一次函数专题训练题

合集下载

中考数学复习《一次函数》专项提升训练题-附带答案

中考数学复习《一次函数》专项提升训练题-附带答案

中考数学复习《一次函数》专项提升训练题-附带答案学校:班级:姓名:考号:一、选择题1.下列各点在直线y=−2x+6上的是()A.(−1,4)B.(2,10)C.(3,0)D.(−3,0)2.将一次函数y=2x−1的图象沿y轴向上平移4个单位长度,所得直线的解析式为()A.y=2x−5B.y=2x−3C.y=2x+3D.y=2x+43.关于y是x的一次函数y=kx+b2+1(其中k<0,b为任意实数)的图象可能是()A.B.C.D.4.已知一次函数y=−2x+4,那么下列结论正确的是()A.y的值随x的值增大而增大B.图象经过第一、二、三象限C.图象必经过点(1,2)D.当x<2时5.若点A(x1,−1),B(x2,−2),C(x3,3)在一次函数y=−2x+m(m是常数)的图象上,则x1,x2,x3的大小关系是()A.x1>x2>x3B.x2>x1>x3C.x1>x3>x2D.x3>x2>x16.如图,函数y=mx和y=kx+b的图象相交于点P(1,m),则不等式−b≤kx−b≤mx的解集为()A.0≤x≤1B.−1≤x≤0C.−1≤x≤1D.−m≤x≤m7.已知一次函数y=32x+m和y=−12x+n的图象都经过点A(−2,0),且与y轴分别交于B、C两点,那么△ABC的面积是()A .2B .3C .4D .68.小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离y (米)与小明出发的时间x (分)之间的函数图象.下列结论中不正确的是( )A .公园离小明家1600米B .小明出发253分钟后与爸爸第一次相遇C .小明与爸爸第二次相遇时,离家的距离是960米D .小明在公园停留的时间为5分钟二、填空题9.若函数y =(m −1)x |m|−5是一次函数,则m 的值为 .10.一次函数y=(2m ﹣6)x+4中,y 随x 的增大而减小,则m 的取值范围是 .11.弹簧的自然长度为5cm ,在弹簧的弹性限度内,所挂的物体的质量x 每增加1kg ,弹簧的长度y 增加0.5cm ,则y 与x 之间的函数关系式是 .12.如图所示,直线y =kx +b 经过点(−2,0),则关于x 的不等式kx +b >0的解集为 .13.函数y =ax +b 和y =−x +2的图像如图所示,两图像交于点P(−1,m),则二元一次方程组:{y −ax =b y +x =2的解是 .三、解答题14.已知一次函数y=k(x+2)(k≠0).(1)求证:点(−2,0)在该函数图象上;(2)若该函数图象向上平移2个单位后过点(1,−2),求k的值;(3)若该函数图象与y轴的交点在x轴和直线y=−2之间,求k的取值范围.15.为丰富学生的业余生活,学校准备购进甲、乙两种畅销图书.经调查,甲种图书的总费用y(元)与购进本数x之间的函数关系如图所示,乙种图书每本20元.(1)直接写出当0≤x≤100和x>100时,y与x的函数关系式;(2)现学校准备购买300本图书,且两种图书均不少于80本,该如何购买,才能使总费用最少?最少的总费用为多少元?x+m的图象交于点P(n,−2).16.如图,函数y=−2x+3与y=−12(1)求出m,n的值;x+m≤−2x+3的解集;(2)观察图象,写出−12.(3)设△BOC和△ABP的面积分别为S1、S2,求S1S217.A、B两个码头之间航程为24千米,甲、乙两轮船同时出发,甲轮船从A码头顺流匀速航行到B码头后,立即逆流匀速航行返回到A码头,乙轮船从B码头逆流匀速航行到A码头后停止,两轮船在静水中速度均为10千米/时,水流速度不变,两轮船距A码头的航程y(千米)与各自的航行时间x(时)之间的函数图象如图所示.(顺流速度=静水速度+水流速度:逆流速度=静水速度-水流速度)(1)水流速度为千米/时;a值为;(2)求甲轮船从B码头向A码头返回过程中y与x之间的函数关系式;(3)当乙轮船到达A码头时,求甲轮船距A码头的航程.x−6的图象与坐标轴交于点A,B,BC平分∠OBA交x轴与点C,CD⊥AB垂足为18.如图1,一次函数y=34D.(1)求点A,B的坐标;(2)求CD所在直线的解析式;(3)如图2,点E是线段OB上的一点,点F是线段BC上的一点,求EF+OF的最小值.参考答案1.【答案】C2.【答案】C3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】C8.【答案】C9.【答案】-110.【答案】m <311.【答案】y=5+0.5x12.【答案】x >−213.【答案】{x =−1y =314.【答案】(1)证明:当x =−2时y =k(x +2)=k(−2+2)=0 ∴点(−2,0)在y =k(x +2)图象上.(2)解:一次函数y =k(x +2)图象向上平移2个单位得y =k(x +2)+2.将(1,−2)代入得:−2=k(1+2)+2解得k =−43.(3)解:由题意得:该函数图象与y 轴的交点为(0,2k)∵该交点在x 轴和直线y =−2之间∴−2<2k <0∴−1<k <0.15.【答案】(1)解:由图可知:y ={25x(0≤x ≤100)19x +600(x >100)(2)解:设总费用为w 元.根据题意,得80≤x ≤220.当80≤x ≤100时w =25x +20(300−x)=5x +6000.∵k =5>0,w 随x 的增大而增大,∴当x =80时,总费用最少w 最小=5×80+6000=6400元.当100<x ≤220时w =19x +600+20(300−x)=−x +6600.∵k =−1<0,w 随x 的增大而减小,∴当x =220时,总费用最少w 最小=−220+6600=6380元<6400元.∴此时乙种图书为300−220=80本.∴应购买甲种图书220本,乙种图书80本,才能使总费用最少,最少总费用为6380元.16.【答案】(1)解:将点P(n ,−2)代入函数y =−2x +3得:−2n +3=−2 解得n =52∴P(52,−2) 将点P(52,−2)代入函数y =−12x +m 得:−12×52+m =−2解得m =−34.(2)解:不等式−12x +m ≤−2x +3表示的是函数y =−12x +m 的图象位于函数y =−2x +3的图象下方(含交点)则由函数图象可知,−12x +m ≤−2x +3的解集为x ≤52. .(3)解:对于函数y =−12x −34当x =0时y =−34,则OB =34当y =0时−12x −34=0,解得x =−32,则OC =32∴S 1=12×34×32=916 对于函数y =−2x +3当x =0时y =3,则OA =3∴AB =OA +OB =154 ∵P(52,−2) ∴S 2=12×154×52=7516 ∴S 1S 2=9167516=325.17.【答案】(1)2;2(2)解:设甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =kx +b 由图象可得,甲轮船从B 码头向A 码头返回需要3小时∴点(2,24),(5,0)在该函数图象上∴{2k +b =245k +b =0,解得{k =−8b =40即甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =−8x +40;(3)解:由(2)知,当x =3时即当乙轮船到达A 码头时,甲轮船距A 码头的航程为16千米.18.【答案】(1)解:由一次函数y=34x−6的图象与坐标轴交于点A,B 另y=0,则x=8,即A(8,0);另x=0,则y=-6,即B(0,-6).(2)解:根据题意,如图,延长DC交y轴于点G,设CD=m∵BC平分∠OBA,OC⊥OB,CD⊥BD∴OC=CD=m∵OA=8,OB=6∴AB=√62+82=10∴12AB•CD=12AC•OB∵AC=8−m∴12×10m=12×(8−m)×6∴m=3∴点C的坐标为(3,0);∵CD⊥AB∴∠BDG=∠AOB=∠90°又∵OB=BD,∠ABO=∠GBD∴△AOB≌△GBD(ASA)∴BG=AB=10,OG=BG-OB=4即G(0,4)∴设直线CD的解析式为y=kx+4把点C(3,0)代入,则k=−43∴直线CD的解析式为y=−43x+4;(3)解:根据题意,作点E关于直线BC的对称点E′,则EF=FE′,如图:∵BC是角平分线∴点E′恰好落在直线AB上∴EF+OF=E′F+OF≥OE′∴EF+OF的最小值就是OE′的最小值当OE′⊥AB时,OE′为最小值;∵12AB•OE′=12OA•OB∴12×10×OE′=12×8×6∴OE′=245∴EF+OF的最小值为245.。

一次函数基础训练题

一次函数基础训练题

一次函数基础训练题一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A)一象限(B)二象限(C)三象限(D)四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是()(A)4 (B)6 (C)8 (D)164.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()(A)y1>y2(B)y1=y2(C)y1<y2(D)不能确定5.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限6.要得到y=-32x-4的图像,可把直线y=-32x().(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位 7.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是().(A)k<13(B)13<k<1 (C)k>1 (D)k>1或k<138.已知abc≠0,而且a b b c c ac a b+++===p,那么直线y=px+p一定通过()(A)第一、二象限(B)第二、三象限(C)第三、四象限(D)第一、四象限9.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()(A)1个(B)2个(C)3个(D)4个10.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,(a<b);乙上山的速度是12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t(分),离开点A的路程为S(米),•那么下面图象中,大致表示甲、乙二人从点A出发后的时间t (分)与离开点A的路程S(米)•之间的函数关系的是()二、填空题11.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.12.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m的取值范围是________. 13.函数y=-3x+2的图像上存在点P,使得P•到x•轴的距离等于3,•则点P•的坐标为__________.14.过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________.三、解答题15.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内.16.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.17.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:第一档第二档第三档第四档凳高x(cm) 37.0 40.0 42.0 45.0桌高y(cm) 70.0 74.8 78.0 82.8(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.18.在直角坐标系x0y中,一次函数y=23x+2的图象与x轴,y轴,分别交于A、B两点,•点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.19.已知:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.20.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y表示总运费W(元),并求W的最大值和最小值.答案:1.B 2.B 3.A 4.A5.B 提示:由方程组y bx ay ax b=+⎧⎨=+⎩的解知两直线的交点为(1,a+b),•而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D•中交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;故选B.6.B 提示:∵直线y=kx+b经过一、二、四象限,∴0,kb<⎧⎨>⎩对于直线y=bx+k,∵0,kb<⎧⎨>⎩∴图像不经过第二象限,故应选B.7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,∵k=-1<0,∴y随x的增大而减小,故B正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.∵k<0,b=•2>0,∴其图像经过第二象限,故D错误.8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,将y=-32x•的图像向下平移4个单位就可得到y=-32x-4的图像.10.C 提示:∵函数y=(m-5)x+(4m+1)x中的y与x成正比例,∴5,50,1410,,4m m m m ≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即 ∴m=-14,故应选C . 11.B 12.C 13.B 提示:∵a b b c c a c a b+++===p , ∴①若a+b+c ≠0,则p=()()()a b b c c a a b c+++++++=2;②若a+b+c=0,则p=a b cc c+-==-1, ∴当p=2时,y=px+q 过第一、二、三象限; 当p=-1时,y=px+p 过第二、三、四象限, 综上所述,y=px+p 一定过第二、三象限.14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p 2+4│q │>0, ||0k b p k b q k b +=-⎫⎪=-⇒⎬⎪≠⎭k ·b<0,一次函数y=kx+b 中,y 随x 的增大而减小000k k b <⎫⇒<⇒⇒⎬>⎭一次函数的图像一定经过一、二、四象限,选A . 二、1.-5≤y ≤19 2.2<m<3 3.如y=-x+1等.4.m ≥0.提示:应将y=-2x+m 的图像的可能情况考虑周全. 5.(13,3)或(53,-3).提示:∵点P 到x 轴的距离等于3,∴点P 的纵坐标为3或-3 当y=3时,x=13;当y=-3时,x=53;∴点P 的坐标为(13,3)或(53,-3).提示:“点P 到x 轴的距离等于3”就是点P 的纵坐标的绝对值为3,故点P 的纵坐标应有两种情况. 6.y=x-6.提示:设所求一次函数的解析式为y=kx+b . ∵直线y=kx+b 与y=x+1平行,∴k=1,∴y=x+b .将P (8,2)代入,得2=8+b ,b=-6,∴所求解析式为y=x-6.7.解方程组92,,83323,,4x y x y x y ⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩得∴两函数的交点坐标为(98,34),在第一象限. 8.222()aq bp bp aq --. 9.y=2x+7或y=-2x+3 10.1004200911.据题意,有t=25080160⨯k ,∴k=325t . 因此,B 、C 两个城市间每天的电话通话次数为T BC =k ×2801003253205642t t⨯=⨯=.三、1.(1)由题意得:20244a b a b b +==-⎧⎧⎨⎨==⎩⎩解得 ∴这个一镒函数的解析式为:y=-2x+4(•函数图象略). (2)∵y=-2x+4,-4≤y ≤4, ∴-4≤-2x+4≤4,∴0≤x ≤4.2.(1)∵z 与x 成正比例,∴设z=kx (k ≠0)为常数, 则y=p+kx .将x=2,y=1;x=3,y=-1分别代入y=p+kx , 得2131k p k p +=⎧⎨+=-⎩ 解得k=-2,p=5,∴y 与x 之间的函数关系是y=-2x+5;(2)∵1≤x ≤4,把x 1=1,x 2=4分别代入y=-2x+5,得y 1=3,y 2=-3.∴当1≤x ≤4时,-3≤y ≤3.另解:∵1≤x ≤4,∴-8≤-2x ≤-2,-3≤-2x+5≤3,即-3≤y ≤3. 3.(1)设一次函数为y=kx+b ,将表中的数据任取两取,不防取(37.0,70.0)和(42.0,78.0)代入,得2131k p k p +=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套. 4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.(2)设直线CD 的解析式为y=k 1x+b 1,由C (2,15)、D (3,30),代入得:y=15x-15,(2≤x ≤3). 当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米. (3)设过E 、F 两点的直线解析式为y=k 2x+b 2,由E (4,30),F (6,0),代入得y=-15x+90,(4≤x ≤6) 过A 、B 两点的直线解析式为y=k 3x , ∵B (1,15),∴y=15x .(0≤x ≤1),•分别令y=12,得x=265(小时),x=45(小时). 答:小明出发小时265或45小时距家12千米.5.设正比例函数y=kx ,一次函数y=ax+b ,∵点B 在第三象限,横坐标为-2,设B (-2,y B ),其中y B <0, ∵S △AOB =6,∴12AO ·│y B │=6, ∴y B =-2,把点B (-2,-2)代入正比例函数y=kx ,•得k=1.把点A (-6,0)、B (-2,-2)代入y=ax+b ,得1062223a b a a b b ⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩解得∴y=x ,y=-12x-3即所求. 6.延长BC 交x 轴于D ,作DE ⊥y 轴,BE ⊥x 轴,交于E .先证△AOC ≌△DOC , ∴OD=OA=•1,CA=CD ,∴CA+CB=DB=222234DE BE +=+= 5. 7.当x ≥1,y ≥1时,y=-x+3;当x ≥1,y<1时,y=x-1; 当x<1,y ≥1时,y=x+1;当x<•1,y<1时,y=-x+1.由此知,曲线围成的图形是正方形,其边长为2,面积为2.8.∵点A 、B 分别是直线y=23x+2与x 轴和y 轴交点, ∴A (-3,0),B (0,2),∵点C 坐标(1,0)由勾股定理得BC=3,AB=11,设点D的坐标为(x,0).(1)当点D在C点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴BC CDAB BD=,∴23|1|112xx-=+①∴22321112x xx-+=+,∴8x2-22x+5=0,∴x1=52,x2=14,经检验:x1=52,x2=14,都是方程①的根,∵x=14,不合题意,∴舍去,∴x=52,∴D•点坐标为(52,0).设图象过B、D两点的一次函数解析式为y=kx+b ,2225 522b kk bb⎧⎧==-⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为y=-225x+2.(2)若点D在点C左侧则x<1,可证△ABC∽△ADB,∴AD BDAB CB=,∴2|3|2113x x++=②∴8x2-18x-5=0,∴x1=-14,x2=52,经检验x1=14,x2=52,都是方程②的根.∵x2=52不合题意舍去,∴x1=-14,∴D点坐标为(-14,0),∴图象过B、D(-14,0)两点的一次函数解析式为y=42x+2,综上所述,满足题意的一次函数为y=-225x+2或y=42x+2.9.直线y=12x-3与x轴交于点A(6,0),与y轴交于点B(0,-3),∴OA=6,OB=3,∵OA ⊥OB ,CD ⊥AB ,∴∠ODC=∠OAB , ∴cot ∠ODC=cot ∠OAB ,即OD OAOC OB=, ∴OD=463OC OA OB ⨯==8.∴点D 的坐标为(0,8), 设过CD 的直线解析式为y=kx+8,将C (4,0)代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8,由2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩解得 ∴点E 的坐标为(225,-45). 10.把x=0,y=0分别代入y=43x+4得0,3,4;0.x x y y ==-⎧⎧⎨⎨==⎩⎩∴A 、B 两点的坐标分别为(-3,0),(0,4)•.•∵OA=3,OB=4,∴AB=5,BQ=4-k ,QP=k+1.当QQ ′⊥AB 于Q ′(如图), 当QQ ′=QP 时,⊙Q 与直线AB 相切.由Rt △BQQ′∽Rt △BAO ,得`BQ QQ BQ QP BA AO BA AO ==即.∴4153k k -+=,∴k=78.∴当k=78时,⊙Q 与直线AB 相切.11.(1)y=200x+74000,10≤x ≤30(2)三种方案,依次为x=28,29,30的情况. 12.设稿费为x 元,∵x>7104>400,∴x-f (x )=x-x (1-20%)20%(1-30%)=x-x ·45·15·710x=111125x=7104. ∴x=7104×111125=8000(元).答:这笔稿费是8000元. 13.(1)设预计购买甲、乙商品的单价分别为a 元和b 元,则原计划是:ax+by=1500,①.由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+1.5)(x-10)+(b+1)y=1529,②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:(a+1)(x-5)+(b+1)y=1563.5,③.由①,②,③得:1.51044,568.5.x y ax y a+-=⎧⎨+-=⎩④-⑤×2并化简,得x+2y=186.(2)依题意有:205<2x+y<210及x+2y=186,得54<y<5523.由于y是整数,得y=55,从而得x=76.14.设每月用水量为xm3,支付水费为y元.则y=8,08(),c x ab x ac x a+≤≤⎧⎨+-+≥⎩由题意知:0<c≤5,∴0<8+c≤13.从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得198(15)338(22)b a cb a c=+-+⎧⎨=+-+⎩解得b=2,2a=c+19,⑤.再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,即2a=c+17,⑥.⑥与⑤矛盾.故9≤a,则一月份的付款方式应选①式,则8+c=9,∴c=1代入⑤式得,a=10.综上得a=10,b=2,c=1. ()15.(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.又010,010, 01828,59, x xx x≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x是整数).由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;•当x=5时,W取到最大值13200元.(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800(10-x)+300y+700(10-y)+•400(19-x-y)+500(x+y-10)=-500x-300y-17200.又010,010, 010,010, 0188,1018, x xy yx y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且010,010,018.xyx y≤≤⎧⎪≤≤⎨⎪≤+≤⎩(x,y为整数).W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800.当x=•10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W的最大值为14200.11。

