九年级上册第四章单元测试卷B卷北师版

合集下载

2018年秋北师大版九年级数学上册第四章达标测试卷

2018年秋北师大版九年级数学上册第四章达标测试卷

第四章达标测试卷一、选择题(每题 3 分,共 30 分)1.如图,已知 l 1∥l 2∥l 3,若 AB =1,BC =2,DE =1.5,则 EF 的长为()A .1.5B .2C .2.5D .32.下列说法正确的是()A .对应边都成比例的多边形相似B .对应角都相等的多边形相似C .边数相同的正多边形相似D .矩形都相似AD 1 DE3.如图,在△ABC 中,DE ∥BC ,DB =3,则BC 等于()1 1 1 1 A.2 B.3 C.4 D.54.如图,四边形 ABCD 与四边形 AEFG 是位似图形,且 AC ∶AF =2∶3,则下列结论不正确的是()A .四边形 ABCD 与四边形 AEFG 是相似图形B .AD 与 AE 的比是 2∶3C .四边形 ABCD 与四边形 AEFG 的周长比是 2∶3 D .四边形 ABCD 与四边形 AEFG 的面积比是 4∶95.已知△ABC 如图所示,则下面 4 个三角形中与△ABC 相似的是()6.如图,已知点 C ,D 都是线段 AB 的黄金分割点,如果 CD =4,那么 AB 的长度是()A .2 5-2B .6-2 5C .8+4 5D .2+ 52;②△S DOE=2;③AB=OB;④△S DOE=3.其中正确的个数是()7.如图,在△ABC中,点D,E,F分别是边AB,AC,BC上的点,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB等于()A.5∶8B.3∶8C.3∶5D.2∶58.如图,AB是斜靠在墙上的一个梯子,梯脚B距墙1.4m,梯子上点D距墙1.2 m,BD长0.5m,则梯子的长为()A.3.5m B.3.85m C.4m D.4.2mDE 9.如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:①BC=11AD OE1△S COB△S ADEA.1个B.2个C.3个D.4个10.如图,在△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC 的距离为()A.1B.2C.122-6D.62-6二、填空题(每题3分,共24分)11.如图,线段AB BC=,那么AC BC等于________.12.相邻两边长的比值是黄金比的矩形,叫做黄金矩形,从外形看,它最具美感.现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于 20 cm ,那么与其相邻的一条边的长等于__________.13△.若 ABC ∽ △A ′B ′C ′,且对应中线之比为 1∶2△,则 ABC △与 A ′B ′C ′的面积之比为________.14.如图,在△ABC 中,AB >AC ,点 D 在 AB 上(点 D 与 A ,B 不重合),若再增加一个条件就能使△ACD ∽△ABC ,则这个条件是________________(写出一个条件即可).15.如果一个直角三角形的两条边长分别是 6 和 8,另一个与它相似的直角三角形边长分别是 3,4,x ,那么 x 的值为________.16.如图,在平面直角坐标系中有两个点 A(4,0),B(0,2),如果点 C 在 x 轴上(点 C 与点 A 不重合),当点 C 的坐标为__________________时,使得由点 B ,O ,C 组成的三角形与△AOB 相似(不包括全等).17.为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一组标杆、皮尺,设计了如图所示的测量方案.已知测量同学的眼睛 A 、标杆顶端 F 与树的顶端 E 在同一条直线上,此同学的眼睛距地面 1.6 m ,标杆长为 3.3 m ,且 BC=1 m ,CD =4 m ,则 ED =________.18.如图,在矩形 ABCD 中,AB =5,BC =3,将矩形 ABCD 绕点 B 按顺时针方向旋转得到矩形 GBEF ,点 A 落在矩形 ABCD 的边 CD 上,连接 CE ,则 CE的长是________.三、解答题(19,20 题每题 8 分,21,22 题每题 9 分,23,24 题每题 10 分,25题 12 分,共 66 分)19.如图,已知∠ADC =∠BAC ,BC =16 cm ,AC =12 cm ,求 DC 的长.△A B C.20.如图,已知在ABCD中,AE∶EB=1∶2.(1)△求AEF与△CDF的周长之比;(2)如果△SAEF=6cm2,求△S CDF的值.21.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(-1,2),B(-3,4),C(-2,6).(1)△画出ABC绕点A顺时针旋转90°后得到的△AB1C1;(2)在网格内以原点O为位似中心,画出将△AB1C1三条边放大为原来的2倍后的222(3)△ABC△与A2B2C2的面积比为________.22.如图,在矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)△ABE与△ADF相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长.C 1D (1)请你探究:AB =DB ,AB 1=DB 是否都成立?23.如图,某校数学兴趣小组利用自制的直角三角形硬纸板 DEF 来测量操场旗杆 AB 的高度,他们通过调整测量位置,使斜边 DF 与地面保持平行,并使边 DE 与旗杆顶端 A 在同一直线上.已知 DE =0.5 m ,EF =0.25 m ,目测点D 到地面的距离 DG =1.5 m ,到旗杆的水平距离 DC =20 m ,求旗杆的高度.24.如图,有一块面积等于 1 200 cm 2 的三角形铁片 ABC ,已知底边与底边 BC上的高的和为 100 cm(底边 BC 大于底边上的高),要把它加工成一块正方形铁片,使正方形的一边 EF 在边 BC 上,顶点 D ,G 分别在边 AB ,AC 上,求加工成的正方形铁片 DEFG 的边长.25.如图①,在等边三角形 ABC 中,线段 AD 为其内角平分线,过点 D 的直线B 1C 1⊥AC 于点 C 1,交 AB 的延长线于点 B 1.AC CD AC1 1AC(2)请你继续探究:若△ABC 为任意三角形,线段 AD 为其内角平分线,请问AB =CDDB 仍然成立吗?并说明理由.40(3)如图②,在 Rt △ABC 中,∠ACB =90°,AC =8,AB = 3 ,E 为 AB 上一点且DFAE=5,CE交其内角平分线AD于点F,试求AF的值.∥BC ,所以BC =2,①正确;由DE ∥BC △易得 DOE ∽△COB ,则△S DOE=BC△S ADE DE 2 1 △S ABC =6h =3,所以△S DOE=12,所以△S DOE =3,④正确.故选 C.△S ABC 12 2答案EF BC一、1.D 点拨:已知 l 1∥l 2∥l 3,根据平行线分线段成比例,得DE =AB ,所以EF =3.2.C 3.C 4.B 5.A 6.C 7.A 8.A19.C 点拨:由中线 BE ,CD 知,DE △为 ABC的中位线,所以 DE =2BC ,DEDE 1 DE△S COB2 1 AD DE DE OE AD OE=4,②错误;由 DE ∥BC 易得AB =BC ,BC =OB ,所以AB =OB ,③正确;由 DE ∥BC 易知△ADE ∽△ABC ,则 =BC =4△,设 DOE 的边 DE 上的高为 h △,则 BOC 的边 BC 上的高为 2h △, ABC 的边 BC 上的高为 6h ,则△S COB2h 1 S1 1 △ABC △S ADE10.D 点拨:过点 A 作 A M ⊥BC 于点 M ,交 DG 于点 N ,延长 GF 交 BC 于点H ,易证△ADG ∽△ABC ,∴∠ADG =∠B.∴DG ∥BC.∴AN ⊥DG.∵四边形1DEFG 是正方形,∴FG ⊥DG.∴FH ⊥BC.∵AB =AC =18,BC =12,∴BM =2AN DG AN 6BC =6.由勾股定理可得 A M =12 2.∴A M = B C ,即=12.∴AN =6 2.∴MN =AM -AN =6 2.∴FH =MN -GF =6 2-6.二、11.12.(10 5-10) cm13.1∶414.∠ACD =∠ABC(答案不唯一)15.5 或 7 点拨:当 6,8 均为直角边时,x =5;当 8 为斜边时,x = 7.16.(-1,0)或(1,0)317.10.1 m18.5 10三、19.解:∵∠ADC =∠BAC ,∠C =∠C ,∴△ADC ∽△BAC.AC DC ∴BC = A C .∵BC =16 cm ,AC =12 cm ,12×12∴DC = 16 =9(cm).20.解:(1)∵四边形 ABCD 是平行四边形,∴AB =CD ,DC ∥AB.∴∠CAB =∠DCA ,∠DEA =∠CDE.∴△AEF ∽△CDF.∵AE ∶EB =1∶2,∴AE ∶AB =AE ∶CD =1∶3.∴△AEF △与 CDF 的周长之比为 1∶3.(2)∵△AEF ∽△CDF ,AE ∶CD =1∶3,∴△S AEF ∶△S CDF =1∶9. ∵△S AEF =6 cm 2, ∴△S CDF =54 cm 2.21.解:(1)如图, △AB 1C 1 即为所求.(2)如图, △A 2B 2C 2 即为所求.(3)1∶422.解:(1)△ABE ∽△DFA.理由如下:∵四边形 ABCD 是矩形,∴AD ∥BC ,∠B =90°.∴∠DAE =∠AEB.①又∵DF ⊥AE ,∴∠DF A =∠B =90°.②由①②知△DF A ∽△ABE.(2)根据题意,得 AE =10,由(1)可知 DF AB =AD AE ,∴DF =7.2.DE EF23.解:∵∠DEF =∠DCA ,∠EDF =∠CDA ,∴△DEF ∽△DCA.∴DC =CA.0.5 0.25∵DE =0.5 m ,EF =0.25 m ,DC =20 m ,∴ 20 = CA .∴AC =10 m .又∵CB=DG =1.5 m ,∴AB =AC +CB =10+1.5=11.5(m ).答:旗杆的高度为 11.5 m.24.解:作 AM ⊥BC 于 M ,交 DG 于 N ,如图所示,由题易知 AN ⊥DG.设 BC =a cm ,BC 边上的高为 b cm ,DG =DE =x cm ,根据题意,得 a +b =100,12ab =1 200,解得 a =60,b =40,或 a =40,b =60(不合题意,舍去),∴BC =60 cm ,AM =40 cm.由题意知 DG ∥BC ,∴∠ADG =∠B ,∠AGD =∠C.∴△ADG ∽△ABC.AN DG 40-x x ∴A M = B C ,即 40 =60.解得 x =24,即加工成的正方形铁片 DEFG 的边长为 24 cm.25.解:(1)两个等式都成立.理由如下:∵△ABC 为等边三角形,AD 为角平分线,∴AD 垂直平分 BC ,∠CAD =∠BAD =30°,AB =AC.∴DB =CD.AC CD ∴AB =DB.∵B 1C 1⊥AC ,∠C 1AB 1=60°, ∴∠B 1=30°.∴AB 1=2AC 1.∵∠DAB 1=30°=∠B 1,∴DA =DB 1. 又∵∠C 1AD =30°,∠AC 1D =90°, ∴DA =2C 1D.C 1D ∴DB 1=2C 1D.∴AB 1=DB .AC11(2)结论仍然成立.理由如下:如图①,△ABC 为任意三角形,过 B 点作 BE ∥AC ,交 AD 的延长线于点 E ,∴∠E =∠CAD.又∵∠CAD =∠BAD ,∴∠E =AC CD∠BAD.∴BE =AB.由作图易证△EBD ∽△ACD ,∴EB =DB.又∵BE =AB ,∴AC CD对任意三角形,结论AB =DB 仍然成立.①②(第 25 题)(3)如图②,连接 ED.∵AD △为 ABC 的内角平分线,CD AC 8 3 BD 5 ∴DB =AB =40=5.∴BC =8.340BE 3 -55 BD BE 而AB = 40 =8.∴BC =AB.3又∵∠B =∠△B ,∴ BDE ∽△BCA.∴∠BDE =∠BCA.∴DE ∥AC.∴∠FDE =∠CAF ,∠FED =∠ACF.∴△DEF ∽△ACF.DF DE ∴AF =AC .由(2)知 AE =DE ,DF DE AE 5 ∴AF =AC =AC =8.。

2024-2025北师大九年级数学(上)第四章图形的相似单元测试卷(含答案)

2024-2025北师大九年级数学(上)第四章图形的相似单元测试卷(含答案)

第四章测试卷(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分,)题号12345678910答案B C A D B C C C A C1.下列形状分别为正方形、矩形、正三角形、圆的边框,其中不一定是相似图形的是( )2.在比例尺为1:500000的交通地图上,玉林到灵山的长度约为 23.6cm ,则它的实际长度约为( )A.0.118km B.1.18km C.118km D.1180km3.如图,以A ,B ,C 为顶点的三角形与以D ,E ,F 为顶点的三角形相似,则这两个三角形的相似比为( )A.2:1B.3:1C.4:3D.3:24.在△ABC 中,D 是AB 中点,E 是AC 中点,若△ADE 的面积是3,则△ABC 的面积是 ( )A.3 B.6 C.9 D.125.如图,在△ABC 中,点D 在AB 边上,过点 D 作DE ∥BC 交AC 于点E,DF ∥AC 交BC 于F,若AE:DF=2:3,则BF:BC 的值是 ( )A. 23 B. 35 C. 12D. 256.如图,在四边形ABCD 中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC 和△BAC 相似的是 ( )A.∠DAC=∠ABC B. AC 是∠BCD 的平分线 C.AC²=BC ⋅CD D.ADAB =DCAC7. 若△ABC 的各 边都分别扩大到原来的 2 倍,得到△A ₁B ₁C ₁,下列结论正确的是 ( )A.△ABC 与△A ₁B ₁C ₁的对应角不相等 B.△ABC 与△A ₁B ₁C ₁不一定相似C.△ABC 与△A ₁B ₁C ₁的相似比为1:2 D.△ABC 与△A ₁B ₁C ₁的相似比为2:18.如图,点 E 是▱ABCD 的边 BC 延长线上的一点,AE 和CD 交于点G ,AC 是▱ABCD 的对角线,则图中相似三角形共有 ( )A.2 对B.3 对C.4 对D.5 对9.如图,已知E(-4,2),F(--2,--2),以O 为位似中心,把△EFO 缩小到原来的 12,则点E 的对应点的坐标为( )A.(2,一1)或(-2,1)B.(8,一4)或(一8,4)C.(2,-1)D.(8,-4)10.如图,在正方形 ABCD 中,点 E 、F 分别在边AD 和CD 上,AF ⊥BE,垂足为G,若 AEED =2,则 AGGF 的值为( )A. 45B. 56C.67D.78二、填空题(每小题3分,共15分)11.若△ABC ∽△A'B'C',且相似比为3:5,已知△ABC 的周长为21,则△A'B'C'的周长为 .12.如图是一架梯子的示意图,其中 AA₁‖BB₁‖CC₁‖DD₁,且AB=BC=CD.为使其更稳固,在A ,D ₁间加绑一条安全绳( 线段AD ₁),量得 AE=0.4m,则 AD₁= m13.如图,阳光通过窗口照到室内,在地上留下3m 宽的亮区.已知亮区一边到窗下的墙角的距离CE=7m ,窗口高AB=1.8m,那么窗口底边离地面的高BC 等于 m.14.如图,已知每个小方格的边长均为1,则△ABC 与△CDE 的面积比为 .15.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且 CF =14CD,下列结论:①∠BAE=30°,②△ABE ∽△ECF,③AE ⊥EF,④△ADF ∽△ECF.其中正确的结论是 (填序号).三、解答题(本大题8个小题,共75 分)16.(8分)根据下列条件,判断△ABC 与△A'B'C'是否相似,并说明理由. AB =3,BC =4,AC =5,A 'B '=12,B 'C '=16,C 'A '=2017.(9分)如图,D 是△ABC 的边AC 上的一点,连接BD,已知∠ABD=∠C,BC=6,BD=4,如果△ABD 的面积为4,求△BC D 的面积.18.(9分)在平面直角坐标系中,△ABC 的三个顶点的坐标分别是 A(1,3),B(4,1),C(1,1).(1)画出△ABC 关于x 轴成轴对称的△A ₁B ₁C ₁;(2)画出△ABC 以点O 为位似中心,相似比为 1:2的△A ₂B ₂C ₂.19.(9分)如图,四边形ABCD 是菱形,AF ⊥BC 交BD 于E,交 BC 于F.求证: AD 2=12DE ⋅DB.20.(10分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一颗大树,将其底部作为点 A,在他们所在的岸边选择了 B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB 的延长线上选择点 D 竖起标杆DE,使得点 E 与点C、A共线.已知:CB⊥AD,ED⊥AD,测得 BC=1m,DE=1.5m,BD=8.5m,测量示意图如图所示.请根据相关测量信息,求河宽 AB.21.(10分)如图,E是平行四边形ABCD的边 DA 延长线上一点,连结 EC 交AB 于 P.(1)写出图中的三对相似三角形(不添加辅助线);(2)请在你所写的相似三角形中选一对,说明相似的理由.22.(10分)阅读与计算:请阅读以下材料,并完成相应的问题.角平分线分线段成比例定理:如图1,在△ABC中,AD平分∠BAC,则ABAC =BDCD.下面是这个定理的部分证明过程.证明:如图2,过点C作CE∥DA,交 BA的延长线于点 E⋯任务:(1)请按照上面的证明思路,写出该证明过程的剩余部分;(2)如图3,在△ABC中,AD是角平分线,AB=5cm ,AC=4 cm,BC=7 cm.求 BD的长.23.(10分)在矩形 ABCD中,点 E 是对角线AC 上一动点,连接 DE,过点 E 作EF⊥DE 交AB 于点 F.(1)如图1,当DE=DA时,求证:AF=EF;(2)如图2,点E 在运动过程中,DEEF的值是否发生变化?请说明理由.第四章测试卷答案一、选择题1、B2、C3、A4、D5、B6、C7、C8、C9、A 10、C 二、填空题11、35 12、1.2m 13、2.4m 14、4:1 15、②③三、解答题16、解:相似,理由: ∵AB A 'B '=312=14,BC B 'C '=416=14,AC A 'C '=520=14,∴ABA 'B'=BCB 'C '=ACA 'C ',∴ABC ∽A 'B 'C '.17、解:∵∠ABD=∠C,又∠A=∠A,∴△ABD ∽△ACB,S ABD S ACB=(BD CB )2=(46)2=49,18、解:如图所示19、证明:连接AC 交 BD 于点O,∵四边形ABCD 为菱形,∴AC ⊥BD,BO=OD,∵AE ⊥AD,∴△AOD ∽△EAD, ∴AD OD=ED AD,∴A D 2=ED ⋅OD,即 A D 2=12DE ⋅DB.20、解:∵CB ⊥AD,ED ⊥AD, ∴∠CBA =∠EDA =90°.∵∠CAB=∠EAD, ∴ABCOADE,∴AB AD=BC DE,∴AB AB +8.5=11.5,∴AB =17,.∴河宽为17m.21、解:(1)△EAP ∽△CBP,△AEP ∽△DEC,△BCP ∽△DEC.(2)选. △EAPO △CBP,理由如下:在▱ABCD 中AD ∥BC,∴∠EAP=∠B.又∵∠APE=∠BPC,∴△EAP ∽△CBP.22、解:(1)证明:如图2,过点C作CE∥DA,交BA的延长线于点E, ∵CEDA,∴BDCD =BAEA,∠CAD=∠ACE,∠BAD=∠E,∵AD平分∠BAC,∴∠BAD=∠CAD, ∠ACE=∠E,∴AE=AC,∴ABAC =BDCD;(2)∵AD是角平分线, ∴ABAC =BDCD,AB=5 cm,AC=4 cm,BC=7 cm, C.54=BD7−BD,解得BD=359cm.23、解:(1)证明:如图,连接 DF,在矩形ABCD 中,∠DAF=90°,又∵DE⊥EF,∴∠DEF=90°,∵AD=DE,DF=DF,∴Rt△DAF≌Rt△DEF(HL),∴AF=EF;(2)DEEF 的值不变.如图,过点E作EM⊥AD于点M,过点E 作EN⊥AB 于点 N,∵EM∥CD,EN∥BC,∴EMCD =AEAC,ENBC=AEAC,∴EMEN=CDBC,∵∠DEF=∠MEN=90°,∴∠DEM=∠FEN,又·∴∠DME=∠ENF=90°,∴△DME⊗△FNE,∴DEEF =EMEN,∴DEEF=CDBC,∵CD 与BC 的长度不变, ∴DEFF的长度不变.。

