2013年全国中考数学:平移旋转与对称练习精选
图形的平移、旋转与轴对称中考真题精选(部分难题有答案)
图形的平移、旋转与轴对称中考真题精选一、选择题1.(2013甘肃兰州)观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个【答案】B2.(2013湖南益阳)小军将一个直角三角板(如图1)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是( )A. B . C . D .【答案】D3.(2013江苏南通) 如图,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为( )A .4π cmB .3π cm(第3题)ABCDO1图C .2π cmD .π cm【答案】C4.(2013江苏盐城)以下图形中,既是轴对称图形,又是中心对称图形的是( ) A .等边三角形 B .矩形 C .等腰梯形 D .平行四边形【答案】B5.(2013辽宁丹东市)把长为8cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm 2,则打开后梯形的周长是( )A .(cm B .(cm C .22cm D .18cm 【答案】A6.(2013山东青岛)下列图形中,中心对称图形有( ).【答案】C7.(2013山东烟台)如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2013个图案是第5题图【答案】B8.(2013四川凉山)下列图案中,只要用其中一部分平移一次就可以得到的是( )A .B .C .D .【答案】B9.(2013台湾) 将图(六)的正方形色纸沿其中一条对角线对折后,再沿原正方形的另一条对角线对折,如图(七)所示。
最后将图(七)的色纸剪下一纸片, 如图(八)所示。
若下列有一图形 为图(八)的展开图,则此图为何?( )【答案】B 图(六) 图(七) 图(八) (A)(B)(C)(D)10.(2013浙江杭州)如图,在△ABC 中, 70=∠CAB . 在同一平面内, 将△ABC 绕点A 旋 转到△//C AB 的位置, 使得AB CC ///, 则=∠/BAB ( ) A. 30 B. 35 C. 40 D. 50【答案】C11.(2013浙江宁波)下列各图是选自历届世博会会徽中的图案,其中是中心对称图形的是( )【答案】C12.(2013 浙江义乌)下列几何图形中,即是中心对称图形又是轴对称图形的是( ▲ ) A .正三角形 B .等腰直角三角形 C .等腰梯形 D .正方形 【答案】D13.(2013 重庆)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45︒,第1次旋转后得到图①,第2次旋转后得到图②……,则第10次旋转后得到的图形与图①~图④中相同的是( )(A) (B) (C) (D)图① 图② 图③ 图④… A .图① B .图② C .图③ D .图④ 【答案】B14.(2013重庆市潼南县)如图,△ABC 经过怎样的平移得到△DEF ( ) A .把△ABC 向左平移4个单位,再向下平移2个单位 B .把△ABC 向右平移4个单位,再向下平移2个单位 C .把△ABC 向右平移4个单位,再向上平移2个单位 D .把△ABC 向左平移4个单位,再向上平移2个单位【答案】C15.(2013 浙江义乌)如图,将三角形纸片ABC 沿DE 折叠,使点A 落在BC 边上的点F 处,且DE ∥BC ,下列结论中,一定正确..的个数是( ▲ ) ①BDF ∆是等腰三角形 ②BC DE 21=③四边形ADFE 是菱形 ④2BDF FEC A ∠+∠=∠A .1B .2C .3D .4 【答案】CA BCD EF14题图16.(2013 江苏连云港)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是( ) A .①② B .②③ C .②④ D .①④ 【答案】C17.(2013 山东济南) 如图,ΔABC 与ΔA’B’C’关于直线l 对称,则∠B 的度数为 ( ) A .50° B .30° C .100° D .90°【答案】C18.(2013福建福州)下面四个中文艺术字中,不是轴对称图形的是( )A .B .C .D . 【答案】C30︒lC'B'A'B CA50︒第17题19.(2013江苏无锡)下列图形中,是中心对称图形但不是轴对称图形的是( )【答案】B20.(2013 河北)将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子 向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成 一次变换.若骰子的初始位置为图6-1所示的状态,那么按 上述规则连续完成10次变换后,骰子朝上一面的点数是A .6B .5C .3D .2【答案】B21.(2013 山东省德州)下面的图形中,既是轴对称图形又是中心对称图形的是(A) (B)(C)(D)【答案】B22.(2013 山东莱芜)在下列四个图案中既是轴对称图形,又是中心对称图形的是 图6-1 图6-2A .B .C .D .A.B.C.D.【答案】B23.(2013 广东珠海)现有如图1所示的四张牌,若只将其中一张牌旋转180后得到图2,则旋转的牌是()图1图2A. B C D【答案】B24.(2013福建宁德)下列四张扑克牌图案,属于中心对称的是().【答案】B25.(2013浙江湖州)一个正方体的表面展开图如图所示,则正方体中的“★”所在面的对面所标的字是()A.上B.海C.世D.博A. B.C. D.【答案】B.26.(2013浙江湖州)如图,如果甲、乙关于点O成中心对称,则乙图中不符合题意的一块是()A.B.C.D.【答案】C.27.(2013湖南常德)下列几个图形是国际通用的交通标志,其中不是中心对称图形的是( )【答案】D28.(2013湖南怀化)下列图形中,是中心对称图形但不是轴对称图形的是()【答案】B29.(2013江苏扬州)在等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的个数为()!A B C图4A.1个B.2个C.3个D.4个【答案】B30.(2013北京)美术课上,老师要求同学们将右图所示的白纸只沿虎虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个....符合上述要求,那么这个示意图是【答案】B31.(2013四川乐山)下列图形中,是轴对称图形的是()【答案】B32.(2013山东泰安)下列图形:其中,既是轴对称图形,又是中心对称图功的个数是( )A.1个B.2个C.3个D.4个【答案】B33.(2013黑龙江哈尔滨)一列图形中,是中心对称图形的是()【答案】D34.(2013江苏徐州)下列四个图案中,是轴对称图形,但不是中心对称图形的是【答案】A35.(2013江苏徐州)如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是A .点MB .格点NC .格点PD .格点Q【答案】B36.(2013四川内江)学剪五角星:如图,先将一张长方形纸片按图①的虚线对折,得到图②,然后将图②沿虚线折叠得到图③,再将图③沿虚线BC 剪下△ABC ,展开即可得到一个五角星.如果想得到一个正五角星(如图④),那么在图③中剪下△ABC 时,应使∠ABC 的度数为DC B AA.126°B.108°C.100°D.90°【答案】A37.(2013湖北襄樊)下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【答案】B38.(2013 山东东营)把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.......在自然界和日常生活中,大量地存在这种图形变换(如图甲).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换......过程中,两个对应三角形(如图乙)的对应点所具有的性质是( )(A)对应点连线与对称轴垂直(B)对应点连线被对称轴平分(C)对应点连线被对称轴垂直平分(D)对应点连线互相平行【答案】B39.(2013 四川绵阳)对右图的对称性表述,正确的是().A.轴对称图形B.中心对称图形C .既是轴对称图形又是中心对称图形D .既不是轴对称图形又不是中心对称图形 【答案】B40.(2013 山东淄博)如图,△A ′B ′C ′是由△ABC 经过变换得到的,则这个变换过程是 (A )平移 (B )轴对称 (C )旋转 (D )平移后再轴对称【答案】D41.(2013 天津)下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为(A ) (B ) (C ) (D )【答案】B42.(2013 内蒙古包头)下列图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个CBAB ′A ′C ′(第5题)【答案】B43.(2013 贵州贵阳)如图3是小华画的正方形风筝图案,他以图中的对角线AB 为对称轴,在对角线的下方再画一个三角形,使得新的风筝图案成为轴对称图形,若下列有一图形为此对称图形,则此图为【答案】C44.(2013湖北十堰)如图,将△ABC 绕点C 顺时针方向旋转40°得△A ’CB ’,若AC ⊥A’B’,则∠BAC 等于( )A .50°B .60°C .70°D .80°【答案】A45.(2013 广西玉林、防城港)下列图形中,既是轴对称图形又是中心对称图形的是: ( )A .等边三角形B .平行四边形C .菱形D .正五边形 【答案】C46.(2013青海西宁) 如图9,下列汉字或字母中既是轴对称图形,又是中心对称图形的有A.1个B.2个C.3个D.4个(第44 AA ′CBB ′(A ) (B ) (D )(C ) (图3) AB【答案】B47.(2013广西梧州)下列图形中是轴对称图形的是( )A .①②B .③④C .②③D .①④ 【答案】D48.(2013云南昭通)下列图形是轴对称图形的是( )【答案】B49.(2013贵州遵义)下列图形既是中心对称图形,又是轴对称图形的是【答案】B50.(2013广东深圳)下列图形中,是中心对称图形但不是轴对称图形的是( )AB C D ①② ③④【答案】A51.(2013广东佛山)如图,把其中的一个小正方形看作基本图形,这个图形中不含的变换是A .对称 B.平移 C.相似(相似比不为1) C.旋转【答案】C52.(2013湖北宜昌)如图,正六边形ABCDEF 关于直线l 的轴对称图形是六边形''''''A B C D E F .下列判断错误..的是( )。
(专题精选)初中数学图形的平移,对称与旋转的难题汇编及答案解析
(专题精选)初中数学图形的平移,对称与旋转的难题汇编及答案解析一、选择题1.下列图案中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.如图,在边长为1522的正方形ABCD中,点E,F是对角线AC的三等分点,点P在正方形的边上,则满足PE+PF=55的点P的个数是()A.0 B.4 C.8 D.16【答案】B【解析】【分析】作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM,由对称性可得CM=5,∠BCM=45°,根据勾股定理得EM=55,进而即可得到结论.【详解】作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM.∵正方形ABCD中,边长为1522,∴AC=1522×2=15,∵点E,F是对角线AC的三等分点,∴EC=10,FC=AE=5,∵点M与点F关于BC对称,∴CF=CM=5,∠ACB=∠BCM=45°,∴∠ACM=90°,∴EM=222210555EC CM,∴在BC边上,只有一个点P满足PE+PF=55,同理:在AB,AD,CD边上都存在一个点P,满足PE+PF=55,∴满足PE+PF=55的点P的个数是4个.故选B.【点睛】本题主要考查正方形的性质,勾股定理,轴对称的性质,熟练掌握利用轴对称的性质求两线段和的最小值,是解题的关键.3.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】试题解析:选项A既不是轴对称图形,也不是中心对称图形,故该该选项错误;选项B既不是轴对称图形,也不是中心对称图形,故该选项错误;选项C 既是轴对称图形,也是中心对称图形,故该选项正确;选项D是轴对称图形,但不是中心对称图形,故该选项错误.故选C.【详解】请在此输入详解!4.