一次函数基础训练题

一次函数基础训练题

一次函数基础训练题一、一次函数的定义与表达式1. 题目下列函数中,是一次函数的是()A. y = (1)/(x)+1B. y = x^2+1C. y = 2x 1D. y=√(x)+1解析一次函数的一般形式为y = kx + b(k,b为常数,k≠0)。

选项A,y=(1)/(x)+1是反比例函数与常数函数的和,不是一次函数,因为反比例函数y = (1)/(x)不符合一次函数形式。

选项B,y = x^2+1是二次函数,因为自变量x的次数是2,不符合一次函数自变量次数为1的要求。

选项C,y = 2x 1符合一次函数y = kx + b的形式,其中k = 2,b=-1。

选项D,y=√(x)+1,自变量x在根号下,不是一次函数。

所以答案是C。

2. 题目已知一次函数y=(m 1)x+3,求m的取值范围。

解析因为一次函数的一般形式为y = kx + b(k≠0),在函数y=(m 1)x+3中,k = m 1。

要使函数为一次函数,则m 1≠0,解得m≠1。

二、一次函数的图象与性质1. 题目一次函数y = 2x+1的图象经过哪几个象限?解析对于一次函数y = kx + b(k,b为常数,k≠0),当k>0,b>0时,图象经过一、二、三象限。

在函数y = 2x+1中,k = 2>0,b = 1>0,所以图象经过一、二、三象限。

2. 题目已知一次函数y=-3x + b的图象经过点(1, -1),求b的值,并判断函数图象的单调性。

解析因为函数y=-3x + b的图象经过点(1,-1),将x = 1,y=-1代入函数可得:-1=-3×1 + b-1=-3 + b移项可得b=-1 + 3=2。

对于一次函数y = kx + b,这里k=-3<0,所以函数y=-3x + 2的图象是单调递减的,即y随x的增大而减小。

三、一次函数的应用1. 题目某汽车油箱中原有油100升,汽车每行驶50千米耗油9升,求油箱剩余油量y(升)与汽车行驶路程x(千米)之间的函数关系式。

中考数学复习《一次函数》专项提升训练题-附答案

中考数学复习《一次函数》专项提升训练题-附答案

中考数学复习《一次函数》专项提升训练题-附答案学校:班级:姓名:考号:一、选择题1.把一次函数的图象向上平移4个单位长度,得到图象表达式是()A.B.C.D.2.小红骑自行车到离家为千米书店买书,行驶了分钟后,遇到一个同学因说话停留分钟,继续骑了分钟到书店.图中的哪一个图象能大致描述她去书店过程中离书店的距离千米与所用时间分之间的关系()A.B.C.D.3.已知直线与x轴的交点在,之间(包括A,B两点),则a的取值范围是()A.B.C.D.4.已知一次函数的图像经过点,且当时,则该函数图象所经过的象限为()A.一、二、三B.二、三、四C.一、三、四D.一、二、四5.已知正比例函数的图象上两点、且,则下列不等式中一定成立的是()A.B.C.D.6.已知一次函数的图象与的图象交于点.则对于不等式,下列说法正确的是()A.当时B.当时C.当且时D.当且时7.如图,已知直线与轴、轴分别交于点和点,是线段上一点,若将沿折叠,点恰好落在x轴上的点处,则直线所对应的函数表达式是()A. B. C. D.8.如图,正方形、正方形、正方形的顶点、与和、与、分别在一次函数的图像和轴上,若正比例函数则过点,则的值是()A.B.C.D.二、填空题9.与直线垂直且过点的直线解析式是.10.已知一次函数的图象经过点,则不等式的解是. 11.已知为整数,且一次函数的图像不经过第二象限,则= .12.某家庭电话月租费为10元,若市内通话费平均每次为0.2元,则该家庭一个月的话费y(元)与通话次数x(次)之间的关系式是.13.如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点B的坐标为(4,3),点D为对角线OB上一点.若OA=OD,则点D到x轴的距离为.三、解答题14.已知是一次函数.(1)求m的值;(2)若,求对应y的取值范围.15.某花农培育甲种樱花 3 株,乙种樱花 2 株,共需要成本 1700 元,乙种樱花 2 株,共需成本 1500 元.(1)求甲、乙两种樱花每株成本分别为多少元?(2)据市场调研,1 株甲种樱花售价为 160 元,1 株乙种樱花售价为 840 元.该花农决定在成本不超过 29000 元的前提下培育甲、乙两种樱花,那么要使总利润不少于 5000 元,花农有哪几种具体的培育方案?(3)求出选何种方案成本最少?16.如图,一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象解决下列问题:(1)求慢车和快车的速度;(2)求线段所表示的y与x之间的函数关系式,并写出自变量x的取值范围.17.为提升学生的文学素养,培养学生的阅读兴趣,某校准备购进A,B两种图书.经调查,购进A 种图书费用y元与购进A种图书本数x之间的函数关系如图所示,B种图书每本20元.(1)当和时,求y与x之间的函数关系式;(2)现学校准备购进300本图书,其中购进A种图书x本,设购进两种图书的总费用为w元.①当时,求出w与x间的函数表达式;②若购进A种图书不少于60本,且不超过B种图书本数的2倍,那么应该怎样分配购买A,B两种图书才能使总费用最少?最少总费用多少元?18.如图,在平面直角坐标系中,直线与轴交于点,直线与轴、轴分别交于点和点,且与直线交于点.(1)求直线的解析式;(2)若点为线段BC上一个动点,过点作轴,垂足为,且与直线交于点,当时,求点的坐标;(3)若在平面上存在点,使得以点A,C,D,H为顶点的四边形是平行四边形,请直接写出点的坐标.参考答案:1.A2.D3.D4.D5.C6.D7.B8.B9.10.11.-3或-212.13.14.(1)解:因为是一次函数,所以且,解得(2)解:由(1)可知,该一次函数的表达式为,因为,所以随的增大而减小.当时;当时,所以当时,.15.(1)解:设甲、乙两种樱花每株成本分别为 x则:解得:故甲种樱花每株成本为 100 元,乙种樱花每株成本为 700元。

一次函数训练题

一次函数训练题

一次函数训练题----1一.选择题1. 函数y =3x -6和y =-x +4的图象交于一点,这一点的坐标是( ) A. (-25,-23) B. (25,23) C. (23,25) D. (-2,3)2. 若一次函数y =kx +b 中,y 随x 的增大而减小,则( )A. k <0,b <0B. k <0,b >0C. k <0,b ≠0D. k <0,b 为任意数 3. 早晨,小强从家出发,以v 1的速度前往学校,途中在一饮食店吃早点,之后以v 2的速度向学校走去,且v 1>v 2,则表示小强从家到学校的时间t(分钟) 与路程S(千米)之间的关系是( )4. 当x =5时一次函数y =2x +k 和y =3kx -4的值相同,那么k 和y 的值分别为( ) A. 1,11 B. -1,9 C. 5,11 D. 3,35. 直线323+-=x y 与x 轴、y 轴所围成的三角形的面积为( ) A.3 B.6 C.43 D.236. 如图,一次函数的图像过点A ,且与正比例函数x y -=的图像交于点B ,则该一次函数的表达式为( )A.2+-=x yB.2+=x yC.2-=x yD.2--=x y 7. 如图,把直线x y 2-=向上平移后得到直线AB ,直线AB经过点(m ,n ),且2m +n =6,则直线AB 的解析式是( ) A.32--=x y B.62--=x yC.32+-=x yD.62+-=x y 8. 一次函数y =(1-k )x +k ,若k >1,则函数图象不经过( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限9. 若直线y =-x +a 和直线y =x +b 的交点坐标为(m ,8),则a +b 的值为( )A. 32B. 24C. 16D. 8 10. 一次函数 y =kx +b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,则k ·b 的值为. ( ) A.14 B.–6 C.–4或 21 D.–6或1411. 已知一次函数y=kx -k ,若y 随x 的增大而减小,则该函数的图象经过( )A.第一、二、三象限B.第一、二、四象限 C 第二、三、四象限 D.第一、三、四象限 12. 已知b kx y -=图象过二、三、四象限,则b k ,的取值范围是( ) A.0,0>>b k B.0,0<<b kC.0,0><b kD. k<0, b<0 13. 如图,点A 、B 、C 、D 在一次函数2y x m =-+的图象上,它们的 横坐标依次为-1、1、2,分别过这些点作x 轴与y 轴的垂线, 则图中阴影部分的面积这和是( ) A.1 B.3 C.3(1)m - D.3(2)2m - 14. 若函数y =2x +3与y =3x -2b 的图象交x 轴于同一点,则b 的值为( )y=-2x BA0 xyA. -3B. -23 C. 9 D. -49 15. 函数y =ax -3的图象与y =bx +4的图象交于x 轴上一点,那么a ∶b 等于( ) A. -4∶3 B. 4∶3 C. (-3)∶(-4) D. 3∶(-4) 16. 由直线y =x +4与直线y =-x +4和x 轴围成的三角形面积是( )A.32B.64C.16D.8 17. 如图,一个蓄水桶,60分钟可将一满桶水放干.其中,水位h (cm )随着放水时间t (分)的变化而变化.h 与t 的函数的大致图像为( )18. 下列图形中,表示一次函数y = mx + n 与正比例函数y = mnx (m 、n 为常数,且mn ≠0)的图象的是( )二.简答题 19. 如图,如图,弹簧总长y (cm )与所挂物体质量x (kg )之间是一次函数关系,则该弹簧不挂物体时的长度为 cm20. 如图,已知A 地在B 地正南方3千米处,甲乙两人同时分别从A 、B 两地向正北方向匀速直行,他们与A 地的距离S (千米)与所行的时间t (小时)之间的函数关系图象如图所示的AC 和BD 给出,当他们行走3小时后,他们之间的距离为 千米.21. 如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km 的过程中,行使的路程y 与经过的时间x 之间的函数关系.请根据图象填空: 出发的早,早了 小时, 先到达,先到 小时,电动自行车的速度为 km / h ,汽车的速度为 km / h .A O y xB O y xC O y x DO y x 汽车电动自行车 9080706050 40 30 2010 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5y (km )x (h )22. 如图9,四边形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2均为正方形.点A 1,A 2,A 3和点C 1,C 2,C 3分别在直线y kx b =+(k >0)和x 轴上, 点B 3的坐标是(419,49),则k +b = .23. 无论m 取何实数,直线y =x +3m 与y =-x +1的交点不可能在第__________象限. 三.解答题24. 甲、乙两车从A 地出发,沿同一条高速公路行驶至距A地400千米的B 地。

