2014年中考数学试题分类 猜想、规律与探索
2014年福州市中考数学规律性试题汇总与解析(一)
2014年全国中考数学试题----规律试题(一)1. (2014•安徽)观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×( )2= ( );(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【解析】解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.2. (2014•漳州)已知一列数2,8,26,80.…,按此规律,则第n个数是( ) .(用含n的代数式表示).【解析】解;已知一列数2,8,26,80.…,按此规律,则第n个数是3n﹣1,故答案为:3n﹣1.3. (2014•白银)观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=( ).分析:13=1213+23=(1+2)2=3213+23+33=(1+2+3)2=6213+23+33+43=(1+2+3+4)2=10213+23+33+…+103=(1+2+3…+10)2=552.解答:解:根据数据可分析出规律为从1开始,连续n个数的立方和=(1+2+…+n)2所以13+23+33+…+103=(1+2+3…+10)2=552.4. (2014•兰州)为了求1+2+22+23+...+2100的值,可令S=1+2+22+23+...+2100,则2S=2+22+23+24+ (2101)因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是_______________ .【解析】解:设M=1+3+32+33+…+32014 ①,①式两边都乘以3,得3M=3+32+33+…+32015 ②.②﹣①得2M=32015﹣1,两边都除以2,得M=,故答案为:.5. (2014•天水)如图,一段抛物线y=﹣x(x﹣1)(0≤x≤1)记为m1,它与x轴交点为O、A1,顶点为P1;将m1绕点A1旋转180°得m2,交x轴于点A2,顶点为P2;将m2绕点A2旋转180°得m3,交x轴于点A3,顶点为P3,…,如此进行下去,直至得m10,顶点为P10,则P10的坐标为().【解析】解:y=﹣x(x﹣1)(0≤x≤1),OA1=A1A2=1,P2P4=P1P3=2,P2(2.5,﹣0.25)P10的横坐标是2.5+2×[(10﹣2)÷2]=10.5,p10的纵坐标是﹣0.25,故答案为(10.5,﹣0.25).6. (2014•梅州)如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为Pn,则点P3的坐标是( );点P2014的坐标是( )【解析】解:如图,经过6次反弹后动点回到出发点(0,3),当点P第3次碰到矩形的边时,点P3的坐标为:(8,3);∵2014÷6=335…4,∴当点P第2014次碰到矩形的边时为第336个循环组的第4次反弹,点P2014的坐标为(5,0).故答案为:(8,3),(5,0).7. (2014年广东深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有( ).【解析】解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,第五个图形正三角形的个数为161×3+2=485.故答案为:485.8. (2014•珠海)如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA4的长度为.【解析】解:∵△OAA1为等腰直角三角形,OA=1,∴AA1=OA=1,OA1=OA=;∵△OA 1A2为等腰直角三角形,∴A1A2=OA1=,OA2=OA1=2;∵△OA2A3为等腰直角三角形,∴A2A3=OA2=2,OA3=OA2=2;∵△OA3A4为等腰直角三角形,∴A3A4=OA3=2,OA4=OA3=8.故答案为:8.9. (2014•贵港)已知点A1(a1,a2),A2(a2,a3),A3(a3,a4)…,A n(a n,a n+1)(n为正整数)都在一次函数y=x+3的图象上.若a1=2,则a2014=_________________.【解析】解:将a1=2代入a2=x+3,得a2=5,同理可求得,a3=8,a4=11,a5=14,a6=17,a n=2+3(n﹣1),a2014=2+3(2014﹣1)=2+3×2013=2+6039=6041,故答案为6041.10. (2014年广西钦州)甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2014时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是()分.【解析】解:甲报的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n个数为1+3(n﹣1)=3n﹣2,3n﹣2=2014,则n=672,甲报出了672个数,一奇一偶,所以偶数有672÷2=336个,得336分.故答案为:336.11. (2014年贵州安顺)如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11,…的点作OA 的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S1,S2,S3,S4,….观察图中的规律,第n(n为正整数)个黑色梯形的面积是Sn=().【解析】解:∵∠AOB=45°,∴图形中三角形都是等腰直角三角形,从图中可以看出,黑色梯形的高都是2,第一个黑色梯形的上底为:1,下底为:3,第2个黑色梯形的上底为:5=1+4,下底为:7=1+4+2,第3个黑色梯形的上底为:9=1+2×4,下底为:11=1+2×4+2,则第n个黑色梯形的上底为:1+(n﹣1)×4,下底为:1+(n﹣1)×4+2,故第n个黑色梯形的面积为:×2×[1+(n﹣1)×4+1+(n﹣1)×4+2]=8n﹣4.故答案为:8n﹣4.12. (2014•毕节地区)观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是____________________.【解析】解:根据题意得:这一组数的第n个数是.故答案为:.13. (2014•黔南州)已知= = 3,= = 10,= = 15,…观察以上计算过程,寻找规律计算=().【解析】解:∵==3,==10,==15,∴==56.故答案为56.14. (2014•遵义)有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是3.【解析】解:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2014÷4=503…2,∴滚动第2014次后与第二次相同,∴朝下的点数为3,故答案为:3.15. (2014•河北)如图,点O,A在数轴上表示的数分别是0,0.1.将线段OA分成100等份,其分点由左向右依次为M1,M2,…,M99;再将线段OM1,分成100等份,其分点由左向右依次为N1,N2,…,N99;继续将线段ON1分成100等份,其分点由左向右依次为P1,P2.…,P99.则点P37所表示的数用科学记数法表示为.【解析】解:M1表示的数为0.1×=10﹣3,N1表示的数为×10﹣3=10﹣5,P1表示的数为10﹣5×=10﹣7,P37=37×10﹣7=3.7×10﹣6.故答案为:3.7×10﹣6.16. (2014年黑龙江龙东地区)如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=.【解析】解:AP1=,AP2=1+,AP3=2+;AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;∵2013=3×671,∴AP2013=(2013﹣761)+671=1342+671,∴AP2014=1342+671+=1342+672.故答案为:1342+672.17. (2014年黑龙江牡丹江)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上且坐标是(0,2),点C1、E1、E2、C2、E3、E4、C3在x轴上,C1的坐标是(1,0).B1C1∥B2C2∥B3C3,以此继续下去,则点A 2014到x 轴的距离是( ).【解析】解:如图,∵点C 1、E 1、E 2、C 2、E 3、E 4、C 3在x 轴上,B 1C 1∥B 2C 2∥B 3C 3, ∴△B 1OC 1∽△B 2E 2C 2∽B 3E 4C 3…,△B 1OC 1≌△C 1E 1D 1,…, ∴B 2E 2=1,B 3E 4=,B 4E 6=,B 5E 8=…, ∴B 2014E 4016 =,作A 1E ⊥x 轴,延长A 1D 1交x 轴于F , 则△C 1D 1F ∽△C 1D 1E 1,∴=,在Rt △OB 1C 1中,OB 1=2,OC 1=1, 正方形A 1B 1C 1D 1的边长为为=,∴D 1F=,∴A 1F=, ∵A 1E ∥D 1E 1, ∴=,∴A 1E=3,∴=,∴点A 2014到x 轴的距离是×=.18. (20104.齐齐哈尔)如图,在平面直角坐标系xoy 中,有一个等腰直 角三角形AOB ,∠OAB=90°,直角边AO 在x 轴上,且AO=1.将Rt △AOB 绕原点O 顺时针旋转90°得到等腰直角三角形A 1OB 1,且A 1O=2AO , 再将Rt △A 1OB 1绕原点O 顺时针旋转90°得到等腰直角三角形A 2OB 2,且A 2O=2A 1O ,……,依此规律,得到等腰直角三角形A 2014OB 2014,则点A 2014的坐标为________________.【解析】解:∵将Rt △AOB 绕原点O 顺时针旋转90°得到等腰直角三角形A 1OB 1,且A 1O=2AO , 再将Rt △A 1OB 1绕原点O 顺时针旋转90°得到等腰三角形A 2OB 2,且A 2O=2A 1O …,依此规律, ∴每4次循环一周,A 1(0,-2),A 2(-4,0),A 3(0,8),A 4(16,0), ∵2014÷4=503…2,∴点A 2014的坐标与A 2所在同一象限, ∵-4=-22,8=23,16=24, ∴点A 2014(-22014,0).B 1A 2B 2A 1B A x yo 第20题图故答案为:(-22014,0).19. (2014•绥化)如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是().【解析】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2014÷10=201…4,∴细线另一端在绕四边形第202圈的第4个单位长度的位置,即线段BC的中间位置,点的坐标为(﹣1,﹣1).故答案为:(﹣1,﹣1).20. (2014•莆田)如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则A2014的坐标是()【解析】解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(0,2),AO∥A1B1,∠B1OC=30°,∴CO=OB1cos30°=,∴B1的横坐标为:,则A1的横坐标为:,连接AA1,可知所有三角形顶点都在直线AA1上,∵点B1,B2,B3,…都在直线y=x上,AO=2,∴直线AA1的解析式为:y=x+2,∴y=×+2=3,∴A1(,3),同理可得出:A2的横坐标为:2,∴y=×2+2=4,∴A2(2,4),∴A3(3,5),…A2014(2014,2016).故答案为:(2014,2016).。
2014年全国各地中考数学真题分类解析汇编(三)18份(共310页)Word版及答案
目录2014年全国各地中考数学真题分类解析汇编:32 点直线与圆的位置关系.doc 2014年全国各地中考数学真题分类解析汇编:33 圆与圆的位置关系.doc2014年全国各地中考数学真题分类解析汇编:34 正多边形与圆.doc2014年全国各地中考数学真题分类解析汇编:35 弧长与扇形面积.doc2014年全国各地中考数学真题分类解析汇编:36 投影与视图.doc2014年全国各地中考数学真题分类解析汇编:37 尺规作图.doc2014年全国各地中考数学真题分类解析汇编:38 规律探索.doc2014年全国各地中考数学真题分类解析汇编:39 操作探究.doc2014年全国各地中考数学真题分类解析汇编:40 方案设计.doc2014年全国各地中考数学真题分类解析汇编:41 开放性问题.doc2014年全国各地中考数学真题分类解析汇编:42 动态问题.doc2014年全国各地中考数学真题分类解析汇编:43 阅读理解.doc2014年全国各地中考数学真题分类解析汇编:44 综合性问题.doc2014年全国各地中考数学真题分类解析汇编:45 跨学科结合与高中衔接问题2014年全国各地中考数学真题分类解析汇编:46 与函数有关的选择题压轴题2014年全国各地中考数学真题分类解析汇编:47 与特殊四边形有关的填空压轴题2014年全国各地中考数学真题分类解析汇编:48 与圆有关的压轴题2014年全国各地中考数学真题分类解析汇编:49 运动变化类的压轴题.doc点直线与圆的位置关系一、选择题1.(2014年天津市,第7题3分)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20° B.25° C.40° D.50°考点:切线的性质.分析:连接OA,根据切线的性质,即可求得∠C的度数.解答:解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.点评:本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.2.(2014•邵阳,第8题3分)如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30° B.45° C.60° D.40°考点:切线的性质专题:计算题.分析:根据切线的性质由AB与⊙O相切得到OB⊥AB,则∠ABO=90°,利用∠A=30°得到∠AOB=60°,再根据三角形外角性质得∠AOB=∠C+∠OBC,由于∠C=∠OBC,所以∠C=AOB=30°.解答:解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∵∠AOB=∠C+∠OBC,而∠C=∠OBC,∴∠C=AOB=30°.故选A.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.3. (2014•益阳,第8题,4分)如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()(第1题图)A.1 B.1或5 C.3 D. 5考点:直线与圆的位置关系;坐标与图形性质.分析:平移分在y轴的左侧和y轴的右侧两种情况写出答案即可.解答:解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故选B.点评:本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.4.(2014年山东泰安,第18题3分)如图,P为⊙O的直径BA延长线上的一点,PC与⊙O 相切,切点为C,点D是⊙上一点,连接P D.已知PC=PD=B C.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为()A.4个B.3个C.2个D.1个分析:(1)利用切线的性质得出∠PCO=90°,进而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;(2)利用(1)所求得出:∠CPB=∠BPD,进而求出△CPB≌△DPB(SAS),即可得出答案;(3)利用全等三角形的判定得出△PCO≌△BCA(ASA),进而得出CO=PO=AB;(4)利用四边形PCBD是菱形,∠CPO=30°,则DP=DB,则∠DPB=∠DBP=30°,求出即可.解:(1)连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故此选项正确;(2)由(1)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故此选项正确;(3)连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴AC=CO,∴AC=CO=AO,∴∠COA=60°,∴∠CPO=30°,∴CO=PO=AB,∴PO=AB,故此选项正确;(4)∵四边形PCBD是菱形,∠CPO=30°,∴DP=DB,则∠DPB=∠DBP=30°,∴∠PDB=120°,故此选项正确;故选:A.