如图,△ABC绕点A逆时针旋转使得点C落在BC边上的点F处,则以下结论:①AC=AF;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.其中正确的结论有()A.4个B.3个C.2个D.1个【答案】B【解析】【分析】根据旋转的性质,旋转前后对应线段相等、对应角相等即可解答.【详解】由旋转可知△ABC≌△AEF,∴AC=AF,EF=BC,①③正确,∠EAF=∠BAC,即∠EAB+∠BAF=∠BAF+∠FAC,∴∠EAB=∠FAC,④正确,②错误,综上所述,①③④正确.故选B.【点睛】本题考查了旋转的性质,属于简单题,熟悉旋转的性质,利用旋转的性质找到对应角之间的关系是解题关键.5.下列说法正确的是()A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.在成中心对称的两个图形中,连结对称点的线段都被对称中心平分C.在平面直角坐标系中,一点向右平移2个单位,纵坐标加2D.在平移和旋转图形中,对应角相等,对应线段相等且平行【答案】B【解析】【分析】分别利用图形的平移以及中心对称图形的性质和旋转的性质分别判断得出即可.【详解】A、平移不改变图形的形状和大小,旋转也不改变图形的形状和大小,故此选项错误;B、在成中心对称的两个图形中,连结对称点的线段都被对称中心平分,此选项正确;C、在平面直角坐标系中,一点向右平移2个单位,横坐标加2,故此选项错误;D、在平移中,对应角相等,对应线段相等且平行,旋转则对应线段有可能不平行,故此选项错误.故选B.Y的顶点O,A,C的坐标分别为(0,0),(4,0),(1,3),则顶点B 6.如图,若OABC的坐标为()A.(4,1)B.(5,3)C.(4,3)D.(5,4)【答案】B【解析】【分析】根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.【详解】解:∵四边形OABC是平行四边形,∴OC∥AB,OA∥BC,∴点B的纵坐标为3,∵点O向右平移1个单位,向上平移3个单位得到点C,∴点A向右平移1个单位,向上平移3个单位得到点B,∴点B的坐标为:(5,3);故选:B.【点睛】本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.7.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A、是中心对称图形,又是轴对称图形,故此选项正确;B、是中心对称图形,不是轴对称图形,故此选项错误;C、不是中心对称图形,是轴对称图形,故此选项错误;D、不是中心对称图形,是轴对称图形,故此选项错误;故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.如图,将?ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【答案】C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.9.下列图形中,是轴对称图形但不是中心对称图形的是()A .B .C .D .【答案】A 【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误; D. 是轴对称图形也是中心对称图形,错误,故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.10.如图,将ABC V 绕点A 逆时针旋转90得到,ADE V 点,B C 的对应点分别为,,1,D E AB则BD 的长为()A .1B .2C .2D .22【答案】B 【解析】【分析】根据旋转的性质得到AD=AB=1,∠BAD=90°,即可根据勾股定理求出BD .【详解】由旋转得到AD=AB=1,∠BAD=90°,∴BD=22ABAD =2211=2,故选:B .【点睛】此题考查了旋转的性质,勾股定理,找到直角是解题的关键.11.在下列图形中是轴对称图形的是()A .B .C.D.【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】A.不是轴对称图形,故本选项不符合题意,B.是轴对称图形,故本选项符合题意,C.不是轴对称图形,故本选项不符合题意,D.是不轴对称图形,故本选项不符合题意.故选B.【点睛】本题考查了轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 12.如图所示的网格中各有不同的图案,不能通过平移得到的是()A.B.C.D.【答案】C【解析】【分析】根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,结合各选项所给的图形即可作出判断.【详解】A、可以通过平移得到,不符合题意;B、可以通过平移得到,不符合题意;C、不可以通过平移得到,符合题意;D、可以通过平移得到,不符合题意.故选C.【点睛】本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.13.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.14.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为( )A.70°B.80°C.84°D.86°【答案】B【解析】【分析】由旋转的性质可知∠B=∠AB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.【详解】由旋转的性质可知:∠B=∠AB1C1,AB=AB1,∠BAB1=100°.∵AB=AB1,∠BAB1=100°,∴∠B=∠BB1A=40°.∴∠AB1C1=40°.∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.故选:B.本题主要考查的是旋转的性质,由旋转的性质得到△ABB1为等腰三角形是解题的关键.15.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【答案】B【解析】OC,连接DC′,交AB于P,连试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°∠BC′C=45°,∴BC=BC′=4,根据勾股定,∴BC′⊥BC,∠BCC′=理可得DC′=2234=5.故选B.BC BD=22'16.下列图形中,是轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念逐一判断即可.【详解】A、B、C都不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意;D、是轴对称图形,符合题意.本题考查轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.17.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形 B.有一个内角为45°的直角三角形C.有两个内角分别为50°和80°的三角形 D.有两个内角分别为55°和65°的三角形【答案】D【解析】A.有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;B.有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C.有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;D.有两个内角分别为55度和65度的三角形,不是等腰三角形,不是轴对称图形.故选:D.18.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()A.3个 B.4个 C.5个 D.2个【答案】A【解析】等腰三角形、等边三角形、等腰直角三角形都是轴对称图形,是轴对称图形的有3个.故选:A.19.对于图形的全等,下列叙述不正确的是()A.一个图形经过旋转后得到的图形,与原来的图形全等B.一个图形经过中心对称后得到的图形,与原来的图形全等C.一个图形放大后得到的图形,与原来的图形全等D.一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意,故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.20.如图,在ABC V 中,60,3,5,B AB BC 将ABC V 绕点A 顺时针方向旋转得到,ADE V 当点B 的对应点D 恰好落在BC 边上时,则CD 的长为()A .3B .2.5C .2D .1【答案】C【解析】【分析】由旋转得到AD=AB ,由此证明△ADB 是等边三角形,得到BD=AB=3,即可求出CD.【详解】由旋转得AD=AB ,∵60B ,∴△ADB 是等边三角形,∴BD=AB=3,∴CD=BC-BD=5-3=2,故选:C.【点睛】此题考查旋转的性质,等边三角形的判定及性质,根据旋转得到AD=AB 是解题的关键,由此得到等边三角形进行求解.。
“平移、旋转与轴对称”中考试题分类汇编(含答案)
22、平移、旋转与轴对称要点一:图形的平移与平移特征的应用一、选择题1.(2009·广东中考)将图1所示的图案通过平移后可以得到的图案是( )【解析】选A. 平移只改变图形的位置,不改变图形的大小和形状.2、(2010·珠海中考)在平面直角坐标系中,将点P (-2,3)沿x 轴方向向右平移3个单位得到点Q ,则点Q 的坐标是( )A.(-2,6)B.(-2,0)C.(-5,3)D.(1,3)【解析】选D ,当点P 沿x 轴方向向右平移3个单位时,P 点坐标变为(-2+3,3),即(1,3)。
3、(2009·威海中考)如图,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至11A B ,则a b +的值为( )A .2B .3C .4D .5【解析】选A.由题知图象的横坐标加1、纵坐标也加1.则a=1,b=1,a+b=2.4、(2009·襄樊中考)如图,在边长为1的正方形网格中,将ABC △向右平移两个单位长度得到A B C '''△,则与点B '关于x 轴对称的点的坐标是( )A .()01-,B .()11,C .()21-,D .()11-, 【解析】选D.由图知点B 的坐标为(-1,1),由平移性质得点B '的坐标是(1,1),点B '关于x 轴对称的点的坐标是()11-,.5、(2009. ·江苏中考 )如图,在55⨯方格纸中,将图①中的三角形甲平移到图② 中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )A .先向下平移3格,再向右平移1格;B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格;D .先向下平移3格,再向右平移2格【解析】选D.由图知将图①中的甲先向下平移3格,再向右平移2格就得到图②中所示的位置6、(2009·仙桃中考)如图,把图①中的⊙A 经过平移得到⊙O(如图②),如果图①中⊙A 上一点P 的坐标为(m ,n),那么平移后在图②中的对应点P 的坐标为( ).A 、(m +2,n +1)B 、(m -2,n -1)C 、(m -2,n +1)D 、(m +2,n -1)【解析】选D. A 由点平移得此图形向右平移2个单位,再向下平移1个单位,即横坐标加2,纵坐标减1.7、(2008·长春中考)下列四个图案中,可以通过右图平移得到的是()答案:选C8(2007·彬州中考)如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为()A.6 B。
2013年全国中考数学试题汇编----轴对称