中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。

一次函数基础训练题

一次函数基础训练题

一次函数基础训练题一、选择题(每小题3分,共27分)1.下列说法中正确的是( ) A .一次函数是正比例函数B .正比例函数包括一次函数C .一次函数不包括正比例函数D .正比例函数是一次函数2.下列函数中是正比例函数的是( ) A .矩形面积固定,长和宽的关系B .正方形的面积和边长的关系C .三角形的面积一定,底边和底边上的高之间的关系D .匀速运动中,速度固定时,路程和时间的关系3.已知y 与x 成正比例,如果x=2时,y=1,那么x=3时,y 为( ) A .32 B .2 C .3 D .0 4.当x=3时,函数y=px-1与函数y=x+p 的值相等,则p 的值是 () A .1 B .2 C .3 D .45.下列函数:①y=8x ;②y=-8x ;③y=2x 2;④y=-2x+1.其中是一次函数的个数为 ( ) A .0 B .1 C .2 D .36.已知关于x 的一次函数y=m(x-n)的图象经过第二、三、四象限,则有 () A .m >0,n >0 B .m <0,n >0C .m >0,n <0D .m <0,n <07.在一次函数y=kx+3中,当x=3时,y=6,则k 的值为 () A .-1 B .1 C .5 D .-58.过点(2,3)的正比例函数解析式是 () A .y=23x B .y=6xC .21y x =-D .y=32x 9.如图14-2-1所示,档可能是一次函数y=px-(p-3)的图象的是 ( )二、填空题(每小题3分,共27分)10.对于函数y=(m-3)x+m+3,当m=__________时,它是正比例函数;当m___________时,它是一次函数.11.一次函数y=px+2,请你补充一个条件___________,使y 随x 的增大而减小.12.已知y 与x 成正比例函数,当x=14时,y=56,则此函数的解析式为__________,当y=12时,x=_____________.13.若函数y=x+a-1是正比例函数,则a=_____________.14.如果直线y=mx+n 经过第一、二、三象限,那么mn_________0(填“>”“<”或“=”)15.一次函数y=-3x-5的图象与正比例函数__________的图象平行,且与y 轴交于点__________.16.已知一次函数y=px+m 的图象过点(-2,3)和(1,0)两点,则一次函数解析式为__________.17.已知点P (m ,4)在直线y=2x-4上,则直线y=mx-8经过第_____________象限.18.一次函数y=ax-b 图象不经过第二象限,则a_____________,b__________.三、解答案(每小题4分,共12分)19.下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-3x ; (2)y=-8x;(2)y=8x 2+x(1-8x); (3)y=1+8x .20.已知一次函数y=(5-m)x+3m 2-75.问:m 为何值时,它的图象经过原点?21.已知一次函数y=mx+n 的图象如图14-2-2所示.(1)求m ,n 的值;(2)在直角坐标系内画出函数y=nx+m 的图象.参考答案一、1.D分析:正比例函数是一次函数的特殊形式.点拨:准确掌握一次函数与正比例函数的关系.2.D分析:D选项中设路程为y,时间为x,匀速度为k,则有y=kx,路程与时间成正比.点拨:一般地可以写成y=kx的函数叫正比例函数.3.A分析:y与x成正比,即y=kx,把x=2,y=1代入y=kx中,得k=12,再把x=3代入y=12x中得y=32.点拨:此题关键是求y=kx的系数k值.4.B分析:由题意得当x=3时,px-1=x+p,即3p-1=3+p,则p=2.点拨:准确理解函数值的定义.5.D分析:①②④都是一次函数,只有③不是.点拨:形如y=kx+b(k、b是常数,k≠0)是一次函数,当b=0时,是正比例函数.6.D分析:该一次函数可化为y=mx-mn,因为第二、三、四象限,所以m<0.当x=0时,y=-mn<0,得n<0.点拨:结合图象分析此题会更明了一些.7.B分析:把x=3,y=6代入y=kx+3,得k=1.点拨:理解变量的对应关系.8.D分析:设此函数为y=kx,把x=2,y=3代入,求出k=32.点拨:此题是常见的求正比例函数的方法.9.C分析:A选项中当p>0,x=0时,y=-(p-3),即y=3-p有可能大于0,与A中图象符合;当x=0,y=0时,-(p-3)=0,即p=3时与B中图象符合;D选项中P<0,当x=0时,y=p(p-3),即y=-p+3>0与D中图象相符,所以不可能为C中的图象.点拨:解此题关键是理解图象与y轴的交点和与p的符号的关系.二、10.-3≠3分析:当m=-3时,函数可化为y=-6x,为正比例函数;当m=3时,y=6不是一次函数,故m≠3.点拨:此题考查了一次函数与正比例函数的定义.11.p<0分析:对于y=kx+b,当k<0时,y随x的增大而减小.点拨:把此题与y随x的增大而增大结合在一起记忆,细心总结规律.12.y=103x320分析:设y=kx,当x=14,y=56时,k=103,把y=12代入y=103x,得到x=320.点拨:要掌握正比例函数的一般形式:y=kx.13.1分析:正比例函数为y=kx,故a-1=0,则a=1.点拨:此题是考查正比例函数的定义.14.>分析:y=mx+n过第一、二、三象限,则m>0,当x=0时,y=n>0,故mn>0.点拨:把握一次函数图象的特点.15.y=-3x(0,-5)分析:y=kx与y=kx+b是平行线.点拨:y=kx+b是由y=kx的图象向上平移b个单位长度得到的.16.y=-x+1分析:把(-2,3)和(1,0)两点代入y=px+m得到32,0,p mp m=-+⎧⎨=+⎩解得p=-1,m=1.点拨:由此题可知直线过两点,则可能确定一个图象的解析式.17.一、三、四分析:把P(m,4)代入y=2x-4,得到4=2m-4,即m=4.则直线y=mx-8为y=4x-8,过第一、三、四象限.点拨:掌握y=kx+b与k、b的关系.18.>0>0分析:由图象可知a>0,-b<0,即b>0.点拨:牢记一次函数图象的特点.三、19.分析:(1)y=-3x ,即为y=-13x ,其中k=-13,b=0,可知y=-3x 是一次函数,而且也是正比例函数. (2)y=-8x ,-8x 不是整式,因此不能化为kx+b 的形式.所以y=-8x不是一次函数,也不是正比例函数. (3)y=8x 2+x(1-8x)经过恒等变形,转化为y=x ,其中k=1,b=0,所以y=8x 2+x(1-8x)是一次函数,也是正比例函数.(4)y=1+8x 即为y=8x+1,其中k=8,b=1.所以y=1+8x 是一次函数,但不是正比例函数.解:y=-3x ,y=8x 2+x(1-8x),y=1+8x 是一次函数.y=-3x ,y=8x 2+x(1-8x)是正比例函数. 点拨:首先看每个函数解析式能否通过恒等变形,转化为y=kx+b 的形式.如果x 的次数为1且k ≠0,则是一次函数,否则就不是一次函数,在一次函数中,如果常数项b=0,则它就是正比例函数.20.分析:函数图象经过某点,即该点的坐标满足函数的解析式,代入该点坐标,即得含所求未知数的方程,解方程即可.解:一次函数y=(5-m)x+3m 2-75的图象经过原点(0,0),所以有0=(5-m)×0+3m 2-75,解得m=±5.因为是一次函数,所以5-m ≠0,所以m ≠5,m=-5.即一次函数y=10x 为所求函数解析式.点拨:一次函数解析式为y=kx+b(k ≠0).21.分析:把直线与x 轴和y 轴的交点代入函数关系式中便可求出m ,n 的值.解:(1)把(1,0),(0,-2)代入y=mx+n 得0,2,m n n +=⎧⎨=-⎩即2,2.m n =⎧⎨=-⎩(2)把m=2,n=-2代入y=nx+m 得y=-2x+2.图象如图14-2-1′所示: 点拨:注意观察y=mx+n 与y=nx+m 的图象,可以总结一下规律.。

一次函数基础训练题(后附答案)

一次函数基础训练题(后附答案)

一次函数基础训练题(后附答案)1、在函数① y=2x ②y=-3x+1 ③ y= x 2中, x 是自变量, y 是x 的函数, 一次函数有_______ 正比例函数有______,2.某函数具有下列两条性质(1)它的图像是经过原点(0,0)的一条直线;(2)y 的值随x 值的增大而增大。

请你举出一个满足上述条件的函数(用关系式表示)3、函数 432+=x y 的图像与x 轴交点坐标为________,与y 轴的交点坐标为____________。

4.函数y=2x-1与x 轴交点坐标为_______ ,与y 轴交点坐标为____,与两坐标轴围成的三角形面积是______.5、(1)对于函数y =5x+6,y 的值随x 值的减小而___。

(2)对于函数 x y 3221-=, y 的值随x 值的____而增大。

6.若直线y=kx+b 和直线y=-x 平行,与y 轴交点的纵坐标为-2,则直线的解析式为_______. 7,如果一次函数y=kx-3k+6的图象经过原点,那么k 的值为________。

8.已知y-1与x 成正比例,且x=-2时,y=4,那么y 与x 之间的函数关系式为_________________。

9.直线y =kx+b 过点(1,3)和点(-1,1),则b k =__________。

10.若函数y =kx+b 的图像经过点(-3,-2)和(1,6)求k 、b 及函数关系式。

11、已知一次函数 y=(6+3m )x+n-4,求:(1)m 为何值时,y 随x 的增大而减小? (2)n 为何值时,函数图象与y 轴交点在x 轴的下方? (3)m, n 分别为何值时,函数图象经过 (0,0).12、在直角坐标系中,一次函数y =kx +b 的图像经过三点A (2,0)、B (0,2)、C (m ,3),求这个函数的关系式,并求m 的值。