点评:此题主要考查了切线的判定与性质和全等三角形的判定与性质以及菱形的判定与性质等知识,熟练利用全等三角形的判定与性质是解题关键.二.填空题1. (2014•广西玉林市、防城港市,第16题3分)如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=.考点:切线的性质;等边三角形的判定与性质;特殊角的三角函数值.专题:计算题.分析:连结OM,OM的反向延长线交EF与C,由直线MN与⊙O相切于点M,根据切线的性质得OM⊥MF,而EF∥MN,根据平行线的性质得到MC⊥EF,于是根据垂径定理有CE=CF,再利用等腰三角形的判定得到ME=MF,易证得△MEF为等边三角形,所以∠E=60°,然后根据特殊角的三角函数值求解.解答:解:连结OM,OM的反向延长线交EF与C,如图,∵直线MN与⊙O相切于点M,∴OM⊥MF,∵EF∥MN,∴MC⊥EF,∴CE=CF,∴ME=MF,而ME=EF,∴ME=EF=MF,∴△MEF为等边三角形,∴∠E=60°,∴cos∠E=cos60°=.故答案为.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了垂径定理、等边三角形的判定与性质和特殊角的三角函数值.2.(2014•温州,第16题5分)如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=A B.⊙O 经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当边AB或BC所在的直线与⊙O相切时,AB的长是.考点:切线的性质;矩形的性质.分析:过点G作GN⊥AB,垂足为N,可得EN=NF,由EG:EF=:2,得:EG:EN=:1,依据勾股定理即可求得AB的长度.解答:解:如图,过点G作GN⊥AB,垂足为N,∴EN=NF,又∵EG:EF=:2,∴EG:EN=:1,又∵GN=AD=8,∴设EN=x,则,根据勾股定理得:,解得:x=4,GE=,设⊙O的半径为r,由OE2=EN2+ON2得:r2=16+(8﹣r)2,∴r=5.∴OK=NB=5,∴EB=9,又AE=AB,∴AB=12.故答案为12.点评:本题考查了切线的性质以及勾股定理和垂径定理的综合应用,解答本题的关键在于做好辅助线,利用勾股定理求出对应圆的半径.3.(2014•四川自贡,第14题4分)一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为3cm.考点:切线的性质;垂径定理;圆周角定理;弦切角定理分析:连接OC,并过点O作OF⊥CE于F,根据等边三角形的性质,等边三角形的高等于底边高的倍.题目中一个边长为4cm的等边三角形ABC与⊙O等高,说明⊙O的半径为,即OC=,又∠ACB=60°,故有∠OCF=30°,在Rt△OFC中,可得出FC的长,利用垂径定理即可得出CE的长.解答:解:连接OC,并过点O作OF⊥CE于F,且△ABC为等边三角形,边长为4,故高为2,即OC=,又∠ACB=60°,故有∠OCF=30°,在Rt△OFC中,可得FC=,即CE=3.故答案为:3.点评:本题主要考查了切线的性质和等边三角形的性质和解直角三角形的有关知识.题目不是太难,属于基础性题目.4.(2014•浙江湖州,第9题3分)如图,已知正方形ABCD,点E是边AB的中点,点O 是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连接OM、ON、BM、BN.记△MNO、△AOM、△DMN的面积分别为S1、S2、S3,则下列结论不一定成立的是()A.S1>S2+S3 B.△AOM∽△DMN C.∠MBN=45° D.MN=AM+CN分析:(1)如图作MP∥AO交ON于点P,当AM=MD时,求得S1=S2+S3,(2)利用MN是⊙O的切线,四边形ABCD为正方形,求得△AMO∽△DMN.(3)作BP⊥MN于点P,利用RT△MAB≌RT△MPB和RT△BPN≌RT△BCN来证明C,D 成立.解:(1)如图,作MP∥AO交ON于点P,∵点O是线段AE上的一个动点,当AM=MD时,S梯形ONDA=(OA+DN)•ADS△MNO=MP•AD,∵(OA+DN)=MP,∴S△MNO=S梯形ONDA,∴S1=S2+S3,∴不一定有S1>S2+S3,(2)∵MN是⊙O的切线,∴OM⊥MN,又∵四边形ABCD为正方形,∴∠A=∠D=90°,∠AMO+∠DMN=90°,∠AMO+∠AOM=90°,∴∠AOM=∠DMN,在△AMO 和△DMN 中,,∴△AMO ∽△DMN .故B 成立,(3)如图,作BP ⊥MN 于点P ,∵MN ,BC 是⊙O 的切线,∴∠PMB =∠MOB ,∠CBM =∠MOB , ∵AD ∥BC ,∴∠CBM =∠AMB ,∴∠AMB =∠PMB , 在Rt △MAB 和Rt △MPB 中,∴Rt △MAB ≌Rt △MPB (AAS )∴AM =MP ,∠ABM =∠MBP ,BP =AB =BC , 在Rt △BPN 和Rt △BCN 中,∴Rt △BPN ≌Rt △BCN (HL )∴PN =CN ,∠PBN =∠CBN ,∴∠MBN =∠MBP +∠PBN ,MN =MN +PN =AM +CN .故C ,D 成立,综上所述,A 不一定成立,故选:A .点评:本题主要考查了圆的切线及全等三角形的判定和性质,关键是作出辅助线利用三角形全等证明.5.(2014·浙江金华,第16题4分)如图2是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA ,OB ,OC 抽象为线段,有OA =OB =OC ,且∠AOB =120°,折线NG —GH —HE —EF 表示楼梯,CH ,EF 是水平线,NG ,HE 是铅垂线,半径相等的小轮子⊙A ,⊙B 与楼梯两边相切,且AO ∥GH . (1)如图2①,若点H 在线段OB 上,则BHOH的值是 ▲ . (2)如果一级楼梯的高度()HE 832cm =+,点H 到线段OB 的距离d 满足条件d 3cm ≤,那么小轮子半径r 的取值范围是 ▲ .【答案】(1)3;(2)1133r 8-≤≤. 【解析】∴23r d d 2323MI3IJ d MI r d,HM 3r 2d cos 33t 3030an 33=︒-==⇒=-==-︒.考点:1. 直角三角形的构造;2.锐角三角函数定义;3.特殊角的三角函数值;4. 矩形的判定和性质;5.切线的性质;6.二次根式化简.6. (2014•湘潭,第14题,3分)如图,⊙O的半径为3,P是CB延长线上一点,PO=5,P A切⊙O于A点,则P A=4.(第1题图)考点:切线的性质;勾股定理.分析:先根据切线的性质得到OA⊥P A,然后利用勾股定理计算P A的长.解答:解:∵P A切⊙O于A点,∴OA⊥P A,在Rt△OP A中,OP=5,OA=3,∴P A==4.故答案为4.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理.三.解答题1. (2014•广东,第24题9分)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB 于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.考点:切线的判定;弧长的计算.分析:(1)根据弧长计算公式l=进行计算即可;(2)证明△POE≌△ADO可得DO=EO;(3)连接AP,PC,证出PC为EF的中垂线,再利用△CEP∽△CAP找出角的关系求解.解答:(1)解:∵AC=12,∴CO=6,∴==2π;(2)证明:∵PE⊥AC,OD⊥AB,∠PEA=90°,∠ADO=90°在△ADO和△PEO中,,∴△POE≌△AOD(AAS),∴OD=EO;(3)证明:如图,连接AP,PC,∵OA=OP,∴∠OAP=∠OP A,由(1)得OD=EO,∴∠ODE=∠OED,又∵∠AOP=∠EOD,∴∠OP A=∠ODE,∴AP∥DF,∵AC是直径,∴∠APC=90°,∴∠PQE=90°∴PC⊥EF,又∵DP∥BF,∴∠ODE=∠EFC,∵∠OED=∠CEF,∴∠CEF=∠EFC,∴CE=CF,∴PC为EF的中垂线,∴∠EPQ=∠QPF,∵△CEP∽△CAP∴∠EPQ=∠EAP,∴∠QPF=∠EAP,∴∠QPF=∠OP A,∵∠OP A+∠OPC=90°,∴∠QPF+∠OPC=90°,∴OP⊥PF,∴PF是⊙O的切线.点评:本题主要考查了切线的判定,解题的关键是适当的作出辅助线,准确的找出角的关系.2. (2014•珠海,第18题7分)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H.(1)求BE的长;(2)求Rt△ABC与△DEF重叠(阴影)部分的面积.考点:切线的性质;扇形面积的计算;平移的性质专题:计算题.分析:(1)连结OG,先根据勾股定理计算出BC=5,再根据平移的性质得AD=BE,DF=AC=3,EF=BC=5,∠EDF=∠BAC=90°,由于EF与半圆O相切于点G,根据切线的性质得OG⊥EF,然后证明Rt△EOG∽Rt△EFD,利用相似比可计算出OE=,所以BE=OE﹣OB=;(2)求出BD的长度,然后利用相似比例式求出DH的长度,从而求出△BDH,即阴影部分的面积.解答:解:(1)连结OG,如图,∵∠BAC=90°,AB=4,AC=3,∴BC==5,∵Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,∴AD=BE,DF=AC=3,EF=BC=5,∠EDF=∠BAC=90°,∵EF与半圆O相切于点G,∴OG⊥EF,∵AB=4,线段AB为半圆O的直径,∴OB=OG=2,∵∠GEO=∠DEF,∴Rt△EOG∽Rt△EFD,∴=,即=,解得OE=,∴BE=OE﹣OB=﹣2=;(2)BD=DE﹣BE=4﹣=.∵DF∥AC,∴,即,解得:DH=2.∴S阴影=S△BDH=BD•DH=××2=,即Rt△ABC与△DEF重叠(阴影)部分的面积为.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了平移的性质、勾股定理和相似三角形的判定与性质.3. (2014•广西贺州,第25题10分)如图,AB,BC,CD分别与⊙O相切于E,F,G.且AB∥C D.BO=6cm,CO=8cm.(1)求证:BO⊥CO;(2)求BE和CG的长.考点:切线的性质;相似三角形的判定与性质.分析:(1)由AB∥CD得出∠ABC+∠BCD=180°,根据切线长定理得出OB、OC平分∠EBF 和∠BCG,也就得出了∠OBC+∠OCB=(∠ABC+∠DCB)=×180°=90°.从而证得∠BOC是个直角,从而得出BO⊥CO;(2)根据勾股定理求得AB=10cm,根据RT△BOF∽RT△BCO得出BF=3.6cm,根据切线长定理得出BE=BF=3.6cm,CG=CF,从而求得BE和CG的长.解答:(1)证明:∵AB∥CD∴∠ABC+∠BCD=180°∵AB、BC、CD分别与⊙O相切于E、F、G,∴BO平分∠ABC,CO平分∠DCB,∴∠OBC=,∠OCB=,∴∠OBC+∠OCB=(∠ABC+∠DCB)=×180°=90°,∴∠BOC=90°,∴BO⊥CO.(2)解:连接OF,则OF⊥BC,∴RT△BOF∽RT△BCO,∴=,∵在RT△BOF中,BO=6cm,CO=8cm,∴BC==10cm,∴=,∴BF=3.6cm,∵AB、BC、CD分别与⊙O相切,∴BE=BF=3.6cm,CG=CF,∵CF=BC﹣BF=10﹣3.6=6.4cm.∴CG=CF=6.4cm.点评:本题主要考查了直角梯形的性质和切线长定理的综合运用.属于基础题.4. (2014•广西玉林市、防城港市,第23题9分)如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.考点:切线的性质;相似三角形的判定与性质.专题:证明题.分析:(1)连结OD,根据切线的性质得OD⊥DE,则∠2+∠ODC=90°,而∠C=∠ODC,则∠2+∠C=90°,由OC⊥OB得∠C+∠3=90°,所以∠2=∠3,而∠1=∠3,所以∠1=∠2;(2)由OF:OB=1:3,⊙O的半径为3得到OF=1,由(1)中∠1=∠2得EF=ED,在Rt△ODE 中,DE=x,则EF=x,OE=1+x,根据勾股定理得32+t2=(t+1)2,解得t=4,则DE=4,OE=5,根据切线的性质由AG为⊙O的切线得∠GAE=90°,再证明Rt△EOD∽Rt△EGA,利用相似比可计算出AG.解答:(1)证明:连结OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,即∠2+∠ODC=90°,∵OC=OD,∴∠C=∠ODC,∴∠2+∠C=90°,而OC⊥OB,∴∠C+∠3=90°,∴∠2=∠3,∵∠1=∠3,∴∠1=∠2;(2)解:∵OF:OB=1:3,⊙O的半径为3,∴OF=1,∵∠1=∠2,∴EF=ED,在Rt△ODE中,OD=3,DE=x,则EF=x,OE=1+x,∵OD2+DE2=OE2,∴32+t2=(t+1)2,解得t=4,∴DE=4,OE=5,∵AG为⊙O的切线,∴AG⊥AE,∴∠GAE=90°,而∠OED=∠GEA,∴Rt△EOD∽Rt△EGA,∴=,即=,∴AG=6.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理和相似三角形的判定与性质.5.(2014年四川资阳,第21题9分)如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接A D.(1)求证:△CDE∽△CAD;(2)若AB=2,AC=2,求AE的长.考点:切线的性质;相似三角形的判定与性质.专题:证明题.分析:(1)根据圆周角定理由AB是⊙O的直径得到∠ADB=90°,则∠B+∠BAD=90°,再根据切线的性质得AC为⊙O的切线得∠BAD+∠DAE=90°,则∠B=∠CAD,由于∠B=∠ODB,∠ODB=∠CDE,所以∠B=∠CDE,则∠CAD=∠CDE,加上∠ECD=∠DCA,根据三角形相似的判定方法即可得到△CDE∽△CAD;(2)在Rt△AOC中,OA=1AC=2,根据勾股定理可计算出OC=3,则CD=OC﹣OD=2,然后利用△CDE∽△CAD,根据相似比可计算出CE.解答:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵AC为⊙O的切线,∴BA⊥AC,∴∠BAC=90°,即∠BAD+∠DAE=90°,∴∠B=∠CAD,∵OB=OD,∴∠B=∠ODB,而∠ODB=∠CDE,∴∠B=∠CDE,∴∠CAD=∠CDE,而∠ECD=∠DCA,∴△CDE∽△CAD;(2)解:∵AB=2,∴OA=1,在Rt△AOC中,AC=2,∴OC==3,∴CD=OC﹣OD=3﹣1=2,∵△CDE∽△CAD,∴=,即=,∴CE=.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.6.(2014•新疆,第21题10分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.考点:切线的判定.专题:证明题.分析:(1)连结OC,由=,根据圆周角定理得∠F AC=∠BAC,而∠OAC=∠OCA,则∠F AC=∠OCA,可判断OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;(2)连结BC,由AB为直径得∠ACB=90°,由==得∠BOC=60°,则∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三边的关系得AC=2CD=4,在Rt△ACB中,利用含30度的直角三角形三边的关系得BC=AC=4,AB=2BC=4,所以⊙O的半径为4.解答:(1)证明:连结OC,如图,∵=,∴∠F AC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠F AC=∠OCA,∴OC∥AF,∵CD⊥AF,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∵==,∴∠BOC=×180°=60°,∴∠BAC=30°,∴∠DAC=30°,在Rt△ADC中,CD=2,∴AC=2CD=4,在Rt△ACB中,BC=AC=×4=4,∴AB=2BC=4,∴⊙O的半径为4.点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理和含30度的直角三角形三边的关系.7.(2014•毕节地区,第26题14分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O 交AB于点D,连接C D.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.