(五年高考真题)2016届高考数学复习 第五章 第一节 平面向量的概念及坐标运算 理(全国通用)
高考数学(文)《平面向量》专题复习
第1节 平面向量的概念及线性运算、 平面向量基本定理
600分基础 考点&考法
❖考点29 平面向量的基本概念及线性运算 ❖考点30 平面向量的坐标运算
返回
考点29 平面向量的基本概念及线性运算
❖考法1 平面向量的有关概念 ❖考法2 平面向量的线性运算
返回
考点29 平面向量的基本概念及线性运算
【注意】①向量数乘的特殊情况:当λ=0时,λa=0;当a=0时,λa=0.②实数和向量可 以求积,但不能求和、求差.③正确区分向量数量积与向量数乘的运算律.
返回
考法2 平面向量的线性运算
返回
考点30 平面向量的坐标运算
❖考法3 平面向量基本定理的应用 ❖考法4 平面向量的共线问题 ❖考法5 平面向量的坐标表示与运算
1.向量的有关概念
2.向量的线性运算
考法1 平面向量的有关概念
解决平面向量的有关概念的问题时,应注意以下两点: 1.应正确理解向量的概念 ①向量既有大小,又有方向,任意两个向量不能比较大小,只可以 判断它们是否相等,但它们的模可以比较大小;②大小与方向是向 量的两个要素,分别是向量的代数特征与几何特征;③向量可以自 由平移,任一组平行向量都可以移到同一直线上. 2.正确理解共线向量与平行向量 共线向量就是平行向量,其要求是几个非零向量的方向相同或相反, 当然向量所在直线可以平行,也可以重合,其中“共线”的含义不 同于平面几何中“共线”的含义.
(2)b在a方向上的投影是 一个数量,当0°≤θ< 90°时为正;当90°<θ ≤180°时为负;当θ= 90°时为0.
考点31 平面向量的数量积
【注意】x1y2-x2y1=0与x1x2+y1y2=0不同,前者是两向量a=(x1,y1), b=(x2,y2)共线的充要条件,后者是它们垂直的充要条件.
高考数学大一轮复习 第五章 平面向量、复数 5.1 平面向量的概念及线性运算教案(含解析)
第五章平面向量、复数考试内容等级要求平面向量的概念 B平面向量的加法、减法及数乘运算 B平面向量的坐标表示 B平面向量的数量积 C平面向量的平行与垂直 B平面向量的应用 A复数的概念 B复数的四则运算 B复数的几何意义 A§5.1平面向量的概念及线性运算考情考向分析主要考查平面向量的线性运算(加法、减法、数乘向量)及其几何意义、共线向量定理,常与三角函数、解析几何交汇考查,有时也会有新定义问题;题型以填空题为主,属于中低档题目.偶尔会在解答题中作为工具出现.1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或称模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位长度的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量平行或共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算a-b=a+(-b)数乘求实数λ与向量a的积的运算|λa|=|λ||a|,当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb口诀:(加法三角形)首尾连,连首尾;(加法平行四边形)起点相同连对角;(减法三角形)共起点,连终点,指向被减.3.向量共线定理向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa.概念方法微思考1.若b与a共线,则存在实数λ使得b=λa,对吗?提示不对,因为当a=0,b≠0时,不存在λ满足b=λa.2.如何理解数乘向量?提示λa的大小为|λa|=|λ||a|,方向要分类讨论:当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0或a为零向量时,λa为零向量,方向不确定.3.如何理解共线向量定理?提示如果a=λb,则a∥b;反之,如果a∥b,且b≠0,则一定存在唯一一个实数λ,使得a=λb.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)向量不能比较大小,但向量的模可以比较大小.( √)(2)|a |与|b |是否相等与a ,b 的方向无关.( √ ) (3)若a ∥b ,b ∥c ,则a ∥c .( × )(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( √ ) (6)若两个向量共线,则其方向必定相同或相反.( × ) 题组二 教材改编2.[P72T8]已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示) 答案 b -a -a -b解析 如图,DC →=AB →=OB →-OA →=b -a , BC →=OC →-OB →=-OA →-OB →=-a -b .3.[P73T13]在平行四边形ABCD 中,若|AB →+AD →|=|AB →-AD →|,则四边形ABCD 的形状为________. 答案 矩形解析 如图,因为AB →+AD →=AC →, AB →-AD →=DB →, 所以|AC →|=|DB →|.由对角线长相等的平行四边形是矩形可知,平行四边形ABCD 是矩形. 题组三 易错自纠4.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”) 答案 充分不必要解析 若a +b =0,则a =-b ,所以a ∥b .若a ∥b ,则a +b =0不一定成立,故前者是后者的充分不必要条件.5.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.6.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.答案 12解析 ∵DE →=DB →+BE →=12AB →+23BC →=12AB →+23(BA →+AC →)=-16AB →+23AC →, ∴λ1=-16,λ2=23,即λ1+λ2=12.题型一 平面向量的概念1.给出下列命题:①若两个向量相等,则它们的起点相同,终点相同; ②若a 与b 共线,b 与c 共线,则a 与c 也共线;③若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则四边形ABCD 为平行四边形; ④a =b 的充要条件是|a |=|b |且a ∥b ;⑤已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中真命题的序号是________. 答案 ③解析 ①错误,两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定有相同的起点和终点;②错误,若b =0,则a 与c 不一定共线;③正确,因为AB →=DC →,所以|AB →|=|DC →|且AB →∥DC →;又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;④错误,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,所以|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件;⑤错误,当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线. 2.给出下列四个命题:①若a ∥b ,则a =b ;②若|a |=|b |,则a =b ;③若|a |=|b |,则a ∥b ;④若a =b ,则|a |=|b |.其中正确命题的个数是________. 答案 1解析 只有④正确.思维升华向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任何向量共线. 题型二 平面向量的线性运算 命题点1 向量的线性运算例1(1)在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设AB →=a ,AD →=b ,则向量BF →=________.(用向量a ,b 表示) 答案 -13a +23b解析 BF →=23BE →=23(BC →+CE →)=23⎝ ⎛⎭⎪⎫b -12a =-13a +23b . (2)(2018·全国Ⅰ改编)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则用向量AB →,AC →表示EB →为________. 答案 EB →=34AB →-14AC →解析 作出示意图如图所示. EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →) =34AB →-14AC →. 命题点2 根据向量线性运算求参数例2(1)如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA→+μBD →(λ,μ∈R ),则λ+μ=________. 答案 34解析 ∵E 为线段AO 的中点, ∴BE →=12BA →+12BO →=12BA →+12⎝ ⎛⎭⎪⎫12BD →=12BA →+14BD →=λBA →+μBD →, ∴λ+μ=12+14=34.(2)在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤0,12 解析 由题意可求得AD =1,CD =3, ∴AB →=2DC →.∵点E 在线段CD 上,∴DE →=λDC →(0≤λ≤1). ∵AE →=AD →+DE →=AD →+λDC →, 又AE →=AD →+μAB →=AD →+2μDC →, ∴2μ=λ,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12.思维升华平面向量线性运算问题的常见类型及解题策略(1)向量加法和减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较,求参数的值.跟踪训练1(1)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC →=b ,则DE →=________.(用向量a ,b 表示)答案 -13a -512b解析 DE →=DC →+CE →=13BC →+34CA → =13(AC →-AB →)-34AC → =-13AB →-512AC →=-13a -512b .(2)在平行四边形ABCD 中,E ,F 分别为边BC ,CD 的中点,若AB →=xAE →+yAF →(x ,y ∈R ),则x -y =________. 答案 2解析 由题意得AE →=AB →+BE →=AB →+12AD →,AF →=AD →+DF →=AD →+12AB →,因为AB →=xAE →+yAF →,所以AB →=⎝ ⎛⎭⎪⎫x +y 2AB →+⎝ ⎛⎭⎪⎫x 2+y AD →,所以⎩⎪⎨⎪⎧x +y2=1,x2+y =0,解得⎩⎪⎨⎪⎧x =43,y =-23,所以x -y =2.题型三 共线定理的应用例3(1)已知D 为△ABC 的边AB 的中点.点M 在DC 上且满足5AM →=AB →+3AC →,则△ABM 与△ABC 的面积比为________. 答案 3∶5解析 由5AM →=AB →+3AC →, 得2AM →=2AD →+3AC →-3AM →, 即2(AM →-AD →)=3(AC →-AM →),即2DM →=3MC →,故DM →=35DC →,故△ABM 与△ABC 同底且高的比为3∶5, 故S △ABM ∶S △ABC =3∶5.(2)(2018·盐城模拟)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________.答案 3解析 设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a , PG →=OG →-OP →=⎝ ⎛⎭⎪⎫13-m a +13b .由P ,G ,Q 三点共线,得存在实数λ使得PQ →=λPG →,即n b -m a =λ⎝ ⎛⎭⎪⎫13-m a +13λb ,从而⎩⎪⎨⎪⎧-m =λ⎝ ⎛⎭⎪⎫13-m ,n =13λ,消去λ,得1n +1m=3.思维升华 (1)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.跟踪训练2如图,△ABC 中,在AC 上取一点N ,使AN =13AC ;在AB 上取一点M ,使AM =13AB ;在BN 的延长线上取点P ,使得NP =12BN ;在CM 的延长线上取点Q ,使得MQ →=λCM →时,AP →=QA →,试确定λ的值.解 ∵AP →=NP →-NA →=12(BN →-CN →)=12(BN →+NC →)=12BC →,QA →=MA →-MQ →=12BM →+λMC →,又AP →=QA →,∴12BM →+λMC →=12BC →,即λMC →=12MC →, ∴λ=12.1.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,真命题的个数是________. 答案 0解析 向量是既有大小又有方向的量,a 与|a |a 0模相等,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.2.在四边形ABCD 中,若AC →=AB →+AD →,则四边形ABCD 的形状是________. 答案 平行四边形解析 依题意知AC 是以AB ,AD 为相邻两边的平行四边形的对角线,所以四边形ABCD 是平行四边形.3.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →=________. 答案 23b +13c解析 如图,因为在△ABC 中, AB →=c ,AC →=b ,且点D 满足BD →=2DC →, 所以AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=23AC →+13AB →=23b +13c . 4.(2018·江苏省镇江一中月考)已知e 1,e 2是一对不共线的非零向量,若a =e 1+λe 2,b =-2λe 1-e 2,且a ,b 共线,则λ=________. 答案 ±22解析 ∵a ,b 共线,∴b =γa =γe 1+γλe 2=-2λe 1-e 2,故⎩⎪⎨⎪⎧γ=-2λ,γλ=-1,解得λ=±22. 5.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=________.(用向量a ,b 表示) 答案 12a +b解析 连结OC ,OD ,CD ,由点C ,D 是半圆弧的三等分点,可得∠AOC =∠COD =∠BOD =60°,且△OAC 和△OCD 均为边长等于圆O 半径的等边三角形,所以四边形OACD 为菱形,所以AD →=AO →+AC →=12AB →+AC →=12a +b .6.在△ABC 中,点G 满足GA →+GB →+GC →=0.若存在点O ,使得OG →=16BC →,且OA →=mOB →+nOC →,则m -n =________.答案 -1解析 ∵GA →+GB →+GC →=0, ∴OA →-OG →+OB →-OG →+OC →-OG →=0,∴OG →=13()OA →+OB →+OC →=16BC →=16()OC →-OB →,可得OA →=-12OC →-32OB →,∴m =-32,n =-12,m -n =-1.7.如图,在△ABC 中,AN →=13AC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案511解析 注意到N ,P ,B 三点共线, 因此AP →=mAB →+211AC →=mAB →+611AN →,从而m +611=1,所以m =511.8.已知e 1,e 2为平面内两个不共线的向量,MN →=2e 1-3e 2,NP →=λe 1+6e 2,若M ,N ,P 三点共线,则λ=________.答案 -4解析 因为M ,N ,P 三点共线,所以存在实数k 使得MN →=kNP →,所以2e 1-3e 2=k (λe 1+6e 2),又e 1,e 2为平面内两个不共线的向量,可得⎩⎪⎨⎪⎧ 2=kλ,-3=6k ,解得λ=-4.9.若M 是△ABC 的边BC 上的一点,且CM →=3MB →,设AM →=λAB →+μAC →,则λ的值为________.答案 34解析 由题设知CM MB=3,过M 作MN ∥AC 交AB 于N , 则MN AC =BN BA =BM BC =14, 从而AN AB =34, 又AM →=λAB →+μAC →=AN →+NM →=34AB →+14AC →, 所以λ=34. 10.已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →+xOB →+BC →=0成立的实数x 的取值集合为________.答案 {-1}解析 ∵BC →=OC →-OB →,∴x 2OA →+xOB →+OC →-OB →=0,即OC →=-x 2OA →-(x -1)OB →,∵A ,B ,C 三点共线,∴-x 2-(x -1)=1,即x 2+x =0,解得x =0或x =-1.当x =0时,x 2OA →+xOB →+BC →=0,此时B ,C 两点重合,不合题意,舍去,故x =-1.11.如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,求△ABC 与△AOC 的面积之比.解 取AC 的中点D ,连结OD ,则OA →+OC →=2OD →,∴OB →=-OD →,∴O 是AC 边上的中线BD 的中点,∴S △ABC =2S △OAC ,∴△ABC 与△AOC 的面积之比为2∶1.12.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.解 方法一 由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝ ⎛⎭⎪⎫b -12a =-12k 1a +k 1b (k 1为实数), 同理,可设BO →=k 2BF →=k 2(AF →-AB →)=k 2⎝ ⎛⎭⎪⎫12b -a =-k 2a +12k 2b (k 2为实数),① 又BO →=BD →+DO →=-12a +⎝ ⎛⎭⎪⎫-12k 1a +k 1b =-12(1+k 1)a +k 1b ,② 所以由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b , 即12(1+k 1-2k 2)a +⎝ ⎛⎭⎪⎫12k 2-k 1b =0. 又a ,b 不共线,所以⎩⎪⎨⎪⎧ 12(1+k 1-2k 2)=0,12k 2-k 1=0, 解得⎩⎪⎨⎪⎧ k 1=13,k 2=23.所以BO →=-23a +13b . 所以AO →=AB →+BO →=a +⎝ ⎛⎭⎪⎫-23a +13b =13(a +b ). 方法二 延长AO 交BC 于点E (O 为△ABC 重心),则E 为BC 中点,∴AO →=23AE →=23×12(AB →+AC →)=13(a +b ). 13.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2=________.答案 58解析 DE →=12DA →+12DO →=12DA →+14DB → =12DA →+14(DA →+AB →)=14AB →-34AD →, 所以λ=14,μ=-34,故λ2+μ2=58. 14.A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的取值范围是________.答案 (1,+∞)解析 设OC →=mOD →,则m >1,因为OC →=λOA →+μOB →,所以mOD →=λOA →+μOB →,即OD →=λm OA →+μmOB →, 又知A ,B ,D 三点共线,所以λm +μm=1,即λ+μ=m , 所以λ+μ>1.15.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=13⎝ ⎛⎭⎪⎫2OA →+12OB →+12OC →,则△ABC 的面积和△PBC 的面积之比为________. 答案 3∶2解析 设BC 的中点为M ,则12OC →+12OB →=OM →,∴OP →=13(OM →+2OA →)=13OM →+23OA →, 即3OP →=OM →+2OA →,OP →-OM →=2OA →-2OP →,也就是MP →=2PA →,∴P ,M ,A 三点共线,且P 是AM 上靠近A 点的一个三等分点,∴S △ABC ∶S △PBC =3∶2.16.设W 是由一平面内的n (n ≥3)个向量组成的集合.若a ∈W ,且a 的模不小于W 中除a 外的所有向量和的模.则称a 是W 的极大向量.有下列命题:①若W 中每个向量的方向都相同,则W 中必存在一个极大向量;②给定平面内两个不共线向量a ,b ,在该平面内总存在唯一的平面向量c =-a -b ,使得W ={a ,b ,c }中的每个元素都是极大向量;③若W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量,且W 1,W 2中无公共元素,则W 1∪W 2中的每一个元素也都是极大向量.其中真命题的序号是________.答案 ②③解析 ①若有几个方向相同,模相等的向量,则无极大向量,故不正确;②由题意得a ,b ,c 围成闭合三角形,则任意向量的模等于除它本身外所有向量和的模,故正确;③3个向量都是极大向量,等价于3个向量之和为0,故W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量时,W 1∪W 2中的每一个元素也都是极大向量,故正确.。
高考数学专题复习《平面向量的概念及线性运算》PPT课件
向量
模等于 1
的向量
a
向量为±|a|
名称
相等的
向量
定 义
备 注
大小 相等 、方向 相同
的向量
两个向 如果两个 非零 向量的方向 相同或相反 ,则
量平行 称这两个向量平行.两个向量平行也称为两个向
两向量只有相等或不相
等,不能比较大小
规定零向量与任一向量
平行(共线)
(共线)
量共线
相反
给定一个向量,把与这个向量方向 相反 、大 零向量的相反向量仍是
.
,而且λa的方向如下:
,
(ⅱ)当λ=0或a=0时,λa= 0
.
实数λ与向量a相乘的运算简称为数乘向量.
(2)数乘向量的定义说明
如果存在实数λ,使得b=λa,则b∥a.
(3)数乘向量的几何意义
数乘向量的几何意义是,把向量沿着它的方向或反方向放大或缩小.特别地,
一个向量的相反向量可以看成-1与这个向量的乘积,即-a=(-1)a.
D.
3.(多选)(2020山东郓城第一中学高三模拟)若点G是△ABC的重心,BC边的
中点为D,则下列结论正确的是(
A.G 是△ABC 的三条中线的交点
B. + + =0
C. =2
D. =
)
答案 ABC
解析 对于 A,△ABC 三条中线的交点就是重心,故 A 正确;对于 B,根据平行四
(4)数乘向量的运算律
设λ,μ为实数,则λ(μa)=(λμ)a;
特别地,我们有(-λ)a=-(λa)=λ(-a).