(2013•郴州)在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?(2013凉山州)如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为( )A .30°B .45°C .60°D .75°考点:生活中的轴对称现象;平行线的性质.分析:要使白球反弹后能将黑球直接撞入袋中,则∠2=60°,根据∠1、∠2对称,则能求出∠1的度数.解答:解:要使白球反弹后能将黑球直接撞入袋中,∠2+∠3=90°,∵∠3=30°,∴∠2=60°,∴∠1=60°.故选C .点评:本题是考查图形的对称、旋转、分割以及分类的数学思想.(2013•绵阳)下列“数字”图形中,有且仅有一条对称轴的是( )(2013•潜江)如图,在△ABC 中,AB =AC ,∠A =120°,BC =6cm ,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为A .4cmB .3cmC .2cmD .1cmA .B. C.(2013•十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()B点A在第一象限且AB⊥BO,点E是线段AO的中点,点M在线段AB上.若点B和点E关于直线OM对称,且则点M的坐标是( ,) .(1,3)(2013•宁夏)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.(2013•苏州)如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B的坐标为(3),点C 的坐标为(12,0),点P 为斜边OB 上的一动点,则PA +PC 的最小值为A BC D .(2013•宿迁)在平面直角坐标系xOy 中,已知点(01)A ,,(1,2)B ,点P 在x 轴上运动,当点P 到A 、B 两点距离之差的绝对值最大时,点P 的坐标是 ▲ .(2013•苏州)如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,),点C 的坐标为(,0),点P 为斜边OB 上的一个动点,则PA+PC 的最小值为( )B,OB=2×AB=AM=×AD=,由勾股定理得:(﹣﹣DC=的最小值是(2013•泰州)如图,△ABC中,AB+AC=6cm, BC的垂直平分线l与AC相交于点D,则△ABD的周长为___________cm.【答案】:6.(2013•日照)下面所给的交通标志图中是轴对称图形的是答案:A解析:A中,等边三角形底边的中算线为对称轴,是轴对称图形,其它都不是轴对称图形。
中考数学复习平移、旋转与翻转对称 拔高题专项练习(含解析)
中考数学复习平移、旋转与翻转对称拔高题专项练习1如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)(1)点A关于点O中心对称的点的坐标为(﹣3,﹣2);(2)点A1的坐标为(﹣2,3);(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为π.考点:作图-旋转变换;弧长的计算;坐标与图形变化-旋转。
专题:作图题。
分析:(1)根据关于坐标原点成中心对称的点的横坐标与纵坐标都互为相反数解答;(2)根据平面直角坐标系写出即可;(3)先利用勾股定理求出OB的长度,然后根据弧长公式列式进行计算即可得解.解答:解:(1)∵A(3,2),∴点A关于点O中心对称的点的坐标为(﹣3,﹣2);(2)(﹣2,3);(3)根据勾股定理,OB==,所以,弧BB1的长==π.故答案为:(1)(﹣3,﹣2);(2)(﹣2,3);(3)π.点评:本题考查了利用旋转变换作图,弧长的计算,熟练掌握网格结构,准确找出对应点的位置是解题的关键.2如图,在正方形网络中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC关于原点O对称的△A1B1C1.(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2并写出点B2、C2的坐标.(3)在△ABC、△A1B1C1、△A2B2C2中,△A2B2C2与成中心对称,其对称中心的坐标为.【答案】解:(1)△ABC关于原点O对称的△A1B1C1如图所示:(2)平移后的△A2B2C2如图所示:点B2、C2的坐标分别为(0,-2),(-2,-1)。
(3)△A1B1C1;(1,-1)。
【考点】网格问题,作图(中心对称变换和平移变换),中心对称和平移的性质。
中考数学复习《对称、平移与旋转》专项测试卷(含参考答案)
中考数学复习《对称、平移与旋转》专项测试卷(含参考答案)学校:___________班级:___________姓名:___________考号:___________知识点一、轴对称1、下列图案中,是轴对称图形的是()A.B.C.D.2、在美术字中,有些汉字可以看成是轴对称图形.下列汉字中,是轴对称图形的是()A.B.C.D.3、如图,△ABC与△A′B′C′关于直线l对称,∠A=50°,∠C′=30°,则∠B的度数为()A.90°B.100°C.70°D.80°4、如图,∠AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若△PMN的周长是5cm,则P1P2的长为()A.3cm B.4cm C.5cm D.6cm5、如图,在Rt△ACB中,∠BAC=90°,AD⊥BC,垂足为D,△ABD与△ADB′关于直线AD对称,点B的对称点是点B′,若∠B′AC=14°,则∠B的度数为()A.38°B.48°C.50°D.52°知识点二、中心对称1、搭载神舟十六号载人飞船的长征二号F遥十六运载火箭于2023年5月30日成功发射升空,景海鹏、朱杨柱、桂海潮3名航天员开启“太空出差”之旅,展现了中国航天科技的新高度.下列图标中,其文字上方的图案是中心对称图形的是()A.B.C.D.2、将四个数字看作一个图形,则下列四个图形中,是中心对称图形的是()A.B.C.D.3、在平面直角坐标系中,已知点A(﹣4,3)与点B关于原点对称,则点B的坐标为()A.(﹣4,﹣3)B.(4,3)C.(4,﹣3)D.(﹣4,3)4、在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为()A.﹣4B.4C.12D.﹣125、在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限6、如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′知识点三、平移1、如图,将△ABC沿BC向右平移得到△DEF,若BC=5,BE=2,则CF的长是()A.2B.2.5C.3D.52、如图,已知点A(1,0),B(4,m),若将线段AB平移至CD,其中点C(﹣2,1),D(a,n),则m﹣n的值为()A.﹣3B.﹣1C.1D.33、在直角坐标系中,把点A(m,2)先向右平移1个单位,再向上平移3个单位得到点B.若点B的横坐标和纵坐标相等,则m=()A.2B.3C.4D.54、如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.48B.96C.84D.425、如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm6、如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣7、如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于()A.2B.3C.4D.知识点四、旋转1、如图,△AOB绕点O逆时针旋转65°得到△COD,若∠COD=30°,则∠BOC的度数是()A.30°B.35°C.40°D.45°2、如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°3、如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB'C'的位置,使CC'∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°4、如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=3,将△ABC绕点C按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB边上,连接BB′,则BB′的长为()A.6B.C.D.35、如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,且AB=CB′,则∠C′的度数为()A.18°B.20°C.24°D.28°6、如图,矩形ABCD绕B点旋转,使C点落到AD上的E处,AB=AE,连接AF,AG.(1)求证:AF=AG;(2)求∠GAF的度数.7、已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:△BAP≌△CAQ.(2)若P A=3,PB=4,∠APB=150°,求PC的长度.参考答案知识点一、轴对称1-5 ACBCD知识点二、中心对称1-6 CDCDAD知识点三、平移1-7 ABCAC DB知识点四、旋转1-5 BDCCC6、(1)证明:由旋转性质,得∠GBE=∠FEB=90°,BG=CD=EF∵AB=AE∴∠ABE=∠AEB∴∠ABG=∠AEF在△ABG和△AEF中,AB=AE,∠ABG=∠AEF,BG=EF∴△ABG≌△AEF∴AG=AF(2)解:∵AB=AE,∠BAE=90°∴∠ABE=∠AEB=45°∴∠ABG=90°﹣45°=45°由旋转性质,得AB=BG∴∠BAG=∠AGB=67.5°∵△ABG≌△AEF∴∠EAF=∠BAG=67.5°∴∠GAF=360°﹣90°﹣67.5°﹣67.5°=135°7、(1)证明:由旋转性质,得AP=AQ,∠P AQ=60°∴∠P AC+∠CAQ=60°∵△ABC是等边三角形∴∠P AC+∠BAP=60°,AB=AC∴∠BAP=∠CAQ在△BAP和△CAQ中,AP=AQ,∠BAP=∠CAQ,AB=AC ∴△BAP≌△CAQ(2)解:∵AP=AQ=3,∠P AQ=60°∴AP=PQ=3,∠AQP=60°∵∠APB=150°∴∠PQC=∠APB﹣∠AQP=90°∵PB=QC=4∴PC==5。
初中数学图形的平移,对称与旋转的经典测试题及答案解析
【答案】B
【解析】
【分析】
由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.
【详解】
解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,
由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,
9.如图,△ABC绕点A逆时针旋转使得点C落在BC边上的点F处,则以下结论:
①AC=AF;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.
其中正确的结论有()
A.4个B.3个
C.2个D.1个
【答案】B
【解析】
【分析】
根据旋转的性质,旋转前后对应线段相等、对应角相等即可解答.
【详解】
由旋转可知△ABC≌△AEF,
若旋转角度为15°,则∠ACO=30°+15°=45°.
∴∠AOC=180°-∠ACO-∠CAO=90°.
在等腰Rt△ABC中,AB=4,则AO=OC=2.
在Rt△AOD1中,OD1=CD1-OC=3,
由勾股定理得:AD1= .
故选A.
考点: 1.旋转;2.勾股定理.
14.如图, 的三个顶点都在方格纸的格点上,其中点 的坐标是 .现将 绕点 顺时针旋转 ,则旋转后点 的坐标是()
【详解】
解:作C'D⊥OA于D,设AO交BC于E,如图所示:
则∠C'DA=90°,
∵∠CAB=90°,AB=AC,
∴△ABC是等腰直角三角形,
∴∠B=45°,
中考数学专题复习卷:轴对称、平移与旋转(含解析)
轴对称、平移与旋转一、选择题1.以下图形中必定是轴对称图形的是()A. B. C. D.【答案】 D【分析】 A 、 40°的直角三角形不是轴对称图形,故不切合题意;B、两个角是直角的四边形不必定是轴对称图形,故不切合题意;C、平行四边形是中心对称图形不是轴对称图形,故不切合题意;D、矩形是轴对称图形,有两条对称轴,故切合题意,故答案为: D.【剖析】把一个图形沿着一条直线折叠,直线两旁的部分能完整重合的图形就是轴对称图形;依据轴对称图形的定义,再一一判断即可。
2.以下图形中,是轴对称图形但不是中心对称图形的是(A. 正三角形B. 菱形)C. 直角梯形D. 正六边形【答案】C【分析】:A.正三角形是轴对称图形,不是中心对称图形,故正确,A切合题意; B.菱形既是轴对称图形,又是中心对称图形,故错误, B 不切合题意;C.直角梯形既不是轴对称图形,也不是中心对称图形,故错误, C 不切合题意;D. 正六边形既是轴对称图形,又是中心对称图形,故错误, D 不切合题意;故答案为: A.【剖析】依据轴对称图形和中心对称图形定义一一判断对错即可得出答案.3.将抛物线y=-5x+l向左平移 1 个单位长度,再向下平移 2 个单位长度,所获得的抛物线为() .A. y=-5(x+1)-1B. y=-5(x-1)-1C. y=-5(x+1)+3D. y=-5(x-1)+3【答案】A【分析】:将抛物线y=-5x+l向左平移 1 个单位长度,获得的抛物线分析式为:y=-5 ( x+1 )2+1再向下平移 2 个单位长度获得的抛物线为:y=-5(x-1)+1-2即 y=-5(x+1)-1故答案为:A【剖析】依据二次函数图像的平移规律:上加下减,左加右减,将抛物线y=ax2向上或向下平移m 个单位,再向左或向右平移n 个单位即获得y=a( x±n)2±m。