北师大版九年级上册数学第四章检测试题(附答案)

北师大版九年级上册数学第四章检测试题(附答案)

北师大版九年级上册数学第四章检测试题(附答案)一、单选题(共12题;共24分)1.在某次活动课中,甲、乙两个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:如图1,甲组测得一根直立于平地,长为80cm的竹竿的影长为60cm.如图2,乙组测得学校旗杆的影长为900cm.则旗杆的长为().A. 900cmB. 1000cmC. 1100cmD. 1200cm2.如图,已知△ABC∽△DEF,AB:DE=1:2,则下列等式一定成立的是()A. =B. =C. =D. =3.如图,在△ABC中,点D在边AB上,BD=2AD,DE∥BC交AC于点E,若线段DE=5,则线段BC的长为()A. 7.5B. 10C. 15D. 204.将两个长为a cm,宽为b cm的矩形铁片加工成一个长为c cm,宽为d cm的矩形铁片,有人就a,b,c,d的关系写出了如下四个等式,但是有一个写错了,它是( )A. B. C. D.5.应中共中央总书记胡锦涛的邀请,中国国民党主席连战先生、亲民党主席宋楚渝先生分别从台湾来大陆参观访问,先后来到西安,都参观了新建成的“大唐芙蓉园”,该园占地面积约为800000m2,若按比例尺1:2000缩小后,其面积大约相当于()A. 一个篮球场的面积;B. 一张乒乓球台台面的面积;C. 《重庆时报》的一个版面的面积;D. 数学课本封面的面积。

6.如图,AB是斜靠在墙上的一个梯子,梯脚B距墙1.4m,梯上点D距墙DE=1.2m,BD长0.5m,且△ADE∽△ABC ,则梯子的长为()A. 3.5mB. 3.85mC. 4mD. 4.2m7.下列叙述正确的是()A. 所有的矩形都相似B. 有一个锐角相等的直角三角形相似C. 边数相同的多边形一定相似D. 所有的等腰三角形相似8.如图,当小颖从路灯AB的底部A点走到C点时,发现自己在路灯B下的影子顶部落在正前方E处.若AC=4m,影子CE=2m,小颖身高为1.6m,则路灯AB的高为()A. 4.8米B. 4米C. 3.2米D. 2.4米9.如图,四边形ABCD∽四边形A1B1C1D1,AB=12,CD=15,A1B1=9,则边C1D1的长是()A. 10B. 12C.D.10.如图2,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()A. S△AFD=2S△EFBB. BF=DFC. 四边形AECD是等腰梯形D. ∠AEB=∠ADC11.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是()A. 30厘米、45厘米;B. 40厘米、80厘米;C. 80厘米、120厘米;D. 90厘米、120厘米12.如图,已知△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,得到点,,.下列说法正确的是()A. △与△ABC是位似图形,位似中心是点(1,0)B. △与△ABC是位似图形,位似中心是点(0,0) C. △与△ABC是相似图形,但不是位似图形 D. △与△ABC不是相似图形二、填空题(共6题;共12分)13.如图,AB∥DE,AE与BD相交于点C.若AC=4,BC=2,CD=1,则CE的长为________.14.如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD,AB=2,OD=3,则BC的长为________.15.若两个相似多边形的周长的比是1:2,则它们的面积比为________16.如图,已知点A在反比例函数y= (x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=________.17.如图,线段AC与BD相交于点O,,若OA∶OC=4∶3,的面积是2,则的面积等于________.18.如图,点A(2,2 ),N(1,0), ∠AON=60°,点M为平面直角坐标系内一点,且MO=MA,则MN的最小值为________.三、解答题(共3题;共15分)19.如图,D为△ABC内一点,E为△ABC外一点,且∠1=∠2,∠3=∠4,找出图中的两对相似三角形并说明理由.20.“两个三角形相似,对应点连线经过同一点,那么这两个图形位似”是真命题吗?如果是,说出理由;如果不是,请举出反例.21.一条直线与三角形ABC的三边BC,CA,AB(或其延长线)分别交于D,E,F如图所示).求证:.四、作图题(共1题;共10分)22.如图,△ABC与△A´B´C´是位似图形,且相似比为.(1)在图中画出位似中心;(2)若,求的长.五、综合题(共4题;共59分)23.如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.24.小明利用灯光下自己的影子长度来测量路灯的高度.如图,CD和EF是两等高的路灯,相距27m,身高1.5m的小明(AB)站在两路灯之间(D、B、F共线),被两路灯同时照射留在地面的影长BQ=4m,BP=5m.(1)小明距离路灯多远?(2)求路灯高度.25.如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.26.在等腰△ABC中,(1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE,连接DE,则∠BDE的度数为________;(2)若△ABC为等边三角形,点D为线段BC上一动点(不与B,C重合),连接AD并将线段AD绕点D逆时针旋转60°得到线段DE,连接BE.①根据题意在图2中补全图形;②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论,形成了几种证明的思路:思路1:要证明CD=BE,只需要连接AE,并证明△ADC≌△AEB;思路2:要证明CD=BE,只需要过点D作DF∥AB,交AC于F,证明△ADF≌△DEB;思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明△ADC≌△DEG;…请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可)(3)小玉的发现启发了小明:如图3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此时小明发现BE,BD,AC三者之间满足一定的数量关系,这个数量关系是________.(直接给出结论无须证明)答案一、单选题1. D2. D3. C4. B5. C6. A7. B8. A9. C 10. A 11.C 12. B二、填空题13. 2 14.15.1:4 16.16 17.18.三、解答题19. 解答:△ABD∽△CBE ,△ABC∽△DBE .∵∠1=∠2,∠3=∠4,∴△ABD∽△CBE ,∵∠1=∠2,∴∠ABC=∠DBE ,∴△ABC∽△DBE20.解:命题为真命题.因为两个三角形相似,对应点连线经过同一点,则利用相似三角形的性质可证明对应边平行或共线,所以那么这两个三角形位似.21.解:证明.证明:过B作BG∥EF,交AC于G.由平行线分线段成比例性质知= , = ,∴× × = × × =1四、作图题22. (1)解:如解图,连接,交于点,则点即为位似中心;(2)解:∵与是位似图形,且相似比为,,∴五、综合题23. (1)解:①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=3∠A′D′C=∠ADC=90°,∵α=60°,∴∠DCD′=60°,∴△CDD′是等边三角形,∴DD′=CD=3.②如图①中,连接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,∴△CDF≌△CD′F,∴∠DCF=∠D′CF= ∠DCD′=30°,在Rt△CD′F中,∵tan∠D′CF= ,∴D′F= ,∴A′F=A′D′﹣D′F=4﹣.(2)解:如图②中,在Rt△A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2,∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF∽△A′D′C,∴= ,∴= ,∴DF= ,同理可得△CDE∽△CB′A′,∴= ,∴= ,∴ED= ,∴EF=ED+DF= .(3)解:如图③中,作FG⊥CB′于G.∵四边形A′B′CD′是矩形,∴GF=CD′=CD=3,∵S△CEF= •EF•DC= •CE•FG,∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°,∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴= ,∴AC2=AD•AF,∴AF= ,∵S△ACF= •AC•CF= •AF•CD,∴AC•CF=AF•CD= .24. (1)解:设DB=xm,∵AB∥CD ,∴∠QBA=∠QDC ,∠QAB=∠QCD ,∴△QAB∽△QCD∴同理可得∵CD=EF∴∴∴x=12即小明距离路灯12m(2)解:由得∴CD=6即路灯高6m 25. (1)证明:连接OE、EC,∵AC是⊙O的直径,∴∠AEC=∠BEC=90°,∵D为BC的中点,∴ED=DC=BD,∴∠1=∠2,∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠2+∠4,即∠OED=∠ACB,∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线(2)解:由(1)知:∠BEC=90°,∵在Rt△BEC与Rt△BCA中,∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴= ,∴BC2=BE•BA,∵AE:EB=1:2,设AE=x,则BE=2x,BA=3x,∵BC=6,∴62=2x•3x,解得:x= ,即AE=26. (1)30°(2)①②思路1:如图2(a),连接AE,∵AD=DE,∠ADE=60°,∴△ADE是等边三角形,∵△ABC是等边三角形,∴AE=AD,AB=AC,∠EAD=∠BAD=60°,∴∠EAB=∠CAD,在△AEB△与ADC中,,∴△AEB≌△ADC,∴CD=BE;思路2:过点D作DF∥AB,交AC于F,∵△ABC是等边三角形,∴AC=BC,∠BAC=60°,∵DF∥AB,∴∠DFC=60°,∴△CDF是等边三角形,∴∠ADE=∠ACB=∠ABC=60°,∴∠DAF=∠EDB,在△ADF与△DEB中,,∴△ADF≌△DEB,∴DF=BE=CD;思路3:如图2(c),延长CB至G,使BG=CD,∵△ABC是等边三角形,∴AC=BC,∠BAC=60°,∵CD=BG,∴DG=AC,∴∠ADE=∠ACB=∠ABC=60°,∴∠DAF=∠EDB,在△ADC与△DEG中,,∴△ADC≌△DEG,∴CD=EG=BG=60°,∴BE=BG=CD;(3)k(BE+BD)=AC。

北师大版数学九年级上册第四章测试题及答案(共2套)

北师大版数学九年级上册第四章测试题及答案(共2套)

北师大版数学九年级上册第四章测试题(一)(图形的相似测试卷)一、选择题1.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC相似,则点F应是G,H,M,N四点中的()A.H或N B.G或H C.M或N D.G或M2.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2 B.1:3 C.1:4 D.1:163.如图,在△ABC中,DE∥BC,若=,则=()A.B.C.D.4.在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对5.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③6.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:27.四边形ABCD与四边形A′B′C′D′位似,O为位似中心,若OA:OA′=1:3,则S四边形ABCD:S四边形A´B´C´D´=()A.1:9 B.1:3 C.1:4 D.1:58.小刚身高1.7m,测得他站立在阳光下的影长为0.85m,紧接着他把手臂竖直举起,测得影长为1.1m,那么小刚举起手臂超出头顶()A.0.5 m B.0.55 m C.0.6 m D.2.2 m9.如图,在△ABC中,DE∥BC,=,则下列结论中正确的是()A.= B.=C.= D.=10.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,。