考点:切线的判定分析:(1)根据圆周角定理可得∠ADC=90°,再根据直角三角形的性质可得∠A+∠DCA=90°,再由∠DCB+∠ACD=90°,可得∠DCB=∠A;(2)当MC=MD时,直线DM与⊙O相切,连接DO,根据等等边对等角可得∠1=∠2,∠4=∠3,再根据∠ACB=90°可得∠1+∠3=90°,进而证得直线DM与⊙O相切.解答:(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠DCA=90°,∵∠ACB=90°,∴∠DCB+∠ACD=90°,∴∠DCB=∠A;(2)当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切;解:连接DO,∵DO=CO,∴∠1=∠2,∵DM=CM,∴∠4=∠3,∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切.点评:此题主要考查了切线的判定,以及圆周角定理,关键是掌握切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.8.(2014·云南昆明,第22题8分)如图,在△ABC 中,∠ABC =90°,D 是边AC 上的一点,连接BD ,使∠A =2∠1,E 是BC 上的一点,以BE 为直径的⊙O 经过点D .(1)求证:AC 是⊙O 的切线;(2)若∠A =60°,⊙O 的半径为2,求阴影部分的面积.(结果保留根号和π)考点: 切线的判定;阴影部分面积.分析: (1)连接OD ,求出∠A =∠DOC ,推出∠ODC =90°,根据切线的判定推出即可;(2)先求出ODC Rt ∆的面积,再求出扇形ODC 的面积,即可求出阴影部分面积. 解答: (1)证明:如图,连接OD∵OD OB =,∴21∠=∠,∴∠12∠=DOC ,∵12∠=∠A ,∴DOC A ∠=∠,∠ABC =90°, 90=∠+∠∴C A∴90=∠+∠C ODC , 90=∠∴ODC∵OD 为半径,∴AC 是⊙O 的切线;(2)解: 60=∠=∠DOC A ,2=OD∴在ODC Rt ∆中,OD DC =60tan 323260tan =⨯== OD DC∴323222121=⨯⨯=⋅=∆DC OD S ODC Rt 第22题图E O C B A 1Dπππ3236026036022=⨯⨯==r n S ODE 扇形 π3232-=-=∴∆ODE ODC Rt S S S 扇形阴影 点评: 本题考查了等量代换、切线的判定、三角形面积、扇形面积等知识点的应用,主要考查学生的推理能力..9. (2014•株洲,第23题,8分)如图,PQ 为圆O 的直径,点B 在线段PQ 的延长线上,OQ =QB =1,动点A 在圆O 的上半圆运动(含P 、Q 两点),以线段AB 为边向上作等边三角形AB C .(1)当线段AB 所在的直线与圆O 相切时,求△ABC 的面积(图1);(2)设∠AOB =α,当线段AB 、与圆O 只有一个公共点(即A 点)时,求α的范围(图2,直接写出答案);(3)当线段AB 与圆O 有两个公共点A 、M 时,如果AO ⊥PM 于点N ,求CM 的长度(图3).(第1题图)考点: 圆的综合题;等边三角形的性质;勾股定理;切线的性质;相似三角形的判定与性质;特殊角的三角函数值.分析: (1)连接OA ,如下图1,根据条件可求出AB ,然后AC 的高BH ,求出BH 就可以求出△ABC 的面积.(2)如下图2,首先考虑临界位置:当点A 与点Q 重合时,线段AB 与圆O 只有一个公共点,此时α=0°;当线段AB 所在的直线与圆O 相切时,线段AB 与圆O 只有一个公共点,此时α=60°.从而定出α的范围.(3)设AO与PM的交点为D,连接MQ,如下图3,易证AO∥MQ,从而得到△PDO∽△PMQ,△BMQ∽△BAO,又PO=OQ=BQ,从而可以求出MQ、OD,进而求出PD、DM、AM、CM 的值.解答:解:(1)连接OA,过点B作BH⊥AC,垂足为H,如图1所示.∵AB与⊙O相切于点A,∴OA⊥A B.∴∠OAB=90°.∵OQ=QB=1,∴OA=1.∴AB===.∵△ABC是等边三角形,∴AC=AB=,∠CAB=60°.∵sin∠HAB=,∴HB=AB•sin∠HAB=×=.∴S△ABC=AC•BH=××=.∴△ABC的面积为.(2)①当点A与点Q重合时,线段AB与圆O只有一个公共点,此时α=0°;②当线段A1B所在的直线与圆O相切时,如图2所示,线段A1B与圆O只有一个公共点,此时OA1⊥BA1,OA1=1,OB=2,∴cos∠A1OB==.∴∠A1OB=60°.∴当线段AB与圆O只有一个公共点(即A点)时,α的范围为:0°≤α≤60°.(3)连接MQ,如图3所示.∵PQ是⊙O的直径,∴∠PMQ=90°.∵OA⊥PM,∴∠PDO=90°.∴∠PDO=∠PMQ.∴△PDO∽△PMQ.∴==∵PO=OQ=PQ.∴PD=PM,OD=MQ.同理:MQ=AO,BM=A B.∵AO=1,∴MQ=.∴OD=.∵∠PDO=90°,PO=1,OD=,∴PD=.∴PM=.∴DM=.∵∠ADM=90°,AD=A0﹣OD=,∴AM===.∵△ABC是等边三角形,∴AC=AB=BC,∠CAB=60°.∵BM=AB,∴AM=BM.∴CM⊥A B.∵AM=,∴BM=,AB=.∴AC=.∴CM===.∴CM的长度为.点评:本题考查了等边三角形的性质、相似三角形的性质与判定、直线与圆相切、勾股定理、特殊三角函数值等知识,考查了用临界值法求角的取值范围,综合性较强.10. (2014•泰州,第25题,12分)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b 为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(第2题图)(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.考点:圆的综合题分析:(1)连接CD,EA,利用同一条弦所对的圆周角相等求行∠CFE=45°,(2)作OM⊥AB点M,连接OF,利用两条直线垂直相交求出交点M的坐标,利用勾股定理求出FM2,再求出FG2,再根据式子写出b的范围,(3)当b=5时,直线与圆相切,存在点P,使∠CPE=45°,再利用两条直线垂直相交求出交点P的坐标,解答:解:(1)连接CD,EA,∵DE是直径,∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,(2)①如图,作OM⊥AB点M,连接OF,∵OM⊥AB,直线的函数式为:y=﹣x+b,∴OM所在的直线函数式为:y=x,∴交点M(b,b)∴OM2=(b)2+(b)2,∵OF=4,∴FM2=OF2﹣OM2=42﹣(b)2﹣(b)2,∵FM=FG,∴FG2=4FM2=4×[42﹣(b)2﹣(b)2]=64﹣b2=64×(1﹣b2),∵直线AB与有两个交点F、G.∴4≤b<5,(3)如图,当b=5时,直线与圆相切,∵DE是直径,∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,∴存在点P,使∠CPE=45°,连接OP,∵P是切点,∴OP⊥AB,∴OP所在的直线为:y=x,又∵AB所在的直线为:y=﹣x+5,∴P(,).点评:本题主要考查了圆与一次函数的知识,解题的关键是作出辅助线,明确两条直线垂直时K的关系.11 (2014•扬州,第25题,10分)如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.(1)求证:DE∥BC;(2)若AF=CE,求线段BC的长度.(第3题图)考点:切线的性质;弧长的计算.分析:(1)要证明DE∥BC,可证明∠EDA=∠B,由弧DE的长度为4π,可以求得∠DOE 的度数,再根据切线的性质可求得∠EDA的度数,即可证明结论.(2)根据90°的圆周角对的弦是直径,可以求得EF,的长度,借用勾股定理求得AE与CF 的长度,即可得到答案.解答:解:(1)证明:连接OD、OE,∵OD是⊙O的切线,∴OD⊥AB,∴∠ODA=90°,又∵弧DE的长度为4π,∴,∴n=60,∴△ODE是等边三角形,∴∠ODE=60°,∴∠EDA=30°,∴∠B=∠EDA,∴DE∥B C.(2)连接FD,∵DE∥BC,∴∠DEF=90°,∴FD是⊙0的直径,由(1)得:∠EFD=30°,FD=24,∴EF=,又因为∠EDA=30°,DE=12,∴AE=,又∵AF=CE,∴AE=CF,∴CA=AE+EF+CF=20,又∵,∴BC=60.点评:本题考查了勾股定理以及圆的性质的综合应用,解答本题的关键在于900的圆周角对的弦是直径这一性质的灵活运用.12.(2014•滨州,第21题8分)如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.考点:扇形面积的计算;等腰三角形的性质;切线的判定;特殊角的三角函数值.专题:几何综合题;压轴题.分析:(1)连接O C.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;(2)阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.解答:(1)证明:连接O C.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=90°.∴CD是⊙O的切线.(2)解:∵∠A=30°,∴∠1=2∠A=60°.∴S扇形BOC=.在Rt△OCD中,∵,∴.∴.∴图中阴影部分的面积为.点评:此题综合考查了等腰三角形的性质、切线的判定方法、扇形的面积计算方法.13.(2014•德州,第22题10分)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.考点:切线的判定;勾股定理;圆周角定理.分析:(1)①连接BD,先求出AC,在RT△ABC中,运用勾股定理求AC,②由CD平分∠ACB,得出AD=BD,所以RT△ABD是直角等腰三角形,求出AD,②连接OC,(2)由角的关系求出∠PCB=∠ACO,可得到∠OCP=90°,所以直线PC与⊙O相切.解答:解:(1)①如图,连接BD,∵AB是直径,∴∠ACB=∠ADB=90°,在RT△ABC中,AC===8,②∵CD平分∠ACB,∴AD=BD,∴Rt△ABD是直角等腰三角形,∴AD=AB=×10=5cm;(2)直线PC与⊙O相切,理由:连接OC,∵OC=OA,∴∠CAO=∠OCA,∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠CAE+∠ACE,∵CD平分∠ACB,∴∠ACE=∠ECB,∴∠PCB=∠ACO,∵∠ACB=90°,∴∠OCP=∠OCB+∠PCB=∠ACO+∠OCB=∠ACB=90°,OC⊥PC,∴直线PC与⊙O相切.点评:本题主要考查了切线的判定,勾股定理和圆周角,解题的关键是运圆周角和角平分线及等腰三角形正确找出相等的角.14.(2014•菏泽,第18题10分)如图,AB是⊙O的直径,点C在⊙O上,连接BC,AC,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若=,求cos∠ABC的值.考点:切线的判定;勾股定理.分析:(1)如图,连接O C.欲证DE是⊙O的切线,只需证得OC⊥DE;(2)由=,可设CE=2k(k>0),则DE=3k,在Rt△DAE中,由勾股定理求得AE==2k.则tanE==.所以在Rt△OCE中,tanE==.在Rt△AOD中,由勾股定理得到OD==k,故cos∠ABC=cos∠AOD==.解答:(1)证明:如图,连接O C.∵AD是过点A的切线,AB是⊙O的直径,∴AD⊥AB,∴∠DAB=90°.∵OD∥BC,∴∠1=∠2,∠3=∠4.∵OC=OB,∴∠2=∠4.∴∠1=∠3.在△COD和△AOD中,,∴△COD≌△AOD(SAS)∴∠OCD=∠DAB=90°,即OC⊥DE于点C.∵OC是⊙O的半径,∴DE是⊙O的切线;(2)解:由=,可设CE=2k(k>0),则DE=3k,∴AD=DC=k.∴在Rt△DAE中,AE==2k.∴tanE==.∵在Rt△OCE中,tanE==.∴=,∴OC=OA=.∴在Rt△AOD中,OD==k,∴cos∠ABC=cos∠AOD==.点评:本题考查了切线的判定与性质.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.圆与圆的位置关系一、选择题1. (2014•扬州,第5题,3分)如图,圆与圆的位置关系没有()(第1题图)A.相交B.相切C.内含D.外离考点:圆与圆的位置关系分析:由其中两圆有的位置关系是:内切,外切,内含、外离.即可求得答案.解答:解:∵如图,其中两圆有的位置关系是:内切,外切,内含、外离.∴其中两圆没有的位置关系是:相交.故选A.点评:此题考查了圆与圆的位置关系.注意掌握数形结合思想的应用.2.(2014•济宁,第10题3分)如图,两个直径分别为36cm和16cm的球,靠在一起放在同一水平面上,组成如图所示的几何体,则该几何体的俯视图的圆心距是()A.10cm.B.24cm C.26cm D.52cm考点:简单组合体的三视图;勾股定理;圆与圆的位置关系.分析:根据两球相切,可得球心距,根据两圆相切,可得圆心距是半径的和,根据根据勾股定理,可得答案.解答:解:球心距是(36+16)÷2=26,两球半径之差是(36﹣16)÷2=10,俯视图的圆心距是=24cm,故选:B.点评:本题考查了简单组合体的三视图,利用勾股定理是解题关键.二.填空题1.(2014年四川资阳,第14题3分)已知⊙O1与⊙O2的圆心距为6,两圆的半径分别是方程x2﹣5x+5=0的两个根,则⊙O1与⊙O2的位置关系是相离.考点:圆与圆的位置关系;根与系数的关系.分析:由⊙O1与⊙O2的半径r1、r2分别是方程x2﹣5x+5=0的两实根,根据根与系数的关系即可求得⊙O1与⊙O2的半径r1、r2的和,又由⊙O1与⊙O2的圆心距d=6,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵两圆的半径分别是方程x2﹣5x+5=0的两个根,∴两半径之和为5,解得:x=4或x=2,∵⊙O1与⊙O2的圆心距为6,∴6>5,∴⊙O1与⊙O2的位置关系是相离.故答案为:相离.点评:此题考查了圆与圆的位置关系与一元二次方程的根与系数的关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.三.解答题1. (2014年江苏南京,第26题)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.(第1题图)考点:圆的性质、两圆的位置关系、解直角三角形分析:(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径.(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切.所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差.分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值.解答:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,。
2014年中考数学总复习课件_第二部分热点题型攻略(共6种题型)
例1 (’13 重庆A卷)万州某运输公司的一艘轮 船在长江上航行,往返于万州、朝天门两地,假设 轮船在静水中的速度不变,长江的水流速度不变, 该轮船从万州出发,逆水航行到朝天门,停留一段 时间(卸货、装货、加燃料等),又顺水航行返回 万州,若该轮船从万州出发后所用的时间为 x(小 时),轮船距万州的距离为 y(千米),则下列各 图中,能够反映 y 与 x 之间函数关系的大致图象是 ( C)
为
④正确
热点题型攻略
【点评拓展】解答此类问题,首先要明白二次函数 的表达式中各系数所代表的意义以及系数正负和大 小对函数图象的影响:a>0,函数开口向上,a<0, 函数开口向下;b值的大小影响函数的开口大小,b 值越大函数开口越大;a和b值的符号同时决定了函 数图象对称轴的位置,ab>0对称轴在x轴负半轴, ab<0对称轴在x轴正半轴,当b=0时,对称轴为y 坐标轴.|c|值代表函数图象在y坐标轴上的截距,c >0时截点在y轴正半轴,c<0时截点在y轴负半 轴.其次是要清楚二次函数的顶点坐标和对称轴的 b b 4ac b2 表达式,顶点坐标为 ( , ,对称轴为 x )
y 4a 2b c 0 ,∴③错误
热点题型攻略
∵二次函数 y ax 2 bx c 图象的对称轴
x 1 ∴点 (5, y1 ) 关于对称轴的对称 ④ √ 点的坐标是 (3, y1 ) ,根据当x 1时,y随 5 x的增大而增大,∵ 3,∴ y2 y1 ,∴ 2
考虑,分析在不同的阶段运动的变化情况,
考虑函数图象的变化规律,明白每段直线所 代表的实际意义及拐点的含义和实际情况.
