华南理工2009高等代数试题解答
华南农业大学09年高等代数(下)(A)卷参考答案
2009—2010学年第二学期高等代数II 参考答案一、选择题1. (D)2. (D)3. (A)4. (C) 5 (C)二、填空题1. 5;2. (2,0)x y +;3. 0 1 0 00 0 1 00 0 0 10 0 0 0⎛⎫ ⎪⎪ ⎪ ⎪ ⎪⎝⎭; 4. 2; 5. (2,2,2) 三、判断题1. √2. ×3. √4. × 5 √四、解答题1. 解:因为()()12341234100 0110 0,,,,,,11 1 01 1 1 1ααααεεεε⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭2分 所以,()()112341234100 0110 0,,,,,,11 1 01 1 1 1εεεεαααα-⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭3分()1234100 0110 0,,,01 1 0 0 0 1 1αααα⎛⎫ ⎪-⎪= ⎪- ⎪ ⎪-⎝⎭6分 故从基1234,,,αααα到基1234,,,εεεε的过渡矩阵为100 0110 001 1 0 0 0 1 1A ⎛⎫ ⎪-⎪= ⎪- ⎪ ⎪-⎝⎭7分 设ζ在基1234,,,αααα下的坐标为1234(,,,)x x x x ,则有()123412,,,34ζεεεε⎛⎫⎪ ⎪=⎪ ⎪ ⎪⎝⎭8分()123412,,,34A αααα⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭9分 故12341100 0112110 021301 1 0314 0 0 1 141x x A x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 10分 故ζ在基1234,,,αααα下的坐标为(1,1,1,1)。
11分2. 解:由于123123 1 2 2(,,)(,,) 2 1 22 2 1σεεεεεε⎛⎫ ⎪= ⎪ ⎪⎝⎭,则σ在基123,,εεε下的矩阵为1 2 22 1 22 2 1A ⎛⎫⎪= ⎪ ⎪⎝⎭1分设1(0)ασ-∈,其中112233x x x αεεε=++, 则 2分1123230()(,,)x x x σασεεε⎛⎫⎪== ⎪ ⎪⎝⎭3分 1123231 2 2(,,) 2 1 22 2 1x xx εεε⎛⎫⎛⎫⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭4分 故 1231 2 202 1 202 2 10x x x ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 5分 又因为 1 2 22 1 2502 2 1=≠, 6分故 11231 2 2002 1 2002 2 100x x x -⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 7分由于 123(,,)V L σσεσεσε= 8分由于||50A =≠,故dim()()3V R A σ==。
2009广东高考数学试卷及答案
2009年普通高等学校招生全国统一考试(广东卷)数学(理科)解析一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.巳知全集U R =,集合{212}M x x =-£-£和{21,1,2,}N x x k k ==-=×××的关系的韦恩(V e n n )图如图1所示,则阴影部分所示的集合的元素共有2.设z 是复数,()a z 表示满足1n z =的最小正整数n ,则对虚数单位i ,()a i =3.若函数()y f x =是函数xy a =(0a >且1a ¹)的反函数,其图像经过点(,)a a ,则()f x =4.已知等比数列{}n a 满足0,1,2,n a n >=×××,且25252(3)nn a a n -×=³,则当1n ³时,2123221l o g l o g l o g n a a a-++×××=5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;6.一质点受到平面上的三个力1F ,2F ,3F (单位:牛顿)的作用而处于平衡状态.已知12,F F 成60°角,且1F ,2F 的大小分别为2和4,则3F 的大小为7.2010年广州亚运会组委会要从小张、年广州亚运会组委会要从小张、小赵、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有.A 36种 .B 12种 .C 18种 .D 48种28.已知甲、乙两车由同一起点同时出发,并沿同一路线〈假定为直线)行驶.甲车、乙车的速度曲线分别为n 甲和n 乙(如图2所示).那么对于图中给定的0t 和1t ,下列判断中一定正确的是.A 在1t 时刻,甲车在乙车前面.B 1t 时刻后,甲车在乙车后面.C 在0t 时刻,两车的位置相同二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
09年真题答案
因而 ,
2、(6分)试判断系统 是否是时不变系统?(给出检验步骤)
当输入为 时,输出 ……………..1
当输入为 ,输出 ………………2
而由1得
即得系统时变
3、(6分)对 进行脉冲串采样,若 ,试确定对 采样时不发生混叠的最低采样率。
由 得 ,
所以最低采样频率为
4、(6分)已知某系统的单位冲激响应 ,确定该系统的系统函数,收敛域及零极点。
其中, 的截止频率为 ,幅度为1, ,采样周期 , 的幅度为 。若 和 如图题9(b)所示,试画出 的波形。( 表示连续时间的频率, 表示离散时间的频率)
图题9(a)
图题9(b)
因
1 1/T
1/T 1/T
由
所以系统框图为
1/3
x[n] 1/4 y[n]
2/3
-1/2
五、(12分)考虑一个离散时间双径传输信道模型: 1)找
出能从 中恢复出 的因果逆系统;2)求该逆系统的单位冲激响应;3)检验
该逆系统是否稳定?
(1)由信道模型 得
由 得
∵逆系统 因果∴ 为 的ROC
∴有逆系统 ,ROC:
(2)由(1)得
,
则由 得零点 即
由 得极点为
所以ROC为:除 外的所有S
5、(6分)有一LTI系统,其差分方程为 。求一个满足该差分方程的稳定的单位脉冲响应。
由差分方程得
∵要求系统稳定∴ROC为
∴系统的单位脉冲响应
四、(10分)求系统函数 对应的(时域中的)差分方程系统,并画出其并联型系统方框图。
由 得差分方程:
A、T=2×10−3 B、T=1.5×10−3 C、下列哪个系统可以无失真的通过输入信号。(A)
华南理工大学 华南理工2009年641线性代数 考研真题及答案解析
1 1 ( ai ≠ 0, i = 1, 2,L , n ) 。 M 1 + an
⎛1 1 0 ⎞ ⎜ ⎟ * 2、设矩阵 A = 0 1 0 ,且满足方程 A* BA = 2 BA − 9 E ,其中 A 为 A 的伴随矩 ⎜ ⎟ ⎜ 0 0 −1⎟ ⎝ ⎠
阵,试求矩阵 B 。
⎧ x1 − ax2 − 2 x3 = −1 ⎪ 3、 问: a 为何值时, 线性方程组 ⎨ x1 − x2 + ax3 = 2 有唯一解, 无解, 有无穷多解? ⎪ 5x − 5x − 4x = 1 2 3 ⎩ 1
(C) k1 ( β 2 + β 1 )+ k 2 ( β 2 + β 3 )+ k 3 ( β 3 + β 1 ) ; (D) k1 ( β 1 - β 2 )+ k 2 ( β 2 - β 3 ) 。 4、设向量组 α1 , α 2 , α 3 , α 4 线性无关,则下列向量组线性相关的是 (A) α1 , 2α 2 ,3α 3 , 4α 4 ; (B) α1 , α1 + α 2 , α1 + α 2 + α 3 , α1 + α 2 + α 3 + α 4 ; (C) α 4 , α 3 − α 4 , α 2 − α 3 , α1 − α 2 ; (D) α1 + α 2 , α 2 + α 3 , α 3 + α 4 , α 4 + α1 。 。
第 4 页
并在有无穷多解的情况下,用基础解系表示其通解。 4、已知 R 线性变换 T 在基 η1 = (−1,1,1) , η 2 = (1, 0, −1) , η3 = (0,1,1) 下的矩阵为
3
⎛ 1 0 1⎞ ⎜ ⎟ ⎜ 1 1 0 ⎟ ,求 T 在基 ε1 = (1, 0, 0) , ε 2 = (0,1, 0) , ε 3 = (0, 0,1) 下的矩阵。 ⎜ −1 2 1 ⎟ ⎝ ⎠
华南理工大学2009年数学分析考研试题及解答
f '( x) = x cos x − sin x + π , (0 < x < π ),
f ''( x) = − xsin x, (0 < x < π) ,
于是 f ''( x) < 0 , (0 < x < π ) ,由此 f '( x) 在 (0,π ) 上严格单调递减, 故 f '( x) > f '(π ) = 0 , 因此 f ( x ) 在 (0,π ) 上严格单调递增,于是立即得到所要证的不等式。
华南理工大学 2009 年数分考研试题解答
1、解:由导数的定义我们有:
f ( x) − f (0) ϕ ( a + bx) − ϕ( a − bx) = lim x →0 x →0 x x (ϕ( a + bx) − ϕ( a)) −( ϕ( a − bx) − ϕ( a)) = lim x →0 x ϕ ( a + bx) − ϕ( a) ϕ( a − bx) − ϕ( a) = lim b − lim( − b ) x →0 x → 0 ( a + bx) − a ( a − bx) − a = bϕ '(a ) + bϕ '(a ) = 2bϕ '( a) f '(0) = lim
