二次根式培优提高训练
二次根式培优提高训练
《二次根式》培优一、知识讲解1.根式中的相关概念⑴二次根式:形如)0a ≥的代数式叫做二次根式。
⑵ nn 次根式.其中若n 为偶数,则必须满足0a ≥。
⑶最简二次根式:满足以下两个条件的二次根式叫做最简二次根式:①被开方数的因数是整数,因式是整式;②被开方数中不含有能开方的因数或因式。
⑷同类二次根式:几个二次根式化成最简二次根式之后,如果被开方数相同,则这几个根式叫做同类二次根式。
⑸设a 、b 、c 、d 、m 是有理数,且m 不是完全平方数 ,则当且仅当a c =、b d =时,时,a c +=+2. 二次根式的性质 (1)()20a a =≥. (200 0 0a a a a a a >⎧⎪===⎨⎪-<⎩当时,当时,当时. 3.二次根式的运算法则:对于二次更是的加减,先把二次根式化为最简二次根式,然后再合并同类二次根式即可. (1)(a b =+ (2)0,0a b =≥≥(3))0,0a b =≥> (4))0ma =≥(5)若0a b >>>4. 分母有理化(1)把分母中的根号化去叫做分母有理化.(2)互为有理数因式:两个含有根式的代数式相乘,如果它们的积不含有根式,则这两个代数式互为有理化因式.互为有理数因式。
分母有理化时,一定要保证有理化因式的值不为0.二、习题讲解基础巩固1.化简:(1) (2(3(4)(5(6) 解:(1)(2. (3)(4. (5)232-(6). 2. 设y =,求使y 有意义的x 的取值范围.解:由题知2102010x x x -≥⎧⎪-≥⎨⎪->⎩,解得1221x x x ⎧≥⎪⎪≤⎨⎪>⎪⎩,所以x 的取值范围为122x ≤≤.3.(1)已知最简二次根式ba = ,b = . (2)已知0=,则2mn n +-的倒数的算术平方根为 .解:(1)由题知:2322b a b b a -=⎧⎨=-+⎩,解得02a b =⎧⎨=⎩.(2)因为0≥,2160m -≥0=所以221016040n m m m -+=⎧⎪-=⎨⎪->⎩,解得49m n =-⎧⎨=-⎩.所以15===.所以2mn n +-的倒数的算术平方根为15.4. (1)若m=试确定m 的值.(2)已知x 、y为实数,13y x =-,求56x y +.解:(1)因为19901990x y x y -+≥⎧⎨--≥⎩,即199199x y x y +≥⎧⎨+≤⎩,所以199x y+=①.所以0=.又因为0≥0≥,所以3520 230 x y m x y m +--=⎧⎨+-=⎩②③.由①,②,③可得:2001m =.5.在、1999是同类二次根式的共有多少个?解:由题知:==19个. 6.计算:(1)((1617解:(1)原式((16=⎡⎤⎣⎦()(16=1211-(2)(5+解:原式(()=5555256+--(3)22-解:原式22=⎤⎤-⎦⎦=⎤⎤⎦⎦===(4)计算:(1111x x ++++解:原式((1111x x ⎡⎤⎡⎤=++⎣⎦⎣⎦()()()()222311111x x x x x x ⎡⎤=-+-=-++=-⎢⎥⎣⎦(5)(解:原式{}{}⎤⎤⎡⎡=⎦⎦⎣⎣()()523235⎡⎤⎡⎤=--+-⎣⎦⎣⎦=24=.7.化简:=..A. BCD解:()()⎣⎦=⎡⎡-+⎣⎣=-=212+==12=+8.计算:. 解:原式()()4172x x --=())())417247x x x x --=---)12=-3=-.9.设x =,y =,n 为自然数,如果22219721993x xy y ++=成立,求n的值.解:由题知:()2222197221931993x xy y x y xy ++=++=x y +=+22+==42n =+.1xy ==.当x y +==-1xy =时,()224219311993n ++⨯=,即()242900n +=. 因为n 为自然数,所以4230n +=,解得7n =.10. 若正整数a 、m 、n=a 、m 、n 的值依次是 . 解:因为0≥,即m n ≥.由题知:22=,即2a m n -=+-.所以2a m n =+=.故有8mn=.因为a 、m 、n 为正整数,所以8m =,1n =,3a =. 11.(1))))201220112010121412010--+= .解:原式)))20102112142010⎡⎤=--+⎢⎥⎣⎦)2010151242010⎡⎤=+--+⎣⎦2010=.(2)化简:解:原式==3=3=3==3===.二、拓展提高1.已知x=,y=,求22y xx y+的值.解:由题知:原式()()()()()()()2 22332223x y xy xyx y x xy yy xxyxy xy⎡⎤++-+-++⎣⎦===x y+=22+=10=,1xy==. 当10x y+=,1xy=时,原式()22101031⨯-=970=.2.(1)). 5A-1B. 5C. 1D(2)代数式.解:(1)=)21=2=,==3=-所以231=+-=,故答案选D.(2)222=+82818=+=因为0≥==3.若1x =,则54322171816x x x x x +--+-的值为 .解:因为1x =,所以()221x -=,化简的22160xx --=.原式543322216216216x x x x x x x x =+---+++-()()222161x x x x =+--+()201x x =⨯-+0=4. 已知非零实数a 、b 满足等式542b a a b ab b a ++=+. 解:由542b a a b ab b a++=+可得:22542b a a b ++=+,即()()22120b a -+-=,解得2a =,1b =.所以原式1===.5.22006= 解:令2006x =,由题知: 原式2x =2x =2x =2x =221x x x =+--1200612005x =-=-=.6. 已知2=的值为 .解:令m =n =22210m n m n -=⎧⎨-=⎩. 所以()()()22210x y x y x y x y -=+-=+=5m n =+=.7.化简:.解:原式===2=51-=-5=.8.计算:⋅⋅⋅+.解:原式=+⋅⋅⋅+=+⋅⋅⋅4512025=-1145=-4445=.9.⋅⋅⋅+解:原式=37132612=++⋅⋅⋅1111111112233420102011⎛⎫⎛⎫⎛⎫⎛⎫=++++++⋅⋅++⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭1112010122320102011=+++⋅⋅+⨯⨯⨯111112010122320102011=+-+-+⋅⋅+-1201012011=+-201020102011=。
《二次根式》培优试题及答案精编版
《二次根式》提高测试(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………()【提示】2)2(-=|-2|=2.【答案】×.2.3-2的倒数是3+2.()【提示】231-=4323-+=-(3+2).【答案】×.3.2)1(-x =2)1(-x .…()【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、ba x 2-是同类二次根式.…( )【提示】31b a 3、ba x 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.( )29x +是最简二次根式.【答案】×.(二)填空题:(每小题2分,共20分)6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a =_.【答案】-2aa .【点评】注意除法法则和积的算术平方根性质的运用. 8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a . 9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数? x -4是负数,x -1是正数.【答案】3.10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11.已知a 、b 、c 为正数,d 为负数,化简2222d c ab d c ab +-=______.【提示】22d c =|cd |=-cd .【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -).12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小.13.化简:(7-52)2000·(-7-52)2001=______________.【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.] (7-52)·(-7-52)=?[1.]【答案】-7-52.【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.【答案】40. 【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.【提示】∵ 3<11<4,∴_______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0【答案】D . 【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义. 17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C . 【点评】本题考查二次根式的性质2a =|a |.18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于………………………()(A )x 2 (B )-x 2(C )-2x (D )2x【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x 1)2.又∵ 0<x <1,∴ x +x 1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0. 19.化简aa 3-(a <0)得………………………………………………………………()(A )a - (B )-a (C )-a - (D )a【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C . 20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --.【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义. (四)在实数范围内因式分解:(每小题3分,共6分)21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】(3x +5y )(3x -5y ).22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2.(五)计算题:(每小题6分,共24分)23.(235+-)(235--);【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215.24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式.【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.