2019年15.1 二次根式 能力培优训练(含答案)

合集下载

数学数学二次根式的专项培优练习题(含答案

数学数学二次根式的专项培优练习题(含答案

一、选择题1. )A B .C .D .2.若 有意义,则 x 的取值范围是 ( ) A .3x >B .3x ≥C .3x ≤D .x 是非负数3.下列运算正确的是( )A 2=B 5=-C 2=D 012=4.下列各式中,运算正确的是( )A =﹣2B +C 4D .=25.已知44220,24,180x y x y >+=++=、.则xy=( )A .8B .9C .10D .116.有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限B .第二象限C .第三象限D .第四象限7.下列计算正确的是( )A 6=±B .=C .6=D =(a≥0,b≥0)8.下列计算正确的是( )A =B =C 4=D 3=-9.a 的值是( ) A .2B .-1C .3D .-1或310.下列运算错误的是( )A B2C .D 1=二、填空题11.能力拓展:1A =2A =;3:A =;4:54A -=________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空. ()2比较大小1A 和2A∵32+________21+∴32+________21+ ∴32-________21-()3同理,我们可以比较出以下代数式的大小:43-________32-;76-________54-;1n n +-________1n n --12.实数a ,b 在数轴上的位置如图所示,则化简()22b a b +-﹣|a +b |的结果是_____.13.把31a-根号外的因式移入根号内,得________ 14.把1m m-_____________. 15.下面是一个按某种规律排列的数阵:11第行325 62第行7223 10 11 233第行13 154 1732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示). 16.14(1)(1)(2)(8)(9)x x x x x x +⋅⋅⋅=+++++的解是______.17.若613x ,小数部分为y ,则(213)x y 的值是___.18.若a 、b 为实数,且b 2211a a -+-+4,则a+b =_____.19.n 的最小值为___20.如果0xy >.三、解答题21.计算:(1(2))((222+-+.【答案】(1) 【分析】(1)先化简二次根式,再合并同类二次根式即可; (2)根据平方差公式化简,再化简、合并同类二次根式即可. 【详解】(1==(2))((222+-+=2223--+ =5-4-3+2 =022.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =.. 【分析】根据分式的运算法则进行化简,再代入求解. 【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.23.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,231+这样的式子,其实我们还可以将其进一步化简:(一) 553533 333⨯==⨯;(二)2231)=31 31(31)(31)-=-++-(;(三)22231(3)1(31)(31)=31 31313131--+-===-++++.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=__________.②参照(三)式化简5+3=_____________(2)化简:++++315+37+599+97+.【答案】见解析.【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1)①;②;(2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.24.已知1,2y =. 【答案】1 【解析】 【分析】根据已知和二次根式的性质求出x 、y 的值,把原式根据二次根式的性质进行化简,把x 、y 的值代入化简后的式子计算即可. 【详解】 1-8x≥0,x≤188x-1≥0,x≥18,∴x=18,y=12,∴原式532-==1222. 【点睛】本题考查的是二次根式的化简求值,把已知条件求出x 、y ,把要求的代数式进行正确变形是解题的关键,注意因式分解在化简中的应用.25.计算②)21-【答案】① 【分析】①根据二次根式的加减法则计算; ②利用平方差、完全平方公式进行计算. 【详解】解:①原式=②原式=(5-2-= 【点睛】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.26.计算:(1)11(2【答案】(12+;(2)【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.【详解】11解:)-=312==【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.27.观察下列各式.====……根据上述规律回答下列问题.(1)接着完成第⑤个等式: _____;n n≥的式子写出你发现的规律;(2)请用含(1)(3)证明(2)中的结论.=+3)见解析【答案】(1=2(n【分析】(1)当n=5==+(2(n(3)直接根据二次根式的化简即可证明.【详解】解:(1=(2(n =+(3=(n ==+【点睛】此题主要考查探索数与式的规律,熟练发现规律是解题关键.28.先化简,再求值:2443(1)11m m m m m -+÷----,其中2m =.【答案】22mm-+ 1. 【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m --=221m m --()•122m m m --+-()() =﹣22m m -+=22m m-+当m ﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先计算二次根式乘法,再合并同类二次根式即可.【详解】原式=故选:A.【点睛】本题考查二次根式的运算,熟练掌握运算法则是解题关键.2.B解析:B【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】有意义的x的取值范围是:x≥3.故选:B.【点睛】本题考查二次根式有意义的条件,解题关键是正确掌握定义和二次根式有意义的条件.3.C解析:C【分析】由二次根式的性质,二次根式的混合运算,分别进行计算,即可得到答案.【详解】解:A A错误;=,故B错误;B5C2==,故C正确;D01213=+=,故D错误;故选:C.【点睛】本题考查了二次根式的性质,二次根式的混合运算,立方根,零指数幂,解题的关键是熟练掌握运算法则进行解题.4.C解析:C 【分析】根据二次根式的性质对A 进行判断;根据二次根式的加减法法则对B 、D 进行判断;根据二次根式的乘法法则对C 进行判断. 【详解】A 、原式=2,故该选项错误;B =,故该选项错误;C 4,故该选项正确;D 故选:C . 【点睛】此题主要考查了二次根式的运算及性质,熟练掌握二次根式乘法、性质及加减法运算法则是解题关键.5.D解析:D 【分析】利用完全平方公式、平方差公式化简第二个等式即可. 【详解】44180+=配方得22222180⎡⎤+-+⋅=⎣⎦222180⎡⎤⎡⎤+=⎣⎦⎣⎦222()180x y +-=22162(2)180xy x xy y +-+= 22122()180xy x y ++=将2224x y +=代入得:12224180xy +⨯= 计算得:11xy = 故选:D. 【点睛】本题考查了完全平方公式、平方差公式的综合应用,熟记公式是解题关键,这两个公式是常考点,需重点掌握.6.A解析:A 【解析】试题分析:根据二次根式的概念,可知a≥0,ab>0,解得a>0,b>0,因此可知A(a,b)在第一象限.故选A7.D解析:D6=,故A不正确;=,故B不正确;根据二次根式的除法,可直接得到2根据同类二次根式的性质,可知C不正确;=(a≥0,b≥0)可知D正确.故选:D8.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;=,故D错误;D3故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.9.C解析:C【分析】根据同类二次根式的性质即可求出答案.【详解】由题意可知:a2-3=2a∴解得:a=3或a=-1当a=-1时,该二次根式无意义,故a=3故选C.【点睛】本题考查二次根式的概念,解题的关键是熟练正确理解最简二次根式以及同类二次根式的概念.10.D解析:D【分析】根据二次根式的乘法法则对A 进行判断;根据分母有理化对B 进行判断;根据二次根式的加减法对C 进行判断;根据二次根式的性质对D 进行判断.【详解】AB2计算正确,不符合题意;C 、计算正确,不符合题意;D 11=≠符合题意;故选:D .【点睛】本题考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.二、填空题11.(1)、;(2);(3)【解析】【分析】(1)观察A1,A2,A3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等解析:(1)=;(2),,><<;(3) ,,<<< 【解析】【分析】(1)观察A 1,A 2,A 3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式; (2)先根据不等式的性质等式的两边同时加上或減去一个数,等式仍成立,求得>1)的结论解答;(3)利用(2)的结论进行填空.【详解】解:(1)观察A 1,A 2,A 3的规律可知,将等式右边的分式分母有理化,即得等式左边的代数式,所以=,(2>1>>,<<(3)由(1)、(2<,故答案为:=;(2),,><<;(3),,<<< 【点睛】 主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.12.3b【分析】先判断a ,b 的取值范围,并分别判断a-b ,a+b 的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b >0,a ﹣b <0,a+b <0,∴原式=|解析:3b【分析】先判断a ,b 的取值范围,并分别判断a-b ,a+b 的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b >0,a ﹣b <0,a +b <0,∴原式=|b |+|a ﹣b |﹣|a +b |=b ﹣(a ﹣b )+(a +b )=b ﹣a +b +a +b=3b , 故答案为:3b【点睛】a =和绝对值的性质是解题的关键.13.【分析】根据被开方数大于等于零,可得出,再根据二次根式的性质进行计算即可.【详解】解:∵,∴,∴.故答案为:.【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质解析:a【分析】根据被开方数大于等于零,可得出0a <,再根据二次根式的性质进行计算即可.【详解】 解:∵310a-≥, ∴0a <,∴===故答案为:a . 【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质是解此题的关键.14.-【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得: ,即∴故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定解析:【解析】根据二次根式的性质,可得答案【详解】由题意可得:1m,即0m∴11mm m mm mm故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定m的取值范围.15.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n(n≥3且n是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.16.9【解析】【分析】设y=,由可将原方程进行化简,解化简后的方程即可求得答案.设y=,则原方程变形为,∴,即,∴4y+36-4y=y(y+9),即y2+9y-36=0,∴解析:9【解析】【分析】设()11111y y y y =-++可将原方程进行化简,解化简后的方程即可求得答案. 【详解】设则原方程变形为()()()()()1111112894y y y y y y ++=+++++, ∴1111111112894y y y y y y -+-++-=+++++, 即11194y y -=+, ∴4y+36-4y=y(y+9),即y 2+9y-36=0,∴y=-12或y=3, ∵, ∴,∴x=9,故答案为:9.【点睛】本题考查了解无理方程,解题的关键是利用换元法,还要注意()11111y y y y =-++的应用. 17.3【分析】先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2,y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,解析:3【分析】先估算34<<,再估算263<<,根据6x ,小数部分为y ,可得: x =2, y=4然后再代入计算即可求解.【详解】因为34<,所以263<-<,因为6x ,小数部分为y ,所以x =2, y=4-,所以(2x y =(4416133=-=, 故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 18.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a=﹣1时,a+b=﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.19.5【分析】因为是整数,且,则5n是完全平方数,满足条件的最小正整数n为5.【详解】∵,且是整数,∴是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为5.【点睛】主要考查了解析:5【分析】,则5n是完全平方数,满足条件的最小正整数n为5.【详解】∴是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为5.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.20.【分析】由,且,即知,,据此根据二次根式的性质化简可得.【详解】∵,且,即,∴,,∴,故答案为:.【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.解析:-【分析】由0xy >,且20xy -≥,即•0y xy -≥知0x <,0y <,据此根据二次根式的性质化简可得.【详解】∵0xy >,且20xy -≥,即•0y xy -≥,∴0x <,0y <,==-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

初二数学《二次根式》竞赛培优精选题(含解析)

初二数学《二次根式》竞赛培优精选题(含解析)