x > X 0 时,
α α 3α , 即 < f '( x) < 。 根 据 Lagrange 微 分 中值 定 理 知 道 2 2 2
2009年普通高等学校招生全国统一考试(广东卷)数学试题及详细解答 (文科) (A卷) word版
2009年普通高等学校招生全国统一考试(广东卷)数学试题及其详细解答(文科)本试卷共4页,21小题,满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的铅笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上、将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式V=13Sh ,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R ,则正确表示集合M={—1,0,1}和N={x 20x x +=关系的韦恩(V enn )图是A .B .C .D .1.解:因为 }0,1{-=N {—1,0,1}=M , 所以答 B .2.下列n 的取值中,使1=ni (i 是虚数单位)的是A .n=2 B. n=3 C. n=4 D. n=52.答C 。
因为12-=i ,所以 i i i i i =-==534,,1。
3.已知平面向量=(x,1), =(—x,x 2 ),则向量+A .平行于x 轴 B.平行于第一、三象限的角平分线 C. 平行于y 轴 D.平行于第二、四象限的角平分线3.解:)1,0(2x b a +=+,故答C 。
2009华南理工大学考研电路真题答案
2009一、填空题1、4 W2、12.5 V3、Ω=31R ,75max =P W4、707.022cos ==ϕ;Var 60=Q ; W 4010=ΩP ;Ω= 15L x ;6060~j P += 5、Ω- 2000j 6、H 13.101002=π; 7、()V 22t e t u -+=8、()()()V t 1εαα--=RC tt u C 9、()00='+i 10、750W11、0A 12、0.5+0.1931sin(100πt -72.35O )+0.02239sin(3×100πt -83.94 O ) A二、解:用叠加原理求解,当12V 电压源单独作用时,电压V 31241=⨯='U 。
所以,当电压源为0时,电压7V 31010=-='-=U U三、解:选择结点0座位参考结点:(如图)s4结点电压方程为:⎪⎩⎪⎨⎧--=⎪⎪⎭⎫ ⎝⎛++-=s s s I R U U R R U R U U 332321221111⇒ ⎩⎨⎧--=+-=316952211U U U 解得:⎩⎨⎧-==1221U U 得312-=-=U U U (V )四、解:(1) 根据()()212121211L R L j L R RL j R ωωωω+-+=+ 可知,发生并联谐振条件: ()21211L R L C ωωω+=,()()F 1F 10105105010562342321211μω==⨯⨯+⨯=+=---L R L CR 、1L 支路路等效电导:()S 100150505022212=+=+=L R R G ω 取O 1010∠=C U ,则:o o101.01001010∠=⨯∠==G U I C A 所以()ooo 221452101010 10020001.00101∠=+=-∠+∠=⎪⎪⎭⎫ ⎝⎛-+=j j j C j L j I U U C ωω 即:14.14210==U (V )(2) 选取1C U 为参考向量,电压电流相量图如图所示I I五、【解法一】 用相量图帮助求解以电压o U 为参考相量,依题意,1U 与o U 同相位,才能使o U 与o i U U U +=1同相位;因此,可以作相量图如下图所示,从相量图可得::11112tan R I xI I I C C ==α ⇒1122R x R U x U C o C o = ⇒ 2121R R x x C C = 1212C c x R R x =⇒()()pF 53.401001.010210250116232312212=⨯⨯⨯⨯⨯==-πωC R R C1o2【解法二】 令111C jx R Z -=;jb a x R x R j x R x R jx R R jx jx R Z C C C C C C C -=+-+=--==222222222222222222222// 则:()()()()()()()()()()21211121211111212b x a R a R b b x a jb x a R b x b a R a b x j a R jb a Z Z Z U U C C C C C i o++++-++++++++=+-+-=+=令()()011=+-+a R b b x a C ,则o U 与iU 同相位,代入上面数据: Ω⨯=⨯⨯⨯==-36311109.151001.010211πωC x C , 解得:Ω⨯= 10393032C x ,pF 5.40F 105.40103930100021112322=⨯=⨯⨯⨯==-πωC x C 【解法三】找出o U 与iU 的关系,为此采用网孔法求解,如图要使o U 与i U 同相位,则要求电流2l I 超前于电压iU 2π;网孔方程为:⎪⎪⎩⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-+-=-⎪⎪⎭⎫ ⎝⎛+-01122212221211l l il l I C j R I R U I R I R C j R ωω 代入已知数据,得:()()⎪⎩⎪⎨⎧=-⨯+⨯-=⨯-⨯-⨯0102501025010250109.15105002231323133l C l il l I jx I U I I j 解得:()23323322109.1510250109.1510250C C l ix j x I U +⨯-⎪⎪⎭⎫ ⎝⎛⨯⨯-⨯= 因为电流2l I 超前于电压i U 2π,所以:010250109.151********=⎪⎪⎭⎫ ⎝⎛⨯⨯-⨯C x 得:Ω⨯= 10393032C x ,pF 5.40F 105.40103930100021112322=⨯=⨯⨯⨯==-πωC x C六、解答:8.0j U Uio =七、解答:11.0=C F八、解:节电电压方程⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛+--+s s s U s U s s s s s C 7.01017.0)()(125111611解得:43*43)(j s K j s K s U C +++-+=,)1(45*),1(45j K K j K -==+= 22224)3(4254)3(325)(++++++=s s s s U C由反变换,得t e t e t u t t C 4sin 254cos 25)(33--+=九、解:将负载2化为Y 联接,则Ω∠=Ω+='87.362012162j Z负载1:Ω∠=+= 13.532016121j Z在电路中不难看出,'2Z 与1Z 为并联关系,其并联等效阻抗为:Ω+=∠='+'='143.7143.7451.10212112j Z Z Z Z Z'12Z 与L Z 为串联关系,其等效阻抗 Ω∠='+= 31.4824.1212Z Z Z L以电压源的A 相电压为参考相量,则A Z U I o A A 31.4897.1731.4824.12220-∠=∠== V I Z U o AN A 31.35.18112-∠='='' A Z U I o N A A 44.56077.913.532031.35.18111-∠=∠-∠==' A Z U I o N A A 18.40077.987.362031.35.18122-∠=∠-∠='='' 2Z 的相电流A I I o AB A 18.10241.530312-∠=∠'=''' 其他各相电流按对称情况推得:;3.16897.17A I o B -∠= ;69.7197.17A I o C∠=A I oB 4.176077.91-∠= ;A I oC 65.63077.91∠= A I o C B 2.130241.5-∠=''' ;A I o A C 8.109241.5∠=''' 负载1与负载2的总功率296612077.93321211=⨯⨯==R I P W395548241.53322222=⨯⨯==R I P W电压源发出的总功率788831.48cos 97.172203=⨯⨯⨯=o P W。
(完整word版)高等代数试卷及答案(二),推荐文档
一、填空题 (共10题,每题2分,共20 分)1.只于自身合同的矩阵是 矩阵。
2.二次型()()11212237,116x f x x x x x ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭的矩阵为__________________。
3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。
4.正交变换在标准正交基下的矩阵为_______________________________。
5.标准正交基下的度量矩阵为_________________________。
6.线性变换可对角化的充要条件为__________________________________。
7.在22P ⨯中定义线性变换σ为:()a b X X c d σ⎛⎫= ⎪⎝⎭,写出σ在基11122122,,,E E E E 下的矩阵_______________________________。
8.设1V 、2V 都是线性空间V 的子空间,且12V V ⊆,若12dim dim V V =,则_____________________。