13、已知一次函数的图像经过点A (2,-1)和点B ,其中点B 是另一条直线321+-=x y 与y 轴的交点,求这个一次函数的表达式。

人教版初中数学一次函数专项训练及答案

人教版初中数学一次函数专项训练及答案

人教版初中数学一次函数专项训练及答案一、选择题1.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(12,12m),则不等式组mx﹣2<kx+1<mx的解集为()A.x>12B.12<x<32C.x<32D.0<x<32【答案】B 【解析】【分析】·由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,~解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.@2.如图,一次函数y=﹣x+4的图象与两坐标轴分别交于A、B两点,点C是线段AB上一动点(不与点A 、B 重合),过点C 分别作CD 、CE 垂直于x 轴、y 轴于点D 、E ,当点C 从点A 出发向点B 运动时,矩形CDOE 的周长( )A .逐渐变大B .不变C .逐渐变小D .先变小后变大【答案】B【解析】【分析】 根据一次函数图象上点的坐标特征可设出点C 的坐标为(m ,-m+4)(0<m<4),根据矩形的周长公式即可得出C 矩形CDOE =8,此题得解.-【详解】解:设点C 的坐标为(m ,-m+4)(0<m <4),则CE=m ,CD=-m+4,∴C 矩形CDOE =2(CE+CD)=8.故选B .【点睛】本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C 的坐标是解题的关键./3.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( )A .图象经过第一、二、四象限B .y 随x 的增大而减小C .图象与y 轴交于点()0,bD .当b x k>-时,0y > 【答案】D【解析】【分析】\ 由k 0<,0b >可知图象经过第一、二、四象限;由k 0<,可得y 随x 的增大而减小;图象与y 轴的交点为()0,b ;当b x k>-时,0y <; 【详解】∵()0,0y kx b k b =+<>,∴图象经过第一、二、四象限,A 正确;∵k 0<,∴y 随x 的增大而减小,B 正确;,令0x =时,y b =,∴图象与y 轴的交点为()0,b ,∴C 正确;令0y =时,b x k =-, 当b x k>-时,0y <; D 不正确;故选:D .【点睛】'本题考查一次函数的图象及性质;熟练掌握一次函数解析式y kx b =+中,k 与b 对函数图象的影响是解题的关键.4.如图,直线y=kx+b (k≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为( )A .x >﹣2B .x <﹣2C .x >4D .x <4【答案】A【解析】 【分析】求不等式kx+b >4的解集就是求函数值大于4时,自变量的取值范围,观察图象即可得.(【详解】由图象可以看出,直线y=4上方函数图象所对应自变量的取值为x>-2,∴不等式kx+b >4的解集是x>-2,故选A .【点睛】本题考查了一次函数与一元一次不等式;观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.5.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是()A.甲乙两地相距1200千米\B.快车的速度是80千米∕小时C.慢车的速度是60千米∕小时D.快车到达甲地时,慢车距离乙地100千米【答案】C【解析】【分析】(1)由图象容易得出甲乙两地相距600千米;(2)由题意得出慢车速度为60010=60(千米/小时);设快车速度为x千米/小时,由图象得出方程60×4+4x=600,解方程即可;(3)求出快车到达的时间和慢车行驶的路程,即可得出答案.【详解】)解:(1)由图象得:甲乙两地相距600千米,故选项A错;(2)由题意得:慢车总用时10小时,∴慢车速度为:60010=60(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时,慢车速度为60千米/小时;选项B错误,选项C正确;(3)快车到达甲地所用时间:60020903小时,慢车所走路程:60×203=400千米,此时慢车距离乙地距离:600-400=200千米,故选项D错误.故选C(【点睛】本题考核知识点:函数图象. 解题关键点:从图象获取信息,由行程问题基本关系列出算式.6.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的1l,2l分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发时与乙相遇、D .乙出发时到达A 地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地.【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发小时,故B 错误;/C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩ 即1l 对应的函数解析式为13060y x =-+;设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩ 即2l 对应的函数解析式为22010y x =-,所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩ ∴点A 的实际意义是在甲出发小时时,甲乙两车相遇, 故本选项符合题意;#D .根据图形即可得出乙出发3h 时到达A 地,故D 错误.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.7.已知直线y=2x-1与y=x-k 的交点在第四象限,则k 的取值范围是( )A .12<k <1 B .13<k <1 C .k >12 D .k >13【答案】A( 【解析】【分析】 由直线y=2x-1与y=x-k 可列方程组求交点坐标,再通过交点在第四象限可求k 的取值范围.【详解】解:设交点坐标为(x ,y )根据题意可得 21y x y x k =-⎧⎨=-⎩解得 112x k y k =-⎧⎨=-⎩∴交点坐标()112k,k --'∵交点在第四象限,∴10120k k -⎧⎨-⎩>< ∴112k <<故选:D .【点睛】本题考查了两条直线相交坐标问题,掌握平面直角坐标系内点的坐标特点是解题的关键.8.一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m ,n 的值为( ) A .m≠2,n=2B .m=2,n=2C .m≠2,n=1D .m=2,n=1 {【答案】A【解析】【分析】直接利用一次函数的定义分析得出答案.【详解】解:∵一次函数y=(m-2)x n-1+3是关于x 的一次函数,∴n-1=1,m-2≠0,解得:n=2,m≠2.}【点睛】此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.9.某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( )A .24y x =+B .24y x =-+C .31y xD .31y x -=- 【答案】B【解析】,【分析】设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案.【详解】设一次函数关系式为y kx b =+,∵图象经过点()1,2,2k b ∴+=;∵y 随x 增大而减小,∴k 0<,;>0,故该选项不符合题意,<0,-2+4=2,故该选项符合题意,>0,故该选项不符合题意,D.∵31y x -=-,∴y=-3x+1,-3+1=-2,故该选项不符合题意,故选:B .【点睛】.本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.10.若正比例函数y =kx 的图象经过第二、四象限,且过点A (2m ,1)和B (2,m ),则k 的值为( )A .﹣12B .﹣2C .﹣1D .1【答案】A【解析】根据函数图象经过第二、四象限,可得k <0,再根据待定系数法求出k 的值即可.^【详解】解:∵正比例函数y=kx的图象经过第二、四象限,∴k<0.∵正比例函数y=kx的图象过点A(2m,1)和B(2,m),∴2km12k m=⎧⎨=⎩,解得:m11k2=-⎧⎪⎨=-⎪⎩或m11k2=⎧⎪⎨=⎪⎩(舍去).故选:A.【点睛】#本题考查了正比例函数的系数问题,掌握正比例函数的性质、待定系数法是解题的关键.11.在平面直角坐标系中,函数2(0)y kx k=≠的图象如图所示,则函数232y kx k=-+的图象大致是()A.B.C.D.【答案】C【解析】|【分析】根据函数图象易知k 0<,可得32k 0-+<,所以函数图象沿y 轴向下平移可得.【详解】解:根据函数图象易知k 0<,∴32k 0-+<,故选:C .【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键. ;12.如图,过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ;点2A 与点O 关于直线11A B 对称;过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ;点3A 与点O 关于直线22A B 对称;过点3A 作x 轴的垂线,交直线2y x =于点3B ;按3B 此规律作下去,则点n B 的坐标为( )A .(2n ,2n-1)B .(12n -,2n )C .(2n+1,2n )D .(2n ,12n +)【答案】B【解析】【分析】 先根据题意求出点A 2的坐标,再根据点A 2的坐标求出B 2的坐标,以此类推总结规律便可求出点n B 的坐标.!【详解】∵1(1,0)A∴11OA =∵过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B∴()11,2B∵2(2,0)A∴22OA =∵过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B~∴()12,4B∵点3A 与点O 关于直线22A B 对称∴()()334,0,4,8A B以此类推便可求得点A n 的坐标为()12,0n -,点B n 的坐标为()12,2n n - 故答案为:B .【点睛】本题考查了坐标点的规律题,掌握坐标点的规律、轴对称的性质是解题的关键.>13.若A (x 1,y 1)、B (x 2,y 2)是一次函数y=ax+x-2图像上的不同的两点,记()()1212m x x y y =--,则当m <0时,a 的取值范围是( )A .a <0B .a >0C .a <-1D .a >-1 【答案】C【解析】【分析】【详解】∵A (x 1,y 1)、B (x 2,y 2)是一次函数2(1)2y ax x a x =+-=+-图象上的不同的两点,()()12120m x x y y =--<,∴该函数图象是y 随x 的增大而减小,∴a+1<0,解得a<-1,故选C./【点睛】此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.14.若一次函数y=(k-3)x-1的图像不经过第一象限,则A .k<3B .k>3C .k>0D .k<0 【答案】A【解析】【分析】·根据图象在坐标平面内的位置关系确定k ,b 的取值范围,从而求解.【详解】解:∵一次函数y=(k-3)x-1的图象不经过第一象限,且b=-1,∴一次函数y=(k-3)x-1的图象经过第二、三、四象限,∴k-3<0,解得k <3.故选A .【点睛】)本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.15.函数12y x =-与23y ax =+的图像相交于点(),2A m ,则( )A .1a =B .2a =C .1a =-D .2a =- 【答案】A【解析】【分析】将点(),2A m 代入12y x =-,求出m ,得到A 点坐标,再把A 点坐标代入23y ax =+,即可求出a 的值.《【详解】 解:函数12y x =-过点(),2A m , 22m ∴-=,解得:1m =-,()1,2A ∴-,函数23y ax =+的图象过点A ,32a ∴-+=,解得:1a =.》故选:A .【点睛】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.16.在平面直角坐标系中,直线:1m y x =+与y 轴交于点A ,如图所示,依次正方形1M ,正方形2M ,……,正方形n M ,且正方形的一条边在直线m 上,一个顶点x 轴上,则正方形n M 的面积是( )A .222n -B .212n -C .22nD .212n + 【答案】B [【解析】【分析】由一次函数1y x =+,得出点A 的坐标为(0,1),求出正方形M 1的边长,即可求出正方形M 1的面积,同理求出正方形M 2的面积,即可推出正方形n M 的面积.【详解】一次函数1y x =+,令x=0,则y=1,∴点A 的坐标为(0,1),∴OA=1,∴正方形M 1的边长为22112+=, ~∴正方形M 1的面积=222⨯=,∴正方形M 1的对角线为()()22222⨯=,∴正方形M 2的边长为222222+=,∴正方形M 2的面积=3222282⨯==,同理可得正方形M 3的面积=5322=,则正方形n M 的面积是212n -, 故选B.【点睛】~本题考查一次函数图象上点的坐标特征、规律型,解答本题的关键是明确题意,发现题目中面积之间的关系,运用数形结合思想解答.17.已知一次函数y =kx+k ,其在直角坐标系中的图象大体是( )A .B .C .D .【答案】A【解析】【分析】》函数的解析式可化为y =k (x +1),易得其图象与x 轴的交点为(﹣1,0),观察图形即可得出答案.【详解】函数的解析式可化为y =k (x +1),即函数图象与x 轴的交点为(﹣1,0), 观察四个选项可得:A 符合.故选A .【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.?18.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤ C .1122b -≤≤ D .112b -≤≤ 【答案】B 【解析】【分析】#将A (1,1),B (3,1),C (2,2)的坐标分别代入直线y =12x+b 中求得b 的值,再根据一次函数的增减性即可得到b 的取值范围.【详解】解:直线y=12x+b 经过点B 时,将B (3,1)代入直线y =12x+b 中,可得32+b=1,解得b=-12; 直线y=12x+b 经过点A 时:将A (1,1)代入直线y =12x+b 中,可得12+b=1,解得b=12; 直线y=12x+b 经过点C 时:将C (2,2)代入直线y =12x+b 中,可得1+b=2,解得b=1. 故b 的取值范围是-12≤b≤1. 故选B .【点睛】] 考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.19.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x =的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.20.如图,已知一次函数2y kx =+的图象与x 轴,y 轴分别交于点,A B ,与正比例函数13y x =交于点C ,已知点C 的横坐标为2,下列结论:①关于x 的方程20kx +=的解为3x =;②对于直线2y kx =+,当3x <时,0y >;③直线2y kx =+中,2k =-;④方程组302y x y kx -=⎧⎨-=⎩的解为223x y =⎧⎪⎨=⎪⎩.其中正确的有( )个A .1B .2C .3D .4【答案】C【解析】【分析】 把正比例函数与一次函数的交点坐标求出,根据正比例函数与一次函数的交点先把一次函数的解析式求解出来,再分别验证即可得到答案.【详解】解:∵一次函数2y kx =+与正比例函数13y x =交于点C ,且C 的横坐标为2, ∴纵坐标:1122333y x ==⨯=, ∴把C 点左边代入一次函数得到:2223k =⨯+, ∴23k =-,22,3C ⎛⎫ ⎪⎝⎭①∵23k =-, ∴22023kx x +==-+, ∴3x =,故正确; ②∵23k =-, ∴直线223y x =-+, 当3x <时,0y >,故正确; ③直线2y kx =+中,23k =-,故错误; ④30223y x y x -=⎧⎪⎨⎛⎫--= ⎪⎪⎝⎭⎩, 解得223x y =⎧⎪⎨=⎪⎩,故正确;故有①②④三个正确;故答案为C.【点睛】本题主要考查了一次函数与正比例函数的综合应用,能正确用待定系数法求解未知量是解题的关键,再解题的过程中,要利用好已知信息,比如函数图像,很多时候都可以方便解题;。

一次函数专题训练题

一次函数专题训练题

一次函数专题训练题以下是一些关于一次函数的专题训练题,希望能帮助学生更加深入地理解和掌握一次函数的知识。

1.已知函数f(x) = ax + b中,a为正数,b为负数。

当x = 2时,f(x) = 5,求a和b的值。

解:根据已知条件,我们有f(2)=5,代入函数表达式,得到5=a(2)+b。

我们可以进一步整理方程,得到2a+b=52.已知函数g(x)=3x-1,求函数g(x)的自变量x为多少时,函数值等于10。

解:根据已知条件,我们要求g(x)=10,代入函数表达式,得到10=3x-1、我们可以进一步整理方程,得到3x=11,解得x=11/33.已知函数h(x)=-4x+7,求函数h(x)的自变量x为多少时,函数值等于0。

解:根据已知条件,我们要求h(x)=0,代入函数表达式,得到0=-4x+7、我们可以进一步整理方程,得到4x=7,解得x=7/44.已知函数p(x)=2x+3,求函数p(x)的自变量x为多少时,函数值等于-1解:根据已知条件,我们要求p(x)=-1,代入函数表达式,得到-1=2x+3、我们可以进一步整理方程,得到2x=-4,解得x=-25.已知函数q(x)=5-6x,求函数q(x)的自变量x为多少时,函数值等于-8解:根据已知条件,我们要求q(x)=-8,代入函数表达式,得到-8=5-6x。

我们可以进一步整理方程,得到6x=13,解得x=13/66.已知函数r(x)=-3x+2,求函数r(x)的自变量x为多少时,函数值等于-5解:根据已知条件,我们要求r(x)=-5,代入函数表达式,得到-5=-3x+2、我们可以进一步整理方程,得到-3x=-7,解得x=-7/-3=7/37.已知函数s(x) = kx + 4,当x = 7时,函数值为15,求k的值。

解:根据已知条件,我们有s(7)=15,代入函数表达式,得到15=k(7)+4、我们可以进一步整理方程,得到7k=11,解得k=11/78.已知函数t(x)=6x-5,当函数t(x)的自变量x为多少时,函数值为0?解:根据已知条件,我们要求t(x)=0,代入函数表达式,得到0=6x-5、我们可以进一步整理方程,得到6x=5,解得x=5/69.已知函数u(x)=-2x+k,当函数u(x)的自变量x为多少时,函数值等于k?解:根据已知条件,我们要求u(x)=k,代入函数表达式,得到k=-2x+k。

(word完整版)一次函数习题集锦(含答案),推荐文档

(word完整版)一次函数习题集锦(含答案),推荐文档

2 ⎪ 数学八年级上册一次函数练习题一、试试你的身手(每小题 3 分,共 24 分)11.正比例函数 y = - 2x 中,y 值随 x 的增大而. 2. 已知 y=(k-1)x+k 2-1 是正比例函数,则 k =.3. 若 y+3 与 x 成正比例,且 x=2 时,y=5,则 x=5 时,y=.4.直线 y=7x+5,过点( ,0),(0,).5.已知直线 y=ax-2 经过点(-3,-8)和⎛ 1 ,b ⎫两点,那么 a= ,b=.⎝ ⎭6. 写出经过点(1,2)的一次函数的解析式为(写出一个即可).1 x +1 , y = 1 x -1, y = 1 x 的图象有什么特点7. 在同一坐标系内函数 y =2 2 2.8. 下表中,y 是 x 的一次函数,则该函数解析式为,并补全下表.x -2 -10 12y26二、相信你的选择(每小题 3 分,共 24 分)1. 下列函数中是正比例函数的是()A. y = 8 xB. y = 82C . y = 2(x -1)D . y = -( 2 +1)x32. 下列说法中的两个变量成正比例的是( )A .少年儿童的身高与年龄B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长 C 与它的半径 r 3.下列说法中错误的是( ) A .一次函数是正比例函数 B .正比例函数是一次函数C .函数 y=|x |+3 不是一次函数D .在 y=kx+b(k 、b 都是不为零的常数)中, y-b 与 x 成正比例4. 一次函数 y=-x-1 的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.函数 y=kx-2 中,y 随 x 的增大而减小,则它的图象可以是()6. 如图 1,一次函数的图象经过 A 、B 两点,则这个一次函数的解析式为()A. y = 3x - 22B. y = 1x - 22C. y = 1x + 22 D. y = 3x + 227.若函数y=kx+b(k、b 都是不为零的常数)的图象如图2 所示,那么当y>0 时,x 的取值范围为()A.x>1 B.x>2 C.x<1 D.x<28.已知一次函数y=kx-k,若y 随x 的增大而减小,则该函数的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限三、挑战你的技能(共30 分)1.(10 分)某函数具有下列两条性质:(1)它的图象是经过原点(0,0)的一条直线;(2)y 的值随 x 的值增大而减小.请你写出一个满足上述两个条件的函数解析式.2.(10 分)已知一次函数 y=kx+b 的图象经过 A(2,4)、B(0,2)两点,且与 x 轴相交于C 点.(1)求直线的解析式.(2)求△AOC的面积.3.(10 分)已知一个正比例函数和一个一次函数的图象交于点 P(-2,2),且一次函数的图象与 y 轴相交于点 Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.四、拓广探索(共 22 分)1.(11 分)如图 3,在边长为 2 的正方形 ABCD 的一边 BC 上的点 P 从B 点运动到 C 点,设PB=x,梯形 APCD 的面积为 S.(1)写出 S 与x 的函数关系式;(2)求自变量 x 的取值范围;(3)画出函数图象.2.(11 分)小明在暑期社会实践活动中,以每千克 0.8 元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了 40 千克西瓜之后,余下的每千克降价 0.4 元,全部售完.销售金额与售出西瓜的千克数之间的关系如图 4 所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额 y(元)与售出西瓜 x(千克)之间的函数关系式. (2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?一、1.减小2.-1参考答案3.17 4.-5,5 5.2 ,-176.略(答案不惟一)7.三条直线互相平行8.y = 2x + 2 ,表格从左到右依次填-2 ,0 ,4二、1.D 2.D 3.A 4.A 5.D 6.A 7.D 8.B三、1.y =-x (答案不惟一)2.(1)y =x + 2(2)43.(1)正比例函数的解析式为y=-x.一次函数的解析式为y =x + 4(2)图略;(3)4四、1.(1)S = 4 -x ;(2)0 <x < 2 ;(3)图略2.(1)y =8x(0 ≤≤x540) ;(2)50 千克;(3)36 元. . . . .一次函数测试题一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是。