(a 2m n -m ab mn +m n nm)÷a 2b 2m n ;【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=(a 2mn-m ab mn +m n n m )·221ba n m=21bn m m n ⋅-mab 1n m mn ⋅+22b ma n n m n m ⋅ =21b-ab 1+221b a =2221b a ab a +-. 26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=ba ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a ba ++÷))((2222b a b a ab b a b ab b ab a a -++----=ba b a ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐. (六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值.【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴x +y =10,x -y =46,xy =52-(26)2=1.32234232y x y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy yx +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x22a x +=22a x +(22a x +-x ),x 2-x22a x +=-x (22a x +-x ).【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x 1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x x a x +--+-)11(22x x a x --++221a x +=x1.七、解答题:(每小题8分,共16分)29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算. 【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-)=9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值.【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x 【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵x y y x ++2-xyy x +-2=2)(x y y x +-2)(xy y x - =|xy yx +|-|x y y x -|∵ x =41,y =21,∴yx<xy .∴ 原式=x y y x +-y x xy+=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。
数学二次根式的专项培优练习题(附解析
数学二次根式的专项培优练习题(附解析一、选择题1.下列计算正确的是( )A =B =C =D =2.下列各式计算正确的是( )AB .C =3D .3.下列运算正确的是( )A =B . 3C =﹣2D =4.下列各式中,正确的是( )A 2=±B =C 3=-D 2=5.下列计算正确的是( )A =B 3=C =D .21= 6.下列式子中,是二次根式的是( )A B CD .x7.若化简的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数B .1≤x ≤4C .x ≥1D . x ≤48.已知a ( )A .0B .3C .D .99.如果a ,那么a 的取值范围是( ) A .a 0=B .a 1=C .a 1≤D .a=0a=1或10.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( ) A .1个B .2个C .3个D .4个11.若|x 2﹣4x+4|x+y 的值为( ) A .3B .4C .6D .912.230x -=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对二、填空题13.使函数212y x x=+有意义的自变量x 的取值范围为_____________14.已知实数,x y 满足(2008x y =,则2232332007x y x y -+--的值为______.15.已知x=3+1,y=3-1,则x 2+xy +y 2=_____.16.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.17.)230m m --≤,若整数a 满足52m a +=a =__________.18.()()22223310x y x y ++-+=,则222516x y +=______.19.已知4a2(3)|2|a a +--=_____.20.化简:3222=_____.三、解答题21.阅读下面问题: 阅读理解:2221(21)(21)==++-1; 323232(32)(32)==++-(55252(52)(52)==-++-.应用计算:(176+(211n n++(n 为正整数)的值.归纳拓展:(3122334989999100++++++【答案】应用计算:(17621n n + 归纳拓展:(3)9. 【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(17-6分母利用平方差公式计算即可,(2n 1-n +(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】(1(2(3+98+,(+98+,++99-, =10-1, =9. 【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.计算: 21)3)(3--【答案】. 【解析】 【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算. 【详解】解:原式22]-322]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.23.(112=3==;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=5==;(2n=;(3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,(2)如果n 为正整数,用含n (3)证明:∵n 是正整数,n .n.故答案为5=25 n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.24.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的:∵=2 ∴a ﹣2=∴(a ﹣2)2=3,a 2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a-=-=,∴2212a a-+=,即221a a-=∴原式=24(2)14115a a-+=⨯+=解法二∴原式=24(211)1a a-+-+24(1)3a=--211)3=--4235=⨯-=点睛:(1得22=-=-a b,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.25.先化简,再求值:a=1007.如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮 (22a (a <0) (3)原式=()23a -a+2(3-a )=6-a=6-(-2007)=2013.26.先观察下列等式,再回答下列问题: 2211111111121112++=+-=+; 2211111111232216++=+-=+ 22111111113433112++=+-=+ (1)2211145++ (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数). 【答案】(1)1120(2)()111n n ++(n 为正整数)【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子. 试题解析:(1)2211145++=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.27.观察下列一组等式,然后解答后面的问题1)1=,1=,1=,1=⋯⋯(1)观察以上规律,请写出第n 个等式: (n 为正整数). (2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小. 【详解】解:(1)根据题意得:第n 个等式为1=;故答案为1=;(2)原式111019==-=;(3-==,<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.28.先化简,再求值:24224x xx x x x ⎛⎫÷- ⎪---⎝⎭,其中2x =.【答案】22x x +-,1 【分析】先把分式化简,然后将x 、y 的值代入化简后的式子求值即可. 【详解】 原式(2)(2)22(2)2x x x x x x x x +-+=⋅=---,当2x =时,原式1==.【点睛】本题考查了分式的化简求值这一知识点,把分式化到最简是解题的关键.29.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值; (2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解. 【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4, (a-b )2=4, a-b=±2.(2)12a ===,12b ===,2222()22312a b a b ab +=+-=-=-=⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.30.(1)计算:21)-(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2(1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题. 【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数, ∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据二次根式加法法则,二次根式的乘法法则计算后判断即可得到答案. 【详解】=3= , ∴A 、C 、D 均错误,B 正确, 故选:B.此题考查二次根式的加法法则,二次根式的乘法法则,熟记计算法则是正确解题的关键. 2.C解析:C【分析】根据二次根式的化简进行选择即可.【详解】AB、C,故本选项正确;D、=18,故本选项错误;故选:C.