依据平移规则即可得出平移后的抛物线的分析式。
中考数学复习专题精品导学案:第26讲平移旋转与对称
2013年中考数学专题复习第二十六讲平移、旋转与对称【基础知识回顾】一、轴对称与轴对称图形:1、轴对称:把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形那么就这说两个图形成轴对称,这条直线叫2、轴对称图形:如果把一个图形沿着某条直线对折,直线两旁的部分能够互相那么这个图形叫做轴对称图形3、轴对称性质:⑴关于某条直线对称的两个图形⑵对应点连接被对称轴【名师提醒:1、轴对称是指个图形的位置关系,而轴对称图形是指各具有特殊形状的图形2、对称轴是而不是线段,轴对称图形的对称轴不一定只有一条】二、图形的平移与旋转:1、平移:⑴定义:在平面内,把某个图形沿着某个移动一定的这样的图形运动称为平移⑵性质:Ⅰ平移不改变图形的与,即平移前后的图形Ⅱ平移前后的图形对应点连得线段平行且【名师提醒:平移作图的关键是确定平移的和】2、旋转:⑴定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个,这样的图形运动称为旋转,这个点称为转动的称为旋转角⑵旋转的性质:Ⅰ:旋转前后的图形Ⅱ:旋转前后的两个圆形中,对应点到旋转中心的距离都,每对对应点与旋转中心的连线所成的角度都是旋转角旋转角都【名师提醒:1、旋转作用的关键是确定、和,2、一个图形旋转一定角度后如果能与自身重合,那么这个图形就是旋转对称图形】三、中心对称与中心对称图形:1、中心对称:在平面内,一个图形绕某一点旋转1800能与自身重合它能与另一个图形就说这两个图形关于这个点成中心对称,这个点叫做2、中心对称图形:一个图形绕着某点旋转后能与自身重合,这种图形叫中心对称图形,这个点叫做3、性质:在中心对称的两个图形中,对称点的连线都经过且被平分【名师提醒:1、中心对称是指一个图形的位置关系,而中心对称图形是指一个具有特殊形状的图形2、常见的轴对称图形有、、、、、等,常见的中心对称图形有、、、、、等3、所有的正n边形都是对称圆形里有四条对称轴,边数为偶数的正多边形,又是对称图形4、注意圆形的各种变换在平面直角坐标系中的运用】【典型例题解析】考点一:轴对称图形例1 (2012•柳州)娜娜有一个问题请教你,下列图形中对称轴只有两条的是()A.B.C.D.圆等边三角形矩形等腰梯形考点:轴对称图形.分析:根据轴对称图形的概念,分别判断出四个图形的对称轴的条数即可.解答:解:A、圆有无数条对称轴,故本选项错误;B、等边三角形有3条对称轴,故本选项错误;C、矩形有2条对称轴,故本选项正确;D、等腰梯形有1条对称轴,故本选项错误.故选C.点评:本题考查轴对称图形的概念,解题关键是能够根据轴对称图形的概念正确找出各个图形的对称轴的条数,属于基础题.例2 (2012•成都)如图,在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标为()A.(-3,-5)B.(3,5)C.(3.-5)D.(5,-3)考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.解答:解:点P(-3,5)关于y轴的对称点的坐标为(3,5).故选B.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.对应训练1. (2012•宁波)下列交通标志图案是轴对称图形的是()A.B.C.D.考点:轴对称图形.专题:常规题型.分析:根据轴对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(2012•沈阳)在平面直角坐标系中,点P(-1,2)关于x轴的对称点的坐标为()A.(-1,-2)B.(1,-2)C.(2,-1)D.(-2,1)考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称的点,横坐标相同,纵坐标互为相反数解答.解答:解:点P(-1,2)关于x轴的对称点的坐标为(-1,-2).故选A.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.考点二:最短路线问题例3 (2012•黔西南州)如图,抛物线y= 12x2+bx-2与x轴交于A、B两点,与y交于C点,且A(-1,0),点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,m的值是()A.2540B.2441C.2340D.2541考点:轴对称-最短路线问题;二次函数的性质;相似三角形的判定与性质.分析:首先可求得二次函数的顶点坐标,再求得C关于x轴的对称点C′,求得直线C′D的解析式,与x轴的交点的横坐标即是m的值.解答:解:∵点A(-1,0)在抛物线y=12x2+bx-2上,∴12×(-1)2+b×(-1)-2=0,∴b=-32,∴抛物线的解析式为y=12x 2-32x-2, ∴顶点D 的坐标为(32,-258), 作出点C 关于x 轴的对称点C′,则C′(0,2),OC′=2连接C′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,MC+MD 的值最小.设抛物线的对称轴交x 轴于点E .∵ED ∥y 轴,∴∠OC′M=∠EDM ,∠C′OM=∠DEM∴△C′OM ∽△DEM .∴OM OC EM ED=, 即232528m m =-, ∴m=2441. 故选B .点评:本题着重考查了待定系数法求二次函数解析式,轴对称性质以及相似三角形的性质,关键在于求出函数表达式,作出辅助线,找对相似三角形.对应训练3. (2012•贵港)如图,MN 为⊙O 的直径,A 、B 是⊙O 上的两点,过A 作AC ⊥MN 于点C ,过B 作BD ⊥MN 于点D ,P 为DC 上的任意一点,若MN=20,AC=8,BD=6,则PA+PB 的最小值是 .考点:轴对称-最短路线问题;勾股定理;垂径定理.专题:探究型.分析:先由MN=20求出⊙O 的半径,再连接OA 、OB ,由勾股定理得出OD 、OC 的长,作点B 关于MN 的对称点B′,连接AB′,则AB′即为PA+PB 的最小值,B′D=BD=6,过点B′作AC 的垂线,交AC 的延长线于点E ,在Rt △AB′E 中利用勾股定理即可求出AB′的值. 解答:解:∵MN=20,∴⊙O 的半径=10,连接OA 、OB ,在Rt △OBD 中,OB=10,BD=6,∴OD=2222106OB BD -=-=8;同理,在Rt △AOC 中,OA=10,AC=8,∴OC=2222108OA AC -=-=6,∴CD=8+6=14,作点B 关于MN 的对称点B′,连接AB′,则AB′即为PA+PB 的最小值,B′D=BD=6,过点B′作AC 的垂线,交AC 的延长线于点E ,在Rt △AB′E 中,∵AE=AC+CE=8+6=14,B′E=CD=14,∴AB′=22221414142AE B E '+=+=.故答案为:142.点评:本题考查的是轴对称-最短路线问题、垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.考点二:中心对称图形例4 (2012•襄阳)下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D . 考点:中心对称图形;轴对称图形.分析:依据轴对称图形与中心对称的概念即可解答.解答:解:B 选项是轴对称也是中心对称图形,C 、D 选项是轴对称但不是中心对称图形,A 选项只是中心对称图形但不是轴对称图形.故选A .点评:对轴对称与中心对称概念的考查:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.对应训练4.(2012•株洲)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形不是中心对称图形,是轴对称图形,故此选项错误;B、此图形不是中心对称图形,也不是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项正确;D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故选C.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.考点二:平移旋转的性质例5 (2012•义乌市)如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.6 B.8 C.10 D.12考点:平移的性质.分析:根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC 即可得出答案.解答:解:根据题意,将周长为8个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选;C.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.例6 (2012•十堰)如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+33;⑤S△AOC+S△AOB=6+934.其中正确的结论是()A.①②③⑤B.①②③④C.①②③④⑤D.①②③考点:旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理的逆定理.分析:证明△BO′A≌△BOC,又∠OBO′=60°,所以△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;由△OBO′是等边三角形,可知结论②正确;在△AOO′中,三边长为3,4,5,这是一组勾股数,故△AOO′是直角三角形;进而求得∠AOB=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=6+43,故结论④错误;如图②,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.利用旋转变换构造等边三角形与直角三角形,将S△AOC+S△AOB转化为S△COO″+S△AOO″,计算可得结论⑤正确.解答:解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=12×3×4+34×42=6+43,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=12×3×4+34×32=6+934,故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选A.点评:本题考查了旋转变换中等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.在判定结论⑤时,将△AOB 向不同方向旋转,体现了结论①-结论④解题思路的拓展应用.对应训练5.(2012•莆田)如图,△A′B′C′是由△ABC沿射线AC方向平移2cm得到,若AC=3cm,则A′C= cm.考点:平移的性质.分析:先根据平移的性质得出AA′=2cm,再利用AC=3cm,即可求出A′C的长.解答:解:∵将△ABC沿射线AC方向平移2cm得到△A′B′C′,∴AA′=2cm,又∵AC=3cm,∴A′C=AC-AA′=1cm.故答案为:1.点评:本题主要考查对平移的性质的理解和掌握,能熟练地运用平移的性质进行推理是解此题的关键.6.(2012•南通)如图Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+ 3;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+ 3;…按此规律继续旋转,直到点P2012为止,则AP2012等于()A.2011+6713B.2012+6713C.2013+6713D.2014+6713考点:旋转的性质.专题:规律型.分析:仔细审题,发现将Rt△ABC绕点A顺时针旋转,每旋转一次,AP的长度依次增加2,3,1,且三次一循环,按此规律即可求解.解答:解:∵Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,∴AB=2,BC=3,∴将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+3;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+3+1=3+3;又∵2012÷3=670…2,∴AP2012=670(3+3)+2+3=2012+6713.故选B.点评:本题考查了旋转的性质及直角三角形的性质,得到AP的长度依次增加2,3,1,且三次一循环是解题的关键.考点四:图形的折叠例7 (2012•遵义)如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为()A.3B.2C.2D.2考点:翻折变换(折叠问题)。