北师大版九年级数学上册第四章达标检测卷附答案

北师大版九年级数学上册第四章达标检测卷附答案

北师大版九年级数学上册第四章达标检测卷一、选择题(每题3分,共30分)1.已知5x=6y(y≠0),那么下列比例式中正确的是()A.x5=y6 B.x6=y5 C.xy=56 D.x5=6y2.下列各组图形中有可能不相似的是()A.各有一个角是45°的两个等腰三角形B.各有一个角是60°的两个等腰三角形C.各有一个角是105°的两个等腰三角形D.两个等腰直角三角形3.如图,直线a,b,c被直线l1,l2所截,交点分别为点A,C,E和点B,D,F.已知a∥b∥c,且AC=3,CE=4,则BDBF的值是()A.34 B.43 C.37 D.474.如图,在平面直角坐标系中,有点A(6,3),B(6,0),以原点O为位似中心,相似比为13,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1)5.对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”.下列变换中不一定是等距变换的是()A.平移B.旋转C.轴对称D.位似6.如图,为估算河的宽度(河两岸平行),在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上,若测得BE=20 m,CE=10 m,CD=20 m,则河的宽度AB 等于()A.60 m B.40 m C.30 m D.20 m7.如图,在平面直角坐标系中,已知点O(0,0),A(6,0),B(0,8),以某点为位似中心,作出△CDE,使它与△AOB位似,且相似比为k,则位似中心的坐标和k的值分别为()A.(0,0),2 B.(2,2),12C.(2,2),2 D.(1,1),128.如图,在矩形ABCD中,AB=2,BC=3,点E是AD的中点,CF⊥BE于点F,则CF等于()A.2 B.2.4 C.2.5 D.2.259.如图,在▱ABCD中,E是CD上的一点,DE EC=2:3,连接AE,BE,BD,且AE,BD交于点F,则S△DEF:S△EBF:S△ABF等于()A.2:5:25 B.4:9:25 C.2:3:5 D.4:10:2510.如图,在矩形ABCD中,点E为AD上一点,且AB=8,AE=3,BC=4,点P为AB边上一动点,连接PC,PE,若△P AE与△PBC是相似三角形,则满足条件的点P的数量为()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.假期,爸爸带小明去A地旅游,小明想知道A地与他所居住的城市的距离,他在比例尺为1:500 000的地图上测得所居住的城市距A地32 cm,则小明所居住的城市与A地的实际距离为________.12.若a+bc=b+ca=c+ab=k(a+b+c≠0),则k=________.13.如图,已知点C是线段AB的黄金分割点,且BC>A C.若S1表示以BC为边的正方形的面积,S2表示长为AD(AD=AB),宽为AC的矩形的面积,则S1与S2的大小关系为____________.14.如图,在△ABC中,D,E分别是AB和AC的中点,F是BC延长线上一点,DF平分CE于点G,CF=1,则BC=________,△ADE与△ABC的周长之比为________,△CFG与△BFD的面积之比为________.15.如图,以点A为位似中心,把正方形ABCD的各边缩小为原来的一半,得到正方形A′B′C′D′,则点C的对应点C′的坐标为________.16.如图,阳光通过窗口AB照射到室内,在地面上留下4 m宽的区域DE,已知点E到窗口下的墙脚C的距离为5 m,窗口AB高2 m,那么窗口底端B 距离墙脚C________m.17.如图,已知点P是边长为4的正方形ABCD内一点,且PB=3,BF⊥BP,垂足是点B,若在射线BF上找一点M,使以点B,M,C为顶点的三角形与△ABP相似,则BM的长为________.18.如图,正三角形ABC的边长为2,以BC边上的高AB1为边作正三角形AB1C1,△ABC与△AB1C1公共部分的面积记为S1,再以正三角形AB1C1的边B1C1上的高AB2为边作正三角形AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2,……,以此类推,则S n=________(用含n的式子表示,n为正整数).三、解答题(19,20题每题8分,24题14分,其余每题12分,共66分) 19.如图,矩形ABCD为一密封的长方体纸盒的纵切面的示意图,AB边上的点E处有一小孔,光线从点E处射入,经纸盒底面上的平面镜反射,恰好从点D处的小孔射出.已知AD=26 cm,AB=13 cm,AE=6 cm.(1)求证:△BEF∽△CDF;(2)求CF的长.20.如图,△ABC三个顶点的坐标分别为A(1,2),B(3,1),C(2,3),以原点O 为位似中心,将△ABC放大为原来的2倍得△A′B′C′.(1)在图中第一象限内画出符合要求的△A′B′C′(不要求写画法);(2)计算△A′B′C′的面积.21.如图,在▱ABCD中,过点A作AE⊥BC于点E,连接DE,点F为线段DE 上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.22.如图,某水平地面上有一建筑物AB,在点D和点F处分别竖有2米高的标杆CD和EF,两标杆相距52米,并且建筑物AB,标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,点G与建筑物顶端A和标杆顶端C在同一条直线上;从标杆EF后退4米到点H处,点H与建筑物顶端A 和标杆顶端E在同一条直线上,求建筑物AB的高度.23.如图,在矩形ABCD 中,AB =12 cm ,BC =6 cm ,点P 沿AB 边从点A 开始向点B 以2 cm/s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1 cm/s 的速度移动.如果P ,Q 同时出发,用t (s )表示移动的时间(0<t <6),那么:(1)当t 为何值时,△QAP 为等腰直角三角形?(2)对四边形QAPC 的面积,提出一个与计算结果有关的结论.(3)当t 为何值时,以点Q ,A ,P 为顶点的三角形与△ABC 相似?24.如图①,在Rt △ABC 中,∠B =90°,BC =2AB =8,点D ,E 分别是边BC ,AC 的中点,连接DE . 将△EDC 绕点C 按顺时针方向旋转,记旋转角为α.(1)当α=0°和α=180°时,求AE BD 的值.(2)试判断当0°≤α<360°时,AE BD 的大小有无变化?请仅就图②的情况给出证明.(3)当△EDC 旋转至A ,D ,E 三点共线时,求线段BD 的长.答案一、1.B 2.A3.C 【点拨】因为a ∥b ∥c ,所以BD BF =AC AE =33+4=37. 4.A 5.D6.B 【点拨】∵AB ⊥BC ,CD ⊥BC ,∴∠ABE =∠DCE =90°.又∵∠AEB =∠DEC ,∴△ABE ∽△DCE .∴AB DC =BE CE ,即AB 20=2010.∴AB =40 m .7.B8.B 【点拨】由∠A =90°,CF ⊥BE ,AD ∥BC ,易证△ABE ∽△FCB . ∴CF AB =BC BE .由AE =12×3=1.5,AB =2,易得BE =2.5,∴CF 2=32.5.解得CF =2.4. 9.D10.C 【点拨】设AP =x ,则BP =8-x ,当△P AE ∽△PBC 时,AE BC =P A PB ,∴AE ·PB =BC ·P A ,即3(8-x )=4x ,解得x =247.当△P AE ∽△CBP 时,AE PB =P A BC ,∴AE ·BC =P A ·PB ,即3×4=x (8-x ),解得x =2或6.故满足条件的点P 的数量为3个.二、11.160 km 【点拨】设小明所居住的城市与A 地的实际距离为x km ,根据题意可列比例式为1500 000=32x ×105,解得x =160.12.2 【点拨】∵a +b c =b +c a =c +a b =k (a +b +c ≠0),∴2a +2b +2c a +b +c=k ,故k =2. 易错提醒:在运用等比性质时,注意分母的和不等于0这个条件.13.S 1=S 2 【点拨】∵点C 是线段AB 的黄金分割点,且BC >AC , ∴BC 2=AC ·AB .又∵S 1=BC 2,S 2=AC ·AD =AC ·AB ,∴S 1=S 2.14.2;12;1 6 15.(2,1)或(0,-1)易错提醒:此类题要注意多种可能:位似图形可能位于位似中心的同侧,也可能位于位似中心的两侧,要分情况进行讨论.16.2.5 【点拨】由题意得CE =5 m ,AB =2 m ,DE =4 m .∵AD ∥BE ,∴BC AB =CE ED ,即BC 2=54,解得BC =2.5 m ,即窗口底端B 距离墙脚C 2.5 m .17.163或3 【点拨】∵∠ABC =∠FBP =90°,∴∠ABP =∠CBF .当△MBC ∽△ABP时,BM ∶AB =BC ∶BP ,得BM =4×4÷3=163;当△CBM ∽△ABP 时,BM ∶BP=CB ∶AB ,得BM =4÷4×3=3.18.32×⎝ ⎛⎭⎪⎫34n 【点拨】在正三角形ABC 中,AB 1⊥BC ,∴BB 1=12BC =1. 在Rt △ABB 1中,AB 1=AB 2-BB 21=22-12=3,根据题意可得△AB 2B 1∽△AB 1B ,记△AB 1B 的面积为S ,∴S 1S =⎝ ⎛⎭⎪⎫322.∴S 1=34S . 同理可得S 2=34S 1,S 3=34S 2,S 4=34S 3,….又∵S =12×1×3=32,∴S 1=34S =32×34,S 2=34S 1=32×⎝ ⎛⎭⎪⎫342,S 3=34S 2=32×⎝ ⎛⎭⎪⎫343,S 4=34S 3=32×⎝ ⎛⎭⎪⎫344,…,S n =32×⎝ ⎛⎭⎪⎫34n. 三、19.(1)证明:∵FG ⊥BC ,∠EFG =∠DFG ,∴∠BFE =∠CFD . 又∵∠B =∠C =90°, ∴△BEF ∽△CDF .(2)解:∵AD =26 cm ,AB =13 cm , ∴BC =26 cm ,CD =13 cm. 设CF =x cm ,则BF =(26-x )cm. ∵AB =13 cm ,AE =6 cm , ∴BE =7 cm ,由(1)得△BEF ∽△CDF , ∴BE CD =BF CF ,即713=26-xx , 解得x =16.9,即CF =16.9 cm. 20.解:(1)如图.(2)S △A ′B ′C ′=4×4-12×2×2-12×2×4-12×2×4=6.21.(1)证明:∵四边形ABCD 为平行四边形, ∴AD ∥BC ,∠B +∠C =180°, ∴∠ADE =∠DEC .又∵∠AFE =∠B ,∠AFE +∠AFD =180°, ∴∠AFD =∠C ,∴△ADF ∽△DEC . (2)解:在▱ABCD 中,CD =AB =8.∵△ADF ∽△DEC ,∴AF CD =ADDE , 即438=63DE ,解得DE =12.∵AE ⊥BC ,AD ∥BC ,∴AE ⊥AD ,即∠EAD =90°. 在Rt △AED 中,由勾股定理,得AE =122-(63)2=6. 22.解:由题意得,CD =DG =EF =2米,DF =52米,FH =4米. ∵AB ⊥BH ,CD ⊥BH ,EF ⊥BH , ∴∠ABH =∠CDG =∠EFH =90°. 又∵∠CGD =∠AGB ,∠EHF =∠AHB , ∴△CDG ∽△ABG ,△EFH ∽△ABH , ∴CD AB =DG BG ,EF AB =FH BH , 即CD AB =DG DG +BD,EF AB =FH FH +DF +BD , ∴2AB =22+BD ,2AB =44+52+BD ,∴22+BD =44+52+BD , 解得BD =52米,∴2AB =22+52,解得AB =54米.答:建筑物AB 的高度为54米.23.解:(1)由题意知AP =2t cm ,DQ =t cm ,QA =(6-t )cm ,当QA =AP 时, △QAP 是等腰直角三角形, 所以6-t =2t ,解得t =2.即t 为2时,△QAP 为等腰直角三角形.(2)四边形QAPC 的面积=S △QAC +S △APC =12AQ ·CD +12AP ·BC =(36-6t )+6t =36(cm 2).在P ,Q 两点移动的过程中,四边形QAPC 的面积始终保持不变. (3)分两种情况:①当AQ AB =APBC 时,△QAP ∽△ABC ,则6-t 12=2t 6,即t =1.2;②当QA BC =APAB 时,△P AQ ∽△ABC ,则6-t 6=2t 12,即t =3.所以当t =1.2或3时,以点Q ,A ,P 为顶点的三角形与△ABC 相似. 24.解:(1)当α=0°时,∵BC =2AB =8,∴AB =4. ∵点D ,E 分别是边BC ,AC 的中点, ∴BD =4,AE =EC =12AC .∵∠B =90°,∴AC =82+42=4 5.∴AE =CE =2 5.∴AE BD =254=52. 当α=180°时,如图①,易得AC =45,CE =25,CD =4, ∴AE BD =AC +CE BC +CD =45+258+4=52.(2)无变化.证明:在题图①中, 易知DE 是△ABC 的中位线, ∴DE ∥AB .∴CE CA =CDCB ,∠EDC =∠B =90°.在题图②中,∵△EDC 在旋转过程中形状大小不变, ∴CE CA =CDCB 仍然成立. ∴CE CD =CA CB .又∵∠ACE =∠BCD =α, ∴△ACE ∽△BCD .∴AE BD =ACBC .由(1)可知AC =4 5. ∴AC BC =458=52.∴AE BD =52. ∴AEBD 的大小不变.(3)当△EDC 在BC 上方,且A ,D ,E 三点共线时,四边形ABCD 为矩形,如图②,∴BD =AC =45;当△EDC 在BC 下方,且A ,E ,D 三点共线时,△ADC 为直角三角形,如图③,由勾股定理可得AD =AC 2-CD 2=8.又易知DE =2,∴AE =6.∵AE BD =52,∴BD =1255.综上,BD 的长为45或1255.北师大版九年级数学上册期末达标检测卷一、选择题(每题3分,共30分)1. 下列方程中,不是一元二次方程的是( )A.3y 2+2y +1=0B.12x 2=1-3xC.110a 2-16a +23=0 D .x 2+x -3=x 2 2.如图放置的几何体的左视图是( )3.下列命题为真命题的是( )A .四边相等的四边形是正方形B .对角线相等的四边形是菱形C .四个角相等的四边形是矩形D .对角线互相垂直的四边形是平行四边形 4.若反比例函数y =kx的图象经过点(m ,3m ),其中m ≠0,则反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限5.已知关于x 的一元二次方程(k -1)x 2-2x +1=0有两个实数根,则k 的取值范围是( ) A .k ≤-2B .k ≤2C .k ≥2D .k ≤2且k ≠16.有三张正面分别标有数-2,3,4的不透明卡片,它们除数不同外,其他全部相同.现将它们背面朝上洗匀后,从中任取两张,则抽取的两张卡片上的数之积为正偶数的概率是()A.49 B.112 C.13 D.167.如图,在△ABC中,已知点D,E分别是边AC,BC上的点,DE∥AB,且CE:EB =2:3,则DE AB等于()A.2:3 B.2:5 C.3:5 D.4:58.如图,在菱形纸片ABCD中,∠A=60°,P为AB的中点,折叠该纸片使点C落在点C′处,且点P在DC′上,折痕为DE,则∠CDE的度数为()A.30°B.40°C.45°D.60°9.设△ABC的一边长为x,这条边上的高为y,y与x之间的反比例函数关系如图所示.当△ABC为等腰直角三角形时,x+y的值为()A.4 B.5 C.5或3 2 D.4或3 210.如图,在△ABC中,AB=BC,∠ABC=90°,BM是AC边上的中线,点D,E分别在边AC和BC上,DB=DE,DE与BM相交于点N,EF⊥AC于点F,有以下结论:①∠DBM=∠CDE;②S△BDE<S四边形BMFE;③CD·EN=BN·BD;④AC=2DF.其中正确结论的数量是()A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.已知一元二次方程(m-2)x2-3x+m2-4=0的一个根为0,则m=________.12.如图,物理课上张明做小孔成像实验,已知蜡烛与成像板之间的距离为24 cm,要使烛焰的像A′B′是烛焰AB的2倍,则蜡烛与成像板之间带小孔的纸板应放在离蜡烛________的地方.13.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有________个.14.为预防流感,某学校对教室进行“药熏消毒”.消毒期间,室内每立方米空气中的含药量y(mg)与时间x(min)之间的函数关系如图所示.已知在药物燃烧阶段,y与x成正比例,燃烧完后y与x成反比例.现测得药物10 min燃烧完,此时教室内每立方米空气含药量为8 mg.当每立方米空气中含药量低于 1.6 mg时,对人体无毒害作用.那么从消毒开始,经过________min后教室内的空气才能达到安全要求.15.已知三角形纸片(△ABC)中,AB=AC=5,BC=8,将三角形按照如图所示的方式折叠,使点B落在直线AC上,记为点B′,折痕为EF.若以点B′,F,C为顶点的三角形与△ABC相似,则BF的长度是________.16.为了估计鱼塘中鱼的数量,养鱼者首先从鱼塘中捕获10条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞100条鱼.如果在这100条鱼中有2条鱼是有记号的,则可估计鱼塘中约有鱼________条.17.如图,以▱ABCO 的顶点O 为原点,边OC 所在直线为x 轴,建立平面直角坐标系,顶点A ,C 的坐标分别为(2,4),(3,0),过点A 的反比例函数y =kx 的图象交BC 于点D ,连接AD ,则四边形AOCD 的面积是________.18.如图,在四边形ABCD 中,对角线AC ⊥BD ,垂足为O ,点E ,F ,G ,H 分别为AD ,AB ,BC ,CD 的中点.若AC =8,BD =6,则四边形EFGH 的面积为________. 三、解答题(19~22题每题8分,23,24题每题11分,25题12分,共66分) 19.解方程:(1)x 2-6x -6=0; (2)(x +2)(x +3)=1.20.已知关于x 的一元二次方程kx 2+x -2=0有两个不相等的实数根.(1)求实数k 的取值范围;(2)设方程的两个实数根分别为x 1,x 2,且满足(x 1+x 2)2+x 1·x 2=3,求k 的值.21.在一个不透明的布袋里装有4个分别标有数字1,2,3,4的小球,它们除所标数字外其他完全相同,小明从布袋里随机取出1个小球,记下数字为x,小红在剩下的3个小球中随机取出1个小球,记下数字为y.(1)计算由x,y确定的点(x,y)在函数y=-x+5的图象上的概率.(2)小明和小红约定做一个游戏,其规则为:若x,y满足xy>6,则小明胜,若x,y满足xy<6,则小红胜,这个游戏公平吗?请说明理由.若不公平,请写出公平的游戏规则.22.如图,九(1)班的小明与小艳两位同学去操场测量旗杆DE的高度,已知直立在地面上的竹竿AB的长为3 m.某一时刻,测得竹竿AB在阳光下的投影BC的长为2 m.(1)请你在图中画出此时旗杆DE在阳光下的投影,并写出画图步骤;(2)在测量竹竿AB的影长时,同时测得旗杆DE在阳光下的影长为6 m,请你计算旗杆DE的高度.23.如图,四边形ABCD为正方形,点A的坐标为(0,1),点B的坐标为(0,-2),反比例函数y =kx 的图象经过点C ,一次函数y =ax +b 的图象经过A ,C 两点.(1)求反比例函数与一次函数的表达式;(2)若点P 是反比例函数图象上的一点,△OAP 的面积恰好等于正方形ABCD 的面积,求点P 的坐标.24.如图①,在正方形ABCD 中,P 是BD 上的一点,点E 在AD 的延长线上,且P A=PE ,PE 交CD 于F . (1)求证:PC =PE ; (2)求∠CPE 的度数;(3)如图②,把正方形ABCD 改为菱形ABCD ,其他条件不变,当∠ABC =120°时,连接CE ,试探究线段AP 与线段CE 的数量关系,并说明理由.25.在等腰三角形ABC 中,AB =AC ,D 是AB 延长线上一点,E 是AC 上一点,DE 交BC 于点F .(1)如图①,若BD =CE ,求证:DF =EF .(2)如图②,若BD =1n CE ,试写出DF 和EF 之间的数量关系,并证明.(3)如图③,在(2)的条件下,若点E 在CA 的延长线上,那么(2)中的结论还成立吗?试证明.答案一、1.D 2.C 3.C4.B 【点拨】把点(m ,3m )的坐标代入y =k x ,得到k =3m 2,因为m ≠0,所以k >0.所以图象在第一、三象限.5.D 6.C 7.B 8.C9.D 【点拨】由题意得xy =4,当等腰直角三角形ABC 的斜边长为x 时,x =2y ,所以2y 2=4,解得y =2或y =-2(不合题意,舍去),所以x =22,所以x +y =32;当等腰直角三角形ABC 的一条直角边长为x 时,x =y ,所以y 2=4,解得y =2或y =-2(不合题意,舍去),所以x =2,所以x +y =4.故x +y 的值为4或3 2.故选D.10.C 【点拨】设∠EDC =x ,则∠DEF =90°-x ,从而可得到∠DBE =∠DEB =180°-(90°-x )-45°=45°+x ,∠DBM =∠DBE -∠MBE =45°+x -45°=x ,从而可得到∠DBM =∠CDE ,所以①正确.可证明△BDM ≌△DEF ,然后可证明S △DNB =S四边形NMFE ,所以S △DNB +S △BNE =S 四边形NMFE+S △BNE ,即S △BDE =S 四边形BMFE .所以②错误.可证明△DBC ∽△NEB ,所以CD BD =BN EN,即CD ·EN =BN ·BD .所以③正确. 由△BDM ≌△DEF ,可知DF =BM ,由直角三角形斜边上的中线的性质可知BM =12AC ,所以DF =12AC ,即AC =2DF .所以④正确.故选C.二、11.-2 12.8 cm13.5 【点拨】综合左视图和主视图知,这个几何体有两层,底层最少有2+1=3(个)小正方体,第二层有2个小正方体,因此组成这个几何体的小正方体最少有3+2=5(个).14.50 【点拨】设药物燃烧完后y 与x 之间的函数表达式为y =k x,把点(10,8)的坐标代入y =k x ,得8=k 10,解得k =80,所以药物燃烧完后y 与x 之间的函数表达式为y =80x .当y =1.6时,由y =80x 得x =50,所以从消毒开始,经过50 min 后教室内的空气才能达到安全要求.15.4或4013 16.50017.9 【点拨】由题易知OC =3,点B 的坐标为(5,4),▱ABCO 的面积为12.设直线BC 对应的函数表达式为y =k ′x +b ,则⎩⎨⎧3k ′+b =0,5k ′+b =4,解得⎩⎨⎧k ′=2,b =-6. ∴直线BC 对应的函数表达式为y =2x -6.∵点A (2,4)在反比例函数y =k x 的图象上,∴k =8.∴反比例函数的表达式为y =8x .由⎩⎪⎨⎪⎧y =2x -6,y =8x解得⎩⎨⎧x =4,y =2或⎩⎨⎧x =-1,y =-8(舍去). ∴点D 的坐标为(4,2).∴△ABD 的面积为12×2×3=3.∴四边形AOCD 的面积是9.18.12 【点拨】易知EF ∥BD ∥HG ,且EF =HG =12BD =3, EH ∥AC ∥GF 且EH =GF =12AC =4. ∵AC ⊥BD ,∴EF ⊥FG .∴四边形EFGH 是矩形.∴四边形EFGH 的面积=EF ·EH =3×4=12.三、19.解:(1)x 2-6x -6=0,x 2-6x +9= 15,(x -3)2= 15,x -3= ±15,∴x 1=3+15,x 2=3-15.(2)(x +2)(x +3)=1,x 2+5x +6= 1,x 2+5x +5= 0,∵a =1,b =5,c =5,∴b 2-4ac =52-4×1×5=5.∴x =-5±52. ∴x 1=-5+52,x 2=-5-52. 20.解:(1)∵方程有两个不相等的实数根,∴Δ=12+8k >0,∴k >-18.又∵k ≠0,∴k 的取值范围是k >-18且k ≠0.(2)由根与系数的关系,得x 1+x 2=-1k ,x 1·x 2=-2k .∵(x 1+x 2)2+x 1·x 2=3,∴⎝⎛⎭⎫-1k 2-2k =3,即3k 2+2k -1=0, 解得k =13或k =-1.由(1)得k >-18且k ≠0,∴k =13.21.解:(1)画树状图如图.由树状图可知共有12种等可能的结果.其中在函数y =-x +5的图象上的有(1,4),(2,3),(3,2),(4,1),∴点(x ,y )在函数y =-x +5的图象上的概率为412=13.(2)不公平.理由:∵x ,y 满足xy >6的有(2,4),(3,4),(4,2),(4,3),共4种结果,x ,y 满足xy <6的有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1),共6种结果,∴P (小明胜)=412=13,P (小红胜)=612=12. ∵13≠12,∴游戏不公平.公平的游戏规则为:若x ,y 满足xy ≥6,则小明胜,若x ,y 满足xy <6,则小红胜.(规则不唯一)22.解:(1)如图,线段EF 就是此时旗杆DE 在阳光下的投影.作法:连接AC ,过点D 作DF ∥AC ,交直线BE 于点F ,则线段EF 即为所求.(2)∵AC ∥DF ,∴∠ACB =∠DFE .又∠ABC =∠DEF =90°,∴△ABC ∽△DEF .∴AB DE =BC EF .∵AB =3 m ,BC =2 m ,EF =6 m ,∴3DE =26. ∴DE =9 m.即旗杆DE 的高度为9 m.23.解:(1)∵点A 的坐标为(0,1),点B 的坐标为(0,-2),∴AB =1+2=3,即正方形ABCD 的边长为3,∴点C 的坐标为(3,-2).将点C 的坐标代入y =k x可得k =-6, ∴反比例函数的表达式为y =-6x .将C (3,-2),A (0,1)的坐标分别代入y =ax +b ,得⎩⎨⎧3a +b =-2,b =1, 解得⎩⎨⎧a =-1,b =1,∴一次函数的表达式为y =-x +1.(2)设P ⎝⎛⎭⎫t ,-6t , ∵△OAP 的面积恰好等于正方形ABCD 的面积,∴12×1×|t |=3×3,解得t =±18.∴点P 的坐标为⎝⎛⎭⎫18,-13或⎝⎛⎭⎫-18,13. 24.(1)证明:∵四边形ABCD 是正方形,∴AD =CD ,∠ADP =∠CDP .又∵DP =DP ,∴△ADP ≌△CDP .∴P A =PC .又∵P A =PE ,∴PC =PE .(2)解:由(1)知△ADP ≌△CDP ,∴∠DAP =∠DCP .∵P A =PE ,∴∠DAP =∠E .∴∠FCP =∠E .又∵∠PFC =∠DFE ,∠EDF =90°,∴∠CPE =∠EDF =90°.(3)解:AP =CE .理由如下:∵四边形ABCD 是菱形,∴AD =CD ,∠ADP =∠CDP .又∵DP =DP ,∴△ADP ≌△CDP .∴P A =PC ,∠DAP =∠DCP .又∵P A =PE ,∴PC =PE ,∠DAP =∠DEP .∴∠DCP =∠DEP .又∵∠PFC =∠DFE ,∴∠CPF =∠EDF .∵在菱形ABCD 中,∠ABC =120°,∴∠ADC =120°.∴∠EDC =60°.∴∠CPE =∠EDF =60°.又∵PC =PE ,∴△PCE 是等边三角形.∴PE =CE .又∵P A =PE ,∴AP =CE .25.(1)证明:在题图①中作EG ∥AB 交BC 于点G , 则∠ABC =∠EGC ,∠D =∠FEG .∵AB =AC ,∴∠ABC =∠C .∴∠EGC =∠C .∴EG =EC .∵BD =CE ,∴BD =EG .又∵∠D =∠FEG ,∠BFD =∠GFE ,∴△BFD ≌△GFE .∴DF =EF .(2)解:DF =1n EF .证明:在题图②中作EG ∥AB 交BC 于点G ,则∠D =∠FEG . 同(1)可得EG =EC .∵∠D =∠FEG ,∠BFD =∠EFG ,∴△BFD ∽△GFE .∴BD EG =DF EF. ∵BD =1n CE =1nEG , ∴DF =1n EF .(3)解:成立.证明:在题图③中作EG ∥AB 交CB 的延长线于点G , 则仍有EG =EC ,△BFD ∽△GFE .∴BD EG =DF EF .∵BD =1n CE =1n EG ,∴DF =1nEF .。