【点睛】本题考查了二次根式的混合运算,掌握二次根式的化简是解题的关键.3.D解析:D【分析】直接利用二次根式的混合运算法则分别判断得出答案.【详解】解:AB、=,故此选项错误;C2,故此选项错误;D,正确;故选:D.【点睛】本题考查二次根式的混合运算,熟练掌握计算法则是关键.4.B解析:B【分析】本题可利用二次根式的化简以及运算法则判断A、B、C选项;利用立方根性质判断D选项.【详解】A,故该选项错误;B===,故该选项错误;C3D11223334=(2)2==,故该选项错误;故选:B.【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.5.A解析:A【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案.【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误;故应选:A【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.6.A解析:A【分析】a≥0)的式子叫做二次根式,据此可得结论.【详解】解:A是二次根式,符合题意;B是三次根式,不合题意;C、当x<0D、x属于整式,不合题意;故选:A.【点睛】此题考查二次根式的定义,关键是根据二次根式的定义理解被开方数是非负数.7.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x≥0,x-4≥0时,可得x无解,不符合题意;当1-x≥0,x-4≤0时,可得x≤1时,原式=1-x-4+x=-3;当1-x≤0,x-4≥0时,可得x≥4时,原式=x-1-x+4=3;当1-x≤0,x-4≤0时,可得1≤x≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x≤4时,多项式等于2x-5,故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.8.B解析:B【解析】=,可知当(a﹣3)2=0,即a=3故选B.9.C解析:C【解析】试题解析:∵a1,a∴1-a≥0,a≤1,故选C.10.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误;④如果点P(3-2n,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.解析:A【解析】根据题意得:|x2–4x,所以|x2–4x+4|=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.12.B解析:B【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案.【详解】x30-=,=0=,∴x=-2或x=3,又∵2030 xx+≥⎧⎨-≥⎩,∴x=3,故选B.【点睛】本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键.二、填空题13.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x的取值范围为【点睛】解析:11,0 22x x-≤≤≠利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤①当0x <时,120x +≥ 解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠ 【点睛】本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键. 14.1【分析】设a=,b=,得出x ,y 及a ,b 的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x ,y 及a ,b 的关系,再代入代数式求值. 【详解】解:设x 2−a 2=y 2−b 2=2008, ∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b ,x−a=y+b∴x=y ,a+b=0,∴, ∴x 2=y 2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系.15.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)= 12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2﹣1)=12﹣2=10.故答案为10.16.﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.17.【分析】先根据确定m的取值范围,再根据,推出,最后利用来确定a的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】 解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.18.【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】移项得,两边平方得,整理得,两边平方得,所以,两边除以400得,1.故答案为1.【点睛】解析:【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】10=-两边平方得,()()22223=1003x y x y ++--+整理得,253x =- 两边平方得,22225150225256251509x x y x x -++=-+ 所以,221625400x y +=两边除以400得,222516x y +=1. 故答案为1.【点睛】本题考查了非负数的性质,此类题目难点在于把两个算术平方根通过移项分到等式左右两边.19.-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵,∴a+3<0,2-a>0,∴-a-3-2+a=-5,故答案为:-5.【点睛】此解析:-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∴a+3<0,2-a>0,-=-a-3-2+a=-5,|2|a故答案为:-5.【点睛】此题考查二次根式的化简,绝对值的化简,整式的加减法计算法则,正确化简代数式是解题的关键.20.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.解析:【分析】直接合并同类二次根式即可.【详解】解:=.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.三、解答题21.无22.无23.无24.无25.无27.无28.无29.无30.无。
《第21章二次根式》培优提高单元检测试题【有答案】
2018-2019学年度第一学期华师大版九年级数学上_第21章_二次根式_培优提高单元检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.已知式子①8,② x2+2,③−5,④16,⑤43,⑥ a2−1.其中一定是二次根式的有()A.6个B.5个C.4个D.3个2.下列各式中计算正确的是()A.(−1)(−9)=−1⋅−9=(−1)(−3)=3B.(−2)2=−2C.32+42=3+4=7D.252−242=25+24⋅25−24=7×1=73.若a、b为实数,且b=a−1+1−aa+7+4,则a+b的值为()A.±1B.4C.3D.54.已知x<1,那么化简 x2−2x+1的结果是()A.x−1B.1−xC.−x−1D.x+15.下列各式与3不是同类二次根式的是()A.12B.27C.8D.756.下列运算中,错误的有()①125144=1512,②42=±4,③(−2)2=2,④116+125=14+15=920.A.1个B.2个C.3个D.4个7.下列计算正确的是()A.2+8=10B.2⋅2=4C.(−2)2=−2D.82=28.下列根式中,最简二次根式是()A.9aB. a2+b2C.a3D.0.59.212×3(−4)252的运算结果是()A.152B.3210C.325D.−321010.设a=3−2,b=2−3,则a、b的大小关系为()A.a>bB.a=bC.a<bD.无法确定二、填空题(共 10 小题,每小题 3 分,共 30 分)11.若x=2+3,则代数式x2−4x+3的值为________.12.已知最简二次根式:2a+1与3−2a是同类二次根式:则a=________.13.对于任意不相等的两个实数a、b,定义运算如下:ab=a+ba−b,那么812=________.14.化简:3+15+37+5+⋯2n+1+2n−1=________.15.当x=________时,5+4x有最小值为________.16.计算:24×3−8=________.17.已知2+23=223、3+38=338、4+415=4415…则第四个式子为________,第n个式子为________.18.若代数式2x−1有意义,则实数x的取值范围是________.19.计算:(−b+ b2−4ac2a )(−b− b2−4ac2a)(其中b2−4ac>0)=________.20.在二次根式30,45a,0.5,212,2,54,17(x2+y2)中,最简二次根式有________个.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.把下列各式化为最简二次根式(1)216(2)2112(3)132(4)−623(5)132−112(6)2+42.22.(1)计算:(−3)2−12+(π−4)022.(2)化简求值:当x=2−1时,求代数式1x+1−1x−1⋅x2−2x+1x+1的值23.计算:(312−213+48)÷23+(13)2.24.已知实数a、b满足4a−b+1+13b−4a−3=0,求2a ab⋅(ba÷1−b)的值.25.观察下面的运算,完成计算:5−26=3−26+2=(3)2−2×3×2+(2)2=(3−2)2=|3−2|=3−2(1)3−22(2)3+44+23.26.某小区物业为改善小区居民的生活环境,在小区建设中,特别注意环境的美化.小区中心广场有一长方形水池长为160π,宽为40π.为美化环境,给小区增加绿色,物业决定把这个长方形水池改建长一个圆形面积相等的圆形花坛,问改建的圆形花坛的半径是多少米?答案1.D2.D3.D4.B5.C6.A7.D8.B9.B10.A11.212.0.513.−12514.2n+1−1215.−540 16.4217.5+524=5×524n+nn−1=n×nn−118.x≥1219.ca 20.221.解:(1)216=66;(2)2112=2512=563;(3)132=182;(4)−623=−6×63=−26;(5)132−112=48=43;(6)62+42=52=213.22.解:(1)原式=9−23+1=10−23;(2)原式=1x+1−1(x+1)(x−1)⋅(x−1)2x+1=1x+1−x−1(x+1)2=2(x+1)2,当x=−1时,原式=(2−1+1)2=1.23.解:原式=(63−233+43)÷23+13=2833÷23+13=143+13=5.24.解:由题意可得4a−b+1=013b−4a−3=0,解得,a=−1 b=−3.当时a=−1、b=−3时,原式=−213⋅(3÷13)=−23.25.解:(1)原式=1−22+2=12−22+(2)2=(1−2)2=2−1;(2)4+23=3+23+1=(3−1)2(3+1)2=3+1,则原式=3+4(3+1)=43+7=212+7=3+24⋅3+4=(3)2+24⋅3+(4)2=(3+2)2=3+226.改建的圆形花坛的半径是45π米.。