9.叙述维数公式_________________________________________________________________________。
10.向量α在基12,,,n ααα⋅⋅⋅(1)与基12,,,n βββ⋅⋅⋅(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。
二、判断题 (共10 题,每题1分,共10分)1.线性变换在不同基下的矩阵是合同的。
( ) 2.设σ为n 维线性空间V 上的线性变换,则()10V V σσ-+=。
( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实数域上的线性空间。
( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++⋅⋅⋅+=与12n x x x ==⋅⋅⋅=的解空间,则12n V V P ⊕= ( )5.2211nn i i i i n x x ==⎛⎫- ⎪⎝⎭∑∑为正定二次型。
2009年普通高等学校招生全国统一考试(广东卷)数学试题及详细解答 (文科) (A卷) word版
2009年普通高等学校招生全国统一考试(广东卷)数学试题及其详细解答(文科)本试卷共4页,21小题,满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的铅笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上、将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式V=13Sh ,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R ,则正确表示集合M={—1,0,1}和N={x 20x x +=关系的韦恩(V enn )图是A .B .C .D .1.解:因为 }0,1{-=N {—1,0,1}=M , 所以答 B .2.下列n 的取值中,使1=ni (i 是虚数单位)的是A .n=2 B. n=3 C. n=4 D. n=52.答C 。
因为12-=i ,所以 i i i i i =-==534,,1。
3.已知平面向量a =(x,1), b =(—x,x 2 ),则向量b a +A .平行于x 轴 B.平行于第一、三象限的角平分线 C. 平行于y 轴 D.平行于第二、四象限的角平分线3.解:)1,0(2x b a +=+,故答C 。
华南理工大学高等数学统考试卷下2009
高等数学下册试卷2009.7.1姓名: 学院与专业: 学号:一、填空题[共24分]1、[4分]函数(),f x y 在点(),x y 处可微是它在该点偏导数z x∂∂与z y∂∂连续的 必要条件(填必要、充分或充要),又是它在该点有方向导数的 充分 条件(填必要、充分或充要)2、[4分]向量场()2cos xy A e i xy j xz k =++ 的散度为()sin 2xy ye x xy xy -+. 向量场()()()2332B z y i x z j y x k =-+-+-的旋度为{}2,4,6.3、[4分] ]设()(),,,z f x xy f u v =有连续偏导数,则dz =()122f yf dx xf dy ++4、[4分] 交换二次积分的积分次序()222,yydy f x y dx =⎰⎰()402,x dx f x y dy ⎰⎰5、[4分]设曲面∑为柱面221x y +=介于平面0z =与1z =部分的外侧,则曲面积分()22x y dxdy ∑+=⎰⎰ 0 ,()22x y dS ∑+=⎰⎰2π6、设()3322,339,0f x y x y x y x x =-++->,则它有极小值()1,05f =- 二、[8分] 设ze xyz =,求22z x∂∂解:两边取微分,得z e dz xydz xzdy yzdx =++,zzxzdy yzdx yzdx xzdy e dz xydz xzdy yzdx dz e xyxyz xy++-=+==--从而z z xxz x∂=∂-,()()222211zz xz x z z x z z z x x xx x x xz x xz ∂∂⎛⎫--+- ⎪∂∂∂∂∂∂⎛⎫⎛⎫⎝⎭===⎪ ⎪∂∂∂∂-⎝⎭⎝⎭-()()()()()()()22222322332222211221111z z z z xz z x z z z zx z z z z z x xxz xz xz xz ∂--------∂--∂====∂----三、[7分] 设长方形的长x 、宽y 、高z 满足1111xyz++=,求体积最小的长方体。
华南理工 线代答案习题1
第一章12 题: 设B是n × m矩阵,A为n阶对称矩阵, 证明B AB也是对称矩阵。
T
证: 因为A为n阶对称矩阵,AT = A (BT AB)T = BT AT ( BT )T = BT AB 所以,B AB是对称矩阵
T
第一章13 题: 设A为n阶实矩阵, 证明:若AA = O, 则A = O
第一章27题:
设B = bij) (
矩阵AB的(i, j)元素为ai bij 矩阵BA的(i, j)元素为a j bij 由AB = BA,所以有 ai bij = a j bij 因为当 i ≠ j 时,ai ≠ a j, 所以当 i ≠ j 时有 bi算行列式D = M n 0 解:D = (−1)
T
a11 证: 设A = M a n1 c11 T 令AA = C = M c n1
K a1n O M L ann K c1n O M =O L cnn
′ cii = ∑ aik aki = ∑ aik aik = ∑ aik 2 =0 (i=1,2,...,n)
A可逆, A−1 Ax = aA−1 x, A −1 x = a −1 x
aA−1 x = x
A−1第1行元素之和 1 a −1 M M M 由(1)得, A−1 x = A−1第i行元素之和 = a −1 x = a −1 1 = a −1 M M M 1 a −1 A−1第n行 元素之和 A−1的每一行的元素之和都等于常数 a −1
n
−4
n n
4 n −4 −4
n
n
−4 n 4 −4
n
名校高等代数历年考研试题(1-3章)
第一章 多项式例 1.1(华南理工大学, 2006年) 设 ( ) ( ) x g x f , 是数域F 上的多项式. 证明:( ) ( ) x g x f | 当且仅当对于任意的大于1的自然数n 有, ( ) ( ). | xg x f n n 证明 必要性显然成立,下证充分性. 设 ( ) g x 在数域F 上的不可约分解为( ) ( ) ( ) ( ) 12 12 k lllk g x cp x p x p x =××× ,其中 ( ) ,1,2,..., il i p x i k = 是互不相同的不可约多项式.若有 ( ) ( ) | nnf xg x ,则( ) ( ) ( ) ( ) 12 12 ,0,1,2,...,.k nf nf nfn k i i f x dp x p x p x f l i k =×××££= 其中d 是某个常数,因此有( ) ( ) x g x f | .例 1.2(大连理工大学,2007 年)设 ( ) ( ) ( ) x hx g x f , , 是实系数多项式,如果 ( ) ( ) ( ) x xhx xg x f 22 2 + = ,则 ( ) ( ) ( ) . 0 = = = x h x g x f 证明 由 ( ) ( ) ( ) ( ) 222 f x x g x h x =+ ,可知 ( ) 2 | x f x ,易推得 ( ) | x f x . 于是有 ( ) ( ) 2221 f x x f x= ,代入方程并在两边约去 x 有 () ( ) ( ) x h x g x xf 2 2 21 + = (*)于是有 ( ) ( ) ( ) 22 | x g x h x + ,若多项式 ( ) g x 或 ( ) h x 中的常数项不为零的话,都可 以推出( ) ( )( )x h x g x 2 2 | + 于是有( ) ( ) ( ) () ( )x h x g x x h x g 21 2 1 2 2 2 + = + 代入(*)式并约去 x 有( ) ( ) () ( )x h x g x x f 21 2 1 21 + = 这样又回到原来的方程,所不同的是 ( ) ( ) ( ) 111 ,, f x g x h x 比 ( ) ( ) ( ) ,, f x g x h x 的次数要小 1. 于是经过有限次后必可以使得方程的左边为零次多项式,即为某个常 数c ,使得( ) () ( )x h x g x c k k 22 + = 比较两边的次数易得 0 = c ,并代入方程有( ) () 0 22 = + x h x g k k 于是( ) () 0 = = x h x g k k 那么 ( ) ( ) ( ) ,, f x g x h x 都是某个多项式乘以数0. 由此可推得( ) ( ) ( ) 0 = = = x h x g xf . 例 1.3(大连理工大学,2007年)证明多项式 1 | 1 - - n d x x 的充分必要条件是n d | .证明 充分性显然,下证必要性.若 d r r dq n < < + = 0 ,,则 ( ) ( )11 1 1 - + - = - + - = - r dq r r r n n x x x x x x x 由于 1 - dq x 可被 1 - d x 整除, 而 1 - r x 不能被 1 - d x 整除, 于是 1 - n x 不能被 1 - dx 整除.由其逆否命题可知必要性成立.例 1.4 (北京科技大学,2004年)求一个三次多项式 ( ) x f ,使得 ( ) 1 + x f 能 被( ) 21 - x 整除,而 ( ) 1 - x f 能被( ) 21 + x 整除.