5.向量的运算律
一般地,对于实数λ与μ,以及向量a,有
(1)λ(μa)= (λμ)a ;(2)λa+μa= (λ+μ)a
高考数学《平面向量的基本定理及坐标表示》一轮复习练习题(含答案)
高考数学《平面向量的基本定理及坐标表示》一轮复习练习题(含答案)一、单选题1.已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2B .3C .4D .52.已知在平行四边形ABCD 中,()2,6AD =,()4,4AB =-,对角线AC 与BD 相交于点M ,AM =( )A .()2,5--B .()1,5--C .2,5D .()1,5-3.已知ABC 中,G 是BC 的中点,若2AB =,10AC =,则AG BC ⋅的值为( ) A .2B .3C .2-D .3-4.在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n ==,,则CB =( ) A .32m n -B .23m n -+C .32m n +D .23m n +5.已知a ,b 是不共线的向量,且2AB a b =+,2AC a b =+,33CD a b =-,则( ) A .A ,B ,C 三点共线 B .A ,C ,D 三点共线 C .B ,C ,D 三点共线D .A ,B ,D 三点共线 6.若M 为△ABC 的边AB 上一点,且52AB AM =,则CB =( ) A .3522CA CM --B .3522CA CM -C .3522CA CM +D .3522CA CM -+7.如图,在斜棱柱1111ABCD A B C D -中,AC 与BD 的交点为点M ,AB a =,AD b =,1AA c =,则1MC =( )A .1122a b c ++B .1122---a b cC .1122-++a b cD .1122a b c --+8.如图,在ABC 中,4BD DC =,则AD =( )A .3144ABAC B .1455AB AC +C .4155AB AC +D .1344ABAC 9.已知正三角形ABC 的边长为4,点P 在边BC 上,则AP BP ⋅的最小值为( ) A .2B .1C .2-D .1-10.在ABC 中,AD 是BC 边上的中线,点M 满足2AM MD =,则CM =( )A .1233AB AC -+B .2133AB AC -+ C .1233AB AC -D .2133AB AC -11.在平行四边形ABCD 中,E ,F 分别是BC ,CD 的中点,DE 交AF 于H ,记AB ,BC 分别为a ,b ,则AH =( )A .2455a b -B .2455a b +C .2455a b -+D .25a b --12.在△ABC 中,点D 在边BC 上,且2CD BD =,E 是AD 的中点,则BE =( ) A .2136AB AC -B .2136AB AC +C .2136AB AC -- D .2136AB AC -+二、填空题13.已知平面向量()2,1a =-,(),2b k =-,若ab ,则+=a b ________.14.锐角ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,3tan tan aB C =+,若3c =,D 为AB 的中点,则中线CD 的范围为______________.15.已知向量()22OC =,,()2cos CA αα= ,则向量OA 的模的最大值是________.16.在ABC 中,M 为AB 的中点,N 为线段CM 上一点(异于端点),AN xAB yAC =+,则11x y+的最小值为______.三、解答题17.已知向量(),1a m =,()1,2b =-,()2,3c = (1)若a b +与c 垂直, 求实数m 的值; (2)若a b -与c 共线, 求实数m 的值.18.设向量()1,2a =-,()1,1b =-,()4,5c =-. (1)求2a b +;(2)若c a b λμ=+,,λμ∈R ,求λμ+的值;(3)若AB a b =+,2BC a b =-,42CD a b =-,求证:A ,C ,D 三点共线.19.已知()1,2,2a m m =-,()3,21,1b n =-. (1)若a b ∥,求m 与n 的值; (2)若()3,,3c m =-且a c ⊥,求a .20.已知O 是平面直角坐标系的原点,()1,2A -,()1,1B ,记OA a =,OB b =. (1)求a 在b 上的投影数量;(2)若四边形OABC 为平行四边形,求点C 的坐标;21.已知向量(1,2),(,1),()//(2)a b x a b a b ==+-. (1)求x 的值;(2)若ka b +与ka b -相互垂直,求k 的值.22.在△ABC 中,P 为AB 的中点,O 在边AC 上,BO 交CP 于R ,且|AO |=2|OC |,设AB a =,AC b =.(1)试用a ,b 表示AR ;(2)若H 在BC 上,且RH ⊥BC ,设|a |=2,|b |=1,a θ∈<,b >,若θ=[3π,23π],求CH CB 的取值范围.23.在①2cos cos cos a A b C c B =+;②tan tan 33tan B C B C +=这两个条件中任选一个,补充在下面的问题中,并加以解答.在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,已知______. (1)求角A 的大小;(2)若ABC 3G 为ABC 重心,点M 为线段AC 的中点,点N 在线段AB 上,且2AN NB =,线段BM 与线段CN 相交于点P ,求GP 的取值范围. 注:如果选择多个方案分别解答,按 第一个方案解答计分。
高考数学一轮总复习 专题5.1 平面向量的概念及线性运算练习(含解析)理
专题5.1 平面向量的概念及线性运算真题回放1.【2017年高考新课标Ⅱ卷文4题】设非零向量a ,b 满足+=-b b a a 则 ( ) A.a ⊥b B. =b a C. a ∥b D. >b a 【答案】A2.【2016年高考山东理8题】已知非零向量m ,n 满足4|m |=3|n |,cos ,m n =13.若n ⊥(t m +n ),则实数t 的值为 (A )4 (B )–4(C )94(D )–94【答案】B【考点】平面向量的数量积【名师点睛】本题主要考查平面向量的数量积、平面向量的坐标运算.解答本题,关键在于能从n ⊥(t m +n )出发,转化成为平面向量的数量积的计算.本题能较好地考查考生转化与化归思想、基本运算能力等.3.【2016年高考北京理4题】设,a b 是向量,则“||||=a b ”是“||||+=-a b a b ”的 (A ) 充分而不必要条件 (B )必要而不充分条件(C ) 充分必要条件 (D )既不充分也不必要条件 【答案】D【考点】充要条件,向量运算【名师点睛】由向量数量积的定义||||cos θ⋅=⋅⋅a b a b (θ为a ,b 的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近几年高考中出现的频率很高,应熟练掌握其解法. 考点分析融会贯通题型一 平面向量的概念典例1 (2016-2017年河北武邑中学高二文周考)点C 在线段AB上,且,则ACuuu r 等于( )【答案】D【解析】因为点C 在线段AB 上,所以AC uuu r 等于 D.考点:向量的相等. 解题技巧与方法总结平面向量的概念问题需要牢牢抓住平行向量(共线向量)、相等向量、相反向量的概念及特征,需要注意平行向量可以包含两个向量重合的情况,这点需要与直线平行加以区别【变式训练1】(2016-2017学年河北武邑中学高一上学期月考)下列说法正确的是( ) A .零向量没有方向 B .单位向量都相等 C .任何向量的模都是正实数 D .共线向量又叫平行向量 【答案】D考点:向量的概念.【变式训练2】设a r是非零向量,λ是非零实数,下列结论中正确的是( )A .a r 与λa r的方向相反 B .a r 与2λa r 的方向相同 C .|-λa r |≥| a r|D .|-λa r |≥| λ|·a r【答案】B【解析】对于A ,当λ>0时,a r 与λa r 的方向相同,当λ<0时,a r 与λa r的方向相反,B 正确;对于C ,|-λa r |=|-λ|| a r |,由于|-λ|的大小不确定,故|-λa r |与| a r|的大小关系不确定;对于D ,|λ| a r 是向量,而|-λa r|表示长度,两者不能比较大小.【变式训练3】(2015-2016学年江西上饶铅山县一中高一下学期期中)下列关系式正确的是 ( )A. 0AB BA +=uu u r uu r rB. a b ⋅r r是一个向量 C. AB AC BC -=uu u r uuu r uu u r D. 00AB ⋅=uu u r r【答案】D 【解析】试题分析:A 相反向量的和为零向量,所以A 不正确;B 两向量的数量积是一个实数,所以B 不正确;C 根据向量的减法的三角形法则,得CB AC =-AB ,故C 不正确;D 零与任何向量的数量积等等于零向量,故D 正确.考点:平面向量的线性运算;向量的数量积的定义及其性质.1.向量:既有大小又有方向的量叫作向量.向量的大小叫向量的长度(或模).2.几个特殊的向量(1)零向量:长度为零的向量,记作0,其方向是任意的. (2)单位向量:长度等于1个单位长度的向量.(3)平行向量:方向相同或相反的非零向量,平行向量又称为共线向量,规定0与任一向量共线.(4)相等向量:长度相等且方向相同的向量. (5)相反向量:长度相等且方向相反的向量.典例2 (青海省平安县第一高级中学2015~2016课后练习)设向量,a b rr 不平行,向量a b λ+r r 与2a b +r r平行,则实数λ=___________【答案】12考点:向量平行的条件 解题技巧与方法总结(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量,a b r r共线是指存在不全为零的实数12,λλ,使120a b λλ+=r r r 成立;若120a b λλ+=r r r ,当且仅当12λλ==0时成立,则向量,a b r r不共线.【变式训练1】(青海省平安县第一高级中学2015~2016课后练习)已知向量i r 与j r不共线,且,,1AB i m j AD ni j m =+=+≠u u u r r r u u u r r r,若,,A B D 三点共线,则实数,m n 满足的条件是( )A. 1m n +=B. 1m n +=-C. 1mn =D. 1mn =-【解析】法一:Q ,,1AB i m j AD ni j m =+=+≠u u u r r r u u u r r r,若,,A B D 三点共线且,,A B D 三点共线所以存在非零实数λ,使AB AD λ=uu u r uuu r即()i m j ni j λ+=+r r r rQ i r 与j r不共线所以1n m λλ=⎧⎨=⎩1n m λλ⎧=⎪⇒⎨⎪=⎩∴1mn =法二:由题可得, AB CD uu u r uu u rP∴AB AD λ=uu u r uuu r∴11m n = ∴1mn =考点:向量共线定理【变式训练2】已知(1,0),(2,1)a b ==r r(1) 当k 为何值时,ka b -r r 与2a b +r r共线?(2) 若23AB a b =+uu u r r r ,BC a mb =+uu u r r r,且,,A B C 三点共线,求m 的值【答案】1-232(2)Q ,,A B C 三点共线AB BC ∴u u u r u u u rP故存在实数λ,使得AB BC λ=uu u r uu u r()23a b a mb λ+=+r r r r∴2λ=,32m =考点:向量的运算法则、共线定理 知识链接:平行向量:方向相同或相反的非零向量,平行向量又称为共线向量,规定0与任一向量共线. 两个向量共线定理:向量b 与非零向量a 共线⇔有且只有一个实数λ,使得b =λa . 题型二 向量的线性运算 命题点1 简单的向量线性运算典例 (吉林省吉林大学附属中学2017届高三第五次摸底考试数学(理))在梯形ABCD 中,3AB DC =uu u r uuu r ,则BC uu u r等于( )【答案】D解题技巧与方法总结(1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧: ①观察各向量的位置; ②寻找相应的三角形或多边形; ③运用法则找关系;④化简结果.【变式训练1】(河南省商丘市九校2016-2017学年高一下学期期中)如图12,e e u r u r为互相垂直的单位向量,向量a b c ++r r r可表示为( )A. 1223e e +u r u rB. 1232e e +u r u rC. 1232e e -u r u rD. 1233e e --u r u r【答案】B【解析】 1212122,2,2a e e b e e c e e =+=-=+u r u r u r u r u r u r r r r ,故 1232a b c e e ++=+u r u rr r r .知识链接:平面向量的基本定理如果12,e e u r u r是一个平面内的两个不共线向量,那么对这一平面内的任一向量,有且只有一对实数21,λλ使:1122a e e λλ=+r u r u r 其中不共线的向量12,e e u r u r叫做表示这一平面内所有向量的一组基底【变式训练2】(北京市东城区2017届高三5月综合练习(二模)数学理)设,a b rr 是非零向量,则“,a b rr 共线”是“ )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】B命题点2 向量线性运算运用典例 (山东省淄博市临淄中学2016-2017学年高二上学期期末考试数学(理)试题)如图在空间四边形 OABC 中,点M 在OA 上,且 2OM MA = , N 为BC 中点,则MN uuu r等于( )A.121232OA OB OC -+uu ruu u r uuu r B.211322OA OB OC -++uu r uuu r uuu r C.111222OA OB OC +-uu ruu u r uuu r D.221332OA OB OC+-uu ruu u r uuu r【答案】B【名师点睛】进行向量的运算时,要尽可能转化到平行四边形或三角形中,选用从同一点出发的基本量或首尾相接的向量,运用向量的加减运算及数乘来求解,充分利用相等的向量,相反的向量和线段的比例关系,把未知向量转化为与已知向量有直接关系的向量来解决 【变式训练1】如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=( )A .a -12b B.12a -bC .a +12b D.12a +b【答案】D【解析】连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .【变式训练2】如图所示,设P 、Q 为△ABC 内的两点,且=+,=+,则△ABP与△ABQ 的面积之比为 .【答案】知识链接:1.向量加法:求两个向量和的运算叫做向量的加法,例AB BC AC +=uu u r uu u r uuu r(1)0+0a a a =+=r r r r r;(2)向量加法满足交换律与结合律;2.向量加法有“三角形法则”与“平行四边形法则”:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则. 向量加法的三角形法则可推广至多个向量相加:AB BC CD PQ QR AR +++++=u u u r u u u r u u u r u u u r u u u r u u u rL ,但这时必须“首尾相连”. 3.向量的减法 :向量a r 加上b r 的相反向量叫做a r 与b r的差,记作:()a b a b -=+-r r r r 求两个向量差的运算,叫做向量的减法4.作图法:a b -r r 可以表示为从b r 的终点指向a r 的终点的向量(a r 、b r有共同起点)命题点3 向量线性运算求参数值或取值范围典例 1(黑龙江省齐齐哈尔市第一中学校2016-2017学年高一3月月考数学(理)试题)已知在ABC ∆中,点在边上,且2,CD DB CD r AB sAC ==+u u u r u u u r u u u r u u u r u u u r,则的值为( ) A. 0 B. D. 3- 【答案】A【解析】分析试题由已知可得:()22223333CD CB AB AC AB AC ==-=-uu u r uu r uu u r uuu r uuu r uuu r ,所以=点睛:向量的线性运算,注意理解加法的三角形法则和平行四边形法则以及减法法则的运用. 【变式训练1】(2013·江苏卷)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC.若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.【答案】12【变式训练2】在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN →=λAB →+μAC →,则λ+μ的值为 ( )A. 12B. 13C. 14D .1【答案】A【解析】∵M 为BC 上任意一点,∴可设AM →=x AB →+y AC →(x +y =1).∵N 为AM 的中点,∴AN →=12AM →=12x AB →+12y AC →=λ AB →+μ AC →,∴λ+μ=12(x +y )=12.知识链接:三点共线的性质定理:(1)若平面上三点A 、B 、C 共线,则AB →=λBC →.(2)若平面上三点A 、B 、C 共线,O 为不同于A 、B 、C 的任意一点,则OC →=λOA →+μOB →,且λ+μ=1.典例2【2014届广东省东莞市高三第二次模拟考试】如图所示,A 、B 、C 是圆O 上的三点,CO 的延长线与线段AB 交于圆内一点D ,若OC =uuu r xOA yOB +uu r uu u r,则 ( )A.01x y <+<B.1x y +>C.1x y +<-D.10x y -<+<【答案】C【变式训练】(2014北京东城高三期末)在直角梯形ABCD 中,90,30,2,A B A BB C ∠=︒∠=︒==,点E 在线段CD 上,若AE AD AB μ=+uu u r uuu r uu u r,则实数μ的取值范围是 .【答案】102⎡⎤⎢⎥⎣⎦, 【解析】由题意可求得1,AD CD ==2AB DC =uu u r uuu r.因为点E 在线段CD 上,所以DE DC λ=uuu r uuu r(01λ≤≤).因为AE AD DE =+uu u r uuu r uuu r ,又AE AD AB μ=+uu u r uuu r uu u r =2AD DC μ+u u u r u u u r =2AD DE μλ+uuur uuu r ,所以2μλ=1,即μ=2λ.因为0≤λ≤1,所以0≤μ≤12.知识交汇例1 如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________.【答案】3【交汇技巧】本题将向量的共线定理与三角形重心的性质进行结合,三角形重心是三条边中线的交点,另外本题还结合了方程思想,通过消去λ得到m ,n 之间的关系例2 已知点O 为△ABC 外接圆的圆心,且0OA OB CO ++=uu r uu u r uu u r r,则△ABC 的内角A 等于( )A .30°B .60°C .90°D .120°【答案】A【解析】 由0OA OB CO ++=uu r uu u r uu u r r 得OA OB OC +=uu r uu u r uuu r,由O 为△ABC 外接圆的圆心,结合向量加法的几何意义知四边形OACB 为菱形,且∠CAO =60°,故A =30°.【交汇技巧】三角形外接圆的圆心是三角形三条边垂直平分线的交点,到三个顶点距离相等,结合0OA OB CO ++=uu r uu u r uu u r r可得四边形OACB 为平行四边形的条件,得出四边形OACB 为菱形,从而求出角A 的大小 练习检测1.【山东省淄博实验中学2015届高三第一学期第一次诊断考试试题,文10】在ABC ∆中,点,M N 分别是,AB AC 上,且32,5AM MB AN AC ==uuu r uuu r uuu r uuu r,线段CM 与BM 相交于点P ,且,AB a AC b ==u u u r r u u u r r,则AP uu u r 用a r 和b r 表示为( )A .4193AP a b =+uu u r r rB .4293AP a b =+uu u r r rC . 2493AP a b =+uu u r r rD .4377AP a b =+uu u r r r【答案】A2.(江西省南昌市重点学校2016-2017学年高一4月检测)已知ABC ∆的边BC 上有一点D 满足3BD DC =uu u r uuu r ,则AD uuu r可表示为( )A. 23AD AB AC =-+uuu r uu u r uuu rB.【答案】C【解析】如图所示,3.(2015届北京市156中学高三上学期期中考试理科)如图,向量b a -等于( )(A )2124e e -- (B )2142e e --(C )213e e - (D )213e e - 【答案】C点评:12,e e u r u r 是两个单位向量,从图上将,a b r r用单位向量表示出来4.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且2OP →=2OA →+BA →,则 ( )A .点P 在线段AB 上B .点P 在线段AB 的反向延长线上C .点P 在线段AB 的延长线上D .点P 不在直线AB 上 【答案】B【解析】因为2OP →=2OA →+BA →,所以2AP →=BA →,所以点P 在线段AB 的反向延长线上,故选B. 5.(2016-2017学年天津市静海县第一中学高二上学期期末五校联考理)如图,在三棱柱111ABC A B C -中,M 为11A C 的中点,若1,,AB a BC b AA c ===uu u r r uu u r r uuu r r,则BM uuu r 可表示为( )A. 1122a b c -++r r rB. 1122a b c ++r r rC. 1122a b c --+r r rD. 1122a b c -+r r r【答案】A【解析】()111222BN BA BC a b =+=-+uuu r uu r uu u r r r Q1122BM BN NM a b c ∴=+=-++uuu r uuu r uuur r r r,故本题正确答案为A6.(江西省赣州市十四县(市)2017届高三下学期期中联考(理))如图,平行四边形ABCD的两条对角线相交于点O ,点E , F 分别在边AB , AD 上,直线EF 交AC 于点K , AK AO λ=uuu r,则λ等于( )【答案】C7.在△ABC 中,E ,F 分别为AC ,AB 的中点,BE 与CF 相交于G 点,设AB →=a ,AC →=b ,试用a ,b 表示AG →.8.设点O 在ABC V 内部,且有40OA OB OC ++=uu r uu u r uuu r r,求△ABC 的面积与△OBC 的面积之比.【答案】S △ABC ∶S △OBC =3∶2.【解析】取BC 的中点D,连接OD,则+=2,4++=0,∴4=-(+)=-2,∴=-.∴O 、A 、D 三点共线,且||=2||,∴O 是中线AD 上靠近A 点的一个三等分点, ∴S △ABC ∶S △OBC =3∶2.9.在任意四边形ABCD 中,E 是AD 的中点,F 是BC 中点,求证:()1=+2EF AB DC uu u r uu u r uuu r法二:连接EB EC uu r uu u r , 则=+EC ED DC uu u r uu u r uuu r()()11==+++=22EF EC EB ED DC EA AB +uu u r uu u r uu r uu u r uuu r uu r uu u r ()1+2AB DC uuu r uuu r。
高考数学一轮复习讲义第五章平面向量概念及线性运算
向量的线性运算
例 2 在△ABC 中,D、E 分别为 BC、AC 边上的中点,G 为 BE 上一点,且 GB=2GE,设A→B=a,A→C=b,试用 a,b 表示 A→D,A→G.