二次根式竞赛培优题(含解析)一.选择题(共5小题)1.计算:=()A.3994001B.3994002C.3994003D.39940002.计算:=()A.B.C.D.3.的结果是()A.B.C.D.4.的值是()A.B.C.1D.5.在这1000个二次根式中,与是同类二次根式的个数共有()A.3B.4C.5D.6二.填空题(共24小题)6.已知实数x1,x2,x3,…,x1999满足.则x1+2x2+3x3+…+1999x1999的值为.7.化简=.8.化简.9.观察图形,用S i表示第i个三角形的面积,有;;,…,若S1+S2+S3+…+S n>10,则n的最小值为.10.方程的解是x=11.设M=+++┉+,N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994,则=.12.计算:=(其中a>0)13.的值为.14.已知:对于正整数n,有,若某个正整数k满足,则k=.15.若n为整数,且是自然数,则n=.16.如果,并且表示为时的值,即,表示当时的值,即,那么的值为.17.若u、v满足v=,则u2﹣uv+v2=.18.已知a为实数,且与都是整数,则a的值是.19.使得++=1的一组正整数(a,b,c)为:.20.计算﹣20062的结果是.21.设=.22.若,,则x6+y6的值是.23.当时,的值为.24.已知,,则k=.25.当1≤x≤2时,经化简等于.26.计算=.27.已知x=,那么+1的值是.28.化简:,得到.29.=.三.解答题(共1小题)30.计算:(1);(2);(3);(4).二次根式竞赛培优题(含解析)参考答案与试题解析一.选择题(共5小题)1.计算:=()A.3994001B.3994002C.3994003D.3994000【分析】设1998=a,把被开方数变形后,利用多项式的乘法法则计算后,加上a2再减去a2,前三项结合提取a2,剩下的三项利用完全平方公式化简,接着三项合并后提取2a,整体再利用完全平方公式化简,从而得到被开方数为一个数的完全平方,利用化简公式=|a|及a大于0即可得到最后结果.【解答】解:设1998=a,则1997×1998×1999×2000+1=(a﹣1)a(a+1)(a+2)+1=a4+2a3+a2﹣a2﹣a2﹣2a+1=a2(a+1)2﹣2a(a+1)+1=[a(a+1)﹣1]2,所以==1998×1999﹣1=3994001.故选:A.【点评】此题考查了二次根式的化简求值,考查了换元的思想,本题的技巧性比较强,要求学生熟练掌握完全平方公式的结构特点,同时注意利用凑项的方法构造满足公式的特征,以及注意二次根式的化简公式=|a|的运用.2.计算:=()A.B.C.D.【分析】根据每个加数的特点,推出一般规律为,将所得式子化简,分别取n=1,2,3,…,40,寻找抵消规律,得出结论.【解答】解:∵=()=()=()=(﹣)∴分别取n=1,2,3, (40)原式=[(1﹣)+(﹣)+(﹣)+…+(﹣)]=(1﹣)=.故选:B.【点评】本题考查了二次根式的化简求值,观察式子的特点,得出一般规律,将一般规律化简代值,再观察抵消规律是解题的关键.3.的结果是()A.B.C.D.【分析】把每个加数分母有理化,然后通分计算即可.【解答】解:=()=.故选:D.【点评】主要考查二次根式的分母有理化.主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.4.的值是()A.B.C.1D.【分析】认真观察式子的特点,总结规律,可发现,,,据此作答.【解答】解:由题意可知第k项是∴原式=(++=1﹣=1﹣=.故选:B.【点评】此题考查二次根式的化简求值,关键是审清题意,找准规律答题.5.在这1000个二次根式中,与是同类二次根式的个数共有()A.3B.4C.5D.6【分析】找到1000<5×x2<2000中符合x的整数值即可得出答案.【解答】解:由题意得:与=20,是同类二次根的被开方数一定为5,由此及题意可:1000<5×x2<2000,x可取15、16、17、18、19,共5个.故选:C.【点评】本题考查同类二次根式的知识,有一定难度,关键是根据同类二次根式的形式得出的同类二次根式应该满足.二.填空题(共24小题)6.已知实数x1,x2,x3,…,x1999满足.则x1+2x2+3x3+…+1999x1999的值为3998000.【分析】由等式可知=x1,=x2,…解得x1=x2=x3=…=x1999=2,由此代入求得数值即可.【解答】解:∵,∴=x1,=x2,…∴x1=x2=x3=…=x1999=2,∴x1+2x2+3x3+…+1999x1999=2×(1+2+3+ (1999)=2×(1999+1)×1999÷2=3998000.故答案为:3998000.【点评】此题考查二次根式的化简求值,解答此题的关键是找出对应关系,求出x1、x2、x3、…、x1999的值.7.化简=2011.【分析】先根据平方差公式和二次根式的性质得到=,然后根据同样的方法由内到外依次化简即可得到答案.【解答】解:∵=,∴原式=======2011.故答案为2011.【点评】本题考查了二次根式的性质与化简:=|a|.也考查了平方差公式.8.化简后2.【分析】由于===﹣1,其他根式也可以进行同样的化简,然后合并同类二次根式即可求解.【解答】解:=﹣1+﹣++++++=3﹣1=2.故答案为:2.【点评】此题主要考查了二次根式的化简求值,解题的关键是利用完全平方公式化简二次根式从而达到化简题目的目的.9.观察图形,用S i表示第i个三角形的面积,有;;,…,若S1+S2+S3+…+S n>10,则n的最小值为10.【分析】利用不等式≤,结合S1+S2+S3+…+S n >10,解不等式即可.【解答】解:∵S i表示第i个三角形的面积,由不等式≤n,得≤n=n,而S1+S2+S3+…+S n=,S1+S2+S3+…+S n>10,∴n>10,即n2(n+1)>800,n为正整数,n的最小值为9.但n=9时,代入S1+S2+S3+…+S n<10,不符合题意,故n=10.【点评】本题考查了二次根式的运用.利用均值不等式和不等式的传递性解题.10.方程的解是x=2011【分析】将各分式中的分母有理化,再通分,注意观察抵消规律.【解答】解:原方程化为:+++…+=,通分得=,解得x=2011.故答案为:2011.【点评】本题考查了二次根式的化简在解方程中的运用.关键是将各分式的分母有理化,寻找抵消规律.11.设M=+++┉+,N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994,则=﹣.【分析】首先将M式中各个分式进行分母有理化,再求出N式的值,代入代数式求值即可解答.【解答】解:将M分母有理化可得M=(﹣1)+(﹣)+(﹣)+…+(﹣)=﹣1.N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994=(1﹣2)+(3﹣4)+(5﹣6)+┉+(1993﹣1994)=﹣1×997=﹣997,∴==﹣.故答案为﹣.【点评】本题主要考查分母有理化的方法,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.12.计算:=4(其中a>0)【分析】仔细观察会发现有以下规律:第1项加上第8项等于1,第2项加上第7项等于1,依此类推最后求得的结果4.【解答】解:第一项与最后一项相加得:+,=+,=,=1,同理可得:第二项与倒数第二项的和也是1;第三项与倒数第三项的和也是1;所以原式=1+1+1+1=4.故应填:4.【点评】本题考查了二次根式的加减运算,同时也考查了学生的逻辑思维能力,是一道不错的规律型问题.13.的值为1998999.5.【分析】本题涉及数字大且数字之间有联系,可用换元法解题,设k=2000,将所求算式转化为关于k的算式,将被开方数配成完全平方式,开平方,再将k的值代入即可.【解答】解:设k=2000,原式=====,当k=2000时,原式=1998999.5.故本题答案为:1998999.5.【点评】本题考查了二次根式的化简求值,当算式数字较大,并且数字之间有联系时,用换元法解题,可使运算简便.14.已知:对于正整数n,有,若某个正整数k满足,则k=8.【分析】读懂规律,按所得规律把左边所有的加数写成的形式,把互为相反数的项结合,可使运算简便.【解答】解:∵,∴+,即1﹣,∴,解得k=8.故答案为:8.【点评】解答此题的关键是读懂题意,总结规律答题.15.若n为整数,且是自然数,则n=﹣14或﹣7或﹣2或5.【分析】设=p,再把等式两边同时乘以4,利用平方差公式把等式左边化为两个因式积的形式,列出关于p、n的方程组,求出n 的值即可.【解答】解:∵设=p(P为非负整数),则n2+9n+30=p2,∴4n2+36n+120=4p2,∴(2n+9)2+39=4p2,∴(2p+2n+9)(2p﹣2n﹣9)=39,∴或或或,解得或或或,∴n=﹣14或﹣7或﹣2或5.故答案为:﹣14或﹣7或﹣2或5.【点评】本题考查的是二次根式的性质与化简,先根据题意把原式化为两个因式积的形式是解答此题的关键.16.如果,并且表示为时的值,即,表示当时的值,即,那么的值为2012.5.【分析】根据新定理得f()=,f()=,则f()+f()=1;f()=,f()=,则f()+f()=1,由此得到f()+f()=1(n≥2的整数),所以原式=+.【解答】解:f()=,∵f()==,f()=,则f()+f()=1,f()==,f()==,则f()+f()=1,∴f()+f()=1,∴=+=2012.5.故答案为2012.5.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.也考查了阅读理解能力.17.若u、v满足v=,则u2﹣uv+v2=.【分析】根号里面的式子大于等于0,从而可得≥0,﹣≥0,从而能得出u和v的值,继而可得出答案.【解答】解:由题意得:≥0,﹣≥0,从而=0,2u﹣v=0,u=v,又v=,∴u=,∴u2﹣uv+v2=.故答案为.【点评】本题考查二次根式有意义的条件,注意掌握根号里面的式子大于等于0这个知识点比较关键.18.已知a为实数,且与都是整数,则a的值是或.【分析】由是正整数可得,a是含﹣2的代数式;再由是整数,可得化简后为﹣2的代数式分母有理化后,是1或﹣1,据此确定a的值.【解答】解:∵是正整数,∴a是含﹣2的代数式;∵是整数,∴化简后为﹣2的代数式分母有理化后,是1或﹣1,∴a=或.故答案为:或.【点评】此题主要考查二次根式的混合运算,要熟练掌握合并同类二次根式和分母有理化.19.使得++=1的一组正整数(a,b,c)为:答案不唯一;如(288,8,8),(48,24,8).【分析】由于三个复合二次根式的和为1,则它们的被开方数为完全平方数,设任意一个复合二次根式的被开方数为()2(x,y为正整数,x>y),然后通过正整数的含义,得到x,y为两个相邻正整数,即每个复合二次根式化简后为两个相邻正整数的算术平方根.若第一个化简后是﹣1,则第二个复合二次根式化简后必为﹣,第三个复合二次根式化简后必为,最后求的a,b,c的值.【解答】解:因为几个复合二次根式的和为1,则每个复合二次根式的被开方数一定为完全平方数.设==x+y﹣2,(x,y为正整数,x>y),所以有=x+y,﹣=﹣2.∴a+1=(x+y)2,a=4xy,∴(x﹣y)2=1,即x﹣y=1.则每个复合二次根式化简后为两个相邻正整数的算术平方根.若第一个化简后为﹣1,而要消掉,则第二个复合二次根式化简后必为﹣,要消掉,则第三个复合二次根式化简后必为.最后正好为﹣=1.所以=(﹣1)2=3﹣=3﹣,则a=8,同理得b=24,c=48.故得到一组正整数(a,b,c)为:8,24,48.故答案为8,24,48.【点评】本题考查了二次根式的性质和二次根式的化简:.20.计算﹣20062的结果是2005.【分析】先把“2005×2006×2007×2008+1=(20052+3×2005+1)2”化为完全平方的形式,再开平方,然后再来求值.【解答】解:∵2005×2006×2007×2008+1=2005×(2005+3)×(2005+1)(2005+2)+1=(20052+3×2005)×(20052+3×2005+2)+1=(20052+3×2005)2+2(20052+3×2005)+1=(20052+3×2005+1)2∴=20052+3×2005+1;∴﹣20062=20052+3×2005+1﹣20062=(2005+2006)(2005﹣2006)+3×2005+1=2005;故答案为:2005.【点评】本题主要考查了二次根式的化简求值.解答此题的难点是化“2005×2006×2007×2008+1”为完全平方的形式,并开平方,然后再利用平方差公式求出20052﹣20062=(2005+2006)(2005﹣2006)的值.21.设=.【分析】把已知条件的左边相乘得,这样出现了所求代数式,设=z,代入变形所得的等式,逐步变形,消去x、y,即可求得z.【解答】解:据条件式令=z,则(1)式化为:z+xy+=9,即有9﹣z=xy+,平方得,81﹣18z+z2=x2y2+(x2+1)(y2+4)+2xy(2),又由z2==x2(y2+4)+y2(x2+1)+2xy,代入(2)得,81﹣18z=4,所以.即=,故答案为:.【点评】此题考查二次根式的化简求值,难度较大,多次利用已知条件求解.22.若,,则x6+y6的值是40.【分析】根据题意可求出x2+y2,x2﹣y2,利用平方差公式可求得x4﹣y4,(x2﹣y2)(x4﹣y4)=x6+y6﹣x2y4﹣y2x4,由此可得答案.【解答】解:由题意得:x2+y2=2++2﹣=4,x2﹣y2=2+﹣(2﹣)=2,x4﹣y4=(x2+y2)(x2﹣y2)=8,又(x2﹣y2)(x4﹣y4)=x6+y6+x2y4+y2x4,∴可得:x6+y6=32﹣x2y2(x2+y2)=32+2×4=40.故答案为:40.【点评】本题考查二次根式的乘除法运算,有一定难度,关键是熟练运用平方差及完全平方公式.23.当时,的值为.【分析】利用完全平方公式对代数式化简再把代入化简的结果计算即可.【解答】解:原式=﹣,∵,∴=2005,∴x<,∴原式=﹣+x,=x,当时,原式=.故答案为.【点评】本题考查的是二次根式的化简求值和二次根式的性质=a(a≥0)的应用.24.已知,,则k=﹣1.【分析】先从等式右边进行分母有理化,即原式=﹣2,然后依次循环即可求k的值.【解答】解:由原式可知=+2﹣4=﹣2,∴4+=+2,依此类推得:=+2,∴k=﹣1.故答案为﹣1.【点评】本题考查了分母有理化的知识,解题时可从等式右边进行分母有理化,那样会简便些.25.当1≤x≤2时,经化简等于2.【分析】先配成完全平方式,再根据二次根式的性质化简计算即可.【解答】解:∵1≤x≤2,∴=+=+1+1﹣=2.故答案为:2.【点评】考查了二次根式的性质,解题的关键是将根号内的式子配成完全平方式.26.计算=2010.【分析】因为=,=,=,…,可发现=1+=1+1﹣,=1+=1+﹣…,依此类推再把1+1﹣,1+﹣…相加可得问题答案.【解答】解:原式=++++…+,=1+1﹣+1+﹣+1+﹣+1+﹣…+1+﹣,=2010+(1﹣+﹣+﹣…+﹣),=2010+(1﹣),=2010.【点评】本题考查了二次根式的化简,在化简中注意有关数列的规律.27.已知x=,那么+1的值是2.【分析】先根据分母有理化得到x=﹣1,所以x+1=,然后将代数式化为含有(x+1)2的形式,把x+1的值代入求出代数式的值.【解答】解:∵x==﹣1,∴x+1=.原式=(3x3+10x2+5x+4)=[(3x3+6x2+3x)+3x2+(x2+2x+1)+3]=[3x(x+1)2+3x2+(x+1)2+3]=[3x•2+3x2+2+3]=[(3x2+6x+3)+2]=[3(x+1)2+2]=(3×2+2)=2.故答案是:2.【点评】本题考查的是二次根式的化简求值,先根据分母有理化把x的值化简,得到x+1=,再把代数式化成含有x+1的形式,然后代入代数式可以求出代数式的值.28.化简:,得到1.【分析】将被开方数的分子、分母提公因式,约分,再开平方,约分即可.【解答】解:原式=()1004=()1004()1004=1.【点评】本题考查了二次根式的化简求值,关键是将被开方数的分子、分母提公因式,约分.29.=﹣3.【分析】因为=,代入并通分计算即可.【解答】解:原式===﹣1﹣1﹣1=﹣3.故答案为:﹣3.【点评】此题考查二次根式的混合运算,关键是求=.三.解答题(共1小题)30.计算:(1);(2);(3);(4).【分析】(1)设n=1999,从而可将根号里面的数化为完全平方的形式,继而可得出答案.(2)分别将各二次根式配方可得出答案.(3)将分子及分母分别化简,然后运用提公因式的知识将分子及分母简化,继而得出答案.(4)设=a,=b,=c,从而可将原式化简,继而可得出答案.【解答】解:(1)设n=1999,则原式===n2+3n+1,故原式=20002+1999;(2)原式=+++++++=﹣1+﹣+﹣+﹣+﹣+﹣+﹣+﹣,=﹣1,=3﹣1,=2;(3)原式=,=,=+,=﹣;(4)设=a,=b,=c,则原式=++,=,=0.【点评】本题考查了二次根式的混合运算,难度较大,注意换元法及完全平方知识的运用.。