全国名校2013年中考数学模拟试卷分类汇编33 图形的变换
图形的变换(图形的平移、旋转与轴对称)一、选择题1、(2013安徽芜湖一模)下列图形既是轴对称图形,又是中心对称图形的是 ( ).A B C D[w#~@ww*.zzste&] 答案:D2、(2013江苏东台实中)下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是( ).答案:D3、(2013江苏扬州弘扬中学二模)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是( ).A .2+10B .2+210C .12D .18 答案:B4、(2013·吉林中考模拟)下列图形中,既是轴对称图形,又是中心对称图形的是( )答案:B5、(2013·曲阜市实验中学中考模拟)李刚同学设计了四种正多边形的瓷砖图案,在这四种瓷砖中,用一种瓷砖可以密铺平面的是( )10题图A. (1)(2)(4)B. (2)(3)(4)C. (1)(3)(4)D. (1)(2)(3)答案:A6、(2013·温州市中考模拟)将一圆形纸片对折后再对折,得到图1,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()答案:C7、(2013·湖州市中考模拟试卷1)下列交通标志中,既是中心对称图形,又是轴对称图形的是()答案:D8、(2013·湖州市中考模拟试卷3)下列图形中,既是中心对称图形又是轴对称图形的是( ).A. 等边三角形B. 等腰直角三角形C. 菱形D. 等腰梯形答案:C9、(2013·湖州市中考模拟试卷7)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒的菱形,剪口与折痕所成的角α的度数应为()A.15︒或30︒ B.30︒或45︒ C.45︒或60︒ D.30︒或60︒答案:D10、(2013年深圳育才二中一摸)下列平面图形,既是中心对称图形,又是轴对称图形的是( )A .等腰三角形B .正五边形C .平行四边形D .矩形 答案:D11、(2013年深圳育才二中一摸)如图,将△ABC 绕着点C 顺时针旋转50°后得到△'''C B A . 若∠A =40°. ∠'B =110°,则∠'BCA 的度数是( ) A .110° B.80° C.40° D.30° 答案:B12、(2013年广西南丹中学一摸)如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC绕点C 顺时针旋转60°,则顶点A 所经过的路径长为 A .10πBCD .π答案:C13、(2013年河南西华县王营中学一摸)下列图形中,既是轴对称图形又是中心对称图形的是( )答案:D14、(2013年河北四摸)如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( ) (A )30° (B )45° (C )90° (D )135°答案:C第11题图/B15、(2013年温州一摸)将一圆形纸片对折后再对折,得到图1,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( ) 答案:C二、填空题1、(2013吉林镇赉县一模)如图所示,在△ABC 中,∠CAB 绕点A 逆时针旋转到△A′B ′C ′的位置,使CC ′∥AB ,则∠BAB 答案:30°2、(2013山西中考模拟六) 已知△ABC 的面积为36,将△ABC 沿BC 平移到△A ´B ´C ´,使B ´和C重合,连结AC ´交AC 于D ,则△C ´DC 的面积为________.答案:183、(2013·温州市中考模拟)如图,五角星绕中心旋转一定角度后能与自身完全重合,则其旋转的角度至少为____º答案:72º4、(2013·湖州市中考模拟试卷3)如图,将一块含45角的直角三角尺ABC 在水平桌面A B C D上绕点B 按顺时针方向旋转到11A BC 的位置,若AB =8cm ,那么点A 旋转到1A 所经过的路线长为_ cm .(结果保留π)答案:65、(2013·湖州市中考模拟试卷8)一个长方形的长与宽分别为和16cm ,绕它的对称中心旋转一周所扫过的面积是2cm ;旋转90度时, 扫过的面积是 2cm .答案:256π,6401283π+ 6、(2013年河北三摸)两个全等的梯形纸片如图(1)摆放,将梯形纸片ABCD 沿上底AD 方向向右平移得到图(2).已知AD =4,BC =8,若阴影部分的面积是四边形A ′B ′CD 的面积的13,则图(2)中平移距离A ′A =________.答案:37、(2013年河北四摸)如图4,将∆ABC 沿直线AB 向右平移后到达∆BDE 的位置,若∠CAB =50°,∠ABC =100°,则∠CBE 的度数为 . 答案:30︒8、(2013年温州一摸)如图,五角星绕中心旋转一定角度后能与自身完全重合,则其旋转的角度至少为____º 答案:721 2 题图三、解答题1、(2013安徽芜湖一模)如图,已知ABC △的三个顶点的坐标分别为(23)A -,、(60)B -,、(10)C -,.(1)经过怎样的平移,可使ABC △的顶点A 与坐标原点O 重合,并直接写出此时点C 的对应点1C 坐标;(不必画出平移后的三角形)(2)将ABC △绕坐标原点O 逆时针旋转90°,得到△A ′B ′C ′,画出△A ′B ′C ′.答案:解:(1)1C (1,-3);………………………………………………………………(3分)(2)图形略;……………………………………………………………………… (8分) 2、(2013安徽芜湖一模)如图1,△ABC 是等腰直角三角形,四边形ADEF 是正方形,D 、F分别在AB 、AC 边上,此时BD =CF ,BD ⊥CF 成立. (1)当正方形ADEF 绕点A 逆时针旋转θ(090θ<<)时,如图2,BD =CF 成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF 绕点A 逆时针旋转45°时,如图3,延长BD 交CF 于点G .① 求证:BD ⊥CF ;② 当AB =4,ADBG 的长.图1 图2 图3答案:(本小题满分12分)解(1)BD =CF 成立.理由:∵△ABC 是等腰直角三角形,四边形ADEF 是正方形,∴AB =AC ,AD =AF ,∠BAC =∠DAF =90°,∵∠BAD =DAC BAC ∠-∠,∠CAF =DAC DAF ∠-∠,∴∠BAD =∠CAF ,∴△BAD ≌△CAF .第18题图图13.3图13.2图13.145°θG CDEFFEDCF E DCBA∴BD =CF.……………………………………………………………………(4分)(2)①证明:设BG 交AC 于点M .∵△BAD ≌△CAF (已证),∴∠ABM =∠GCM . ∵∠BMA =∠CMG ,∴△BMA ∽△CMG .∴∠BGC =∠BAC =90°.∴BD ⊥CF .……………………………………(7分)②过点F 作FN ⊥AC 于点N .∵在正方形ADEF 中,AD =2, ∴AN =FN =121=AE . ∵在等腰直角△ABC 中,AB =4, ∴CN =AC -AN =3,BC =2422=+AC AB .Rt △FCN ∽Rt △ABM ,∴ABCNAM FN = ∴AM ==⨯AB 3134.∴CM =AC -AM =4-34=38,310422=+=AM AB BM .…… (9分)∵△BMA ∽△CMG ,∴CGCMBA BM =. ∴CG 3843104=. ∴CG =5104.…………………………………… (11分) ∴在Rt △BGC 中,=-=22CG BC BG 5108. ……………… (12分) 3、(2013温州市一模)如图,正比例函数(0)y kx k =≠经过点A (2,4), AB ⊥x 轴于点B .(1)求该正比例函数的解析式.(2)将△ABO 绕点A 逆时针旋转90︒得到△ADC ,写出点C 的坐标,试判断点C 是否在直线113y x =+的图象上,并说明理由.答案:解:(1)∵正比例函数(0)y kx k =≠经过点A (2,4) ∴42k =2k ∴=2y x ∴=MN FE DCG 45°图13.3D OBACyx(第22题)(2) ∵A (2,4),AB ⊥x 轴于点B∴2,4OB AB ==∵△ABO 绕点A 逆时针旋转90︒得到△ADC ∴2,4DC OB AD AB ==== ∴C (6,2)∵当6x =时,161323y =⨯+=≠ ∴点C 不在直线113y x =+的图象上4、(2013·湖州市中考模拟试卷1)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,A B C △的三个顶点都在格点上(每个小方格的顶点叫格点).(1)画出A B C △绕点C 顺时针旋转90后的11ABC △;(2)求边AB 旋转时所扫过区域的面积答案:(1)画图(略) ………………………………4分 (2)72π…………………………‥4分 5、(2013年上海市)(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)数学课上,张老师出示图1和下面框中条件:(1)①当点C 与点F 重合时,如图2所示,可得DM的值为 ▲ ; 如图1,两块等腰直角三角板ABC 和DEF 有一条边在同一条直线l 上,∠ABC =∠DEF = 90°,AB = 1,DE = 2.将直线EB 绕点E 逆时针旋转45°,交直线AD 于点M .将图1中的三角板ABC 沿直线l 向右平移,设C 、E 两点间的距离为x .(第25题图1)C E F l B (第25题图2)E F (C ) B l②在平移过程中,AMDM的值为▲(用含x的代数式表示);(2)艾思轲同学将图2中的三角板ABC绕点C逆时针旋转,原题中的其他条件保持不变.当点A落在线段DF上时,如图3所示,请你帮他补全图形,并计算AMDM的值;(3)艾思轲同学又将图1中的三角板ABC绕点C逆时针旋转m度,090m<≤,原题中的其他条件保持不变.请你计算AMDM的值(用含x的代数式表示).答案:解:(1)① 1.………………………………………………………………………(2分)②2x.………………………………………………………………………(2分)(2)联结AE,补全图形如图1所示.…………………………………………(1分)∵△ABC和△DEF是等腰直角三角形,∠ABC =∠DEF = 90°,AB = 1,DE = 2,∴BC = 1,EF = 2,∠DFE =∠ACB= 45°.∴AC=DF=,∠EFB = 90°.∴AD DF AC=-=A为DF的中点.………………………(1分)∴EA⊥DF,EA平分∠DEF.∴∠MAE = 90°,∠AEF = 45°,AE=∵∠MEB =∠AEF= 45°,∴∠MEA =∠BEF.∴Rt△MAE∽Rt△BFE.……………………………………………………(1分)∴AM AEBF EF=,∴AM=.……………………………………………(1分)∴DM AD AM=-==,∴1AMDM=.……………………(1分)(第25题备用图)E F l(第25题图3)E F(C) l(3)如图2,过点B 作BE 的垂线交直线EM 于点G ,联结AG .∵∠EBG = 90°,∠BEM = 45°,∴∠BGE = 45°.∴BE = BG .…………………………………………………………………(1分) ∵∠ABC =∠EBG = 90°,∴∠ABG =∠CBE .……………………………(1分) 又∵BA = BC ,∴△ABG ≌△CBE .………………………………………(1分) ∴AG = CE = x ,∠AGB =∠CEB .∵∠AGB +∠AGM =∠CEB +∠DEM = 45°,∴∠AGM =∠DEM ,∴AG ∥DE .…………………………………………(1分) ∴2AM AG xDM DE ==.…………………………………………………………(1分) 注:第(3)小题直接写出结果不得分。
2013届全国中考数学3年中考2年模拟之专题突破:5.1图形的轴对称、平移与旋转pdf版
+) 2 6fghi*jS(
有三个候选人, 他们分别是:
笃信巫医, 有两个情妇, 有多年的吸烟史, 而且嗜酒如命; : 曾经两次被赶出办公室, 每天要到中午才起床, 每晚 A: B 都要喝白兰地, 而且曾经有过吸食鸦片的记录; : 曾是国家的战斗英雄, 一直保持素食的习惯, 不吸烟, 偶尔喝点酒, 但 C 大都只是喝一点啤酒, 年轻时从未做过违法的事.