北师大版数学九年级上册《第四章图形相似》单元测试(含答案)

北师大版数学九年级上册《第四章图形相似》单元测试(含答案)

K 从点 P 出发沿折线 PE ﹣﹣ 以E每F 秒 1 个单位长的速度匀速运
动.点 P、K 同时开始运动,当点 K 到达点 F 时停止运动,点 P 也
随之停止.设点 P、K 运动的时间是 t 秒( t>0 ).
(1)当 t=1 时, KE= , EN= ;
(2)当 t 为何值时,△
的面A积PM与△
( 1 )求证:△
ABM ∽△ EFA ;
(2)若 AB=12 ,BM=5 ,求 DE 的长.
21 .如图,在平行四边形 ABCD 中,过点 A 作 AE ⊥ BC ,垂足为
E,连接 DE,F 为线段 DE 上一点,且∠
AFE= ∠ B .
( 1 )求证:△
ADF ∽△ DEC ;
(2)若 AB=4 ,AD= ,AE=3 ,求 AF 的长.
( 2)如图所示,以 B 为位似中心,画出△A2B2C2,使△A2B2C2 与△
ABC 位似,且位似比为 2:1 ,点 C2 的坐标是( 1 ,0),
故答案为:( 1)(2 ,﹣ ;2 ()2 )(1 ,0)
23 .解:( 1)当 t=1 时,根据题意得, AP=1 ,PK=1 , ∵ PE=2 , ∴ KE=2 ﹣ 1=1 , ∵四边形 ABCD 和 PEFG 都是矩形, ∴△ APM ∽△ ABC ,△ APM ∽△ NEM ,
按比例尺 1:2,把△ 缩EF小O,则点 E 的对应点 E ′的坐标为(

A.(2,﹣ 1 )或(﹣ 1) 2 , B.(8,﹣ 4 )或
(﹣ 8 ,﹣ 4 )
C.(2,﹣ 1 )
D.(8 ,﹣ 4 )
5.如图,已知 AD 为△ AB的C角平分线,
交DEA∥C 于ABE,如

北师大版九年级上册数学第四章同步测试试卷及答案

北师大版九年级上册数学第四章同步测试试卷及答案

第四章学情评估一、选择题(每题3分,共30分)1.下列各组中的四条线段成比例的是()A.a=2,b=3,c=2,d= 3B.a=4,b=6,c=5,d=10C.a=2,b=5,c=2 3,d=15D.a=2,b=3,c=4,d=12.如图,已知l1∥l2∥l3,若AB=1,BC=2,DE=1.5,则EF的长为() A.1.5 B.2C.2.5 D.3(第2题)(第3题)(第5题)3.如图,面积为1 的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF 的面积是()A. 16 B.12C. 13 D.144.下列说法正确的是()A.边都对应成比例的多边形相似B.角都对应相等的多边形相似C.边数相同的正多边形相似D.矩形都相似5.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1∶2,∠OCD=90°,CO=CD.若点B的坐标为(1,0),则点C的坐标为()A.(1,2) B.(1,1)C.(2,2) D.(2,1)6.如图,方格纸中△ABC 和△EPD 的顶点均在格点上,若△ABC 和△EPD 相似,则点P 所在格点为( )A .P 1B .P 2C .P 3D .P 4(第6题) (第7题) (第8题)7.如图,已知点C ,D 都是线段AB 的黄金分割点,如果CD =4,那么AB 的长度是( )A .2 5-2B .6-2 5C .8+4 5D .2+ 58.如图,AB ∥CD ,AE ∥FD ,AE ,FD 分别交BC 于点G ,H ,则图中共有相似三角形( )A .4对B .5对C .6对D .7对9.如图,AB 是斜靠在墙上的一个梯子,梯脚B 距墙1.4 m ,梯子上点D 距墙1.2 m ,BD 长0.5 m ,则梯子的长为( )A .3.5 mB .3.85 mC .4 mD .4.2 m(第9题) (第10题)10.如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,则下列结论:①DE BC =12; ②S △DOE S △COB =12; ③AD AB =OE OB ; ④S △DOE S △ADE =13. 其中正确的个数是( )A .1个B .2个C .3个D .4个二、填空题(每题3分,共18分)11.如果a b =c d =e f =k (b +d +f ≠0),且a +c +e =3(b +d +f ),那么k =________.12.如图,在△ABC 中,AB >AC ,点D 在AB 上(点D 与A ,B 不重合),若再增加一个条件就能使△ACD ∽△ABC ,则这个条件是________________(写出一个条件即可).(第12题) (第13题)13.如图,在△ABC 中,点D ,E ,F 分别在AB ,AC ,BC 上,DE ∥BC ,EF ∥AB .若AB =8,BD =3,BF =4,则FC 的长为________.14.如图,在平面直角坐标系中,每个小方格的边长均为1,△AOB 与△A′OB ′是以原点O 为位似中心的位似图形,且相似比为3∶2,点A ,B 都在格点上,则点B ′的坐标是______.(第14题) (第15题) (第16题)15.如图,在矩形ABCD 中,AB =5,BC =3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上的点G 处,连接CE ,则CE 的长是________.16.如图,已知在Rt △ABC 中,∠C =90°,AB =5,BC =3,在线段AB 上取一点D ,作DE⊥AB 交AC 于点E ,连接BE ,将△ADE 沿DE 折叠.设点A 落在线段BD 上的对应点为A 1,DA 1的中点为F ,若△FEA 1∽△FBE ,则AD =________.三、解答题(21题~22题每题10分,其余每题8分,共52分)17.如图,已知∠ADC =∠BAC ,BC =16 cm ,AC =12 cm ,求DC 的长.18.如图,四边形ABCD中,AC平分∠DAB,AC2=AB·AD,∠ADC=90°,E为AB的中点.(1)求证:△ADC∽△ACB;(2)CE与AD有怎样的位置关系?试说明理由.19.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场上的旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶端A在同一直线上.已知DE=0.5 m,EF=0.25 m,目测点D到地面的距离DG=1.5 m,到旗杆的水平距离DC=20 m ,求旗杆的高度.20.如图,已知∠MON,A,B分别是射线OM,ON上的点.(1)尺规作图:在∠MON的内部确定一点C,使得BC∥OA且BC=12OA;(保留作图痕迹,不写作法)(2)在(1)中,连接OC,用无刻度直尺在线段OC上确定一点D,使得OD=2CD,并证明OD=2CD.21.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.22.如图,在正方形ABCD中,对角线AC、BD相交于点O,E为OC上动点(与点O、C不重合),作AF⊥BE,垂足为G,交BC于F,交BO于H,连接OG,CG.(1)求证:AH=BE;(2)试探究:∠AGO的度数是否为定值?请说明理由;(3)若OG⊥CG,BG= 5.求△OGC的面积.答案一、1. C 2. D 3. D 4. C 5. B 6. C 7. C8. C 9. A 10. C二、11. 3 12. ∠ACD =∠ABC (答案不唯一) 13. 125 14. ⎝ ⎛⎭⎪⎫-2,43 15. 3510 16. 85 三、17. 解:∵∠ADC =∠BAC ,∠C =∠C ,∴△ADC ∽△BAC .∴AC BC =DC AC .∵BC =16 cm ,AC =12 cm ,∴DC =12×1216=9(cm).18. (1)证明:∵AC 平分∠DAB ,∴∠DAC =∠CAB .又∵AC 2=AB ·AD ,∴AD AC =ACAB ,∴△ADC ∽△ACB .(2)解:CE ∥AD ,理由如下:∵△ADC ∽△ACB ,∴∠ACB =∠ADC =90°.又∵E 为AB 的中点,∴CE =12AB =AE ,∴∠EAC =∠ECA .∵∠DAC =∠CAE ,∴∠DAC =∠ECA ,∴CE ∥AD .19. 解:∵∠DEF =∠DCA =90°,∠EDF =∠CDA ,∴△DEF ∽△DCA .∴DE DC =EF CA .∵DE =0.5 m ,EF =0.25 m ,DC =20 m ,∴0.520=0.25CA .∴AC =10 m.又∵CB =DG =1.5 m ,∴AB =AC +CB =10+1.5=11.5(m).答:旗杆的高度为11.5 m.20. 解:(1)如图,点C 即为所求.(2)如图,连接AB交OC于点D,则点D即为所求.证明如下:由(1)得BC∥OA,BC=12OA,∴∠DBC=∠DAO,∠DCB=∠DOA,∴△DBC∽△DAO,∴DCDO=BCAO=12,∴OD=2CD.21. 解:(1)∵线段AD由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°.∵△EFG由△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°.(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°.∵∠DAB=90°,∴∠ADE=90°.∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴ADAC=AEAB.∵AC=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.22. (1)证明:∵四边形ABCD是正方形,∴OA=OB,∠AOB=∠BOE=90°.∵AF⊥BE,∴∠GAE+∠AEG=∠OBE+∠AEG=90°.∴∠GAE=∠OBE,∴△AOH≌△BOE,∴AH=BE.(2)解:是.理由如下:∵∠AOH=∠BGH=90°,∠AHO=∠BHG,∴△AOH∽△BGH,∴OHGH=AHBH,∴OHAH=GHBH.∵∠OHG=∠AHB,∴△OHG∽△AHB,∴∠AGO =∠ABO =45°,即∠AGO 的度数为定值.(3)解:∵∠ABC =90°,AF ⊥BE ,∴∠BAG =∠FBG ,∠AGB =∠BGF =90°, ∴△ABG ∽△BFG ,∴AG BG =BG GF ,∴AG ·GF =BG 2=5,∵△AHB ∽△OHG ,∴∠BAH =∠GOH =∠GBF . ∵∠AOB =∠BGF =90°,∴∠AOG =∠GFC .∵∠AGO =45°,CG ⊥GO ,∴∠AGO =∠FGC =45°.∴△AGO ∽△CGF ,∴GO GF =AG CG ,∴GO ·CG =AG ·GF =5.∴S △OGC =12CG ·GO =52.。

九年级数学上册第四章《图形的相似》测试卷-北师大版(含答案)

九年级数学上册第四章《图形的相似》测试卷-北师大版(含答案)

九年级数学上册第四章《图形的相似》测试卷-北师大版(含答案)(满分120分)一、选择题(每题3分,共30分)1.若两个相似三角形的面积之比为4 :9,则它们对应角的平分线之比为()A. 49B.32C.23D.622.下列各组线段中,能成比例的是()A. 1c m,3c m,4c m,6c m,B. 1c m,3c m,4c m,12c m,C. 1c m,2c m,3c m,4c m,D. 2c m,3c m,4c m,5c m,3.下列说法中,正确的是()A.相似三角形都是全等三角形B.所有的矩形都相似C.所有的等腰三角形都相似D.所有的等腰直角三角形都相似4.如图,DE// BC ,A D = 2BD,下列结论错误的是()A. A E=2CEB. BC=2DEC. DE:BC=2:3D. C△A D E:C△ABC=2 :35.在比例尺1:10000的地图上,相距2C m的两地的实际距离是()A.200c mB.200 d mC.200 mD.200 km6.如图,l//l2//l3,两条直线与这三条平行线分别交于点A,B,C和D,E,F,已知32ABBC=,则DEDF的值为()A. 32B.23.C.25D.357.下列四个三角形,与左图中的三角形相似的是()8.△ABC与△DEF相似,且相似比是23.,反之,△DEF与△ABC的相似比是()A. 23. B.32C.25D.499.如图,由下列条件不能判定△ABC与△A D E相似的是()A. AE ACAD AB= B.∠B=∠A D EC. AE DEAC BC= D.∠C=∠A E D10.小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为()A.10米B.12米C.15米D.22.5米二、填空题(每题4分,共28分)。

11.若1a+b,2ab b==则_____________。

北师大版初中数学九年级上册第四章综合测试试卷-含答案03

北师大版初中数学九年级上册第四章综合测试试卷-含答案03

第四章单元测试一、选择题(共10小题)1.如图,ABC △中,ABD C ∠=∠,若4AB =,2AD =,则CD 边的长是( )A .2B .4C .6D .82.要制作两个形状相同的三角形框架,已知其中一个三角形的三边长分别为3 cm ,4 cm ,6 cm ,另一个三角形的最短边长为4 cm ,则它的最长边长为( )A .9cm 2B .8 cmC .16cm 3D .12 cm3.已知:3:2x y =,则下列各式中正确的是( ) A .52x y y += B .13x y y −= C .23x y = D .1413x y +=+ 4.如图ABC △中,点D 、E 、F 分别在AB 、AC 上,且DE BC ∥,EF BC ∥,若2AD BD =,则CEAE的值为( )A .14B .13C .12D .235.小强带着足够的钱到鱼店去买鱼,鱼店里有一种“竹篓鱼”,个个都长得非常相似.现有大小两种不同价钱,如图所示,鱼长10 cm 的每条10元,鱼长13 cm 的每条17元,小强不知道哪种更好些,请帮小强出主意,该怎么买?( )A .买大的B .两种一样划算,随便选一种C .买小的D .无法比较哪种划算,随便选一种6.如图,ABC △和ADE △都是等腰直角三角形,90BAC DAE ∠=∠=︒,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交CE 于G ,连结BE .下列结论中:①2CE BD ==;②ADC △是等腰直角三角形;③ADB AEB ∠=∠;④••CD AE EF CG =.一定正确的是( )A .1个B .2个C .3个D .4个7.如图,有一块直角三角形余料ABC ,90BAC ∠=︒,G ,D 分别是AB 、AC 边上的一点,现从中切出一条矩形纸条DEFG ,其中E 、F 在BC 上,若 4.5 cm BF =, 2 cm CE =,则GF 的长为( )A .3 cmB .C .2.5 cmD .3.5 cm8.若ABC △与111A B C △相似且对应中线之比为2:5,则周长之比和面积比分别是( ) A .2:5,4:5B .2:5,4:25C .4:25,4:25D .4:25,2:59.如图,线段BC 的两端点的坐标分别为()3,8B ,()6,3C ,以点()1,0A 为位似中心,将线段BC 缩小为原来的12后得到线段DE ,则端点D 的坐标为( )A .()1,4B .()2,4C .3,42⎛⎫ ⎪⎝⎭D .()2,210.如图,D 是ABC △一边BC 上一点,连接AD ,使ABC DBA △∽△的条件是( )A .::AC BC AD BD =B .::AC BC AB AD = C .2•AB CD BC =D .2•AB BD BC =二、填空题(共8小题)11.比例尺为1:4 000 000的地图上,杭州到嘉兴的图上距离约是3 cm ,则杭州到嘉兴的实际距离是________km .12.一个矩形剪去一个以宽为边长的正方形后,所剩下的矩形与原矩形相似,则原矩形的宽与长的比是________.13.如图,AB CD ∥,AD 与BC 相交于点O ,若3AO =,6DO =,4BO =,则CO =________.14.已知两个相似三角形的面积之比是1:16,那么这两个三角形的周长之比是________.15.如图,矩形EFGO 的两边在坐标轴上,点O 为平面直角坐标系的原点,以y 轴上的某一点为位似中心,作位似图形ABCD ,且点B ,F 的坐标分别为()4,4−、()2,1,则位似中心的坐标为________.16.如图,123l l l ∥∥,2AM =,3MB =,4CD =,则ND =________.17.如图,A 、B 两点被池塘隔开,在AB 外取一点C ,连结AC 、BC ,在AC 上取点E ,使3AE EC =,作EF AB ∥交BC 于点F ,量得 6 m EF =,则AB 的长为________.18.如图,D 、E 是ABC △的边AB 、AC 上的点,DE 与BC 不平行,请填上一个你认为合适的条件________,使得ADE ACB △∽△.三、解答题(共8小题) 19.若0234x y z ==≠,求代数式x y zx y z+−++的值.20.如图,AD 是ABC △的中线,E 是AD 上一点,:1:4AE AD =,BE 的延长线交AC 于F ,求:AF CF 的值.21.已知:四边形ABCD 的两条对角线相交于点P ,ADB BCA ∠=∠,AD ,BC 延长线交于点Q ,求证:ACQ BDQ △∽△.22.如图,在ABC △中,90C ∠=︒, 6 cm AC =,8 cm BC =,D 、E 分别是AC 、AB 的中点,连接DE .点P 从点D 出发,沿DE 方向匀速运动,速度为1 cm/s ;同时,点Q 从点B 出发,沿BA 方向匀速运动,速度为2 cm/s ,当点P 停止运动时,点Q 也停止运动.连接PQ ,设运动时间为t (04t <<)s .解答下列问题:(1)当t 为何值时,以点E 、P 、Q 为顶点的三角形与ADE △相似? (2)当t 为何值时,EPQ △为等腰三角形?(直接写出答案即可).23.如图所示,三个边长为1个单位长度的正方形ABCD 、ABEF 、EFGH 拼在一起. (1)请找岀中相似的两个三角形,并证明; (2)直接写出1∠、2∠、3∠这三个角度数之和.24.如图,ABC △中,点P 在边AB 上,请用尺规在边AC 上作一点Q ,使AQ APAB AC=.(保留作图痕迹,不写作法).25.如图,在平面直角坐标系中,已知ABC △三个顶点的坐标分别是()2,2A ,()4,0B ,()4,4C −.以点O 为位似中心,将ABC △缩小为原来的12,得到111A B C △, (1)请在y 轴左侧画出111A B C △;(2)点(),P a b 为ABC △内的一点,则点P 在(1)中111A B C △内部的对应点1P 的坐标为________.26.某校九年级数学兴趣小组在探究相似多边形问题时,他们提出了下面两个观点:观点一:将外面大三角形按图1的方式向内缩小,得到新三角形,它们对应的边间距都为1,则新三角形与原三角形相似.观点二:将邻边为6和10的矩形按图2的方式向内缩小,得到新的矩形,它们对应的边间距都为1,则新矩形与原矩形相似.请回答下列问题:(1)你认为上述两个观点是否正确?请说明理由.(2)如图3,已知△ABC ,6AC =,8BC =,10AB =,将ABC △按图3的方式向外扩张,得到DEF △,它们对应的边间距都为1,求DEF △的面积.答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