数学二次根式的专项培优练习题(附解析

数学二次根式的专项培优练习题(附解析

数学二次根式的专项培优练习题(附解析一、选择题1.下列计算正确的是( )A =B =C =D =2.下列各式计算正确的是( )AB .C =3D .3.下列运算正确的是( )A =B . 3C =﹣2D =4.下列各式中,正确的是( )A 2=±B =C 3=-D 2=5.下列计算正确的是( )A =B 3=C =D .21= 6.下列式子中,是二次根式的是( )A B CD .x7.若化简的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数B .1≤x ≤4C .x ≥1D . x ≤48.已知a ( )A .0B .3C .D .99.如果a ,那么a 的取值范围是( ) A .a 0=B .a 1=C .a 1≤D .a=0a=1或10.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( ) A .1个B .2个C .3个D .4个11.若|x 2﹣4x+4|x+y 的值为( ) A .3B .4C .6D .912.230x -=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对二、填空题13.使函数212y x x=+有意义的自变量x 的取值范围为_____________14.已知实数,x y 满足(2008x y =,则2232332007x y x y -+--的值为______.15.已知x=3+1,y=3-1,则x 2+xy +y 2=_____.16.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.17.)230m m --≤,若整数a 满足52m a +=a =__________.18.()()22223310x y x y ++-+=,则222516x y +=______.19.已知4a2(3)|2|a a +--=_____.20.化简:3222=_____.三、解答题21.阅读下面问题: 阅读理解:2221(21)(21)==++-1; 323232(32)(32)==++-(55252(52)(52)==-++-.应用计算:(176+(211n n++(n 为正整数)的值.归纳拓展:(3122334989999100++++++【答案】应用计算:(17621n n + 归纳拓展:(3)9. 【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(17-6分母利用平方差公式计算即可,(2n 1-n +(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】(1(2(3+98+,(+98+,++99-, =10-1, =9. 【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.计算: 21)3)(3--【答案】. 【解析】 【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算. 【详解】解:原式22]-322]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.23.(112=3==;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=5==;(2n=;(3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,(2)如果n 为正整数,用含n (3)证明:∵n 是正整数,n .n.故答案为5=25 n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.24.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的:∵=2 ∴a ﹣2=∴(a ﹣2)2=3,a 2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a-=-=,∴2212a a-+=,即221a a-=∴原式=24(2)14115a a-+=⨯+=解法二∴原式=24(211)1a a-+-+24(1)3a=--211)3=--4235=⨯-=点睛:(1得22=-=-a b,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.25.先化简,再求值:a=1007.如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮 (22a (a <0) (3)原式=()23a -a+2(3-a )=6-a=6-(-2007)=2013.26.先观察下列等式,再回答下列问题: 2211111111121112++=+-=+; 2211111111232216++=+-=+ 22111111113433112++=+-=+ (1)2211145++ (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数). 【答案】(1)1120(2)()111n n ++(n 为正整数)【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子. 试题解析:(1)2211145++=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.27.观察下列一组等式,然后解答后面的问题1)1=,1=,1=,1=⋯⋯(1)观察以上规律,请写出第n 个等式: (n 为正整数). (2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小. 【详解】解:(1)根据题意得:第n 个等式为1=;故答案为1=;(2)原式111019==-=;(3-==,<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.28.先化简,再求值:24224x xx x x x ⎛⎫÷- ⎪---⎝⎭,其中2x =.【答案】22x x +-,1 【分析】先把分式化简,然后将x 、y 的值代入化简后的式子求值即可. 【详解】 原式(2)(2)22(2)2x x x x x x x x +-+=⋅=---,当2x =时,原式1==.【点睛】本题考查了分式的化简求值这一知识点,把分式化到最简是解题的关键.29.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值; (2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解. 【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4, (a-b )2=4, a-b=±2.(2)12a ===,12b ===,2222()22312a b a b ab +=+-=-=-=⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.30.(1)计算:21)-(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2(1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题. 【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数, ∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据二次根式加法法则,二次根式的乘法法则计算后判断即可得到答案. 【详解】=3= , ∴A 、C 、D 均错误,B 正确, 故选:B.此题考查二次根式的加法法则,二次根式的乘法法则,熟记计算法则是正确解题的关键. 2.C解析:C【分析】根据二次根式的化简进行选择即可.【详解】AB、C,故本选项正确;D、=18,故本选项错误;故选:C.【点睛】本题考查了二次根式的混合运算,掌握二次根式的化简是解题的关键.3.D解析:D【分析】直接利用二次根式的混合运算法则分别判断得出答案.【详解】解:AB、=,故此选项错误;C2,故此选项错误;D,正确;故选:D.【点睛】本题考查二次根式的混合运算,熟练掌握计算法则是关键.4.B解析:B【分析】本题可利用二次根式的化简以及运算法则判断A、B、C选项;利用立方根性质判断D选项.【详解】A,故该选项错误;B===,故该选项错误;C3D11223334=(2)2==,故该选项错误;故选:B.【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.5.A解析:A【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案.【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误;故应选:A【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.6.A解析:A【分析】a≥0)的式子叫做二次根式,据此可得结论.【详解】解:A是二次根式,符合题意;B是三次根式,不合题意;C、当x<0D、x属于整式,不合题意;故选:A.【点睛】此题考查二次根式的定义,关键是根据二次根式的定义理解被开方数是非负数.7.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x≥0,x-4≥0时,可得x无解,不符合题意;当1-x≥0,x-4≤0时,可得x≤1时,原式=1-x-4+x=-3;当1-x≤0,x-4≥0时,可得x≥4时,原式=x-1-x+4=3;当1-x≤0,x-4≤0时,可得1≤x≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x≤4时,多项式等于2x-5,故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.8.B解析:B【解析】=,可知当(a﹣3)2=0,即a=3故选B.9.C解析:C【解析】试题解析:∵a1,a∴1-a≥0,a≤1,故选C.10.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误;④如果点P(3-2n,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.解析:A【解析】根据题意得:|x2–4x,所以|x2–4x+4|=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.12.B解析:B【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案.【详解】x30-=,=0=,∴x=-2或x=3,又∵2030 xx+≥⎧⎨-≥⎩,∴x=3,故选B.【点睛】本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键.二、填空题13.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x的取值范围为【点睛】解析:11,0 22x x-≤≤≠利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤①当0x <时,120x +≥ 解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠ 【点睛】本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键. 14.1【分析】设a=,b=,得出x ,y 及a ,b 的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x ,y 及a ,b 的关系,再代入代数式求值. 【详解】解:设x 2−a 2=y 2−b 2=2008, ∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b ,x−a=y+b∴x=y ,a+b=0,∴, ∴x 2=y 2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系.15.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)= 12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2﹣1)=12﹣2=10.故答案为10.16.﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.17.【分析】先根据确定m的取值范围,再根据,推出,最后利用来确定a的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】 解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.18.【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】移项得,两边平方得,整理得,两边平方得,所以,两边除以400得,1.故答案为1.【点睛】解析:【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】10=-两边平方得,()()22223=1003x y x y ++--+整理得,253x =- 两边平方得,22225150225256251509x x y x x -++=-+ 所以,221625400x y +=两边除以400得,222516x y +=1. 故答案为1.【点睛】本题考查了非负数的性质,此类题目难点在于把两个算术平方根通过移项分到等式左右两边.19.-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵,∴a+3<0,2-a>0,∴-a-3-2+a=-5,故答案为:-5.【点睛】此解析:-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∴a+3<0,2-a>0,-=-a-3-2+a=-5,|2|a故答案为:-5.【点睛】此题考查二次根式的化简,绝对值的化简,整式的加减法计算法则,正确化简代数式是解题的关键.20.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.解析:【分析】直接合并同类二次根式即可.【详解】解:=.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.三、解答题21.无22.无23.无24.无25.无27.无28.无29.无30.无。