·福建泉州) 如图, 以点 犗 为旋转中心, 将∠ 9 .( 2 0 1 1 1 按顺时 1 针方向 旋 转 1 , 得到∠ , 若∠ , 则∠ 1 0 ° 2 1=4 0 ° 2的余角为 . ( 第1 3题 ) A. 1个 B . 2个 C. 3个 D. 4个 二、填空题 ·四川宜宾) 如图, 在平面直角坐标系中, 将 △犃 1 4 .( 2 0 1 2 犅 犆绕 点犘 旋转1 得到△犇 则点 犘 的坐标为 . 8 0 ° 犈 犉, ( 第1 ( 第2 9题 ) 0题 ) 2 ·山东济宁 ) 如图, 0 .( 2 0 1 1 犙 犚 是 △犃 犅 犆 经过某种变换后 △犘 得到的图形, 如果△犃 ) , 那 犅 犆 中任意一点 犕 的坐标为 ( 犪, 犫 么它的对应点 犖 的坐标为 . 2 ·山东泰安) 如图, 1 .( 2 0 1 1 犅 犆 的 3 个顶点都在 5 ×5 的网 △犃 格( 每个小正方形的边长均为 1 个单位长度 ) 的格点上, 将 绕点 顺时针旋转到 的位置 , 且点 、 犅 犆 犅 ′ 犅 犆 ′ 犃 ′犆 ′仍 △犃 △犃 则线段 犃 落在格点上, 犅 扫过的图形面积是 平方单 位 ( 结果保留 ) . π ( 第1 4题 ) ·湖北黄冈) 在平面直角坐标系中, 1 5 .( 2 0 1 2 犅 犆 的三个顶点 △犃 的坐标分别是 犃( , ) , , ) , , ) , 将 △犃 - 2 3 犅( - 4 - 1 犆( 2 0 犅 犆平 点 犃、 移至△犃 犅 犆 犅、 犆 的对应点分别是犃 犅 犆 1 1 1的位置, 1、 1、 1, 若点 犃 , ) 则点犆 3 1 . 1的坐标为( 1的坐标为 . ·浙江杭州) 如图, 平面直角坐标系中有四个点, 它们 1 6 .( 2 0 1 2 ( 第2 ( 第2 1题 ) 2题 ) 的横纵坐标均为整数. 若在此平面直角坐标系内移动点 犃, 2 ·江苏扬州) 如图, 在R , , .( 2 0 1 0 t 犅 犆 中, 犆=9 0 ° 犃 犆=8 △犃 ∠ 使得这四个点构成的四边形是轴对称图形, 并且点 犃 的横 2 , 按图中所示方法将 △犅 使点 犆 落在 犅 犆= 6 犆 犇 沿犅 犇 折叠, 坐标仍是整数, 则移动后点 犃 的坐标为 . 边 上的点 处 , 则折痕 的长为 犃 犅 犆 ′ 犅 犇 . 三、解答题 ·安徽) 如图, 在边长为1个单位长度的小正方形组成 3 .( 2 0 1 2 2 的网格中 , 给出了格点 顶点是网格线的交点 ) 和点 犅 犆( △犃 犃 1. ( ) 画出一个格点 △犃 并使它与 △犃 1 犅 犆 犅 犆 全等且 犃 与 1 1 1, 犃1 是对应点; ( ) 并指出 犃 2 画出点 犅 关于直线 犃 犆 的对称点 犇, 犇 可以看 作由犃 ( 第1 犅 绕犃 点经过怎样的旋转而得到的. 6题 ) ·湖南娄底) 如图, , ) 、 ( , ) , 若 1 7 .( 2 0 1 2 犃、 犅 的坐标分别为( 1 0 0 2 将线段 犃 平移到至 , 、 的坐标分别为 ( , ) 、 ( , 犅 犃1 犅 2犪 犫 1 犃 1 犅 1 ) , 则犪+ 3 犫 = . ( 第2 3题 ) ( 第1 7题 ) ·福建泉州) 等边三角形、 平行四边形、 矩形、 圆四个图 1 8 .( 2 0 1 1 形中, 既是轴对称又是中心对称的是 .
中考数学专题复习卷:轴对称、平移与旋转(含解析)
轴对称、平移与旋转一、选择题1.下列图形中一定是轴对称图形的是()A. B. C. D.【答案】D【解析】A、40°的直角三角形不是轴对称图形,故不符合题意;B、两个角是直角的四边形不一定是轴对称图形,故不符合题意;C、平行四边形是中心对称图形不是轴对称图形,故不符合题意;D、矩形是轴对称图形,有两条对称轴,故符合题意,故答案为:D.【分析】把一个图形沿着一条直线折叠,直线两旁的部分能完全重合的图形就是轴对称图形;根据轴对称图形的定义,再一一判断即可。
2.下列图形中,是轴对称图形但不是中心对称图形的是()A. 正三角形B. 菱形C. 直角梯形D. 正六边形【答案】C【解析】:A.正三角形是轴对称图形,不是中心对称图形,故正确,A符合题意;B.菱形既是轴对称图形,又是中心对称图形,故错误,B不符合题意;C.直角梯形既不是轴对称图形,也不是中心对称图形,故错误,C不符合题意;D.正六边形既是轴对称图形,又是中心对称图形,故错误,D不符合题意;故答案为:A.【分析】根据轴对称图形和中心对称图形定义一一判断对错即可得出答案.3.将抛物线y=-5x +l向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为().A. y=-5(x+1) -1B. y=-5(x-1) -1C. y=-5(x+1) +3D. y=-5(x-1) +3【答案】A【解析】:将抛物线y=-5x+l向左平移1个单位长度,得到的抛物线解析式为:y=-5(x+1)2+1再向下平移2个单位长度得到的抛物线为:y=-5(x-1)+1-2即y=-5(x+1)-1故答案为:A【分析】根据二次函数图像的平移规律:上加下减,左加右减,将抛物线y=ax2向上或向下平移m个单位,再向左或向右平移n个单位即得到y=a(x±n)2±m。
根据平移规则即可得出平移后的抛物线的解析式。
即可求解。
4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【解析】:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。
中考数学专题训练:图形的对称、平移与旋转(附参考答案)
中考数学专题训练:图形的对称、平移与旋转(附参考答案)1.下列图形:其中轴对称图形的个数是( )A.4 B.3C.2 D.12.某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了8棵桂花,如图所示.若A,B两处桂花的位置关于小路对称,在分别以两条小路为x,y 轴的平面直角坐标系内,若点A的坐标为(-6,2),则点B的坐标为( )A.(6,2) B.(-6,-2)C.(2,6) D.(2,-6)3.如图是用七巧板拼成的一个轴对称图形(忽略拼接线),小亮改变①的位置,将①分别摆放在图中左、下、右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为( )A.2 B.3C.4 D.54.在以“矩形的折叠”为主题的数学活动课上,某位同学进行了如下操作:第一步:将矩形纸片的一端,利用图1的方法折出一个正方形,然后把纸片展平;第二步:将图1中的矩形纸片折叠,使点C恰好落在点F处,得到折痕MN,如图2.根据以上的操作,若AB=8,AD=12,则线段BM的长是( )A.3 B.√5C.2 D.15.如图,已知矩形纸片ABCD,其中AB=3,BC=4,现将纸片进行如下操作:第一步,如图1将纸片对折,使AB与DC重合,折痕为EF,展开后如图2;第二步,再将图2中的纸片沿对角线BD折叠,展开后如图3;第三步,将图3中的纸片沿过点E的直线折叠,使点C落在对角线上的点H处,如图4.则DH的长为( )A.32B.85C.53D.956.在平面直角坐标系中,把点P(-3,2)向右平移2个单位长度后,得到对应点的坐标是( )A.(-5,2) B.(-1,4)C.(-3,4) D.(-1,2)7.如图,在平面直角坐标系中,等边三角形OAB的边长为4,点A在第二象限内,将△OAB沿射线AO平移,平移后点A′的横坐标为4√3,则点B′的坐标为( )A.(-6√3,2) B.(6√3,-2√3)C.(6,-2) D.(6√3,-2)8.如图,在平面直角坐标系中,△ABC各点坐标分别为A(-2,1),B(-1,3),C(-4,4).先作△ABC关于x轴成轴对称的△A1B1C1,再把△A1B1C1平移后得到△A 2B2C2.若B2(2,1),则点A2的坐标为( )A.(1,5) B.(1,3)C.(5,3) D.(5,5)9.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DO=4,平移的距离为6,则阴影部分的面积为( )A.24 B.40C.42 D.4810.如图,△ABC沿BC方向平移后的图形为△DEF,已知BC=5,EC=2,则平移的距离是( )A.1 B.2C.3 D.411.如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是( )A BC D12.如图,在△ABC中,∠ACB=90°,∠BAC=α,将△ABC绕点C顺时针旋转90°得到△A′B′C,点B的对应点B′在边AC上(不与点A,C重合),则∠AA′B′的度数为( )A.αB.α-45°C.45°-αD.90°-α13.如图,将直角三角尺ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′的度数为( )A.90°B.60°C.45°D.30°14.如图,在△ABC中,AB=AC,若M是边BC上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )A.AB=ANB.AB∥NCC.∠AMN=∠ACND.MN⊥AC15.如图,在△ABC中,AC=BC,∠B=38°,点D是边AB上一点,点B关于直线CD的对称点为B′,当B′D∥AC时,∠BCD的度数为________.16.如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,√3),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,√3),则点E的坐标为____________.17.如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),连接AB,若将△ABO绕点B顺时针旋转90°,得到△A′BO′,则点A′的坐标为______________.18.如图,在□ABCD中,∠B=60°,BC=2AB,将AB绕点A逆时针旋转角α(0°<α<360°)得到AP,连接PC,PD.当△PCD为直角三角形时,旋转角α的度数为______________________.参考答案1.B2.A3.B4.C5.D6.D7.D8.B9.D 10.C 11.B 12.C 13.B 14.C15.33° 16.(7,0) 17.(7,4) 18.90°或180°或270°。
2013年中考数学模拟试题分类汇编23:平移旋转
2013年中考数学模拟试题汇编平移旋转例1 如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.6 B.8 C.10 D.12考点:平移的性质.分析:根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.解答:解:根据题意,将周长为8个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选;C.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.例2 如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′;⑤S△AOC+S△AOB中正确的结论是()A.①②③⑤ B.①②③④ C.①②③④⑤D.①②③考点:旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理的逆定理.分析:证明△BO′A≌△B OC,又∠OBO′=60°,所以△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;由△OBO′是等边三角形,可知结论②正确;在△AOO′中,三边长为3,4,5,这是一组勾股数,故△AOO′是直角三角形;进而求得∠AOB=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′,故结论④错误;如图②,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.利用旋转变换构造等边三角形与直角三角形,将S△AOC+S△AOB转化为S△COO″+S△AOO″,计算可得结论⑤正确.解答:解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°, 故结论③正确;S 四边形AOBO ′=S △AOO′+S △OBO′=12×3×4+4×42,故结论④错误;如图②所示,将△AOB 绕点A 逆时针旋转60°,使得A B 与AC 重合,点O 旋转至O″点. 易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S △AOC +S △AOB =S 四边形AOCO″=S △COO″+S △AOO″=12×32故结论⑤正确.综上所述,正确的结论为:①②③⑤. 故选A .点评:本题考查了旋转变换中等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.在判定结论⑤时,将△AOB 向不同方向旋转,体现了结论①-结论④解题思路的拓展应用.例3如图,△A′B′C′是由△ABC 沿射线AC 方向平移2cm 得到,若AC=3cm ,则A′C= cm .考点:平移的性质.分析:先根据平移的性质得出AA′=2cm,再利用AC=3cm ,即可求出A′C 的长. 解答:解:∵将△ABC 沿射线AC 方向平移2cm 得到△A′B′C′, ∴AA′=2cm, 又∵AC=3cm ,∴A′C=AC -AA′=1cm. 故答案为:1. 点评:本题主要考查对平移的性质的理解和掌握,能熟练地运用平移的性质进行推理是解此题的关键.例4 如图Rt △ABC 中,∠ACB=90°,∠B=30°,AC=1,且AC 在直线l 上,将△ABC 绕点A 顺时针旋转到①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2,此时AP 2P 2顺时针旋转到位置③,可得到点P3,此时AP3;…按此规律继续旋转,直到点P2012为止,则AP2012等于()A.B.C.2013+671D.考点:旋转的性质.专题:规律型.分析:仔细审题,发现将Rt△ABC绕点A顺时针旋转,每旋转一次,AP的长度依次增加2,,1,且三次一循环,按此规律即可求解.解答:解:∵Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,∴AB=2,∴将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3;又∵2012÷3=670…2,∴AP2012=670()故选B.点评:本题考查了旋转的性质及直角三角形的性质,得到AP的长度依次增加21,且三次一循环是解题的关键.。