九年级数学上册第四章检测试题北师大版附答案

九年级数学上册第四章检测试题北师大版附答案

适用精选文件资料分享九年级数学上册第四章检测试题(北师大版附答案)第四章检测题 ( 时间:120 分钟满分:120分)一、选择题(每小题 3 分,共 30 分) 1.假如 mn=ab,那么以下比率式中错误的选项是====bn 2.( 贺州中考 ) 如图,在△ ABC中,点 D、E 分别为 AB、AC的中点,则△ ADE与四边形 BCED的面积比为 ( C ) A .1∶1 B.1∶2 C.1∶3 D.1∶4 3.如图,在△ ABC 中,∠ ACB=90°, CD⊥AB,DE⊥BC,那么与△ ABC 相似的三角形的个数有( D) A.1 个 B.2个 C.3 个D.4个 , 第 2题图),第 3 题图 ), 第 6 题图 ) 4.在中华经典美文阅读中,刘明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为 ( A ) A.12.36 cm B.13.6 cm C.32.36 cm D.7.64 cm 5.( 通辽中考 ) 某人要在报纸上刊登广告,一块 10cm×5cm的矩形版面要付广告费180 元,他要把该版面的边长都扩大为本来的 3 倍,在每平方厘米版面广告费同样的状况下,他对付广告费(C)A .540元 B .1080 元 C.1620 元 D.1800 元 6 .( 永州中考 ) 如图,在△ ABC 中,点 D是 AB边上的一点,若∠ ACD=∠ B, AD=1,AC=2,△ ADC 的面积为 1,则△ BCD的面积为 ( C ) A .1 B.2 C.3 D.4 7 .( 眉山中考 ) “今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获取,则井深为 ( B ) A.尺 B.57.5 尺 C.6.25 尺 D.56.5 尺 , 第 7 题图) , 第 8 题图) , 第 9 题图) , 第 10 题图) 8 .以以以下图,在矩形ABCD中,F 是 DC上一点, AE均分∠ BAF交 BC于点 E,且 DE⊥AF,垂足为点 M,BE=3,AE=26,则 MD的长是 ( C ) A.15 B.1510 C.1 D.1515 点拨:设 DM=a,证△ AEM≌△ AEB,△ ADM≌△ DEC,可得(a +3)2 =a2+(15)2 9 .如图,在△ ABC中, A、B两个极点在 x 轴的上方,点C的坐标是 ( -1,0) .以点 C为位似中心,在 x 轴的下方作△ ABC 的位似图形△ A′B′C,并把△ ABC的边长放大到本来的 2 倍.设点 B 的对应点 B′的横坐标是 a,则点 B的横坐标是 ( D ) A.- 12a B.- 12(a +1) C.-12(a -1) D.-12(a +3) 10.如图,在矩形 ABCD中,DE均分∠ ADC交 BC于点 E,点 F 是 CD边上一点 ( 不与点 D重合 ) .点P为 DE上一动点, PE<PD,将∠ DPF绕点 P 逆时针旋转 90°后,角的两边交射线 DA于 H,G两点,有以下结论:① DH= DE;② DP= DG;③DG+ DF= 2DP;④DP?DE=DH?DC,此中必定正确的选项是 ( D ) A.①②B.②③ C.①④ D.③④二、填空题 ( 每题 3 分,共 18 分) 11.若x∶y=1∶2,则 x-yx+y=__-13__.12 .若△ ABC∽△ A′B′C′,且 AB∶A′B′= 3∶4,△ ABC的周长为 12 cm,则△ A′B′C′的周长为 __16_cm__. 13.( 锦州中考 ) 如图, E 为?ABCD的边 AB延长线上的一点,且BE∶AB=2∶3,连接DE交BC于点F,则CF∶AD=__3∶5__., 第 13 题图), 第 14 题图), 第 15 题图),第 16 题图 ) 14.(阿坝州中考 ) 如图,在平面直角坐标系中,已知 A(1,0),D(3,0) ,△ABC与△ DEF位似,原点 O是位似中心.若 AB=1.5 ,则 DE=__4.5__ . 15 .如图,小明同学用自制的直角三角形纸板 DEF丈量树的高度 AB,他调整自己的地点,想法使斜边 DF保持水平,而且边 DE与点 B 在同向来线上,已知纸板的两条直角边 DE= 50 cm,EF=25 cm,测得边 DF离地面的高度 AC=1.6 m ,CD=10 m,则树高AB=__6.6__m. 16 .如图,在△ ABC中,分别以 AC,BC为边作等边△ACD和等边△ BCE.设△ ACD,△ BCE,△ ABC的面积分别是S1,S2,S3,现有以下结论:①S1∶S2=AC2∶BC2;②连接AE,BD,则△BCD≌△ ECA;③若 AC⊥BC,则 S1?S2=34S32.此中结论正确的序号是__①②③ __.三、解答题 ( 共 72 分) 17.(6 分) 如图,在△ ABC中,点D是边AB的四均分点,DE∥AC,DF∥BC,AC=8,BC=12,求四边形 DECF的周长.解:∵ DE∥AC,DF∥BC,∴四边形 DFCE是平行四边形,∴DE=FC,DF=EC,∵ DF∥BC,∴△ ADF∽△ ABC,∴ DFBC=AFAC=ADAB=14,∵ AC=8,BC=12,∴ AF=2,DF=3,∴ FC=AC-AF=8-2=6,∴ DE=FC=6,DF=EC=3,∴四边形 DECF的周长是DF+CF+CE+DE=3+6+3+6=18. 答:四边形 DECF的周长是 1818.(6 分)( 凉山州中考 ) 如图,在边长为 1 的正方形网格中建立平面直角坐标系,已知△ ABC三个极点分别为 A(-1,2) 、B(2,1) 、C(4,5). (1) 画出△ ABC关于 x 轴对称的△ A1B1C1; (2) 以原点 O为位似中心,在x 轴的上方画出△A2B2C2,使△A2B2C2与△ABC位似,且相似比为 2,并求出△ A2B2C2的面积.解:(1) 以以以下图,△A1B1C1就是所求三角形 (2) 以以以下图,△A2B2C2就是所求三角形.分别过点 A2、 C2作 y 轴的平行线,过点 B2 作 x 轴的平行线,交点分别为 E、F,∵ A(- 1,2) ,B(2 ,1) ,C(4 ,5) ,△A2B2C2与△ ABC位似,且相似比为 2,∴ A2(- 2,4) ,B2(4 ,2) ,C2(8,10) ,∴S△A2B2C2=8×10-12×6×2-12×4×8-12×6×10=2819.(6 分) 九年级 (1) 班课外活动小组利用标杆丈量学校旗杆的高度,以以以下图,已知标杆高度CD=3 m,标杆与旗杆的水平距离BD=15 m,人的眼睛与地面的高度 EF=1.6 m,人与标杆 CD的水平距离 DF=2 m,则旗杆 AB的高度.解:∵ CD⊥FB,∴ AB⊥FB,∴ CD∥AB,∴△ CGE∽△ AHE,∴ CGAH= EGEH,即: CD-EFAH=FDFD+BD,∴3-=22+15,∴ AH=11.9 ,∴AB=AH+HB=AH+EF=11.9 +=13.5(m)20.(7 分) 如图,在梯形 ABCD中, DC∥AB, AD=BC,E 是 DC延长线上的点,连接 AE,交 BC于点 F. (1) 求证:△ ABF∽△ ECF; (2) 假如AD=5 cm,AB=8 cm,CF=2 cm,求 CE的长. (1) 证明:∵ DC∥AB,∴∠ B=∠ ECF,∠ BAF=∠ E,∴△ ABF∽△ ECF(2) 解:∵ AD= BC,AD =5 cm,AB=8 cm,CF=2 cm,∴BF=3 cm. ∵由 (1) 知,△ABF∽△ ECF,∴BACE=BFCF,即 8CE=32. ∴CE= 163(cm) 21.(8 分) 如图,四边形 ABCD是矩形,E是 BD上的一点,∠BAE=∠B CE,∠AED=∠ CED,点 G是 BC、AE延长线的交点,AG与 CD订交于点 F. (1)求证:四边形 ABCD是正方形; (2) 当 AE=2EF时,判断 FG与 EF有何数目关系?并证明你的结论. (1) 证明:易证△ ABE≌△ CBE,∴AB=B C,∴四边形 ABCD是正方形 (2) 解:当 AE=2EF时, FG=3EF.证明以下:∵四边形 ABCD是正方形,∴ AB∥CD,AD∥BC,∴△ ABE∽△ FDE,△ ADE∽△ GBE. ∵AE= 2EF,∴ BE∶DE=AE∶EF=2.∴BG∶AD=BE∶DE= 2,即 BG=2AD. ∵ BC=AD,∴ CG=AD.易证△ADF∽△ GCF,∴ FG= AF,即 FG=AF=AE+EF=3EF22.(8 分)( 泰安中考 ) 如图,在四边形 ABCD中, AB=AC=AD,AC平分∠ BAD,点 P 是 AC延长线上一点,且 PD⊥AD. (1) 证明:∠ BDC=∠PDC; (2) 若AC与 BD订交于点 E,AB=1,CE∶CP=2∶3,求 AE 的长. (1) 证明:∵ AB=AD,AC均分∠ BAD,∴ AC⊥BD,∴∠ ACD+∠BDC=90°,∵AC=AD,∴∠ ACD=∠ADC,∴∠ ADC+∠ BDC=90°,∵PD⊥AD,∴∠ ADC+∠ PDC=90°,∴∠ BDC =∠ PDC (2) 解:过点 C作 CM⊥PD于点 M,∵∠ BDC=∠ PDC,∴ CE= CM,∵∠ CMP=∠ ADP=90°,∠ P=∠ P,∴△ CPM∽△ APD,∴ CMAD= PCPA,设 CM=CE=x,∵CE∶CP=2∶3,∴PC= 32x,∵AB= AD= AC=1,∴x1=32x32x+1,解得 x =13,故 AE=1-13=23 23 .(9 分) 晚餐后,小聪和小军在社区广场闲步,小聪问小军:“你有多高?”小军一时语塞.小聪思虑片晌,建议用广场照明灯下的影长及地砖长来丈量小军的身高.于是,两人在灯下沿直线 NQ挪动,如图,当小聪正好站在广场的 A 点( 距 N点 5 块地砖长 ) 时,其影长 AD恰好为 1 块地砖长;当小军正好站在广场的 B 点( 距 N点 9 块地砖长 ) 时,其影长 BF恰好为 2 块地砖长.已知广场所面由边长为 0.8 米的正方形地砖铺成,小聪的身高 AC为米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你依据以上信息,求出小军身高BE 的长. ( 结果精确到 0.01 米) 解:由题意得:∠ CAD=∠ MND=90°,∠CDA=∠ MDN,∴△ CAD∽△ MND,∴ CAMN= ADND,∴=1×(5+1)×0.8 ,∴MN=9.6 ,又∵∠EBF=∠MNF=90°,∠EFB=∠MFN,∴△ EFB∽△ MFN,∴ EBMN= BFNF,∴=2×0.8 ( 2+9)× 0.8 ,∴EB≈1.75 ,∴小军身高约为 1.75 米24.(10 分) 如图 (1) 是一种广场三联闲步机,其侧面表示图如图 (2) 所示,此中 AB=AC=120 cm,BC=80 cm,AD=30 cm,∠ DAC=90°. (1) 求点 A 到地面的距离; (2) 求点 D到地面的高度是多少?解:(1)过 A 作 AF⊥BC,垂足为 F,过点 D作 DH⊥AF,垂足为 H.∵AF⊥BC,垂足为 F,∴ BF=FC=12BC=40 cm.依据勾股定理,得 AF=AB2-BF2=1202-402=802(cm) (2) ∵∠ DHA=∠ DAC=∠ AFC=90°,∴∠ DAH +∠ FAC=90°,∠C+∠ FAC=90°,∴∠ DAH=∠ C,∴△DAH∽△ ACF,∴AHFC=ADAC,∴ AH40=30120,∴ AH=10 cm,∴ HF= (10 +802)cm.答: D到地面的高度为 (10 +802)cm25.(12 分) 从三角形 ( 不是等腰三角形 ) 一个极点引出一条射线与对边订交,极点与交点之间的线段把这个三角形切割成两个小三角形,假如分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的圆满切割线.(1) 如图 1,在△ABC中,CD为角均分线,∠A=40°,∠B=60°,求证:CD为△ABC的圆满切割线; (2) 在△ ABC中,∠ A=48°, CD是△ ABC的圆满分割线,且△ ACD为等腰三角形,求∠ ACB的度数. (3)如图 2,在△ ABC 中, AC=2,BC= 2,CD是△ ABC的圆满切割线,且△ ACD是以CD 为底边的等腰三角形,求圆满切割线 CD的长.解:(1) 如图 1 中,∵∠ A=40°,∠B=60°,∴∠ ACB=80°,∴△ ABC 不是等腰三角形,∵CD均分∠ ACB,∴∠ ACD=∠ BCD=12∠ACB=40°,∴∠ ACD=∠ A=40°,∴△ ACD为等腰三角形,∵∠ DCB=∠ A=40°,∠CBD=∠ ABC,∴△ BCD∽△ BAC,∴CD是△ ABC的圆满切割线 (2) ①当 AD=CD时,如图 3,∠ACD=∠ A=48°,∵△ BDC∽△ BCA,∴∠ BCD=∠ A=48°,∴∠ ACB=∠ ACD+∠ BCD=96° ②当 AD=AC时,如图4 中,∠ACD=∠ ADC=180°- 48°2=66°,∵△ BDC∽△ BCA,∴∠BCD =∠ A=48°,∴∠ ACB=∠ ACD+∠ BCD=114°;③当 AC=CD时,如图 5 中,∠ADC=∠ A=48°,∵△ BDC∽△ BCA,∴∠ BCD=∠ A=48°,∵∠ ADC>∠ BCD,矛盾,舍弃.∴∠ ACB=96°或 114° (3) 由已知AC=AD=2,∵△ BCD∽△ BAC,∴ BCBA= BDBC,设 BD=x,∴( 2)2=x(x +2) ,∵ x>0,∴ x= 3-1,∵△ BCD∽△ BAC,∴ CDAC=BDBC=3-1 2,∴ CD= 3-1 2×2= 6- 2。

(北师大版)九年级数学上册:第四章检测题

(北师大版)九年级数学上册:第四章检测题

第四章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.观察下列每组图形,相似图形是( D )2.(2015·玉林)△ABC 与△A′B′C′是位似图形,且△ABC 与△A′B′C′的位似比是1∶2,已知△ABC 的面积是3,则△A′B′C′的面积是( D )A .3B .6C .9D .123.下列四组条件中,能判定△ABC 与△DEF 相似的是( C ) A .∠A =45°,∠B =55°;∠D =45°,∠F =75°B .AB =5,BC =4,∠A =45°;DE =5,EF =4,∠D =45° C .AB =6,BC =5,∠B =40°;DE =12,EF =10,∠E =40° D .AB =BC ,∠A =50°;DE =EF ,∠E =50° 4.已知点C 是线段AB 的黄金分割点,且AC>BC ,若AB =8,则线段AC 的长为( A ) A .4(5-1) B .45-1 C .12-4 5 D .8-4 55.如图,BE ,CD 相交于O ,且∠1=∠2,图中的相似三角形有( A ) A .2组 B .3组 C .5组 D .6组,第5题图) ,第6题图) ,第7题图) ,第9题图)6.小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B 时,要使眼睛O ,准星A ,目标B 在同一条直线上.如图所示,在射击时,小明有轻微的抖动,致使准星A 偏离到A′,若OA =0.2米,OB =40米,AA′=0.0015米,则小明射击到的点B′偏离目标点B 的长度BB′为( B )A .3米B .0.3米C .0.03米D .0.2米7.如图,△ABC 中,∠C =90°,四边形DEFC 是内接正方形,AC =4 cm ,BC =3 cm ,则正方形的面积为( D )A.127 cm 2 B .3 cm 2 C .4 cm 2 D.14449 cm 2 8.下列四条线段成比例的是( C )A .a =4,b =6,c =5,d =10B .a =2,b =3,c =2,d = 3C .a =2,b =5,c =15,d =2 3D .a =12,b =8,c =15,d =119.如图,E(-4,2),F(-1,-1),以O 为位似中心,按比例尺1∶2把△EFO 缩小,则点E 的对应点E′的坐标为( A )A .(2,-1)或(-2,1)B .(8,-4)或(-8,4)C .(2,-1)D .(8,-4)10.将边长分别为2,3,5的三个正方形按如图方式排列,则图中阴影部分的面积为( B )A.214B.154C.72D .3,第10题图) ,第13题图),第14题图) ,第15题图) 二、填空题(每小题3分,共24分)11.如果x 2=y 3=z4≠0,那么x +2y +3z 3x +2y -2z的值是__5__.12.两个相似三角形的面积比为9∶25,其中一个三角形的周长为36,则另一个三角形的周长为__1085或60__.13.(2015·长沙)如图,在△ABC 中,点D ,E 分别是边AB ,AC 的中点,则△ADE 与△ABC 的周长之比等于__12__.14.如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,点A 的坐标为(1,0),则E 点的坐标为__(2,2)__.15.(2015·邵阳)如图,▱ABCD 中,F 是BC 上一点,直线DF 与AB 的延长线相交于E ,BP ∥DF ,且与AD 相交于点P ,请从图中找出一组相似的三角形:__△APB ∽△ADE __.16.如图,D ,E 是AB 的三等分点,DF ∥EG ∥BC ,则图中三部分面积S 1∶S 2∶S 3=__1∶3∶5__.,第16题图) ,第17题图),第18题图)17.(2015·长春)如图,在边长为3的菱形ABCD 中,点E 在边CD 上,点F 为BE 延长线与AD 延长线的交点,若DE =1,则DF 的长为__32__.18.如图,正方形ABCD 和正方形OEFG 中,点A 和点F 的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是__(1,0)或(-5,-2)__.三、解答题(共66分) 19.(6分)一般在室外放映的电影胶片中图片的规格是3.5 cm ×3.5 cm ,放映的银屏规格为2 m ×2 m .若放映机的光源距胶片20 cm ,问:银屏拉在距离光源多远的地方时,放映的图象刚好布满整个银屏?解:设银屏应拉在距离光源x m 远的地方时,放映的图象刚好布满整个银屏,由题意,得x 0.2=20.035,∴x =807(m )20.(7分)如图,在矩形ABCD 中,点E ,F 分别在边AD ,DC 上,△ABE ∽△DEF ,AB =6,AE =9,DE =2,求EF 的长.解:∵△ABE ∽△DEF ,∴AB ∶DE =AE ∶DF ,即6∶2=9∶DF ,DF =3,∵矩形ABCD ,∴∠D =90°,在Rt △DEF 中,EF =13 21.(8分)图中的两个多边形ABCDEF 和A 1B 1C 1D 1E 1F 1相似(各字母已按对应关系排列),∠A =∠D 1=135°,∠B =∠E 1=120°,∠C 1=95°.(1)求∠F 的度数;(2)如果多边形ABCDEF 和A 1B 1C 1D 1E 1F 1的相似比是1∶1.5,且CD =15 cm ,求C 1D 1的长度.解:(1)∵多边形ABCDEF 和A 1B 1C 1D 1E 1F 1相似,又∠C 和∠C 1,∠D =∠D 1,∠E 和∠E 1是对应角,∴∠C =95°,∠D =135°,∠E =120°.由多边形内角和定理,知∠F =720°-(135°+120°+95°+135°+120°)=115°(2)∵多边形ABCDEF 和A 1B 1C 1D 1E 1F 1的相似比是1∶1.5,且CD =15 cm ,∴C 1D 1=15×1.5=22.5(cm )22.(8分)在平面直角坐标系内有两点A(-2,0),B(12,0),CB 所在的直线为y =2x +b ,连接AC ,求证:△AOC ∽△COB.证明:∵直线CB :y =2x +b 过B (12,0),∴b =-1,∴C (0,-1),∴OA =2,OC =1,OB =12,∴OC ∶OB =OA ∶OC =2∶1,又 ∠AOC =∠COB =90°,∴△AOC ∽△COB23.(8分)(2015·汕尾)如图,在▱ABCD 中,E 是AD 边上的中点,连接BE ,并延长BE 交CD 的延长线于点F.(1)证明:FD =AB ;(2)当▱ABCD 的面积为8时,求△FED 的面积.解:(1)易证△ABE ≌△DFE ,则FD =AB(2)易知BE =EF ,S △FBC =S ▱ABCD =8,∵DE ∥BC ,∴△FDE ∽△FCB ,∴S △FDE S △FCB =(EF BF)2=(12)2,S △FDE 8=14,S △FDE =224.(8分)如图,△ABC 中,D 是BC 的中点,且AD =AC ,DE ⊥BC 与AB 相交于点E ,EC 与AD 相交于点F.(1)△ABC 与△FCD 相似吗?请说明理由; (2)点F 是线段AD 的中点吗?为什么?解:(1)易知BE =CE ,∠B =∠FCD ,AD =AC ,∠ACB =∠FDC ,∴△ABC ∽△FCD(2)F 是AD 的中点,理由:由(1)得BC CD =ACDF=2,∴AC =2DF =AD ,∴F 是AD 的中点25.(10分)如图,△ABC 是等边三角形,CE 是外角平分线,点D 在AC 上,连接BD 延长交CE 于点E.(1)求证:△ABD ∽△CED ;(2)若AB =6,AD =2CD ,求BE 的长.(1)证明:在正△ABC 中,∠ACB =∠A =60°,∴∠ACF =120°,∵CE 平分∠ACF ,∴∠ACE =12∠ACF =60°,∴∠A =∠ACE.又∵∠ADB =∠CDE ,∴△ABD ∽△CED(2)解:∵△ABD ∽△CED ,AD =2CD ,∴AB CE =AD CD =2,∴CE =12AB =3.过E 作EG ⊥BF于G ,在Rt △CEG 中,∠ECG =60°,CE =3,∴CG =32,EG =323.在Rt △BEG 中,BG=BC +CG =6+32=152,∴BE =BG 2+EG 2=(152)2+(323)2=63=3726.(11分)如图①所示,在等边三角形ABC 中,线段AD 为其角平分线,过D 的直线B 1C 1⊥AC 于C 1,交AB 的延长线于B 1.(1)请你探究:AC AB =CD DB ,AC 1AB 1=C 1DDB 1是否成立?(2)如图②所示,在Rt △ABC 中,∠ACB =90°,AC =8,AB =403,E 为AB 上一点,且AE =5,CE 交△ABC 的角平分线AD 于F ,试求DFFA的值.(1)成立,证明略.提示:易证AC AB =1=CD DB ,AC 1AB 1=12=C 1DDB 1,故这两个等式都成立(2)如图③所示,连接ED.∵AD 为△ABC 的角平分线,∴CD DB =AC AB =8403=35.而AE EB =5403-5=35,∴CD DB =AE EB ,∴DE ∥AC ,∴△DEF ∽△ACF ,∴DF FA =EF FC =AE AC =58。