中考数学数学二次根式的专项培优练习题(及答案

中考数学数学二次根式的专项培优练习题(及答案

一、选择题1.下列运算中,正确的是 ( ) A .53-23=3 B .22×32=6 C .33÷3=3D .23+32=552.下列各式计算正确的是( )A .6232126()b a b a b a---⋅=B .(3xy )2÷(xy )=3xyC .23a a a +=D .2x •3x 5=6x 63.下列运算中,正确的是( ) A .1333⎛⎫+⎪ ⎪⎭=3 B .(12-7)÷3=-1 C .32÷122=2 D .(2+3)×3=63+4.对于已知三角形的三条边长分别为a ,b ,c ,求其面积的问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式:()()()S p p a p b p c =---,其中2a b cp ++=,若一个三角形的三边长分别为2,3,4,则其面积( ) A .3154 B .3152C .352D .3545.已知,那么满足上述条件的整数的个数是( ).A .4B .5C .6D .76.“分母有理化”是我们常用的一种化简的方法,如:23(23)(23)74323(23)(23)+++==+--+3535+-3535x =+-3535+>-,故0x >,由22(3535)35352(35)(35)2x =+-=-+-=,解得2x 35352+-=3263363332-++结果为( ) A .536+B .56+C .56D .536-7.下列计算正确的是( )A .BC .D .3+8.a 的值是( ) A .2B .-1C .3D .-1或3 9.下列运算正确的是( )A =B 2=C =D 9=10.下列根式中是最简二次根式的是( )A B C D 二、填空题11.2==________.12.设a ﹣b=2b ﹣c=2a 2+b 2+c 2﹣ab ﹣ac ﹣bc=_____. 13.已知x =,a 是x 的整数部分,b 是x 的小数部分,则a-b=_______14.若6x ,小数部分为y ,则(2x y 的值是___.15.已知|a ﹣2007=a ,则a ﹣20072的值是_____.16.若a 、b 为实数,且b +4,则a+b =_____.17_____.18.化简:=_____.19.如果0xy >.20.已知2x =243x x --的值为_______.三、解答题21.先阅读材料,再回答问题:因为)111=1=;因为1=,所以=1== (1= ,= ; (2⋅⋅⋅+的值.【答案】(12)9 【分析】(1)仿照例子,由1+=的值;由1+=1的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案. 【详解】解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.22.计算: 21)3)(3--【答案】. 【解析】 【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算. 【详解】解:原式2222]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.23.观察下列等式:1==;==== 回答下列问题:(1(2)计算:【答案】(1(2)9 【分析】(1)根据已知的31=-n=22代入即可求解;(2)先利用上题的规律将每一个分数化为两个二次根式的差的形式,再计算即可. 【详解】解:(1=(2+99+=1100++-=1 =10-1 =9.24.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2). 【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可; (2)利用完全平方公式和平方差公式展开,然后再进行合并即可. 【详解】(1)原式=1;(2)原式+2). 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.25.先化简,再求值:24224x xx x x x ⎛⎫÷- ⎪---⎝⎭,其中2x =.【答案】22x x +-,1 【分析】先把分式化简,然后将x 、y 的值代入化简后的式子求值即可. 【详解】 原式(2)(2)22(2)2x x x x x x x x +-+=⋅=---,当2x =时,原式1==.【点睛】本题考查了分式的化简求值这一知识点,把分式化到最简是解题的关键.26.在一个边长为(cm 的正方形的内部挖去一个长为()cm ,cm 的矩形,求剩余部分图形的面积.【答案】 【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2﹣()=()﹣(﹣)=(cm 2). 考点:二次根式的应用27.先化简,再求值:2443(1)11m m m m m -+÷----,其中2m =.【答案】22mm-+1.【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.详解:原式=221 mm--()÷(31m-﹣211mm--)=221 mm--()÷2 41m m--=221 mm--()•122mm m--+-()()=﹣22 mm-+=22mm -+当m﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.28.计算(1))(12112-⨯--⎝⎭(2)已知:11,22x y==,求22x xy y++的值.【答案】(1)28-;(2)17.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y+和xy的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y ==,1122x y ∴+=+=,()11119112224xy =⨯=⨯-=,则()222x xy y x y xy ++=+-,22=-,192=-, 17=. 【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据二次根式的加减法对A 、D 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断. 【详解】A 、A 选项错误;B 、×=12,所以B 选项错误;C 、3,所以C 选项正确;D 、,不能合并,所以D 选项错误; 故选:C . 【点睛】本题考查了二次根式的混合运算,正确掌握运算法则是解题关键.2.D解析:D 【分析】依据单项式乘以单项式、单项式除以单项式以及二次根式的加法法则对各项分别计算出结果,再进行判断即可得到结果. 【详解】A. 2321526()b a b a b a---⋅=,故选项A 错误;B. (3xy )2÷(xy )=9xy ,故选项B 错误;C 错误; D. 2x •3x 5=6x 6,正确. 故选:D . 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.D解析:D 【分析】根据二次根式的加减乘除法则逐项判断即可得. 【详解】A 314=+=,此项错误B 、23==-,此项错误C 2428===⨯=,此项错误D 、3=,此项正确故选:D . 【点睛】本题考查了二次根式的加减乘除运算,熟记二次根式的运算法则是解题关键.4.A解析:A 【分析】根据公式解答即可. 【详解】根据题意,若一个三角形的三边长分别为2,3,4,则2+349=222a b c p +++== ∴其面积为99999531315()()()(2)(3)(4)22222222S p p a p b p c =---=⨯-⨯-⨯-=⨯⨯⨯=故选:A . 【点睛】本题考查二次根式的应用、数学常识等知识,难度较难,掌握相关知识是解题关键.5.C解析:C 【解析】 【分析】利用分母有理化进行计算即可. 【详解】 由原式得:所以,因为,,所以.故选:C 【点睛】此题考查解一元一次不等式的整数解,解题关键在于分母有理化.6.D解析:D 【分析】633633-+3232-+进行化简,然后再进行合并即可. 【详解】设633633x =-+633633-<+ ∴0x <,∴26332(633)(633)633x =--++, ∴212236x =-⨯=, ∴6x = ∵3252632-=-+, ∴原式5266=-536=- 故选D . 【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.7.C解析:C【解析】分析:根据二次根式的四则混合运算法则,二次根式的性质与化简逐项进行分析解答即可.详解:A.=,故本选项错误;B.不是同类二次根式,不能进行合并,故本选项错误;C.正确;D.不是同类二次根式,不能进行合并,故本选项错误.故选C.点睛:本题主要考查二次根式的化简,二次根式的四则运算法则,解题的关键是正确根据相关法则逐项进行分析解答.8.C解析:C【分析】根据同类二次根式的性质即可求出答案.【详解】由题意可知:a2-3=2a∴解得:a=3或a=-1当a=-1时,该二次根式无意义,故a=3故选C.【点睛】本题考查二次根式的概念,解题的关键是熟练正确理解最简二次根式以及同类二次根式的概念.9.C解析:C【分析】根据二次根式的减法法则对A进行判断;根据二次根式的加法法则对B进行判断;根据二次根式的乘法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】解:A=,所以A选项错误;B=B选项错误;C=C选项正确;D3=,所以D选项错误.故选:C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.10.B解析:B【分析】根据最简二次根式的条件:①根号下不含能开得尽方的因数或因式;②根号下不含分母,据此逐项判断即可.【详解】解:A、被开方数含分母,故A不符合题意;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式.,故B符合题意;C被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:B.【点睛】本题考查了最简二次根式,解题的关键是掌握最简二次根式的两个条件.二、填空题11.【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m=,n=,那么m−n=2①,m2+n2=()2+()2=34②.由①得,m=2解析:13【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m n那么m−n=2①,m2+n2=2+2=34②.由①得,m=2+n③,将③代入②得:n2+2n−15=0,解得:n=−5(舍去)或n=3,因此可得出,m =5,n =3(m≥0,n≥0).n +2m =13.【点睛】此题考查二次根式的减法,本题通过观察,根号里面未知数的系数为相反数,可通过换元法求解.12.15【解析】根据题意,由a ﹣b=2+,b ﹣c=2﹣,两式相加得,得到a ﹣c=4,然后根据配方法,把式子各项变为:a2+b2+c2﹣ab ﹣bc ﹣ac=====15.故答案为:15.解析:15【解析】根据题意,由a ﹣b ﹣c=2,两式相加得,得到a ﹣c=4,然后根据配方法,把式子各项变为:a 2+b 2+c 2﹣ab ﹣bc ﹣ac=2222222222a b c ab ac bc ++﹣﹣﹣=2222222222a ab b b bc c a ac c +++++﹣﹣﹣=222()()()2a b b c a c -+-+-=15. 故答案为:15.13.【分析】先把x 分母有理化求出x= ,求出a 、b 的值,再代入求出结果即可.【详解】∵∴∴∴【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.解析:6【分析】先把x 分母有理化求出2 ,求出a 、b 的值,再代入求出结果即可.【详解】2x === ∵23<<∴425<<∴4,242a b ==-=∴42)6a b -=-=【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值. 14.3【分析】先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2, y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,解析:3【分析】先估算34<<,再估算263<<,根据6x ,小数部分为y ,可得: x =2, y=4然后再代入计算即可求解.【详解】因为34<,所以263<-<,因为6x ,小数部分为y ,所以x =2, y=4-,所以(2x y =(4416133=-=, 故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 15.2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a 的取值范围;再根据a 的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a ﹣2007|+=a ,∴a≥2008,解析:2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a 的取值范围;再根据a 的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a ﹣2007=a ,∴a ≥2008,∴a ﹣2007=a ,=2007,两边同平方,得:a ﹣2008=20072,∴a ﹣20072=2008.故答案为:2008.点睛:解决此题的关键是能够得到a 的取值范围,从而化简绝对值并变形.16.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.17.6【分析】利用二次根式乘除法法则进行计算即可.===6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.解析:6【分析】==进行计算即可.【详解】=6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.18.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.解析:【分析】直接合并同类二次根式即可.【详解】解:=.故答案为合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.19.【分析】由,且,即知,,据此根据二次根式的性质化简可得.【详解】∵,且,即,∴,,∴,故答案为:.【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.解析:-【分析】由0xy >,且20xy -≥,即•0y xy -≥知0x <,0y <,据此根据二次根式的性质化简可得.【详解】∵0xy >,且20xy -≥,即•0y xy -≥,∴0x <,0y <,==-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.20.-4【分析】把代入计算即可求解.【详解】解:当时,=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题解析:-4【分析】把2x =243x x --计算即可求解.【详解】解:当2x =243x x --((22423=---4383=--+=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