一次函数练习题

一次函数练习题

八年级《一次函数》专题训练一、正比例函数:1、下列函数中,图象经过原点的为 ----------------------------------( )A .y=-3x+8B .y =-6x-1C .y =-5xD .y=21-x2、下列函数中,是正比例函数,且y 随x 增大而减小的是----------------( )A. 14+-=x yB. 6)3(2+-=x yC. 6)2(3+-=x yD. 2xy -=3、若函数y=(|m|+1)x 2+(1-m )x 是正比例函数,则m 的值是-----------( ) A .m=-3 B .m=1 C .m=3 D .m>-34、下列关系中的两个量成正比例的是----------------------------------( ) A .从甲地到乙地,所用的时间和速度; B .正方形的面积与边长 C .买同样的作业本所要的钱数和作业本的数量;D .人的体重与身高二、一次函数的定义:1、下列关于x 的函数中,是一次函数的是----------------------------------------------------( )A.222-=x yB.11+=x yC.2x y =D.221+-=x y2、若函数y=(|m|–2)x 2+(2-m )x+2(m 为常数)是一次函数,则m 值为---( ) A .m>2 B .m=2 C .m ±2 D .m=-23、下列说法正确的是--------------------------------------------------( )A .正比例函数是一次函数B .一次函数是正比例函数C .正比例函数不是一次函数D .不是正比例函数就不是一次函数4、已知函数121m y mxm -=+-,当m =_____时,表示y 是x 的一次函数,此时函数解析式为______ ____三、一次函数的性质:1、已知一次函数y=6x + 1:① 随着x 的增大,y 将 (填“增大”或“减小” ); ② 它的图象从左到右 (填“上升”或“下降” ); 2、一次函数y=(m-3)x+6+m 的函数值y 随着x 值的增大而减小,那么的取值范围是_____________;3、一次函数y=(m+5)x+6+m 的函数的图像经过第二、四象限,那么的取值范围是_____________;4、一次函数y=(m -3)x+2-m 与y 轴的交点在x 轴的下方,则m_____ ____;5、点A (1x ,1y )和点B (2x ,2y )在一次函数y=2x+5上,若12x x >,则1y ,2y 的关系是-------------------------------------------------------( ) A 、12y y > B 、12y y < C 、12y y = D 、无法确定四、一次函数解析式的求法:(一)、由一次函数定义求一次函数解析式:Ⅰ:已知y 与x 成一次函数,且x=-3时y =6.x=3时y =2.① 求此一次函数的解析式? ② 当y =12时,求x 的值;Ⅱ: 已知y+2与 x 成一次函数,且当x=1时y=2,当x =-1时y =-4.求:(1)此一次函数的解析式?(2)若x 的取值范围是-2<x <6,求y 的取值范围?(二)由一次函数图像上的两点坐标求一次函数解析式:1、今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采 取按月用电量分段收费办法.若某户居民每月应交电费y(元)与用电量x(度)的 函数图像是一条折线(如图所示),根据图像解答下列问题: (1)分别写出0≤x ≤100和x ≥100时,y 与x 的函数关系式; (2)利用函数关系式,说明电力公司采取的收费标准;2、如图,已知A 地在B 地正南方3千米处,甲乙两人同时分别从A 、B 两地向正北方向匀速直行,他们与A 地的距离S (千米)与所行的时间t (小时)之间的函数关系图象如图所示的AC 和BD 给出: (1)求:直线AC 和BD 的解析式?(2)求:当他们行走多少小时时,他们之间的距离是2千米?(三)、由自变量、函数值的取值范围求一次函数解析式:已知一次函数y kx b =+的自变量取值范围是31x -≤≤,相应函数的取值范围是19y ≤≤,且y 随x 的增大而增大,求该一次函数解析式?变式一:已知一次函数y kx b =+的自变量取值范围是31x -≤≤,相应函数的取值范围是19y ≤≤,且y 随x 的增大而减小,求该一次函数解析式?变式二:已知一次函数y kx b =+的自变量取值范围是31x -≤≤,相应函数的取值范围是19y ≤≤,则该一次函数解析式为 ;(四)、由图象平行求一次函数解析式:①、已知直线m 与直线y=-0.5x+2平行,且与y 轴交点的纵坐标为8,求:直线m 的解析式?②、已知一次函数的图象与直线y= -x+1平行,且过点(8,2),求此一次函数的解析式?(五)、由所围几何图形的面积求一次函数解析式①、已知一次函数的图象在第一、三象限,过点(0,4),且与坐标轴围成的三角形的面积为12,求该一次函数的解析式?②、已知一次函数的图象过点( 3,0 ),且与坐标轴围成的三角形的面积为6, 求该一次函数的解析式?五、一次函数图像与坐标轴交点坐标:(1)、直线y=-x+5与x轴的交点坐标是,与y轴的交点坐标是;(2)、直线y=4x-8与x轴的交点坐标是,与y轴的交点坐标是;六、一次函数图像与两坐标轴围成的三角形面积:(1)已知一次函数y=-2x+4的图象与两坐标轴围成的三角形面积为;(2)若直线y=2x+b与两坐标轴围成的三角形的面积是9,则b= ;七、一次函数图像所经象限的确定方法:(一)知识点归纳:(1)当k>0----------图像经过第一、三象限:① k>0,b>0-----图像经过第一、二、三象限:② k>0,b<0-----图像经过第一、四、三象限:③ k>0,b=0------图像经过第一、三象限:(2)当k<0-----------图像经过第一、三象限:① k<0,b>0------图像经过第一、二、四象限:② k<0,b<0------图像经过第二、三、四象限:③ k<0,b=0-------图像经过第二、四象限:(二)习题演练:(1)一次函数y= -3x+2的图象经过象限为第象限;(2)一次函数y= 3x-8的图象经过象限为第象限;(3)一次函数y=(m+3)x+2-m经过原点,则m__________ _;(4)一次函数y=(m+3)x+2-m经过一、三、四象限,则m_______ _ _ ;(5)一次函数y=(m-3)x+2-m不经过第三象限,则m__________ _;八、一次函数图像的平移:(1)直线y=2x+1向上平移4个单位得到直线;(2)直线y=5x-3向左平移2个单位得到直线;(3)一次函数y=(m+3)x+5-m与y=2x+1的图像平行,则m的值为;此直线方程为;(4)、已知一次函数y=(m+3)x+2- n向上平移一个单位与y=x+1重合,则m =____________;n= ; 九、两个一次函数图像交点坐标的求法:★两条直线 y = x-2与y =-4x+8的交点坐标为;十、一次函数性质的应用:1、如图,直线MB的解析式为y=-x+2与x轴交于B点,直线MA与x轴交于A点,点M(-2,n), 点A(-4,0)(1)求M点的坐标;(2)求△ABM的面积(3)在y轴上找一点P,使S△OMP=S△ABM2、如图,直线1l的解析表达式为33y x=-+,且1l与x轴交于点D,直线2l经过点A B,,直线1l,2l交于点C.(1)求点D的坐标;(2)求直线2l的解析表达式;(3)求ADC△的面积;(4)在直线2l上存在异于点C的另一点P,使得ADP△与ADC△的面积相等,请直接..写出点P3、如图,直角坐标系xOy 中,(0,5)A ,直线5x =-与x 轴交于点D ,直线33988y x =--与x 轴及直线5x =-分别交于点C ,E .点B ,E 关于x 轴对称,连接AB . (1)求点C ,E 的坐标及直线AB 的解析式; (2)设面积的和CDE ABDO S S S ∆=+,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将CDE ∆沿x 轴翻折到CDB ∆的位置,而CDB ∆ 与四边形ABDO 拼接后可看成AOC ∆,这样求S 便转化为直接求AOC ∆的面积不 更快捷吗?”但大家经反复验算,发现AOC S S ∆≠,请通过计算解释他的想法错在 哪里.4、如图15,A (0,1),M (3,2),N (4,4).动点P 从点A 出发,沿y 轴以每秒1个单位长的速度向上移动,且过点P 的直线l :y =-x +b 也随之移动,设移动时间为t 秒.(1)当t =3时,求l 的解析式;(2)若点M ,N 位于l 的异侧,确定t 的取值范围; (3)当△OPM 的为10时,求t 的值?(4)直接写出t 为何值时,点M 关于l 的对称点落在坐标轴上.5、(2018河北)如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC ﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.十一、一次函数的简单应用:1、为了保护学生的视力,课桌椅的高度都是按一定的关系配套设计的。

一次函数练习题及答案

一次函数练习题及答案

一次函数练习题及答案本文将为大家提供一系列有关一次函数的练习题,同时附带相应的答案。

一次函数,也叫线性函数,是初中数学中的重要知识点之一。

希望通过这些练习题的训练,大家能够更好地掌握一次函数的概念、性质和解题方法。

一、选择题1.已知函数y=3x+2,则它的斜率是多少?– A. 2– B. 3– C. -2– D. -3答案:B2.若一次函数图像上两点的坐标分别为(1,4)和(3,y),则y的值是多少?– A. 10– B. 12– C. 14– D. 16答案:D3.已知函数经过点(−2,1)和(4,y),则y的值是多少?– A. -5– B. 0– C. 3– D. 6答案:C二、填空题1.若一次函数y=kx+3经过点(2,5),则k的值为 \\\_。

答案:12.一次函数y=−2x+b经过点(3,−1),则b的值为 \\\_。

答案:53.若一次函数图像上两点的坐标分别为(1,y1)和(2,y2),则$\\frac{{y_1}}{{y_2}}$ 的值为 \\\_。

答案:$\\frac{1}{2}$三、计算题1.求函数y=2x−1和y=x+3的交点坐标。

解:将两个方程联立起来,得到方程组:$$ \\begin{cases} y = 2x - 1\\\\ y = x + 3\\\\ \\end{cases} $$解方程组可得:$$ x + 3 = 2x - 1 \\\\ \\Rightarrow x = 4 $$将x=4代入其中一个方程,得到y=8−1=7。

因此,交点坐标为(4,7)。

2.已知函数y=3x+b经过点(2,−1),求b的值。

解:代入点(2,−1),得到方程 $-1 = 3 \\cdot 2 + b$,解方程可得b=−7。

3.一辆汽车以匀速行驶,开车起点距离目的地 600 公里。

如果行驶 4小时后,已行驶距离为 320 公里,求每小时行驶的公里数。

解:设每小时行驶的公里数为x,根据题意可得方程 $\\frac{320}{4} = x$,解方程可得x=80。

一次函数基础训练题

一次函数基础训练题

一次函数基础训练题一.选择题(共6小题)1.下列函数中,是一次函数的是()A.y=B.y=﹣2x+1C.y=3D.y=x+x22.下列函数中,是一次函数的有()①y=;②y=3x+1;③y=;④y=kx﹣2.A.1个B.2个C.3个D.4个3.下列函数中,y是x的正比例函数的是()A.y=x+1B.y=x C.y=x2D.y=4.函数y=2x+1的图象过点()A.(﹣1,1)B.(﹣1,2)C.(0,1)D.(1,1)5.直线y1=kx+b和y2=bx+k在同一平面直角坐标系内的大致图象为()A.B.C.D.6.如图中表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab<0)图象的是()A.B.C.D.二.填空题(共6小题)7.一次函数y=kx+6中,当b=0时,它是一个函数,所以说正比例函数是一种的一次函数.8.函数y=(k+1)x﹣7中,当k满足时,它是一次函数.9.已知y关于x的函数y=(m+2)x+m2﹣4是正比例函数,则m的值是.10.如图,在平面直角坐标系中,已知点A(0,4),B(2,4),直线y=x+1上有一动点P,当P A=PB时,点P的坐标是.11.一次函数y=mx+n的图象如图所示,则代数式|m+n|﹣|m﹣n|化简后的结果为.12.正比例函数的图象特点:正比例函数的图象是一条的直线.三.解答题(共3小题)13.已知关于x的函数y=kx|﹣2k+3|﹣x+5是一次函数,求k的值.14.仓库内原有粉笔400盒.如果每个星期领出36盒,求仓库内余下的粉笔盒数Q与星期数t之间的函数关系式.题中函数是一次函数吗?为什么?15.已知y=(k﹣3)x+k2﹣9是关于x的正比例函数,求当x=﹣4时,y的值.。