八年级数学上----二次根式培优练习题
八年级数学上--——二次根式培优练习题1、二次根式:1。
有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 .4. 当__________x 是二次根式。
5。
2x =,则x 的取值范围是 。
6. 若1a b -+互为相反数,则()2005_____________a b -=。
7。
2x =-,则x 的取值范围是 .8. )1x 的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 11x =+成立的条件是 。
12. )()()230,2,12,20,3,1,x y y x xx x y +=--++中,二次根式有( ) A. 2个 B 。
3个 C. 4个 D. 5个13、 下列各式一定是二次根式的是(。
14、 若23a ,则-)A 。
52a -B 。
12a -C 。
25a -D 。
21a -15。
若A ==( )A 。
24a + B. 22a + C 。
()222a + D 。
()224a +16、 若1a ≤ )A 。
(1a -B. (1a -C. (1a - D 。
(1a -17. =x 的取值范围是( ) A. 2x ≠ B 。
0x ≥ C 。
2xD. 2x ≥18)A. 0B. 42a- C. 24a- D. 24a-或42a-19. 下面的推导中开始出错的步骤是()A。
()1 B. ()2 C。
()3 D. ()4()()()()231233224==-==∴=-∴=-202440y y-+=,则xy= 。
21. 当a取值时,代数式1取值最小,并求出这个最小值是。
22。
去掉下列各根式内的分母:())10x())21x23。
已知2310x x-+=,.24。
已知,a b(10b-=,求20052006a b-的值。
2 、二次根式的乘除:1。
当0a ≤,0b时__________=。
人教版初二数学8年级下册 第16章(二次根式)经典好题培优提升训练(附答案)
人教版八年级数学下册第16章二次根式经典好题培优提升训练(附答案)1.下列计算正确的是( )A.=B.=×C.4=3D.=2.下列各数:﹣3.141592,﹣,﹣0.16,,﹣π,0.1010010001…,,,﹣0.,是无理数的有( )个.A.5B.3C.4D.23.下列二次根式中属于最简二次根式的是( )A.B.C.D.4.已知a=+2,b=﹣2,则a2+b2的值为( )A.4B.14C.D.14+45.若化成最简二次根式后,能与合并,则a的值不可以是( )A.B.8C.18D.286.我们把形如a+b(a,b为有理数,为最简二次根式)的数叫做型无理数,如3+1是型无理数,则()2是( )A.型无理数B.型无理数C.型无理数D.型无理数7.已知是正整数,则实数n的最小值是( )A.3B.2C.1D.8.实数5不能写成的形式是( )A.B.C.D.9.化简,结果是( )A.6x﹣6B.﹣6x+6C.﹣4D.410.当,分式的结果为a,则 )A.a>1B.C.D.11.当代数式有意义时,x应满足的条件 .12.若a≤0,化简|a﹣|的结果是 .13.把中根号外的(a﹣1)移入根号内得 .14.当a>0时,化简的结果是 .15.若=3a﹣1,则a的取值范围是 .16.计算:2×= .17.把二次根式化为最简二次根式是 .18.计算:(﹣+)(+﹣)= .19.实数a,b在数轴上的位置如图所示,则化简|a﹣b|﹣﹣= .20.已知|a|=6,=10,且|a﹣b|=b﹣a,则= .21.计算:(1)9÷×;(2)++﹣+;(3)(﹣+)•;(4)2a﹣﹣6ab(b≥0).22.已知x+y=﹣6,xy=3,求+的值.洪庆同学的解答过程如下解:+=+=+=(+)=∵x+y=﹣6,xy=3,∴原式=﹣2你认为洪庆同学的解答过程完全正确吗?如果你认为不完全正确,请你写出你的正确解答过程.23.对于“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答是:+=+=+﹣a=﹣a=;乙的解答是:+=+=+a﹣=a=.(1) 的解答是错误的;(2)错误的解答在于未能正确运用二次根式的性质: .(3)化简并求值:|1﹣a|+,其中a=2.24.计算:(1)÷3×(﹣5)(2)5x÷3×(3)5•(﹣)÷3.25.老师在黑板上写出下面的一道题:已知=a,=b,用含a,b的代数式表示.两位在黑板上分别板书了自己的解答:同学甲:====.同学乙:====×=×=.(1)你认为两位同学的解答都正确吗?(2)同学并得出的结果为.老师说是正确的,你知道丙是怎样做的吗?请你写出丙的解答过程.26.阅读材料,回答问题:化简:===﹣1;化简::====.(1)以上化简过程运用了哪个乘法公式?(2)依照上述化简方法化简;(3)计算:+++…+的值.参考答案1.解:A、+,无法计算,故此选项错误;B、=×,故此选项错误;C、4﹣=3,故此选项错误;D、•=,故此选项正确.故选:D.2.解:﹣3.141592,﹣,﹣0.16,=10,﹣π,0.1010010001…,,,﹣0.,=2是无理数的有:﹣,﹣π,0.1010010001…,,共5个.故选:A.3.解:A、=4,不是最简二次根式,不符合题意;B、=2x,不是最简二次根式,不符合题意;C、=,不是最简二次根式,不符合题意;D、是最简二次根式,符合题意;故选:D.4.解:∵a=+2,b=﹣2,∴a+b=(+2+﹣2)=2,ab=(+2)(﹣2)=﹣1,∴a2+b2=(a+b)2﹣2ab=(2)2﹣2×(﹣1)=14,故选:B.5.解:A、=,能与合并,a的值可以是,本选项不符合题意;B、==2,能与合并,a的值可以是8,本选项不符合题意;C、==3,能与合并,a的值可以是18,本选项不符合题意;D、==2,不能与合并,a的值不可以是28,本选项符合题意;故选:D.6.解:()2=2++10=,所以()2是型无理数,故选:C.7.解:是正整数,则实数n的最小值为.故选:D.8.解:A、=5,B、=5,C、()2=5,D、﹣=﹣5,故选:D.9.解:由二次根式的非负性及被开方数的非负性可得:3x﹣5≥0∴x≥∴1﹣3x<0∴=﹣(3x﹣5)=3x﹣1﹣3x+5=4故选:D.10.解:+=+==,当x=+1时,原式===,即a=,∵<<1,∴<a<1,故选:B.11.解:∵代数式有意义,∴4﹣x≥0,x2﹣1≠0,解得,x≤4且x≠±1,故答案为:x≤4且x≠±1.12.解:|a﹣|=|a﹣|a||∵a≤0,∴原式=|a+a|=|2a|=﹣2a,故答案为:﹣2a.13.解:∵﹣>0,∴a<1,∴a﹣1<0,∴=﹣(1﹣a)=﹣•=﹣=﹣.故答案是:﹣14.解:∵a>0时,∴b≤0∴=﹣ab.故答案为:﹣ab.15.解:∵=3a﹣1,∴3a﹣1≥0.∴a.故答案为:a.16.解:2×=3=15.故答案为:15.17.解:=﹣a,故答案为:﹣a.18.解:原式=[﹣(﹣)][+(﹣)]=()2﹣(﹣)2=2﹣5+10﹣10=10﹣13,故答案为:10﹣13.19.解:由数轴可知,a<0<b,∴a﹣b<0,∴|a﹣b|﹣﹣=b﹣a﹣b+a+a=a,故答案为:a.20.解:∵|a|=6,∴a=±6,∵=10,∴b=±10,∵|a﹣b|=b﹣a,∴a≤b,当a=﹣6,b=10时,=2,当a=6,b=10时,=4,故答案为:2或4.21.解:(1)=÷×,=××,=;(2)==;(3)===16;(4)=2ab=.22.解:不正确.∵x+y=﹣6,xy=3,∴x<0,y<0,∴+=﹣﹣=﹣(+)=﹣==2.23.解:(1)乙的解答是错误的,故答案为:乙.(2)错误的解答在于未能正确运用二次根式的性质:=|a|,故答案为:=|a|.(3)∵a=2,∴|1﹣a|+=a﹣1+4a﹣1=5a﹣2=8.24.解:(1)÷3×(﹣5)=××(﹣)=﹣;(2)5x÷3×=5x÷×=5x××=;(3)5•(﹣)÷3=﹣×=﹣a2b.25.解:(1)这两位同学解答的都正确;(2)丙同学的过程是:=7=.26.解:(1)化简过程运用了平方差公式;(2)====﹣;(3)+++…+=﹣1+﹣+2﹣+…+10﹣3=10﹣1=9.。
中考一轮复习二次根式专题 提高训练(含答案)
二次根式专题 提高训练1.已知3y =,则2xy 的值为( ) A .15-B .15C .152-D .152 【答案】A【解析】试题解析:由3y =,得250{520x x -≥-≥, 解得 2.5{3x y ==-.2xy =2×2.5×(-3)=-15,故选A .2.下列各式中计算正确的是( )A =⨯2)×(﹣4)=8B =4a (a >0)C 3+4=7D 3= 【答案】D【详解】AB =(a >0),此选项错误;C =5,此选项错误;D 3=,此选项正确. 故选D .3有意义,则实数x 的取值范围是( ) A .x≥﹣3B .x≠0C .x≥﹣3且x≠0D .x≥3【答案】C【详解】 由题意得,x+3≥0,x≠0,解得x≥−3且x≠0,故选C.4﹣b+1|=0,则(b ﹣a )2016的值为( )A .﹣1B .1C .52015D .﹣52015【答案】B【解析】0,210a b -+≥2a ﹣b+1|=0, 所以可得50210a b a b ++=⎧⎨-+=⎩, 解得23a b =-⎧⎨=-⎩, 所以(b ﹣a )2015=()()2015321---=-, 故选A.5.下列二次根式是最简二次根式的是( )A .BCD 【答案】A【详解】A. ,是最简二次根式,故符合题意;B. =3,不是最简二次根式,故不符合题意;C. =,不是最简二次根式,故不符合题意;D. =y,不是最简二次根式,故不符合题意,故选A.6.把式子m移到根号内得()A B C D 【答案】C【详解】∵﹣1m>0,∴m<0,则原式==故选C.7.按如图所示的程序计算,若开始输入的n值为2,则最后输出的结果是()A.14B.16C.D.【答案】C【解析】试题分析:当时,n(n+1)+1)<15;当时,n(n+1)=()()>15,则输出结果为.故选C.8.下列运算正确的是().A=B.=C3=D.3=【答案】C【详解】A.B. ,此选项错误;C. 3=,此选项正确;D.故选C9)ABC=D3【答案】D【解析】试题解析:A,数轴上的点与实数是一一对应的,故A错误.B. =故B错误.C. 8的平方根.故C错误.D. 2.828.=≈故D正确.故选D.10.下列计算错误的是()A BC D.3【答案】D【详解】A. ;正确;B. ,正确;C. =,正确;D. .故选D.11x的取值范围是()A.x>23且x≠3B.x≥23C.x≥23且x≠3D.x≤23且x≠﹣3【答案】C【详解】有意义,∴3x﹣2≥0,|x|﹣3≠0,解得:x≥23且x≠3.故选C.12.若(m-1)20,则m+n的值是()A.-1B.0C.1D.2【答案】A【详解】∵(m-1)20,∴m−1=0,n+2=0;∴m=1,n=−2,∴m+n=1+(−2)=−1故选:A.13.已知112a b+=,求535a ab ba ab b++=-+_____.【答案】13【详解】 解:∵112a b+= ∴a+b=2ab ∴()5353510ab 3===132ab a b ab a ab b ab a ab b a b ab ab+++++-++-- 故答案为13.14__________.