返回目录
热点题型攻略
类型二 二次函数图象性质
2 y ax bx c 例 (’13 烟台)如图是二次函数
2014年中考数学第二轮复习--规律探索型问题-1.doc
2014年中考数学第二轮复习--规律探索型问题规律探索型问题在中考中的背景:这类问题主要是考察学生观察、分析、归纳问题的能力,常常是通过观察、分析、归纳构建数学模型来最终解决问题。
因此这类问题常常出现在中考试题中。
1.求1+2+22+23+…+22013的值,可令S=1+2+22+23+…+22013,则2S=2+22+23+24+…+22013,因此2S ﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52013的值为( ) A .52013﹣1 B .52013﹣1 C . D .2.观察下表:根据表中数的排列规律,B+D=_________.3.在平面直角坐标系xOy 中,点1A ,2A ,3A ,…和1B ,2B ,3B ,…分别在直线y kx=和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果A 1(1,1),] A 2(23,27),那么点n A 的纵坐标是_ _____.4.已知整数a 1,,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=-11a +,a 3=-22a +,a 4=-33a +,…依次类推,则a 2013的值为( )A .-1005B .-1006C .-1007D . -20135.如图,直角三角形纸片AB C 中,A B=3,A C=4D 为斜边BC 中点,第1次将纸片折叠,使点A 与点D 重合,折痕与AD 交于点P 1;设P 1D 的中点为D 1,第2次将纸片折叠,使点A 与点D 1重合,折痕与AD 交于P 2;设P 2D 1的中点为D 2,第3次将纸片折叠,使点A 与点D 2重合,折痕与AD 交于点P 3;…;设P n -1D n -2的中点为D n -1,第n 次将纸片折叠,使点A 与点D n -1重合,折痕与AD 交于点P n (n >2),则AP 6的长为( )A. 125235⨯B. 95253⨯C. 146235⨯D. 117253⨯6.如图,在一单位为1的方格纸上,△123A A A ,△345A A A ,△567A A A ,……,都是斜边 在x 轴上、斜边长分别为2,4,6,……的等腰直角三角形.若△123A A A 的顶点坐标分别为1A (2,0),2A (1,-1),3A (0,0),则依图中所示规律,2012A 的坐标为7.设a i ≠0(i =1,2,……2013),且满足11a a +22a a +…+20122012a a =1968,则直线y =a i x +i(i =1,2,…2013)的图象经过第一、二、四象限的概率为8.如图,已知A 1,A 2,A 3,…A n ,…是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n-1A n …=1,分别过点A 1,A 2,A 3,…A n ,…作x 轴的垂线交反比例函数y =1x(x >0)的图象于点B 1,B 2,B 3,…B n ,…,过点B 2作B 2P 1⊥A 1B 1于点P 1,过点B 3作B 3P 2⊥A 2B 2于点P 2……,记△B 1P 1B 2 的面积为S 1,△B 2P 2B 3的面积为S 2……,△B n P n B n+1的面积为S n ,则S 1+S 2+S 3+…+S n =9.如图,在标有刻度的直线L 上,从点A 开始,以AB=1为直径画半圆,记为第1个半圆;以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆;……,按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的 倍,第n 个半圆的面积为 。
2014年中考数学复习专题一-观察、归纳与猜想题(含答案)
专题一 观察、归纳与猜想题专题解法探究特点:观察、归纳与猜想题的特点是问题的结论或条件不直接给出,而常常是给出一列数、一列等式或一列图形的一部分,然后让考生通过观察、分析、概括、推理、猜想等一系列活动,逐步确定需要求的结论.解决这类问题的一般思路是通过对所给的具体结论进行全面、细致的观察、分析、比较,从中发现其变化规律,并由此猜想出一般性的结论,然后再给出合理的证明或加以运用.类型:观察、归纳与猜想题的主要类型有数字猜想型,数式规律型,图象变化猜想型,坐标变化型.热点知识:考查的知识有数与式的运算,平面直角坐标系,三角形、特殊四边形,几何变换,图形的组合等知识.解题策略:根据已有的图象与文字提供的信息或解题模式,进行适当的正向迁移和归纳推理,并通过计算或证明解决实际问题.知识归类探究1) 数字猜想型例1 某校生物教师李老师在实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,请你推测第n 组应该取种子数是__________粒.【解析】 本题实质是求数列3,5,7,9,…的排列规律,观察可知这组数是首项为3的一组奇数,故可猜想其规律为2n +1.【答案】 2n +1【思路点拨】 找出数列→观察数列→找出规律2) 数式规律型例2 观察下列计算:11×2=1-12 ,12×3=12-13,13×4=13-14,14×5=14-15,…,从计算结果中找出规律,利用规律计算11×2+12×3+13×4+14×5+…+12 012×2 013=__________. 【解析】 原式=(1-12)+(12-13)+(13-14)+(14-15)+…+(12 012-12 013)=1-12+12-13+13-14+14-15+…+12 012-12 013=1-12 013=2 0122 013.【答案】2 0122 013【思路点拨】通过题目所给规律,将所给出式子各项进行拆分,再计算.3)图形排列规律型例3搭建如图①的一顶帐篷需要17钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要__________根钢管.【解析】观察图形①可知搭建一顶帐篷要钢管17根,由②可知多串一顶多需11根,所以串n顶就需要[17+11(n-1)]根,所以串7顶帐篷需要钢管17+11×(7-1)=83根.【答案】83【思路点拨】观察每多一顶帐篷时需要的钢管增加的根数→发现规律→列出代数式→结果4)坐标变化型例4如图,矩形BCDE的各边分别平行于x轴和y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边做环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2 012次相遇地点的坐标是()A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)【解析】由题意知,甲乙第一次相遇时在点(-1,1),第二次相遇在点(-1,-1),第三次相遇在点(2,0),……以此类推,可知甲乙两物体每相遇三次是一个循环,因为2 012÷3的余数为2,所以第2 012次相遇地点的坐标为(-1,-1).故选D.【答案】D【思路点拨】 先分别找出前几次相遇时的坐标→发现规律→计算→结果专题跟踪训练1. 观察下面几组数:1,3,5,7,9,11,13,15,……2,5,8,11,14,17,20,23,……7,13,19,25,31,37,43,49,……这三组数具有共同的特点.现在有上述特点的一组数,第一个数是3,第三个数是11,则其第n 个数为( )A . 8n -5B . n 2+2C . 4n -1D . 2n 2-4n +52. 已知整数a 1、a 2、a 3、a 4…满足下列条件:a 1=0,a 2=-|a 1+1|,a 3=-|a 2+2|,a 4=-|a 3+3|…依次类推,则a 2 012的值为( )A . -1 005B . -1 006C . -1 007D . -2 0123. 一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是( )A . 3B . 4C . 5D . 64. 一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒移动一个单位,那么第35秒时质点所在位置的坐标是( )A . (4,0)B . (5,0)C . (0,5)D . (5,5)5. 某数学活动小组的20位同学站成一列做报数游戏,规律是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报(11+1),第2位同学报(12+1),第3位同学报(13+1),……这样得到的20个数的积为________. 6. 一个自然数的立方,可以“分裂”成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9;43=13+15+17+19;….若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的那个奇数是________.7. 如图,连接在一起的两个正方形的边长都为1 cm ,一个微型机器人由点A 开始按ABCDEFGA …的顺序沿正方形循环移动.①第一次到达G 点时移动了________cm ;②当微型机器人移动了2 012 cm 时,它停在________点.8. “数学王子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+…98+99+100=5 050.我们可以将高斯的做法归纳如下: 令S =1+2+3+…+98+99+100, ①S =100+99+98+…+3+2+1. ②①+②得2S =101×100所以S =101×100÷2=5 050请类比以上做法,回答下列问题:若n 为正整数,3+5+7+…+(2n +1)=168,则n =________.9. 观察数:根据表中数的排列规律,则B+D=________.10. 如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形,……如此下去,若正方形ABCD的边长记为a1,按上述方法所作的正方形的边长依次为a2,a3,a4,…,a n,则a n=______.11. 如图,用小棒摆下面的图形,图形(1)需要3根小棒,图形(2)需要7根小棒……照这样的规律继续摆下去,第n个图形需要________根小棒(用含n的代数式表示).12. 如图,直线y=3x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径交x轴于点A3,…,按此做法进行下去,点A5的坐标为________.13. 用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少颗黑色棋子?(2)第几个图形有2 013颗黑色棋子?请说明理由.14. 如图所示,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O.以OB、OC 为邻边作第1个平行四边形OBB1C,对角线相交于点A1;再以A1B1、A1C为邻边作第2个平行四边形A1B1C1C,对角线相交于点O1;再以O1B1、O1C1为邻边作第3个平行四边形O1B1B2C1……依次类推.(1)求矩形ABCD的面积;(2)求第1个平行四边形OBB1C、第2个平行四边形A1B1C1C和第6个平行四边形的面积.====Word 行业资料分享--可编辑版本--双击可删====源-于-网-络-收-集 参考答案1. C2. B3. C4. B5. 216. 417. 7 E8. 129. 23 10. (2)n -1 11. 4n -1 12. (16,0)13. 解:(1)第5个图形有18颗黑色棋子.(2)解法1:设第n 个图形有2 013颗黑色棋子,由题意,得3(n +1)=2 013解得n =670,∴第670个图形有2 013颗黑色棋子.解法2:2 013-33=670,∴第670个图形有2 013颗黑色棋子. 14. 解:(1)在Rt △ABC 中,BC =AC 2-AB 2=202-122=16,∴S 矩形ABCD =AB ·BC =12×16=192.(2)∵矩形ABCD 的对角线相交于点O ,∴S 矩形ABCD =4S △OBC . ∵四边形OBB 1C 是平行四边形,∴OB ∥CB 1,OC ∥BB 1, ∴∠OBC =∠B 1CB ,∠OCB =∠B 1BC .又∵BC =CB ,∴△OBC ≌△B 1CB ,∴S ▱OBB 1C =2S △OBC =12S 矩形ABCD =96. 同理,S 四边形A 1B 1C 1C =12S ▱OBB 1C =12×96=48. 第6个平行四边形的面积为126S 矩形ABCD =3.。
2014年中考数学解析版试卷分类汇编专题36:规律探索
32
63 32 确得到点的坐标
题 要考查了一次函数 象 点的坐标性质和坐标的变 规律 的规律是解题的 键
6.
2014•滨
第 18 题 4 分
计算 列各式的值
察所得结果 总结 在的规律
用得到的规律 得
= 102014
考点 题 分析
算术 方根 完全 方 式 规律型 先计算得到 =10=101 =1000=103 是 10 的整数次幂 这个指 =100=102 =1000=104 计算的结果都
二.填空题 1. 2014•珠海 第 10 题 4 分 如 直角边作等腰 Rt△OA1A2 OA2 在等腰 Rt△OAA1 中 ∠OAA1=90° OA=1 直角边作等腰 Rt△OA2A3 …则 OA4 的长度 OA1 8
考点 等腰直角 角形 题 规律型 分析 利用等腰直角 角形的性质 解答 解 △OAA1 及勾股定理分 求出各边长 进而得出答案
2
+ a2+1
2
得到 a12+a22+…+a20142+2152 然后设
有 x 个 1 y 个﹣1
z 个 0 得到方程
解方程
即 解答 解
确定 确的答案 a1+1
2
+ a2+1
2
+…+ a2014+1
2
=a12+a22+…+a20142+2 a1+a2+…+a2014 +2014
﹣1
A3 的横坐标是 1+2=3=22﹣1 A4 的横坐标是 1+2+4=7=23﹣1
即点 A4 的坐标 据
2014年中考数学专题十规律探索与开放性问题
知识结构
典例精选
能力评估检测
(2)由 (1)知 AB1=6+5, AB2= 6+ 2×5, 依此类推, AB3= 6+ 3× 5,…, ABn= 6+5n,令 ABn= 6+5n= 56,所以 n=10. 规律方法 图形类规律探究题目是中考常见的题目之一 .一般 地,图形个数一般都与序号相联系,可观察前面给出 的简单的图形,找出序号与图形个数之间的联系,将 这个规律用代数式表示,然后运用得到的规律求解.
知识结构
典例精选
能力评估检测
知识结构
典例精选
能力评估检测
(2013· 湖 州 ) 将 连续的正整 数按以下规 律排 列,则位于第 7 行、第七列的数 x 是 85.
知识结构
典例精选
能力评估检测
【思路点拨】先根据第 1 行的第一列与第二列相 差 2,往后分别相差 3,4,5,6,7,第 2 行的第一列与第二 列相差 3,往后分别相差 4,5,6,7,8,第 3 行的第一列与 第二列相差 4,往后分别相差 5,6,7,8,9,由此得出第 7 行 的 第一 列与 第 二列 分别 相差 8, 往 后分 别相 差 9,10,11,12,13,从而求出答案. 解析: 第 1 行的第一列与第 2 列相差 2, 第二列与 第三列相差 3,第三列与第四列相差 4,…,第六列与 第七列相差 7;
知识结构
典例精选
能力评估检测
【思路点拨】(1)可以根据全等三角形的不同的判 定方法选择添加不同的条件;(2)根据全等三角形的判 定方法证明即可. 解: (2)选取∠ C=∠ E 为条件.理由如下: ∠ A=∠ A, 在△ ABC 和△ ADE 中,∠ C=∠ E, AB= AD, ∴△ ABC≌△ ADE(AAS).