解 由题知 ( ) 'f x 能被( ) 1 x - 和( ) 1 x + 整除,又由 ( ) f x 是一个三次多项式, 那么 ( ) 'f x 是一个二次多项式,于是可设( ) ( )( ) aax x x a x f - = - + = 2 ' 1 1 积分易得( ) 33a f x x axb =-+ (其中a, b 为常数) 由题设可知 ( ) 1 f x =- ,易解得3 2 0a b ì = ïí ï = î 那么显然有( ) xx x f 2 3 2 1 3 - = .例 1.5(兰州大学,2004)设 () f x 和 () g x 是数域F 上的两个不完全为零的多 项式,令{ [ ]}()()()()(),() I u x f x v x g x u x v x F x =+Î 证明:(1) I 关于多项式的加法和乘法封闭,并且对任意的 () h x I Î 和任意的 [ ] (), k x F x Î 有 ()() h x k x I Î .(2) I 中存在次数最小的首项系数为 1 的多项式 () d x , 并且()((),()) d x f x g x = .证明 (1) 容易证明,略.(2) 考虑{ [ ] 0 (()()()())(),() I u x f x v x g x u x v x F x =¶+Î 且 } ()()()()0 u x f x v x g x +¹ 则 0 I 是非负整数的一个子集,由最小数原理, 0 I 中存在最小数,也就是说,I 中存在次数最小的首项系数为1的多项式:11 ()()()()()d x u x f x v x g x =+ 设 () h x 是 I 中任意多项式,且 ()()()() h x d x q x r x =+ ,其中 ()0 r x = 或者(()) r x ¶< (()) d x ¶ .若 (()) r x ¶< (()) d x ¶ , 则 ()()()() r x h x d x q x =- .由(1)可知 () r x I Î , 与 () d x 是I 中次数最小的多项式矛盾. 故 ()0 r x = ,所以 ()() d x h x .显然 (),() f x g x I Î ,所以 ()() d x f x , ()() d x g x .如果 ()() p x f x , ()() p x g x ,则11 ()()()()()p x u x f x v x g x +即 ()() p x d x ,所以 ()((),()) d x f x g x = .例 1.6(上海交通大学,2004)假设 1 () f x 与 2 () f x 为次数不超过 3 的首项系数为1的互异多项式,若 42343 12 1()() x x f x x f x +++ ,试求 1 () f x 与 2 () f x 的最大公因式.解 由于42 1x x ++ = 22222 (1)(1)(1) x x x x x x +-=++-+ 设它的4个根分别为 1212 ,,, w w e e 其中1212 13131313 ,,, 2222i i i i w w e e -+--+- ==== 由于 4234312 1()() x x f x x f x +++ ,就有 343 12 ()() f x x f x + = 42 (1) x x ++ () g x . 于是有下面的方程组112 122 (1)(1)0 (1)(1)0 f f f f w w += ì í+= î 与 112 122 (1)(1)0 (1)(1)0f f f f e e ---= ì í ---= î 分别解这两个方程组得,12 (1)(1)0 f f == , 12 (1)(1)0f f -=-= 于是有,11 (1)(),(1)() x f x x f x +- , 22 (1)(),(1)() x f x x f x +- .进而有 1 (1)(1)() x x f x +- , 2 (1)(1)() x x f x +- .而 1 () f x , 2 ,() f x 是互异的次数不超过 3 的首系数为 1 的多项式,所以 2 12 ((),())1 f x f x x =- .例 1.7 (浙江大学,2006 年)设 P 为数域, ( ) [] i i f f x p x =Î , ( ) [],1,2 i i g g x p x i =Î= .证明:( )( ) ( )2 1 2 1 2 1 2 1 2 2 1 1 , , , , , g g f g g f f f g f g f = 证明 设 ( )( ), , , , 2 2 2 1 1 1 g f d g f d = = 有( ) ( ) ( ) ( ) ( ) ( ) ( )( )12121212 12121212 1212 1121122 ,,, ,,, , , ,,. f f f g g f g g f f f g g f g g f d g d f g d f g f g = = = = 例 1.8 (哈尔滨工业大学, 2005年) 设 ( ) ( ) x g x f , 都是实数R 上的多项式,R a Î (1) 证明: ( ) ( ) ( ) ( ) ( ) ( ).| a g f x g f a g x g - - (2) 问 ( )( ) a f x f a x - - 33 | 是否成立,为什么?解 (1) 令 ( ), y g x = 考虑多项式( ) ( ) ( ) ( ) a g f y f y h- = 由 ( ) ( ) ( ) ( ) ( ) ( ) 0= - = a g f a g f a g h 可知 ( ) ( ) ( )y h a g y | - 即( ) ( ) ( ) ( ) ( ) ( ) a g f x g f a g x g - - | .(2) 令 3 b a R =Î ,注意用到(1)的结论,将(1)中a 的换成这里的b ,将(1)的( ) g x 换成这里的 3 x ,可得( ) ( ) 33 | x a f x f a -- .例 1.9(上海大学,2005)设22 1231 1(1)()()()() n n n n n nn x x f x xf x x f x x f x - - éù --++++ ëûL ( 2 n ³ )求证: 1() i x f x - (1,2,,1) i n =- L . 证明 由题设易知1222 1231 1()()()()n n n n n n n n x x x f x xf x x f x x f x --- - ++++++++ L L 这里令e 是n 次本原单位根,那么22 1231 22222 1231 11212 1231 (1)(1)(1)(1)0(1)(1)()(1)()(1)0(1)(1)()(1)()(1)0n n n n n n n n n f f f f f f f f f f f f e e e e e e e e e - - - - ---- - ì ++++= ï ++++= ï íï ï ++++= î L L L LL于是关于 1231 (1),(1),(1),,(1) n f f f f - L 的齐次线性方程组的系数行列式为22 22222112121 1()() 0 1()()n n n n n n ee e e e e e e e - - ---- ¹ L L MMMML .故齐次线性方程组只有零解,于是 121 (1)(1)(1)0 n f f f - ==== L ,所以 1()i x f x - (1,2,,1) i n =- L .例 1.10(哈尔滨工业大学,2006 年)已知 ( ) ( ) x g x f , 是数域 P 上两个次数大 于零的多项式,且存在 ( ) ( ) 11 ,[], u x v x p x Î 使得 ( ) ( ) ( ) ( ) 1 1 1 = + x g x v x f x u ,问是否存 在 ( ) ( ) ,[] u x v x p x Î ,使得 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) x f x v x g x u x g x v x f x u ¶ < ¶ ¶ < ¶ = + , , 1 . 如果存在,这样是唯一的吗?说明理由.解 由于 ( ) ( ) ( ) 11 ()1 u x f x v x g x += ,若 ( ) 1 u x 的次数大于 ( ) g x 的次数,则由 带余除法得( ) ( ) ( ) ( ) 1 u x g x q x u x =+ , ( ) ( ) ( ) ( )u x g x ¶<¶ 代入上式得( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1f xg x q x u x g x v x ++= 即( ) ( ) ( ) ( ) ( ) () ( ) 1 1 = + + x v x q x f x g x u x f 令 ( ) ( ) ( ) ( ) 1 v x f x q x v x =+ ,则有( ) ( ) ( ) ( )x f x v ¶ > ¶ 否则由比较次数可知上式将不可能成立.关于唯一性的证明,可以假设 ( ) 2 u x , ( ) 2 v x 也满足条件,那么有( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1122 1f x u xg x v x f x u x g x v x +=+= 易得( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1221 f x u x u x g x v x v x -=- 由 ( ) f x 与 ( ) g x 互素,可知 ( ) ( ) ( ) ( ) 12 | g x u x u x - .