【解析】=故答案为.15.在函数y =13x ++x 的取值范围是_____. 【答案】x≥2【详解】 ∵13x + 是分式, ∴x+3≠0,即x ≠-3,有意义,∴x -2≥0,即x ≥2,∴1y x 3=+函数x 的取值范围为:x ≥2, 故答案为x ≥216.如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2和2,则图中阴影部分的面积是 .【答案】2.【详解】设正三角形的边长为a ,则12a 2,解得.则图中阴影部分的面积-2=2.故答案是:2.17.若x 、y 为实数,且|x+3|+√y −3 =0,则(x y)2019的值为_____. 【答案】﹣1.【详解】由题意得,x+3=0,y -3=0,解得x=-3,y=3,所以(x y )2019=(-1)2019=-1.故答案是:-1.18.已知2310x x -+=,求221x x +的值. 【答案】7.【详解】解:由2310x x -+=得130x x -+=,即13x x +=,∴221x x +=21()2x x+-=9-2=7.19.先化简,再求值:22211a ab b a b b a -+⎛⎫÷- ⎪-⎝⎭.其中1a =,1b =. 【答案】ab ,1.【详解】 解:22211a ab b a b b a -+⎛⎫÷- ⎪-⎝⎭2()a b a b a b ab--=÷- 1a b ab a b-=⋅- ab =,当1a =,1b =时,原式1)1)1=⨯=.20.已知:A.B.c 满足2(|0a c +-=求:(1)A.B.c 的值;(2)试问以A.B.c 为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.【答案】(1),b=5,;(2)能,+5.【详解】解:(1)根据题意得,a ,b -5=0,c -,解得,b=5,;(2)能.∵>5,∴能组成三角形,三角形的周长+5.21.先化简,再求值:25419111a a a a a -⎛⎫⎛⎫-+÷-- ⎪ ⎪++⎝⎭⎝⎭,其中a =【答案】1-【详解】 解:原式22892514111a a a a a a --+--+=+++ 2(4)11(4)a a a a a -+=⋅+- 4a a-===-当a=1。
中考数学复习《二次根式》专项提升训练题-附答案
中考数学复习《二次根式》专项提升训练题-附答案学校:班级:姓名:考号:一、单选题1.如果代数式有意义,那么x的取值范围是()A.x≥0且x≠1 B.x≠1 C.x>0 D.x≥02.下列二次根式中,属于最简二次根式的是()A.B.C.D.3.下列各式计算正确的是().A.B.C.D.4.估算的值应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间5.已知,则的值是()A.B.C.D.6.若,则()A.B.C.D.x为一切实数7.已知,,则代数式的值为()A.9 B.C.3 D.58.在Rt△ABC中,∠C=90°,c为斜边,a、b为直角边,则化简的结果为()A.3a+b﹣c B.﹣a﹣3b+3c C.a+3b﹣3c D.2a二、填空题9.的倒数为.10.如果式子有意义,那么x的取值范围是.11.比较大小:.12.已知,那么,.13.符合的正整数的值有个.三、解答题14.计算:(1)(2)15.已知,求代数式的值.16.求代数式的值,其中如表是小明和小颖的解答过程:解:原式.解:原式.(1)填空:的解法是错误的;(2)求代数式的值,其中.17.(1)已知是的算术平方根,是的立方根,求的立方根;(2)若,的算术平方根是5,求的平方根.18.如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示,设点B所表示的数为m.(1)求的值;(2)在数轴上还有C、D两点分别表示实数c和d,且有|2c+6|与互为相反数,求2c+3d 的平方根.参考答案:1.A2.D3.C4.B5.B6.A7.C8.B9.10.且11.<12.4;-813.314.(1)解:原式(2)解:.15.解:当,时.16.(1)小明(2)解:原式原式.17.(1)解:由题意知∴∴∴∴的立方根为;(2)解:由,解得∴.∵的算术平方根是5∴∴∴的平方根为.18.(1)解:∵AB=2∴∴∴;(2)解:∵|2c+6|与互为相反数∴∵∴2c+6=0,d−4=0∴c=−3,d=4∴∴的平方根是。
(完整版)二次根式培优练习题.doc
二次根式培优练习题一.选择题(共14 小题)1.使代数式有意义的自变量 x 的取值范围是()A. x≥ 3 B. x>3 且 x≠4 C. x≥ 3 且 x≠4 D.x>32.若=3﹣a,则 a 与 3 的大小关系是()A. a< 3B. a≤3 C.a>3 D.a≥33.如果等式( x+1)0=1 和=2﹣3x 同时成立,那么需要的条件是()A. x≠﹣ 1 B. x<且 x≠﹣ 1 C.x≤或 x≠1 D.x≤且 x≠﹣ 14.若 ab<0,则代数式可化简为()A. a B.a C.﹣ a D.﹣ a5.已知 xy<0,则化简后为()A.B.C.D.6.如果实数 a、b 满足,那么点( a, b)在()A.第一象限B.第二象限 C.第二象限或坐标轴上D.第四象限或坐标轴上7.化简二次根式,结果正确的是()A.B.C.D.8.若 a+ =0 成立,则 a 的取值范围是()A.a≥0 B.a>0 C.a≤0 D.a< 0 9.如果 ab> 0, a+b<0,那么下面各式:①= ,②× =1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③10.下列各式中正确的是()A.B.=±3 C.(﹣)2=4 D.3 ﹣ =2 11.在二次根式、、、、中与是同类二次根式的有()A. 2 个 B.3 个 C.4 个 D. 5 个12.若是一个实数,则满足这个条件的 a 的值有()A. 0 个 B.1 个 C.3 个 D.无数个13.当 a<0 时,化简的结果是()A.B.C.D.14 .下列计算正确的是() A .B.C.D.二.填空(共13 小)15.二次根式与的和是一个二次根式,正整数 a 的最小;其和.16.已知 a、b 足=a b+1, ab 的.17.已知 | a 2007|+ =a, a 20072的是.18.如果的是一个整数,且是大于 1 的数,那么足条件的最小的整数a= .19.已知 mn=5, m +n = .20.已知 a<0,那么 | 2a| 可化.21.算:的果.22.若最二次根式与是同二次根式, x= ..若,x= ;若 2 2, x= ;若( x 1)2 ,.23 x =( 3)=16 x=24.化 a 的最后果.25.察分析,探求出律,然后填空:,2,,2 ,,,⋯,(第n 个数).26.把根号外的因式移到根号内:=27.若 a 是的小数部分, a(a+6)= .三.解答(共7 小)28.下列解程:= = = = 2;===.回答下列:(1)察上面的解程,直接写出式子=;(2)察上面的解程,直接写出式子=;(3)利用上面所提供的解法,求++++⋯+的.29.一个三角形的三分、、(1)求它的周(要求果化);(2)你一个适当的x ,使它的周整数,并求出此三角形周的.30.如,数 a、b 在数上的位置,化:.31.先下列的解答程,然后作答:形如的化,只要我找到两个数a、b 使 a+b=m,ab=n,()2+()2=m,? = ,那么便有= = ±( a> b)例如:化解:首先把化,里 m=7, n=12;由于 4+3=7,4×3=12,即()2+()2=7,? =,∴===2+由上述例的方法化:(1);(2);(3)..已知x=2 ,求代数式(2+(2+ )x+ 的.32 7+4 )x33.数 a、b 在数上的位置如所示,化:| a| .34.察下列各式:;;⋯,你猜想:(1)=,=.(2)算(写出推程):(3)你将猜想到的律用含有自然数n(n≥1)的代数式表达出来.参考答案一.选择题(共14 小题)1.C;2.B;3.D;4.C;5.B;6.C;7.D;8.C;9.B;10.A;11.B;12.B;13.A;14.D;二.填空题(共13 小题)15.6;﹣;16.±;17.2008;18.1;19.±2;20.﹣3a;21.1;22.0;23.±5;± 3;5 或﹣ 3; 24.﹣ 2;25.2;;26.;27.2;三.解答题(共7 小题)28.﹣;﹣;29.;30.;31.;32.;33.;34.5;6;;。
中考数学总复习《二次根式》专项提升练习题(附答案)
中考数学总复习《二次根式》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________ 1. 已知二次根式x+1,请回答下列问题:(1)要使该二次根式有意义,则x的取值范围为__________;(2)若该二次根式能与5进行合并,则x的值可为________;(3)该二次根式为最简二次根式,则x可取的最小整数为__________.2.计算:(1)(-3)2=________;(2)(-0.2)2=________;(3)34=________;(4)18-8=________;(5)32÷2=________;(6)3×(2+8)=________.3. 北师八上P34习题改编请按要求估计下列各数的值:(1)11在相邻的整数________和________之间;(2)17-3的值在相邻的整数________和________之间;(3)与15最接近的整数为________.知识逐点过考点1 二次根式的相关概念及性质相关概念1. 二次根式定义:形如 a (a≥0)的式子;2. 有意义的条件:被开方数①________;3. 最简二次根式必须同时满足的两个条件:(1)被开方数中不含分母(即分母中不含根号);(2)被开方数中不含能开得尽方的因数或因式;4. 同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式性质1. 双重非负性: a ≥0且a≥0;2. ( a )2=a(a②________);3. a2=|a|=⎩⎪⎨⎪⎧③(a≥0)④(a<0);4. ab =⑤________(a≥0,b≥0);5.ab=⑥________(a≥0,b>0)考点2 二次根式的运算加减法先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并乘法 a ·b =⑦______(a≥0,b≥0)除法ab=ab(a≥0,b>0)考点3 无理数的估值估值确定无理数的值在哪两个相邻整数之间:1. 先对无理数平方,如(7)2=7;2. 找出与平方后所得数字相邻的两个开得尽方的整数,如4和9;3. 对以上两个整数开方,如4=2,9=3;4. 确定这个无理数的值在开方后所得的两个整数之间,即2<7<3确定无理数的整数部分和小数部分要确定a±b 的整数部分和小数部分,先对a±b 进行估值,如1+7的整数部分是3,则它的小数部分是1+7-3,即7-2【温馨提示】牢记常见的无理数的近似值:2≈1.414,3≈1.732,5≈2.236,π≈3.142,5-12≈0.618真题演练命题点1 二次根式的相关概念及性质1. 若式子2x-4在实数范围内有意义,则x的取值范围是()A. x≠2B. x≥2C. x≤2D. x≠-22. 化简42的结果是()A. -4B. 4C. ±4D. 2命题点2 二次根式的运算3. 计算:3×12=________.命题点3 无理数的估值4. 