中考数学总复习第四单元三角形练习17对称平移与旋转练习2
课时训练(十七) 对称、平移与旋转|夯实基础|1.下列图案属于轴对称图形的是()图17-142.[2018·青岛] 观察下列四个图形,是中心对称图形的是()图17-153.下列图形中既是轴对称图形又是中心对称图形的是()图17-164.如图17-17,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为()图17-17A.(2,-1)B.(2,3)C.(0,1)D.(4,1)5.[2017·菏泽] 如图17-18,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C,连接AA'.若∠1=25°,则∠BAA'的度数是()图17-18A.55°B.60°C.65°D.70°6.如图17-19,∠AOB=90°,∠B=30°,△A'OB'可以看作是由△AOB绕点O顺时针旋转α度得到的.若点A'在AB上,则旋转角α的大小可以是 ()图17-19A.30°B.45°C.60°D.90°7.[2018·天津] 如图17-20,将一个三角形纸片ABC沿过点B的直线折叠,使点C落在AB边上的点E处,折痕为BD,则下列结论一定正确的是()图17-20A.AD=BDB.AE=ACC.ED+EB=DBD.AE+CB=AB8.如图17-21,在△ABC中,AD是BC边上的高,E,F是AD上的两点,AB=AC,BC=4,AD=3,则图中阴影部分的面积是()图17-21A.12B.6C.3D.49.对角线长分别为6和8的菱形ABCD如图17-22所示,O为对角线的交点,过点O折叠菱形,使B,B'两点重合,MN 是折痕.若B'M=1,则CN的长为()图17-22A.7B.6C.5D.410.[2018·聊城] 如图17-23,将一张三角形纸片ABC的一角折叠,使得点A落在△ABC外的一点A'处,折痕为DE.如果∠A=α,∠CEA'=β,∠BDA'=γ,那么下列式子中正确的是()图17-23A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°-α-β11.如图17-24,在平面直角坐标系xOy中,△A'B'C'是由△ABC绕点P旋转得到的,则点P的坐标为()图17-24A.(0,1)B.(1,-1)C.(0,-1)D.(1,0)12.[2017·潍坊] 小莹和小博士下棋,小莹执圆子,小博士执方子.如图17-25,棋盘中心方子的位置用(-1,0)表示,右下角方子的位置用(0,-1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形,她放的位置是 ()图17-25A.(-2,1)B.(-1,1)C.(1,-2)D.(-1,-2)13.[2016·河北] 如图17-26,将▱ABCD沿对角线AC折叠,使点B落在点B'处.若∠1=∠2=44°,则∠B为()图17-26A.66°B.104°C.114°D.124°14.[2016·无锡] 如图17-27,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当点A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()图17-27A.√7B.2√2C.3D.2√315.如图17-28,某小区有一块长方形的草地,长18 m,宽10 m,空白部分为两条均匀的小路,则草地的实际面积为m2.图17-2816.[2017·青山区一模] 如图17-29,将一块斜边长为12 cm,∠B=60°的三角尺ABC绕点C沿逆时针方向旋转90°至△A'B'C'的位置,再沿CB向右平移,使点B'刚好落在斜边AB上,那么此三角尺向右平移的距离是 cm.图17-2917.[2013·包头] 如图17-30,在三角形纸片ABC中,∠C=90°,AC=6,折叠该纸片使点C落在AB边上的点D处,折痕BE与AC交于点E.若AD=BD,则折痕BE的长为.图17-3018.[2015·永州] 如图17-31,在平面直角坐标系中,点A的坐标为(-2,0),△ABO是直角三角形,∠B=90°,∠AOB=60°,现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A'B'O的位置,点A'在y轴上,则此时边OB扫过的面积为.图17-3119.[2018·枣庄] 如图17-32,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图①中,画出一个与△ABC成中心对称的格点三角形;(2)在图②中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图③中,画出△ABC绕点C按顺时针方向旋转90°后的三角形.图17-3220.[2018·宁波] 如图17-33,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与点A,B不重合),连接CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连接DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.图17-33|拓展提升|21.如图17-34,在四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,当△AMN的周长最小时,∠AMN+∠ANM的度数是.图17-3422.如图17-35,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B交AC于点E,A1C1分别交AC,BC 于点D,F,下列结论:①∠CDF=α;②A1E=CF;③DF=FC;④A1F=CE.其中正确的是(写出正确结论的序号).图17-35参考答案1.A2.C[解析] 选项C中的图形绕着它的中心旋转180°后能与自身完全重合,是中心对称图形;选项A,B,D中的图形是轴对称图形.故选C.3.C4.A5.C[解析] 根据旋转的性质可得∠BAC=∠B'A'C,AC=A'C,∴△ACA'是等腰直角三角形,∴∠CA'A=∠CAA'=45°,∴∠B'A'C=45°-∠1=45°-25°=20°,∴∠BAA'=∠BAC+∠CAA'=20°+45°=65°.6.C7.D[解析] 由折叠的性质,可知CB=EB,∴AE+CB=AE+EB=AB.故选D.8.C9.D[解析] (法一,排除法)连接AC,BD.∵在菱形ABCD中,AC=6,BD=8,∴CO=3,DO=4,CO⊥DO,∴CD=5,而CN<CD,∴CN<5,故排除A,B,C,故选D.(法二,正确推导)如图,可证△BMO≌△DNO,∴DN=BM.由折叠的性质可知B'M=BM=1=DN,易得CD=5,∴CN=4.10.A[解析] ∵将一张三角形纸片ABC的一角折叠,使得点A落在△ABC外的一点A'处,折痕为DE,∴∠A'=∠A=α.如图所示,设A'D交AC于点F,则∠BDA'=∠A+∠AFD=∠A+∠A'+∠A'EF,∵∠A=α,∠CEA'=β,∠BDA'=γ,∴γ=α+α+β=2α+β.11.B12.B[解析] 根据题意所描述的位置,可知当第4枚圆子放入棋盘(-1,1)处时,所有棋子构成一个轴对称图形,对称轴如图中虚线所示.13.C14.A[解析] 首先证明△ACA1,△BCB1是等边三角形,推出△A1BD是直角三角形即可解决问题.∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°-∠ABC=60°,AB=4,BC=2√3.∵CA=CA1,∴△ACA1是等边三角形,∴AA1=AC=BA1=2,∠BCB1=∠ACA1=60°.又∵CB=CB1,∴△BCB1是等边三角形,∴BB1=2√3,∠CBB1=60°,∴∠A1BB1=90°,BD=DB1=√3,∴A1D=√A1A2+AA2=√7.故选A.15.128 16.(6-2√3)17.418.14π [解析] 在Rt △ABO 中,∵∠AOB=60°,∴∠BAO=30°,∠A'OB=30°,∴OB=12OA=1.由旋转的性质可知:OB=OB'=1,∠A'OB'=∠AOB=60°,∴∠BOB'=∠A'OB'+∠A'OB=90°,∴边OB 扫过的面积为14×π×12=14π.19.解:(1)答案不唯一,如图所示,△A 1B 1C 是所求作的三角形.(2)画出下列其中一个即可.(3)如图所示,△A 3B 3C 为所求作的三角形.20.解:(1)证明:∵线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,∴∠DCE=90°,CD=CE.又∵∠ACB=90°,∴∠ACB=∠DCE ,∴∠ACD=∠BCE.在△ACD 和△BCE 中,{AA =AA ,∠AAA =∠AAA ,AA =AA , ∴△ACD ≌△BCE.(2)∵∠ACB=90°,AC=BC ,∴∠A=45°.∵△ACD ≌△BCE ,∴AD=BE ,∠CBE=∠A=45°.又∵AD=BF ,∴BE=BF ,∴∠BEF=∠BFE=180°-45°2=67.5°.21.120°22.①②④。
(专题精选)初中数学图形的平移,对称与旋转的真题汇编及解析
(专题精选)初中数学图形的平移,对称与旋转的真题汇编及解析一、选择题1.如图,在ABC V 中,60,3,5,B AB BC ∠=︒==将ABC V 绕点A 顺时针方向旋转得到,ADE V 当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .3B .2.5C .2D .1【答案】C【解析】【分析】 由旋转得到AD=AB ,由此证明△ADB 是等边三角形,得到BD=AB=3,即可求出CD.【详解】由旋转得AD=AB ,∵60B ∠=︒,∴△ADB 是等边三角形,∴BD=AB=3,∴CD=BC-BD=5-3=2,故选:C.【点睛】此题考查旋转的性质,等边三角形的判定及性质,根据旋转得到AD=AB 是解题的关键,由此得到等边三角形进行求解.2.如图,ABC ∆是O e 的内接三角形,45A ∠=︒,1BC =,把ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,点A 的对应点为点D ,则点A ,D 之间的距离是()A .1B 2C 3D .2【答案】A【解析】【分析】 连接AD ,构造△ADB ,由同弧所对应的圆周角相等和旋转的性质,证△ADB 和△DBE 全等,从而得到AD=BE=BC=1.【详解】如图,连接AD ,AO ,DO∵ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,∴AB=DE ,90AOD ∠=︒,45CAB BDE ∠=∠=︒ ∴1452ABD AOD ∠=∠=︒(同弧所对应的圆周角等于圆心角的一半), 即45ABD EDB ∠=∠=︒,又∵DB=BD ,∴DAB BED ∠=∠(同弧所对应的圆周角相等),在△ADB 和△DBE 中 ABD EDB AB EDDAB BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADB ≌△EBD (ASA ),∴AD=EB=BC=1.故答案为A.【点睛】本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.3.如图,在Rt ABC V 中,BAC 90∠=︒,B 36∠=︒,AD 是斜边BC 上的中线,将△ACD 沿AD 对折,使点C 落在点F 处,线段DF 与AB 相交于点E ,则∠BED 等于( )A .120°B .108°C .72°D .36° 【答案】B【解析】【分析】 根据三角形内角和定理求出C 90B 54∠∠=︒-=︒.由直角三角形斜边上的中线的性质得出AD =BD =CD ,利用等腰三角形的性质求出BAD B 36∠∠==︒,DAC C 54∠∠==︒,利用三角形内角和定理求出ADC 180DAC C 72∠∠∠=︒--=︒.再根据折叠的性质得出ADF ADC 72∠∠==︒,然后根据三角形外角的性质得出BED BAD ADF 108∠∠∠=+=︒.【详解】∵在Rt ABC V 中,BAC 90∠=︒,B 36∠=︒,∴C 90B 54∠∠=︒-=︒.∵AD 是斜边BC 上的中线,∴AD BD CD ==,∴BAD B 36∠∠==︒,DAC C 54∠∠==︒,∴ADC=180DAC C 72∠∠∠︒--=︒.∵将△ACD 沿AD 对折,使点C 落在点F 处,∴ADF ADC 72∠∠==︒,∴BED BAD ADF 108∠∠∠=+=︒.故选B .【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.4.如图,周长为16的菱形ABCD 中,点E ,F 分别在边AB ,AD 上,AE =1,AF =3,P 为BD 上一动点,则线段EP +FP 的长最短为( )A .3B .4C .5D .6【答案】B【解析】试题分析:在DC 上截取DG=FD=AD ﹣AF=4﹣3=1,连接EG ,则EG 与BD 的交点就是P .EG 的长就是EP+FP 的最小值,据此即可求解.