又由 ( ) ( ) ( ) ( ) ( ) 12 u x u x g x ¶-<¶ ,可得 ( ) ( ) 12 0 u x u x -= ,即 ( ) ( ) 12 u x u x = ,这时有( ) ( ) 12 v x v x = .例 1.11(华南理工大学,2005年)证明:如果 ( ) ( )( ) 1 , = x g x f ,那么 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x f x g x g x +++= 证明 由已知条件有 ( ) ( ) ( ) ( ) ,1 f x f x g x += , ( ) ( ) ( ) ( ) ,1 g x f x g x += ,由多 项式互素的性质可得( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x += 于是有( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x g x ++= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x g x +++= 综合上述两个等式以及多项式互素的性质有( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1 f x g x f x g x f x g x f x g x +++= .例 1.12(苏州大学,2005)设 () f x 是一个整系数多项式,证明:如果存在 一个偶数m 和一个奇数n ,使得 () f m 和 () f n 都是奇数,则 () f x 没有整数根.证明 (反证法) 假设 () f x 有整数根k ,则 ()()() f x x k g x =- ,因为x k - 是 本原多项式,故 () g x 是整系数多项式. 又由于()()() f m m k g m =- , ()()() f n n k g n =- .且 () f m 和 () f n 都是奇数,那么m k - ,n k - 都是奇数,与m 是偶数且n 是 奇数矛盾,所以 () f x 没有整数根.例1.13 (四川大学, 2004年) (1) 设多项式 ( ) ( )( ) ( ) ( ) 1 1 2 2 1 + - - × × × - - = n x x x x f , 其中n 为非负整数. 证明: ( ) x f 在有理数域上一定不可约.(2) 在有理数域上求多项式 ( ) 36 12 11 2 2 3 4 + - - + = x x x x x g 的标准分解式.(1) 证明 假设 ( ) f x 在有理数域上可约, 故 ( ) f x 可分解为两个整系数多项式 的积, 即存在两个整系数多项式 ( ) ( ) , h x k x 使得( ) ( ) ( )f x h x k x = 注意到 ( ) 1,1,2,,21 f i i n ==×××- ,于是( ) ( ) 1,1,2,,21h i k i i n ==×××- 令 ( ) ( ) ( ) l x h x k x =- ,由 ( ) h x 与 ( ) k x 的次数小于21 n - 知 ( ) l x 的次数也小于 21 n - ,但是 ( ) l x 有21 n - 个不同的根为 1,2,,21 x n =×××- ,那么有 ( ) 0 l x º ,于是 ( ) ( ) h x k x = ,推得( ) ( ) ( ) 2f x k x =³ 但是 ( ) 00 f = ,矛盾. 于是 ( ) f x 在有理数域上不可约.(2) 注意到 ( ) ( ) 230 g g =-= ,由综合除法可得( ) ( ) ( )2223 g x x x =-+ 上式为 ( ) g x 在有理数域上的标准分解式.例 1.14(上海大学,2005)设 1 ()2n nf x x x + =+- (1) n ³ ,求 () f x 在有理数域上的不可约因式并说明理由. 解11 ()2(1)(1)n n n nf x x x x x ++ =+-=-+- 112 12 (1)(1)(1)(1) (1)(2222)(1)()n n n n n n n x x x x x x x x x x x x g x --- -- =-++++-+++ =-+++++ =- L L L 对 () g x , 令 2 p = , 用Eisenstein 判别法容易证明 () g x 在有理数域上不可约, 因此 () f x 在有理数域的不可约因式是: 1 x - 及 12 2222 n n n x x x x -- +++++ L .例 1.15(大连理工大学,2004)设R Q 分别表示实数域和有理数域,(),()[] f x g x Q x Î . 证明:(1) 若在 [] R x 中有 ()() g x f x ,则在 [] Q x 中也有 ()() g x f x .(2) () f x 与 () g x 在 [] Q x 中互素,当且仅当 () f x 与 () g x 在 [] R x 中互素.(3) 设 () f x 是 [] Q x 中不可约多项式,则 () f x 的根都是单根.证明 (1)(反证)假设在 [] Q x 中 () g x 不能整除 () f x ,作带余除法有()()()(),(),()[]f x q xg x r x q x r x Q x =+Î 且 (()) r x ¶< (()) g x ¶ .以上带余除法的结果在 [] R x 中也成立,所以在 [] R x 中 () g x 不能整除 () f x , 与在 [] R x 中有 ()() g x f x 矛盾. 因此,结论成立.(2) 如果 () f x 与 () g x 在 [] Q x 中互素,那么存在 (),()[] u x v x Q x Î ,使得()()()()1 f x u x g x v x += .以上等式在 [] R x 中也成立,所以 () f x 与 () g x 在 [] R x 中互素.如果 () f x 与() g x 在 [] Q x 中不互素,那么 () f x 与 () g x 在 [] Q x 存在非零次公因式.即()[] d x Q x Î , (())1,d x ¶³ 1 ()()() f x d x f x = , 1 ()()() g x d x g x = ,11 (),()[]f xg x Q x Î 以上两个等式在 [] R x 中也成立. 因此, () f x 与 () g x 在 [] R x 中不互素. (3) () f x 是 [] Q x 中的不可约多项式 , 则 ' ((),())1 f x f x = , 否则 ' ((),())()1, f x f x d x =¹ 则 () f x 有重因式, 与 () f x 不可约矛盾. 于是 () f x 没有重 因式,所以 () f x 的根都是单根.例 1.16(南京理工大学,2005年)设 p 是奇素数,试证 1 + + px x p 在有理数 域上不可约.证明 令 1 x y =- ,代入 ( ) 1 p f x x px =++ 有( ) ( ) ( ) ( ) ( ) 1111 pg y f x f y y p y ==-=-+-+ .考查多项式 ( ) ( ) ( ) 1! h y p g y =- ,注意到 p 是一个奇素数,那么 ( ) h y 的常数项为 ! p - ,于是对于素数 p 有, |! p p - ,而 2p 不整除 ! p - ,对于 ( ) h y 的首项,显然有 ( ) |1! p p - .对于其他的项,利用二项式定理对( ) ( ) 1!1 pp y -- 展开可知 p 能整除除了首项和 常数项之外的所有项系数. 又 ( ) 1 p y - 中关于 y 的一次项的系数也为 p 的倍数, 于是 p 整除 ( ) h y 的除了首项和常数项之外的所有系数. 利用Eisenstein 判别法可 知 ( ) h y 在有理数域上不可约,即 ( ) g y 在有理数域上不可约,也即 ( ) f x 有理数 域上不可约.例 1.17(陕西师范大学, 2006年) 11 ()()(),()()(), f x af x bg x g x cf x dg x =+=+ 且0 a bc d¹ ,证明: 11 ((),())((),()) f x g x f x g x= . 证明 令 111 ()((),()) d x f x g x = , ()((),()) d x f x g x = .由1 ()()() f x af x bg x =+ (*) 1 ()()()g x cf x dg x =+ (**)于是 1 ()() d x f x , 1 ()() d x g x . 那么 1 ()() d x d x .由式(*)与式(**)可以看成是关于 (),() f x g x 的线性方程组,解得,( ) ( )11 11 1()()() 1()()() g x ag x cf x ad bc f x df x bg x ad bc=- - =- - 于是 11 ()() d x f x , 11 ()() d x g x . 那么 1 ()() d x d x . 显然 1 ()() d x d x .于是11 ((),())((),()) f x g x f x g x = .例 1.18(华南理工大学,2006年)设 ( ) 1 2 34 + + + + = x x x x x f .(1) 将 ( ) x f 在实数域上分解因式.(2) 证明: ( ) x f 在有理数域上不可约. 由此证明 ( ) 5/ 2 cos p 不是有理数. (1) 解 不妨设 2 2 5, i e pa b a == , 于是 ,,, a a b b 是1的四个非实数的 5次方根. 