(完整版)《二次根式》培优试题及答案

(完整版)《二次根式》培优试题及答案

《二次根式》提高测试〔一〕判断题:〔每题1分,共5分〕1.ab 2)2(-=-2ab .…………………〔〕【提示】2)2(-=|-2|=2.【答案】×.2.3-2的倒数是3+2.〔 〕【提示】231-=4323-+=-〔3+2〕.【答案】×.3.2)1(-x =2)1(-x .…〔〕【提示】2)1(-x =|x -1|,2)1(-x =x -1〔x ≥1〕.两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、bax 2-是同类二次根式.…〔 〕【提示】31b a 3、ba x 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.〔 〕29x +是最简二次根式.【答案】×.〔二〕填空题:〔每题2分,共20分〕6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a =_.【答案】-2aa .【点评】注意除法法那么和积的算术平方根性质的运用. 8.a -12-a 的有理化因式是____________.【提示】〔a -12-a 〕〔________〕=a 2-22)1(-a .a +12-a .【答案】a +12-a . 9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=〔 〕2,x -1.当1<x <4时,x -4,x -1是正数还是负数? x -4是负数,x -1是正数.【答案】3.10.方程2〔x -1〕=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11.a 、b 、c 为正数,d 为负数,化简2222d c ab d c ab +-=______.【提示】22d c =|cd |=-cd .【答案】ab +cd .【点评】∵ ab =2)(ab 〔ab >0〕,∴ ab -c 2d 2=〔cd ab +〕〔cd ab -〕.12.比拟大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比拟28,48的大小,再比拟281,481的大小,最后比拟-281与-481的大小.13.化简:(7-52)2000·(-7-52)2001=______________. 【提示】(-7-52)2001=(-7-52)2000·〔_________〕[-7-52.] 〔7-52〕·〔-7-52〕=?[1.]【答案】-7-52. 【点评】注意在化简过程中运用幂的运算法那么和平方差公式. 14.假设1+x +3-y =0,那么(x -1)2+(y +3)2=____________.【答案】40. 【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数局部和小数局部,那么2xy -y 2=____________.【提示】∵ 3<11<4,∴_______<8-11<__________.[4,5].由于8-11介于4与5之间,那么其整数局部x =?小数局部y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数局部和小数局部时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数局部和小数局部就不难确定了. 〔三〕选择题:〔每题3分,共15分〕16.233x x +=-x 3+x ,那么………………〔 〕〔A 〕x ≤0 〔B 〕x ≤-3 〔C 〕x ≥-3 〔D 〕-3≤x ≤0【答案】D . 【点评】此题考查积的算术平方根性质成立的条件,〔A 〕、〔C 〕不正确是因为只考虑了其中一个算术平方根的意义.17.假设x <y <0,那么222y xy x +-+222y xy x ++=………………………〔 〕〔A 〕2x 〔B 〕2y 〔C 〕-2x 〔D 〕-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C . 【点评】此题考查二次根式的性质2a =|a |.18.假设0<x <1,那么4)1(2+-x x -4)1(2-+xx 等于………………………〔〕〔A 〕x 2 〔B 〕-x 2〔C 〕-2x 〔D 〕2x【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x 1)2.又∵ 0<x <1,∴ x +x 1>0,x -x1<0.【答案】D .【点评】此题考查完全平方公式和二次根式的性质.〔A 〕不正确是因为用性质时没有注意当0<x <1时,x -x1<0.19.化简aa 3-(a <0)得………………………………………………………………〔 〕〔A 〕a - 〔B 〕-a 〔C 〕-a - 〔D 〕a【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C . 20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………〔 〕〔A 〕2)(b a + 〔 B 〕-2)(b a -〔C 〕2)(b a -+-〔D 〕2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --.【答案】C .【点评】此题考查逆向运用公式2)(a =a 〔a ≥0〕和完全平方公式.注意〔A 〕、〔B 〕不正确是因为a <0,b <0时,a 、b 都没有意义.〔四〕在实数范围内因式分解:〔每题3分,共6分〕21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】〔3x +5y 〕〔3x -5y 〕. 22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2.〔五〕计算题:〔每题6分,共24分〕23.〔235+-〕〔235--〕; 【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215.24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式.【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.〔a 2m n -m ab mn +m n n m 〕÷a 2b 2mn; 【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=〔a 2m n-mab mn +mn n m 〕·221b a nm=21b n m m n ⋅-mab 1n m m n ⋅+22b ma n n m n m ⋅ =21b -ab 1+221b a =2221ba ab a +-. 26.〔a +ba abb +-〕÷〔b ab a ++a ab b --ab b a +〕〔a ≠b 〕. 【提示】此题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=b a ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a b a ++÷))((2222b a b a ab b a b ab b ab a a -++----=ba b a ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】此题如果先分母有理化,那么计算较烦琐. 〔六〕求值:〔每题7分,共14分〕27.x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 【提示】先将条件化简,再将分式化简最后将条件代入求值. 【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴x +y =10,x -y =46,xy =52-(26)2=1.32234232y x y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】此题将x 、y 化简后,根据解题的需要,先分别求出“x +y 〞、“x -y 〞、“xy 〞.从而使求值的过程更简捷. 28.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x22a x +=22a x +〔22a x +-x 〕,x 2-x22a x +=-x 〔22a x +-x 〕.【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x1.当x =1-2时,原式=211-=-1-2.【点评】此题如果将前两个“分式〞分拆成两个“分式〞之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x x a x +--+-)11(22x x a x --++221a x +=x1. 七、解答题:〔每题8分,共16分〕29.计算〔25+1〕〔211++321++431++…+100991+〕.【提示】先将每个局部分母有理化后,再计算. 【解】原式=〔25+1〕〔1212--+2323--+3434--+…+9910099100--〕=〔25+1〕[〔12-〕+〔23-〕+〔34-〕+…+〔99100-〕] =〔25+1〕〔1100-〕 =9〔25+1〕.【点评】此题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.假设x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值.【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x 【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵x y y x ++2-xyy x +-2=2)(x y y x +-2)(xy y x -=|xy y x +|-|xy y x -|∵ x =41,y =21,∴ y x <x y .∴ 原式=x y y x+-y x xy+=2yx 当x =41,y =21时,原式=22141=2.【点评】解此题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。

初中数学数学二次根式的专项培优练习题(附解析

初中数学数学二次根式的专项培优练习题(附解析

一、选择题1.下列计算正确的为( ). A .2(5)5-=- B .257+=C .64322+=+D .3622=2.在实数范围内,若22xx +有意义,则x 的取值范围是( ) A .x≠2B .x >-2C .x <-2D .x≠-23.下列各式中,正确的是( ) A .16=±4 B .±16=4C .26628⨯= D .42783+⨯=- 4 4.已知,那么满足上述条件的整数的个数是( ).A .4B .5C .6D .75.“分母有理化”是我们常用的一种化简的方法,如:23(23)(23)74323(23)(23)+++==+--+,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于3535+--,设3535x =+--,易知3535+>-,故0x >,由22(3535)35352(35)(35)2x =+--=++--+-=,解得2x =,即35352+--=.根据以上方法,化简3263363332-+--++后的结果为( ) A .536+B .56+C .56-D .536-6.下列各式计算正确的是( ) A .2+3=5 B .43-33=1 C .2333=63⨯ D .123=2÷7.若实数a ,b 满足+=3,﹣=3k ,则k 的取值范围是( ) A .﹣3≤k ≤2B .﹣3≤k ≤3C .﹣1≤k ≤1D .k ≥﹣18.下列计算正确的是( ) A 235=B 236=C 2434=D ()233-=-9.如果12与最简二次根式72a -是同类二次根式,那么a 的值是( ) A .﹣2B .﹣1C .1D .210.下面计算正确的是( ) A .3+3=33B .273=3÷C .2?3=5D .()22=2--二、填空题11.设42-的整数部分为 a,小数部分为 b.则1a b- = __________________________. 12.化简322+=___________.13.已知2215x 19x 2+--=,则2219x 215x -++=________. 14.实数a ,b 在数轴上的位置如图所示,则化简()22b a b +-﹣|a +b |的结果是_____.15.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.16222a a ++的最小值是______.17.已知:5+22可用含x 2=_____.18.4102541025-+++=_______. 19.已知x 51-,y 51+,则x 2+xy +y 2的值为______. 20.2a ·8a (a ≥0)的结果是_________.三、解答题21.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:==24====进行分母有理化.(3)利用所需知识判断:若a=,2b=a b,的关系是.(4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(22243743--==--(3)∵2a===,2b=-,∴a和b互为相反数;(4))1++⨯=)11⨯=)11=20201- =2019, 故原式的值为2019. 【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.22.计算(1)2213113a a a a a a +--+-+-;(2)已知a 、b +b =0.求a 、b 的值 (3)已知abc =1,求111a b cab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1.【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab abbc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可.【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭ =1113a a --+-=()()()()3113a a a a -++-+-=22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ; (3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,∴原式=1111a ab ab a ab a ab a ++++++++=11a ab ab a ++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.23.(112===;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=55==;(2=3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,6,(2)如果n 为正整数,用含n (3)证明:∵n 是正整数,n .n.故答案为5=25 n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.24.像2)=1=a (a ≥0)、﹣1)=b ﹣1(b ≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因+1﹣1,﹣因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题: (1);(2)+;(3)的大小,并说明理由.【答案】(1(2)(3)< 【解析】分析:(1=1,确定互为有理化因式,由此计算即可;(2)确定分母的有理化因式为2与2+然后分母有理化后计算即可;(3与,,然后比较即可.详解:(1) 原式;(2)原式=2+=2+ (3)根据题意,-==,><,>点睛:此题是一个阅读题,认证读题,了解互为有理化因式的实际意义,以及特点,然后根据特点变形解题是关键.25.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.26.计算(11)1)⨯; (2)【答案】(12+;(2). 【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)11+;=()31-2 ;(2)原式=(22⨯,==3⨯==点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.27.2020(1)- 【答案】1 【分析】先计算乘方,再化简二次根式求解即可. 【详解】2020(1)-=1 =1. 【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.28.已知长方形的长a =b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.【答案】(1)2)长方形的周长大. 【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)114.23=⨯⨯=正方形的面积也为4. 2.= 周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据二次根式的性质、二次根式的加法以及混合运算的法则逐项进行判断即可. 【详解】A 5=,故A 选项错误;B B 选项错误;C .++=222,故C 选项错误;D =,正确, 故选D . 【点睛】本题考查了二次根式的运算,熟练掌握各运算的运算法则是解题的关键.2.B解析:B 【分析】根据二次根式的被开方数是非负数,且分母不能为零,可得答案. 【详解】由2x+有意义,得:20x+>,解得:2x>-.故选:B.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.3.C解析:C【分析】根据算术平方根与平方根的定义、二次根式的加法与乘除法逐项判断即可.【详解】A、164=,此项错误B、164±=±,此项错误C、262628262⨯⨯==,此项正确D、42227833322366333+⨯=+⨯=+,此项错误故选:C.【点睛】本题考查了算术平方根与平方根的定义、二次根式的加法与乘除法,掌握二次根式的运算法则是解题关键.4.C解析:C【解析】【分析】利用分母有理化进行计算即可.【详解】由原式得:所以,因为,,所以.故选:C【点睛】此题考查解一元一次不等式的整数解,解题关键在于分母有理化.5.D解析:D【分析】 根据题中给的方法分别对633633--+和3232-+进行化简,然后再进行合并即可.【详解】 设633633x =--+,且633633-<+,∴0x <,∴26332(633)(633)633x =---+++,∴212236x =-⨯=,∴6x =-,∵3252632-=-+, ∴原式5266=--536=-,故选D .【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.6.D解析:D【解析】试题分析:根据同类二次根式,可知2与3不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知4333-=3,故不正确;根据二次根式的性质,可知2333⨯=18,故不正确;根据二次根式除法的性质,可知2733333÷=÷=,故正确.故选D.7.C解析:C【解析】依据二次根式有意义的条件即可求得k 的范围.解:若实数a ,b 满足+=3,又有≥0,≥0, 故有0≤≤3 ①,0≤≤3,则 ﹣3≤-≤0 ②+②可得﹣3≤﹣≤3,又有﹣=3k ,即﹣3≤3k≤3,化简可得﹣1≤k≤1.故选C.点睛:本题主要考查了二次根式的意义和性质.解题的关键在于二次根式具有双非负性,即≥0(a≥0),利用其非负性即可得到0≤≤3,0≤≤3,并对0≤≤3变形得到﹣3≤-≤0,进而即可转化为关于k的不等式组,求出k的取值范围.8.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A23A错误;B236=,故B正确;C243822==C错误;-=,故D错误;D()233故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.9.D解析:D【分析】根据最简二次根式与同类二次根式的定义列方程组求解.【详解】123由题意,得7-2a=3,解得a=2,故选D.【点睛】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.10.B解析:B【分析】根据二次根式的混合运算方法,分别进行运算即可.【详解】解:A3A选项错误;B ===3,故B 选项正确;C ==C 选项错误;D .2(2)2-==,故D 选项错误;故选B .【点睛】考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.二、填空题11.【分析】根据实数的估算求出a,b ,再代入即可求解.【详解】∵1<<2,∴-2<-<-1,∴2<<3∴整数部分a=2,小数部分为-2=2-,∴==故填:. 【点睛】此题主要考查无理解析:12-【分析】根据实数的估算求出a,b ,再代入1a b -即可求解. 【详解】∵1<2,∴-2<<-1,∴2<43∴整数部分a=2,小数部分为4,∴1ab -=2222=-=1故填:12-. 【点睛】 此题主要考查无理数的估算,分母有理化等,解题的关键熟知实数的性质.12.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解. 13.【解析】【分析】用换元法代替两个带根号的式子,得出m 、n 的关系式,解方程组求m 、n 的值即可.【详解】设m =,n =,那么m−n =2①,m2+n2=()2+()2=34②.由①得,m =2解析:13【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m n那么m−n=2①,m2+n2=2+2=34②.由①得,m=2+n③,将③代入②得:n2+2n−15=0,解得:n=−5(舍去)或n=3,因此可得出,m=5,n=3(m≥0,n≥0).n+2m=13.【点睛】此题考查二次根式的减法,本题通过观察,根号里面未知数的系数为相反数,可通过换元法求解.14.3b【分析】先判断a,b的取值范围,并分别判断a-b,a+b的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b>0,a﹣b<0,a+b<0,∴原式=|解析:3b【分析】先判断a,b的取值范围,并分别判断a-b,a+b的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b>0,a﹣b<0,a+b<0,∴原式=|b|+|a﹣b|﹣|a+b|=b﹣(a﹣b)+(a+b)=b﹣a+b+a+b=3b,故答案为:3b【点睛】=和绝对值的性质是解题的关a键.15.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a>0+3.=aa+3.【点睛】本题考查阅读理解的能力,正确理解题意是关键.16.0【解析】【分析】先将化简为就能确定其最小值为1,再和1作差,即可求解。