设6-10的整数部分为a,小数部分为b,则(2a+10)b的值是()A. 6B. 210C. 12D. 910基础过关1. 下列二次根式是最简二次根式的是()A. 8B. 13 C. 18 D. 72. 若a-4有意义,则a的值可以是()A. -1B. 0C. 2D. 63. 对于二次根式的乘法运算,一般地,有 a ·b =ab .该运算法则成立的条件是()A. a>0,b>0B. a<0,b<0C. a≤0,b≤0D. a≥0,b≥04.如图,数轴上表示实数7的点可能是()第4题图A. 点PB. 点QC. 点RD. 点S5. 下列计算正确的是()A. (2)0=2B. 23+33=56C. 8=42D. 3(23-2)=6-236. 墨迹覆盖了等式“9-■=1”中的一部分,则覆盖的部分可以是()A. 80B. 8C. 38 D. 237. 若a=2,b=7,则14a2b2=()A. 2B. 4C. 7D. 28. 最简二次根式m-1与33可以合并,则m=__________.9. 计算:2-8=__________.10.计算:20×5=__________.11. 已知x,y为正整数,且x<6<y,则y x的值可以是__________.12. 请写出一个正整数m的值使得8m 是整数:m=__________.13. 计算:27÷32×22-62.综合提升14. 已知k=2(5+3)(5-3),则与k最接近的整数为()A. 2B. 3C. 4D. 5二次根式(参考答案)1. (1)x ≥-1; 【解析】根据二次根式的非负性可得x +1≥0,解得x ≥-1.(2)4(答案不唯一); 【解析】∵x +1 能与5 进行合并,∴x +1的值可以为5,解得x =4(答案不唯一).(3)1.2. (1)3;(2)0.2;(3)32;(4)2 ;(5)4;(6)36 . 3. (1)3,4;(2)1,2;(3)4; 【解析】∵9<15<16,∴9 <15 <16 ,3<15 <4,∵3.52=12.25,即9<12.5<16,∴与15 最接近的整数为4. 知识逐点过①大于或等于0 ②≥0 ③a ④-a ⑤ a ·b ⑥a b⑦ab 真题演练 1. B 【解析】∵2x -4 在实数范围内有意义,∴2x -4≥0,解得x ≥2. 2. B 【解析】∵a 2 =|a |,∴42 =4. 3. 6 【解析】原式=3×12 =36=6.4. A 【解析】∵9<10<16,∴3<10 <4,∴-4<-10 <-3,∴2<6-10 <3,∴6-10 的整数部分是2,小数部分是6-10 -2=4-10 ,即a =2,b =4-10 ,∴(2a +10 )b =(2×2+10 )×(4-10 )=6.基础过关1. D2. D 【解析】 ∵二次根式a -4 有意义,∴a -4≥0,解得a ≥4,∴a 的值可以是6.3. D 【解析】 根据二次根式有意义的条件,得⎩⎪⎨⎪⎧a ≥0b ≥0ab ≥0,∴a ≥0,b ≥0. 4. B 【解析】∵4 <7 <9 ,∴7 位于2和3之间,∴数轴上表示实数7 的点可能是点Q.5. D【解析】A.(2)0=1,故该选项不正确,不符合题意;B.23+33=53,故该选项不正确,不符合题意;C.8=22,故该选项不正确,不符合题意;D.3(23-2)=6-23,故该选项正确,符合题意.6. C【解析】9-38=3-2=1.7. A【解析】∵a=2,b=7,∴14a2b2=14×(2)2(7)2=14×27=4=2.8. 4【解析】∵最简二次根式m-1与33可以合并,∴m-1=3,∴m=4.9. -2【解析】2-8=2-22=-2.10. 10【解析】原式=100=10.11. 3(答案不唯一)【解析】∵4<6<9,∴2<6<3.∵x,y为正整数,∴x=1或2,y≥3,∴y x的值不唯一,只要符合要求即可,可以是3,4,9,16等.12. 2(答案不唯一)【解析】当m=2时,则8m =16=4,符合题意,∴m的值可以为2(答案不唯一).13. 解:原式=33×23×22-62=122-62=62.14. B【解析】k=2(5+3)(5-3)=22=8,∵4<8<9,9-8<8-4,∴与8最接近的整数为3.。
二次根式提高培优(完整资料).doc
【最新整理,下载后即可编辑】二次根式典型习题训练一、概念(一)二次根式1x、x>0)1x y+(x≥0,y•≥0).(二)最简二次根式1y>0)化为最简二次根式结果是().A(y>0)By>0)C(y>0)D2.(x≥0)3._________.4. 已知〉xy0,化简二次根式_________.(三)同类二次根式1是同类二次根式的是().A.①和②B.②和③C.①和④D.③和④2、是同类二次根式的有______3.若最简根式3a是同类二次根式,求a、b的值.【最新整理,下载后即可编辑】4.n是同类二次根式,求m、n的值.(四)“分母有理化”与“有理化因式”1.+的有理化因式是________;x-的有理化因式是_________.-的有理化因式是_______.2.把下列各式的分母有理化(1;(2;(3(4.二、二次根式有意义的条件:1.(1)当x在实数范围内有意义?(2)当x是多少时,+11x+在实数范围内有意义?(3)当x2在实数范围内有意义?(4)当__________2.x有()个.A.0 B.1 C.2 D.无数3.已知,求xy的值.4.5.若11m +有意义,则m 的取值范围是 。
6.要是下列式子有意义求字母的取值范围(1(2) (3)三、二次根式的非负数性1=0,求a 2004+b 2004的值.2,求x y 的3.2440y y -+=,求xy 的值。
四、⎪⎩⎪⎨⎧==a a a 2 的应用 1. a ≥0,比较它们的结果,下面四个选项中正确的是( ).A B C D .2.先化简再求值:当a=9时,求a ≥0x解答如下:甲的解答为:原式(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.3.若│1995-a│,求a-19952的值.4. 若-3≤x≤2时,试化简│x-2│5.化简).B C.D.A6.把(a-1a-1)移入根号内得().AB C.D.五、求值问题:求x2-xy+y2的值1.当x=2.已知a=3+23.已知4.已知4x 2+y 2-4x-6y+10=0,求(23+y -(x 的值.52.236-()的值.(结果精确到0.01)6.先化简,再求值.(-(,其中x=32,y=27.7.当(结果用最简二次根式表示)8. 已知2310-+=x x六、大小的比较的大小。
二次根式(提高-巩固练习)
二次根式(提高) 撰稿: 赵炜 审稿: 杜少波【巩固练习】一、选择题 1.若代数式在实数范围内有意义,则x 的取值范围为( ) A .x >0 B .x ≥0 C .x ≠ 0 D .x ≥0且x ≠ 12.使式子有意义的未知数x 有( )个A .0B .1C .2D .无数3.下列说法正确的是( )A .4是一个无理数B .函数11y x =-的自变量x 的取值范围是x ≥1 C .8的立方根是2±D.若点(2,)-3)P a Q和点(b ,关于x 轴对称,则a b +的值为5. 4. 已知a,b,c 在数轴上的位置如右图所示,则代数式( )A. 2c a -B.32a b --C. c a --D. a5. 若,则 等于( ) A . B . C . D .6.将a a --中的a 移到根号内,结果是( )A .3a -- B. 3a - C.3a - D.3a二. 填空题7.当x_________时,式子31x x --没有意义。
8.若,则____________;若,则____________. 9.已知,求的值为____________10.若,则化简的结果是__________.11. 观察下列各式:,,,……请你探究其中规律,并将第 n(n ≥1)个等式写出来________________.12.x 取何值时,函数在实数范围内有意义?y=2||12--x x ,_______________________. 三 综合题13. 已知x x y 211221-+-+=,求22y xy x ++的值.14. 若时,试化简.15.已知一次函数(2)1y a x =-+的图象不经过第三象限,化简224496a a a a -+--+的结果是多少?【答案与解析】一、选择题1.【答案】 D. 【解析】 由二次根式和分式的性质可知:被开方数要大于等于0,分母不等于0,即x ≥0,10x -≠, 所以选D.2.【答案】 B.3.【答案】 D.【解析】选项A: 4=2是有理数;选项B: 11y x =-的x 的取值范围是x>1; 选项C: 8的立方根是2;选项D:因为(2,)-3)P a Q和点(b ,关于x 轴对称,所以3,2a b ==,及5a b +=,所以选D. 4.【答案】C.5.【答案】D.【解析】 因为=22(4)a +222(4)4A a a =+=+. 6.【答案】B.二、填空题7.【答案】10x =或x<1.【解析】因为x-1≥0才有意义,所以x<1时无意义;因为310x -≠,所以10x ≠,即无意义时x=10.8.【答案】m ≤0;a ≥13. 9.5【解析】23100x x x -+=∴≠13,x x ∴+=即21()9x x += 2217x x ∴+=,即原式=725-=. 10.【答案】3 【解析】因为原式=21x x -++=213x x -++=.11.【答案】 11(1)22n n n n +=+++ 12.【答案】 x ≥122x ≠且 【解析】 121020, 2.2x x x x --≠≠≥,∴≥,且.三、解答题13.【解析】因为1+21122y x x =-+-,所以2x-1≥0,1-2x ≥0,即x=12,y=12, 则2234x xy y ++=. 14.【解析】 因为,所以原式==23523510x x x x x x x -+++-=-+++-=-.15.【解析】 因为一次函数(2)1y a x =-+的图象不经过第三象限所以20a -<,即2a <;224496a a a a -+-+23231a a a a ---=--+=-.。
二次根式提高练习题(含答案)