显然有( ) ( )( )( )( )( ) ( ) ( ) ( )2222 11 24 2cos 12cos 1 55 f x x x x x x x x x x x x x a ab b a a b b p p =---- =-++-++ æöæö =-+-+ ç÷ç÷èøèø上式为 ( ) f x 在实数域上的因式分解. (2) 证明 令 1 x y =+ ,代入 ( ) f x .有( ) ( )1 g y f y =+ ( ) ( ) 5432 11 11510105y y y y y y +- =+- =++++ 对素数5 用Eisenstein 判别法可得 ( ) g y 是有理数域上不可约的多项式, 于是 有 ( ) f x 在有理数域上不可约 . 若 ( ) cos 2/5 p 是有理数 , 由 ( ) ( ) 2 cos 4/52cos 2/51 p p =- 可知 ( ) cos 4/5 p 也是有理数.于是由(1)的结论可知( ) 22 24 2cos 12cos 1 55 f x x x x x p p æöæö=-+-+ ç÷ç÷ èøèø.上式为 ( ) f x 在有理数域上的分解,这将导致 ( ) f x 在有理数域上可约,矛盾. 故结论成立.例 1.19(华东师范大学,2005 年)试在有理数域、实数域及复数域上将 ( ) 1 7 8 9 + + × × × + + + = x x x x x f 分解为不可约因式的乘积(结果用根式表示),并简 述理由.解 由( ) ( ) 1011 x f x x -=- ( )( )( )( )1 1 1 1 23 4 2 3 4 + - + - + + + + + - = x x x x x x x x x x 可知它在有理数域上的不可约分解为( ) ( )( )( )432432 111 f x x x x x x x x x x =+++++-+-+ (这里设 ( ) 432 1 1 g x x x x x =++++ ,并取 1 x y =+ 代入,并对素数 5用 Eisenstein 判别法可知 ( ) 1 1 g y + 在有理数域上不可约. 同理设 ( ) 432 2 1 g x x x x x =-+-+ ,并取 1 x y =- 代入,可知 ( ) 2 1 g y - 在有理数域上不可约.)设 243 55551212 ,,, i iii eee e pp ppa ab b ==== ,显然 1 的五次方根为 1122 1,,,, a a a a ;‐1的五次方根为 1122 1,,,, b b b b - . 于是在实数域上 ( ) f x 可分解为( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2222 11221122 11111f x x x x x x x x x x a a a a b b b b =+-++-++-++-++ 显然在复数域上 ( ) f x 可分解为( ) ( )( )( )( )( )( )( )( )( ) 112211221 f x x x x x x x x x x a a a a b b b b =+-------- .第二章 行列式例 2.1(兰州大学,2004年) 计算下列行列式的值121 121 121 1231 n n n n n n n n xa a a a a x a a a D a a x a a a a a a x- - - - = L L L M M M M M L 解 将 n D 的第2列到第 1 n +列加到第1列,且提取公因子有 121 21 21 1231 1 1 ()1 1 n n n n nn i n n i n a a a a xa a a D x a a x a a a a a x- - - = - =+ å L L L M M M M M L 121 12121213212 1 00()000 0 n n ni i n n na a a a x a x a a a x a a a a a a a x a - = -- - =+-- ---- å L LL M M M M M L 11()() nni i i i x a x a = = =+- å Õ .例 2.2(中山大学,2009年) 计算n 阶行列式22 111122 2222 22 111122 1...1... ..................1... 1... n n n nn n nn n n n n nn n n nx x x x x x x x D x x x x x x x x - - - ---- - = 解 首先考虑 1 n + 阶范德蒙行列式221 1111 1 221 2222 2 221 1111 1 221 2211... 1... .................. ... () 1... 1 (1)... n n n n n n n n n n n n n n n n n n n n n nn n n x x x x x x x x x x g x x x x x x x x x x x x xx x x-- -- -- ---- - -- -- =213111 3222 ()()...()() .()...()()...()n n n x x x x x x x x x x x x x x x x =---- ---- 从上面 1 n + 阶范德蒙行列式知,多项式 () g x 的 1 n x - 的系数为 21(1) n D D + -=- ;但从上式右端看, 1 n x - 的系数为12 1 (...).()n ji i j nx x x xx £<£ -+++- Õ 二者应相等,故 12 1 (...).() n n ji i j nD x x x xx £<£ =+++- Õ .例 2.3(北京交通大学,2004年)计算n 阶行列式111 23 222341222123 111 122111...11... 1... ............1 (1)... nn n n n n n n n n n nn n C C C C C C D C C C C C C + --- -- --- +- =.解 从最后一行起将每一行减去前面一行便可将行列式降一阶, 再对降一阶的行列式做同样的处理,不断这样下去可得 1 D = .例 2.4(大连理工大学,2005年) n 阶行列式21...11 13 (11) (1)1...11n =+ .解 答案是 1 1!(1) ni n i= + å . 这是因为原式 21...1111...11 13 (1102)...11 (1)1...1101...11n n ==++ 将上述行列式的第二行到 1 n + 行分别减去第一行,可得原式 11...11 11...00 (1)...n- =- 然后依次将第二列乘以1,第三列乘以 1 2 ,........,第 1 n + 列乘以 1n都加到第一列可得1 11 11...1 (11)2 101...00 !(1) ............... 00...0 ni n n i n= ++++ =+ å .例 2.5(南开大学,2003年) 计算下列行列式的值1112121 1212222 1122 ... ... ............... n n n n n n n n n na b c a b c a b c a b c a b c a b c D a b c a b c a b c +++ +++ =+++ 解法 1 将 n D 按第一行拆成两个n 阶行列式相加,并由于 3 n ³ ,故得1211121 12122221212222 11221122 ...... ...... .............................. n n n n n nn n n n n nn n n n n a a a b c b c b c a b c a b c a b c a b c a b c a b c D a b c a b c a b c a b c a b c a b c++++++ =+++++++ 000=+= 解法 2 将原n 阶行列式加边成一个 1 n + 阶行列式11112121 21212222 112 100...0 ... ... ............... ... n nn n nnn n n n n x a b c a b c a b c D x a b c a b c a b c x a b c a b c a b c+++ =+++ +++由于 3 n ³ ,故对上面的 1 n + 阶行列式按第一行展开可知,其每个元素的余子式 都是一个至少有两列元素对应成比例的n 阶行列式,从而都等于零. 因此 0 D = .例 2.6(浙江大学,2004年) 计算n 阶行列式... ... .................. ... ... ... n b b b b a b b b a b D b b a b b b a b b b a b b b b=解 ......() ......0 .................................... ......0 ......0 ......0 n b b b b a b b b b a b b b b b a b b b b a b D b b a b b b b a b b b a b b b b a b b b abbbb a b b b b -+ + == + + + 11 ... ... .................. (1)() ... ... ...n n b b b b b b b b a b a b D b b a b b b a b b b a bbbb+ - =--+(3) 1121 (1)()(1)()n n n n n a b D b a b + +- - =--+-- 注意到 222 D b a=- 递推可得(3) 1 2(1)()((1)) n n n n D a b a n b + - =--+- .