结合图形性质,准确灵活运用三角形法则和平行四边形法则是向 量加减运算的关键. 解 A→D=12(A→B+A→C)=12a+12b; A→G=A→B+B→G=A→B+23B→E=A→B+13(B→A+B→C) =23A→B+13(A→C-A→B)=13A→B+13A→C=13a+13b.
定义
法则(或几 何意义)
运算律
求两个向量 加法
和的运算
三角形 平行四边形
(1)交换律: a+b=b+a
(2)结合律: (a+b)+c= a+(b+c) .
要点梳理
忆一忆知识要点
求 a 与 b 的相
减法 反向量-b 的 和的运算叫做 a 与 b 的差
三角形 法则
a-b=a+(-b)
(1)|λa|= |λ||a| ;
一轮复习讲义
平面向量的概念及线性运算
要点梳理
忆一忆知识要点
1.向量的有关概念
名称
定义
备注
向量
既有大小又有方向的量;向 量的大小叫做向量的长度 平面向量是自由向量
(或称为模)
长度为 0 的向量;其方向
零向量 是任意的
记作 0
非零向量 a 的单位向量
单位向量 长度等于1个单位 的向量
为±|aa|
要点梳理
探究提高
(1)正确理解向量的相关概念及其含义是解题的关键. (2)相等向量具有传递性,非零向量的平行也具有传递性. (3)共线向量即为平行向量,它们均与起点无关. (4)向量可以平移,平移后的向量与原向量是相等向量.解题时, 不要把它与函数图象移动混为一谈. (5)非零向量 a 与|aa|的关系是:|aa|是 a 方向上的单位向量.
高考数学(理科,北京市):第五章 平面向量、解三角形 §5.1 平面向量的概念及线性运算、平面向量基本定
AO ,则λ= AB +AD 2.(2013四川,12,5分)在平行四边形ABCD中,对角线AC与BD交于点O, =λ
. 答案 2
解析 由平行四边形法则,得AB +AD =AC =2AO ,故λ=2.
考点二
平面向量的基本定理及坐标表示
1.(2017课标全国Ⅲ,12,5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆
1 1 ;- 2 6
.
解析 由 MC 知M为AC上靠近C的三等分点,由 BN = NC 知N为BC的中点,作出草图如下: AM =2
则有 ( ( · AB + AM = AB + AB - AB +y AN = AC ),所以 MN = AN - AC )- AC = AC ,又因为 MN =x
高考理数
(北京市专用)
§5.1 平面向量的概念及线性运算、 平面向量基本定理及坐标表示
五年高考
A组
A.充分而不必要条件 C.充分必要条件 答案 D
自主命题·北京卷题组
)
1.(2016北京,4,5分)设a,b是向量.则“|a|=|b|”是“|a+b|=|a-b|”的 ( B.必要而不充分条件 D.既不充分也不必要条件
2 2 cos θ 2, sin θ 1 5 5
AB 同方向的单位向量为 ( 2.(2013辽宁,3,5分)已知点A(1,3),B(4,-1),则与向量
)
A. , 5 5
(五年高考真题)2018届高考数学复习 第五章 第一节 平面向量的概念及坐标运算 理(全国通用)
第一节 平面向量的概念及坐标运算考点一 平面向量的线性运算1.(2015²新课标全国Ⅰ,7)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →),即4AC →-AB →=3AD →, ∴AD →=-13AB →+43AC →.答案 A2.(2014²福建,8)在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3)解析 法一 若e 1=(0,0),e 2=(1,2),则e 1∥e 2,而a 不能由e 1,e 2表示,排除A ;若e 1=(-1,2),e 2=(5,-2),因为-15≠2-2,所以e 1,e 2不共线,根据共面向量的基本定理,可以把向量a =(3,2)表示出来,故选B.法二 因为a =(3,2),若e 1=(0,0),e 2=(1,2),不存在实数λ,μ,使得a =λe 1+μe 2,排除A ;若e 1=(-1,2),e 2=(5,-2),设存在实数λ,μ,使得a =λe 1+μe 2,则(3,2)=(-λ+5μ,2λ-2μ),所以⎩⎪⎨⎪⎧3=-λ+5μ,2=2λ-2μ,解得⎩⎪⎨⎪⎧λ=2,μ=1. 所以a =2e 1+e 2,故选B. 答案 B3.(2017²天津,7)已知△ABC 为等边三角形,AB =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →²CP →=-32,则λ=( )A.12B.1±22C.1±102D.-3±222解析 设AB →=a ,AC →=b ,则|a|=|b|=2,且 a ,b =π3.BQ →=AQ →-AB →=(1-λ)b -a ,CP →=AP →-AC →=λa -b . BQ →²CP →=[(1-λ)b -a ]²(λa -b )=[λ(1-λ)+1]a²b -λa 2-(1-λ)b 2=(λ-λ2+1)³2-4λ-4(1-λ) =-2λ2+2λ-2 =-32.即(2λ-1)2=0,∴λ=12.答案 A4.(2015²新课标全国Ⅱ,13)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________.解析 ∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则得⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.答案 125.(2015²北京,13)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.解析 MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →, ∴x =12,y =-16.答案 12 -166.(2014²新课标全国Ⅰ,15)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC→的夹角为________.解析 由AO →=12(AB →+AC →)可知O 为BC 的中点,即BC 为圆O 的直径,又因为直径所对的圆周角为直角,所以∠BAC =90°,所以AB →与AC →的夹角为90°. 答案 90°考点二 平面向量基本定理及坐标运算1.(2015²湖南,8)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|PA →+PB →+PC →|的最大值为( ) A .6B .7C .8D .9解析 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆直径,故PA →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),所以PA →+PB →+PC →=(x -6,y ).故|PA →+PB →+PC →|=-12x +37,∴x =-1时有最大值49=7,故选B.答案 B2.(2014²安徽,10)在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |=1,a ²b =0,点Q 满足OQ →=2(a +b ).曲线C ={P |OP →=a cos θ+b cos θ,0≤θ<2π},区域Ω={P |0<r ≤|PQ →|≤R ,r <R }.若C ∩Ω为两段分离的曲线,则( ) A .1<r <R <3 B .1<r <3≤R C .r ≤1<R <3D .1<r <3<R解析 由已知可设OA →=a =(1,0),OB →=b =(0,1),P (x ,y ),则OQ →=(2,2),曲线C ={P |OP →=(cos θ,sin θ),0≤θ<2π},即C :x 2+y 2=1,区域Ω={P |0<r ≤|PQ →|≤R ,r <R }表。
平面向量的概念、线性运算及基本定理(试题部分)
专题七平面向量【考情探究】课标解读考情分析备考指导主题内容一、平面向量的概念、线性运算及根本定理1.理解平面向量的概念,向量相等及几何表示,理解向量的加、减法,数乘向量的运算及其几何意义,理解两向量共线的意义及表示.2.熟练掌握向量的线性运算,能进行准确、快捷的向量计算.1.从近几年高考命题来看,对本章的考查以根底题为主,主要考三局部内容:平面向量的线性运算及几何意义;平面向量的数量积的定义及运用数量积求长度、角度问题;平面向量的数量积的坐标表示.2.一般以选择题、填空题的形式直接进行考查,难度不大.解答题中有时与三角函数、解析几何等内容综合考查,以一个条件的形式出现.1.注意根底知识的识记,理解高考在这一章仍以求模、求夹角、应用平行或垂直关系解题为主,根底与能力并重,求解析几何与平面向量交汇问题的关键在于选择适宜的基底或坐标系,把未知向量用向量表示.2.向量主要考查数形结合思想与转化与化归思想的应用.平面向量的线性运算与数量积相结合的题目仍是考查的重点,对数量积的几何意义的理解不可无视.二、平面向量的数量积及向量的综合应用1.理解平面向量数量积的含义及其几何意义;了解平面向量的数量积与向量投影的关系;掌握数量积的坐标表达式,会进行平面向量数量积的运算.2.掌握求向量长度的方法;能运用数量积表示两个向量的夹角;会用数量积判断两个平面向量的垂直关系.3.了解平面向量根本定理及其意义.【真题探秘】§7.1 平面向量的概念、线性运算及根本定理根底篇固本夯基【根底集训】考点一 平面向量的概念及线性运算1.设D 为△ABC 中BC 边上的中点,且O 为AD 边上靠近点A 的三等分点,那么( )A.BO ⃗⃗⃗⃗⃗ =-16AB ⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ B.BO ⃗⃗⃗⃗⃗ =16AB ⃗⃗⃗⃗⃗ -12AC ⃗⃗⃗⃗⃗C.BO ⃗⃗⃗⃗⃗ =56AB ⃗⃗⃗⃗⃗ -16AC ⃗⃗⃗⃗⃗ D.BO ⃗⃗⃗⃗⃗ =-56AB ⃗⃗⃗⃗⃗ +16AC ⃗⃗⃗⃗⃗答案 D2.设D,E,F 分别为△ABC 的三边BC,CA,AB 的中点,那么EB⃗⃗⃗⃗⃗ +FC ⃗⃗⃗⃗⃗ =( )A.AD ⃗⃗⃗⃗⃗B.12AD ⃗⃗⃗⃗⃗ C.BC ⃗⃗⃗⃗⃗ D.12BC ⃗⃗⃗⃗⃗答案 A3.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,那么OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ 等于( ) A.OM ⃗⃗⃗⃗⃗⃗ B.2OM ⃗⃗⃗⃗⃗⃗ C.3OM ⃗⃗⃗⃗⃗⃗ D.4OM ⃗⃗⃗⃗⃗⃗ 答案 D考点二 平面向量根本定理及坐标运算4.向量OA ⃗⃗⃗⃗⃗ =(-1,1),OB ⃗⃗⃗⃗⃗ =(-2,2),OC ⃗⃗⃗⃗⃗ =(k+1,k-3),假设A,B,C 三点不能构成三角形,那么实数k 满足的条件是( ) A.k=-16 B.k=16 C.k=-11 D.k=1 答案 D5.点A(1,3),B(4,-1),那么与向量AB ⃗⃗⃗⃗⃗ 同方向的单位向量为( ) A.(35,-45) B.(45,-35)C.(-35,45)D.(-45,35) 答案 A6.向量a=(13,tanα),b=(cos α,1),且a ∥b,那么cos 2α=( )A.13B.-13C.79D.-79答案 C7.向量a=(1,1),点A(3,0),点B 在直线y=2x 上,假设AB ⃗⃗⃗⃗⃗ ∥a,那么点B 的坐标为 . 答案 (-3,-6)8.向量a,b,c 在正方形网格中的位置如下列图.假设c =λa +μb (λ,μ∈R),那么λμ= .答案 4综合篇知能转换【综合集训】考法一 与平面向量线性运算有关的解题策略1.(2021辽宁葫芦岛期中,3)在△ABC 中,G 为重心,记AB ⃗⃗⃗⃗⃗ =a,AC ⃗⃗⃗⃗⃗ =b,那么CG⃗⃗⃗⃗⃗ =( ) A.13a-23b B.13a+23bC.23a-13bD.23a+13b答案 A2.(2021安徽安庆调研,6)如图,一直线EF 与平行四边形ABCD 的两边AB,AD 分别交于E 、F 两点,且交其对角线AC 于K,其中,AE ⃗⃗⃗⃗⃗ =25AB ⃗⃗⃗⃗⃗ ,AF ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ ,AK ⃗⃗⃗⃗⃗ =λAC⃗⃗⃗⃗⃗ ,那么λ的值为( )A.29B.27C.25D.23答案 A3.(2021福建泉州四校第二次联考,11)如图,OC ⃗⃗⃗⃗⃗ =2OP ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ =2AC ⃗⃗⃗⃗⃗ ,OM ⃗⃗⃗⃗⃗⃗ =m OB ⃗⃗⃗⃗⃗ ,ON ⃗⃗⃗⃗⃗⃗ =n OA ⃗⃗⃗⃗⃗ ,假设m=38,那么n=( )A.34 B.23 C.45 D.58答案 A考法二 与平面向量坐标运算有关的解题策略4.(2021东北三省三校二模,3)平面向量a=(1,1),b=(1,-1),那么向量12a-32b=( )A.(-2,-1)B.(-2,1)C.(-1,0)D.(-1,2) 答案 D5.(2021甘肃、青海、宁夏联考,3)在平行四边形ABCD 中,A(1,2),B(-2,0),AC ⃗⃗⃗⃗⃗ =(2,-3),那么点D 的坐标为( ) A.(6,1) B.(-6,-1) C.(0,-3) D.(0,3) 答案 A6.(2021北京西城月考,5)向量OA ⃗⃗⃗⃗⃗ =(3,-4),OB ⃗⃗⃗⃗⃗ =(6,-3),OC ⃗⃗⃗⃗⃗ =(2m,m+1),假设AB ⃗⃗⃗⃗⃗ ∥OC ⃗⃗⃗⃗⃗ ,那么实数m 的值为( ) A.-17B.-3C.-35D.35答案 B【五年高考】考点一 平面向量的概念及线性运算1.(2021课标Ⅰ,7,5分)设D 为△ABC 所在平面内一点,BC⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ ,那么( ) A.AD ⃗⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗⃗ B.AD ⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ -43AC ⃗⃗⃗⃗⃗C.AD ⃗⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ D.AD⃗⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗⃗ -13AC ⃗⃗⃗⃗⃗ 答案 A2.(2021陕西,7,5分)对任意向量a,b,以下关系式中不恒成立····的是( )A.|a ·b|≤|a||b|B.|a-b|≤||a|-|b||C.(a+b)2=|a+b|2D.(a+b)·(a-b)=a 2-b 2答案 B3.(2021北京,13,5分)在△ABC 中,点M,N 满足AM ⃗⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗⃗⃗ =NC ⃗⃗⃗⃗⃗ .假设MN ⃗⃗⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗⃗ ,那么x= ,y= . 答案12;-16考点二 平面向量根本定理及坐标运算4.(2021课标Ⅲ,12,5分)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.假设AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗ ,那么λ+μ的最大值为( )A.3B.2√2C.√5D.2 答案 A5.(2021课标Ⅲ,13,5分)向量a=(1,2),b=(2,-2),c =(1,λ).假设c ∥(2a+b),那么λ= . 答案126.(2021课标Ⅱ,13,5分)设向量a,b 不平行,向量λa+b 与a+2b 平行,那么实数λ= . 答案127.(2021江苏,6,5分)向量a=(2,1),b=(1,-2),假设ma+nb=(9,-8)(m,n ∈R),那么m-n 的值为 . 答案 -38.(2021上海,9,5分)过曲线y 2=4x 的焦点F 并垂直于x 轴的直线分别与曲线y 2=4x 交于A 、B,A 在B 上方,M 为抛物线上一点,OM ⃗⃗⃗⃗⃗⃗ =λOA ⃗⃗⃗⃗⃗ +(λ-2)OB ⃗⃗⃗⃗⃗ ,那么λ= . 答案 3教师专用题组1.(2021四川,7)设a,b 都是非零向量,以下四个条件中,使a |a|=b|b|成立的充分条件是( )A.a=-bB.a ∥bC.a=2bD.a ∥b 且|a|=|b| 答案 C2.(2021湖南,8,5分)点A,B,C 在圆x 2+y 2=1上运动,且AB ⊥BC.假设点P 的坐标为(2,0),那么|PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC⃗⃗⃗⃗⃗ |的最大值为( ) A.6 B.7 C.8 D.9 答案 B3.(2021安徽,8)在平面直角坐标系中,点O(0,0),P(6,8),将向量OP ⃗⃗⃗⃗⃗ 绕点O 逆时针方向旋转3π4后得向量OQ ⃗⃗⃗⃗⃗⃗ ,那么点Q 的坐标是( )A.(-7√2,-√2)B.(-7√2,√2)C.(-4√6,-2)D.(-4√6,2)答案 A4.(2021浙江,7)设a,b 是两个非零向量,以下说法正确的选项是( ) A.假设|a+b|=|a|-|b|,那么a ⊥b B.假设a ⊥b,那么|a+b|=|a|-|b|C.假设|a+b|=|a|-|b|,那么存在实数λ,使得b =λaD.假设存在实数λ,使得b =λa,那么|a+b|=|a|-|b| 答案 C5.(2021四川理,12,5分)在平行四边形ABCD 中,对角线AC 与BD 交于点O,AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =λAO ⃗⃗⃗⃗⃗ ,那么λ= . 答案 26.(2021浙江,17,6分)正方形ABCD 的边长为1.当每个λi (i=1,2,3,4,5,6)取遍±1时,|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ |的最小值是 ,最大值是 . 答案 0;2√57.(2021江苏,12,5分)如图,在同一个平面内,向量OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 的模分别为1,1,√2,OA ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为α,且tan α=7,OB ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为45°.假设OC ⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ (m,n ∈R),那么m+n= .答案 3【三年模拟】一、单项选择题(每题5分,共45分)1.(2021辽宁东北育才学校三模)在△ABC 中,假设AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =4AP ⃗⃗⃗⃗⃗ ,那么CP⃗⃗⃗⃗⃗ =( ) A.34AB ⃗⃗⃗⃗⃗ -14AC ⃗⃗⃗⃗⃗ B.-34AB ⃗⃗⃗⃗⃗ +14AC ⃗⃗⃗⃗⃗ C.14AB ⃗⃗⃗⃗⃗ -34AC ⃗⃗⃗⃗⃗ D.-14AB ⃗⃗⃗⃗⃗ +34AC ⃗⃗⃗⃗⃗ 答案 C2.(2021届福建泉州实验中学第一次月考,6)如图,在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,那么EB ⃗⃗⃗⃗⃗ =( )A.14AB ⃗⃗⃗⃗⃗ -34AC ⃗⃗⃗⃗⃗ B.34AB ⃗⃗⃗⃗⃗ -14AC ⃗⃗⃗⃗⃗ C.34AB ⃗⃗⃗⃗⃗ +14AC ⃗⃗⃗⃗⃗ D.14AB ⃗⃗⃗⃗⃗ +34AC ⃗⃗⃗⃗⃗答案 B3.(2021届九师联盟9月质量检测,5)向量a=(1,3),b=(2,-12),假设c ∥(a-2b),那么单位向量c=( )A.(-35,-45)或(35,45)B.(-35,45)或(35,-45)C.(-√22,-√22)或(√22,√22) D.(-√22,√22)或(√22,-√22)答案 B4.