中考数学专题复习探索规律问题
专题探索规律问题解读考点考点归纳归纳 1:数字猜想型基础知识归纳:数字规律问题主要是在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.注意问题归纳:要认真分析比较,从而发现题中蕴涵的数量关系,通过猜想,再通过计算解决问题.例1一列数:0,-1,3,-6,10,-15,21,……,按此规律第n个数为归纳 2:数式规律型基础知识归纳:数式规律问题主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.注意问题归纳:要注意观察、分析、归纳、并验证得出结论.例2有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果yn= 用含字母x和n的代数式表示.归纳 3:图形规律型基础知识归纳:图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,要注意对应思想和数形结合.注意问题归纳:要注意分析图形的组成与分拆过程中的特点,要注意数形结合.例3如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为.归纳 4:数形结合猜想型基础知识归纳:数形结合猜想型问题首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系,数形结合总结出图形的变化规律,进而解决相关问题.注意问题归纳:要注意观察图形,发现图形的变化方式,用好数形结合思想解决问题.例4如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;……,按此规律继续旋转,直至得到点P2014为止.则AP2014= .归纳5:动态规律型基础知识归纳:动态规律问题是探求图形在运动变换过程中的变化规律,解答此类问题时,要将图形每一次的变化与前一次变化进行比较,明确哪些结果发生了变化,哪些结果没有发生变化,从而逐步发现规律.注意问题归纳:要注意探求图形的变化规律,明确发生变化的与没有发生变化的量,从而逐步发现规律.例5如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,……,An分别过这些点做x轴的垂线与反比例函数y=1x的图象相交于点P1,P2,P3,P4,……Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,……,PnBn﹣1⊥An﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,……,Bn﹣1,连接P1P2,P2P3,P3P4,……,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,……,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为.2年中考2015年题组1.2015绵阳将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=A.14 B.15 C.16 D.17考点:1.规律型:图形的变化类;2.综合题.2.2015十堰如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是A.222 B.280 C.286 D.2923.2015荆州把所有正奇数从小到大排列,并按如下规律分组:1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,…,现有等式Am=i,j表示正奇数m 是第i组第j个数从左往右数,如A7=2,3,则A2015=A.31,50 B.32,47 C.33,46 D.34,424.2015包头观察下列各数:1,43,97,1615,…,按你发现的规律计算这列数的第6个数为A.2531 B.3635 C.47 D.6263考点:1.规律型:数字的变化类;2.综合题.5.2015重庆市下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为A.21 B.24 C.27 D.306.2015泰安下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为A.135 B.170 C.209 D.252考点:1.规律型:数字的变化类;2.综合题.7.2015重庆市下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是A.32 B.29 C.28 D.26考点:1.规律型:图形的变化类;2.综合题.8.2015崇左下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有A.160 B.161 C.162 D.1639.2015贺州观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是A.0 B.3 C.4 D.8考点:1.尾数特征;2.规律型;3.综合题.10.2015宜宾如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为A .231π B.210π C.190π D.171π11.2015鄂州在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y 轴上,点C1、E1、E2、C2、E3、E4、C3…在x 轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是A .201421)(B .201521)(C .201533)(D .201433)(答案D .考点:1.正方形的性质;2.规律型;3.综合题.12.2015庆阳在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1n 是正整数的顶点A2n+1的坐标是A .4n ﹣3.2n ﹣3.3 D .313.2015宁德如图,在平面直角坐标系中,点A1,A2,A3…都在x 轴上,点B1,B2,B3…都在直线y x 上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是A .20142,20142B .20152,20152C .20142,20152D .20152,20142考点:1.一次函数图象上点的坐标特征;2.等腰直角三角形;3.规律型;4.综合题.14.2015河南省如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是A .2014,0B .2015,﹣1C .2015,1D .2016,0考点:1.规律型:点的坐标;2.规律型;3.综合题;4.压轴题.15.2015张家界任意大于1的正整数m 的三次幂均可“分裂”成m 个连续奇数的和,如:5323+=,119733++=,1917151343+++=,…按此规律,若3m 分裂后其中有一个奇数是2015,则m 的值是A .46B .45C .44D .4316.2015邵阳如图,在矩形ABCD 中,已知AB=4,BC=3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A 在整个旋转过程中所经过的路程之和是A .2015π B.π C .3018π D.3024π17.2015威海如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为A .92432B .98132C .9812 D .88132考点:1.正多边形和圆;2.规律型;3.综合题.18.2015日照观察下列各式及其展开式:222()2a b a ab b +=++;33223()33a b a a b ab b +=+++;4432234()464a b a a b a b ab b +=++++;554322345()510105a b a a b a b a b ab b +=+++++;…请你猜想10()a b +的展开式第三项的系数是A .36B .45C .55D .66考点:1.完全平方公式;2.规律型;3.综合题.19.2015宁波如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A2处,称为第1次操作,折痕DE 到BC 的距离记为h1;还原纸片后,再将△ADE 沿着过AD 中点D1的直线折叠,使点A 落在DE 边上的A2处,称为第2次操作,折痕D1E1到BC 的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC 的距离记为h2015,到BC 的距离记为h2015.若h1=1,则h2015的值为A .201521B .201421C .2015211- D .2014212-考点:1.相似三角形的判定与性质;2.三角形中位线定理;3.翻折变换折叠问题;4.规律型;5.综合题.20.2015常州数学家歌德巴赫通过研究下面一系列等式,作出了一个着名的猜想. 4=2+2; 12=5+7;6=3+3; 14=3+11=7+7;8=3+5; 16=3+13=5+11;10=3+7=5+5 18=5+13=7+11;…通过这组等式,你发现的规律是 请用文字语言表达.21.2015淮安将连续正整数按如下规律排列:若正整数565位于第a 行,第b 列,则a+b= .22.2015雅安若1m ,2m ,…,2015m 是从0,1,2这三个数中取值的一列数,若122015...m m m +++=1525,222122015(1)(1)...(1)1510m m m -+-++-=,则1m ,2m ,…,2015m 中为2的个数是 .23.2015桂林如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,…,按此规律,第n 行有 个点.24.2015梧州如图是由等圆组成的一组图,第①个图由1个圆组成,第②个图由5个圆组成,第③个图由12个圆组成…按此规律排列下去,则第⑥个图由 个圆组成.25.2015百色观察下列砌钢管的横截面图:则第n 个图的钢管数是 用含n 的式子表示26.2015北海如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n等份,分点分别为P1,P2,P3,…,Pn﹣1,过每个分点作x 轴的垂线分别交直线AB 于点T1,T2,T3,…,Tn ﹣1,用S1,S2,S3,…,Sn ﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△Tn ﹣1Pn ﹣2Pn ﹣1的面积,则当n=2015时,S1+S2+S3+…+Sn﹣1= .考点:1.一次函数图象上点的坐标特征;2.规律型;3.综合题.27.2015南宁如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点,按照这种移动规律移动下去,第n次移动到点An,如果点An 与原点的距离不小于20,那么n 的最小值是 .28.2015常德取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:,如果自然数m 最少经过7步运算可得到1,则所有符合条件的m 的值为 .29.2015株洲“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为12b S a =+-,孔明只记得公式中的S 表示多边形的面积,a 和b 中有一个表示多边形边上含顶点的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a 还是b 表示多边形内部的整点个数,请你选择一些特殊的多边形如图1进行验证,得到公式中表示多边形内部的整点个数的字母是 ,并运用这个公式求得图2中多边形的面积是 .30.2015内江填空:()()a b a b -+= ;22()()a b a ab b -++= ;3223()()a b a a b ab b -+++= .2猜想:1221()(...)n n n n a b a a b ab b -----++++= 其中n 为正整数,且2n ≥.3利用2猜想的结论计算:98732222...222-+-+-+. 31.2015南平定义:底与腰的比是51-的等腰三角形叫做黄金等腰三角形.如图,已知△ABC 中,AB=BC,∠C=36°,BA1平分∠ABC 交AC 于A1.AB=AA1A C;122探究:△ABC是否为黄金等腰三角形请说明理由;提示:此处不妨设AC=13应用:已知AC=a,作A1B1∥AB交BC于B1,B1A2平分∠A1B1C交AC于A2,作A2B2∥AB 交B2,B2A3平分∠A2B2C交AC于A3,作A3B3∥AB交BC于B3,…,依此规律操作下去,用含a,n的代数式表示An﹣1An.n为大于1的整数,直接回答,不必说明理由考点:1.相似形综合题;2.新定义;3.探究型;4.综合题;5.压轴题;6.规律型.33.2015重庆市如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.1请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除并说明理由;2已知一个能被11整除的三位“和谐数”,设其个位上的数字x1≤x≤4,x为自然数,十位上的数字为y,求y与x的函数关系式.2014年题组1.2014年南平中考如图,将1,若规定a,b表示第a排第b列的数,则8,2与2014,2014表示的两个数的积是A.B.C. D.12.2014年株洲中考在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位……依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是A.66,34 B.67,33 C.100,33 D.99,343.2014年宜宾中考如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,……An分别是正方形的中心,则这n个正方形重叠部分的面积之和是A.n B.n-1 C.n11()4D.n1()4考点:1.正方形的性质;2.全等三角形的判定与性质.4.2014年崇左中考如图,在平面直角坐标系中,A1,1,B﹣1,1,C﹣1,﹣2,D1,﹣2.把一条长为2014个单位长度且没有弹性的细线线的粗细忽略不计的一端固定在点A处,并按A﹣B﹣C﹣D﹣A……的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是A.﹣1,0 B.1,﹣2 C.1,1 D.﹣1,﹣15.2014年百色中考观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,……由以上规律可以得出第n个等式为.6.2014年衡阳中考 如图,在平面直角坐标系xOy 中,已知点0M 的坐标为()10,,将线段0OM 绕原点O 逆时针方向旋转45,再将其延长至点1M ,使得100M M OM ⊥,得到线段1OM ;又将线段1OM 绕原点O 逆时针方向旋转45,再将其延长至点2M ,使得211M M OM ⊥,得到线段2OM ;如此下去,得到线段3OM 、4OM 、5OM 、…….根据以上规律,请直接写出线段2014OM 的长度为 .答案2014.7.2014年抚顺中考如图,已知CO1是△ABC 的中线,过点O1作O1E1∥AC 交BC 于点E1,连接AE1交CO1于点O2;过点O2作O2E2∥AC 交BC 于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC 交BC 于点E3,……,如此继续,可以依次得到点O4,O5,……,On 和点E4,E5,……,En .则OnEn= AC .用含n 的代数式表示考点:1.相似三角形的判定与性质;2.三角形中位线定理.8.2014年资阳中考如图,以O0,0、A2,0为顶点作正△OAP1,以点P1和线段P1A 的中点B 为顶点作正△P1BP2,再以点P2和线段P2B 的中点C 为顶点作△P2CP3,……,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是9.2014年宜宾中考在平面直角坐标系中,若点Px,y 的坐标x 、y 均为整数,则称点P 为格点,若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如图中△ABC 是格点三角形,对应的S=1,N=0,L=4.1求出图中格点四边形DEFG 对应的S,N,L 的值.2已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应的N=82,L=38,求S的值.考点:1.规律型:图形的变化类; 2.二元一次方程组的应用.10.2014年凉山中考实验与探究:三角点阵前n行的点数计算如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第n行有n个点……容易发现,10是三角点阵中前4行的点数约和,你能发现300是前多少行的点数的和吗如果要用试验的方法,由上而下地逐行的相加其点数,虽然你能发现1+2+3+4+……+23+24=300.得知300是前24行的点数的和,但是这样寻找答案需我们先探求三角点阵中前n行的点数的和与n的数量关系前n行的点数的和是1+2+3+……+n﹣2+n﹣1+n,可以发现.2×1+2+3+……+n﹣2+n﹣1+n=1+2+3+……+n﹣2+n﹣1+n+n+n﹣1+n﹣2+……3+2+1把两个中括号中的第一项相加,第二项相加……第n项相加,上式等号的后边变形为这n个小括号都等于n+1,整个式子等于nn+1,于是得到1+2+3+……+n﹣2+n﹣1+n=12nn+1这就是说,三角点阵中前n项的点数的和是12nn+1下列用一元二次方程解决上述问题设三角点阵中前n行的点数的和为300,则有12nn+1整理这个方程,得:n2+n﹣600=0解方程得:n1=24,n2=25根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300.请你根据上述材料回答下列问题:1三角点阵中前n行的点数的和能是600吗如果能,求出n;如果不能,试用一元二次方程说明道理.2如果把图中的三角点阵中各行的点数依次换成2、4、6、……、2n、……,你能探究处前n行的点数的和满足什么规律吗这个三角点阵中前n行的点数的和能使600吗如果能,求出n;如果不能,试用一元二次方程说明道理.1年模拟1.2015届山东省济南市平阴县中考二模在平面直角坐标系xOy中,对于点Px,y,我们把点P-y+1,x+1叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….例如:点A1的坐标为3,1,则点A2的坐标为0,4,…;若点A1的坐标为a,b,则点A2015的坐标为A.-b+1,a+1 B.-a,-b+2 C.b-1,-a+1 D.a,b2.2015届山东省潍坊市昌乐县中考一模如图,下面是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图 A2多出“树枝”A.32 B.56 C.60 D.643.2015届山西省晋中市平遥县九年级下学期4月中考模拟如图,四边形ABCD 中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形AnBnCnDn.下列结论正确的是①四边形A4B4C4D4是菱形;②四边形A3B3C3D3是矩形;③四边形A7B7C7D7周长为;④四边形AnBnCnDn面积为.A.①②③ B.②③④ C.①③④ D.①②③④4.2015届广东省深圳市龙华新区中考二模如图,已知直线y=-12x+2与x轴交于点B,与y轴交于点A.过线段AB的中点A1做A1B1⊥x轴于点B1,过线段A1B的中点A2作A2B2⊥x轴于点B2,过线段A2B的中点A3作A3B3⊥x轴于点B3…,以此类推,则△AnBnBn-1的面积为A .112n -B .12nC .114n -D .14n5.2014-2015学年山东省潍坊市诸城市实验中学中考三模如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO 在y 轴上,点B1,B2,B3,…都在直线y=33x 上,则A2015的坐标是 .考点:1.一次函数图象上点的坐标特征;2.等边三角形的性质;3.规律型.6.2015届北京市平谷区中考二模在平面直角坐标系中,点A,B,C 的坐标分别为()1,0,()0,1,()1,0-.一个电动玩具从坐标原点O 出发,第一次跳跃到点P1,使得点P1与点O 关于点A 成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B 成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C 成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A 成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B 成中心对称;.…照此规律重复下去.则点P3的坐标为 ;点Pn 在y 轴上,则点Pn 的坐标为 .7.2015届北京市门头沟区中考二模在平面直角坐标系xOy 中,矩形OABC 如图放置,动点P 从0,3出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2次碰到矩形的边时,点P 的坐标为 ;当点P 第6次碰到矩形的边时,点P 的坐标为 ;当点P 第2015次碰到矩形的边时,点P 的坐标为____________.答案7,4, 0,3 ,1,4.8.2015届安徽省安庆市中考二模一组按规律排列的式子:,,,,…则第n 个式子是 n为正整数.9.2015届山东省威海市乳山市中考一模在直角坐标系xOy中,对于点Px,y,我们把点P′y+1,-x+1叫做点P的影子点.已知点A1的影子点为A2,点A2的影子点为A3,点A3的影子点为A4,…,这样依次得到点A1,A2,A3,…,An,…若点A1的坐标为a,b,对于任意的正整数n,点An均在y轴的右侧,则a,b应满足的条件是.10.2015届山东省日照市中考模拟如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A1,3,A12,3,A24,3,A38,3,B2,0,B14,0,B28,0,B316,0.1观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将△OA3B3变换成△OA4B4,则A4的坐标是.2若按1题找到的规律将△OAB进行了n次变换,得到的△OAnBn,比较每次变换中三角形顶点坐标有何变化,找出规律,推出Bn的坐标是.11.2015届广东省佛山市初中毕业班综合测试如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的两条邻边长分别为6和8,则第n个菱形的周长为.12.2015届湖北省黄石市6月中考模拟如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An﹣1AnBn﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于2011的阴影三角形共有__________个.13.2015届广东省佛山市初中毕业班综合测试若a是不为1的有理数,我们把11a-称为a的差倒数.如:2的差倒数是112-=-1,-1的差倒数是111(1)2=--.已知a1=-13,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推.1分别求出a2,a3,a4的值;2求a1+a2+a3+…+a2160的值.。
2014年中考数学二轮复习题型:猜想型问题
2014年中考数学二轮复习题型:猜想型问题进入中考二轮复习阶段,考生们应该进行专项的有针对性的复习,哪里薄弱攻哪里?中考数学题型中有这么一类——归纳猜想型问题的中考题,高分网小编和考生分享下这类题型的特点及知识点分类,希望对大家有所帮助!
