集合为(∁UA)∩B={x|-4<x≤0, x∈Z}={-3,-2,-1,0},故该集合中共有 4 个元素.故选 B.
5.(2018· 成都一模)已知集合 A={x∈N|1<x<log2k},若集合 A 中至少有 3 个元素,则 k 的取值范围为( ) A.(8,+∞) B.[8,+∞) C.(16,+∞) D.[16,+∞)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在 每小题给出的四个选项中,只有一项是符合题目要求的. 1 . (2018· 甘肃肃南月考 ) 已知集合 P = {2,3,4,5,6} , Q = {3,5,7}.若 M=P∩Q,则 M 的子集个数为( ) A.5 B.4 C.3 D.2
答案:A 解析:由题意知
3 =xx<2 3 A={x|x<2},B=xx<2 .由图易知
A∩B
,A∪B={x|x<2},故选 A.
3.(2018· 河南中原名校质检)已知全集 U={1,2,3,4,5,6},集 合 A={1,2,4},B={2,4,6},则 A∩(∁UB)=( ) A.{1} B.{2} C.{4} D.{1,2}
8.(2018· 广西陆川二模)已知命题 p:若 a>|b|,则 a2>b2;命 题 q:若 x2=4,则 x=2.下列说法正确的是( ) A.“p∨q”为真命题 B.“p∧q”为真命题 C.“綈 p”为真命题 D.“綈 q”为假命题
答案:A 2 2 2 解析:由 a>|b|≥0,得 a >b ,∴命题 p 为真命题.∵x =4 ⇔x=±2,∴命题 q 为假命题.∴“p∨q”为真命题,“p∧q” 为假命题,“綈 p”为假命题,“綈 q”为真命题.综上所述, 应选 A.
11.祖暅原理:“幂势既同,则积不容异”.它是中国古代 一个涉及几何体体积的问题,意思是两个同高的几何体,如在等 高处的截面积恒相等,则体积相等.设 A、B 为两个同高的几何 体,p:A、B 的体积不相等,q:A、B 在等高处的截面积不恒相 等,根据祖暅原理可知,p 是 q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
10. (2018· 山西怀仁一中期中)命题“∀x∈[1,2), x2-a≤0” 为真命题的一个充分不必要条件可以是( ) A.a≥4 B.a>4 C.a≥1 D.a>1
答案:B 2 2 2 解析:x -a≤0⇔a≥x .因为 x ∈[1,4),所以 a≥4.故 a>4 是 已知命题的一个充分不必要条件.故选 B.
7.(2018· 福建福州外国语学校期中)命题:“若 x2<1,则- 1<x<1”的逆否命题是( ) 2 A.若 x ≥1,则 x≥1 或 x≤-1 B.若 x≥1 且 x≤-1,则 x2>1 C.若-1<x<1,则 x2<1 D.若 x≥1 或 x≤-1,则 x2≥1
答案:D 解析:由“若 p,则 q”的逆否命题为“若綈 q,则綈 p”, 得“若 x2<1,则-1<x<1”的逆否命题是“若 x≥1 或 x≤-1, 则 x2≥1”.故选 D.
2 2 6. 已知集合 A={x|x +x>0}, 集合 B=yy=2x+1,x∈R
,
则(∁RA)∪B=( ),2) D.(-∞,2)
答案:C 解析:A={x|x<-1 或 x>0},∁RA=[-1,0],B=(0,2),于是 (∁RA)∪B=[-1,2),故选 C.
答案:A 解析:因为∁UB={1,3,5},所以 A∩(∁UB)={1}.故选 A.
4.(2018· 河北衡水武邑中学调研)已知全集 U=R,集合 A ={x|0<x<9,x∈R}和 B={x|-4<x<4,x∈Z}关系的 Venn 图如图 所示,则阴影部分所表示集合中的元素共有( )
A.3 个 B.4 个 C.5 个 D.无穷多个