例 2.7(复旦大学,2005年) 设 12 ...,0,1,2,... k k kk n s x x x k =+++= , 计算 1 n + 阶行列式11 121122 121 ...1 ... .................. ... n nn n n n n nnn n s s s s s s xD s s s xs s s x- - -- -- = 解 根据 k s 的定义、行列式的乘法以及范德蒙行列式知,所给的 1 n + 阶行列 式D可表示成两个 1 n + 阶行列式相乘111112 221111 112 12 11...11 1...0 ...1...0 ................................ 1...0 ... 00 (01)n n nn n n n n n n n n nnnn n x x x x x x x x D x x x x x x x x x x - - ---- - = 2 11 ()(())nj ji i i j nx x xx =£<£ =-- ÕÕ 211 ()() ni ij i i j nx x xx =£<£ =-- ÕÕ .例 2.8(华东师范大学,2008年) 计算n 阶行列式1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 32 1 L L M M M M M L L L n n n n n n D n- - - - - = ∙ 解 将第2列,第 3列,…,第n 列都加到第 1 列上11 11 01 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 32 2 ) 1 ( L L M M M M M L LL nn nn n n n n D n - - - - - + =111 1 1 1 1 1 11 11 1 1 11 2) 1 ( LL M M MM L L n n n n n n - - - - + = 1111 1 1 1 1 11 11 1 1 1 1 2) 1 ( LL M M MM L L - - - - - - - + = n n n n n111 10 0 0 0 0 00 0 0 2) 1 ( L L M M M ML L - - - - + = n n n n n 2)1 ,2 , 2 , 1 ( ) ( ) 1 ( ) 1 ( 2) 1 ( - - - - × - - + =n n n n n n L t 21 2)2 )( 1 ( ) ( ) 1 ( )1 (2 ) 1 ( - - - - - × - - + = n n n n n n n 2)1 ( )1 ( 1 2)1 ( + ×- = - - n n n n n 1) 2 )]( 1 ( 2 [ - - - = = n x n x 例 2.9(大连理工大学, 2004年) 计算n 阶行列式1 1 1 12 1 2 1 1 12 1 1 1 1 L M M M M M L L nn n D n - - - =解 将第2行,第 3行,…,第n 行都加到第 1 行上1 1 1 12 1 2 1 1 11 1 1 1 1 L M M M M M L L n n D n - - =0 01 0 1 0 0 0 1 1 1 1 1 L M M M M M L L nn - - =1 2) 1 ( )1 ,2 , , 1 , ( 1 ) 1 ( ) 1 ( ) 1 ( ) 1 ( - - - - - - = - - = n n n n n n n n L t .例 2.10(北京航空航天大学, 2004年) 计算下列行列式的值.12 12 12... .................. n n n n a a a a a a D a a a l l l+ + =+ 解 将行列式的所有列加到第一列, 并提取公因子 12 (...) n a a a l ++++ 可得1212 1212 1 1212...... ......().............................. n n nn n i i n n a a a a a a a a a a a a a a a a a a a l l l l l l l= ++ ++ =+ ++ å 然后将第 2 列到第n 列依次减去第一列乘以 12 ,,..., n a a a 得到一个下三角的行列式, 易得12 12 1112... ...()............... n nn n i i n a a a a a a a a a a l l ll l- = + + =+ + å 例 2.11(上海交通大学,2004年)求下面多项式的所有根23 2 3 23 2 3 3 2 3 2 22 23 2 2 2 2 3 ) ( nn n n nnna x a a a a a a a a x a a a a a a a a x a a a a x x f - - - - - - - - - - - - - - - - - - - = L MM M M L L L 解 将第一列的 2 a - 倍,3 a - 倍,L , n a - 倍分别加到第 2 列,第3列, L ,第n 列2323 221 3333 100100 ()010(2)010 0101n n n nnx a a a x a a a a a f x a x a a a - ------- -- =-=-- -- L L L L L L M M M M M M M M LL第2列的 2 a 倍,第 3列的 3 a倍,L ,第n 列的 n a 倍都加到第一列 22223 13 0100 ()(2)0010 001n n n x a a a a a f x x - ------ =- L L L L M M M M L1222 (2)(3)n n x x a a - =---- L 所以, 2 x = 是 () f x 的 1 n - 重根, 222 3 n a a +++ L 是 () f x的单根. 例 2.12 (北京交通大学,2005年)计算 1 n + 阶行列式11111 (1)(2)...()(1)(2)...()............... 12... 111 (1)n n n nn n n n n x x x x n x x x x n D x x x x n ---- + +++ +++ = +++ 解 注意到依次把第一行和第 1 n + 行交换次序,第2行和第n 行交换次序, ...,可得2 1 1111111...1 12... (1) ............... (1)(2)...()(1)(2)...() nn n n n n n n n nx x x x n D x x x x n x x x x n + ---- +++ =-+++ +++ 21 (1)(()()) n i j n x j x i £<£ =-+-+ Õ 21 (1)()n i j nj i £<£ =-- Õ 第三章 线 性 方 程 组例 3.1(清华大学,2006 年)设 12 ,,, s a a a L 是一组线性无关的向量,则122311 ,,,, s s s a a a a a a a a - ++++ L 是否线性无关? 证明之.证明 若 112223111()()()()0 s s s s s k k k k a a a a a a a a -- ++++++++= L 将上式展开并利用 12 ,,, s a a a L 的线性无关,可得关于 121 ,,, s s k k k k - L 的线性方程 组为1 2 1 100...10 110...00 ... 011...0... ...............0 00...110 s s k k k k - æö æöæö ç÷ ç÷ç÷ ç÷ ç÷ç÷ ç÷ ç÷ç÷= ç÷ ç÷ç÷ ç÷ ç÷ç÷ ç÷ç÷ ç÷ èøèø èø 令其系数矩阵为 A ,显然有 1 1(1) s A + =+- .当 S 为偶数时 , 0 A = , 则方程组有非零解 , 这是122311 ,,,, s s s a a a a a a a a - ++++ L 线性相关.当 S 为奇数时 , 0 A ¹ , 则方程组仅有零解 , 这是122311 ,,,, s s s a a a a a a a a - ++++ L 线性无关.例3.2 (北京科技大学, 2005年) 设 0 h 是线性方程组的一个解, 而 12 th h h L , , , 是它的导出方程组的一个基础解系, 1021010 ,,..., t t g h g h h g h h + ==+=+ .证明:线性方程组的任一解g , 都可表成 112211 ... t t g m g m g m g ++ =+++ , 其中 121 (1)t m m m + +++= . 证明 设 0211 ... t t g h m h m h + =+++ ,令 121 1... t m m m - =--- , 即 121 ...1 t m m m - +++= ,则由于 1021010 ,,..., t t g h g h h g h h + ==+=+ ,1210211 (...)... t t tg m m m h m h m h ++ =++++++ 1021010 ()...() t t m h m h h m h h + =+++++ 112211... t t m g m g m g ++ =+++ 例 3.3(哈尔滨工业大学,2005 年)设 12 ,,, r a a a L 是一组线性无关的向量,1,1,2,..., ri ij j j k i r b a = == å ,证明: 12 ,,, r b b b L 线性相关的充要条件是矩阵11121 21222 12... ... ............ ... r r r r rr k k k k k k K k k k æöç÷ ç÷ = ç÷ ç÷ èø不可逆.