初中一次函数集中专题训练100题-含答案

初中一次函数集中专题训练100题-含答案

初中一次函数集中专题训练100题含答案(单选题、多选题、填空题、解答题)一、单选题1.对于一次函数y =3x ﹣1,下列说法正确的是( )A .图象经过第一、二、三象限B .函数值y 随x 的增大而增大C .函数图象与直线y =3x 相交D .函数图象与y 轴交于点(0,13) 2.下列各图象能表示y 是x 的一次函数的是( )A .B .C .D . 3.下列函数中,是一次函数的是( )A .y =1﹣xB .y =1xC .y =kx +1D .y =x 2+1 4.一条直线3y x =的图象沿x 轴向右平移2个单位,所得到的函数关系式是( ) A .22y x =+ B .32y x =- C .36y x =+ D .36y x =- 5.将直线y =﹣2x +1向上平移2个单位长度,所得到的直线解析式为( ) A .y =2x +1 B .y =﹣2x ﹣1C .y =2x +3D .y =﹣2x +3 6.已知一次函数()333m y m x -=-+的图象上有两点()11,A x y ,()22,B x y ,当12x x <时,12y y >,则m 的值为( )A .-3B .-4C .4D .4或-4 7.一次函数y =3x ﹣2的图象经过的象限是( )A .第一、二、四象限B .第一、二、三象限C .第一、三、四象限D .第二、三、四象限8.关于一次函数26y x =-,下列说法正确的是( )A .y 随x 的增大而减小B .图象交x 轴于点()0,6-C .点(1,2)在此函数的图象上D .图象经过第一、三、四象限 9.一次函数()23y m x m =-+-的图象不经过第二象限,则m 的值可以是( ) A .1 B .2 C .3 D .410.当2x =-时,函数23y x =+的值等于( )A .1-B .0C .1D .7二、填空题11.下列函数:①y =2x -8;①y =-2x +8:①y =2x +8;①y =-2x -8.其中,y 随x 的增大而减小的函数是____(填序号).12.若一次函数y=kx+2的图象经过点(2,10),则k 的值为________________. 13.将直线y x =-向上平移3个单位长度,平移后直线的解析式为________. 14.当a =______时,y =x 2a -1是正比例函数.15.根据图象,不等式kx >﹣x +3的解集是_____.16.如图,直角坐标系中,直线2y x =+和直线y ax c =+相交于点P (m ,3),则方程组2y x y ax c=+⎧⎨=+⎩的解为______.17.把正比例函数3y x =-的图象向上平移2个单位长度,得到的函数图象的解析式是________.18.已知一次函数y=(m+2)x+3,若y 随x 值增大而增大,则m 的取值范围是________.19.如图,直线3y kx =-与x 轴、y 轴分别交于点B 与点A ,13OB OA =,点C 是直线AB 上的一点,且位于第二象限,当①OBC 的面积为3时,点C 的坐标为______.20.甲、乙两名大学生去距学校36km 的某乡镇进行社会调查,他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车继续步行向前走,乙骑电动车按原路返回,取到相机后马上骑电动车追甲,在距乡镇13.5km 处追上甲并同车前往乡镇,若电动车速度始终不变,设甲与学校相距y 甲km ,乙与学校相距y 乙km ,甲离开学校的时间为x min ,y 甲,y 乙与x 之间的函数图象如图,则下列结论:①电动车的速度为0.9km/min ;①甲步行所用的时间为45min ;①甲步行的速度为0.15km/min .其中正确的是___________(只填序号).21.如图,已知函数2y x b =+与函数6y kx =-的图象交于点P ,则不等式62kx x b -<+的解集是______.22.当自变量x 的值满足_______时,直线2y x =-+上的点在x 轴下方.23.如果P (2,m ),A (1, 1), B (4, 0)三点在同一直线上,则m 的值为_________. 24.若函数y kx b =+的图像如图所示,则关于x 的不等式0kx b -+<的解集是______.25.如图,直线y=-x+m 与y=nx+4n (n≠0)的交点的横坐标为-2.则下列结论:①m <0,n >0;①直线y =nx +4n 一定经过点(-4,0);①m 与n 满足m =2n -2;①当x >-2时,nx +4n >-x +m ,其中正确结论的个数是____个.26.如图,直线11y k x a =+与22y k x b =+的交点坐标为()1,2,当12k x a k x b +≤+时,则x 的取值范围是__________.27.如图,□OABC 的顶点A 在x 轴的正半轴上,点D (4,3)在对角线OB 上,反比例函数y =k x (k >0,x >0)的图像经过C 、D 两点.已知□OABC 的面积是283,则点B 的坐标为_____________.28.如图,在平面直角坐标系中,点1A ,2A ,3A ……都在x 轴上,点1B ,2B ,3B ……都在直线y x =上,11OA B ,112B A A △,212△B B A ,223B A A △,323B B A △……都是等腰直角三角形,且11OA =,则点2022B 的坐标是__________.三、解答题29.某商店销售A 、B 两种品牌书包.已知购买1个A 品牌书包和2个B 品牌书包共需550元;购买2个A 品牌书包和1个B 品牌书包共需500元.(1)求这两种书包的单价.(2)某校准备购买同一种品牌的书包(10)m m >个,该商店对这两种品牌的书包给出优惠活动:A 种品牌的书包按原价的八折销售;若购买B 种品牌的书包10个以上,则超出部分按原价的五折销售.①设购买A 品牌书包的费用为1w 元,购买B 品牌书包的费用为2w 元,请分别求出1w ,2w 与m 的函数关系式;②根据以上信息,试说明学校购买哪种品牌书包更省钱.30.“十一黄金周”前,某旅行社要印刷旅游宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1500元制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费.(1)分别写出两印刷厂的收费y (元)与印制宣传材料数量x (份)之间的关系式; (2)旅行社要印制800份宣传材料,选择那家印刷厂比较合算?说明理由. (3)旅行社拟拿出3000元用于印制宣传材料,哪家印刷厂印制的多?31.如图,直线113:4l y x m =-+与y 轴交于点(0,6)A ,直线2:1l y kx =+分别与x 轴交于点(2,0)B -,与y 轴交于点C ,两条直线交点记为D .(1)m = ,k = ;(2)求两直线交点D 的坐标;(3)根据图像直接写出12y y <时自变量x 的取值范围.32.定义:在平面直角坐标系中,一个图形向右平移1个单位再向下平移2个单位称为一个跳步.如:点()1,2P 一个跳步后对应点()2,0P '.已知点()1,4A -,()2,3B . (1)求点A ,B 经过1个跳步后的对应点A ',B '的坐标.(2)求直线AB 经过一个跳步后对应直线的函数表达式.33.如图所示,OA ,BA 分别表示甲、乙两名学生在同一直线上沿相同方向的运动过程中,路程s (米)与时间t (秒)的函数关系图象,试根据图象回答下列问题.(1)出发时,乙在甲前面多少米处?(2)如果甲、乙两名学生所行驶的路程记为s 甲,s 乙,试写出s 甲,s 乙与t 之间的函数关系式.(3)在什么时间范围内甲走在乙的后面?在什么时间他们相遇?在什么时间内甲走在乙的前面?34.学校准备购进一批节能灯,已知2只A 型节能灯和5只B 型节能灯共需45元;4只A 型节能灯和3只B 型节能灯共需41元.(1)求一只A 型节能灯和一只B 型节能灯的售价各是多少元.(2)学校准备购进这两种型号的节能灯共50只,并且A 型节能灯的数量不多于B 型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.35.某水果批发市场规定,批发苹果不少于100千克时,批发价为每千克2.5元.小王携带现金3 000元到该市场采购苹果,并以批发价买进.如果购进的苹果是x 千克,小王付款后剩余现金y 元.(1)试写出x 与y 之间的函数关系式,并指出自变量的取值范围;(2)画出函数图象,指出图象形状和终点坐标;(3)若小王以每千克3元的价格将苹果卖出,卖出x 千克后可获利润多少元? 36.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案.(2)如果甲车的租金为每辆2 000元,乙车的租金为每辆1 800元,问哪种可行方案使租车费用最省?37.如图,在平面直角坐标系中,函数883y x =-+的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴的正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式.(2)如果在直线AM 上有一点P ,使得ABP AOM S S =△△,请求出点P 的坐标.(3)在坐标平面内是否存在点N ,使以A 、B 、M 、N 为顶点的四边形是平行四边形?若存在,请直接写出所有点N 的坐标;若不存在,请说明理由.38.甲、乙两车从A 城出发前往B 城,在整个行程中,甲车离开A 城的距离1km y 与甲车离开A 城的时间h x 的对应关系如图所示.乙车比甲车晚出发1h 2,以60km/h 的速度匀速行驶.(①)填空:①,?A B 两城相距_______km ; ①当02x ≤≤时,甲车的速度为_______km /h ;①乙车比甲车晚_______h 到达B 城;①甲车出发4h 时,距离A 城_______km ;①甲、乙两车在行程中相遇时,甲车离开A 城的时间为_______h ;(①)当2053x ≤≤时,请直接写出1y 关于x 的函数解析式. (①)当1352x ≤≤时,两车所在位置的距离最多相差多少km ? 39.赣南脐橙果大形正,肉质脆嫩,风味浓甜芳香,深受大家的喜爱.某脐橙生产基地生产的礼品盒包装的脐橙每箱的成本为30元,按定价50元出售,每天可销售200箱.为了增加销量,该生产基地决定采取降价措施,经市场调研,每降价1元,日销售量可增加20箱.(1)求出每天销售量y (箱)与销售单价x (元)之间的函数关系式;(2)若该生产基地每天要实现最大销售利润,每箱礼品盒包装的脐橙应定价多少元?每天可实现的最大利润是多少40.如图,直线y =ax +b 与双曲线k y x=相交于两点A (1,2),B (m ,﹣4).(1)求直线与双曲线的解析式;(2)求不等式ax +b >k x的解集(直接写出答案) 41.如图,在平面直角坐标系xOy 中,直线1y x =+与24y x =-+交于点A ,两直线与x 轴分别交于点B 和点C ,D 是直线AC 上的一动点,E 是直线AB 上的一动点.若以E ,D ,O ,A 为顶点的四边形恰好为平行四边形,则点E 的坐标为________.42.如图,已知A (-3,n )、B (2,-3)是一次函数y kx b =+的图象和反比例函数m y x= 的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求①AOB 的面积;(3)根据图象:直接写出使得 m kx b x+< 成立时,x 的取值范围; 43.已知关于x 、y 的二元一次方程组21310x my x ny -=⎧⎨+=⎩. (1)若关于x 、y 的二元一次方程组2()()13()()10x y m x y x y n x y ++-=⎧⎨+--=⎩ 的解为13x y =-⎧⎨=⎩,直接写出原方程组的解为____________.(2)若2m n +=,且0x y >>,求32W x y =-的取值范围.44.已知:如图点(68)A ,在正比例函数图象上,点B 坐标为(12,0),连接AB ,10AO AB ==,点C 是线段AB 的中点,点P 在线段BO 上以每秒2个单位的速度由点B 向点O 运动,点Q 在线段AO 上由点A 向点O 运动,P Q 、两点同时运动,同时停止,运动时间为t 秒.(1)正比例函数的关系式为 ;(2)当1t =秒,且6OPQ S ∆=时,求点Q 的坐标;(3)连接CP ,在点P Q 、运动过程中,OPQ ∆与BPC ∆是否全等?如果全等,请求出点Q 的运动速度;如果不全等,请说明理由.45.先阅读材料,再解答问题:已知点00(,)P x y 和直线y kx b =+,则点P 到直线y kx b =+的距离d 可用公式d (2,1)P -到直线23y x =+的距离.解:由直线23y x =+可知:2,3k b ==.所以点(2,1)P -到直线23y x =+的距离为d === 求:(1)已知直线21y x =+与25y x =-平行,求这两条平行线之间的距离;(2)已知直线443y x =--分别交,x y 轴于,A B 两点,C 是以(2,2)C 为圆心,2为半径的圆,P 为C 上的动点,试求PAB ∆面积的最大值.46.平面直角坐标系中,直线y ax b =+与x 轴、y 轴分别交于点B 、C ,且a 、b 满足:3a =,不论k 为何值,直线:2l y kx k =-都经过x 轴上一定点A . (1)=a __________,b =__________;点A 的坐标为___________;(2)如图1,当1k =时,将线段BC 沿某个方向平移,使点B 、C 对应的点M 、N 恰好在直线l 和直线24y x =-上,请你判断四边形BMNC 的形状,并说明理由;(3)如图2,当k 的取值发生变化时,直线:2l y kx k =-绕着点A 旋转,当它与直线y ax b =+相交的夹角为45°时,求出相应的k 的值.47.如图,已知点A (2,-5)在直线1l :y =2x +b 上,1l 和2l :y =kx ﹣1的图象交于点B ,且点B 的横坐标为8.(1)直接写出b 、k 的值;(2)若直线1l 、2l 与y 轴分别交于点C 、D ,点P 在线段BC 上,满足14BDP BDC SS =,求出点P 的坐标;(3)若点Q 是直线2l 上一点,且①BAQ =45°,求出点Q 的坐标.48.如图,在平面直角坐标系中,直线AB :y =kx +b 交y 轴于点A (0,1),交x 轴于点B (3,0).平行于y 轴的直线x =1交AB 于点D ,交x 轴于点E ,点P 是直线x =1上一动点,且在点D 的上方,设P (1,n ).(1)求直线AB的表达式;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,直接写出点C 的坐标.参考答案:1.B【分析】根据题目中的函数解析式和一次函数的性质可以判断各个选项中的结论是否成立,从而可以解答本题.【详解】①一次函数y=3x﹣1,①该函数图象经过第一、三、四象限,故选项A错误,函数值y随x的增大而增大,故选项B正确;函数图象与y=3x互相平行,故选项C错误;函数图象与y轴交于点(0,﹣1),故选项D错误,故选:B.【点睛】本题考查一次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.2.B【分析】一次函数的图象是直线.【详解】解:表示y是x的一次函数的图象是一条直线,观察选项,只有B选项符合题意.故选:B.【点睛】本题考查了函数的定义,一次函数和正比例函数的图象都是直线.3.A【分析】根据一次函数的定义条件进行逐一分析即可.【详解】解:A、y=1-x是一次函数,故此选项符合题意;B、y=1x是反比例函数,故此选项不符合题意;C、当k=0时不是一次函数,故此选项不符合题意;D、y=x2+1是二次函数,故此选项不符合题意.故选:A.【点睛】本题考查了一次函数.解题的关键是掌握一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.4.D【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,函数y=3x的图象沿x轴向右平移2个单位,所得直线的解析式为y =3(x -2),即y =3x -6.故选:D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.D【分析】直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,把直线y =﹣2x +1上平移2个单位长度后所得直线的解析式为:y =﹣2x +12,即y =﹣2x +3故选:D .【点睛】本题考查了一次函数图象的平移规律,理解平移规律是解题的关键.6.C【分析】根据题意:可得y 随x 的增大而减小,31m -=,即可求解.【详解】解:①一次函数()333m y m x-=-+的图象上有两点()11,A x y ,()22,B x y ,当12x x <时,12y y >, ①y 随x 的增大而减小, ①31m -=,且30m < ,解得:4m =± ,且3m > ,①4m = .故选:C【点睛】本题主要考查了一次函数的性质,熟练掌握一次函数图象上点的坐标特点,和一次函数的性质是解题的关键.7.C【分析】根据题目中的函数解析式和一次函数的性质,可以得到该函数图象经过哪几个象限.【详解】解:①一次函数y =3x ﹣2,k =3>0,b =﹣2<0,①该函数的图象经过第一、三、四象限,故选C .【点睛】本题主要考查一次函数图象性质,解决本题的关键是要熟练掌握一次函数图象的性质.8.D【分析】根据一次函数的图象和性质,逐项判断即可求解.【详解】解:A 、①20,60>-<,①y 随x 的增大而增大,故A 选项错误,不符合题意;B 、当0x =时,y =-6,①图象交y 轴于点()0,6-,故B 选项错误,不符合题意;C 、当1x =时,21642y =⨯-=-≠,故C 选项错误,不符合题意;D 、图象经过第一、三、四象限,故D 选项正确,符合题意;故选:D.【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.9.C【分析】根据一次函数图象经过的象限可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围.【详解】解:①()23y m x m =-+-的图象不经过第二象限,①2030m m ->⎧⎨-≤⎩, ①23m <≤.故选:C .【点睛】本题考查一次函数图象与系数的关系:由于y kx b =+与y 轴交于()0,b ,当0b >时,()0,b 在y 轴的正半轴上,直线与y 轴交于正半轴;当0b <时,()0,b 在y 轴的负半轴,直线与y 轴交于负半轴.10.A【分析】把2x =-代入解析式即可.【详解】解:把2x =-代入23y x =+得,2(2)31y =⨯-+=-,故选:A .【点睛】本题考查了求一次函数的函数值,解题关键是把自变量的值代入后能准确熟练计算.11.①①【分析】根据一次函数(0)y kx b k =+≠的性质:当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小,可找出答案.【详解】①①①①①都是一次函数,①当y 随x 的增大而减小时,即0k <,①20k =>,①20k =-<,①20k =>,①20k =-<,①有①①满足,故答案为:①①.【点睛】本题考查一次函数的性质,掌握一次函数的增减性是解题的关键.12.4.【详解】试题解析:①一次函数y=kx+2的图象经过点(2,10),①10=2k+2,解得k=4.考点:一次函数图象上点的坐标特征.13.y =-x +3【分析】根据直线的平移规律是上加下减的原则进行解答即可.【详解】解:将直线y =-x 向上平移3个单位长度,平移后直线的解析式为y =-x +3, 故答案为:y =-x +3.【点睛】本题考查的是一次函数的图像与几何变换,熟知“上加下减”的原则是解决本题目的关键.14.1.【分析】根据正比例函数的定义可知2a-1=1,从而可求得a 的值.【详解】①y=x 2a-1是正比例函数,①2a-1=1,解得:a=1.故答案为1.【点睛】本题主要考查的是正比例函数的定义,由正比例函数的定义得到2a-1=1是解题的关键.15.1x >【分析】先根据函数图象得出交点坐标,根据交点的坐标和图象得出即可.【详解】解:根据图象可知:两函数的交点为(1,2),所以关于x 的一元一次不等式kx >﹣x +3的解集为1x >,故答案为:1x >.【点睛】本题主要考查一次函数与不等式,数形结合是解题的关键.16.13x y =⎧⎨=⎩【分析】首先求出P 点坐标,再根据两函数图象的交点坐标即为两函数组成的方程组的解.【详解】解:①直线y =x +2过点P (m ,3),①3=m +2,解得:m =1,①P (1,3),①方程组2y x y ax c =+⎧⎨=+⎩的解为13x y =⎧⎨=⎩. 故答案为:13x y =⎧⎨=⎩. 【点睛】本题主要考查了一次函数与二元一次方程组,关键是掌握二元一次方程(组)与一次函数图象的关系.17.32y x =-+【分析】直线上下平移解析式时,要注意平移时k 的值不变,只有b 发生变化.【详解】解:根据题意,①正比例函数3y x =-的图象向上平移2个单位长度,①得到的函数图象的解析式是:32y x =-+;故答案为:32y x =-+.【点睛】本题要注意利用一次函数平移的特点,上加下减,比较基础.18.m >﹣2【详解】试题分析:根据一次函数的图象与系数的关系列出关于m 的不等式m+2>0,求出m 的取值范围m >﹣2.考点:一次函数图象与系数的关系19.()3,6-【分析】过点C 作CH ①x 轴于点H ,由题意易得1,3OB OA ==,然后根据①OBC 的面积可得点C 的纵坐标,进而问题可求解.【详解】解:过点C 作CH ①x 轴于点H ,如图所示:①直线3y kx =-与x 轴、y 轴分别交于点B 与点A ,①令0x =时,则有y =-3,即OA =3, ①13OB OA =, ①1OB =,即()1,0B -,代入直线解析式得:03k =--,解得:3k =-;①直线AB 的解析式为33y x =--,①①OBC 的面积为3, ①132OB CH ⋅=, ①6CH =,即点C 的纵坐标为6,①336x --=,解得:3x =-,①()3,6C -;故答案为()3,6-.【点睛】本题主要考查一次函数与几何的综合,熟练掌握利用待定系数法求函数解析式是解题的关键.20.①①##①①【分析】①根据图象由速度=路程÷时间就可以求出结论;①先求出乙追上甲所用的时间,再加上乙返回学校所用的时间就是乙步行所用的时间; ①先根据第二问的结论求出甲步行的速度.【详解】解:①由图象,得18200.9÷=(km/min ),故①说法正确;①乙从学校追上甲所用的时间为:(3613.5)0.925-÷=(min ),①甲步行所用的时间为:202545+=(min ),故①说法正确;①由题意,得甲步行的速度为:(3613.518)450.1--÷=(km/min ),故①说法错误;综上,正确的是①①,故答案为:①①.【点睛】本题考查了一次函数的应用,速度与时间,追击问题,分析函数图象反应的数量关系是解题关键.21.2x >【分析】根据图象即可得出结论.【详解】解:由图象可知:在点P 的右侧,函数2y x b =+的图象在函数6y kx =-图象的上方①62kx x b -<+的解集是2x >故答案为:2x >.【点睛】此题考查的是一次函数与不等式,掌握利用图象解不等式是解题关键. 22.2x >【分析】直线y =-x +2上的点在x 轴下方时,应有-x +2<0,求解不等式即可.【详解】当直线2y x =-+上的点在x 轴下方,则y < 0,∴-x +2<0,解得:x >2,即当自变量x 的值满足x > 2时,直线2y x =-+上的点在x 轴下方,故答案为:2x >.【点睛】本题考查了一次函数与不等式的关系及数形结合思想的应用,解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.23.23【详解】设直线的解析式为y =kx +b (k ≠0)①A (1,1),B (4,0)140k b k b +=⎧∴⎨+=⎩解得4313b k ⎧=⎪⎪⎨⎪=-⎪⎩①直线AB 的解析式为1433y x =-+ ①P (2,m )在直线上,1422333m ⎛⎫∴=-⨯+= ⎪⎝⎭. 24.6X <-【分析】观察函数图象得到即可.【详解】由图象可知函数y=kx+b 与x 轴的交点为(6,0),则函数y=-kx+b 与x 轴的交点为(-6,0),且y 随x 的增大而增大,①当x <-6时,-kx+b <0,所以关于x 的不等式-kx+b <0的解集是x <-6,故答案为:x <-6.【点睛】此题考查一次函数与一元一次不等式的关系,解题关键在于掌握从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.25.4【分析】①由直线y =−x +m 与y 轴交于负半轴,可得m <0;y =nx +4n (n ≠0)的图象从左往右逐渐上升,可得n >0,即可判断结论①正误;①将x =−4代入y =nx +4n ,求出y =0,即可判断结论①正误;①代入交点坐标整理即可判断结论①正误;①观察函数图象,可知当x >−2时,直线y =nx +4n 在直线y =−x +m 的上方,即nx +4n >−x +m ,即可判断结论①正误.【详解】解:①①直线y =−x +m 与y 轴交于负半轴,①m <0;①y =nx +4n (n ≠0)的图象从左往右逐渐上升,①n >0,故结论①正确;①将x =−4代入y =nx +4n ,得y =−4n +4n =0,①直线y =nx +4n 一定经过点(−4,0).故结论①正确;①①直线y =−x +m 与y =nx +4n (n ≠0)的交点的横坐标为−2,①当x =−2时,y =2+m =−2n +4n ,①m =2n −2.故结论①正确;①①当x >−2时,直线y =nx +4n 在直线y =−x +m 的上方,①当x >−2时,nx +4n >−x +m ,①()14n x m n +>-故结论①错误.故答案为:①①①.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数与一元一次不等式以及一次函数的图象.解题的关键在于熟练掌握函数图象与性质.26.1x ≤【分析】在图中找到两函数图象的交点,根据一次函数图象的交点坐标与不等式组解集的关系即可作出判断.【详解】解:①直线l 1:y 1=k 1x+a 与直线l 2:y 2=k 2x+b 的交点坐标是(1,2), ①当x=1时,y 1=y 2=2.而当y 1≤y 2时,即12k x a k x b +≤+时,x≤1.故答案为:x≤1.【点睛】此题考查了直线交点坐标与一次函数组成的不等式组的解的关系,利用图象即可直接解答,体现了数形结合思想在解题中的应用.27.(163,4) 【分析】由点D 坐标求出k =12,直线OB 的表达式为y =34x ,设B (x ,34x ),则C (16x ,34x ),BC =x ﹣16x,由平行四边形的面积公式列方程求出x 值即可解答.【详解】解:①反比例函数()0,0k y k x x =>>的图象经过点D (4,3), ①k =4×3=12,①反比例函数的表达式为12y x=, ①点D 在对角线OB 上, ①设直线OB 的表达式为y =mx ,①3=4m ,则m =34, ①直线OB 的表达式为y =34x , ①四边形ABCD 是平行四边形,①BC ①OA ,设B (x ,34x ),则C (16x ,34x ),BC =x ﹣16x, ①OABC 的面积是283, ①(x ﹣16x)·34x =283, 解得:x =163±, ①x >0,①x =163, ①点B 坐标为(163,4), 故答案为:(163,4).【点睛】本题考查待定系数法求函数解析式、反比例函数图象上点的坐标特征、平行四边形的性质、图形与坐标,一元二次方程的解法,熟练掌握反比例函数图象上点的坐标特征和平行四边形的性质是解答的关键.28.20212021(2,2)【分析】由11OA =得到点1B 的坐标,然后利用等腰直角三角形的性质得到点2A 的坐标,进而得到点2B 的坐标,然后再一次类推得到点2022B 的坐标.【详解】解:11,OA =∴点1A 的坐标为()1,0,11OA B 是等腰直角三角形,111,A B ∴=()11,1B ∴,112B A A 是等腰直角三角形,12121,A A B A ∴==212B B A 为等腰直角三角形,232A A ∴=,()22,2B ∴,同理可得,22331134(2,2),(2,2),,(2,2),n n n B B B --202120212022(2,2),B ∴故答案为:20212021(2,2).【点睛】本题考查了正比例函数图象上点的坐标特征、等腰直角三角形的性质,勾股定理的应用,解题的关键是通过等腰直角三角形的性质依次求出系列点B 的坐标找出规律. 29.(1)A 品牌书包单价为150元,B 品牌书包单价为200元(2)当1050m <<时,购买A 品牌书包更省钱;当50m =时,购买两种品牌书包花费相同;当50m >时,购买B 品牌书包更省钱【分析】(1)设A 品牌书包单价为x 元,B 品牌书包单价为y 元,根据所给等量关系列二元一次方程组,即可求解;(2)①根据优惠活动的规则列式即可;②分别计算12w w <,12w w =,12w w >得出m 的取值范围,即可得出结论.【详解】(1)解:设A 品牌书包单价为x 元,B 品牌书包单价为y 元,由题意知25502500x y x y +=⎧⎨+=⎩, 解得150200x y =⎧⎨=⎩, 即A 品牌书包单价为150元,B 品牌书包单价为200元;(2)解:①根据优惠活动的规则可知:10.8150120w m m =⨯⋅=,()210200102000.51001000w m m =⨯+-⨯⨯=+;②当12w w <时,1201001000m m <+,解得50m <, 又10m >,∴当1050m <<时,购买A 品牌书包更省钱;当12w w =时,1201001000m m =+,解得50m =,∴当50m =时,购买两种品牌书包花费相同;当12w w >时,1201001000m m >+,解得50m >,∴当50m >时,购买B 品牌书包更省钱.【点睛】本题考查二元一次方程组的应用,一次函数的应用,解一元一次不等式等知识点,解题的关键是理解题意,正确列出二次一次方程组及函数关系式.30.(1)y 甲=x +1500,y 乙=2.5x (2)选择乙印刷厂比较合算(3)选择甲印刷厂印制宣传材料能多一些.【分析】(1)利用题目中所给等量关系即可求得答案;(2)把800x =分别代入两函数解析式,分别计算y 甲、y 乙的值,比较大小即可; (3)令3000y =代入两函数解析式分别求x 的值,比较大小即可.【详解】解:(1)由题意可得y 甲=x +1500,y 乙=2.5x ;(2)当x =800时,y 甲=2300,y 乙=2000,①y 甲>y 乙,①选择乙印刷厂比较合算;(3)当y =3000时,甲:x =1500,乙:x =1200,①1500>1200,①选择甲印刷厂印制宣传材料能多一些.【点睛】本题主要考查一次函数的应用,利用题目中所给的等量关系求得两函数解析式是解题的关键.31.(1)6,12;(2)D 点坐标为(4,3);(3)>4x .【详解】试题分析:(1)将A (0,6)代入134y x m =-+即可求出m 的值,将B (−2,0)代入1y kx =+即可求出k 的值. (2)根据(1),得到两函数的解析式,组成方程组解求出D 的坐标;(3)由图可直接得出12y y <时自变量x 的取值范围.试题解析:(1)将A (0,6)代入134y x m =-+得,m =6; 将B (−2,0)代入1y kx =+得, 1.2k = (2) 联立12,l l 解析式,即364112y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩,解得:43x y =⎧⎨=⎩, 故D 点坐标为(4,3);(3)由图可知,在D 点右侧时,即4x >时,12y y <. 32.(1)()0,2A ',()3,1B ';(2)123y x =-+. 【分析】(1)根据坐标系中点平移坐标变化规律即可解答.(2)根据(1)点A ,B 经过1个跳步后的对应点A ',B '的坐标在直线AB 经过一个跳步后直线上.利用待定系数法即可求解【详解】解:(1)点()1,4A -经过1个跳步后对应点()0,2A ',点()2,3B 经过1个跳步后对应点()3,1B '.(2)设直线AB 经过一个跳步后对应直线A B ''的函数表达式为y kx b =+,由题意得:2132b k =⎧⎨=+⎩, ①13k =-,2b =. ①直线AB 经过一个跳步后对应直线A B ''的函数表达式为123y x =-+. 【点睛】本题考查了坐标与图形变化-平移和待定系数法求一次函数解析式,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键. 33.(1)12米;(2)s 乙=132t +12. (3)t<8秒;t=8;t>8秒. 【分析】(1)由图象可知,x =0时,y=12,即出发时乙在甲前面12米处.(2)因为甲的图象过点(0,0),(8,64),乙的图象过点(0,12),(8,64),利用待定系数法即可求解.(3)由图象可知它们的交点为(8,64),即8秒时两人相遇,再分别分析x <8和x >8时,两直线的位置即可求出答案.【详解】解:(1)出发时乙在甲的前面12米处.(2)学生甲所走的路程的图象是OA,设s 甲=k1t,当t =8时,s =64,①k1=8,①s甲=8t .学生乙所走路程的图象是BA ,设s甲=k2t+b,将点A (8,64)及点B(0,12)代入,可得2132k =,b =12, ①s甲=132t+12. (3)由图可知OA,BA 的交点A 的坐标是(8,64),则当t <8秒时,甲走在乙的后面;当t =8秒时,他们相遇;当t >8秒时,甲走在乙的前面.【点睛】本题主要考察函数图象信息分析,解决本题的关键是要熟练掌握分析函数图象的。