【猜想型问题的特点】
猜想是对研究的对象或问题,进行认真细致的观察,通过实验、分析、比较、联想、类比、归纳等,依据已有的材料知识,自己“发现”数学结论,作出符合一定的经验与事实的推测性想象的思维方法。
现代认知理论认为,学习是主体主动的意义建构活动,是主体头脑里建立和发展数学认知结构的过程,是数学活动及其经验内化的过程,而猜想是对抽象化的、形式化的数学进行思辨过程。
【猜想型问题的解决方法】
通过动手实践、自主探索,动脑独立思考,经过实验、操作、观察、类比、归纳、猜想等活动,自己“发现”数学结论。
同时,需要将猜想与动手操作有机的结合起来,并对此探索出来的结论进行证明。
依据“操作-猜想”与体验教学的相通性,根据自己的观察实验,在感性认知的基础上提出合理的猜想,在“手脑并用”中体会“观察--联想--类比--猜想”的思想方法,猜想也不是直观而苍白无力的主观判断,而是经过了观察、动手操作、测量,运用了测量归纳、类比验证等数学思想方法,得出来的符合一定的经验与事实的数学结论。
【猜想型问题的分类】
这一类题目,主要集中在数式规律、图形规律、数型规律、图形中的规律探索这几个方面,因而,根据其特点,我们将其分为:数式规律、图形规律、数型规律、探究图形中的规律这几类。
(完整word版)2014年中考数学二轮复习精品资料(归纳猜想型问题),推荐文档
2014年中考数学二轮复习精品资料归纳猜想型问题一、中考专题诠释归纳猜想型问题在中考中越来越被命题者所注重。
这类题要求根据题目中的图形或者数字,分析归纳,直观地发现共同特征,或者发展变化的趋势,据此去预测估计它的规律或者其他相关结论,使带有猜想性质的推断尽可能与现实情况相吻合,必要时可以进行验证或者证明,依此体现出猜想的实际意义。
二、解题策略和解法精讲归纳猜想型问题对考生的观察分析能力要求较高,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律。
其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程。
相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到。
由于猜想本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的持续热点。
三、中考考点精讲考点一:猜想数式规律通常给定一些数字、代数式、等式或者不等式,然后猜想其中蕴含的规律。
一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。
例1 (2013•巴中)观察下面的单项式:a,-2a2,4a3,-8a4,…根据你发现的规律,第8个式子是.思路分析:根据单项式可知n为双数时a的前面要加上负号,而a的系数为2(n-1),a的指数为n.解:第八项为-27a8=-128a8.点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.对应训练1.(2013•株洲)一组数据为:x,-2x2,4x3,-8x4,…观察其规律,推断第n个数据应为.1.(-2)n-1x n考点二:猜想图形规律根据一组相关图形的变化规律,从中总结通过图形的变化所反映的规律。
2014年中考数学第二轮复习--规律探索型问题-3.doc
2014年中考数学第二轮复习--规律探索型问题答案1.解析:设S=1+5+52+53+…+52013,则5S=5+52+53+54+…+52013, 因此,5S ﹣S=52013﹣1,S=.点评:本题考查同底数幂的乘法,以及类比推理的能力.两式同时乘以底数,再相减可得s的值.2.解析:B 所在行的规律是每个数字等于前两个数字的和,所以A=3,B=8;D 所在行的规律是关于数字20左右对称,即D=15,所以B+D=23.点评:本题主要考查了学生观察和归纳能力,会从所给的数据和表格中寻求规律进行解题.找规律的问题,首先要从最基本的几个数字或图形中先求出数值,并进一步观察具体的变化情况,从中找出一般规律. 此类问题“横看成岭侧成峰”,随着观察角度的不同可有不同的规律寻求途径,但最总结果应“殊途同归”。
3.解析:把A 1(1,1),A 2(23,27)分别代入y kx b =+,可求得k=15,b=45,,所以1455y x =+,与x 轴交点代坐标为(-4,0),设A 3的纵坐标为m,则141423m m+=+++,解得m=293()42=,同理可得A 4的纵坐标为33()2,……,n A 的纵坐标是123-⎪⎭⎫⎝⎛n 。
点评:抓住坐标间的变化规律是解题的关键,解此类规律探索题一般可采用从特殊一般的归纳法。
4.解析:本题考查了有理数的计算规律.掌握探索规律的方法是关键.先由已知条件分别计算出a 1,,a 2,a 3,a 4…的值,再寻找规律 解:由于a 1=0,a 2=-11a +=-1,a 3=-22a +=-1,a 4=-33a +=-2,a 5=-2,a 6=-3,a 7=-3,a 8=-4,a 9=-4,a 10=-5,a 11=-5,a 12=-6, ……,所以a 2013=-20122=-1006,故选B . 点评:题考查探索、归纳和猜想的能力.探索应从简单到复杂、从特殊到一般、从具体到抽象进行归纳与猜想.5.解析:在Rt △ABC 中,AC=4,AB=3,所以BC=5,又D 是BC 的中点,所以AD=52,因为点A 、D 是一组对称点,所以AP 1=52×12,因为是D 1是D P 1的中点,所以A D 1=52×12×32,即AP 2=52×12×32×12,同理AP 3=52×12×(32×12)2,…AP n =52×12×(32×12)n-1,所以AP 6=52×12×(32×12)5=512532,故应选A .点评:找规律的问题,首先要从最基本的几个图形中先求出数值,并进一步观察具体的变化情况,从中找出一般规律.6.解析:画出图像可找到规律,下标为4n(n 为非负整数)的A 点横坐标为2,纵坐标为2n,则2012A 的坐标为(2,1006).点评:这类问题要善于总结,正确分析出题中所隐含的规律.7.解析:因为11a a 可能等于1,也可能等于-1,类似的22a a ,…,20122012a a 都具有这种现象,而11a a +22a a +…+20122012a a =1968,从11a a 到20122012a a 又有2013个比值,2013-1968=44,所以11a a ,22a a ,…,20122012a a 中一定有22个1和22个-1之间相加产生22个0,那么11a a ,22a a ,…,20122012a a 这些比值中会有22个-1,所以a i (i=1,2,…2013)中会有22个负数,则直线y =a i x +i (i =1,2,…2013)的图象经过第一、二、四象限的概率为222012=111006. 点评:直线y =a i x +i (i =1,2,…2013)经过第一、二、四象限要求a i <0,i >0,只要判断出a i (i =1,2,…2013)中有多少个负数,然后利用简易概率求法公式:P (A )=mn,求解即可.另外,解答此题需要良好的逻辑推理能力,对学生的思维能力要求较高,启示平时学习中要注意将数学思考变成习惯.8.解析:由OA 1=A 1A 2=A 2A 3=…=A n-1A n …=1,可得P 1B 2=P 2B 3=P 3B 4=…=P n B n+1=1,以及B 1(1,1),B 2(2,12),B 3(3,13),…,B n (n ,1n),B n+1(n +1,11n +),所以S 1+S 2+S 3+…+S n =12B 1P 1·P 1B 2+12B 2P 2·P 2B 3+…12B n P n ·P n B n+1=12( B 1P 1+B 2P 2+…B n P n )=12( 1-12+12-13+…+1n -11n +)=12( 1-11n +)=2(1)n n +. 点评:各地中考经常将反比例函数与三角形、矩形的面积结合在一起考查,本题属于这类问题中的较难问题.解答时需注意:1.耐心、认真阅读题意,抓住各三角形的水平直角边都等于1这一特征,从而将面积和转化为竖直直角边和的一半;2.能用解析思想表达出B 1,B 2,B 3,…,B n 的坐标,进而表达出所有直角三角形竖直直角边的长;3.具有一定的数式规律探究能力.9.解析:根据规律找出每个半圆的半径,第n 个半圆的直径为2n -1。
2014年中考数学二轮复习专题(一)猜想规律(含答案)
2014年中考数学二轮复习系列(一)猜想规律专题一、中考要求能够根据题目中的图形或者数字直观地发现共同特征,或者发展变化的趋势,通过观察、归纳,探索发现这些图形或数字所蕴藏的数学本质,必要时可以进行验证或者证明,依此体现出规律的实际意义。
二、问题类型图1三、解题策略和解法精讲猜想规律型的问题难度相对较小,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律。
其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程。
相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到。
由于猜想本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的持续热点。
四、考点分析1、猜想数式规律通常给定一些数字、代数式、等式或者不等式,然后猜想其中蕴含的规律。
一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。
例1 ( 2013贵州省黔东南州,16,4分)观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则1+3+5+…+2013的值是 .分析:根据已知数字变化规律,得出连续奇数之和为数字个数的平方,进而得出答案.解:∵1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,∴1+3+5+…+2013=()2=10072=1014049.故答案为:1014049.【即时检测1】(2013·山西)一组按一定规律排列的式子:个式子是则第n aa a a ,...,7,5,3,8642【方法指导】对于数字规律题,有如下的步骤: 1).计算前几项,一般算出四五项;2).找出几项的规律,这个规律或是循环,或是成一定的数列规律如等差,等比等。
2014年各地中考数学试卷解析版分类精品汇编开放性问题、规律探索
2014年各地中考数学试卷解析版分类汇编开放性问题、规律探索1. (2014•四川巴中)如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.考点:矩形的判定.分析:(1)根据全等三角形的判定方法,可得出当EH=FH,BE∥CF,∠EBH=∠FCH时,都可以证明△BEH≌△CFH,(2)由(1)可得出四边形BFCE是平行四边形,再根据对角线相等的平行四边形为矩形可得出BH=EH时,四边形BFCE是矩形.解答:(1)答:添加:EH=FH,证明:∵点H是BC的中点,∴BH=CH,在△△BEH和△CFH中,,∴△BEH≌△CFH(SAS);(2)解:∵BH=CH,EH=FH,∴四边形BFCE是平行四边形(对角线互相平分的四边形为平行四边形),∵当BH=EH时,则BC=EF,∴平行四边形BFCE为矩形(对角线相等的平行四边形为矩形).点评:本题考查了全等三角形的判定和性质以及平行四边形的判定,是基础题,难度不大.2. (2014•山东威海)猜想与证明:如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=DE.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.考点:四边形综合题分析:猜想:延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明.(1)延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明,(2)连接AE,AE和EC在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明,解答:猜想:DM=ME证明:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME.(1)如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME,故答案为:DM=ME.(2)如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.点评:本题主要考查四边形的综合题,解题的关键是利用正方形的性质及直角三角形的中线与斜边的关系找出相等的线段.3. (2014•山东枣庄)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.考点:全等三角形的判定与性质;平行四边形的判定与性质;矩形的判定专题:计算题.分析:(1)由DF与BE平行,得到两对内错角相等,再由O为AC的中点,得到OA=OC,又AE=CF,得到OE=OF,利用AAS即可得证;(2)若OD=AC,则四边形ABCD为矩形,理由为:由OD=AC,得到OB=AC,即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得证.解答:(1)证明:∵DF∥BE,∴∠FDO=∠EBO,∠DFO=∠BEO,∵O为AC的中点,即OA=OC,AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(AAS);(2)若OD=AC,则四边形ABCD是矩形,理由为:证明:∵△BOE≌△DOF,∴OB=OD,∴OA=OB=OC=OD,即BD=AC,∴四边形ABCD为矩形.点评:此题考查了全等三角形的判定与性质,矩形的判定与性质,以及平行线的性质,熟练掌握全等三角形的判定与性质是解本题的关键.4. (2014•山东烟台)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE 与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.考点:全等三角形,正方形的性质,勾股定理,运动与变化的思想.分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,再由勾股定理可得OC的长,再求CP即可.解答:(1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF.∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可证AE=DF,∠DAE=∠CDF延长FD交AE于点G,则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在Rt△ODC中,OC=,∴CP=OC﹣OP=.点评:本题主要考查了四边形的综合知识.综合性较强,特别是第(4)题要认真分析.5. (2014•浙江杭州,第23题,12分)复习课中,教师给出关于x的函数y=2kx2﹣(4kx+1)x﹣k+1(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.考点:二次函数综合题分析:①将(1,0)点代入函数,解出k的值即可作出判断;②首先考虑,函数为一次函数的情况,从而可判断为假;③根据二次函数的增减性,即可作出判断;④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求出顶点的纵坐标表达式,即可作出判断.解答:解:①真,将(1,0)代入可得:2k﹣(4k+1)﹣k+1=0,解得:k=0.运用方程思想;②假,反例:k=0时,只有两个交点.运用举反例的方法;③假,如k=1,﹣=,当x>1时,先减后增;运用举反例的方法;④真,当k=0时,函数无最大、最小值;k≠0时,y最==﹣,∴当k>0时,有最小值,最小值为负;当k<0时,有最大值,最大值为正.运用分类讨论思想.点评:本题考查了二次函数的综合,立意新颖,结合考察了数学解题过程中经常用到的几种解题方法,同学们注意思考、理解,难度一般.规律探索一、选择题1. (2014•山东威海)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2014的纵坐标为()A.0B.﹣3×()2013C.(2)2014D.3×()2013考点:规律型:点的坐标专题:规律型.分析:根据含30度的直角三角形三边的关系得OA2=OC2=3×;OA3=OC3=3×()2;OA4=OC4=3×()3,于是可得到OA2014=3×()2013,由于而2014=4×503+2,则可判断点A2014在y轴的正半轴上,所以点A2014的纵坐标为3×()2013.解答:解:∵∠A2OC2=30°,OA1=OC2=3,∴OA2=OC2=3×;∵OA2=OC3=3×,∴OA3=OC3=3×()2;∵OA3=OC4=3×()2,∴OA4=OC4=3×()3,∴OA2014=3×()2013,而2014=4×503+2,∴点A2014在y轴的正半轴上,∴点A2014的纵坐标为3×()2013.故选D.点评:本题考查了规律型:点的坐标:通过从一些特殊的点的坐标发现不变的因素或按规律变化的因素,然后推广到一般情况.也考查了含30度的直角三角形三边的关系.2. (2014•山东潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD 先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M的坐标变为( )A.(—2012,2) B.(一2012,一2) C. (—2013,—2) D. (—2013,2)考点:坐标与图形变化-对称;坐标与图形变化-平移.专题:规律型.分析:首先求出正方形对角线交点坐标分别是(2,2),然后根据题意求得第1次、2次、3次变换后的点M的对应点的坐标,即可得规律.解答:∵正方形ABCD,点A(1,3)、B(1,1)、C(3,1).∴M的坐标变为(2,2)∴根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第2014次变换后的点M的对应点的为坐标为(2-2014,2),即(-2012,2)故答案为A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键.3. (2014•山东烟台)将一组数,,3,2,,…,3,按下面的方式进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)考点:规律探索.分析:根据观察,可得,根据排列方式,可得每行5个,根据有序数对的表示方法,可得答案.解答:3=,3得被开方数是得被开方数的30倍,3在第六行的第五个,即(6,5),故选:D.点评:本题考查了实数,利用了有序数对表示数的位置,发现被开方数之间的关系是解题关键.4.(2014•十堰)根据如图中箭头的指向规律,从2013到2014再到2015,箭头的方向是以下图示中的()A.B.C.D.考点:规律型:数字的变化类分析:观察不难发现,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.解答:解:由图可知,每4个数为一个循环组依次循环,2013÷4=503…1,∴2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选D.点评:本题是对数字变化规律的考查,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.5.(2014•四川宜宾)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1D.n考点:正方形的性质;全等三角形的判定与性质专题:规律型.分析:根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n﹣1)个阴影部分的和.解答:解:由题意可得一个阴影部分面积等于正方形面积的,即是×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n﹣1.故选:B.点评:此题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.6.(2014•四川内江)如图,已知A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1、A2、A3、…、A n、A n+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,连接A1B2、B1A2、B2A3、…、A n B n+1、B n A n+1,依次相交于点P1、P2、P3、…、P n.△A1B1P1、△A2B2P2、△A n B n P n的面积依次记为S1、S2、S3、…、S n,则S n为()A.B.C.D.考点:一次函数图象上点的坐标特征.专题:规律型.分析:根据图象上点的坐标性质得出点B1、B2、B3、…、B n、B n+1各点坐标,进而利用相似三角形的判定与性质得出S1、S2、S3、…、S n,进而得出答案.