(完整版)二次根式培优练习题.doc

(完整版)二次根式培优练习题.doc

二次根式培优练习题一.选择题(共14 小题)1.使代数式有意义的自变量 x 的取值范围是()A. x≥ 3 B. x>3 且 x≠4 C. x≥ 3 且 x≠4 D.x>32.若=3﹣a,则 a 与 3 的大小关系是()A. a< 3B. a≤3 C.a>3 D.a≥33.如果等式( x+1)0=1 和=2﹣3x 同时成立,那么需要的条件是()A. x≠﹣ 1 B. x<且 x≠﹣ 1 C.x≤或 x≠1 D.x≤且 x≠﹣ 14.若 ab<0,则代数式可化简为()A. a B.a C.﹣ a D.﹣ a5.已知 xy<0,则化简后为()A.B.C.D.6.如果实数 a、b 满足,那么点( a, b)在()A.第一象限B.第二象限 C.第二象限或坐标轴上D.第四象限或坐标轴上7.化简二次根式,结果正确的是()A.B.C.D.8.若 a+ =0 成立,则 a 的取值范围是()A.a≥0 B.a>0 C.a≤0 D.a< 0 9.如果 ab> 0, a+b<0,那么下面各式:①= ,②× =1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③10.下列各式中正确的是()A.B.=±3 C.(﹣)2=4 D.3 ﹣ =2 11.在二次根式、、、、中与是同类二次根式的有()A. 2 个 B.3 个 C.4 个 D. 5 个12.若是一个实数,则满足这个条件的 a 的值有()A. 0 个 B.1 个 C.3 个 D.无数个13.当 a<0 时,化简的结果是()A.B.C.D.14 .下列计算正确的是() A .B.C.D.二.填空(共13 小)15.二次根式与的和是一个二次根式,正整数 a 的最小;其和.16.已知 a、b 足=a b+1, ab 的.17.已知 | a 2007|+ =a, a 20072的是.18.如果的是一个整数,且是大于 1 的数,那么足条件的最小的整数a= .19.已知 mn=5, m +n = .20.已知 a<0,那么 | 2a| 可化.21.算:的果.22.若最二次根式与是同二次根式, x= ..若,x= ;若 2 2, x= ;若( x 1)2 ,.23 x =( 3)=16 x=24.化 a 的最后果.25.察分析,探求出律,然后填空:,2,,2 ,,,⋯,(第n 个数).26.把根号外的因式移到根号内:=27.若 a 是的小数部分, a(a+6)= .三.解答(共7 小)28.下列解程:= = = = 2;===.回答下列:(1)察上面的解程,直接写出式子=;(2)察上面的解程,直接写出式子=;(3)利用上面所提供的解法,求++++⋯+的.29.一个三角形的三分、、(1)求它的周(要求果化);(2)你一个适当的x ,使它的周整数,并求出此三角形周的.30.如,数 a、b 在数上的位置,化:.31.先下列的解答程,然后作答:形如的化,只要我找到两个数a、b 使 a+b=m,ab=n,()2+()2=m,? = ,那么便有= = ±( a> b)例如:化解:首先把化,里 m=7, n=12;由于 4+3=7,4×3=12,即()2+()2=7,? =,∴===2+由上述例的方法化:(1);(2);(3)..已知x=2 ,求代数式(2+(2+ )x+ 的.32 7+4 )x33.数 a、b 在数上的位置如所示,化:| a| .34.察下列各式:;;⋯,你猜想:(1)=,=.(2)算(写出推程):(3)你将猜想到的律用含有自然数n(n≥1)的代数式表达出来.参考答案一.选择题(共14 小题)1.C;2.B;3.D;4.C;5.B;6.C;7.D;8.C;9.B;10.A;11.B;12.B;13.A;14.D;二.填空题(共13 小题)15.6;﹣;16.±;17.2008;18.1;19.±2;20.﹣3a;21.1;22.0;23.±5;± 3;5 或﹣ 3; 24.﹣ 2;25.2;;26.;27.2;三.解答题(共7 小题)28.﹣;﹣;29.;30.;31.;32.;33.;34.5;6;;。

二次根式12套培优练习题及答案

二次根式12套培优练习题及答案

二次根式练习(03)一、选择题(每小题2分,共30分) 1、25的平方根是( )A 、5B 、–5C 、5±D 、5± 2、2)3(-的算术平方根是( )A 、9B 、–3C 、3±D 、3 3、下列叙述正确的是( )A 、0.4的平方根是2.0±B 、32)(--的立方根不存在 C 、6±是36的算术平方根 D 、–27的立方根是–3 4、下列等式中,错误的是( ) A 、864±=±B 、1511225121±= C 、62163-=- D 、1.0001.03-=-5、下列各数中,无理数的个数有( ) 10.1010017231642π--,, , ,, 0, - A 、1 B 、2 C 、3 D 、4 6、如果x -2有意义,则x 的取值范围是( ) A 、2≥xB 、2<xC 、2≤xD 、2>x7、化简1|21|+-的结果是( ) A 、22-B 、22+C 、2D 、28、下列各式比较大小正确的是( ) A 、32-<-B 、6655->- C 、14.3-<-π D 、310->-9、用计算器求得333+的结果(保留4个有效数字)是( )A 、3.1742B 、3.174C 、3.175D 、3.1743 10、如果mm m m -=-33成立,则实数m 的取值范围是( )A 、3≥mB 、0≤mC 、30≤<mD 、30≤≤m 11、计算5155⨯÷,所得结果正确的是( )A 、5B 、25C 、1D 、5512、若0<x ,则xx x 2-的结果为( )A 、2B 、0C 、0或–2D 、–213、a 、b 为实数,在数轴上的位置如图所示,则2a b a +-的值是( ) A .-b B .b C .b -2a D .2a -b 14、下列算式中正确的是( )A 、333n m n m -=-B 、ab b a 835=+C 、1037=+x xD 、52523521=+15、在二次根式:①1281827中,与3是同类二次根式的是( )A 、①和③B 、②和③C 、①和④D 、③和④ 二、填空题(每小题2分,共20分)16、–125的立方根是_____. 17、如果9=x ,那么x =________;如果92=x ,那么=x ________.18、要使53-x 有意义,则x 可以取的最小整数是 . 19、平方根等于本身的数是________;立方根等于本身的数是_______ 20、x 是实数,且02122=-x ,则.____=x 21、若b a 、是实数,012|1|=++-b a ,则._____22=-b a 22、计算:①____;)32(2=-②._____1964522=-23 2.645=== .24、计算:._____1882=++25、已知正数a 和b ,有下列命题:(1)若2=+b a ,则ab ≤1 (2)若3=+b a ,则ab ≤23 (3)若6=+b a ,则ab ≤3根据以上三个命题所提供的规律猜想:若9=+b a ,则ab ≤________. 三、解答题(共50分) 26、直接写出答案(10分)② ④⑦348- ⑧()225+ ⑨27、计算、化简:(要求有必要的解答过程)(18分) ①8612⨯ ②)7533(3-③32 -321+2④123127+- ⑤(2⑥2363327⨯-+28、探究题(10=____,,=______. 根据计算结果,回答:(1a 吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算 ①若2x 〈②=_____29、(6分)已知一个正方形边长为3cm ,另一个正方形的面积是它的面积的4倍,求第二个正方形的边长。

二次根式练习题及答案

二次根式练习题及答案

二次根式练习题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(二次根式练习题及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为二次根式练习题及答案的全部内容。

二次根式练习题及答案(一)一、选择题(每小题2分,共24分)1.(2012·武汉中考)若在实数范围内有意义,则的取值范围是()A。

B. C. D。

2.在下列二次根式中,的取值范围是≥的是()A. B. C. D。

3.如果,那么()A。

< B。

≤ C.> D。

≥4。

下列二次根式,不能与合并的是()A. B。

C. D.5. 如果最简二次根式与能够合并,那么的值为()A.2B.3C.4 D。

56。

(2011·四川凉山中考)已知,则的值为()A. B. C。

D.7。

下列各式计算正确的是()A. B.C. D.8.等式成立的条件是( )A. B。

C. D。

9。

下列运算正确的是()A。

B。

C。

D.10.已知是整数,则正整数的最小值是()A。

4B。

5 C。

6D。

211。

(2012·山东潍坊中考)如果代数式有意义,那么的取值范围是()A. B. C。

D。

12.(2012·湖南永州中考)下列说法正确的是()A。

B。

C。

不等式的解集为D.当时,反比例函数的函数值随自变量取值的增大而减小二、填空题(每小题3分,共18分)13。

化简:;=_________.14.比较大小:3;______。

15.(1)(2012·吉林中考)计算________;(2)(2012·山东临沂中考)计算.16.已知为两个连续的整数,且,则.17.若实数满足,则的值为.18.(2011·四川凉山中考)已知为有理数,分别表示的整数部分和小数部分,且,则。

苏科版2019八年级数学二次根式培优训练题3(附答案)

苏科版2019八年级数学二次根式培优训练题3(附答案)

苏科版2019八年级数学二次根式培优训练题3(附答案)1.下列根式中,与是同类二次根式的()A.B.C.D.2.下列根式中,最简二次根式是().A.B.C.D.3.下列计算正确的是()A.B.C.D.4.若是二次根式,则a,b应满足的条件是( )A.a,b均为非负数B.a,b同号C.a≥0,b>0 D.≥05.下列二次根式中,能与合并的是()A.B.C.D.6.下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣37)A B C D8.计算(5-2)÷(-)的结果为()A.5 B.C.7 D.9在实数范围内有意义,则x的取值范围是_____.10x的取值范围是__________.__.1112.已知a、b分别为62a-b=_________13.使式子有意义的m的取值范围是_________ .14a=_________.y=,则y=__________.15.已知整数x,y满足16.先阅读,后解答:.像上述解题过程中,相乘积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化.的有理化因式是________,的有理化因式是________.将下列式子进行分母有理化:.17.计算:..18.计算:×(2﹣)﹣÷+.19.计算:.20.计算:(1) ;(2)( ;(3)( +3)( +2);(4)( -).21.阅读下列解题过程,请回答下列各问题:观察上面解题过程,请直接给出的结果,并写出化简过程.利用上面提供的方法,请你化简下面的式子:.22.计算或解不等式、方程组:(1)﹣+2﹣++;(2);(3)(2+)2015×(2﹣)2017﹣3××;(4).23.阅读下面的解答过程,然后作答:有这样一类题目:将m和n,使m2+n2=a 且,则可变为m2+n2+2mn,即变成(m+n)2,例如:∵=2+)2=2请你仿照上例将下列各式化简(1(2答案1.B 解:,,,,故选B 。