(完整版)一次函数应用题专题训练

(完整版)一次函数应用题专题训练

一次函数应用题专题训练1.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系. (1)根据图中信息,求线段AB 所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t 时,求t 的值; (3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y 关于x 的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)2.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y (人)与售票时间x (分钟)的关系如图所示,已知售票的前a 分钟只开放了两个售票窗口(规定每人只购一张票). (1)求a 的值.(2)求售票到第60分钟时,售票听排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?3.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为 km , a ; (2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.O y/km 9030 a3P甲 乙x/h4.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?⑵如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?5.某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B地,乙车从B地直达A地,图16是甲、乙两车间的距离y(千米)与乙车出发x(时)的函数的部分图像(1)A、B两地的距离是千米,甲车出发小时到达C地;(2)求乙车出发2小时后直至到达A地的过程中,y与x的函数关系式及x的取值范围,并在图16中补全函数图像;(3)乙车出发多长时间,两车相距150千米6.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.请根据图象回答下列问题:(1)汽车行驶小时后加油,中途加油升;小时)(2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式;210千米,要到达目的地,7.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李. (1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?8.自2010年6月1日起我省开始实施家电以旧换新政策,消费者在购买政策限定的新家电时,每台新家电用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴部分由政府提供,其中三种家电的补贴方式如下表:为此,某商场家电部准备购进电视、洗衣机、冰箱共100台,这批家电的进价和售价如下表:设购进的电视机和洗衣机数量均为x 台,这100台家电政府需要补贴y 元,商场所获利润w 元(利润=售价-进价)(1)请分别求出y与x和w与x的函数表达式;(2)若商场决定购进每种家电不少于30台,则有几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴多少元钱?9、(2005年包头)小明、小颖两名同学在学校冬季越野赛中的路程y(千米)与时间x(分)的函数关系如图所示。