解答:解:∵A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1、A2、A3、…、A n、A n+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,∴B1的横坐标为:1,纵坐标为:2,则B1(1,2),同理可得:B2的横坐标为:2,纵坐标为:4,则B2(2,4),B3(2,6)…∵A1B1∥A2B2,∴△A1B1P1∽△A2B2P1,∴=,∴△A1B1C1与△A2B2C2对应高的比为:1:2,∴A1B1边上的高为:,∴=××2==,同理可得出:=,=,∴S n=.故选;D.点评:此题主要考查了一次函数函数图象上点的坐标性质得出B点坐标变化规律进而得出S的变化规律,得出图形面积变化规律是解题关键.二、填空题1. (2014•上海)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为﹣9.考点:规律型:数字的变化类分析:根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,首先建立方程2×3﹣x=7,求得x,进一步利用此规定求得y即可.解答:解:∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴2×3﹣x=7∴x=﹣1则7×2﹣y=23解得y=﹣9.故答案为:﹣9.点评:此题考查数字的变化规律,注意利用定义新运算方法列方程解决问题.2. (2014•四川巴中)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4=.考点:规律探索.分析:由(a+b)=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n﹣1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1.解答:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.故答案为:a4+4a3b+6a2b2+4ab3+b4.点评:本题考查了完全平方公式,学生的观察分析逻辑推理能力,读懂题意并根据所给的式子寻找规律,是快速解题的关键.3.(2014•遵义)有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是3.考点:专题:正方体相对两个面上的文字;规律型:图形的变化类.分析:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.解答:解:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2014÷4=503…2,∴滚动第2014次后与第二次相同,∴朝下的点数为3,故答案为:3.点评:本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.4.(2014•娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由3n+1个▲组成.考点:规律型:图形的变化类.分析:仔细观察图形,结合三角形每条边上的三角形的个数与图形的序列数之间的关系发现图形的变化规律,利用发现的规律求解即可.解答:解:观察发现:第一个图形有3×2﹣3+1=4个三角形;第二个图形有3×3﹣3+1=7个三角形;第一个图形有3×4﹣3+1=10个三角形;…第n个图形有3(n+1)﹣3+1=3n+1个三角形;故答案为:3n+1.点评:考查了规律型:图形的变化类,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5. (2014年湖北咸宁)观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).考点:算术平方根.专题:规律型.分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)1+1×0,(﹣1)2+1,(﹣1)3+1…(﹣1n+1),可以得到第16个的答案.解答:解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1n+1),∴第16个答案为:.故答案为:.点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.6. (2014•江苏盐城)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则S n的值为24n﹣5.(用含n的代数式表示,n为正整数)考点:正方形的性质;一次函数图象上点的坐标特征.专题:规律型.分析:根据直线解析式判断出直线与x轴的夹角为45°,从而得到直线与正方形的边围成的三角形是等腰直角三角形,再根据点A的坐标求出正方形的边长并得到变化规律表示出第n个正方形的边长,然后根据阴影部分的面积等于一个等腰直角三角形的面积加上梯形的面积再减去一个直角三角形的面积列式求解并根据结果的规律解答即可.解答:解:∵函数y=x与x轴的夹角为45°,∴直线y=x与正方形的边围成的三角形是等腰直角三角形,∵A(8,4),∴第四个正方形的边长为8,第三个正方形的边长为4,第二个正方形的边长为2,第一个正方形的边长为1,…,第n个正方形的边长为2n﹣1,由图可知,S1=×1×1+×(1+2)×2﹣×(1+2)×2=,S2=×4×4+×(2+4)×4﹣×(2+4)×4=8,…,S n为第2n与第2n﹣1个正方形中的阴影部分,第2n个正方形的边长为22n﹣1,第2n﹣1个正方形的边长为22n﹣2,S n=•22n﹣2•22n﹣2=24n﹣5.故答案为:24n﹣5.点评:本题考查了正方形的性质,三角形的面积,一次函数图象上点的坐标特征,依次求出各正方形的边长是解题的关键,难点在于求出阴影S n所在的正方形和正方形的边长.7. (2014•年山东东营)将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为(45,12).考点:规律型:数字的变化类.分析:根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2014所在的位置.解答:解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同;∵45×45=2025,2014在第45行,向右依次减小,∴2014所在的位置是第45行,第12列,其坐标为(45,12).故答案为:(45,12).点评:此题主要考查了数字的规律知识,得出第一列的奇数行的数的规律与第一行的偶数列的数的规律是解决问题的关键.8.(2014•四川遂宁)已知:如图,在△ABC中,点A1,B1,C1分别是BC、AC、AB的中点,A2,B2,C2分别是B1C1,A1C1,A1B1的中点,依此类推….若△ABC的周长为1,则△A n B n C n的周长为.考点:三角形中位线定理.专题:规律型.分析:由于A1、B1、C1分别是△ABC的边BC、CA、AB的中点,就可以得出△A1B1C1∽△ABC,且相似比为,△A2B2C2∽△ABC的相似比为,依此类推△A n B n C n∽△ABC的相似比为,解答:解:∵A1、B1、C1分别是△ABC的边BC、CA、AB的中点,∴A1B1、A1C1、B1C1是△ABC的中位线,∴△A1B1C1∽△ABC,且相似比为,∵A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,∴△A2B2C2∽△A1B1C1且相似比为,∴△A2B2C2∽△ABC的相似比为依此类推△A n B n C n∽△ABC的相似比为,∵△ABC的周长为1,∴△A n B n C n的周长为.故答案为.点评:本题考查了三角形中位线定理的运用,相似三角形的判定与性质的运用,解题的关键是有相似三角形的性质:9.(2014•四川内江)如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2014个图形是□.考点:规律型:图形的变化类.分析:去掉开头的两个三角形,剩下的由三个正方形,一个三角形,两个圆6个图形为一组,依次不断循环出现,由此用(2014﹣2)÷6算出余数,余数是几,就与循环的第几个图形相同,由此解决问题.解答:解:由图形看出去掉开头的两个三角形,剩下的由三个正方形,一个三角形,两个圆6个图形为一组,不断循环出现,(2014﹣2)÷6=335 (2)所以第2014个图形是与循环的第二个图形相同是正方形.故答案为:□.点评:此题考查图形的变化规律,找出图形的循环规律,利用规律解决问题.10.(2014•四川南充)一列数a1,a2,a3,…a n,其中a1=﹣1,a2=,a3=,…,a n=,则a1+a2+a3+…+a2014=.分析:分别求得a1、a2、a3、…,找出数字循环的规律,进一步利用规律解决问题.解:a1=﹣1,a2==,a3==2,a4==﹣1,…,由此可以看出三个数字一循环,2004÷3=668,则a1+a2+a3+…+a2014=668×(﹣1++2)=1002.故答案为:1002.点评:此题考查了找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律是解题的关键.11.(2014•甘肃白银)观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=.考点:规律型:数字的变化类.专题:压轴题;规律型.分析:13=1213+23=(1+2)2=3213+23+33=(1+2+3)2=6213+23+33+43=(1+2+3+4)2=10213+23+33+…+103=(1+2+3…+10)2=552.解答:解:根据数据可分析出规律为从1开始,连续n个数的立方和=(1+2+…+n)2所以13+23+33+…+103=(1+2+3…+10)2=552.点评:本题的规律为:从1开始,连续n个数的立方和=(1+2+…+n)2.12.(2014•甘肃兰州)为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是.考点:有理数的乘方专题:整体思想.分析:根据等式的性质,可得和的3倍,根据两式相减,可得和的2倍,根据等式的性质,可得答案.解答:解:设M=1+3+32+33+…+32014 ①,①式两边都乘以3,得3M=3+32+33+…+32015 ②.②﹣①得2M=32015﹣1,两边都除以2,得M=,故答案为:.点评:本题考查了有理数的乘方,等式的性质是解题关键.13.(2014•广东梅州)如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,则点P3的坐标是;点P2014的坐标是.考点:规律型:点的坐标.分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2014除以6,根据商和余数的情况确定所对应的点的坐标即可.解答:解:如图,经过6次反弹后动点回到出发点(0,3),当点P第3次碰到矩形的边时,点P的坐标为:(8,3);∵2014÷6=335…4,∴当点P第2014次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(5,0).故答案为:(8,3),(5,0).点评:此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.。
2014年数学中考考纲解读分析(含题目真题题型考点知识点命题预测猜想推断揭秘解密+备考冲刺复习建议与意见)
2014年数学中考考纲解读一、考试内容1、以《旧标准》中的“内容标准”为基本依据,不拓展范围或提高要求。
2、以下内容不列为本考试范围:3、考纲中要注意的方面(一)数与代数◆有理数求绝对值时,绝对值符号内不含字母;◆有理数的加、减、乘、除、乘方及简单混合运算以三步为主;◆不再考查有效数字,但近似值要考;◆二次根式化简不考查根号内带有字母,不要求分母有理化;◆用公式进行乘法运算或因式分解,用公式不能超过两次,且因式分解的指数是正整数,多项式与多项式相乘仅指一次式相乘;◆分式方程化简后只能是一元一次方程,分式方程中的分式不超过两个;◆一元一次不等式组的应用题不考,但一元一次不等式的解法及应用题、一元一次不等式组的解法属考试范围;◆会画一次函数、反比例函数、二次函数的图像。
(二)空间与图像◆圆与圆的位置关系不再考查;◆梯形考纲中没有特别要求,不用重点复习(但考纲中要求会证明等腰梯形的性质和判定定理);◆尺规作图只限尺规作图,并且限定了几种基本作图。
(三)统计与概率部分:◆不考极差,要注意方差表示数据离散程度的作用;◆不考频数折线图,要注意频数分布直方图的画法;◆概率与统计常常是一大一小轮换着考。
二、试题结构1、考试时间100分钟,全卷满分120分.2、全卷共25道题:选择题10道,每题3分,共30分;填空题6道,每题4分,共24分;解答题(一)3道,每题6分,共18分;解答题(二)3道,每题7分,共21分;解答题(三)3道,每题9分,共27分.解答题(一)(二)(5类题型)计算题:数值计算、代数式运算、解方程(组)、解不等式(组);计算综合题:方程(不等式)计算综合题、函数类综合题、几何类计算综合题、统计概率计算综合题;证明题:几何证明、简单代数证明;应用题:方程(组)应用题、不等式应用题、解三角形应用题、理解水平函数应用题;作图题:仅尺规作图;解答题(三)代数综合题,几何综合题,代数与几何综合题各1道.三、近几年中考题型示例1、科学记数法(年年考)——经常出现在选择题或填空题。
2014年全国各地中考数学试卷解析版分类汇编 开放性问题
开放性问题1. (2014•四川巴中,第28题10分)如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.考点:矩形的判定.分析:(1)根据全等三角形的判定方法,可得出当EH=FH,BE∥CF,∠EBH=∠FCH 时,都可以证明△BEH≌△CFH,(2)由(1)可得出四边形BFCE是平行四边形,再根据对角线相等的平行四边形为矩形可得出BH=EH时,四边形BFCE是矩形.解答:(1)答:添加:EH=FH,证明:∵点H是BC的中点,∴BH=CH,在△△BEH和△CFH中,,∴△BEH≌△CFH(SAS);(2)解:∵BH=CH,EH=FH,∴四边形BFCE是平行四边形(对角线互相平分的四边形为平行四边形),∵当BH=EH时,则BC=EF,∴平行四边形BFCE为矩形(对角线相等的平行四边形为矩形).点评:本题考查了全等三角形的判定和性质以及平行四边形的判定,是基础题,难度不大.2. (2014•山东威海,第24题11分)猜想与证明:如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD 上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=DE.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立.3. (2014•山东枣庄,第22题8分)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.,4. (2014•山东烟台,第25题10分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.考点:全等三角形,正方形的性质,勾股定理,运动与变化的思想.分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+ ∠ADF=90°,所以AE⊥DF;(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,再由勾股定理可得OC的长,再求CP即可.解答:(1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF.∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可证AE=DF,∠DAE=∠CDF延长FD交AE于点G,则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在Rt△ODC中,OC=,∴CP=OC﹣OP=.点评:本题主要考查了四边形的综合知识.综合性较强,特别是第(4)题要认真分析.5. (2014•浙江杭州,第23题,12分)复习课中,教师给出关于x的函数y=2kx2﹣(4kx+1)x﹣k+1(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.,﹣﹣。
2014年数学中考二轮专题复习讲义:规律探索型问题
2014年数学中考二轮专题复习讲义:规律探索型问题【考纲要求】规律探索型题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题。
这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖新。
其目的是考查学生收集、分析数据,处理信息的能力。
所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题。
【命题趋势】规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答。
题型分类、深度剖析:考点一、数字类规律探索问题例 1 (2013 年浙江湖州)如图将续正整数按以下规律排列,则位于第 7 行第 7 列的数x 是__________.解:第一行的第一列与第二列差2,第二列与第三列差3,第三列与第四列差4,…,第六列与第七列差7;第二行的第一列与第二列差 3,第二列与第三列差 4,第三列与第四列差5,…,第五列与第六列差7;第三行的第一列与第二列差 4,第二列与第三列差 5,第三列与第四列差 6,第四列与第五列差7;…第七行的第一列与第二列差8,是30,第二列与第三列差9,是39,第三列与第四列差10,是49,第四列与第五列差11,是60;第五列与第六列差12,是72,第六列与第七列差13,是85.另解,供参考.观察对角线上数字的规律,1,5,13,25,…,后一项比前一项依次多 4,8,12,…,∴x =25+16+20+24=85,即 x =85.答案:85归纳:本题考查了数字的变化,是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的关键是得到每一行中前一列与后一列的关系.考点二、图形类规律探索问题例2 (2013·衢州)如图,在菱形ABCD 中,边长为10,∠A =60°.顺次连接菱形ABCD 各边中点,可得四边形A 1B 1C 1D 1;顺次连接四边形A 1B 1C 1D 1各边中点,可得四边形A 2B 2C 2D 2;顺次连接四边形A 2B 2C 2D 2各边中点,可得四边形A 3B 3C 3D 3;按此规律继续下去…….则四边形A 2B 2C 2D 2的周长是_______;四边形A 2 013B 2 013C 2 013D 2 013的周长是_______.解:连接AC ,BD ,根据菱形和矩形及三角形的中位线定理可得,矩形A 1B 1C 1D 1的周长为2(5+53),菱形A 2B 2C 2D 2的周长为20,矩形A 3B 3C 3D 3的周长为5+53,菱形A 4B 4C 4D 4的周长为10,矩形A 5B 5C 5D 5的周长为5+532,菱形A 4B 4C 4D 4的周长为5,……所以四边形A 2 013B 2 013C 2 013D 2 013的周长即为第1 007个矩形的周长为25+5321 006.故填20,5+532. 归纳:图形中既有矩形又有菱形,序号为奇数的是矩形,序号为偶数的是菱形;后面每一个小矩形的面积都是前一个矩形面积的一半,后面每一个小菱形的面积都是前一个菱形面积的一半;由四边形的序号先确定是矩形还是菱形,再根据图形面积与序号之间的关系求出相应的面积.跟踪练习:1、(2013·日照)如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m ,n 的关系是( )A .M =mnB .M =n (m +1)C .M =mn +1D .M =m (n +1)2、(2013 ·兰州)如下图 ,在下面直角坐标系中,已知点 A (-3,0),B (0,4),对△OAB 连续作旋转变换,依次得到△1,△2,△3,△4,…,则△2013的直角顶点的坐标为_______.3、如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n (n 是正整数)个图案中由 3n+1 个基础图形组成.4、观察图中正方形四个顶点所标的数字规律,可知数2011应标在( )A .第502个正方形的左下角B .第502个正方形的右下角C .第503个正方形的左上角D .第503个正方形的右下角5、 如图,已知△ABC 的周长为1,连接△ABC 三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形,…,依此类推,则第10个三角形的周长为( )A .91B .101C .9)21(D .10)21( 6、探索规律:根据下图中箭头指向的规律,从2004到2005再到2006,箭头的方向是( )A .B .C .D .。
(河北专版)2014中考数学复习方案专题四变式猜想
专题四┃变式猜想
①在图②中,点 F 在 BE 上,△EGF 与△EAB 的相似比 是 1∶2,H 是 EC 的中点.求证:GH=HD,GH⊥HD; ②在图③中,点 F 在 BE 的延长线上,△EGF 与△EAB 的相似比是 k∶1,若 BC=2,请直接写出 CH 的长为多少时, 恰好使得 GH=HD 且 GH⊥HD(用含 k 的代数式表示).