二次根式培优练习题.doc

二次根式培优练习题.doc

5.己知xy<0,则山弓化简后为( )A.B.-xVy C. D.6.如果实数a 、b 满足后兵-北咨,那么点(a , b)A.第一象限B.第二象限C.第二象限或坐标轴上 7.化简二次根式」二^,结果正确的是( )A. &D.第四象限或坐标轴上 B. & C. 右8.若a+J^=O 成立,则a 的取值范围是( )A. a 》0 B. a>0 C. aWO D. a<09.如果ab>0, a+bVO,那么下面各式:①13.当aVO 时,化简」芋的结果是()A ・C.D. -p/b二次根式培优练习题%1. 选择题(共14小题)1. 使代数式还玉有意义的自变量x 的取值范围是()x-4 A. xN3 B. x>3 且 x 乂4C. xN3 且 xU4D ・ x>3 2. 若Jg_6a+ "=3・a,则a 与3的大小关系是( )A. a<3B. aW3C. a>3D. a 》3 3.如果等式(x+1) °=1和7(3X -2) 2=2" 3x同时成立,那么需要的条件是()A. - 1B. x<—且 xK-lC. x<—或 x/lD.3 34.若ab<0,则代数式可化简为( )A. aVbB. a\/-bC. - aVbD. - aV~b 中正确的是()A.①② B.②③ C.①③ D.①②③10.下列各式中正确的是( )A.寸(一7)2二]B.V9=±3 C.( - 梃)2=4 D. 3^2 - V2=2义、底罕中与、奇是同类二次根式的有( )V abA. 2个B. 3个C.4个D.5个12.若是一个实数,则满足这个条件的a 的值有( )A. 0个B. 1个C. 3个D.无数个X=1, - b,其11.在二次根式J 克、14 .下列计算正确的是()A . J(-16)X (-9)二二-4X (-3)二1218.19. 21.如果施的值是一个整数,且是大于1的数,那么满足条件的最小的整数*. 20-己知a<0,那么l"-2a|可化简为计算:3^V3><22.若最简二次根式2奴亦与-折卢是同类二次根式,则后23. 若=5,则 x=;若)<2二(-3)之,则 x=;若(x - 1) 2=16, x=. 24. 化简的最后结果为.25. 观察分析,探求出规律,然后填空:血,2,2匝,而,,…, (第n 个数).26.把根号外的因式移到根号内:(z )JX=-后V l~a27.若a 是的小数部分,则a (a+6) =.三.解答题(共7小题)28.阅读下列解题过程:_I_=_*(抵*)__=_(蚯-也)_=扼《=诉-2- V5+V4 (膜 + 折)(鹏 M ) ,1 _ IX ( &)V~6 +V5(V6 +V~5)(V6 ~V5)(V6)2-(V5)2=76^5.请回答下列问题:(1)(2)观察上面的解题过程,请直接写出式子亍、二V7+V6 _ 观察上面的解题过程,请直接写出式子=;V n+V n-1(3) —1—+ __ ± __ + __ k _ + _ ± _ + + __ ± __ 的值.V2+1 V3+V2 V4+V3 V5+V4V100+V99利用上面所提供的解法,请求1 X 1 X 1 X X 1B ・ 78a 4b 2=4a 2b c - V^+5^8+5= 13 D - 7252-242=7(25+24)(25-24)=749=7 %1. 填空题(共13小题)15. 二次根式-3/云与J 疝的和是一个二次根式,则正整数a 的最小值为;其和 为・ 16. 巳知 a 、b 满足寸(2-&) 2二&+3,且\/a-b+l =a 一 b+1,则 ab 的值为 17. 已矢口 | a - 20071 +Va-2008=a,则 a - 20072 的值是 己知mn=5,二的结果为V329.一个三角形的三边长分别为建、奇声、言脂(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.30.如图,实数a、b在数轴上的位置,化简:后」^项(壶)2.a b_j ------ _i——e-J -------- 1_►-2 -1 0 1 231.先阅读下列的解答过程,然后作答:形如唇疝的化简,只要我们找到两个数a、b使a+b=m, ab=n,这样(仲24- <Vb)2=m, 揭•展二Vii,那么便有2\^=V (Va ± Vb)2=Va±Vb(a>b)例如:化简寸7+4必解:首先把J7+4必化为顼7+2/丘,这里m=7, n=12;由于4+3=7, 4X3=12,即(V4)2+ (如)2=7, V4*V3=V12,二顼7+4扼二寸7+2顶12=/ (折+扼)2=2+扼由上述例题的方法化简:(1)713-2V42;(2)J7-J如;(3 ) V 2^/3,32.己知x=2-如,求代数式(7+4扼)X2+ (2+如)x+如的值.33.实数a、b在数轴上的位置如图所示,请化简:沽|-府-后・1 1 « > a 0 b请你猜想:(2)计算(请写出推导过程):法、《)口异k 1<月7山刃上寸以q王/:V ]3+(3)请你将猜想到的规律用含有自然数n (n^l)的代数式表达出来参考答案%1.选择题(共14小题)1. C;2. B;3. D;4. C;5. B;6. C;7. D;8. C;9. B; 10. A; 11. B; 12. B; 13. A;14.D;%1.填空题(共13小题)15.6; - V3x; 16. ±【;17. 2008; 18. 1; 19. ±2^5; 20. - 3a; 21. 1; 22. 0; 23. ±— A 一5; ±3; 5 或-3; 24.二1V7京;25. 2^3;底;26.; 27. 2;%1.解答题(共7小题)28. W - V6; Vn - Vn-1; 29.;。

冀教版八年级上15.1 二次根式 能力培优训练(含答案)

冀教版八年级上15.1 二次根式 能力培优训练(含答案)

15.1二次根式专题一 二次根式0)a ≥非负性的综合应用1.已知实数,a b 0=,则a b +=_______.2.若3y =,求y 的值.3.20=,求x 与y 的值.专题二 利用二次根式的性质将代数式化简4. 把(a b - ) A.a b - B.b a - C.b a -- D.a b --5.已知实数a 在数轴上的位置如图所示,则2+ )A.2B.-8C.82a -D.22a --6.2.<7.已知21状元笔记【知识要点】1.二次根式0a ≥)的式子叫做二次根式.2.二次根式的性质(10a ≥)是一个非负数;②2a =(0a ≥)a ==,(0),(0)a a a a ≥⎧⎨-<⎩(20,0)a b =≥≥;==(0,0)a b ≥>. 3.最简二次根式一般地,如果一个二次根式满足:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式,那么我们把这样的二次根式叫最简二次根式.【温馨提示】1.几个非负数的和为零,每一个非负数都为零.2.0a ≥的条件,挖掘隐含条件往往会成为解题的突破口.【方法技巧】常见的非负数有以下形式:①某数的绝对值,形如:a 数的平方,形如:“2a ”或“2()a b -”.参考答案1.3 解析:0≥≥0,∴10,20a b -=-=,∴1,2a b ==,∴3a b +=.2.解:0≥,∴240x -=,∴2x =,∴3y =.∴3y ==35125=.3.解:20=1)1)0-=,∴12)0=..0≥10>20=,∴4y =.∴0x ≥,4y =.4.D 解析:由题意知0a b -<,原式(a b =-=5.A 解析:由数轴可知35a <<,∴30a ->,50a -<. ∴原式=35a a -+-=2.6.解:∵20x -≥,∴2x ≥,∴10x -≤,∴原式=212x x x +--+-=2(1)x x +--+2x -=1x +.7.解:21<,∴01a ≤<,∴0a ≥,10a-<,∴原式=1a a ⋅-=(1)a a -=2a a -.。

《二次根式》培优专题之(一)难点指导与典型例题(含答案及解析)

《二次根式》培优专题之(一)难点指导与典型例题(含答案及解析)

《二次根式》培优专题之(一)难点指导与典型例题(含答案及解析) -CAL-FENGHAI.-(YICAI)-Company One1《二次根式》培优专题之一——难点指导及典型例题【难点指导】1、如果a 是二次根式,则一定有a ≥0;当a ≥0时,必有a ≥0;2、当a ≥0时,a 表示a 的算术平方根,因此有()a a =2;反过来,也可以将一个非负数写成()2a 的形式; 3、()2a 表示a 2的算术平方根,因此有a a =2,a 可以是任意实数; 4、区别()a a =2和a a =2的不同: 2a 中的可以取任意实数,()2a 中的a 只能是一个非负数,否则a 无意义. 5、简化二次根式的被开方数,主要有两个途径:(1)因式的内移:因式内移时,若m <0,则将负号留在根号外.即: x m x m 2-=(m <0).(2)因式外移时,若被开数中字母取值范围未指明时,则要进行讨论.即:6、二次根式的比较:(1)若,则有;(2)若,则有. 说明:一般情况下,可将根号外的因式都移到根号里面去以后再比较大小.【典型例题】1、概念与性质2、二次根式的化简与计算例1. 化简a a 1-的结果是( ) A .a - B .a C .-a - D .-a分析:本题是同学们在做题时常感困惑,容易糊涂的问题.很多同学觉得选项B形式最简单,所以选B;还有的同学觉得应有一个负号和原式对应,所以选A 或D;这些都是错误的.本题对概念的要求是较高的,题中隐含着0a <这个条件,因此原式的结果应该是负值,并且被开方数必须为非负值.解:C. 理由如下:∵二次根式有意义的条件是10a -≥,即0a <, ∴原式=211()()()a a a a a---=--⋅-=--.故选C. 例2. 把(a -b )-1a -b 化成最简二次根式解:例3、先化简,再求值:11()b a b b a a b ++++,其中a=512+,b=512-.3、在实数范围内分解因式例. 在实数范围内分解因式。

二次根式化简练习题含答案(培优)

二次根式化简练习题含答案(培优)

基本巩固:2.最简二次根式与同类二次根式:一个二次根式知足被开方数不含有分母,且不含有能开得尽方的因数或因式,叫做最简二次根式(simplest quadratic radical).几个二次根式化为最简二次根式后,假如它们被开方数雷同,就把这几个二次根式叫做同类二次根式.3.移因式到根号内.外的办法:①把根号外的数移到根号内:当根号外的数是负数时,把负号留在根号外面,然后把这个数的平方移到根号外:当根号内的数是正数时,直接开方移到根号外,即演习:1、有如许一类标题:将b a 2±化简,假如你能找到两个数m.n,使a n m =+22且b mn =,则将将变成m 2+n 2±2mn,即变成(m ±n)2开方,从而使得b a 2±化简.请依据提醒化简下列根式:(1)625-(2)324+2.数a.b 在数轴上的地位如图所示,化简()()()22211b a b a ---++=_____.3、盘算:4、已知m 是2的小数部分,则122+-m m 的值是().5、对随意率性不相等的两个数a.b,界说一种运算※如下:a ※b=b a ba -+,则12※4=_____.答案与解析:1、解析:依据提醒做出解答即可答案:(1)23- (2)13+2、解析:依据数a.b 在数轴上的地位肯定a+1,b-1,a-b 的符号,再依据二次根式的性质进行开方运算,再归并同类项. 答案:由数轴可知,a <-1,b >1,∴a+1<0,b-1>0,a-b <0,∴原式=-(a+1)+b-1-(b-a )=-a-1+b-1-b+a=-2.3.解析:本题涉及零指数幂.负整数指数幂.幂的运算. 二次根式化简四个考点.在盘算时,须要针对每个考点分离进行盘算,然后依据实数的运算轨则求得盘算成果.。