第四章(单元测试)含答案-2022年北师版数学九年级上册

第四章(单元测试)含答案-2022年北师版数学九年级上册

第四章测试一、选择题(每小题3分,共30分) 1.如果a b =23,那么a -2b b 的结果是( )A .-12B .-43C.43D.122.如图,直线l 1∥l 2∥l 3,直线AC ,DF 与l 1,l 2,l 3的交点分别为A ,B ,C ,D ,E ,F .已知AB =6,BC =4,DF =9,则DE =( ) A .5.4B .5C .4D .3.6(第2题) (第4题)3.一个四边形的各边之比为1∶2∶3∶4,和它相似的另一个四边形的最小边长为5 cm ,则最大边长为( ) A .10 cm B .15 cm C .20 cmD .25 cm4.如图,P 为线段AB 上一点,AD 与BC 交于点E ,∠CPD =∠A =∠B ,BC 交PD 于点F ,AD 交PC 于点G ,则下列结论中错误的是( ) A .△CGE ∽△CBP B .△APD ∽△PGD C .△APG ∽△BFPD .△PCF ∽△BCP5.如图,D ,E 分别是AB ,AC 边上的点,在下列条件中:①∠AED =∠B ;②DE BC =AD AC ;③AD AC =AE AB ,能独立判断△ADE 与△ACB 相似的有( )A .①B .①③C .①②D .①②③6.如图,AB ∥CD ,AE ∥FD ,AE ,FD 分别交BC 于点G ,H ,则图中共有相似三角形()A.4对B.5对C.6对D.7对(第6题)(第7题)7.如图,△ABC与△A1B1C1位似,位似中心是点O,若OA∶OA1=1∶2,则△ABC 与△A1B1C1的周长比是()A.1∶2 B.1∶3 C.1∶4 D.1∶ 2 8.将三角形纸片(△ABC)按如图所示的方式折叠,使点C落在AB边上的点D 处,折痕为EF.已知AB=AC=3,BC=4,若以点B,D,F为顶点的三角形与△ABC相似,那么CF的长度是()A.2 B.127或2 C.127 D.125或2(第8题) (第9题)(第10题)9.如图,铁道口的栏杆短臂长1 m,长臂长10 m.当短臂端点下降0.5 m时,长臂端点升高()A.5 m B.6 m C.7 m D.8 m 10.如图,在平面直角坐标系中,AB∥DC,AC⊥BC,CD=AD=5,AC=6,将四边形ABCD向左平移m个单位后,点B恰好和原点O重合,则m的值是()A.11.4 B.11.6 C.12.4 D.12.6二、填空题(每小题4分,共28分)11.若ab=cd=ef=2,且b+d+f=4,则a+c+e=________.12.已知△ABC∽△A′B′C′,AD和A′D′是它们的对应中线,若AD=10,A′D′=6,则△ABC与△A′B′C′的周长比是________.13.在某一时刻,测得一根高为1.2 m的竹竿的影长为2 m,同时同地测得一栋楼的影长为90 m,则这栋楼的高度为________m.14.如图,线段AB=1,点C和点D均为线段AB的黄金分割点,那么CD=________.(第14题)(第15题)15.如图,把△DEF沿DE平移到△ABC的位置,它们重合部分的面积是△DEF面积的49,若AB=6,则△DEF移动的距离AD=________.16.如图,矩形ABCD中,AB=2,BC=2,E为CD的中点,连接AE,BD 交于点P,过点P作PQ⊥BC于点Q,则PQ=________.(第16题)(第17题)17.如图,在边长为2个单位长度的正方形ABCD中,E是AB的中点,点P从点D出发沿射线DC以每秒1个单位长度的速度运动,过点P作PF⊥DE于点F,当运动时间为______秒时,以P,F,E为顶点的三角形与△AED相似.三、解答题(一)(每小题6分,共18分)18.如图,四边形ABCD∽四边形A′B′C′D′.(1)α=________,它们的相似比是________;(2)求边x的长度.19.如图,已知△ABC∽△ACD,AC=6,AD=4,CD=2AD,求BD和BC的长.20.如图,已知在▱ABCD中,E为AB上一点,AE∶EB=1∶2,DE与AC交于点F.(1)求△AEF与△CDF的周长之比;(2)若S△AEF=6 cm2,求S△CDF.四、解答题(二)(每小题8分,共24分)21.如图,在正方形ABCD中,点E为BC的中点,连接DE,过点E作EF⊥ED,交AB于点G,交DA的延长线于点F.(1)求证:△ECD∽△GAF;(2)若AB=4,求EF的长.22.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,E是AC的中点,DE的延长线与BC的延长线交于点F.求证:(1)△FDC∽△FBD;(2)AC·BF=BC·DF.23.如图,已知△ABC的三个顶点的坐标分别为A(0,-3),B(3,-2),C(2,-4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位长度得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的相似比为21,并直接写出点A2的坐标.五、解答题(三)(每小题10分,共20分)24.如图,某校数学兴趣小组利用自制的直角三角形硬纸板(△DEF)来测量操场上的旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶端A在同一直线上.已知DE=0.5 m,EF=0.25 m,点D到地面的距离DG=1.5 m,到旗杆的水平距离DC=20 m,求旗杆的高度.25.一块材料的形状是锐角三角形ABC,边BC=120 mm,高AD=80 mm,把它加工成正方形零件,如图①,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)如果把它加工成矩形零件,如图②,当EG为多少时,矩形EGHF有最大面积?最大面积是多少?答案一、1.B 2.A 3.C 4.A 5.B 6.C 7.A 8.B 9.A 10.A二、11.8 12.5∶3 13.54 14.5-2 15.2 16.43 17.1或52三、18.解:(1)81°;3∶2(2)∵四边形ABCD ∽四边形A ′B ′C ′D ′,∴x 11=96, 解得x =332.19.解:∵AD =4,CD =2AD ,∴CD =8.∵△ABC ∽△ACD ,∴AD AC =AC AB =CD BC ,即46=6AB =8BC , 解得AB =9,BC =12,∴BD =AB -AD =5. 20.解:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,CD ∥AB .∴∠CAB =∠DCA ,∠DEA =∠CDE . ∴△AEF ∽△CDF .∵AE ∶EB =1∶2,∴AE ∶AB =AE ∶CD =1∶3. ∴△AEF 与△CDF 的周长之比为1∶3. (2)∵△AEF ∽△CDF ,AE ∶CD =1∶3, ∴S △AEF ∶S △CDF =1∶9.∵S △AEF =6 cm 2,∴S △CDF =54 cm 2. 四、21.(1)证明:∵四边形ABCD 为正方形,∴∠C =∠BAD =∠B =90°, ∴∠F AG =90°,∴∠F AG =∠C . ∵EF ⊥ED ,∴∠BEG +∠CED =90°. ∵∠BGE +∠BEG =90°,∴∠BGE =∠CED . ∵∠BGE =∠FGA ,∴∠FGA =∠CED , ∴△ECD ∽△GAF .(2)解:∵四边形ABCD 为正方形,∴BC =CD =AB =4. ∵点E 为BC 的中点,∴BE =EC =12BC =2, ∴DE =EC 2+CD 2=22+42=2 5. 由(1)知,△ECD ∽△GAF ,∴∠F =∠CDE . ∵EF ⊥ED ,∴∠FED =90°,∴∠FED =∠C =90°, ∴△EFD ∽△CDE ,∴EF DE =CD CE ,∴EF 2 5=42,∴EF =4 5.22.证明:(1)∵CD ⊥AB ,∴∠ADC =90°.又∵E 是AC 的中点,∴DE =EC .∴∠EDC =∠ECD . ∵∠ACB =90°,∠BDC =90°,∴∠ECD +∠DCB =90°,∠DCB +∠B =90°. ∴∠ECD =∠B .∴∠EDC =∠B . 又∵∠F =∠F ,∴△FDC ∽△FBD . (2)∵△FDC ∽△FBD ,∴DF BF =DCBD . ∵∠BDC =∠BCA =90°,∠B =∠B , ∴△CBD ∽△ABC .∴BD BC =DC AC ,即DC BD =AC BC . ∴DF BF =ACBC .∴AC ·BF =BC ·DF .23.解:(1)如图所示,△A 1B 1C 1即为所求.(2)如图所示,△A 2B 2C 2即为所求,A 2的坐标为(-2,-2).五、24.解:∵∠DEF =∠DCA =90°,∠EDF =∠CDA ,∴△DEF ∽△DCA .∴DE DC =EF CA .∵DE =0.5 m ,EF =0.25 m ,DC =20 m ,∴0.520=0.25CA .∴AC =10 m. 又∵CB =DG =1.5 m ,∴AB =AC +CB =10+1.5=11.5(m). 答:旗杆的高度为11.5 m.25.(1)证明:∵四边形EGHF 为正方形,∴EF ∥BC ,∴△AEF ∽△ABC . (2)解:设EG =a mm , ∵四边形EGHF 为矩形, ∴EF ∥BC ,∴△AEF ∽△ABC .∵AK 与AD 是对应边上的高,∴EF BC =AK AD ,∴EF 120=80-a80, ∴EF =⎝ ⎛⎭⎪⎫120-32a mm ,∴S 矩形EGHF =a ⎝ ⎛⎭⎪⎫120-32a =-32a 2+120a =-32(a -40)2+2 400(mm 2), 当a =40时,矩形EGHF 的面积最大,最大面积是2 400 mm 2,即当EG =40 mm 时,矩形EGHF 的面积最大,最大面积是2 400 mm 2.。

北师大版九年级上册数学第四章测试题(附答案)

北师大版九年级上册数学第四章测试题(附答案)

北师大版九年级上册数学第四章测试题(附答案)一、单选题(共12题;共24分)1.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交DB于点F,则△DEF的面积与△BAF的面积之比为()A. 1:3B. 3:4C. 1:9D. 9:162.如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为()A. 105°B. 115°C. 125°D. 135°3.在△ABC中,DE∥BC,交AB于D,交AC于E,且AD∶DB=1∶2,则下列结论正确的是( )A. DE:BC=1:2B. DE:BC=1:3C. △ADE的周长:△ABC的周长=1:2D. S△ADE:S△ABC=1:34.已知a:b=3:2,则a:(a﹣b)=()A. 1:3B. 3:1C. 3:5D. 5:35.下列各组中的四条线段成比例的是().A. 1cm,2cm,20cm,40cmB. 1cm,2cm,3cm,4cmC. 4cm,2cm,1cm,3cmD. 5cm,10cm,15cm,20cm6.如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD =12米,那么该古城墙的高度是( )A. 6米B. 8米C. 18米D. 24米7.“相似的图形”是()A. 形状相同的图形B. 大小不相同的图形C. 能够重合的图形D. 大小相同的图形8.同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则这棵树的高度为()A. 2.4米B. 9.6米C. 2米D. 1.6米9.如图,在平面直角坐标系中有一个四边形ABCD,现将四边形ABCD各顶点的横坐标和纵坐标都乘2,得到四边形A1B1C1D1,则四边形A1B1C1D1的面积与四边形ABCD的面积之比为()A. 2:1B. 3:1C. 4:1D. 5:110.如图,在△ABC中,点D,E分别在AB,AC上,且,则: ( )A. 1:2B. 1:4C. 1:8D. 1:911.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD= .其中正确的结论有()A. 4个B. 3个C. 2个D. 1个12.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO 缩小,则点E的对应点E′的坐标是()A. (﹣2,1)B. (﹣8,4)C. (﹣8,4)或(8,﹣4)D. (﹣2,1)或(2,﹣1)二、填空题(共6题;共12分)13.如图在△ABC中,点D、E分别在AB、AC上,且DE∥BC,已知AD=2,DB=4,AC=4.5,则EC=________.14.如图,在正方形ABCD中,AB=4,E是BC边的中点,F是CD边上的一点,且DF=1。