(2021河南平顶山一模,5)在平行四边形ABCD 中,E 是对角线AC 上一点,且AE=4EC,那么DE⃗⃗⃗⃗⃗ =( ) A.34AB ⃗⃗⃗⃗⃗ -14AD ⃗⃗⃗⃗⃗ B.34AB ⃗⃗⃗⃗⃗ +14AD ⃗⃗⃗⃗⃗ C.45AB ⃗⃗⃗⃗⃗ -15AD ⃗⃗⃗⃗⃗ D.45AB ⃗⃗⃗⃗⃗ +15AD ⃗⃗⃗⃗⃗ 答案 C5.(2021河北衡水金卷(六),10)点P 为四边形ABCD 所在平面内一点,且满足AB⃗⃗⃗⃗⃗ +2CD ⃗⃗⃗⃗⃗ =0,AP ⃗⃗⃗⃗⃗ +BP ⃗⃗⃗⃗⃗ +4DP ⃗⃗⃗⃗⃗ =0,AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μBC ⃗⃗⃗⃗⃗ (λ,μ∈R),那么λμ=( ) A.76B.-76C.-13D.13答案 D6.(2021届湖南衡阳八中模拟检测,6)在△OAB 中,OA ⃗⃗⃗⃗⃗ =4OC ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ =2OD ⃗⃗⃗⃗⃗⃗ ,AD,BC 的交点为M,过M 作动直线l 分别交线段AC,BD 于E,F 两点,假设OE ⃗⃗⃗⃗⃗ =λOA ⃗⃗⃗⃗⃗ ,OF ⃗⃗⃗⃗⃗ =μOB ⃗⃗⃗⃗⃗ (λ,μ>0),那么λ+μ的最小值为( )A.2+√37 B.3+√37C.3+2√37D.4+2√37答案 D7.(2021河南郑州一模,9)如图,在△ABC 中,N 为线段AC 上靠近点A 的三等分点,点P 在线段BN 上且AP ⃗⃗⃗⃗⃗ =(m +211)AB ⃗⃗⃗⃗⃗ +211BC ⃗⃗⃗⃗⃗,那么实数m 的值为( )A.1B.13C.911D.511答案 D8.(2021安徽黄山一模,12)如图,在△ABC 中,∠BAC=π3,AD ⃗⃗⃗⃗⃗ =2DB ⃗⃗⃗⃗⃗⃗ ,P 为CD 上一点,且满足AP ⃗⃗⃗⃗⃗ =m AC ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ ,假设△ABC 的面积为2√3,那么|AP ⃗⃗⃗⃗⃗ |的最小值为( )A.√2B.√3C.3D.43答案 B9.(2021宁夏银川一中一模,5)如图,在△ABC 中,AN ⃗⃗⃗⃗⃗⃗ =23NC ⃗⃗⃗⃗⃗ ,P 是BN 上一点,假设AP ⃗⃗⃗⃗⃗ =t AB ⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ ,那么实数t 的值为( )A.23 B.25 C.16 D.34答案 C二、多项选择题(每题5分,共10分)10.(改编题)以下说法中正确的选项是( ) A.假设a ∥b,b ∥c,那么a ∥cB.假设2OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =0,S △AOC ,S △ABC 分别表示△AOC,△ABC 的面积,那么S △AOC ∶S △ABC =1∶6C.两个非零向量a,b,假设|a-b|=|a|+|b|,那么a 与b 共线且反向D.假设a ∥b,那么存在唯一实数λ使得a =λb 答案 BC11.(2021山东济南高一下学期期末学习质量评估)设点M 是△ABC 所在平面内一点,那么以下说法正确的选项是( ) A.假设AM⃗⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ ,那么点M 是边BC 的中点 B.假设AM ⃗⃗⃗⃗⃗⃗ =2AB ⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗⃗ ,那么点M 在边BC 的延长线上 C.假设AM ⃗⃗⃗⃗⃗⃗ =-BM ⃗⃗⃗⃗⃗⃗ -CM ⃗⃗⃗⃗⃗⃗ ,那么点M 是△ABC 的重心D.假设AM ⃗⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AC⃗⃗⃗⃗⃗ ,且x+y=12,那么△MBC 的面积是△ABC 面积的12答案 ACD三、填空题(每题5分,共20分)12.(2021辽宁辽阳一模)设向量a=(-2,3),b=(3,1),c=(-7,m),假设(a+3b)∥c,那么实数m= . 答案 -613.(2021广东七校第二次联考,16)G 为△ABC 的重心,过点G 的直线与边AB,AC 分别相交于点P,Q,假设AP ⃗⃗⃗⃗⃗ =35AB ⃗⃗⃗⃗⃗ ,那么△ABC 与△APQ 面积的比值为 . 答案20914.(2021黑龙江大庆二模,16)W 为△ABC 的外心,AB=4,AC=2,∠BAC=120°,设AW ⃗⃗⃗⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗⃗ ,那么2λ1+λ2= . 答案 315.(2021届福建泉州实验中学第一次月考,15)设O 为△ABC 内一点,OA ⃗⃗⃗⃗⃗ +2OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =3AB ⃗⃗⃗⃗⃗ +2BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ,那么S △AOB ∶S △BOC ∶S △COA = . 答案 2∶3∶1。
高考数学一轮复习第5章平面向量第1节平面向量的概念及线性运算课件理新人教A版
[最新考纲] 1.了解向量的实际背景. 2.理解平面向量的概念,理解两个向量相等的含义. 3.理解向量的几何表示. 4.掌握向量加法、减法的运算,并理解其几何意义. 5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义. 6.了解向量线性运算的性质及其几何意义.
[考情分析]
[核心素养]
平面向量的相关概念,平面向量的线性运算,共线向 1.数学运算
量定理及其应用仍是 2021 年高考考查的热点,题型仍将是 2.直观想象
选择题与填空题,分值为 5 分.
1
课 前 ·基 础 巩 固
‖知识梳理‖ 1.向量的有关概念 (1)向量:既有大小又有 1 __方__向_____的量叫做向量,向量的大小叫做向量的 2 _____模____. (2)零向量:长度为 3 ___0______的向量,其方向是任意的. (3)单位向量:长度等于 4 _1_个__单__位___的向量.
(2)∵ka+b 与 a+kb 共线, ∴存在实数 λ,使 ka+b=λ(a+kb),即(k-λ)a=(λk-1)b. 又 a,b 是两个不共线的非零向量, ∴kλk--λ=1=0,0. ∴k2-1=0.∴k=±1.
|变式探究| 1.若将本例(1)中“B→C=2a+8b”改为“B→C=a+mb”,则 m 为何值时,A,B,D 三点共线? 解:B→D=B→C+C→D=(a+mb)+3(a-b)=4a+(m-3)b, 若 A,B,D 三点共线,则存在实数 λ,使B→D=λA→B, 即 4a+(m-3)b=λ(a+b),∴4m=-λ3,=λ,解得 m=7. 故当 m=7 时,A,B,D 三点共线.
法则(或几何意义)
运算律
交换律:a+b= 8 __b_+__a____;
结 合 律 : (a + b) + c = 9 _a_+__(b_+__c_)_
核按钮(新课标)高考数学一轮复习第五章平面向量与复数5.1平面向量的概念及线性运算习题理
核按钮(新课标)高考数学一轮复习第五章平面向量与复数5.1平面向量的概念及线性运算习题理1.向量的有关概念(1)向量:既有____________又有____________的量叫做向量,向量的大小,也就是向量的_________(或称模).AB →的模记作____________.(2)零向量:____________的向量叫做零向量,其方向是________的. (3)单位向量:长度等于______________的向量叫做单位向量.a||a 是一个与a 同向的____________.-a|a |是一个与a ________的单位向量.(4)平行向量:方向________或________的________向量叫做平行向量.平行向量又叫________,任一组平行向量都可以移到同一直线上.规定:0与任一向量____________.(5)相等向量:长度____________且方向____________的向量叫做相等向量. (6)相反向量:长度__________且方向__________的向量叫做相反向量. (7)向量的表示方法:用________表示;用____________表示;用________表示. 2.向量的加法和减法 (1)向量的加法①三角形法则:以第一个向量a 的终点A 为起点作第二个向量b ,则以第一个向量a 的起点O 为________以第二个向量b 的终点B 为________的向量OB →就是a 与b 的________(如图1).推广:A 1A 2→+A 2A 3→+…+A n-1A n →=____________.图1图2②平行四边形法则:以同一点A 为起点的两个已知向量a ,b 为邻边作▱ABCD ,则以A为起点的__________就是a 与b 的和(如图2).在图2中,BC →=AD →=b ,因此平行四边形法则是三角形法则的另一种形式.③加法的运算性质:a +b =____________(交换律);(a +b )+c =____________(结合律);a +0=____________=a .(2)向量的减法已知向量a ,b ,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=____________,即a -b 表示从向量b 的终点指向向量a (被减向量)的终点的向量(如图).3.向量的数乘及其几何意义(1)定义:实数λ与向量a 的积是一个向量,记作____________,它的长度与方向规定如下:①||λa =____________;②当λ>0时,λa 与a 的方向____________; 当λ<0时,λa 与a 的方向____________; 当λ=0时,λa =____________. (2)运算律:设λ,μ∈R ,则: ①λ(μa )=____________; ②(λ+μ)a =____________; ③λ(a +b )=____________. 4.两个向量共线定理向量a (a ≠0)与b 共线的充要条件是有且只有一个实数λ,使得____________.自查自纠1.(1)大小 方向 长度 ||AB →(2)长度为0 任意(3)1个单位长度 单位向量 方向相反 (4)相同 相反 非零 共线向量 平行 (5)相等 相同 (6)相等 相反 (7)字母 有向线段 坐标2.(1)①起点 终点 和 A 1A n → ②对角线AC →③b +a a +(b +c ) 0+a (2)a -b 3.(1)λa ①|λ||a | ②相同 相反 0 (2)①μ(λa ) ②λa +μa ③λa +λb 4.b =λa设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( )A .0B .1C .2D .3解:向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则当a 为零向量时,a 的方向任意;当a 不为零向量时,a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.故选D .设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →解:AD →=AC →+CD →=AC →+13BC →=AC →+13(AC →-AB →)=-13AB →+43AC →.故选A .(2015·东北三省联考)在四边形ABCD 中,若AC →=AB →+AD →,则四边形ABCD 一定是( )A .矩形B .菱形C .正方形D .平行四边形解:依题意得AC →=AB →+BC →=AB →+AD →,则BC →=AD →,因此BC ∥AD 且BC =AD ,故四边形ABCD 一定是平行四边形.故选D .(2015·北京)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =________.解:在△ABC 中,MN →=AN →-AM →=12(AB →+AC →)-23AC →=12AB →-16AC →,所以x =12,y =-16.故填12;-16. (2015·全国)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.解:由于λa +b 与a +2b 平行,且a +2b ≠0,∴存在唯一的实数μ∈R ,使得λa +b=μ(a +2b ),即(λ-μ)a +(1-2μ)b =0.∵a ,b 不平行,∴⎩⎪⎨⎪⎧λ-μ=0,1-2μ=0, 解得λ=μ=12.故填12.类型一 向量的基本概念给出下列命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是________.解:①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.∵AB →=DC →,∴|AB →|=|DC →|且AB →∥DC →,又∵A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则AB →∥DC →且|AB →|=|DC →|,可得AB →=DC →.故“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件.③正确.∵a =b ,∴a ,b 的长度相等且方向相同;又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c .④不正确.由a =b 可得|a |=|b |且a ∥b ;由|a |=|b |且a ∥b 可得a =b 或a =-b ,故“|a |=|b |且a ∥b ”不是“a =b ”的充要条件,而是必要不充分条件.综上所述,正确命题的序号是②③.故填②③.【点拨】(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a |的关系:a|a |是a 方向上的单位向量.下列命题中,正确的是________.(填序号)①有向线段就是向量,向量就是有向线段;②向量a 与向量b 平行,则a 与b 的方向相同或相反;③向量AB →与向量CD →共线,则A ,B ,C ,D 四点共线; ④如果a ∥b ,b ∥c ,那么a ∥c ;⑤两个向量不能比较大小,但它们的模能比较大小.解:①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量; ②不正确,若a 与b 中有一个为零向量,零向量的方向是任意的,故两向量方向不一定相同或相反;③不正确,共线向量所在的直线可以重合,也可以平行; ④不正确,如果b 为零向量,则a 与c 不一定平行;⑤正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小.故填⑤.类型二 向量的线性运算(1)如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 上靠近点B 的一个三等分点,那么EF →等于( )A.12AB →-13AD →B.14AB →+12AD →C.13AB →+12AD → D.12AB →-23AD →解:在△CEF 中,有EF →=EC →+CF →.因为点E 为DC 的中点,所以EC →=12DC →,因为点F 为BC 的一个三等分点,所以CF →=23CB →,所以EF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →.故选D .(2)在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →等于( ) A.23b +13c B.53c -23b C.23b -13c D.13b +23c 解:∵BD →=2DC →,∴AD →-AB →=2(AC →-AD →), ∴3AD →=2AC →+AB →,∴AD →=23AC →+13AB →=23b +13c .故选A .【点拨】(1)解题的关键在于搞清构成三角形的三个向量间的相互关系,能熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧是:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.(1)(2015·福建模拟)在△ABC 中,AD →=2DC →,BA →=a ,BD →=b ,BC →=c ,则下列等式成立的是( )A .c =2b -aB .c =2a -bC .c =3a 2-b2D .c =3b 2-a2解:因为在△ABC 中,BC →=BD →+DC →=BD →+12AD →=BD →+12(BD →-BA →)=32BD →-12BA →,所以c =32b-12a .故选D .(2)(2014·全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( )A.AD →B.12AD →C.BC →D.12BC →解:EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →.故选A . 类型三 向量共线的充要条件及其应用已知A ,B ,C 是平面内三个不相同的点,O 是平面内任意一点,求证:向量OA →,OB →,OC →的终点A ,B ,C 共线的充要条件是存在实数λ,μ,使得OC →=λOA →+μOB →,且λ+μ=1.证明:(1)先证必要性. 若OA →,OB →,OC →的终点A ,B ,C 共线,则AB →∥BC →,∴存在实数m 使得BC →=mAB →,即OC →-OB →=m (OB →-OA →), ∴OC →=-mOA →+(1+m )OB →.令λ=-m ,μ=1+m ,则λ+μ=-m +1+m =1,即存在实数λ,μ,使得OC →=λOA →+μOB →,且λ+μ=1. (2)再证充分性. 若OC →=λOA →+μOB →,且λ+μ=1, 则OC →=λOA →+(1-λ)OB →, ∴OC →-OB →=λ(OA →-OB →),即BC →=λBA →, ∴BC →∥BA →,又BC 与BA 有公共点B , ∴A ,B ,C 三点共线.综合(1)(2)可知,原命题成立.【点拨】证明三点A ,B ,C 共线,借助向量,只需证明由这三点A ,B ,C 所组成的向量中有两个向量共线,即证明存在一个实数λ,使AB →=λBC →.但证明两条直线AB ∥CD ,除了证明存在一个实数λ,使AB →=λCD →外,还要说明两直线不重合.注意:本例的结论可作定理使用.(1)已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( )A .A ,B ,D B .A ,B ,C C .B ,C ,DD .A ,C ,D解:BD →=BC →+CD →=(-5a +6b )+(7a -2b )=2a +4b =2(a +2b )=2AB →,∴A ,B ,D 三点共线.故选A .(2)设两个非零向量a 与b 不共线,若k a +b 和a +k b 共线,则实数k =________.解:∵k a +b 和a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ),即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a ,b 是两个不共线的非零向量,∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.故填±1.(3)(2015·南京模拟)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________.解法一:∵G 是△OAB 的重心,∴OG →=13(OA →+OB →)=13m OP →+13nOQ →.由P ,G ,Q 三点共线可得,13m +13n =1,故1m +1n=3.解法二:设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a ,PG →=OG →-OP →=⎝ ⎛⎭⎪⎫13-m a +13b .由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,且λ≠0,即n b -m a =λ⎝ ⎛⎭⎪⎫13-m a +13λb ,从而⎩⎪⎨⎪⎧-m =λ⎝ ⎛⎭⎪⎫13-m ,n =13λ,消去λ得1n +1m =3.