初中数学数学二次根式的专项培优练习题(含答案

初中数学数学二次根式的专项培优练习题(含答案

一、选择题1.下列计算正确的是()A 5 B=2y Ca=D= 2.下列计算正确的为().A5=-B=C=+D=3.下列二次根式中,是最简二次根式的是()AB C.D4.下列运算正确的是()A=B. 3 C=﹣2 D=5.)A B C D6.下列运算正确的是()A=B=C.3=D2= 7.下列各式计算正确的是()A.6232126()ba b a ba---⋅=B.(3xy)2÷(xy)=3xyC=D.2x•3x5=6x68.下列二次根式是最简二次根式的是()A B C D9.下列二次根式中,是最简二次根式的是().A.B C D10.下列各式计算正确的是()A+=B.26=(C4=D=二、填空题11.能力拓展:11:2121A -=+;21:3232A -=+;31:4343A -=+;4:54A -=________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空.()2比较大小1A 和2A∵32+________21+∴132+________121+∴32-________21-()3同理,我们可以比较出以下代数式的大小:43-________32-;76-________54-;1n n +-________1n n --12.已知x=3+1,y=3-1,则x 2+xy +y 2=_____.13.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72[72]=8[8]=22]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________. 14.3x x=,且01x <<2691x x x =+-______.15.)230m m --≤,若整数a 满足52m a +=a =__________. 16.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--+-=+---m+4的算术平方根为________. 17.把1a- 18.4x -x 的取值范围是_____. 19.2a ·8a (a ≥0)的结果是_________. 20.已知23x =243x x --的值为_______.三、解答题21.3535+-解:设x 3535+-222(35)(35)2(35)(35)x =++-++-235354x =+,x 2=10∴x =10.0.【分析】根据题意给出的解法即可求出答案即可. 【详解】设x两边平方得:x 2=2+2+即x 2=4+4+6, x 2=14∴x =.0,∴x . 【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.22.已知1,2y =. 【答案】1 【解析】 【分析】根据已知和二次根式的性质求出x 、y 的值,把原式根据二次根式的性质进行化简,把x 、y 的值代入化简后的式子计算即可. 【详解】 1-8x≥0,x≤188x-1≥0,x≥18,∴x=18,y=12,∴原式532-==1222. 【点睛】本题考查的是二次根式的化简求值,把已知条件求出x 、y ,把要求的代数式进行正确变形是解题的关键,注意因式分解在化简中的应用.23.计算:(1)+(2(33+-【答案】(1)2) -10 【分析】(1)原式二次根式的乘除法法则进行计算即可得到答案;(1)原式第一项运用二次根式的性质进行化简,第二项运用平方差公式进行化简即可. 【详解】解:(1)+===(2(33+-=5+9-24=14-24 =-10. 【点睛】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.24.已知x y ==求下列各式的值: (1)22x xy y -+; (2).y xx y+ 【答案】(1) 72;(2)8. 【分析】计算出xy=12, (1)把x 2-xy+y 2变形为(x+y )2-3xy ,然后利用整体代入的方法计算;(2)把原式变形为2()2x y xyxy+-,然后利用整体代入的方法计算.【详解】∵x =2,y =3∴xy=12, (1)22x xy y -+ =(x+y )2-3xy,=2132-⨯ =72; (2)y x x y +=2212()22812x y xyxy-⨯+-==.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.25.(1|5-+; (2)已知实数a 、b 、c满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4 【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可; (2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可. 【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩,解得5b =由此可化简原式得,30a +=30a ∴+=,20c -= 3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.26.2020(1)- 【答案】1 【分析】先计算乘方,再化简二次根式求解即可. 【详解】2020(1)-=1 =1. 【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.27.计算:(1)-(2)【答案】(1)21 【分析】(1)先把二次根式化为最简二次根式,然后合并即可; (2)先利用二次根式的乘除法则运算,再合并即可. 【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.28.计算:(1)13⎛+-⨯ ⎝⎭(2))()2221+.【答案】(1)6-;(2)12-【分析】(1)原式化简后,利用二次根式乘法法则计算即可求出值; (2)原式利用平方差公式,以及完全平方公式计算即可求出值. 【详解】解:(1)原式=1(233⨯⨯-⨯=-⨯=3⎫⨯⎪⎪⎭=6-;(2)原式=3﹣4+12﹣=12﹣. 【点睛】此题考查了二次根式的混合运算,以及平方差公式、完全平方公式,熟练掌握运算法则及公式是解本题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据二次根式的性质对A 、B 进行判断;利用分母有理化对C 进行判断;利用二次根式的加减法对D 进行判断. 【详解】解:A 、原式=5,所以A 选项错误;B 、原式=,所以B 选项错误;Ca =,所以C 选项正确;D D 选项错误.故选:C . 【点睛】本题主要考查了二次根式的性质以及合并同类项法则,正确化简各式是解题的关键.2.D解析:D 【分析】根据二次根式的性质、二次根式的加法以及混合运算的法则逐项进行判断即可. 【详解】A 5=,故A 选项错误;B B 选项错误;C .++=222,故C 选项错误;D 2=,正确, 故选D . 【点睛】本题考查了二次根式的运算,熟练掌握各运算的运算法则是解题的关键.3.D解析:D 【分析】根据最简二次根式的特点解答即可. 【详解】A ,故该选项不符合题意;B =C 、D 不能化简,即为最简二次根式, 故选:D . 【点睛】此题考查最简二次根式,掌握最简二次根式的特点:①被开方数中不含分母;②被开方数中不含能再开方的因式或因数,牢记特点是解题的关键.4.D解析:D 【分析】直接利用二次根式的混合运算法则分别判断得出答案. 【详解】解:AB、=,故此选项错误;C2,故此选项错误;D,正确;故选:D.【点睛】本题考查二次根式的混合运算,熟练掌握计算法则是关键.5.A解析:A【分析】根据二次根式的性质把每一项都化为最简二次根式,再根据同类二次根式的定义判断即可.【详解】解:A=B3C不是同类二次根式,不合题意;D3故选:A.【点睛】本题考查了同类二次根式的定义和二次根式的性质,属于基本题型,熟练掌握基本知识是解题关键.6.D解析:D【分析】利用二次根式的加减法对A、C进行判断;利用二次根式的性质对B进行判断;利用二次根式的除法法则对D进行判断.【详解】解:A A选项错误;B=B选项错误;C、=C选项错误;=,所以D选项正确.D2故选:D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.D解析:D 【分析】依据单项式乘以单项式、单项式除以单项式以及二次根式的加法法则对各项分别计算出结果,再进行判断即可得到结果. 【详解】A. 2321526()b a b a b a---⋅=,故选项A 错误;B. (3xy )2÷(xy )=9xy ,故选项B 错误;C 错误; D. 2x •3x 5=6x 6,正确. 故选:D . 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.8.A解析:A 【分析】根据最简二次根式的定义即可得. 【详解】A 是最简二次根式,此项符合题意B =C 、当0x <D=不是最简二次根式,此项不符题意 故选:A . 【点睛】本题考查了最简二次根式的定义,熟记定义是解题关键.9.A解析:A 【详解】根据最简二次根式的意义,可知2=. 故选A.10.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB 、错误,212=(;C ==D ==故选:D .【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型. 二、填空题11.(1)、;(2);(3)【解析】【分析】(1)观察A1,A2,A3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等解析:(1)=;(2),,><<;(3) ,,<<< 【解析】【分析】(1)观察A 1,A 2,A 3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等式仍成立,求得>1)的结论解答;(3)利用(2)的结论进行填空.【详解】解:(1)观察A 1,A 2,A 3的规律可知,将等式右边的分式分母有理化,即得等式左边的代数式,所以=,(2>1>>,<<(3)由(1)、(2<,故答案为:=;(2),,><<;(3),,<<< 【点睛】 主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.12.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y )2﹣xy=(2)2﹣(+1)(﹣1)=12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x 2+xy+y 2=(x+y )2﹣xy=(2﹣1)=12﹣2=10.故答案为10. 13.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和 解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.14..【分析】利用题目给的求出,再把它们相乘得到,再对原式进行变形凑出的形式进行计算.【详解】∵,∴,∴,∴,∵,∴,∴,∴原式.故答案是:.【点睛】本题考查二次根式的运.【分析】,再把它们相乘得到1xx-,再对原式进行变形凑出1xx-的形式进行计算.【详解】3=,∴221239xx=++==,∴17xx+=,∴212725xx=-+=-=,∵01x<<,=,∴1xx=-=-∴原式====..【点睛】本题考查二次根式的运算和乘法公式的应用,解题的关键是熟练运用乘法公式对式子进行巧妙运算.15.【分析】先根据确定m的取值范围,再根据,推出,最后利用来确定a的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m-≤确定m的取值范围,再根据m a+=32a≤≤,最后利用78<<来确定a的取值范围.【详解】解:()230m m--≤23m∴≤≤m a+=a m∴=32a∴≤≤7528<<46a∴<<a为整数a∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.16.3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m=5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:35302302x y mx y mx y+--=⎧⎪+-=⎨⎪+=⎩,解得:x=1,y=1,m=5,∴==3.故答案为3.【点睛】本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.17.﹣【解析】解:通过有意义可以知道≤0,≤0,所以=﹣=﹣.故答案为:.点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.解析:【解析】解:通过a≤0,,所以故答案为:点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.18.x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根解析:x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.19.4a【解析】【分析】根据二次根式乘法法则进行计算即可得.【详解】===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.解析:4a【解析】【分析】根据二次根式乘法法则进行计算即可得.)0a≥===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键. 20.-4【分析】把代入计算即可求解.【详解】解:当时,=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题解析:-4【分析】把2x=243x x--计算即可求解.【详解】解:当2x=243x x--((22423=---4383=--+=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15.1二次根式
专题一0)a ≥非负性的综合应用
1.已知实数,a b 0=,则a b +=_______.
2.若3y =,求y 的值.
3.20+=,求x 与y 的值.
专题二利用二次根式的性质将代数式化简
4.把(a b -化成最简二次根式正确的结果是()A.a b - B.b a - C.b a -- D.a
b --
5.已知实数a 在数轴上的位置如图所示,则2+化简后为()
A.2
B.-8
C.82a -
D.22a
--
6.2.
7.已知21<
状元笔记
【知识要点】
1.二次根式
(0a ≥)的式子叫做二次根式.
2.二次根式的性质
(10a ≥)是一个非负数;②2a =(0a ≥)a ==,(0)
,(0)
a a a a ≥⎧⎨-<⎩
(20,0)a b =≥≥;
==÷)(0,0)a b ≥>.3.最简二次根式
一般地,如果一个二次根式满足:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式,那么我们把这样的二次根式叫最简二次根式.
【温馨提示】
1.几个非负数的和为零,每一个非负数都为零.
2.0a ≥的条件,挖掘隐含条件往往会成为解题的突破口.
【方法技巧】
常见的非负数有以下形式:①某数的绝对值,形如:a ;③某数的平方,形如:“2a ”或“2
()a b -”.参考答案
1.3解析:∵0≥≥0=,∴10,20a b -=-=,∴1,2a b ==,∴3a b +=.
2.解:0≥,∴240x -=,∴2x =,∴3y =.
∴3y ==35125=.
3.解:20+=1)1)0+-=,∴2)0+-=.
.
0≥
10+>
20-=,∴4y =.∴0x ≥,4y =.4.D 解析:由题意知0a b -<,
原式(
a b =-
=5.A 解析:由数轴可知35a <<,∴30a ->,50a -<.∴原式=35a a -+-=2.
6.解:∵20x -≥,∴2x ≥,∴10x -≤,
∴原式=212x x x +--+-=2(1)x x +--+
2x -=
1x +.
7.解:2
1<,∴01a ≤<,∴0a ≥,10
a -<,∴原式
1a a ⋅-=(1)a a -=2a a -.。

相关文档
最新文档