北师大版九年级数学上册第四章图形的相似单元测试

北师大版九年级数学上册第四章图形的相似单元测试

北师大版九年级数学上册第四章图形的相似单元测试第一卷 (选择题 共30分)一、选择题(每题3分,共30分)1.以下各组中的四条线段是成比例线段的是( )A .1 cm ,2 cm ,20 cm ,40 cmB .1 cm ,2 cm ,3 cm ,4 cmC .6 cm ,4 cm ,1 cm ,3 cmD .5 cm ,10 cm ,15 cm ,20 cm2.如图1,两条直线区分被三条平行直线l 1,l 2,l 3所截,假定AB =3,BC =6,DE =2,那么DF 的长为( )图1A .4B .5C .6D .73.假定a b =35,那么a +bb的值是( )A.58B.35C.85D.324.如图2,△ABC 中,AC =BC ,在边AB 上截取AD =AC ,衔接CD ,假定点D 恰恰是线段AB 的一个黄金联系点,那么∠A 的度数是( )图2A .22.5°B .30°C .36°D .45°5.如图3所示,将△ABO 的三边区分扩展为原来的2倍失掉△A 1B 1C 1(顶点均在格点上),它们是以点P 为位似中心的位似图形,那么点P 的坐标是( )A .(-4,-3)B .(-3,-3)C .(-4,-4)D .(-3,-4)图36.如图4,矩形ABCD ,AB =2,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使点B 落在AD 上的点F 处,假定四边形EFDC 与矩形ABCD 相似,那么AD 的长为( )图4A. 5B.5+1 C .4 D .2 37.在小孔成像效果中,光线穿过小孔,在屏幕上构成倒立的实像,如图5所示,假定点O 到AB 的距离是18 cm ,点O 到CD 的距离是6 cm ,那么像CD 的长是AB 长的( )图5A .3倍 B.12C.13D .不知AB 的长度,故无法判别 8.为了测量校园水平空中上一棵不可攀的树的高度,学校数学兴味小组做了如下的探求:依据光的反射定律,应用一面镜子和一根皮尺,设计如图6所示的测量方案,把一面很小的镜子水平放置在离树底(B )8.4米的点E 处,然后沿着直线BE 前进到点D ,这时恰恰在镜子里看到树梢顶点A ,再用皮尺量得DE =3.2米,观察者目高CD =1.6米,那么树(AB )的高度为( )图6A .4.2米B .4.8米C .6.4米D .16.8米9.如图7,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 边的中点B ′重合,假定AB =2,BC =3,那么△FCB ′与△B ′DG 的面积之比为( )A .9∶4B .3∶2C .4∶3D .16∶9图710.如图8,在△ABC 中,AB =6 cm ,AC =12 cm ,动点D 从点A 动身到点B 中止,动点E 从点C 动身到点A 中止.点D 的运动速度为1 cm/s ,点E 的运动速度为2 cm/s.假设两点同时运动,那么当以点A ,D ,E 为顶点的三角形与△ABC 相似时,运动的时间是( )图8A .3 s 或4.8 sB .3 sC .4.5 sD .4.5 s 或4.8 s 请将选择题答案填入下表:第二卷 (非选择题 共90分)二、填空题(每题3分,共18分)11.如图9,D 是等边三角形ABC 中边AB 上的点,AD =2,DB =4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E ,F 区分在边AC 和BC 上,那么CFCE=________.图912.如图10,△ABC 中,AB =6,DE ∥AC ,将△BDE 绕点B 顺时针旋转失掉△BD ′E ′,点D 的对应点D ′落在边BC 上.BE ′=5,D ′C =4,那么BC 的长为________.图1013.假定a b =c d =e f =12,那么3a -2c +e3b -2d +f(3b -2d +f ≠0)=________.14.如图11所示,Rt △DEF 是由Rt △ABC 沿BC 方向平移失掉的,假定AB =8,BE =4,DH =3,那么△HEC 的面积为________.图1115.如图12,在△ABC 中,AC =6,AB =4,点D ,A 在直线BC 的同侧,且∠ACD =∠B ,CD =2,E 是线段BC 延伸线上的动点,当△DCE 和△ABC 相似时,线段CE 的长为________.图1216.如图13,直线y =12x +1与x 轴交于点A ,与y 轴交于点B ,△BOC 与△B ′O ′C ′是以点A 为位似中心的位似图形,且相似比为1∶3,那么点B 的对应点B ′的坐标为________.图13三、解答题(共72分)17.(6分)a ,b ,c 是△ABC 的三边长,且满足a +43=b +32=c +84,a +b +c =12,试求a ,b ,c 的值,并判别△ABC 的外形.18.(6分)如图14,在平面直角坐标系中,四边形OABC 的顶点区分是O(0,0),A(6,0),B(3,6),C(-3,3).(1)以原点O 为位似中心,在点O 的异侧画出四边形OABC 的位似图形四边形OA 1B 1C 1,使它与四边形OABC 的相似比是2∶3;(2)写出点A 1,B 1,C 1的坐标; (3)求四边形OA 1B 1C 1的面积.图1419.(8分):在△ABC 中,∠ABC =90°,AB =3,BC =4,Q 是线段AC 上的一个动点,过点Q 作AC 的垂线交线段AB(如图15①)或线段AB 的延伸线(如图15②)于点P.(1)当点P 在线段AB 上时,求证:△AQP ∽△ABC ; (2)当△PQB 为等腰三角形时,求AP 的长.图1520.(8分)如图16①,点D ,E 区分在AB ,AC 上,且AD AB =AEAC .(1)求证:DE ∥BC ;(2)如图②,在△ABC 中,D 为边AC 上恣意一点,衔接BD ,取BD 的中点E ,衔接CE 并延伸CE 交边AB 于点F ,求证:BF AF =CDAC;(3)在(2)的条件下,假定AB =AC ,AF =CD ,求BFAF的值.图1621.(10分)如图17是位于陕西省西安市荐福寺内的小雁塔,是中国早期方形密檐式砖塔的典型作品,并作为丝绸之路的一处重要遗址点,被列入«世界遗产名录».小铭、小希等几位同窗想应用一些测量工具和所学的几何知识测量小雁塔的高度,由于观测点与小雁塔底部间的距离不易测量,因此经过研讨需求停止两次测量,于是在阳光下,他们首先应用影长停止测量,方法如下:小铭在小雁塔的影子顶端D 处竖直立一根木棒CD ,并测得此时木棒的影长DE =2.4米;然后,小希在BD 的延伸线上找出一点F ,使得A ,C ,F 三点在同不时线上,并测得DF =2.5米.图中一切点均在同一平面内,木棒高CD =1.72米,AB ⊥BF ,CD ⊥BF ,试依据以上测量数据,求小雁塔的高度AB.图1722.(10分)如图18,在平面直角坐标系中,OA =12厘米,OB =6厘米,点P 从点O 末尾沿OA 边向点A 以1厘米/秒的速度移动,点Q 从点B 末尾沿BO 边向点O 以1厘米/秒的速度移动.假设点P ,Q 同时动身,用t(秒)表示移动的时间(0≤t ≤6).(1)设△POQ 的面积为y ,求y 关于t 的函数表达式; (2)当t 为何值时,△POQ 与△AOB 相似?图1823.(12分)如图19,在等腰三角形ABC 中,∠BAC =120°,AB =AC =2,D 是BC 边上的一个动点(不与点B ,C 重合),在AC 上取一点E ,使∠ADE =30°.(1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.图1924.(12分)如图20①,点C 将线段AB 分红两局部,假设AC AB =BCAC ,那么称点C 为线段AB 的黄金联系点.某数学兴味小组在停止研讨时,由〝黄金联系点〞联想到〝黄金联系线〞,相似给出〝黄金联系线〞的定义:一条直线将一个面积为S 的图形分红两局部,这两局部的面积区分为S 1,S 2,假设S 1S =S 2S 1,那么称这条直线为该图形的黄金联系线.(1)如图②,在△ABC 中,∠A =36°,AB =AC ,∠ACB 的平分线交AB 于点D ,请问直线CD 是不是△ABC 的黄金联系线?并证明你的结论;(2)如图③,在边长为1的正方形ABCD 中,E 是边BC 上一点,假定直线AE 是正方形ABCD 的黄金联系线,求BE 的长.图20详解详析1.A2.C [解析] ∵两条直线区分被三条平行直线l 1,l 2,l 3所截,∴AB BC =DEEF. ∵AB =3,BC =6,DE =2,∴EF =4,∴DF =DE +EF =2+4=6.应选C. 3.C4.C [解析] ∵点D 是线段AB 的一个黄金联系点,∴AD 2=BD ·AB . ∵AD =AC =BC ,∴BC 2=BD ·AB , 即BC ∶BD =AB ∶BC .而∠ABC =∠CBD ,∴△BCD ∽△BAC , ∴∠A =∠BCD .设∠A =x °,那么∠B =x °,∠BCD =x °,∴∠ADC =∠BCD +∠B =2x °. 而AC =AD ,∴∠ACD =∠ADC =2x °, ∴x +2x +2x =180,解得x =36, 即∠A =36°.应选C. 5.A6.B [解析] 由折叠知AF =AB =2,设AD =x ,那么FD =x -2,EF =2, ∵四边形EFDC 与矩形ABCD 相似, ∴EF FD =AD AB ,即2x -2=x 2,解得x 1=1+5,x 2=1-5(不合题意,舍去),即AD 的长为5+1.应选B.7.C [解析] 过点O 作OM ⊥AB 于点M ,交CD 于点N ,如图,那么OM =18 cm ,ON =6 cm.∵AB ∥CD ,∴△ODC ∽△OAB ,∴CD AB =ON OM =618=13,即CD 的长是AB 长的13.应选C.8.A [解析] 如图,过点E 作EF ⊥BD 于点E ,那么∠1=∠2.∵∠DEF =∠BEF =90°,∴∠DEC =∠AEB .∵CD ⊥BD ,AB ⊥BD ,∴∠CDE =∠ABE =90°,∴△CDE ∽△ABE ,∴DE BE =CD AB.∵DE =3.2米,CD =1.6米,BE =8.4米,∴3.28.4=1.6AB,解得AB =4.2米. 9.D [解析] 此题运用方程思想,设CF =x , 那么BF =3-x ,易得CF 2+CB ′2=FB ′2,即x 2+12=(3-x )2,解得x =43.由可证得Rt △FCB ′∽Rt △B ′DG ,所以S △FCB ′S △B ′DG =⎝ ⎛⎭⎪⎫CF DB ′2=169.10.A [解析] 此题运用分类讨论的思想,分△ADE ∽△ABC 和△ADE ∽△ACB 两种状况区分求解.11.54 [解析] ∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AC =BC =AB =AD +DB =6.由折叠的性质可知∠EDF =∠C =60°,EC =ED ,FC =FD ,∴∠AED =∠BDF ,∴△AED ∽△BDF , ∴DF DE =BD +DF +BF AE +AD +DE =108=54,∴CF CE =DF DE =54. 12.2+34 [解析] 由旋转可得BE =BE ′=5,BD =BD ′. ∵D ′C =4,∴BD ′=BC -4,即BD =BC -4. ∵DE ∥AC ,∴BD BA =BE BC ,即BC -46=5BC,解得BC =2+34(负值已舍),即BC 的长为2+34.13.12 [解析] 由a b =c d =e f =12,得a =12b ,c =12d ,e =12f ,所以3a -2c +e 3b -2d +f =1.5b -d +0.5f3b -2d +f =12. 14.503 [解析] 设CE =x ,由△CEH ∽△CBA ,得EH AB =CE CB ,即8-38=x x +4,∴x =203,∴S△HEC=12×203×5=503. 15.43或 3 [解析] ∵∠ACD +∠DCE =∠B +∠A ,∠ACD =∠B ,∴∠DCE =∠A ,∴∠A 与∠DCE 是对应角,∴△DCE 和△ABC 相似有两种状况: (1)当△BAC ∽△ECD 时,AB CE =AC CD ,∴4CE =62,∴CE =43; (2)当△BAC ∽△DCE 时,AB CD =ACCE, ∴42=6CE,∴CE =3. 综上所述,CE 的长为43或3.故答案为:43或3.易错警示△DCE 和△ABC 相似有两种状况,留意不要漏解.16.(4,3)或(-8,-3) [解析] 由直线y =12x +1与x 轴交于点A ,与y 轴交于点B ,得点A (-2,0),点B (0,1).画△BOC 的位似图形△B ′O ′C ′如下图.∵△BOC 与△B ′O ′C ′的相似比为1∶3,∴点B ′(x ,3)或(x ,-3).∵点B ′(x ,3)或(x ,-3)在直线y =12x+1上,∴点B ′的坐标为(4,3)或(-8,-3).故答案为(4,3)或(-8,-3). 17.解:设a +43=b +32=c +84=k (k ≠0),∴a =3k -4,b =2k -3,c =4k -8. ∵a +b +c =12,将a =3k -4,b =2k -3,c =4k -8代入上式, 得3k -4+2k -3+4k -8=12, ∴9k =27,即k =3. ∴a =5,b =3,c =4.∵b 2+c 2=9+16=25,a 2=52=25, ∴b 2+c 2=a 2,∴△ABC 是直角三角形.18.解:(1)如下图,四边形OA 1B 1C 1即为所求.(2)由图形可得A 1(-4,0),B 1(-2,-4),C 1(2,-2).(3)四边形OA 1B 1C 1的面积为12×2×4+12×(3+4)×2+12×3×2=14.19.解:(1)证明:∵∠A +∠APQ =90°,∠A +∠C =90°, ∴∠APQ =∠C . 在△AQP 和△ABC 中, ∵∠APQ =∠C ,∠A =∠A , ∴△AQP ∽△ABC .(2)在Rt △ABC 中,AB =3,BC =4,由勾股定理,得AC =5. ①当点P 在线段AB 上时. ∵△PQB 为等腰三角形,∴PB =PQ .由(1)可知,△AQP ∽△ABC , ∴PA AC =PQ BC,即3-PB 5=PB 4,解得PB =43, ∴AP =AB -PB =3-43=53;②当点P 在线段AB 的延伸线上时. ∵△PQB 为等腰三角形, ∴PB =BQ ,∴∠BQP =∠P .∵∠BQP +∠AQB =90°,∠A +∠P =90°, ∴∠AQB =∠A ,∴BQ =AB , ∴AB =BP ,即B 为线段AP 的中点, ∴AP =2AB =2×3=6.综上所述,当△PQB 为等腰三角形时,AP 的长为53或6.20.解:(1)证明:∵∠A =∠A ,AD AB =AEAC, ∴△ADE ∽△ABC ,∴∠ADE =∠B , ∴DE ∥BC .(2)证明:如图,过点D 作DG ∥AB 交CF 于点G ,那么△CDG ∽△CAF ,∴DG AF =CD AC. ∵E 是BD 的中点,∴BE =ED . ∵DG ∥AB ,∴∠FBE =∠EDG .在△BEF 和△DEG 中,∠FBE =∠EDG ,∠FEB =∠GED ,BE =ED ,∴△BEF ≌△DEG (ASA), ∴BF =DG ,∴BF AF =CDAC .(3)由(2)可得BF AF =CDAC.∵AB =AC ,AF =CD ,∴BF AF =AFAF +BF,∴BF 2+BF ·AF -AF 2=0,∴(BF AF)2+BF AF -1=0,解得BF AF =-1±52,而BE AF >0,∴BF AF =5-12.21.解:由题意得∠ABD =∠CDE =90°, ∠ADB =∠CED ,∴△CDE ∽△ABD ,∴CD AB =DE BD.∵由题意得∠CDF =∠ABF =90°,∠CFD =∠AFB ,∴△CDF ∽△ABF ,∴CD AB =DF BF,∴DE BD =DF BF,即2.4BD = 2.5BD +2.5,∴BD =60, ∴1.72AB =2.460,∴AB =43. 答:小雁塔的高度AB 是43米.22.解:(1)由题意,得BQ =t 厘米,OP =t 厘米. 由于OB =6厘米, 所以OQ =(6-t )厘米.所以y =12OP ·OQ =12t ·(6-t )=-12t 2+3t (0≤t ≤6).(2)当△POQ 与△AOB 相似时,①假定OQ OB =OP OA ,即6-t 6=t12,解得t =4;②假定OQ OA =OP OB ,即6-t 12=t 6,解得t =2.所以当t =4或t =2时,△POQ 与△AOB 相似.23.解:(1)证明:∵△ABC 是等腰三角形,且∠BAC =120°,∴∠B =∠C =30°. 又∵∠ADE =30°,∴∠B =∠ADE .又∵∠ADC =∠ADE +∠EDC =∠B +∠DAB ,∴∠EDC =∠DAB ,∴△ABD ∽△DCE .(2)如图①,过点A 作AF ⊥BC 于点F ,∵AB =AC =2,∠BAC =120°,∴∠AFB =90°.∵AB =2,∠ABF =30°,∴AF =12AB =1, ∴BF =3,∴BC =2BF =23,那么CD =23-x ,CE =2-y .∵△ABD ∽△DCE ,∴AB BD =CD CE ,∴2x =23-x 2-y ,化简得y =12x 2-3x +2(0<x <23). (3)当AD =DE 时,如图②,由(1)可知:此时△ABD ∽△DCE , 那么AB =CD ,即2=23-x ,x =23-2,将其代入y =12x 2-3x +2,解得y =4-23, 即AE =4-23;当AE =ED 时,如图③,∠EAD =∠EDA =30°,∠AED =120°,∴∠DEC =60°,∠EDC =90°,那么DE =12CE ,即y =12(2-y ),解得y =23,即AE =23; 当AD =AE 时,∠AED =∠ADE =30°,∠EAD =120°,此时点D 与点B 重合,不契合题意,故此种状况不存在.综上,当△ADE 是等腰三角形时,AE 的长为4-23或23. 24.解:(1)直线CD 是△ABC 的黄金联系线.证明:∵AB =AC ,∠A =36°,∴∠ABC =∠ACB =72°.∵CD 平分∠ACB ,∴∠ACD =∠BCD =12∠ACB =36°, ∴∠BDC =72°=∠B ,∠A =∠ACD ,∴BC =CD ,AD =CD ,∴BC =AD .∵∠B =∠B ,∠BCD =∠A ,∴△BCD ∽△BAC ,∴BD BC =BC AB ,∴BD AD =AD AB. 又∵S △BCD S △ADC =BD AD ,S △ADC S △ABC =AD AB, ∴S △BCD S △ADC =S △ADC S △ABC, ∴直线CD 是△ABC 的黄金联系线.(2)设BE =x ,∵正方形ABCD 的边长为1,∴S △ABE =12AB ·BE =12x ,S 正方形ABCD =12=1, ∴S 四边形ADCE =1-12x . ∵直线AE 是正方形ABCD 的黄金联系线, ∴S △ABES 四边形ADCE =S 四边形ADCE S 正方形ABCD , ∴S 四边形ADCE 2=S △ABE ·S 正方形ABCD ,即(1-12x )2=12x ·1, 整理,得x 2-6x +4=0,解得x 1=3+5,x 2=3- 5.∵E 是边BC 上一点,∴x <1,∴x =3-5,∴BE 的长为3- 5.。

最新北师版九年级初三数学上册北师大版九上第4章测试卷(3)

最新北师版九年级初三数学上册北师大版九上第4章测试卷(3)