故填3.1.准确理解向量的概念,请特别注意以下几点: (1)a ∥b ,有a 与b 方向相同或相反两种情形;(2)向量的模与数的绝对值有所不同,如|a |=|b | a =±b ; (3)零向量的方向是任意的,并不是没有,零向量与任意向量平行; (4)对于任意非零向量a ,a||a 是与a 同向的单位向量,这也是求单位向量的方法; (5)向量平行,其所在直线不一定平行,两向量还可能在一条直线上;(6)只要不改变向量a 的大小和方向,可以自由平移a ,平移后的向量与a 相等,所以线段共线与向量共线是有区别的,当两向量共线且有公共点时,才能得出线段共线,向量的共线与向量的平行是一致的.2.向量具有大小和方向两个要素,既能像实数一样进行某些运算,又有直观的几何意义,是数与形的完美结合.向量是一个几何量,因此,在研究向量的有关问题时,一定要结合图形进行分析、判断,这是研究平面向量最重要的方法与技巧.3.向量加法的三角形法则可简记为“首尾相接,指向终点”;减法法则可简记为“起点重合,指向被减向量”;加法的平行四边形法则可简记 “起点重合,指向对角顶点”.4.平面向量的三种线性运算的结果仍为向量,在三种线性运算中,加法是最基本、最重要的运算,减法运算与数乘运算都以加法运算为基础,都可以归结为加法运算.5.对于两个向量共线定理(a (a ≠0)与b 共线⇔存在唯一实数λ使得b =λa )中条件“a ≠0”的理解:(1)当a =0时,a 与任一向量b 都是共线的;(2)当a =0且b ≠0时,b =λa 是不成立的,但a 与b 共线.因此,为了更具一般性,且使充分性和必要性都成立,我们要求a ≠0.换句话说,如果不加条件“a ≠0”,“a 与b 共线”是“存在唯一实数λ使得b =λa ”的必要不充分条件.1.设a 、b 都是非零向量,下列四个条件中,使a |a |=b|b |成立的充分条件是( )A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a |=|b |解:由题意a |a |=b|b |表示与向量a 和向量b 同向的单位向量相等,故a 与b 同向共线.故选C .2.已知两个非零向量a ,b 不共线,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值是( )A .-2B .-1C .1D .2解:∵BC →=a +b ,CD →=a -2b ,∴BD →=BC →+CD →=2a -b .又∵A ,B ,D 三点共线,∴AB →,BD→共线.设AB →=λBD →,∴2a +p b =λ(2a -b ),∴2=2λ且p =-λ,∴λ=1,p =-1.故选B .3.已知O ,A ,M ,B 为平面上四点,且OM →=λOB →+(1-λ)OA →,实数λ∈(1,2),则( ) A .点M 在线段AB 上 B .点B 在线段AM 上 C .点A 在线段BM 上D .O ,A ,M ,B 四点一定共线解:由题意得OM →-OA →=λ(OB →-OA →),即AM →=λAB →.又λ∈(1,2),∴点B 在线段AM 上.故选B .4.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a, AC →=b ,则AD →=( )A .a -12bB.12a -bC .a +12bD.12a +b 解:连接OD ,CD ,显然∠BOD =∠CAO =60°,则AC ∥OD ,且AC =OD ,即四边形CAOD为菱形,故AD →=AO →+AC →=12a +b ,故选D .5.已知平面内一点P 及△ABC ,若PA →+PB →+PC →=AB →,则点P 与△ABC 的位置关系是( )A .点P 在线段AB 上B .点P 在线段BC 上 C .点P 在线段AC 上D .点P 在△ABC 外部解:由PA →+PB →+PC →=AB →得PA →+PC →=AB →-PB →=AP →,即PC →=AP →-PA →=2AP →,所以点P 在线段AC 上.故选C .6.在平行四边形ABCD 中,点E 是AD 的中点,BE 与AC 相交于点F ,若EF →=mAB →+nAD →(m ,n ∈R ),则mn的值为( )A .-2B .-12C .2 D.12解:设AB →=a ,AD →=b ,则EF →=m a +n b ,BE →=AE →-AB →=12b -a ,由向量EF →与BE →共线可知存在非零实数λ,使得EF →=λBE →,即m a +n b =12λb -λa ,又a 与b 不共线,则⎩⎪⎨⎪⎧m =-λ,n =12λ, 消去λ得m n=-2.故选A .7.如图,在△ABC 中,H 为BC 上异于B ,C 的任一点,M 为AH 的中点,若AM →=λAB →+μAC →,则λ+μ=______.解:由B ,H ,C 三点共线,可令AH →=xAB →+(1-x )AC →.又M 是AH 的中点,所以AM →=12AH →=12xAB →+12(1-x )AC →.又AM →=λAB →+μAC →,所以λ+μ=12x +12(1-x )=12.故填12. 8.直角三角形ABC 中,斜边BC 长为2,O 是平面ABC 内一点,点P 满足OP →=OA →+12(AB →+AC →),则|AP →|=________.解:如图,取BC 边中点D ,连接AD ,则12(AB →+AC →)=AD →,OP →=OA →+12(AB →+AC →)⇒OP →=OA →+AD →⇒OP →-OA →=AD →⇒AP →=AD →,因此|AP →|=|AD →|=1,故填1.9.如图,在梯形ABCD 中,AB ∥CD ,且AB =2CD ,M ,N 分别是DC 和AB 的中点,若AB →=a ,AD →=b ,试用a ,b 表示BC →和MN →.解:BC →=BA →+AD →+DC →=-a +b +12a =b -12a .MN →=MD →+DA →+AN →=-14a +(-b )+12a =14a -b .10.设两个非零向量e 1和e 2不共线.(1)如果AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,求证:A ,C ,D 三点共线;(2)如果AB →=e 1+e 2,BC →=2e 1-3e 2,CD →=2e 1-k e 2,且A ,C ,D 三点共线,求k 的值.解:(1)证明:∵AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,∴AC →=AB →+BC →=4e 1+e 2=-12(-8e 1-2e 2)=-12CD →,∴AC →与CD →共线.又∵AC →与CD →有公共点C ,∴A ,C ,D 三点共线. (2)AC →=AB →+BC →=(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2, ∵A ,C ,D 三点共线, ∴AC →与CD →共线,从而存在实数λ使得AC →=λCD →, 即3e 1-2e 2=λ(2e 1-k e 2), 得⎩⎪⎨⎪⎧3=2λ,-2=-λk ,解得λ=32,k =43.故k 的值为43.11.如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →.解:∵A ,M ,D 三点共线, ∴OM →=λ1OD →+(1-λ1)OA →=12λ1b +(1-λ1)a ,①∵C ,M ,B 三点共线,∴OM →=λ2OB →+(1-λ2)OC →=λ2b +1-λ24a ,②由①②可得⎩⎪⎨⎪⎧12λ1=λ2,1-λ1=1-λ24, 解得⎩⎪⎨⎪⎧λ1=67,λ2=37.故OM →=17a +37b . 设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C ,D 调和分割点A ,B ,则下面说法正确的是( )A .C 可能是线段AB 的中点B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上解:若C ,D 调和分割点A ,B ,则AC →=λAB →(λ∈R ),AD →=μAB →(μ∈R ),且1λ+1μ=2.对于选项A ,若C 是线段AB 的中点,则AC →=12AB →⇒λ=12⇒1μ=0,故A 选项错误;同理B 选项错误;对于选项C ,若C ,D 同时在线段AB 上,则0<λ<1,0<μ<1⇒1λ+1μ>2,C 选项错误;对于选项D ,若C ,D 同时在线段AB 的延长线上,则λ>1,μ>1⇒1λ+1μ<2,故C ,D 不可能同时在线段AB 的延长线上,D 选项正确.故选D .。
2016届高考数学第一轮复习 第五章 平面向量课件 理 北师大版
a
31
=a-b,
1
1
1
=6 =6a-6b,
1
5
6
6
=+= a+ b,
=a+b,
1
1
2
2
2
2
6
3
3
3
= + = + = = a+ b,
1
1
=-=2a-6b.
a
32
题型
共线向量定理
三
设两个非零向量 a 与 b 不共线.
(1)若=a+b, =2a+8b, =3(a-b),求证:A,B,D 三
D
本题考查平面向量的相关概念及加法、减法法则,
考查数形结合思想、信息迁移和分析解决问题的综合能力.
a
21
(见学生用书 P86)
题型
平面向量的有关概念
一
给出下列四个命题:
①若|a|=|b|,则 a=b;
②若 A,B,C,D 是不共线的四点,则“= ”是“四边
形 ABCD 为平行四边形”的充要条件;
分条件;B 可以推得
A;D 为充分不必要条件.故选 D.
D
a
43
4.已知点 O 是平面上的一定点,△ABC 的内角 A,B,C 所对的
5.相等向量:长度相等且 方向 相同的向量.
6.相反向量:长度相等且 方向 相反的向量.
a
3
向量
运算
二、向量的线性运算
法则(或几
定义
何意义)
运算律
(1)交换律:
a+b=b+a
加法 求两个向量和的运算
(2)结合律:
高中数学一轮复习理数通用版:第五章 平面向量 Word版含解析
第五章⎪⎪⎪平面向量第一节 平面向量的概念及线性运算本节主要包括2个知识点: 1.平面向量的有关概念;2.平面向量的线性运算.突破点(一) 平面向量的有关概念[基本知识] 名称 定义备注向量 既有大小又有方向的量叫做向量;向量的大小叫做向量的长度(或称模) 平面向量是自由向量,平面向量可自由平移 零向量 长度为0的向量;其方向是任意的记作0单位向量 长度等于1个单位的向量 非零向量a 的单位向量为±a|a |平行向量方向相同或相反的非零向量,又叫做共线向量0与任一向量平行或共线 相等向量 长度相等且方向相同的向量 两向量只有相等或不等,不能比较大小相反向量 长度相等且方向相反的向量0的相反向量为0[基本能力]1.判断题(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.( ) (2) 若a ∥b ,b ∥c ,则a ∥c .( )(3)若向量a 与b 不相等,则a 与b 一定不可能都是零向量.( ) 答案:(1)× (2)× (3)√ 2.填空题 (1)给出下列命题:①若a =b ,b =c ,则a =c ;②若A ,B ,C ,D 是不共线的四点,则AB ―→=DC ―→是四边形ABCD 为平行四边形的充要条件;③a =b 的充要条件是|a |=|b |且a ∥b ; 其中正确命题的序号是________.解析:①正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .②正确.∵AB ―→=DC ―→,∴|AB ―→|=|DC ―→|且AB ―→∥DC ―→, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形, 则AB ―→∥DC ―→且|AB ―→|=|DC ―→|,因此,AB ―→=DC ―→.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.综上所述,正确命题的序号是①②. 答案:①②(2)若a 、b 都为非零向量,则使a |a |+b|b |=0成立的条件是________.答案:a 与b 反向共线[全析考法]平面向量的有关概念[典例] (1)(·海淀期末)下列说法正确的是( ) A .长度相等的向量叫做相等向量 B .共线向量是在同一条直线上的向量 C .零向量的长度等于0D .AB ―→∥CD ―→就是AB ―→所在的直线平行于CD ―→所在的直线 (2)(·枣庄期末)下列命题正确的是( ) A .若|a |=|b |,则a =b B .若|a |>|b |,则a >b C .若a =b ,则a ∥b D .若|a |=0,则a =0[解析] (1)长度相等且方向相同的向量叫做相等向量,故A 不正确;方向相同或相反的非零向量叫做共线向量,但共线向量不一定在同一条直线上,故B 不正确;显然C 正确;当AB ―→∥CD ―→时,AB ―→所在的直线与CD ―→所在的直线可能重合,故D 不正确.(2)对于A ,当|a |=|b |,即向量a ,b 的模相等时,方向不一定相同,故a =b 不一定成立;对于B ,向量的模可以比较大小,但向量不可以比较大小,故B 不正确;C 显然正确;对于D ,若|a |=0,则a =0,故D 不正确,故选C.[答案] (1)C (2)C [易错提醒](1)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小; (2)大小与方向是向量的两个要素,分别是向量的代数特征与几何特征; (3)向量可以自由平移,任意一组平行向量都可以移到同一直线上.[全练题点]1.给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②λa =0(λ为实数),则λ必为零;③λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误的命题的个数为( ) A .0 B .1 C .2D .3解析:选D ①错误,两向量共线要看其方向而不是起点或终点.②错误,当a =0时,不论λ为何值,λa =0.③错误,当λ=μ=0时,λa =μb =0,此时,a 与b 可以是任意向量.错误的命题有3个,故选D.2.关于平面向量,下列说法正确的是( ) A .零向量是唯一没有方向的向量 B .平面内的单位向量是唯一的C .方向相反的向量是共线向量,共线向量不一定是方向相反的向量D .共线向量就是相等向量解析:选C 对于A ,零向量是有方向的,其方向是任意的,故A 不正确;对于B ,单位向量的模为1,其方向可以是任意方向,故B 不正确;对于C ,方向相反的向量一定是共线向量,共线向量不一定是方向相反的向量,故C 正确;对于D ,由共线向量和相等向量的定义可知D 不正确,故选C.3.如图,△ABC 和△A ′B ′C ′是在各边的13处相交的两个全等的等边三角形,设△ABC 的边长为a ,图中列出了长度均为a3的若干个向量,则(1)与向量GH ―→相等的向量有________;(2)与向量GH ―→共线,且模相等的向量有________; (3)与向量EA ―→共线,且模相等的向量有________. 解析:向量相等⇔向量方向相同且模相等. 向量共线⇔表示有向线段所在的直线平行或重合.答案:(1) LB ′―→, HC ―→ (2) EC ′―→, LE ―→,LB ′―→, GB ―→,HC ―→ (3) EF ―→, FB ―→, HA ′―→,HK ―→,KB ′―→突破点(二) 平面向量的线性运算[基本知识]1.向量的线性运算 向量运算定义法则(或几何意义)运算律加法 求两个向量和的运算交换律:a +b =b +a ;结合律:(a +b )+c =a +(b +c )减法求a 与b 的相反向量-b 的和的运算a -b =a +(-b ) 数乘求实数λ与向量a 的积的运算|λa |=|λ||a |,当λ>0时,λa 与a 的方向相同;当λ<0时,λa 与a 的方向相反;当λ=0时,λa =0λ(μ a )=(λ μ)a ;(λ+μ)a =λa +μa ; λ(a +b ) =λa +λb向量b 与a (a ≠0)共线的充要条件是有且只有一个实数λ,使得b =λa .[基本能力]1.判断题(1)a ∥b 是a =λb (λ∈R )的充要条件.( )(2)△ABC 中,D 是BC 的中点,则AD ―→=12(AC ―→+AB ―→).( )答案:(1)× (2)√ 2.填空题(1)化简:①AB ―→+MB ―→+BO ―→+OM ―→=________. ②NQ ―→+QP ―→+MN ―→-MP ―→=________. 答案:①AB ―→②0(2)若菱形ABCD 的边长为2,则|AB ―→-CB ―→+CD ―→|=________. 解析:|AB ―→-CB ―→+CD ―→|=|AB ―→+BC ―→+CD ―→|=|AD ―→|=2. 答案:2(3)在▱ABCD 中,AB ―→=a ,AD ―→=b , AN ―→=3NC ―→,则AN ―→=________(用a ,b 表示). 答案:34a +34b[全析考法]平面向量的线性运算尾相接”,加法的平行四边形法则要求“起点相同”;减法的三角形法则要求“起点相同”且差向量指向“被减向量”;数乘运算的结果仍是一个向量,运算过程可类比实数运算.[例1] (1)(·河南中原名校联考)如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC 边上一点,BC ―→=3EC ―→,F 为AE 的中点,则BF ―→=( )A.23AB ―→-13AD ―→B.13AB ―→-23AD ―→C .-23AB ―→+13AD ―→D .-13AB ―→+23AD ―→(2)(·深圳模拟)如图所示,正方形ABCD 中,M 是BC 的中点,若AC ―→=λAM ―→+μBD ―→,则λ+μ=( )A.43B.53C.158D .2[解析] (1)BF ―→=BA ―→+AF ―→=BA ―→+12AE ―→=-AB ―→+12(AD ―→+12AB ―→+CE ―→)=-AB ―→+12⎝⎛⎭⎫AD ―→+12 AB ―→+13 CB ―→ =-AB ―→+12AD ―→+14AB ―→+16(CD ―→+DA ―→+AB ―→)=-23AB ―→+13AD ―→.(2)因为AC ―→=λAM ―→+μBD ―→=λ(AB ―→+BM ―→)+μ(BA ―→+AD ―→)=λ⎝⎛⎭⎫AB ―→+12 AD ―→ +μ(-AB ―→+AD ―→)=(λ-μ)AB ―→+⎝⎛⎭⎫12λ+μAD ―→,且AC ―→=AB ―→+AD ―→,所以⎩⎪⎨⎪⎧λ-μ=1,12λ+μ=1,得⎩⎨⎧λ=43,μ=13,所以λ+μ=53,故选B.[答案] (1)C (2)B [方法技巧]1.平面向量的线性运算技巧(1)不含图形的情况:可直接运用相应运算法则求解.(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来求解.2.利用平面向量的线性运算求参数的一般思路 (1)没有图形的准确作出图形,确定每一个点的位置.(2)利用平行四边形法则或三角形法则进行转化,转化为要求的向量形式. (3)比较、观察可知所求.平面向量共线定理的应用(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.(3)直线的向量式参数方程:A ,P ,B 三点共线⇔OP ―→=(1-t )·OA ―→+t OB ―→(O 为平面内任一点,t ∈R ).[例2] (1)(·芜湖二模)已知向量a ,b 是两个不共线的向量,若向量m =4a +b 与n =a -λb 共线,则实数λ的值为( )A .-4B .-14C.14D .4(2)(·怀化一模)已知向量a ,b 不共线,向量AB ―→=a +3b ,BC ―→=5a +3b ,CD ―→=-3a +3b ,则( )A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线D .B ,C ,D 三点共线[解析] (1)因为向量a ,b 是两个不共线的向量,所以若向量m =4a +b 与n =a -λb 共线,则4×(-λ)=1×1,解得λ=-14,故选B.(2)因为BD ―→=BC ―→+CD ―→=2a +6b =2(a +3b )=2AB ―→,所以BD ―→,AB ―→共线,又有公共点B ,所以A ,B ,D 三点共线.故选B.[答案] (1)B (2)B[方法技巧] 平面向量共线定理的三个应用[全练题点]1. [考点一](·长春一模)在梯形ABCD 中,AB ―→=3DC ―→,则BC ―→=( ) A .