一次函数综合大题训练(共10题)

一次函数综合大题训练(共10题)

一次函数综合大题训练(共10题)1.如图,在平面直角坐标系中,直线l1:y=kx+1交y轴于点A,交x轴于点B(4,0),过点E(2,0)的直线l2平行于y轴,交直线l1于点D,点P是直线l2上一动点(异于点D),连接P A、PB.(1)求直线l1的解析式;(2)设P(2,m),求△ABP的面积S的表达式(用含m的代数式表示);(3)当△ABP的面积为3时,则以点B为直角顶点作等腰直角△BPC,请直接写出点C 的坐标.2.如图,在平面直角坐标系中,直线l:y=x+b(b<0)与x轴交于点C.点D为直线l 上第一象限内一点,过D作DE⊥y轴于点E,CA⊥DE于点A.点B在线段DA上,DB =AC.连接CB,P为线段CB上一动点,过点P作PR⊥x轴,分别交x轴、CD、DE于点R、Q、S.(1)若点D坐标为(12,3).①求直线BC的函数关系式;②若Q为RS中点,求点P坐标.(2)在点P运动的过程中,的值是否变化?若不变,求出该值;若变化,请说明理由.3.已知:如图,一次函数y=x﹣3的图象分别与x轴、y轴相交于点A、B,且与经过x 轴负半轴上的点C的一次函数y=kx+b的图象相交于点D,直线CD与y轴相交于点E,E与B关于x轴对称,OA=3OC.(1)直线CD的函数表达式为;点D的坐标;(直接写出结果)(2)点P为线段DE上的一个动点,连接BP.①若直线BP将△ACD的面积分为7:9两部分,试求点P的坐标;②点P是否存在某个位置,将△BPD沿着直线BP翻折,使得点D恰好落在直线AB上方的坐标轴上?若存在,求点P的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,直线分别与x轴,y轴交于A,B两点,把线段AB绕点B顺时针旋转90°后得到线段BC,连结AC,OC.(1)当时,求点C的坐标;(2)当m值发生变化时,△BOC的面积是否保持不变?若不变,计算其大小;若变化,请说明理由;(3)当S△AOB=2S△BOC时,在x轴上找一点P,使得△P AB是等腰三角形,求满足条件的所有P点的坐标.5.如图,在平面直角坐标系中l1:y=﹣x﹣,l2:y=kx+b(k≠0),直线l1交y轴于点C,直线l2交x轴于点A(﹣2,0),交y轴于点B(0,2),点D为直线l2上第一象限内的一点,且到y轴的距离为,连接OD.(1)如图1,求直线l2的解析式;(2)如图2,E(3,0),P为直线l1上第四象限的一动点,连接PD、PO,当S△POD=时,线段CP在直线l1上移动,记平移后的线段为C'P',求△EC'P'周长取得最小值时点C'的坐标;(3)如图3,将△OBD绕点D逆时针旋转,旋转角度为α(0°<α≤180°),旋转中的三角形记为△DB'O',在旋转过程中,边DB',DO'所在直线分别交l1于点M、N,在旋转过程中是否存在△DMN为等腰三角形,若存在,请直接写出点B'的坐标,若不存在,请说明理由.6.如图,在平面直角坐标系xOy中,A(0,3)、B(﹣4,0),连接AB,点C为线段AB 上的一个动点(点C不与A、B重合),过点C作CP⊥x轴,垂足为P,将线段AP绕点A逆时针旋转至AQ,且∠P AQ=∠BAO.连接OQ,设点C的横坐标为m.(1)求经过点A、B的直线的函数表达式;(2)当m为何值时,△ACP≌△AOQ;(3)点C在运动的过程中,①在y轴上是否存在一点D,使得∠ADQ的大小始终不发生变化?若存在,请求出点D的坐标;若不存在,请说明理由;②连接OQ,请直接写出OQ长度的取值范围.7.如图,在平面直角坐标系中,A(﹣1,0),B(0,3),直线y=﹣x+1与x轴交于点C,与直线AB交于点D.(1)求直线AB的解析式及点D的坐标;(2)如图2,H是直线AB上位于第一象限内的一点,连接HC,当S△HCD=时,点M、N为y轴上两动点,点M在点N的上方,且MN=1,连接HM、NC,求HM+MN+NC 的最小值;(3)将△OAB绕平面内某点E旋转90°,旋转后的三角形记为△O′A′B′,若点O′落在直线AB上,点A′落在直线CD上,请直接写出满足条件的点O′的坐标以及对应的点E的坐标.8.已知A(0,6),点D在点A的上方,点C(10,0),点B在线段OC上运动,且CD∥AB.(1)如图1,若∠OCD=30°,求直线AB的解析式,并直接写出四边形ABCD的面积.(2)如图2,在(1)的条件下,点E和点F都在线段CD上运动,且满足CF:DE=2:3,直接写出当△AEF的面积为2时,点E的坐标.(3)如图3,点E在线段CD上运动,点F在线段CE上运动,且满足CF:DE=2:3,点P和点Q分别是线段AB和线段EF上的动点,当点P从点A匀速运动到点B时,点Q恰好从点F匀速运动到点E.设QE=m,P A=n,已知n=﹣m+12,直接写出直线PQ经过点O时,直线PQ的解析式.9.如图1,直线y=x﹣5与x轴、y轴分别交于B、C两点,点A为y轴正半轴上一点,且S△ABC=75.(1)请直接写出点B、C的坐标及直线AB的解析式:、、;(2)如图2,点P为线段OB上一点,若∠BCP=45°,请写出点P的坐标:,并简要写出解答过程;(3)如图3,点D是AB的中点,M是OA上一点,连接DM,过点D作DN⊥DM交OB于点N,连接BM,若∠OBM=2∠ADM,请写出点M的坐标,并简要写出解答过程.10.平面直角坐标系xOy中,直线y=﹣x+3与x、y轴交于A、B两点,与正比例函数y =kx的图象交于点F,CE∥x轴,点C坐标为(0,m)(0<m<3),以BC、BE为邻边作平行四边形BCDE,当点D在OF上时,m=2.(1)求直线OF的函数解析式;(2)设平行四边形BCDE与△BOF重叠部分面积为S,求S与m的关系式,并直接写出自变量m的取值范围.。

一次函数专题训练

一次函数专题训练
则 它 的 将( ) .
B. ’= 一 +4
( : . : +4或 Y=一 +4 D . , ‘ : ~4 或 Y=一 ~4
A. 向 左 平 移 一 个 位
B . 向右平 移 一个 位
1 9 , 已知血 线 = +b如 所 示 ,芟 使 Y的
A . ) 一 }
C. Y:一

B . Y = 2
D. , 一 =一2十5 x
1 4 . 对 r 比例 函 数 Y=一 1 T I 2 X ( 小 ≠0 ) , 列 结 沦正 确 的是 (
A. Y>0
1 9题 图
) .
2 0 .卜列 像 不 " f t J  ̄ 是 天 J 的 一次 函数 Y= m x一( Ⅲ~3 ) 的 像 的是 ( } ) .
值 为I l , n变 量 必 须满 足 (
A. <0 B. >0
C . 向下平 移一 一 个 单位
D. 向 平 移 …个单 位
) .
1 3 . 当 n变量 增 大 时 , 下列 函数 值 反而 减 小
的足 ( ) .
C. x<- 一
D. x> - 一


20
Do wh a t y o u o u g h t , a n d c o me wh a t c a n .
做 你该 做 的事 情 , 不 要 问结 果 怎 样 。— — 乔 治 ・ 赫伯 特




函 鼗专 题 训 练 0 l l 毫
1 2 。 对 下A线 y:k x+6 , 若 减 少 一个 单位 ,
正 比例 函数 , 则 =
析 式为 .

初中数学求一次函数的表达式15道题题专题训练含答案

初中数学求一次函数的表达式15道题题专题训练含答案
(2)利用平移规律写出新的直线方程.
【详解】
解:(1)将点 代入 ,得 ,即 .
故函数解析式为: ;
(2)将 向下平移5个单位长度后得到的函数表达式是: .
故答案是: .
【点睛】
本题考查图形的平移变换和函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.
(1)求直线 的表达式;
(2)求点 的坐标;
4.如图,直线 的表达式为 ,直线 与x轴交于点D,直线 : 与x轴交于点A,且经过点B,直线 、 交于点 .
(1)求m的值;
(2)求直线 的表达式;
(3)根据图象,直接写出 的解集.
5.如图,求图中直线的函数表达式:
6.如图,直线 的表达式为 ,且与 轴交于点 ;直线 经过 , 两点.直线 , ,相交于点 .
14.(1) ;(2) .
【解析】
【分析】
(1)根据题意设出函数关系式,利用待定系数法即可求解;
(2)把 代入函数解析式 即可求出y的值.
【详解】
解:(1)∵ 与 成正比例,
∴设 ,
把 代入,得 ,

∴ 关于 的函数表达式为 .
(2)把 代入 ,得 .
【点睛】
本题主要考查用待定系数法求正比例函数的解析式,求函数值等知识点的理解和掌握,能求出正比例函数的解析式是解此题的关键.
令y=0,即 x−12=0,
解得: ,
∴ 的坐标为( ,0).
【点睛】
此题主要考查了求一次函数图象的交点、待定系数法求一次函数解析式以及轴对称求最短路径问题,关键是掌握两函数图象相交,交点坐标就是两函数解析式组成的方程组的解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数习题
一.选择题(共15小题)
1.如图所示的计算程序中,y与x之间的函数关系所对应的图象()
D.A.B.C.
2.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()
A.x<0 B.x>0 C.x<2 D.x>2 3.对于函数y=-3x+1,下列结论正确的是()
A.它的图象必经过点(-1,3)
B.它的图象经过第一、二、三象限
C.当x>1时,y<0
D.y的值随x值的增大而增大
4.下列函数中,y随x的增大而减小的函数是()
A.y=2x+8 B.y=-2+4x C.y=-2x+8 D.y=4x 5.一条直线y=kx+b,其中k+b=-5,kb=6,那么该直线经过()
A.第二、四象限B.第一、二、三象限
C.第一、三象限D.第二、三、四象限
6.若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是()
A.B.C.D.
7.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到
x上一点,则点B与其对应点B′间的距离为()△O′A′B′,点A的对应点在直线y=3
4
A.9
B.3 C.4 D.5 4
8.对于一次函数y=-2x+4,下列结论错误的是()
A.函数值随自变量的增大而减小
B.函数的图象不经过第三象限
C.函数的图象向下平移4个单位长度得y=-2x的图象
D.函数的图象与x轴的交点坐标是(0,4)
9.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()
A.B.C.D.
10.一次函数y=kx-k(k<0)的图象大致是()
A.B.C.D.
11.若实数a,b满足ab<0,且a<b,则函数y=ax+b的图象可能是()A.B.C.D.
12.已知过点(2,-3)的直线y=ax+b (a≠0)不经过第一象限,设s=a+2b ,则s 的取值范围是( ) A .-5≤s≤-32
B .-6<s≤-
32
C .-6≤s≤-
32
D .-7<s≤-
32
13.如图,A 点的坐标为(-4,0),直线y= 3x+n 与坐标轴交于点B ,C ,连接AC ,如果∠ACD=90°,则n 的值为( )
A .-2
B .-
4 23
C .-
4 33
D .-
4 53
14.已知点A 的坐标为(2,0),点P 在直线y=x 上运动,当以点P 为圆心,PA 的长为半径的圆的面积最小时,点P 的坐标为( ) A .(1,-1)
B .(0,0)
C .(1,1)
D . 2, 2
15.如图,已知A 1、A 2、A 3、…、A n 、A n+1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n+1=1,分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴的垂线交直线y=2x 于点B 1、B 2、B 3、…、B n 、B n+1,连接A 1B 2、B 1A 2、A 2B 3、B 2A 3、…、A n B n+1、B n A n+1,依次相交于点P 1、P 2、P 3、…、P n .△A 1B 1P 1、△A 2B 2P 2、△A n B n P n 的面积依次记为S 1、S 2、S 3、…、S n ,则S n 为( )
A .n+1
2n+1 B .n
3n −1
C .n
2n −1
D .n
2n+1
25.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y 轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.
三.解答题(共5小题)
26.某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:
(1)该地出租车的起步价是7元;
(2)当x>2时,求y与x之间的函数关系式;
(3)若某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少
元?
27.某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、
乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版
费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)
之间的关系如图所示:
(1)填空:甲种收费的函数关系式是.
乙种收费的函数关系式是.
(2)该校某年级每次需印制100~450(含100和450)份学案,选
择哪种印刷方式较合算?
28.已知直线y=2x+4与x轴交于点A,与y轴交于点B,点P在坐标轴上,且PO=2AO.求
△ABP的面积.
29.已知点A (6,0)及在第一象限的动点P (x ,y ),且2x+y=8,设△OAP 的面积为S . (1)试用x 表示y ,并写出x 的取值范围; (2)求S 关于x 的函数解析式;
(3)△OAP 的面积是否能够达到30?为什么?
30.如图,已知一次函数y=-1
2x +b 的图象经过点A (2,3),AB ⊥x 轴,垂足为B ,连接OA .
(1)求此一次函数的解析式;
(2)设点P 为直线y=-1
2x +b 上的一点,且在第一象限内,经过P 作x 轴的垂线,垂足为Q .若S △POQ=5
4S △AOB ,求点P 的坐标.。

相关文档
最新文档