第四章图形的相似测试卷一.选择题1.若a:b=2:3,则下列各式中正确的式子是()A.2a=3b B.3a=2b C.D.2.若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.53.如图,在△ABC中,DE∥BC,若=,则=()A.B.C.D.4.如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()A.B.C.D.5.若两个相似多边形的面积之比为1:4,则它们的周长之比为()A.1:4B.1:2C.2:1D.4:16.)已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()A.B.C.D.27.如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个B.1个C.2个D.3个8.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.=D.=9.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2B.3C.4D.510.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2B.1:3C.1:4D.1:1611.如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.B.1C.D.212.如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)二.填空题13.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=.14.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.15.如图,在△ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件,使△ABC∽△ACD.(只填一个即可)16.已知矩形ABCD中,AB=1,在BC上取一点E,将△ABE沿AE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD= .三.解答题17.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.18.如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.19.如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD 交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.20.如图,在△ABC中,AD平分∠BAC交BC于点D.点E、F分别在边AB、AC 上,且BE=AF,FG∥AB交线段AD于点G,连接BG、EF.(1)求证:四边形BGFE是平行四边形;(2)若△ABG∽△AGF,AB=10,AG=6,求线段BE的长.21.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.22.如图,是一个照相机成像的示意图.(1)如果像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,拍摄点离景物有多远?(2)如果要完整的拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,则相机的焦距应调整为多少?答案解析一.选择题1.若a:b=2:3,则下列各式中正确的式子是()A.2a=3b B.3a=2b C.D.【考点】比例的性质.【分析】根据比例的性质,对选项一一分析,选择正确答案.【解答】解:A、2a=3b⇒a:b=3:2,故选项错误;B、3a=2b⇒a:b=2:3,故选项正确;C、=⇒b:a=2:3,故选项错误;D、=⇒a:b=4:3,故选项错误.故选B.【点评】考查了比例的性质.在比例里,两个外项的乘积等于两个内项的乘积.2.若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.5【考点】比例的性质.【专题】计算题.【分析】根据比例设x=k,y=3k,再用k表示出z,然后代入比例式进行计算即可得解.【解答】解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.【点评】本题考查了比例的性质,利用“设k法”分别表示出x、y、z可以使计算更加简便.3.如图,在△ABC中,DE∥BC,若=,则=()A.B.C.D.【考点】平行线分线段成比例.【分析】直接利用平行线分线段成比例定理写出答案即可.【解答】解:∵DE∥BC,∴==,故选C.【点评】本题考查了平行线分线段成比例定理,了解定理的内容是解答本题的关键,属于基础定义或定理,难度不大.4.(2016•淄博)如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()A.B.C.D.【考点】平行线分线段成比例.【专题】线段、角、相交线与平行线.【分析】先作出作BF⊥l3,AE⊥l3,再判断△ACE≌△CBF,求出CE=BF=3,CF=AE=4,然后由l2∥l3,求出DG,即可.【解答】解:如图,作BF⊥l3,AE⊥l3,∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CFB=90°,∴∠ACE=∠CBF,在△ACE和△CBF中,,∴△ACE≌△CBF,∴CE=BF=3,CF=AE=4,∵l1与l2的距离为1,l2与l3的距离为3,∴AG=1,BG=EF=CF+CE=7∴AB==5,∵l2∥l3,∴=∴DG=CE=,∴BD=BG﹣DG=7﹣=,∴=.故选A.【点评】此题是平行线分线段成比例试题,主要考查了全等三角形的性质和判定,平行线分线段成比例定理,勾股定理,解本题的关键是构造全等三角形.5.若两个相似多边形的面积之比为1:4,则它们的周长之比为()A.1:4B.1:2C.2:1D.4:1【考点】相似多边形的性质.【分析】根据相似多边形的面积之比等于相似比的平方,周长之比等于相似比,就可求解.【解答】解:∵两个相似多边形面积比为1:4,∴周长之比为=1:2.故选:B.【点评】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.6.已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B 点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()A.B.C.D.2【考点】相似多边形的性质.【分析】可设AD=x,根据四边形EFDC与矩形ABCD相似,可得比例式,求解即可.【解答】解:∵沿AE将△ABE向上折叠,使B点落在AD上的F点,∴四边形ABEF是正方形,∵AB=1,设AD=x,则FD=x﹣1,FE=1,∵四边形EFDC与矩形ABCD相似,∴=,=,解得x1=,x2=(负值舍去),经检验x1=是原方程的解.故选B.【点评】考查了翻折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC与矩形ABCD相似得到比例式.7.如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个B.1个C.2个D.3个【考点】相似三角形的判定.【分析】直接利用平行四边形的性质得出AD∥BC,AB∥DC,再结合相似三角形的判定方法得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC,∴△AEF∽△CBF,△AEF∽△DEC,∴与△AEF相似的三角形有2个.故选:C.【点评】此题主要考查了相似三角形的判定以及平行四边形的性质,正确掌握相似三角形的判定方法是解题关键.8.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.=D.=【考点】相似三角形的判定.【分析】分别利用相似三角形的判定方法判断得出即可.【解答】解:A、当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B、当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C、当=时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D、无法得到△ABP∽△ACB,故此选项正确.故选:D.【点评】此题主要考查了相似三角形的判定,正确把握判定方法是解题关键.9.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2B.3C.4D.5【考点】相似三角形的判定与性质.【分析】根据直角三角形斜边上中线是斜边的一半可得DF=AB=AD=BD=5且∠ABF=∠BFD,结合角平分线可得∠CBF=∠DFB,即DE∥BC,进而可得DE=8,由EF=DE﹣DF可得答案.【解答】解:∵AF⊥BF,∴∠AFB=90°,∵AB=10,D为AB中点,∴DF=AB=AD=BD=5,∴∠ABF=∠BFD,又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠CBF=∠DFB,∴DE∥BC,∴△ADE∽△ABC,∴=,即,解得:DE=8,∴EF=DE﹣DF=3,故选:B.【点评】本题主要考查直角三角形的性质和相似三角形的判定与性质,熟练运用其判定与性质是解题的关键.10.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2B.1:3C.1:4D.1:16【考点】相似三角形的性质.【分析】由相似三角形周长的比等于相似比即可得出结果.【解答】解:∵△ABC与△DEF的相似比为1:4,∴△ABC与△DEF的周长比为1:4;故选:C.【点评】本题考查了相似三角形的性质;熟记相似三角形周长的比等于相似比是解决问题的关键.11.如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.B.1C.D.2【考点】相似三角形的性质.【专题】网格型.【分析】根据题意平移AB使A点与P点重合,进而得出,△QPB′是直角三角形,再利用tan∠QMB=tan∠P=,进而求出答案.【解答】解:如图所示:平移AB使A点与P点重合,连接B′Q,可得∠QMB=∠P,∵PB′=2,PQ=2,B′Q=4,∴PB′2+PB′2=B′Q2,∴△QPB′是直角三角形,∴tan∠QMB=tan∠P===2.故选:D.【点评】此题主要考查了勾股定理以及锐角三角函数关系,正确得出△QPB′是直角三角形是解题关键.12.如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)【考点】平面直角坐标系中的位似变换.【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.【解答】解:由题意得,△ODC∽△OBA,相似比是,∴=,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选:A.【点评】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.二.填空题13.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=3.【考点】比例的性质.【分析】根据等比性质,可得答案.【解答】解:由等比性质,得k===3,故答案为:3.【点评】本题考查了比例的性质,利用了等比性质:===k⇒k==.14.(2016•济宁)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.【考点】平行线分线段成比例.【分析】首先求出AD的长度,然后根据平行线分线段成比例定理,列出比例式即可得到结论.【解答】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.【点评】该题主要考查了平行线分线段成比例定理及其应用问题;解题的关键是准确找出图形中的对应线段,正确列出比例式求解、计算.15.如图,在△ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件∠ACD=∠ABC(答案不唯一),使△ABC∽△ACD.(只填一个即可)【考点】相似三角形的判定.【专题】开放型.【分析】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件.【解答】解:由题意得,∠A=∠A(公共角),则可添加:∠ACD=∠ABC,利用两角法可判定△ABC∽△ACD.故答案可为:∠ACD=∠ABC.【点评】本题考查了相似三角形的判定,解答本题的关键是熟练掌握三角形相似的三种判定方法,本题答案不唯一.16.已知矩形ABCD中,AB=1,在BC上取一点E,将△ABE沿AE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD=.【考点】相似多边形的性质.【专题】压轴题.【分析】可设AD=x,由四边形EFDC与矩形ABCD相似,根据相似多边形对应边的比相等列出比例式,求解即可.【解答】解:∵AB=1,设AD=x,则FD=x﹣1,FE=1,∵四边形EFDC与矩形ABCD相似,∴=,=,解得x1=,x2=(不合题意舍去),经检验x1=是原方程的解.故答案为.【点评】本题考查了翻折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC与矩形ABCD相似得到比例式.三.解答题(共52分)17.(2016•福州)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AD=BC,BC=,∴AD=,DC=1﹣=.∴AD2==,AC•CD=1×=.∴AD2=AC•CD.(2)∵AD=BC,AD2=AC•CD,∴BC2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ACB.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠BDC.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.18.如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.【考点】相似三角形的判定.【分析】(1)利用相似三角形的判定以及全等三角形的判定方法得出符合题意的答案;(2)利用相似三角形的判定以及全等三角形的判定方法分别得出即可.【解答】解:(1)△ADE≌△BDE,△ABC∽△BCD;(2)证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠ABD=∠ABC=36°=∠A,在△ADE和△BDE中∵,∴△ADE≌△BDE(AAS);证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠DBC=∠ABC=36°=∠A,∵∠C=∠C,∴△ABC∽△BCD.【点评】此题主要考查了相似三角形以及全等三角形的判定,正确把握判定方法是解题关键.19.(2016•广州)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.【考点】相似三角形的性质.【分析】(1)设直线AD的解析式为y=kx+b,用待定系数法将A(,),D(0,1)的坐标代入即可;(2)由直线AD与x轴的交点为(﹣2,0),得到OB=2,由点D的坐标为(0,1),得到OD=1,求得BC=5,根据相似三角形的性质得到或,代入数据即可得到结论.【解答】解:(1)设直线AD的解析式为y=kx+b,将A(,),D(0,1)代入得:,解得:.故直线AD的解析式为:y=x+1;(2)∵直线AD与x轴的交点为(﹣2,0),∴OB=2,∵点D的坐标为(0,1),∴OD=1,∵y=﹣x+3与x轴交于点C(3,0),∴OC=3,∴BC=5∵△BOD与△BEC相似,∴或,∴==或,∴BE=2,CE=,或CE=,∵BC•EF=BE•CE,∴EF=2,CF==1,∴E(2,2),或(3,).【点评】本题考查了相似三角形的性质,待定系数法求函数的解析式,正确的作出图形是解题的关键.20.如图,在△ABC中,AD平分∠BAC交BC于点D.点E、F分别在边AB、AC 上,且BE=AF,FG∥AB交线段AD于点G,连接BG、EF.(1)求证:四边形BGFE是平行四边形;(2)若△ABG∽△AGF,AB=10,AG=6,求线段BE的长.【考点】相似三角形的性质.【专题】综合题.【分析】(1)根据FG∥AB,又AD平分∠BAC,可证得,∠AGF=∠GAF,从而得:AF=FG=BE,又因为FG∥AB,所以可知四边形BGFE是平行四边形;(2)根据△ABG∽△AGF,可得,求出AF的长,再由(1)的结论:AF=FG=BE,即可得BE的长.【解答】(1)证明:∵FG∥AB,∴∠BAD=∠AGF.∵∠BAD=∠GAF,∴∠AGF=∠GAF,AF=GF.∵BE=AF,∴FG=BE,又∵FG∥BE,∴四边形BGFE为平行四边形.(4分)(2)解:△ABG∽△AGF,∴,即,∴AF=3.6,∵BE=AF,∴BE=3.6.【点评】解决此类题目,要掌握平行四边形的判定及相似三角形的性质.21.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.【考点】利用标杆测量物体的高度.【分析】根据题意可得:△DEF∽△DCA,进而利用相似三角形的性质得出AC的长,即可得出答案.【解答】解:由题意可得:△DEF∽△DCA,则=,∵DE=0.5米,EF=0.25米,DG=1.5m,DC=20m,∴=,解得:AC=10,故AB=AC+BC=10+1.5=11.5(m),答:旗杆的高度为11.5m.【点评】此题主要考查了相似三角形的应用,得出△DEF∽△DCA是解题关键.22.如图,是一个照相机成像的示意图.(1)如果像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,拍摄点离景物有多远?(2)如果要完整的拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,则相机的焦距应调整为多少?【考点】利用镜子测量物体的高度.【分析】(1)利用相似三角形对应边上的高等于相似比即可列出比例式求解;(2)和上题一样,利用物体的高和拍摄点距离物体的距离及像高表示求相机的焦距即可.【解答】解:根据物体成像原理知:△LMN∽△LBA,∴.(1)∵像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,∴,解得:LD=7,∴拍摄点距离景物7米;(2)拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,∴,解得:LC=70,∴相机的焦距应调整为70mm.【点评】本题考查了相似三角形的应用,解题的关键是根据题意得到相似三角形,并熟知相似三角形对应边上的高的比等于相似比.励志名言:1、学习从来无捷径,循序渐进登高峰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上册第四章单元测试卷(B卷)说明:请将答案或解答过程直接写在各题的空白处.本卷满分100分.考试时间90分钟一、选择题:(每小题3分,共36分)1.已知=,那么的值为()A .B .C .D .2.如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A .B .C .D .3.下列说法中正确的有()①位似图形都相似;②两个等腰三角形一定相似;第2题③两个相似多边形的面积比为4:9,则周长的比为16:81;④若一个三角形的三边分别比另一个三角形的三边长2cm,那么这两个三角形一定相似.A.1个B.2个C.3个D.4个4.如右图,在△ABC中,点D、E分别在BC、AB边上,DF∥AB,交AC边于点H,EF∥BC,交AC边于点G,则下列结论中正确的是()A .B.C .D .5.如图,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC相似的是()A .B .C .D .6.如图,已知矩形ABCD中,AB=2,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点处,若四边形EFDC与矩形ABCD相似,则AD=()A .B .C.4 D .7.如图所示,在▱ABCD中,BE交AC,CD于G,F,交AD的延长线于E,则图中的相似三角形有()A.3对B.4对C.5对D.6对8.如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①∠ACD=30°;②S▱ABCD=AC•BC;③OE:AC=:6;④S△OCF=2S△OEF成立的个数有()A.1个B.2个C.3个D.4个9.△ABC经过一定的运动得到△A1B1C1,然后以点A1为位似中心按比例尺A1B2:A1B1=2:1,△A1B1C1放大为△A1B2C2,如果△ABC上的点P的坐标为(a,b),那么这个点在△A1B2C2中的对应点P2的坐标为()A.(a+3,b+2)B.(a+2,b+3)C.(2a+6,2b+4)D.(2a+4,2b+6)10.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是()A.3.25m B.4.25m C.4.45m D.4.75m11.如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC 交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()A .B .C .D .12.如图,∠A=∠B=90°,AB=7,AD=2,BC=3,在边AB上取点P,使得△PAD与△PBC相似,则这样的P 点共有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共12分)13.已知实数a,b,c满足a+b+c=10,且,则的值是.14.将两块全等的三角板如图放置,点O为AB中点,AB=A′B′=10,BC=B′C′=6,现将三角板A′B′C′绕点O 旋转,B′C′、A′B′与边AC分别交于点M、N,当CM=时,△OMN与△BCO相似.15.如图,在Rt△ABC中,∠C=90°,点D在边AB上,线段DC绕点D逆时针旋转,端点C恰巧落在边AC上的点E处.如果=m ,=n.那么m与n满足的关系式是:m=(用含n的代数式表示m).16.如图1,四边形ABCD中,AB∥CD,AD=DC=CB=a,∠A=60°.取AB的中点A1,连接A1C,再分别取A1C,BC的中点D1,C1,连接D1C1,如图2.取A1B的中点A2,连接A2C1,再分别取A2C1,BC1的中点D2,C2,连接D2C2,如图3.…,如此进行下去,则线段D n C n的长度为.三、解答题(本部分共6题,合计52分)17.已知,(1)求的值;(2)如果,求x的值.18.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.19.有一块三角形的余料ABC,要把它加工成矩形的零件,已知:BC=8cm,高AD=12cm,矩形EFGH的边EF 在BC边上,G、H分别在AC、AB上,设HE的长为ycm、EF的长为xcm(1)写出y与x的函数关系式.(2)当x取多少时,EFGH是正方形?20.为了测量路灯(OS)的高度,把一根长1.5米的竹竿(AB)竖直立在水平地面上,测得竹竿的影子(BC)长为1米,然后拿竹竿向远离路灯方向走了4米(BB′),再把竹竿竖立在地面上,测得竹竿的影长(B′C′)为1.8米,求路灯离地面的高度.21.如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A、B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)密封线九年级上册第四章单元测试卷(B卷)答案一、选择题1-5 BCAAB 6—10 BDDCC 11-12 AC9.【解析】△A1B1C1是由△ABC通过平移得到的,其平移规律是右移三个单位后,再上移2个单位,所以点P移到P1的坐标为(a+3,b+2).△A1B2C2是由三角线A1B1C1通过位似变换得到的,所以在△A1B2C2上的各点坐标,都做了相应的位似变换,即乘以了2.∴点P1的对应点P2的坐标为(2a+6,2b+4).10.【解析】设BD是BC在地面的影子,树高为x,根据竹竿的高与其影子的比值和树高与其影子的比值相同得而CB=1.2,∴BD=0.96,∴树在地面的实际影子长是0.96+2.6=3.56,再竹竿的高与其影子的比值和树高与其影子的比值相同得,∴x=4.45,∴树高是4.45m.故选C.11.【解析】如图,作BF⊥l3,AE⊥l3,∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CFB=90°,∴∠ACE=∠CBF,在△ACE和△CBF中,,∴△ACE≌△CBF,∴CE=BF=3,CF=AE=4,∵l1与l2的距离为1,l2与l3的距离为3,∴AG=1,BG=EF=CF+CE=7∴AB==5,∵l2∥l3,∴=∴DG=CE=,∴BD=BG﹣DG=7﹣=,∴=.故选A.12.【解析】设AP=x,则有PB=AB﹣AP=7﹣x,当△PDA∽△CPB 时,=,即=,解得:x=1或x=6,当△PDA∽△PCB 时,=,即=,解得:x=,则这样的点P共有3个,故选C.二、填空题13.14. 或 15. 2n+1 16.a”13.【解析】∵a+b+c=10,∴a=10﹣(b+c),b=10﹣(a+c),c=10﹣(a+b),∴=﹣+﹣+﹣=﹣1+﹣1+﹣1=++﹣3,∵,∴原式=×10﹣3=﹣3=.14.【解析】∵∠ACB=90°,点O为AB中点,AB=A′B′=10,BC=B′C′=6,∴OC=AB=OA=OB=5,AC==8,∵△ABC≌△A′B′C′,∴∠B=∠MON.若△OMN与△BCO相似,分两种情况:①当OM=MN时,作OD⊥AC于D,CE⊥AB于E,如图所示:则AD=CD=AC=4,△ABC的面积=AB•CE=AC•BC,∴OD===3,CE==,∵△OMN∽△BOC ,∴==,即,∴OM=MN=,∴DM==,∴CM=CD﹣DM=4﹣=;②当ON=MN时,∵△OMN∽△BCO ,∴===,即,解得:OM=,∴DM==,∴CM=CD﹣DM=4﹣=;综上所述:当CM=或时,△OMN与△BCO相似.15.【解析】作DH⊥AC于H,如图,∵线段DC绕点D逆时针旋转,端点C恰巧落在边AC上的点E处,∴DE=DC,∴EH=CH,∵=n,即AE=nEC,∴AE=2nEH=2nCH,∵∠C=90°,∴DH∥BC ,∴=,即m===2n+1.故答案为:2n+1.16.【解析】∵AB∥CD,AD=DC=CB=a,∠A=60°,∴A1B=AB.∵分别取A1C,BC的中点D1,C1,∴C1D1为三角形CA1B的中位线,∴C1D1=AB=a.同理可得:C2D2=A1B=a,C3D3=A2B=a,C4D4=A3B=a,…,∴C n D n =a .故答案为:a.三、解答题17.【解析】(1)∵==,∴令===k,则x=2k,y=3k,z=4k ,∴===﹣1;(2)∵x=2k,y=3k,z=4k ,=y﹣z,∴x+3=(y﹣z)2,即2k+3=(3k﹣4k)2,解得k=﹣1或k=3(舍去),∴x=﹣2.18. 【解析】∵PQ∥BC ,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ,∴PQ=3.19. 【解析】(1)∵BC=8cm,高AD=12cm,HE的长为ycm、EF的长为xcm,四边形EFGH是矩形,∴AK=AD﹣y=12﹣y,HG=EF=x,HG∥BC,∴△AHG∽△ABC,∴=,即=,∴y=12﹣x;(2)由(1)可知,y与x的函数关系式为y=12﹣x,∵四边形EFGH是正方形,∴HE=EF,即x=y,∴x=12﹣x,解得x=.答:当x=时,四边形EFGH是正方形.20. 【解析】∵AB⊥OC′,OS⊥OC′,∴SO∥AB,∴△ABC∽△SOC,∴=,即=,解得OB=h﹣1①,同理,∵A′B′⊥OC′,∴△A′B′C′∽△SOC′,∴=,=②,把①代入②得,=,解得h=9(米).答:路灯离地面的高度是9米.21. 【解析】(1)证明:∵BD⊥BE,∴∠1+∠2=180°﹣90°=90°,∵∠C=90°,∴∠2+∠E=180°﹣90°=90°,∴∠1=∠E,∵在△ABD和△CEB 中,,∴△ABD≌△CEB(AAS),∴AB=CE,∴AC=AB+BC=AD+CE;(2)(i)如图,过点Q作QF⊥BC于F,则△BFQ∽△BCE ,∴=,即=,∴QF=BF,∵DP⊥PQ,∴∠APD+∠FPQ=180°﹣90°=90°,∵∠APD+∠ADP=180°﹣90°=90°,∴∠ADP=∠FPQ,又∵∠A=∠PFQ=90°,∴△ADP∽△FPQ ,∴=,即=,∴5AP﹣AP2+AP•BF=3•BF,整理得,(AP﹣BF)(AP﹣5)=0,∵点P与A,B两点不重合,∴AP≠5,∴AP=BF,由△ADP∽△FPQ 得,=,∴=;(ii)线段DQ的中点所经过的路径(线段)就是△BDQ的中位线MN.由(2)(i)可知,QF=AP.当点P运动至AC中点时,AP=4,∴QF=.∴BF=QF×=4.在Rt△BFQ中,根据勾股定理得:BQ===.∴MN=BQ=.∴线段DQ 的中点所经过的路径(线段)长为.。

相关文档
最新文档