-23AB ―→+AD ―→B .-23AB ―→+43AD ―→C .-13AB ―→+23AD ―→D .-23AB ―→-AD ―→解析:选A 因为在梯形ABCD 中,AB ―→=3DC ―→,所以BC ―→=BA ―→+AD ―→+DC ―→=-AB ―→+AD ―→+13AB ―→=-23AB ―→+AD ―→,故选A.2.[考点二]已知a ,b 是不共线的向量,AB ―→=λa +b ,AC ―→=a +μb ,λ,μ∈R ,则A ,B ,C 三点共线的充要条件为( )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=1解析:选D ∵A ,B ,C 三点共线,∴AB ―→∥AC ―→,设AB ―→=m AC ―→(m ≠0),则λa +b =m (a +μb ),∴⎩⎪⎨⎪⎧λ=m ,1=mμ, ∴λμ=1,故选D.3.[考点二](·南宁模拟)已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且m n ≠0,若a ∥b ,则mn =( )A .-12B.12 C .-2D .2解析:选C ∵a ∥b ,∴a =λb ,即m e 1+2e 2=λ(n e 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,故mn =-2.4.[考点一]已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC ―→=2AE ―→,则EM ―→=( )A.12AC ―→+13AB ―→B.12AC ―→+16AB ―→C.16AC ―→+12AB ―→ D.16AC ―→+32AB ―→ 解析:选C 如图,∵EC ―→=2AE ―→,∴EM ―→=EC ―→+CM ―→=23AC―→+12CB ―→=23AC ―→+12(AB ―→-AC ―→)=12AB ―→+16AC ―→. 5.[考点一]如图,在△OAB 中,P 为线段AB 上的一点, OP ―→=x OA ―→+y OB ―→,且BP ―→=2PA ―→,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14解析:选A 由题意知OP ―→=OB ―→+BP ―→,又BP ―→=2PA ―→,所以OP ―→=OB ―→+23BA ―→=OB―→+23(OA ―→-OB ―→)=23OA ―→+13OB ―→,所以x =23,y =13. [全国卷5年真题集中演练——明规律] 1.(·全国卷Ⅰ)设D 为△ABC 所在平面内一点,BC ―→=3CD ―→,则( ) A .AD ―→=-13AB ―→+43AC ―→B .AD ―→=13AB ―→-43AC ―→C .AD ―→=43AB ―→+13AC ―→D .AD ―→=43AB ―→-13AC ―→解析:选A AD ―→=AC ―→+CD ―→=AC ―→+13BC ―→=AC ―→+13(AC ―→-AB ―→)=43AC ―→-13AB ―→=-13AB ―→+43AC ―→,故选A.2.(·全国卷Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB ―→+FC ―→=( )A .AD ―→ B.12AD ―→ C .BC ―→D.12BC ―→ 解析:选A EB ―→+FC ―→=12(AB ―→+CB ―→)+12(AC ―→+BC ―→)=12(AB ―→+AC ―→)=AD ―→,故选A. 3.(·全国卷Ⅱ)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________. 解析:∵λa +b 与a +2b 平行,∴λa +b =t (a +2b ),即λa +b =t a +2t b ,∴⎩⎪⎨⎪⎧λ=t ,1=2t ,解得⎩⎨⎧λ=12,t =12.答案:12[课时达标检测][小题对点练——点点落实]对点练(一) 平面向量的有关概念1.若向量a 与b 不相等,则a 与b 一定( ) A .有不相等的模 B .不共线C .不可能都是零向量D .不可能都是单位向量解析:选C 若a 与b 都是零向量,则a =b ,故选项C 正确.2.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.假命题的个数是( )A .0B .1C .2D .3解析:选D 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.3.已知a ,b 是非零向量,命题p :a =b ,命题q :|a +b |=|a |+|b |,则p 是q 的____________条件.解析:若a =b ,则|a +b |=|2a |=2|a |,|a |+|b |=|a |+|a |=2|a |,即p ⇒q .若|a +b |=|a |+|b |,由加法的运算知a 与b 同向共线,即a =λb ,且λ>0,故q ⇒/ p .∴p 是q 的充分不必要条件.答案:充分不必要对点练(二) 平面向量的线性运算1.如图,在平行四边形ABCD 中,E 为DC 边的中点,且AB ―→=a ,AD ―→=b , 则BE ―→=( )A.12b -a B.12a -b C .-12a +bD.12b +a 解析:选C BE ―→=BA ―→+AD ―→+12DC ―→=-a +b +12a =b -12a ,故选C.2.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 反向共线,则实数λ的值为( )A .1B .-12C .1或-12D .-1或-12解析:选B 由于c 与d 反向共线,则存在实数k 使c =k d (k <0),于是λa +b =k []a +(2λ-1)b .整理得λa +b =k a +(2λk -k )b .由于a ,b 不共线,所以有⎩⎪⎨⎪⎧λ=k ,2λk -k =1,整理得2λ2-λ-1=0,解得λ=1或λ=-12.又因为k <0,所以λ<0,故λ=-12.3.(·江西八校联考)在△ABC 中,P ,Q 分别是边AB ,BC 上的点,且AP =13AB ,BQ=13BC .若AB ―→=a ,AC ―→=b ,则PQ ―→=( ) A.13a +13b B .-13a +13bC.13a -13b D .-13a -13b解析:选A PQ ―→=PB ―→+BQ ―→=23AB ―→+13BC ―→=23AB ―→+13(AC ―→-AB ―→)=13AB ―→+13AC ―→=13a +13b ,故选A. 4.(·郑州二模)如图,在△ABC 中,点D 在线段BC 上,且满足BD =12DC ,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AM ―→=m AB ―→,AN ―→=n AC ―→,则( )A .m +n 是定值,定值为2B .2m +n 是定值,定值为3 C.1m +1n是定值,定值为2 D.2m +1n 是定值,定值为3解析:选D 法一:如图,过点C 作CE 平行于MN 交AB 于点E .由AN ―→=n AC ―→可得AC AN =1n ,所以AE EM =AC CN =1n -1,由BD =12DC 可得BM ME =12,所以AMAB =n n +n -12=2n 3n -1,因为AM ―→=m AB ―→,所以m =2n 3n -1,整理可得2m +1n =3.法二:因为M ,D ,N 三点共线,所以AD ―→=λAM ―→+(1-λ)·AN ―→.又AM ―→=m AB ―→,AN ―→=n AC ―→,所以AD ―→=λm AB ―→+(1-λ)·n AC ―→.又BD ―→=12DC ―→,所以AD ―→-AB ―→=12AC ―→-12AD ―→,所以AD ―→=13AC ―→+23AB ―→.比较系数知λm =23,(1-λ)n =13,所以2m +1n =3,故选D.5.(·银川一模)设点P 是△ABC 所在平面内一点,且BC ―→+BA ―→=2BP ―→,则PC ―→+PA ―→=________.解析:因为BC ―→+BA ―→=2BP ―→,由平行四边形法则知,点P 为AC 的中点,故PC ―→+PA ―→=0.答案:06.(·衡阳模拟)在如图所示的方格纸中,向量a ,b ,c 的起点和终点均在格点(小正方形顶点)上,若c 与x a +y b (x ,y 为非零实数)共线,则xy 的值为________.解析:设e 1,e 2分别为水平方向(向右)与竖直方向(向上)的单位向量,则向量c =e 1-2e 2,a =2e 1+e 2,b =-2e 1-2e 2,由c 与x a +y b 共线,得c =λ(x a +y b ),所以e 1-2e 2=2λ(x-y )e 1+λ(x -2y )e 2,所以⎩⎪⎨⎪⎧2λ(x -y )=1,λ(x -2y )=-2,所以⎩⎨⎧x =3λ,y =52λ,则x y 的值为65. 答案:657.(·盐城一模)在△ABC 中,∠A =60°,∠A 的平分线交BC 于点D ,若AB =4,且AD ―→=14AC ―→+λAB ―→(λ∈R ),则AD 的长为________. 解析:因为B ,D ,C 三点共线,所以14+λ=1,解得λ=34,如图,过点D 分别作AC ,AB 的平行线交AB ,AC 于点M ,N ,则AN ―→=14AC ―→,AM ―→=34AB ―→,经计算得AN =AM =3,AD =3 3.答案:3 38.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE ―→=AD ―→+μAB ―→,则μ的取值范围是________.解析:由题意可求得AD =1,CD =3,所以AB ―→=2DC ―→. ∵点E 在线段CD 上,∴DE ―→=λDC ―→(0≤λ≤1). ∵AE ―→=AD ―→+DE ―→,又AE ―→=AD ―→+μAB ―→=AD ―→+2μDC ―→=AD ―→+2μλDE ―→,∴2μλ=1,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12,即μ的取值范围是⎣⎡⎦⎤0,12. 答案:⎣⎡⎦⎤0,12[大题综合练——迁移贯通]1.在△ABC 中,D ,E 分别为BC ,AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB ―→=a ,AC ―→=b ,试用a ,b 表示AD ―→, AG ―→.解:AD ―→=12(AB ―→+AC ―→)=12a +12b .AG ―→=AB ―→+BG ―→=AB ―→+23BE ―→=AB ―→+13(BA ―→+BC ―→)=23AB ―→+13(AC ―→-AB ―→)=13AB ―→+13AC ―→=13a +13b . 2.已知a ,b 不共线,OA ―→=a ,OB ―→=b , OC ―→=c , OD ―→=d , OE ―→=e ,设t ∈R ,如果3a =c ,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.解:由题设知,CD ―→=d -c =2b -3a ,CE ―→=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE ―→=k CD ―→,即(t -3)a +t b =-3k a +2k b ,整理得(t -3+3k )a =(2k -t )b .因为a ,b 不共线,所以有⎩⎪⎨⎪⎧t -3+3k =0,t -2k =0,解得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.3.如图所示,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE ―→=23AD ―→,AB ―→=a ,AC ―→=b .(1)用a ,b 表示向量AD ―→,AE ―→,AF ―→,BE ―→,BF ―→; (2)求证:B ,E ,F 三点共线. 解:(1)延长AD 到G ,使AD ―→=12AG ―→,连接BG ,CG ,得到▱ABGC ,如图, 所以AG ―→=AB ―→+AC ―→=a +b ,AD ―→=12AG ―→=12(a +b ),AE ―→=23AD ―→=13(a +b ),AF ―→=12AC ―→=12b ,BE ―→=AE ―→-AB ―→=13(a +b )-a =13(b -2a ),BF ―→=AF ―→-AB ―→=12b -a =12(b -2a ).(2)证明:由(1)可知BE ―→=23BF ―→,又因为BE ―→,BF ―→有公共点B , 所以B ,E ,F 三点共线.第二节 平面向量基本定理及坐标表示本节主要包括2个知识点: 1.平面向量基本定理;2.平面向量的坐标表示.突破点(一) 平面向量基本定理[基本知识]如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.[基本能力]1.判断题(1)平面内的任何两个向量都可以作为一组基底.( )(2)在△ABC 中,设AB ―→=a ,BC ―→=b ,则向量a 与b 的夹角为∠ABC .( ) (3)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( ) 答案:(1)× (2)× (3)√ 2.填空题(1)设e 1,e 2是平面内一组基底,若λ1e 1+λ2e 2=0,则λ1+λ2=________. 答案:0(2)设e 1,e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则2a -b =________. 答案:3e 1+3e 2(3)(·嘉兴测试)在△ABC 中,已知M 是BC 中点,设CB ―→=a ,CA ―→=b ,则AM ―→=________. 答案:-b +12a[全析考法]平面向量基本定理[典例] (1)(·长春模拟)如图所示,下列结论正确的是( )①PQ ―→=32a +32b ;②PT ―→=32a -b ;③PS ―→=32a -12b ;④PR ―→=32a +b .A .①②B .③④C .①③D .②④(2)(·岳阳质检)在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB ―→=λAM ―→+μAN ―→,则λ+μ的值为( )A.14B.15C.45D.54[解析] (1)①根据向量的加法法则,得PQ ―→=32a +32b ,故①正确;②根据向量的减法法则,得PT ―→=32a -32b ,故②错误;③PS ―→=PQ ―→+QS ―→=32a +32b -2b =32a -12b ,故③正确;④PR ―→=PQ ―→+QR ―→=32a +32b -b =32a +12b ,故④错误,故选C.(2)法一:连接AC (图略),由AB ―→=λAM ―→+μAN ―→,得AB ―→=λ·12(AD ―→+AC ―→)+μ·12(AC ―→+AB ―→),则⎝⎛⎭⎫μ2-1AB ―→+λ2AD ―→+⎣⎡⎭⎫λ2+μ2AC ―→=0,得⎝⎛⎭⎫μ2-1AB ―→+λ2AD ―→+⎣⎡⎭⎫λ2+μ2⎣⎡⎭⎫AD ―→+12 AB ―→=0,得⎝⎛⎭⎫14λ+34μ-1AB ―→+⎝⎛⎭⎫λ+μ2AD ―→=0.又AB ―→,AD ―→不共线,所以由平面向量基本定理得⎩⎨⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎨⎧λ=-45,μ=85.所以λ+μ=45.法二:根据题意作出图形如图所示,连接MN 并延长,交AB 的延长线于点T ,由已知易得AB =45AT ,所以45AT ―→=AB ―→=λAM ―→+μAN ―→,因为T ,M ,N 三点共线,所以λ+μ=45.[答案] (1)C (2)C [方法技巧]平面向量基本定理的实质及解题思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.[全练题点]1.(·泉州调研)若向量a ,b 不共线,则下列各组向量中,可以作为一组基底的是( ) A .a -2b 与-a +2b B .3a -5b 与6a -10b C .a -2b 与5a +7bD .2a -3b 与12a -34b解析:选C 不共线的两个向量可以作为一组基底.因为a -2b 与5a +7b 不共线,故a -2b 与5a +7b 可以作为一组基底.2.向量e 1,e 2,a ,b 在正方形网格中的位置如图所示,则a -b =( ) A .-4e 1-2e 2 B.-2e 1-4e 2 C .e 1-3e 2D .3e 1-e 2解析:选C 结合图形易得,a =-e 1-4e 2,b =-2e 1-e 2,故a -b =e 1-3e 2.3.如图,正方形ABCD 中,E 为DC 的中点,若AE ―→=λAB ―→+μAC ―→,则λ+μ的值为( )A.12 B .-12C .1D .-1解析:选A 由题意得AE ―→=AD ―→+12AB ―→=BC ―→+AB ―→-12AB ―→=AC ―→-12AB ―→,∴λ=-12,μ=1,∴λ+μ=12,故选A.4.(·湖南邵阳一模)如图, 在△ABC 中,设AB ―→=a ,AC ―→=b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点为P ,若AP ―→=m a +nb ,则m +n =________.解析:根据已知条件得,BQ ―→=AQ ―→-AB ―→=12AP ―→-AB ―→=12(m a +nb )-a =⎝⎛⎭⎫m 2-1a +n 2b , CR ―→=BR ―→-BC ―→=12BQ ―→-AC ―→+AB ―→=12⎣⎡⎦⎤⎝⎛⎭⎫m 2-1a +n 2b -b +a =⎝⎛⎭⎫m 4+12a +⎝⎛⎭⎫n 4-1b ,∴QP ―→=m 2a +n 2b , RQ ―→=⎝⎛⎭⎫m 4-12a +n 4b ,RP ―→=-⎝⎛⎭⎫m 8+14a +⎝⎛⎭⎫12-n 8b .∵RQ ―→+QP ―→=RP ―→,∴⎝⎛⎭⎫3m 4-12a +3n 4b =⎝⎛⎭⎫-m 8-14a +⎝⎛⎭⎫12-n 8b ,∴⎩⎨⎧3m 4-12=-m 8-14,3n 4=12-n 8,解得⎩⎨⎧m =27,n =47,故m +n =67.答案:67突破点(二) 平面向量的坐标表示[基本知识]1.平面向量的坐标运算(1)向量加法、减法、数乘的坐标运算及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则:a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法若向量的起点是坐标原点,则终点坐标即为向量的坐标.一般地,设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1).2.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.[基本能力](1)已知a =(2,1),b =(-3,4),则3a +4b =________. 答案:(-6,19)(2)已知向量a =(2,1),b =(1,-2),若m a +nb =(9,-8)(m ,n ∈R ),则m -n 的值为________.解析:∵m a +nb =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧ 2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =2-5=-3. 答案:-3(3)若AC 为平行四边形ABCD 的一条对角线,AB ―→=(2,4),AC ―→=(1,3),则AD ―→=________.答案:(-1,-1)(4)若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 解析:AB ―→=(a -1,3),AC ―→=(-3,4),据题意知AB ―→∥AC ―→,∴4(a -1)=3×(-3),即4a =-5,∴a =-54.答案:-54[全析考法]平面向量的坐标运算[例1] (1)(·绍兴模拟)已知点M (5,-6)和向量a =(1,-2),若MN ―→=-3a ,则点N 的坐标为( )A .(2,0)B .(-3,6)C .(6,2)D .