证明 12 ,,, r b b b L 线性无关Û 10 ri i b = = å 仅有零解Û 10 rij i j j k x a = = å 仅有零解Û(由 12 ,,, r a a a L 线性无关性仅有零解)方程组 ' 0 K X = 仅有零解Û ' K 可逆Û矩阵 11121 21222 12... ... ............ ... r r r r rr k k k kk k K k k k æöç÷ ç÷ = ç÷ ç÷ èø是可逆的.例 3.4(上海大学,2005 年)设b 是非齐次线性方程组AX b = 的一个解,12 ,,, n r a a a - L 是其导出组的一个基础解系,证明:(1) 12 ,,,, n r a a a b - L 线性无关.(2) 12 ,,,, n r b a b a b a b - +++ L 线性无关.证明 (1) 假定 12 ,,,, n r a a a b - L 线性相关,而 12 ,,, n r a a a - L 线性无关,那么b 可由 12 ,,, n r a a a - L 线性表出,则b 是导出组的一个解与b 是AX b = 的一个解矛 盾.(2)令( ) ( ) ( ) 1122 0n r n r x x x x b a b a b a b -- +++++++= L 于是( ) 112212 0n r n r n r x x x x x x x a a a b --- ++++++++= L L 由 12 ,,,, n r a a a b - L 线性无关,则12 0n r x x x - ==== L 且12 0 n r x x x x - ++++= L ,于是 12 0 n r x x x x - ===== L ,故(2)成立.例 3.5(东北大学, 2003年) 设 1 2 ... r A a aa æö ç÷ ç÷ = ç÷ ç÷ èø是一个r n ´ 阶矩阵() r n < 且秩为r ,已知:b 是 0 AX = 的非零解,讨论 12 ,,, r a a a L 与b 的线性相关性.证明 由于对矩阵A , 有 () r A r = , 记 12 ,,, r U a a a =<> L . 显然有 12 ,,, ra a a L 为空间U 的一组基,由于b 是方程组 0 AX = 的一个非零解,所以有 T b 与12 ,,, r a a a L 相正交,于是有 U b ^^ Î ,对于 12 ,,, r a a a L 与 T b 的线性组合1122 0T r r l l l l a a a b ++++= L 两边同时与 T b 做内积,注意到 T U b ^ ,可得(,)0T T l b b = 由于 0 T b ¹ ,可得 0 l = ,于是1122 0r r l l l a a a +++= L 由 12 ,,, r a a a L 的线性无关性可得0(1,2,...,)i l i r == 即 12 ,,,, r a a a b L 的线性无关.例 3.6(浙江大学,2004 年) 令 12 ,,, s a a a L 是 n R 中s 个线性无关的向量, 证明:存在含n 个未知量的齐次线性方程组,使得 12 ,,, s a a a L 是它的一个基础解 系.证明 以列向量 12 ,,, s a a a L 的转置为行构成矩阵A1 2 TT T s A a a a æö ç÷ ç÷= ç÷ ç÷ ç÷ èøM 考虑以A 为系数矩阵的齐次线性方程组AX = 它的基础解系由 n s - 个 n 维列向量组成,设基础解系为 12 ,,, n s b b b - L 以12 ,,, T T T n s b b b - L 为行构成矩阵B ,则以B 为系数矩阵的齐次线性方程组 0 BX = 满足要求.因为 12 ,,, n s b b b - L 是 0 AX = 的解,则 0,1,,;1,, T j i s j n s a b ===- L L .它同 时说明,作为 n 维向量, 12 ,,, s a a a L 是齐次线性方程组 0 BX = 的解,而() r B n s =- .故 12 ,,, s a a a L 是 0 BX = 的一个基础解系.例 3.7(西安交通大学,2005年)讨论 , a b 为何值时,如下方程组有唯一解?无解?无穷多解? 当有无穷多解时,求出它的通解.1234 234 234 1234 0 221 (3)2 321 x x x x x x x x a x x b x x x ax +++= ì ï ++= ï í-+--= ï ï +++=- î解 将增广矩阵进行初等行变换化为行阶梯形矩阵,有1111011110 0122101221 01320132 321101231 A a b a b a a æöæö ç÷ç÷ ç÷ç÷ =® ç÷ç÷ ------ ç÷ç÷ ---- èøèø11110 01221 00101 00010 a b a æöç÷ ç÷ ® ç÷ -+ ç÷- èø.(1)当 1 a ¹ 时方程组有唯一解. (2)当 1 a = 且 1 b ¹- 时方程组无解. (3)当 1 a = 且 1 b =- 时方程组有无穷多解. 解方程组1234 234 0 221 x x x x x x x+++= ì í++= î 方程组的特解为 0 1 1 0 0 a - æöç÷ç÷ = ç÷ ç÷ èø,导出组的基础解系为 12 11 22 , 10 00 h h æöæö ç÷ç÷ -- ç÷ç÷ == ç÷ç÷ ç÷ç÷ èøèø, 于是通解为 01122 k k a a h h =++ .例 3.8(东南大学,2005年) 问:参数 , a b 取何值时,线性方程组1234 1234 234 1234 1 32 223 54(3)3 x x x x x x x x a x x xx x a x x b +++= ì ï+++= ï í++= ï ï ++++= î有解?当线性方程组有解时,求出其通解.解 将增广矩阵做初等行变换可化为10112 01223 0002 0000 a b a --- æöç÷ç÷ç÷ - ç÷èø. 显然若要方程组有解,必须有 0 a = 且 2 b = , 这时增广矩阵变为10112 01223 0002 0000 a b a --- æöç÷ç÷ ç÷- ç÷èø 方程组的一个特解为 ' (2,3,0,0) - ,基础解系为 ''(1,2,1,0),(1,2,0,1) -- ,于是通解为12 211 322 010 001 x C C - æöæöæöç÷ç÷ç÷ -- ç÷ç÷ç÷ =++ ç÷ç÷ç÷ ç÷ç÷ç÷ èøèøèø. 例 3.9(东南大学,2004年) 已知线性方程组1122 1122 1122 () 0()...0 ........................... ...()0 n n n n n na b x a x a x a x a b x a x a x a x a b x ++++= ì ï++++= ï íï ï ++++= î (*)其中 10 ni i a = ¹ å .试讨论 12 ,,, n a a a L 和b 满足什么条件时,(1)方程组仅有零解.(2)方程组有非零解,此时用基础解系表示所有解.解 由于方程组(*)的系数行列式为2 1 12 12 2 111 ............ ............... ... nin i n n n in i nn nin n i b a a a a b a a a a b a b a a b a a a a bb a a a b = = = + + + ++ =+ ++ å å å .2 2 1111 1100 1 10()()() ............ ............1 (1)0... n nnnn n i i i i i i nn a a a b a bb a b a b a ba a bb- === + =+=+=+ + ååå(1)当 0 b ¹ ,且 1()0 ni i b a = +¹ å 时,方程组(*)的系数行列式不等于零. 于是此方程组只有唯一零解.(2) 当 0 b ¹ ,且 1()0 ni i b a = += å 时,方程组(*)的系数行列式为零. 因此方程组(1)有非零解,它的基础解系为 '(1,1,...,1) ,此时方程组的一切解可表为' (1,1,...,1), k k R Î .(3) 当 0 b = 时,方程组的系数行列式为零. 此时方程组(*)有非零解,并且方 程组等价于1122 0n n a x a x a x +++= (**)由于 10 ni i a = ¹ å ,故在 12 ,,, n a a a L 中必有一个不为零,不妨设 0 ia ¹ ,则有 11 1111 ....... i i n i i i n i i i i a a a a x x x x x a a a a-+ -+ =------ 其中 111 ,...,,,..., i i n x x x x -+ 为自由未知量,因此原方程组的一个基础解系为' 1 1 (1,0,...,0,,0, 0i aah =- ..................................' 11 (0,0,...,1,,0,...,0) i i i a a h - - =-' 11 (0,0,...,0,,1,...,0) i i i a ah + + =-..................................' (0,0,...,0,,0,...,1) nn i a ah =-此时,方程组(*)的一切解可表为111111 ...() i i i i n n i X k k k k k Rh h h h --++ =+++++Î L . 例 3.10(大连理工大学,2004年)设 A 是n 阶矩阵,若 ()1 r A n =- ,且代数 余子式 11 0 A ¹ ,则齐次线性方程组 0 AX = 的通解是.。