一.计算题:1. (235+-)(235--);2. 1145--7114--732+;3.(a2mn-mab mn +mn nm )÷a 2b2mn ;4.(a +ba ab b +-)÷(b ab a ++aab b--ab b a +)(a ≠b ).二.求值:1.已知x =2323-+,y =2323+-,求32234232y x y x y x xyx ++-的值.2.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.三.解答题:1.计算(25+1)(211++321++431++…+100991+).2.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值. 计算题: 1、【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215.2、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.3、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a2mn-m ab mn+mnnm)·221b a nm=21bnm m n ⋅-mab 1nmmn ⋅+22b ma n nmn m ⋅ =21b-ab 1+221b a =2221b a ab a +-.4、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.【解】原式=ba ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=ba ba ++÷))((2222b a b a ab b a b ab b ab a a -++----=ba b a ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐. 求值: 1.、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232y x y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 2、【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22ax +=22ax +(22ax +-x ),x 2-x22ax +=-x (22a x +-x ).【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+- =)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++ =x 1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222ax x a x +--+-)11(22x x a x --++221a x +=x1.解答题: 1、【提示】先将每个部分分母有理化后,再计算.【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-)=9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.2、【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21. 又∵xyy x ++2-xyy x +-2=2)(x y y x+-2)(xy y x - =|xy y x+|-|x yyx -|∵ x =41,y =21,∴ yx <xy .∴ 原式=xy y x +-yx xy +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。
二次根式的应用大题提升训练
【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【浙教版】专题1.7二次根式的应用大题提升训练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2020春•衢州期中)有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm,宽为1dm的长方形木条,最多能截出 块这样的木条.2.(2021秋•钱塘区期末)(1)已知一个长方形的长是宽的2倍,面积是10,求这个长方形的周长.(2)如图,已知长方形内两个相邻正方形的面积分别为9和3,求图中阴影部分的面积.3.(2021春•天河区校级月考)若矩形的长a=,宽b=.(1)求矩形的面积和周长;(2)求a2+b2﹣20+2ab的值.4.(2019春•椒江区校级期中)已知长方形的长a=,宽b=.(1)求该长方形的周长;(2)若另一个正方形的面积与该长方形的面积相等,试计算该正方形的周长.5.(2019春•沂水县期中)高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响)(1)从50m高空抛物到落地所需时间t1是多少s,从100m高空抛物到落地所需时间t2是多少s;(2)t2是t1的多少倍?(3)经过1.5s,高空抛物下落的高度是多少?6.(2022秋•桥西区期中)交通警察通常根据刹车后车轮划过的距离估计车辆行驶的速度,所依据的经验公式是v=16,其中v表示车速(单位:km/h),d表示刹车后车轮划过的距离(单位:m),f表示摩擦系数,在某次交通事故调查中测得d=20m,f=1.2.(1)求肇事汽车的速度;(2)若此路段限速70km/h,请通过计算判断肇事汽车是否超速?7.(2022秋•社旗县期中)(1)计算:(﹣2x)3•(3x2﹣xy﹣1)(2)高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空物体自由下落到地面的时间t(单位:s)和高度h(单位:m)近似满足公式(不考虑风速的影响,g≈9.8t/s2).已知一幢大楼高78.4m,若一个鸡蛋从楼顶自由落下,求落到地面所用时间.8.(2022秋•南岸区校级期中)某居民小区有一块形状为长方形ABCD的绿地,长方形绿地的长BC为m,宽AB为m,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的长为(+1)m,宽为(﹣1)m.(1)长方形ABCD的周长是多少?(结果化为最简二次根式)(2)除去修建花坛的地方.其他地方全修建成通道,通道上要铺上造价为50元每平方米的地砖,若铺完整个通道,则购买地砖需要花费多少元?9.(2022秋•新蔡县校级月考)如图,有一张面积为50cm2的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为cm.(1)求长方体盒子的容积;(2)求这个长方体盒子的侧面积.10.(2022秋•西安月考)高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响,g≈10m/s2).(1)求从60m高空抛物到落地的时间.(结果保留根号)(2)已知高空坠物动能(单位:J)=10×物体质量(单位:kg)×高度(单位:m),某质量为0.2kg 的玩具被抛出后经过3s后落在地上,这个玩具产生的动能会伤害到楼下的行人吗?请说明理由.(注:伤害无防护人体只需要65J的动能)11.(2022春•济源期末)【再读教材】:我们八年级下册数学课本第16页介绍了“海伦﹣秦九韶公式”:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.【解决问题】:已知在△ABC中,AC=4,BC=7.5,AB=8.5.(1)请你用“海伦﹣秦九韶公式”求△ABC的面积.(2)除了利用“海伦﹣秦九韶公式”求△ABC的面积外,你还有其它的解法吗?请写出你的解法.12.(2020•太原三模)阅读下列材料,完成相应任务:卢卡斯数列法国数学家爱德华•卢卡斯以研究斐波那契数列而著名,他曾给出了求斐波那契数列第n项的表达式,创造出了检验素数的方法,还发明了汉诺塔问题.“卢卡斯数列”是以卢卡斯命名的一个整数数列,在股市中有广泛的应用.卢卡斯数列中的第n个数F (n)可以表示为,其中n≥1.(说明:按照一定顺序排列着的一列数称为数列.)任务:(1)卢卡斯数列中的第1个数F(1)= ,第2个数F(2)= ;(2)求卢卡斯数列中的第3个数F(3);(3)卢卡斯数列有一个重要特征:当n≥3时,满足F(n)=F(n﹣1)+F(n﹣2).请根据这一规律直接写出卢卡斯数列中的第5个数:F(5)= .13.已知a、b均为正数.(1)观察:①若a+b=2,则;②若a+b=3,则;③若a+b=6,则.(2)猜想:①若a+b=9,则≤ ;②若a+b=m,则≤ .(3)证明:试对猜想②加以证明.14.(2020春•韩城市期末)如图,有一张边长为6cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.15.座钟的摆来回摆动一次的时间叫做一个周期,它的计算公式是:T=2π,其中T表示周期(单位:s),l表示摆长(单位:m),g=9.8m/s2,π是圆周率,已知某台座钟的摆长为0.8m,它每摆动一个周期发出一次“滴答”声.求该座钟1min恰好发出多少次滴答声,如果要使该座钟1min恰好发出60次滴答声,该座钟的摆长应为多少?(π取3.14,摆长精确到0.01m)16.(2021秋•太原期中)高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空物体自由下落到地面的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响,g≈9.8m/s2).已知一幢大楼高78.4m,若一颗鸡蛋从楼顶自由落下,求落到地面所用时间.17.(2021春•田林县期中)如图,有一张边长为6cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,且小正方形的边长为cm.求:(1)长方体盒子的表面积;(2)长方体盒子的体积.18.(2020秋•南安市期中)如果一个三角形的三边长分别为a、b、c,记p=,那么这个三角形的面积S=,这个公式叫“海伦公式”.若a=5,b=6,c=7,利用以上公式求三角形的面积S.19.(2019春•思明区校级期中)有一块矩形木板,木工采用如图的方式,先在木板上截出两个面积为18dm2和32dm2的正方形木板,后来又想从剩余的木料中截出长为1.5dm,宽为1dm的长方形木条,请问最多能截出几块这样的木条?20.(2020秋•新都区期末)设一个三角形的三边分别为a,b,c,p=(a+b+c),则有下列面积公式:S=(海伦公式);S=(秦九韶公式).(1)一个三角形的三边长依次为3,5,6,任选以上一个公式求这个三角形的面积;(2)一个三角形的三边长依次为,,,任选以上一个公式求这个三角形的面积.21.(2021秋•叙州区期末)已知△ABC三条边的长度分别是,,,记△ABC .的周长为C△ABC(1)当x=2时,△ABC的最长边的长度是(请直接写出答案);(用含x的代数式表示,结果要求化简);(2)请求出C△ABC(3)我国南宋时期数学家秦九韶曾提出利用三角形的三边长求面积的秦九韶公式:S=.其中三角形边长分别为a、b、c,三角形的面积为S.若x为整数,取得最大值时,请用秦九韶公式求出△ABC的面积.当C△ABC22.(2022秋•南山区校级期中)著名数学教育家G•波利亚,有句名言:“发现问题比解决问题更重要”,这句话启发我们:要想学会数学,就需要观察,发现问题,探索问题的规律性东西,要有一双敏锐的眼睛.请先阅读下列材料,再解决问题:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去里面的一层根号.例如:====1+.解决问题:(1)在括号内填上适当的数:==③①: ,②: ,③ .(2)根据上述思路,化简并求出+的值.23.(2022秋•临汾期中)阅读与思考阅读下列材料,并完成相应的任务:法国数学家爱德华•卢卡斯以研究斐波那契数列而著名,他曾给出了求斐波那契数列第n项的表达式,创造出了检验素数的方法,还发明了汉诺塔问题.“卢卡斯数列”是以卢卡斯命名的一个整数数列,在股市中有广泛的应用.卢卡斯数列中的第n个数F(n)可以表示为+,其中n≥1.(说明:按照一定顺序排列着的一列数称为数列)任务:(1)卢卡斯数列中的第1个数F(1)= ,第2个数F(2)= ;(2)卢卡斯数列有一个重要特征:当n≥3时,满足F(n)=F(n﹣﹣1)+F(n﹣2).请根据这一规律写出卢卡斯数列中的第6个数F(6).24.(2022春•雁塔区校级期末)请阅读下面材料,并解决问题:海伦——秦九韶公式海伦(约公元50年),古希腊几何学家,在数学史上以解决几何测量问题闻名,在他的著作《度量》一书中证明了一个利用三角形的三条边长直接求三角形面积的公式:假设在平面内,有一个三角形的三条边长分别为a,b,c,记p=,那么三角形的面积S=.