(-2,0)(2)在△ABC 中,点P 在BC 上,且BP ―→=2PC ―→,点Q 是AC 的中点,若 PA ―→=(4,3),PQ ―→=(1,5),则BC ―→=________.[解析] (1)MN ―→=-3a =-3(1,-2)=(-3,6), 设N (x ,y ),则MN ―→=(x -5,y +6)=(-3,6),所以⎩⎪⎨⎪⎧ x -5=-3,y +6=6,即⎩⎪⎨⎪⎧x =2,y =0.(2)AQ ―→=PQ ―→-PA ―→=(-3,2),∴AC ―→=2AQ ―→=(-6,4).PC ―→=PA ―→+AC ―→=(-2,7), ∴BC ―→=3PC ―→=(-6,21). [答案] (1)A (2)(-6,21) [方法技巧]平面向量坐标运算的技巧(1)向量的坐标运算主要是利用加、减、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中要注意方程思想的运用及正确使用运算法则.平面向量共线的坐标表示[例2] 已知(1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值. [解] (1)∵a =(1,0),b =(2,1),∴k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2), ∵k a -b 与a +2b 共线,∴2(k -2)-(-1)×5=0,∴k =-12.(2)AB ―→=2(1,0)+3(2,1)=(8,3),BC ―→=(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线,∴AB ―→∥BC ―→, ∴8m -3(2m +1)=0,∴m =32.[方法技巧]向量共线的坐标表示中的乘积式和比例式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0,这是代数运算,用它解决平面向量共线问题的优点在于不需要引入参数“λ”,从而减少了未知数的个数,而且它使问题的解决具有代数化的特点和程序化的特征.(2)当x 2y 2≠0时,a ∥b ⇔x 1x 2=y 1y 2,即两个向量的相应坐标成比例,这种形式不易出现搭配错误.(3)公式x 1y 2-x 2y 1=0无条件x 2y 2≠0的限制,便于记忆;公式x 1x 2=y 1y 2有条件x 2y 2≠0的限制,但不易出错.所以我们可以记比例式,但在解题时改写成乘积的形式.[全练题点]1.[考点一]若向量a =(2,1),b =(-1,2),c =⎝⎛⎭⎫0,52,则c 可用向量a ,b 表示为( ) A.12a +b B .-12a -bC.32a +12b D.32a -12b 解析:选A 设c =x a +y b ,则⎝⎛⎭⎫0,52=(2x -y ,x +2y ),所以⎩⎪⎨⎪⎧2x -y =0,x +2y =52,解得⎩⎪⎨⎪⎧x =12,y =1,则c =12a +b .2.[考点一]已知平行四边形ABCD 中,AD ―→=(3,7),AB ―→=(-2,3),对角线AC 与BD 交于点O ,则CO ―→的坐标为( )A.⎝⎛⎭⎫-12,5 B.⎝⎛⎭⎫12,5 C.⎝⎛⎭⎫12,-5D.⎝⎛⎭⎫-12,-5 解析:选D AC ―→=AB ―→+AD ―→=(-2,3)+(3,7)=(1,10).∴OC ―→=12AC ―→=⎝⎛⎭⎫12,5.∴CO ―→=⎝⎛⎭⎫-12,-5.3.[考点二](·丰台期末)已知向量a =(3,-4),b =(x ,y ),若a ∥b ,则( ) A .3x -4y =0 B .3x +4y =0 C .4x +3y =0D .4x -3y =0解析:选C 由平面向量共线基本定理可得3y +4x =0,故选C.4.[考点二](·江西四校联考)已知向量a =(3,1),b =(0,-1),c =(k ,3).若a -2b 与c 共线,则k =________.解析:由题意得,a -2b =(3,3),由a -2b 与c 共线,得3×3-3k =0,解得k =1.答案:1[全国卷5年真题集中演练——明规律] 1.(·全国卷Ⅰ)已知点A (0,1),B (3,2),向量AC ―→=(-4,-3),则向量BC ―→=( ) A .(-7,-4) B .(7,4) C .(-1,4)D .(1,4)解析:选A 设C (x ,y ),则AC ―→=(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧ x =-4,y -1=-3,解得⎩⎪⎨⎪⎧x =-4,y =-2,从而BC ―→=(-4,-2)-(3,2)=(-7,-4).故选A.2.(·全国卷Ⅱ)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. 解析:∵a =(m,4),b =(3,-2),a ∥b ,∴-2m -4×3=0.∴m =-6. 答案:-6[课时达标检测][小题对点练——点点落实]对点练(一) 平面向量基本定理1.(·珠海一模)如图,设O 是平行四边形ABCD 两条对角线的交点,给出下列向量组:①AD ―→与AB ―→;②DA ―→与BC ―→; ③CA ―→与DC ―→;④OD ―→与OB ―→.其中可作为该平面内其他向量的基底的是( ) A .①② B .①③ C .①④D .③④解析:选B ①中AD ―→,AB ―→不共线;③中CA ―→,DC ―→不共线.②④中的两向量共线,因为平面内两个不共线的非零向量构成一组基底,所以选B.2.(·山西太原质检)在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN ―→=λAB ―→+μAC ―→,则λ+μ的值为( )A.12B.13C.14D .1解析:选A 设BM ―→=t BC ―→,则AN ―→=12AM ―→=12(AB ―→+BM ―→)=12AB ―→+12BM ―→=12AB ―→+t 2BC―→=12AB ―→+t 2(AC ―→-AB ―→)=⎝⎛⎭⎫12-t 2AB ―→+t 2AC ―→,∴λ=12-t 2,μ=t 2,∴λ+μ=12,故选A. 3.(·湖南四大名校联考)在平行四边形ABCD 中,AC 与BD 相交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC ―→=a ,BD ―→=b ,则AF ―→=( )A.14a +12bB.12a +14b C.23a +13b D.12a +23b 解析:选C 如图,根据题意,得AB ―→=12AC ―→+12DB ―→=12(a -b ),AD ―→=12AC ―→+12BD ―→=12(a +b ).令AF ―→=t AE ―→,则AF ―→=t (AB ―→+BE ―→)=t ⎝⎛⎭⎫AB ―→+34 BE ―→ =t 2a +t 4b .由AF ―→=AD ―→+DF ―→,令DF ―→=s DC ―→,又AD ―→=12(a +b ),DF ―→=s 2a -s 2b ,所以AF ―→=s +12a +1-s 2b ,所以⎩⎨⎧t 2=s +12,t 4=1-s 2,解方程组得⎩⎨⎧s =13,t =43,把s 代入即可得到AF ―→=23a +13b ,故选C.4.(·山东潍坊一模)若M 是△ABC 内一点,且满足BA ―→+BC ―→=4BM ―→,则△ABM 与△ACM 的面积之比为( )A.12B.13C.14D .2 解析:选A 设AC 的中点为D ,则BA ―→+BC ―→=2BD ―→,于是2BD ―→=4BM ―→,从而BD ―→=2BM ―→,即M 为BD 的中点,于是S △ABM S △ACM =S △ABM 2S △AMD =BM 2MD =12.5.(·湖北黄石质检)已知点G 是△ABC 的重心,过G 作一条直线与AB ,AC 两边分别交于M ,N 两点,且AM ―→=x AB ―→,AN ―→=y AC ―→,则xy x +y的值为( )A.12B.13 C .2D .3解析:选B 由已知得M ,G ,N 三点共线,∴AG ―→=λAM ―→+(1-λ)AN ―→=λx AB ―→+(1-λ)y AC ―→.∵点G 是△ABC 的重心,∴AG ―→=23×12(AB ―→+AC ―→)=13·(AB ―→+AC ―→),∴⎩⎨⎧λx =13,(1-λ)y =13,即⎩⎨⎧λ=13x,1-λ=13y,得13x +13y =1,即1x +1y =3,通分变形得,x +y xy =3,∴xy x +y=13. 对点练(二) 平面向量的坐标表示1.(·福州一模)已知向量a =(2,4),b =(-1,1),则2a +b =( ) A .(5,7) B .(5,9) C .(3,7)D .(3,9)解析:选D 2a +b =2(2,4)+(-1,1)=(3,9),故选D.2.(·河北联考)已知平面向量a =(1,2),b =(-2,m ),若a ∥b ,则2a +3b =( ) A .(-5,-10) B .(-2,-4) C .(-3,-6)D .(-4,-8)解析:选D 由a ∥b ,得m +4=0,即m =-4,所以2a +3b =2(1,2)+3(-2,-4)=(-4,-8).3.(·吉林白城模拟)已知向量a =(2,3),b =(-1,2),若m a +nb 与a -2b 共线,则mn =( )A.12 B .2 C .-12D .-2解析:选C 由向量a =(2,3),b =(-1,2),得m a +nb =(2m -n ,3m +2n ),a -2b =(4,-1).由m a +nb 与a -2b 共线,得2m -n 4=3m +2n -1,所以m n =-12,故选C.4.(·河南六市联考)已知点A (1,3),B (4,-1),则与AB ―→同方向的单位向量是( ) A.⎝⎛⎭⎫35,-45 B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35 解析:选A 因为AB ―→=(3,-4),所以与AB ―→同方向的单位向量为AB ―→|AB ―→|=⎝⎛⎭⎫35,-45. 5.设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a ,4b -2c ,2(a -c ),d 的有向线段首尾相连能构成四边形,则向量d =( )A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6)解析:选D 设d =(x ,y ),由题意知4a =(4,-12),4b -2c =(-6,20),2(a -c )=(4,-2),又4a +4b -2c +2(a -c )+d =0,所以(4,-12)+(-6,20)+(4,-2)+(x ,y )=(0,0),解得x =-2,y =-6,所以d =(-2,-6).6.(·南昌二模)已知在平面直角坐标系xOy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3―→与向量a =(1,-1)共线,若OP 3―→=λOP 1―→+(1-λ) OP 2―→,则λ=( )A .-3B .3C .1D .-1解析:选D 设OP 3―→=(x ,y ),则由OP 3―→∥a 知x +y =0,于是OP 3―→=(x ,-x ).若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则有(x ,-x )=λ(3,1)+(1-λ)(-1,3)=(4λ-1,3-2λ),即⎩⎪⎨⎪⎧4λ-1=x ,3-2λ=-x ,所以4λ-1+3-2λ=0,解得λ=-1,故选D.7.(·河南中原名校联考)已知a =(1,3),b =(m,2m -3),平面上任意向量c 都可以唯一地表示为c =λa +μb (λ,μ∈R ),则实数m 的取值范围是( )A .(-∞,0)∪(0,+∞)B .(-∞,3)C .(-∞,-3)∪(-3,+∞)D .[-3,3)解析:选C 根据平面向量基本定理,得向量a ,b 不共线,∵a =(1,3),b =(m,2m -3),∴2m -3-3m ≠0,∴m ≠-3.故选C.[大题综合练——迁移贯通]1.(·皖南八校模拟)如图,∠AOB =π3,动点A 1,A 2与B 1,B 2分别在射线OA ,OB 上,且线段A 1A 2的长为1,线段B 1B 2的长为2,点M ,N 分别是线段A 1B 1,A 2B 2的中点.(1)用向量A 1A 2―→与B 1B 2―→表示向量MN ―→; (2)求向量MN ―→的模.解:(1)MN ―→=MA 1―→+A 1A 2―→+A 2N ―→,MN ―→=MB 1―→+B 1B 2―→+B 2N ―→,两式相加,并注意到点M ,N 分别是线段A 1B 1,A 2B 2的中点,得MN ―→=12(A 1A 2―→+B 1B 2―→).(2)由已知可得向量A 1A 2―→与B 1B 2―→的模分别为1与2,夹角为π3,所以A 1A 2―→·B 1B 2―→=1,由MN ―→=12(A 1A 2―→+B 1B 2―→)得|MN ―→|= 14( A 1A 2―→+B 1B 2―→)2 =12A 1A 2―→2+B 1B 2―→2+2A 1A 2―→·B 1B 2―→=72.2.已知A (-2,4),B (3,-1),C (-3,-4),设AB ―→=a ,BC ―→=b ,CA ―→=c ,有CM ―→=3c , CN ―→=-2b ,求:(1)3a +b -3c ;(2)满足a =m b +nc 的实数m ,n ; (3)M ,N 的坐标及向量MN ―→的坐标.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8), (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵m b +nc =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,∵CM ―→=OM ―→-OC ―→=3c ,∴OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20),∴M 的坐标为(0,20).又CN ―→=ON ―→-OC ―→=-2b ,∴ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2),∴N 的坐标为(9,2).故MN ―→=(9-0,2-20)=(9,-18).3.已知三点A (a ,0),B (0,b ),C (2,2),其中a >0,b >0.(1)若O 是坐标原点,且四边形OACB 是平行四边形,试求a ,b 的值; (2)若A ,B ,C 三点共线,试求a +b 的最小值.解:(1)因为四边形OACB 是平行四边形,所以OA ―→=BC ―→,即(a ,0)=(2,2-b ),⎩⎪⎨⎪⎧ a =2,2-b =0,解得⎩⎪⎨⎪⎧a =2,b =2. (2)因为AB ―→=(-a ,b ),BC ―→=(2,2-b ), 由A ,B ,C 三点共线,得AB ―→∥BC ―→, 所以-a (2-b )-2b =0,即2(a +b )=ab , 因为a >0,b >0,所以2(a +b )=ab ≤⎝⎛⎭⎫a +b 22, 即(a +b )2-8(a +b )≥0,解得a +b ≥8或a +b ≤0. 因为a >0,b >0,所以a +b ≥8,即当且仅当a =b =4时,a +b 取最小值为8.第三节 平面向量的数量积及其应用本节主要包括3个知识点:1.平面向量的数量积;2.平面向量数量积的应用;3.平面向量与其他知识的综合问题.突破点(一) 平面向量的数量积[基本知识]1.向量的夹角(1)定义:已知两个非零向量a 和b ,作OA ―→=a ,OB ―→=b ,则∠AOB 就是向量a 与b 的夹角.(2)范围:设θ是向量a 与b 的夹角,则0°≤θ≤180°.(3)共线与垂直:若θ=0°,则a 与b 同向;若θ=180°,则a 与b 反向;若θ=90°,则a 与b 垂直.2.平面向量的数量积(1)定义:已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |c os θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |c os θ,规定零向量与任一向量的数量积为0,即0·a =0.(2)几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |c os θ的乘积. (3)坐标表示:若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2. 3.平面向量数量积的运算律 (1)a ·b =b ·a (交换律).(2)λa ·b =λ(a ·b )=a ·(λb )(结合律). (3)(a +b )·c =a ·c +b ·c (分配律).[基本能力]1.判断题(1)在△ABC 中,向量AB ―→与BC ―→的夹角为∠B .( ) (2)0·AB ―→=0.( )(3)若a 与b 共线,则a ·b =|a ||b |.( ) (4)(a -b )·c =a ·(b ·c ).( ) 答案:(1)× (2)× (3)× (4)× 2.填空题(1)已知|a |=5,|b |=4,a 与b 的夹角为120°,则a ·b =________. 答案:-10(2)已知向量a 与b 的夹角为60°,|a |=1,|b |=3,则a ·b =________. 答案:32(3)已知向量a ,b 满足|a |=|b |=2且a ·b =-2,则向量a 与b 的夹角为________. 答案:2π3[全析考法]平面向量数量积的运算1.第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用;第二步,根据数量积的坐标公式进行运算即可. 2.根据定义计算数量积的两种思路 思路一若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算 思路二根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解[典例] (1)(·商丘模拟)在边长为1的等边三角形ABC 中,设BC ―→=a ,CA ―→=b ,AB ―→=c ,则a ·b +b ·c +c ·a =( )A .-32B .0 C.32D .3(2)如图,平行四边形ABCD 中,AB =2,AD =1,A =60°,点M 在AB 边上,且AM =13AB ,则DM ―→·DB ―→=________.[解析] (1)依题意有a ·b +b ·c +c ·a =1×1×⎝⎛⎭⎫-12+1×1×⎝⎛⎭⎫-12+1×1×⎝⎛⎭⎫-12=-32. (2)因为DM ―→=DA ―→+AM ―→=DA ―→+13AB ―→,DB ―→=DA ―→+AB ―→,所以DM ―→·DB ―→=⎝⎛⎭⎫DA ―→+13 AB ―→ ·(DA ―→+AB ―→)=|DA ―→|2+13|AB ―→|2+43DA ―→·AB ―→=1+43-43AD ―→·AB ―→=73-43|AD ―→|·|AB ―→|·c os 60°=73-43×1×2×12=1.[答案] (1)A (2)1 [易错提醒](1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能省略掉其中的“·”.[全练题点]1.已知|a |=6,|b |=3,向量a 在b 方向上的投影是4,则a ·b 为( ) A .12 B .8 C .-8D .2解析:选A ∵|a |c os 〈a ,b 〉=4,|b |=3,∴a ·b =|a ||b |·c os 〈a ,b 〉=3×4=12. 2.设x ∈R ,向量a =(1,x ),b =(2,-4),且a ∥b ,则a ·b =( ) A .-6 B.10 C. 5D .10解析:选D ∵a =(1,x ),b =(2,-4)且a ∥b ,∴-4-2x =0,x =-2,∴a =(1,-2),a ·b =10,故选D. 3.(·重庆适应性测试)设单位向量e 1,e 2的夹角为2π3,a =e 1+2e 2,b =2e 1-3e 2,则b 在a 方向上的投影为( )A .-332B .- 3 C. 3D.332解析:选A 依题意得e 1·e 2=1×1×c os 2π3=-12,|a |=(e 1+2e 2)2=e 21+4e 22+4e 1·e 2=3,a ·b =(e 1+2e 2)·(2e 1-3e 2)=2e 21-6e 22+e 1·e 2=-92,因此b 在a 方向上的投影为a·b |a |=-923=-332,故选A.4.