图 X4-2
专题四┃变式猜想
【点拨交流】 (1)直接观察图形, 能得到两条线段的数量关系和位 置关系吗? (2)证明不在同一三角形中的两条线段相等, 一般用 什么方法? (3)类比上述解题过程,能否把(2)②中的问题转化 为比较简单的问题?
专题四┃变式猜想
【思路导引】 三角形构成的简单图形→观察得出初步结论
专题一 专题二 专题三
探索规律 函数图像 函数应用
专题四
专题五 专题六
变式猜想
操作探究题四┃变式猜想
大部分变式猜想问题从一个简单的基本图形出发, 经过补充图形和图形变化,形成新的研究对象,通常把 全等和相似知识、证明和计算题型、过程与结果呈现融 为一体.解题过程体现了类比思想和转化思想的重要作 用.
专题四┃变式猜想
探究三
关于四边形的变式猜想
[2011· 河北] 如图 X4-3, 四边形 ABCD 是正方
形,点 E,K 分别在 BC,AB 上,点 G 在 BA 的延长线上, 且 CE=BK=AG. (1)求证:①DE=DG;②DE⊥DG; (2) 尺 规作图 : 以 线段 DE , DG 为 边 作 出 正 方 形 DEFG(要求:只保留作图痕迹,不写作法和证明);
专题四┃变式猜想
(1)AE=ED,AE⊥ED. (2)①证明:由题意,∠B=∠C=90°,AB=BE=EC=DC. ∵△EGF 与△EAB 位似,且相似比是 1∶2, 1 1 ∴∠GFE=∠B=90°,GF= AB,EF= EB.∴∠GFE=∠C. 2 2 1 ∵EH=HC= EC,∴GF=HC, 2 1 1 1 FH=FE+EH= EB+ EC= BC=EC=CD. 2 2 2 ∴△HGF≌△DHC.∴GH=HD,∠GHF=∠HDC. 又∵∠HDC+∠DHC=90°,∴∠GHF+∠DHC=90°. ∴∠GHD=90°. ∴GH⊥HD.
2014年全国各地中考数学试卷解析版分类汇编_规律探索
规律探索一、选择题1. (2014•山东威海,第12题3分)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2014的纵坐标为())(==3×((=3×=3×((((C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为( )A.(—2012,2) B.(一2012,一2) C. (—2013,—2) D. (—2013,2)考点:坐标与图形变化-对称;坐标与图形变化-平移.专题:规律型.分析:首先求出正方形对角线交点坐标分别是(2,2),然后根据题意求得第1次、2次、3次变换后的点M的对应点的坐标,即可得规律.解答:∵正方形ABCD,点A(1,3)、B(1,1)、C(3,1).∴M的坐标变为(2,2)∴根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第2014次变换后的点M的对应点的为坐标为(2-2014,2),即(-2012,2)故答案为A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键.3. (2014•山东烟台,第9题3分)将一组数,,3,2,,…,3,按下面的方式进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)考点:规律探索.分析:根据观察,可得,根据排列方式,可得每行5个,根据有序数对的表示方法,可得答案.解答:3=,3得被开方数是得被开方数的30倍,3在第六行的第五个,即(6,5),故选:D.点评:本题考查了实数,利用了有序数对表示数的位置,发现被开方数之间的关系是解题关键.4.(2014•十堰7.(3分))根据如图中箭头的指向规律,从2013到2014再到2015,箭头的方向是以下图示中的( ),箭头的方向是5.(2014•四川宜宾,第7题,3分)如图,将n 个边长都为2的正方形按如图所示摆放,点A 1,A 2,…A n 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是( )6.(2014•四川内江,第12题,3分)如图,已知A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1、A2、A3、…、A n、A n+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,连接A1B2、B1A2、B2A3、…、A n B n+1、B n A n+1,依次相交于点P1、P2、P3、…、P n.△A1B1P1、△A2B2P2、△A n B n P n的面积依次记为S1、S2、S3、…、S n,则S n为()=,.6.7.8.二、填空题1. (2014•上海,第17题4分)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”2. (2014•四川巴中,第20题3分)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4=.考点:规律探索.分析:由(a+b)=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n﹣1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1.解答:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.故答案为:a4+4a3b+6a2b2+4ab3+b4.点评:本题考查了完全平方公式,学生的观察分析逻辑推理能力,读懂题意并根据所给的式子寻找规律,是快速解题的关键.3.(2014•遵义16.(4分))有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是3.4.(2014•娄底19.(3分))如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由3n+1个▲组成.5. (2014年湖北咸宁14.(3分))观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).考点:算术平方根.专题:规律型.分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)1+1×0,(﹣1)2+1,(﹣1)3+1…(﹣1n+1),可以得到第16个的答案.(﹣1)2+1,…解答:解:由题意知道:题目中的数据可以整理为:,(﹣1n+1),∴第16个答案为:.故答案为:.点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.6. (2014•江苏盐城,第18题3分)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则S n 的值为24n﹣5.(用含n的代数式表示,n为正整数)7. (2014•年山东东营,第18题4分)将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为(45,12).考点:规律型:数字的变化类.分析:根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2014所在的位置.解答:解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同;∵45×45=2025,2014在第45行,向右依次减小,∴2014所在的位置是第45行,第12列,其坐标为(45,12).故答案为:(45,12).点评:此题主要考查了数字的规律知识,得出第一列的奇数行的数的规律与第一行的偶数列的数的规律是解决问题的关键.8.(2014•四川遂宁,第15题,4分)已知:如图,在△ABC中,点A1,B1,C1分别是BC、AC、AB的中点,A2,B2,C2分别是B1C1,A1C1,A1B1的中点,依此类推….若△ABC的周长为1,则△A n B n C n的周长为.的相似比为的相似比为的周长为.故答案为左向右排列,那么第2014个图形是□.10.(2014•四川南充,第15题,3分)一列数a1,a2,a3,…a n,其中a1=﹣1,a2=,a3=,…,a n=,则a1+a2+a3+…+a2014=.分析:分别求得a1、a2、a3、…,找出数字循环的规律,进一步利用规律解决问题.解:a1=﹣1,a2==,a3==2,a4==﹣1,…,由此可以看出三个数字一循环,2004÷3=668,则a1+a2+a3+…+a2014=668×(﹣1++2)=1002.故答案为:1002.点评:此题考查了找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律是解题的关键.11.(2014•甘肃白银、临夏,第18题4分)观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=.S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是.故答案为:13.(2014•广东梅州,第13题3分)如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,则点P3的坐标是;点P2014的坐标是.。
安徽省2014年中考数学专题复习课件 专题4 规律性探索题
专题四┃ 规律性探索题
专题四┃ 规律性探索题
二、 数式与图形的结合
例 2 [2013· 安徽] 我们把正六边形的顶点及其对称中 心称作如图 X4-1(1)所示基本图的特征点,显然这样的基 本图共有 7 个特征点.将此基本图不断复制并平移,使得 相邻两个基本图的一边重合,这样得到图(2)、图(3)…….
一、 数字变化型
例 1 [2012· 汕头] 观察下列等式: 1 1 1 第 1 个等式:a1= = ×1- ; 1×3 2 3 1 1 1 1 第 2 个等式:a2= = × - ; 3×5 2 3 5 1 1 1 1 第 3 个等式:a3= = × - ; 5×7 2 5 7 1 1 1 1 第 4 个等式:a4= = × - ; 7×9 2 7 9 …
1 奇数的乘积;也可以写成两个分数的乘积,其中一个因数是 ,另一个因数是 2 两个分数的差,且分母与前面的分母对应一致. 1 1 1 1 (2)根据前面 4 个等式的排列规律,第 5 个等式为 a5= = ×9-11. 9×11 2 1 (3)采用由特殊到一般的思想,可得 an= = (2n-1)×(2n+1) 1 1 1 - (n 为正整数). 22n-1 2n+1 1 (4)把 a1,a2,a3,…,an 写成分数的差的形式,提取 后,采用互为相反 2 数相加的方法求解. (5)从特殊到一般、逆用乘法分配律.
专题四┃ 规律性探索题
请回答下列问题: (1) 按 以 上 规 律 列 出 第 5 个 等 式 : a5 = ________ = ________; (2)用含 n 的代数式表示第 n 个等式:an=________= ________(n 为正整数); (3)求 a1+a2+a3+a4+…+a100 的值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
猜想、规律与探索
一 、选择题
1. (浙江省,10,3分)如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”, 图A 3比图A 2多出4个“树枝”, 图A 4比图A 3多出8个“树枝”,……,照此规律,图A 6比图A 2多出“树枝”( )
A .28
B .56
C .60
D . 124
3. (广东肇庆,15,3分)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n (n 是大于0的整数)个图形需要黑色棋子的个数是 .
4. (内蒙古乌兰察布,18,4分)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形 有 个小圆. (用含 n 的代数式表示)
5. (湖南益阳,16,8分)观察下列算式:
① 1 × 3 - 22
= 3 - 4 = -1 ② 2 × 4 - 32 = 8 - 9 = -1 ③ 3 × 5 - 42 = 15 - 16 = -1
④
……
(1)请你按以上规律写出第4个算式; (2)把这个规律用含字母的式子表示出来;
(3)你认为(2)中所写出的式子一定成立吗?并说明理由.
6.(广东汕头,20,9分)如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答
.
(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;
(2)用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有
个数;
(3)求第n 行各数之和.
二、填空题
1. (四川绵阳18,4)观察上面的图形,它们是按一定规律排列的,依照此规律,第_____个图形共有120 个。
2. (广东东莞,10,4分)如图(1) ,将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1,取△ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△1D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2F 2,如图(3) 中阴影部分;如此下去…,则正六角星形A n F n B n D n C n E n F n 的面积为
.
第1个图形第 2 个图形 第3个图形
第 4 个图形
第 18
题
3. (湖南常德,8,3分)先找规律,再填数: 1111111111111111,,,,122342125633078456
............111+_______.2011201220112012
+-=+-=+-=+-=-=⨯则 4. (广东湛江20,4分)已知:
23233556326,54360,5432120,6543360A A A A =⨯==⨯⨯==⨯⨯⨯==⨯⨯⨯=,
,观察前面的计算过程,寻找计算规律计算2
7
A = (直接写出计算结果),并比
较59A 310A (填“>”或“<”或“=”)
三 解答题
1. (山东济宁,18,6分)观察下面的变形规律:
211⨯ =1-12; 321⨯=12-31;431⨯=31-4
1;…… 解答下面的问题:
(1)若n 为正整数,请你猜想)
1(1
+n n = ;
(2)证明你猜想的结论;
(3)求和:211⨯+321⨯+431⨯+…+2010
20091
⨯ .
2. (湖南邵阳,23,8分)数学课堂上,徐老师出示了一道试题:
如图(十)所示,在正三角形ABC 中,M 是BC 边(不含端点B ,C )上任意一点,P 是BC 延长线上一点,N 是∠ACP 的平分线上一点,若∠AMN=60°,求证:AM=MN 。
(1)经过思考,小明展示了一种正确的证明过程,请你将证明过程补充完整。
证明:在AB 上截取EA=MC ,连结EM ,得△AEM 。
∵∠1=180°-∠AMB-∠AMN ,∠2=180°-∠AMB -∠B ,∠AMN=∠B=60°, ∴∠1=∠2.
又∵CN 、平分∠ACP ,∴∠4=
1
2
∠ACP=60°。
∴∠MCN=∠3+∠4=120°。
………………① 又∵BA=BC ,EA=MC ,∴BA-EA=BC-MC ,即BE=BM 。
∴△BEM 为等边三角形,∴∠6=60°。
∴∠5=10°-∠6=120°。
………………② 由①②得∠MCN=∠5. 在△AEM 和△MCN 中,
∵__________,____________,___________, ∴△AEM ≌△MCN (ASA )。
∴AM=MN.
(2)若将试题中的“正三角形ABC ”改为“正方形A 1B 1C 1D 1”(如图),N 1是∠D 1C 1P 1的平分线上一点,则当∠A 1M 1N 1=90°时,结论A 1M 1=M 1N 1是否还成立?(直接给出答案,不需要证明)
(3)若将题中的“正三角形ABC ”改为“正多边形A n B n C n D n …X n ”,请你猜想:当∠A n M n N n =______°时,结论A n M n =M n N n 仍然成立?(直接写出答案,不需要证明)。
3. (四川成都,23,4分)设12211=112S +
+,22211=123S ++,322
11=134S ++,…, 22
11=1(1)n S n n +
++ 设12...n S S S S =+++,则S=_________ (用含n 的代数式表示,其中n 为正整数).
4. (四川内江,加试5,12分)同学们,我们曾经研究过n ×n 的正方形网格,得到了网格中正方形的总数的表达式为12+22+32+…+n 2.但n 为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道0×1+1×2+2×3+…+(n —1)×n=
1
3
n(n+1)(n —1)时,我们可以这样做: (1)观察并猜想:
12+22=(1+0)×1+(1+1)×2=1+0×1+2+1×2=(1+2)+(0×1+1×2) 12+22+32=(1+0)×1+(1+1)×2+(1+2)×3
=1+0×1+2+1×2+3+2×3 =(1+2+3)+(0×1+1×2+2×3)
12+22+32+42=(1+0)×1+(1+1)×2+(1+2)×3+
=1+0×1+2+1×2+3+2×3+ =(1+2+3+4)+( ) …… (2)归纳结论:
12+22+32+…+n 2=(1+0)×1+(1+1)×2+(1+2)×3+…+[1+(n —1)]n
=1+0×1+2+1×2+3+2×3+…+n+(n 一1)×n
=( ) +[ ] = + =
1
6
× (3)实践应用:
通过以上探究过程,我们就可以算出当n 为100时,正方形网格中正方形的总个数是 .
5. (广东东莞,20,9分)如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答
.
(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;
(2)用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有 个数;
(3)求第n 行各数之和. .
6. (四川凉山州,19,6分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例。
如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()n
a b +(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律。
例如,
在三角形中第三行的三个数1,2,1,恰好对应()2
22
2a b a ab b +=++展开式中的系数;第四行的
四个数1,3,3,1,恰好对应着()33222
33a b a a b ab b +=+++展开式中的系数等等。
(1)根据上面的规律,写出()5
a b +的展开式。
(2)利用上面的规律计算:5
4
3
2
252102102521-⨯+⨯-⨯+⨯-
7. (四川凉山州,20,7分)如图,E F 、是平行四边形ABCD 的对角线AC 上的点,CE AF =,请你猜想:线段BE 与线段DF 有怎样的关系?并对你的猜想加以证明。
1 1
1
2
1 1 3 3 1
1
…………………………(a +b )1 …………………………(a +b )2
…………………………(a +b )3
…………………
B
C
D
E F
A
20题图。