这个公式称为海伦公式.秦九韶(约1202﹣1261年),我国南宋时期的数学家,曾提出利用三角形的三边长求面积的秦九韶公式S=.它填补了中国数学史中的一个空白,从中可以看出中国古代已经具有很高的数学水平.通过公式变形,可以发现海伦公式和秦九韶公式实质是同一个公式,所以海伦公式也称海伦﹣秦九韶公式.问题:如图,在△ABC中,AB=6,AC=7,BC=8,请用海伦一秦九韶公式求△ABC的面积.25.(2021秋•长安区校级期末)某居民小区有块形状为长方形ABCD的绿地,长方形绿地的长BC为8米,宽AB为米,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的长为+1米,宽为﹣1米.(1)长方形ABCD的周长是多少?(结果化为最简二次根式)(2)除去修建花坛的地方.其它地方全修建成通道,通道上要铺上造价为6元/m2的地砖,要铺完整个通道,则购买地砖需要花费多少元?(结果化为最简二次根式)26.(2021秋•龙岗区校级期中)平面几何图形的许多问题,如长度、周长、面积、角度等问题,最后都转化到三角形中解决.古人对任意形状的三角形,探究出若已知三边,便可以求出其面积.具体如下:设一个三角形的三边长分别为a、b、c,P=(a+b+c),则有下列面积公式:S=(海伦公式);S=(秦九韶公式).(1)一个三角形边长依次为5、6、7,利用两个公式,可以求出这个三角形的面积是 .(2)学完勾股定理以后,已知任意形状的三角形的三边长也可以求出其面积.如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.①作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD= ;②请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;③利用勾股定理求出AD的长,再计算三角形的面积.27.(2020春•玄武区期中)数学阅读:古希腊数学家海伦曾提出一个利用三角形三边之长求面积的公式:若一个三角形的三边长分别为a、b、c,则这个三角形的面积为S=,其中p=(a+b+c),这个公式称为“海伦公式”.数学应用:如图,在△ABC中,已知AB=9,AC=8,BC=7.(1)请运用海伦公式求△ABC的面积;(2)设AC边上的高为h1,BC边上的高h2,求h1+h2的值.28.(2022春•南部县校级月考)在《九章算术》中有求三角形面积公式“底乘高的一半”,但是在实际丈量土地面积时,量出高并非易事,所以古人想到了能否利用三角形的三条边长来求面积.我国南宋著名的数学家秦九韶(1208年﹣1261年)提出了“三斜求积术”,阐述了利用三角形三边长求三角形面积方法,简称秦九韶公式.在海伦(公元62年左右,生平不详)的著作《测地术》中也记录了利用三角形三边长求三角形面积的方法,相传这个公式最早是由古希腊数学家阿基米德(公元前287年﹣公元前212年)得出的,故我国称这个公式为海伦﹣秦九韶公式.它的表述为:三角形三边长分别为a、b、c,则三角形的面积.(公式里的p为半周长即周长的一半)请利用海伦﹣秦九韶公式解决以下问题:(1)三边长分别为3、6、7的三角形面积为 .(2)四边形ABCD中,AB=3,BC=4,CD=7,AD=6,∠B=90°,四边形ABCD的面积为 .(3)五边形ABCDE中,AB=BC=,CD=6,DE=8,AE=12,∠B=120°,∠D=90°,求出五边形ABCDE的面积.29.(2022春•丰台区期中)在数学课上,老师说统计学中常用的平均数不是只有算术平均数一种,好学的小聪通过网络搜索,又得到了两种平均数的定义,他把三种平均数的定义整理如下:对于两个数a,b,称为a,b这两个数的算术平均数,称为a,b这两个数的几何平均数,称为a,b这两个数的平方平均数.小聪根据上述定义,探究了一些问题,下面是他的探究过程,请你补充完整:(1)若a=﹣1,b=﹣2,则M= ,N= ,P= ;(2)小聪发现当a,b两数异号时,在实数范围内N没有意义,所以决定只研究当a,b都是正数时这三种平均数的大小关系.结合乘法公式和勾股定理的学习经验,他选择构造几何图形,用面积法解决问题:如图,画出边长为a+b的正方形和它的两条对角线,则图1中阴影部分的面积可以表示N2.①请分别在图2,图3中用阴影标出一个面积为M2,P2的图形;②借助图形可知当a,b都是正数时,M,N,P的大小关系是 .(把M,N,P从小到大排列,并用“<”或“≤”号连接).30.(2022春•岳麓区校级期中)已知a,b均为正整数.我们把满足的点P(x,y)称为幸福点.(1)下列四个点中为幸福点的是 ;P1(5,5);P2(6,6);P3(7,7);P4(8,8)(2)若点P(20,t)是一个幸福点,求t的值;(3)已知点P(+1,﹣1)是一个幸福点,则存在正整数a,b满足,试问是否存在实数k的值使得点P和点Q(a+k,b﹣k)到x轴的距离相等,且到y轴的距离也相等?若存在,求出k的值;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《二次根式》培优一、知识讲解1.根式中的相关概念⑴二次根式:形如)0a ≥的代数式叫做二次根式。
⑵ nn 次根式.其中若n 为偶数,则必须满足0a ≥。
⑶最简二次根式:满足以下两个条件的二次根式叫做最简二次根式:①被开方数的因数是整数,因式是整式;②被开方数中不含有能开方的因数或因式。
⑷同类二次根式:几个二次根式化成最简二次根式之后,如果被开方数相同,则这几个根式叫做同类二次根式。
时,a c +=+ 2. 二次根式的性质 (1)()20a a =≥. (200 0 0a a a a a a >⎧⎪===⎨⎪-<⎩当时,当时,当时.3.二次根式的运算法则:对于二次更是的加减,先把二次根式化为最简二次根式,然后再合并同类二次根式即可. (1)(a b =+ (2)0,0a b ≥≥(3))0,0a b =≥> (4))0ma =≥(5)若0a b >>>4. 分母有理化(1)把分母中的根号化去叫做分母有理化.(2)互为有理数因式:两个含有根式的代数式相乘,如果它们的积不含有根式,则这两个代数式互为有理化因式.互为有理数因式。
分母有理化时,一定要保证有理化因式的值不为0.二、习题讲解基础巩固1.化简:(1) (2(3(4)(5(6) 解:(1). (23. (3)(43. (5)232-.(6)2. 设y =,求使y 有意义的x 的取值范围.解:由题知2102010x x x -≥⎧⎪-≥⎨⎪->⎩,解得1221x x x ⎧≥⎪⎪≤⎨⎪>⎪⎩,所以x 的取值范围为122x ≤≤.3.(1)已知最简二次根式ba = ,b = . (2)已知0=,则2mn n +-的倒数的算术平方根为 .解:(1)由题知:2322b a b b a -=⎧⎨=-+⎩,解得02a b =⎧⎨=⎩.(2)因为0≥,2160m -≥0=所以221016040n m m m -+=⎧⎪-=⎨⎪->⎩,解得49m n =-⎧⎨=-⎩.所以15===.所以2mn n +-的倒数的算术平方根为15.4. (1)若m=,试确定m 的值.(2)已知x 、y为实数,13y x =-,求56x y +.解:(1)因为19901990x y x y -+≥⎧⎨--≥⎩,即199199x y x y +≥⎧⎨+≤⎩,所以199x y+=①.所以0=.又因为0≥0≥,所以3520 230 x y m x y m +--=⎧⎨+-=⎩②③.由①,②,③可得:2001m =.5.在、1999有多少个?解:由题知:==19个.6.计算:(1)((1617解:(1)原式((16=⎡⎤⎣⎦()(16=1211-(2)(5+解:原式(()=5555256+-(3)22-解:原式22=⎤⎤+-⎦⎦=⎤⎤+⎦⎦===(4)计算:(1111x x +++解:原式((1111x x ⎡⎤⎡⎤=++-⎣⎦⎣⎦()()()()222311111x x x x x x ⎡⎤=-+-=-++=-⎢⎥⎣⎦(5)(解:原式{}{}⎤⎤⎡⎡=⎦⎦⎣⎣()()523235⎡⎤⎡⎤=--+-⎣⎦⎣⎦=24=.7.化简:=..A. BCD解:()()⎣⎦=⎡⎡+⎣⎣()()222+=-=212==12=+8.计算:.解:原式()()4172x x --=())())417247x x x x --=---)12=-3=-.9.设x =,y =,n 为自然数,如果22219721993x xy y ++=成立,求n的值.解:由题知:()2222197221931993x xy y x y xy ++=++=x y +=22+==42n =+.1xy ==.当x y +==-1xy =时,()224219311993n ++⨯=,即()242900n +=. 因为n 为自然数,所以4230n +=,解得7n =.10. 若正整数a 、m 、n=,则a 、m 、n 的值依次是 . 解:因为0≥0≥,即m n ≥.由题知:22=,即2a m n -=+-所以2a m n =+=.故有8mn=.因为a 、m、n 为正整数,所以8m =,1n =,3a =. 11.(1))))201220112010121412010--+= .解:原式)))20102112142010⎡⎤=--+⎢⎥⎣⎦)2010151242010⎡⎤=+--+⎣⎦2010=.(2)化简:解:原式==3=3=3==3===.二、拓展提高1.已知x=,y=,求22y xx y+的值.解:由题知:原式()()()()()()()2 22332223x y x y xy x y x xy yy xxy xyxy⎡⎤++-+-++⎣⎦===x y+=22+=10=,1xy==. 当10x y+=,1xy=时,原式()22101031⨯-=970=.2.(1)). 5A-1B-. 5C. 1D(2)代数式.解:(1)=)21=2=,==3=-.所以231=+-=,故答案选D.(2)222=+82818=++=因为0≥==3.若1x =,则54322171816x x x x x +--+-的值为 .解:因为1x =,所以()221x -=,化简的22160x x --=.原式543322216216216x x x x x x x x =+---+++-()()222161x x x x =+--+()201x x =⨯-+0=4. 已知非零实数a 、b 满足等式542b a a b ab b a ++=+的值. 解:由542b a a b ab b a++=+可得:22542b a a b ++=+,即()()22120b a -+-=,解得2a =,1b =.所以原式1===.5.22006= 解:令2006x =,由题知: 原式2x =2x =2x =2x =221x x x =+--1200612005x =-=-=.6. 已知2=的值为 .解:令m =n 22210m n m n -=⎧⎨-=⎩. 所以()()()22210x y x y x y x y -=+-=+=5m n =+=.7.化简:.解:原式=-==2==5=.8.计算:⋅⋅⋅+.解:原式==+⋅⋅⋅+4512025=-1145=-4445=.9.⋅⋅⋅+解:原式=37132612=++⋅⋅⋅1111111112233420102011⎛⎫⎛⎫⎛⎫⎛⎫=++++++⋅⋅++⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭1112010122320102011=+++⋅⋅+⨯⨯⨯111112010122320102011=+-+-+⋅⋅+-1201012011=+-201020102011=。