(·成都模拟)已知菱形ABCD 边长为2,∠B =π3,点P 满足AP ―→=λAB ―→,λ∈R ,若BD ―→·CP―→=-3,则λ的值为( )A.12 B .-12C.13D .-13解析:选A 法一:由题意可得BA ―→·BC ―→=2×2c os π3=2,BD ―→·CP ―→=(BA ―→+BC ―→) ·(BP ―→-BC ―→) =(BA ―→+BC ―→)·[(AP ―→-AB ―→)-BC ―→] =(BA ―→+BC ―→)·[(λ-1)·AB ―→-BC ―→]=(1-λ)BA ―→2-BA ―→·BC ―→+(1-λ)BA ―→·BC ―→-BC ―→2 =(1-λ)·4-2+2(1-λ)-4 =-6λ=-3,∴λ=12,故选A.法二:建立如图所示的平面直角坐标系,则B (2,0),C (1,3),D (-1,3).令P (x,0),由BD ―→·CP ―→=(-3,3)·(x -1,-3)=-3x +3-3=-3x =-3得x =1.∵AP ―→=λAB ―→,∴λ=12.故选A.突破点(二)平面向量数量积的应用[基本知识]平面向量数量积的性质及其坐标表示设非零向量a=(x1,y1),b=(x2,y2),θ=〈a,b〉.几何表示坐标表示模|a|=a·a |a|=x21+y21夹角c os θ=a·b|a||b|c os θ=x1x2+y1y2x21+y21·x22+y22a⊥b a·b=0x1x2+y1y2=0|a·b|与|a||b|的关系|a·b|≤|a||b||x1x2+y1y2|≤x21+y21·x22+y22[基本能力](1)已知平面向量a=(2,4),b=(1,-2),若c=a+b,则|c|=________.答案:13(2)已知向量a=(1,3),b=(3,1),则a与b夹角的大小为________.解析:由题意得|a|=1+3=2,|b|=3+1=2,a·b=1×3+3×1=2 3.设a与b 的夹角为θ,则c os θ=232×2=32.∵θ∈[0,π],∴θ=π6.答案:π6(3)已知向量a=(1,t),b=(6,-4).若a⊥b,则实数t的值为________.答案:-32[全析考法]平面向量的垂直问题[例1](1)(·安徽蚌埠一模)已知非零向量m,n满足3|m|=2|n|,它们的夹角θ=60°.若n⊥(tm+n),则实数t的值为()A.3 B.-3C .2D .-2(2)平面四边形ABCD 中,AB ―→+CD ―→=0,(AB ―→-AD ―→)·AC ―→=0,则四边形ABCD 是( )A .矩形B .正方形C .菱形D .梯形[解析] (1)由题意得c os θ=12. ∵n ⊥(tm +n ),∴n ·(tm +n )=tm ·n +n 2=t |m ||n |×12+|n |2=t 3|n |2+|n |2=0,解得t =-3.故选B. (2)因为AB ―→+CD ―→=0,所以AB ―→=-CD ―→=DC ―→,所以四边形ABCD 是平行四边形.又(AB ―→-AD ―→)·AC ―→=DB ―→·AC ―→=0,所以四边形对角线互相垂直,所以四边形ABCD 是菱形.[答案] (1)B (2)C[方法技巧]平面向量垂直问题的类型及求解方法(1)判断两向量垂直第一,计算出这两个向量的坐标;第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.(2)已知两向量垂直求参数根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.[提醒] 注意x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是它们垂直的充要条件.平面向量模的相关问题[例2] (1)(·a ⊥(a -2b ),则|b |=( )A. 2B .2C .2 2D .4(2)在△ABC 中,若A =120°,AB ―→·AC ―→=-1,则|BC ―→|的最小值是( )A. 2B .2 C. 6 D .6[解析] (1)由a ⊥(a -2b )得a ·(a -2b )=|a |2-2a ·b =0.又|a -b |=2,所以|a -b |2=|a |2-2a ·b +|b |2=4,则|b |2=4,|b |=2,故选B.(2)因为AB ―→·AC ―→=-1,所以|AB ―→|·|AC ―→|·c os 120°=-1,即|AB ―→|·|AC ―→|=2,所以|BC ―→|2=|AC ―→-AB ―→|2=AC ―→2-2AB ―→·AC ―→+AB ―→2≥2|AB ―→|·|AC ―→|-2AB ―→·AC ―→=6,当且仅当|AB ―→|=。
(五年高考)高考数学复习 第五章 第一节 平面向量的概念及坐标运算 文(全国通用)-人教版高三全册数
第一节 平面向量的概念及坐标运算考点一 平面向量的线性运算及几何意义1.(2015·,6)设a ,b 是非零向量,“a·b =|a ||b |”是“a ∥b ”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件解析 由数量积定义a ·b =|a |·|b |·cos θ=|a |·|b |,(θ为a ,b 夹角),∴cos θ=1,θ∈[0°,180°],∴θ=0°,∴a ∥b ;反之,当a ∥b 时,a ,b 的夹角θ=0°或180°,a ·b =±|a |·|b |.答案 A2.(2015·某某,2)设向量a =(2,4)与向量b =(x ,6)共线,则实数x =( ) A.2 B.3 C.4 D.6解析 a =(2,4),b =(x ,6),∵a ∥b ,∴4x -2×6=0,∴x =3. 答案 B3.(2014·新课标全国Ⅰ,6)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( )A.AD →B.12AD →C.BC →D.12BC →解析 EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →,故选A.答案 A4.(2014·某某,10)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于( ) A.OM → B.2OM →C.3OM →D.4OM →解析 依题意知,点M 是线段AC 的中点,也是线段BD 的中点,所以OA →+OC →=2OM ,OB →+OD →=2OM →,所以OA →+OC →+OB →+OD →=4OM →,故选D. 答案 D5.(2012·某某,7)设a 、b 都是非零向量,下列四个条件中,使a |a|=b|b|成立的充分条件是( )A.|a|=|b|且a∥bB.a =-bC.a∥bD.a =2b解析 由a =2b 可推出a ,b 方向相同,从而有a |a|=b|b|.反之不成立.故选D. 答案 D6.(2013·某某,12)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →.则λ=________.解析 由平行四边形法则可得AB →+AD →=AC →=2AO →,所以λ=2. 答案 27.(2015·某某,15)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论中正确的是________(写出所有正确结论的编号). ①a 为单位向量;②b 为单位向量;③a ⊥b ;④b ∥BC →;⑤(4a +b )⊥BC →.解析 ∵△ABC 为边长是2的等边三角形,∴|AB →|=|2a |=2|a |=2,从而|a |=1,故①正确;又BC →=AC →-AB →=2a +b -2a =b ,∴b ∥BC →,故④正确;又(AB →+AC →)·(AB →-AC →)=AB →2-AC →2=0, ∴(AB →+AC →)⊥BC →,即(4a +b )⊥BC →,故⑤正确. 答案 ①④⑤考点二 平面向量基本定理及坐标运算1.(2015·新课标全国Ⅰ,2)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A.(-7,-4) B.(7,4)C.(-1,4)D.(1,4)解析 AB →=(3,1),AC →=(-4,-3),BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4). 答案 A2.(2015·新课标全国Ⅱ,4)已知a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A.-1 B.0 C.1 D.2解析 因为a =(1,-1),b =(-1,2),所以2a +b =2(1,-1)+(-1,2)=(1,0),得(2a +b )·a =(1,0)·(1,-1)=1,选C. 答案 C3.(2014·,3)已知向量a =(2,4),b =(-1,1),则2a -b =( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9)解析 因为a =(2,4),b =(-1,1),所以2a -b =(2×2-(-1),2×4-1)=(5,7),选A. 答案 A4.(2014·某某,3)已知向量a =(1,2),b =(3,1),则b -a =( ) A.(-2,1) B.(2,-1) C.(2,0) D.(4,3)解析 由于a =(1,2),b =(3,1),于是b -a =(3,1)-(1,2)=(2,-1),选B. 答案 B5.(2012·某某,3)若向量AB →=(1,2),BC →=(3,4),则AC →等于( ) A.(4,6) B.(-4,-6) C.(-2,-2) D.(2,2) 解析 由题AC →=AB →+BC →=(1,2)+(3,4)=(4,6).故选A. 答案 A6.(2012·某某,8)在△ABC 中,A =90°,AB =1,AC =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →·CP →=-2,则λ等于( ) A.13 B.23 C.43 D.2 解析 建立平面直角坐标系如图,则B (1,0),C (0,2),P (λ,0),Q (0,2(1-λ)).于是由BQ →·CP →=(-1,2(1-λ))·(λ,-2)=-λ-4(1-λ)=-2, 解得λ=23.故选B.答案 B7.(2015·某某,6)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.解析 ∵a =(2,1),b =(1,-2),∴m a +n b =(2m +n ,m -2n )=(9,-8),即⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,解得⎩⎪⎨⎪⎧m =2,n =5,故m -n =2-5=-3.答案 -38.(2013·某某,14)在OA 为边,OB 为对角线的矩形中,OA →=(-3,1),OB →=(-2,k ),则实数k =________.解析 因为AB →=OB →-OA →=(1,k -1), 且OA →⊥AB →,所以OA →·AB →=0,即-3×1+1×(k -1)=0,解得k =4. 答案 49.(2013·某某,15)在平面直角坐标系xOy 中,已知OA →=(-1,t ),OB →=(2,2).若∠ABO =90°,则实数t 的值为________. 解析 ∵OA →=(-1,t ),OB →=(2,2), ∴BA →=OA →-OB →=(-3,t -2). 又∵∠ABO =90°,∴BA →·OB →=0,即(-3,t-2)·(2,2)=0,-6+2t-4=0,∴t=5. 答案 5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 平面向量的概念及坐标运算考点一 平面向量的线性运算1.(2015²新课标全国Ⅰ,7)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →),即4AC →-AB →=3AD →, ∴AD →=-13AB →+43AC →.答案 A2.(2014²福建,8)在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3)解析 法一 若e 1=(0,0),e 2=(1,2),则e 1∥e 2,而a 不能由e 1,e 2表示,排除A ;若e 1=(-1,2),e 2=(5,-2),因为-15≠2-2,所以e 1,e 2不共线,根据共面向量的基本定理,可以把向量a =(3,2)表示出来,故选B.法二 因为a =(3,2),若e 1=(0,0),e 2=(1,2),不存在实数λ,μ,使得a =λe 1+μe 2,排除A ;若e 1=(-1,2),e 2=(5,-2),设存在实数λ,μ,使得a =λe 1+μe 2,则(3,2)=(-λ+5μ,2λ-2μ),所以⎩⎪⎨⎪⎧3=-λ+5μ,2=2λ-2μ,解得⎩⎪⎨⎪⎧λ=2,μ=1. 所以a =2e 1+e 2,故选B. 答案 B3.(2012²天津,7)已知△ABC 为等边三角形,AB =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →²CP →=-32,则λ=( )A.12B.1±22C.1±102D.-3±222解析 设AB →=a ,AC →=b ,则|a|=|b|=2,且 a ,b =π3.BQ →=AQ →-AB →=(1-λ)b -a ,CP →=AP →-AC →=λa -b . BQ →²CP →=[(1-λ)b -a ]²(λa -b )=[λ(1-λ)+1]a²b -λa 2-(1-λ)b 2=(λ-λ2+1)³2-4λ-4(1-λ) =-2λ2+2λ-2 =-32.即(2λ-1)2=0,∴λ=12.答案 A4.(2015²新课标全国Ⅱ,13)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________.解析 ∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则得⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.答案 125.(2015²北京,13)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.解析 MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →, ∴x =12,y =-16.答案 12 -166.(2014²新课标全国Ⅰ,15)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC→的夹角为________.解析 由AO →=12(AB →+AC →)可知O 为BC 的中点,即BC 为圆O 的直径,又因为直径所对的圆周角为直角,所以∠BAC =90°,所以AB →与AC →的夹角为90°. 答案 90°考点二 平面向量基本定理及坐标运算1.(2015²湖南,8)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|PA →+PB →+PC →|的最大值为( ) A .6B .7C .8D .9解析 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆直径,故PA →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),所以PA →+PB →+PC →=(x -6,y ).故|PA →+PB →+PC →|=-12x +37,∴x =-1时有最大值49=7,故选B.答案 B2.(2014²安徽,10)在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |=1,a ²b =0,点Q 满足OQ →=2(a +b ).曲线C ={P |OP →=a cos θ+b cos θ,0≤θ<2π},区域Ω={P |0<r ≤|PQ →|≤R ,r <R }.若C ∩Ω为两段分离的曲线,则( ) A .1<r <R <3 B .1<r <3≤R C .r ≤1<R <3D .1<r <3<R解析 由已知可设OA →=a =(1,0),OB →=b =(0,1),P (x ,y ),则OQ →=(2,2),曲线C ={P |OP →=(cos θ,sin θ),0≤θ<2π},即C :x 2+y 2=1,区域Ω={P |0<r ≤|PQ →|≤R ,r <R }表示圆P 1:(x -2)2+(y -2)2=r 2与圆P 2:(x -2)2+(y -2)2=R 2所形成的圆环,如图所示,要使C ∩Ω为两段分离的曲线,只有1<r <R <3. 答案 A3.(2012²广东,3)若向量BA →=(2,3),CA →=(4,7),则BC →=( ) A .(-2,-4) B .(2,4) C .(6,10)D .(-6,-10)解析 ∵BA →=(2,3),CA →=(4,7),∴BC →=BA →+AC →=BA →-CA →=(2,3)-(4,7)=(2-4,3-7)=(-2,-4). 答案 A4.(2012²大纲全国,6)△ABC 中,AB 边的高为CD .若CB →=a ,CA →=b ,a ²b =0,|a |=1,|b |=2,则AD →=( ) A.13a -13b B.23a -23b C.35a -35bD.45a -45b 解析 解Rt △ABC 得AB =5,AD =45 5.即AD →=45AB →=45(CB →-CA →)=45a -45b ,故选D.答案 D5.(2011²山东,12)设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C ,D 调和分割点A ,B ,则下列说法正确的是( ) A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点 C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上 解析 ∵C ,D 调和分割点A ,B ,∴AC →=λAB →,AD →=μAB →,且1λ+1μ=2(*),不妨设A (0,0),B (1,0),则C (λ,0),D (μ,0),对A ,若C 为AB 的中点,则AC →=12AB →,即λ=12,将其代入(*)式,得1μ=0,这是无意义的,故A 错误;对B ,若D 为AB 的中点,则μ=12,同理得1λ=0,故B 错误;对C ,要使C ,D 同时在线段AB 上,则0<λ<1且0<μ<1, ∴1λ>1,1μ>1,∴1λ+1μ>2,这与1λ+1μ=2矛盾;故C 错误;显然D 正确. 答案 D6.(2015²江苏,6)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.解析 ∵a =(2,1),b =(1,-2),∴m a +n b =(2m +n ,m -2n )=(9,-8),即⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,解得⎩⎪⎨⎪⎧m =2,n =5,故m -n =2-5=-3.答案 -37.(2014²湖南,16)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.解析 设D (x ,y ),由|CD →|=1,得(x -3)2+y 2=1,向量OA →+OB →+OD →=(x -1,y +3),故|OA →+OB →+OD →|=(x -1)2+(y +3)2的最大值为圆(x -3)2+y 2=1上的动点到点(1,-3)距离的最大值,其最大值为圆(x -3)2+y 2=1的圆心(3,0)到点(1,-3)的距离加上圆的半径,即(3-1)2+(0+3)2+1=1+7. 答案 1+78.(2013²北京,13)向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.解析 以向量a 和b 的交点为坐标原点建立如图所示的坐标系,令每个小正方形的边长为1个单位,则A (1,-1),B (6,2),C (5,-1),所以a =AO →=(-1,1),b =OB →=(6,2),c =BC →=(-1,-3).由c =λa+μb可得⎩⎪⎨⎪⎧-1=-λ+6μ,-3=λ+2μ,解得⎩⎪⎨⎪⎧λ=-2,μ=-12,所以λμ=4.答案 4。