解:在DC 上截取DG=FD=AD ﹣AF=4﹣3=1,连接EG ,则EG 与BD 的交点就是P . ∵AE=DG ,且AE ∥DG ,∴四边形ADGE 是平行四边形,∴EG=AD=4.故选B .5.如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕某点旋转一定的角度得到的,则其旋转中心是()A.(1,0)B.(0,0)C.(-1,2)D.(-1,1)【答案】C【解析】【分析】根据其中一个三角形是由另一个三角形绕着某点旋转一定的角度得到的,那么对应点到旋转中心的距离相等,找出这个点即可.【详解】解:如图所示,根据旋转的性质,对应点到旋转中心的距离相等,只有(-1,2)点到三角形的三顶点距离相等,故(-1,2)是图形的旋转中心,故选:C.【点睛】此题主要考查了旋转的性质,根据旋转中心到对应点的距离相等,是解决问题的关键.6.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣7b ,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】∵且|a -c |++7b -=0, ∴a =c ,b =7,∴P (a ,7),PQ ∥y 轴,∴PQ =7-3=4,∴将线段PQ 向右平移a 个单位长度,其扫过的图形是边长为a 和4的矩形,∴4a =20,∴a=5,∴c =5,∴a +b +c =5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ ∥y 轴,进而求得PQ 是解题的关键.7.如图,在平面直角坐标系中,AOB ∆的顶点B 在第一象限,点A 在y 轴的正半轴上,2AO AB ==,120OAB ∠=o ,将AOB ∠绕点O 逆时针旋转90o ,点B 的对应点'B 的坐标是( )A .3(2,3)--B .33(2,2)---C .3(3,2)--D .(3,3)-【答案】D【解析】【分析】过点'B 作x 轴的垂线,垂足为M ,通过条件求出'B M ,MO 的长即可得到'B 的坐标.【详解】解:过点'B 作x 轴的垂线,垂足为M ,∵2AO AB ==,120OAB ∠=︒,∴'''2A O A B ==,''120OA B ∠=︒,∴'0'6M B A ∠=︒,在直角△''A B M 中,3==22=B'M B'M 'sin B A M B '''A ∠ , 1==22=A'M A'M 'cos B A M B '''A ∠, ∴'3B M =,'1A M =,∴OM=2+1=3,∴'B 的坐标为(3,3)-.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.8.下列图形中,不是中心对称图形的是( )A .平行四边形B .圆C .等边三角形D .正六边形 【答案】C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A 、平行四边形是中心对称图形;选项B 、圆是中心对称图形;选项C 、等边三角形不是中心对称图形;选项D 、正六边形是中心对称图形;故选C .【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.9.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可能是( )A .30°B .60°C .72°D .90°【答案】C【解析】【分析】紫荆花图案是一个旋转不变图形,根据这个图形可以分成几个全等的部分,即可计算出旋转的角度.【详解】解:紫荆花图案可以被中心发出的射线分成5个全等的部分,因而旋转的角度是360÷5=72度,故选:C.【点睛】正确认识旋转对称图形的性质,能够根据图形的特点观察得到一个图形可以看作几个全等的部分.10.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.11.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【答案】C【解析】A.等腰三角形是轴对称图形,不符合题意;B.等边三角形是轴对称图形,不符合题意;C.直角三角形不一定是轴对称图形,符合题意;D.等腰直角三角形是轴对称图形,不符合题意.故选C.12.下列图案中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.如图,已知点P(0,3) ,等腰直角△ABC中,∠BAC=90°,AB=AC,BC=2,BC边在x轴上滑动时,PA+PB的最小值是()A102B26C.5 D.6【答案】B【解析】【分析】过点P作PD∥x轴,做点A关于直线PD的对称点A´,延长A´ A交x轴于点E,则当A´、P、B三点共线时,PA+PB的值最小,根据勾股定理求出A B'的长即可.【详解】如图,过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,∵等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,∴AE=BE=1,∵P (0,3) ,∴A A´=4, ∴A´E=5, ∴22221526A B BE A E ''=+=+=,故选B.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,解此题的关键是作出点A 关于直线PD 的对称点,找出PA +PB 的值最小时三角形ABC 的位置.14.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B 、不是轴对称图形,是中心对称的图形,故本选项不符合题意;C 、既是轴对称图形,又是中心对称的图形,故本选项符合题意;D 、是轴对称图形,不是中心对称的图形,故本选项不符合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.15.下列几何图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图形,不是轴对称图形,故本选项错误;C、是中心对称图形,也是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.16.已知互不平行的两条线段AB,CD关于直线l对称,AB,CD所在直线交于点P,下列结论中:①AB=CD;②点P在直线l上;③若A、C是对称点,则l垂直平分线段AC;④若B、D是对称点,则PB=PD.其中正确的结论有( )A.1个B.2个C.3个D.4个【答案】D【解析】【分析】【详解】由轴对称的性质知,①②③④都正确.故选D.17.下列说法中正确的是()①角平分线上任意一点到角的两边的线段长相等②角是轴对称图形③线段不是轴对称图形④矩形是轴对称图形A.①②③④ B.①②③ C.②④ D.②③④【答案】C【解析】解:①叙述不清,正确的应该是“角平分线上任意一点到角的两边的距离相等”;②正确,对称轴是角平分线所在直线;③错误,线段本身也是轴对称图形,有2条对称轴;④正确,非正方形的矩形有两条对称轴,正方形有四条对称轴.故选C.18.小天从镜子里看到镜子对面的电子钟如下图所示,则此时的实际时间是()A.21:10 B.10:21C.10:51 D.12:01【答案】C【解析】【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】根据镜面对称的性质,题中所显示的时刻与12:01成轴对称,所以此时实际时刻为10:51,故选C.【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.19.斐波那契螺旋线也称为“黄金螺旋线”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线图案.下列斐波那契螺旋线图案中属于轴对称图形的是()A.B.C.D.【答案】A【解析】【分析】如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】根据轴对称图形的定义,只有选项A是轴对称图形,其他不是.故选:A【点睛】考核知识点:轴对称图形.理解定义是关键.20.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A、是中心对称图形,又是轴对称图形,故此选项正确;B、是中心对称图形,不是轴对称图形,故此选项错误;C、不是中心对称图形,是轴对称图形,故此选项错误;D、不是中心对称图形,是轴对称图形,故此选项错误;故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013中考平移旋转与对称练习精选Sqsyzhwt一.选择题1.(2013湖北省鄂州市,10,3分)如图,已知直线a∥b,且a与b之间的距离为4,点A 到直线a的距离为2,点B到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()2.(2013湖北省十堰市,1,3分)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()3.(2013湖北省咸宁市,1,3分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()4.(2013·泰安,11,3分)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A.(1.4,-1)B.(1.5,2)C.(1.6,1)D.(2.4,1)5.(2013·济宁,8,3分)如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0)B.(0,1)C.(0,2)D.(0,3)6.(2013·济宁,12,3分)如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为cm.7.(2013四川遂宁,7,4分)将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是.9.(2013江苏苏州,10,3分)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,点C的坐标为(12,0),点P为斜边OB上的一动点,则P A+PC的最小值为().A B C D.10.(2013山东滨州,8,3分)如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是A.0 B.1 C.2 D.311.(2013江西南昌,10,3分)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为().A.60°B.75°C.85°D.90°12、(2013深圳,4,3分)如下图,其中是轴对称图形但不是中心对称图形的是()13.(2013广东广州,1,4分)在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是()图2—①图2—②A.向下移动1格B. 向上移动1格C. 向上移动2格D. 向下移动2格14.(2013山东德州,12,3分)如图,动点P从(0,3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P 的坐标为A、(1,4)B、(5,0)C、(6,4)D、(8,3)15.[2013山东菏泽,2,3分]2.如图,把一个长方形的纸片按图示对折两次,然后剪下一部分,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°16.(2013广东湛江,12,4分)四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片是轴对称图形的概率是( )平行四边形 等腰梯形 圆 三角形A .12B .14C .34D .1 17.(2013四川成都,7,3分)如图,将矩形ABCD 沿对角线BD 折叠,使点C 与点C ′重合.若AB =2,则C ′D 的长为( )(A)1 (B)2 (C)3 (D)4二.填空题1. (2013江苏南京,11,2分) 如图,将矩形ABCD 绕点A 顺时针旋转到矩形A ’B ’C ’D ’的位置,旋转角为α (0︒<α<90︒)。
若∠1=110︒,则∠α= 。
2. . (2013江苏南京,12,2分) 如图,将菱形纸片ABCD 折迭,使点A 恰好落在菱形的对称中心O 处,折痕为EF 。
若菱形ABCD 的边长为2 cm , ∠A=120︒,则EF= cm 。
3.(2013·聊城,16,3分)如图,在等边△ABC 中,AB =6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE ,那么线段DE 的长度为 .A B C DB ’ 1C ’D ’4.(2013四川乐山,15,3分)如图,小方格都是边长为1 的正方形。
则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为 。
5.(2013四川绵阳,15,4分)如图,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则将此“QQ ”笑脸向右平移3个单位后,右眼B 的坐标是 。
6.(2013四川内江,16,5分)已知菱形ABCD的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM+PN 的最小值= .7.(2013贵州安顺,17,4分)如图,在平面直角坐标系中,将线段AB 绕点A 按逆时针方向旋转90°后,得到线段'AB ,则点'B 的坐标为 .15题图8.(2013山东菏泽,13,3分) 如图, ABCD 中, 对角线AC 与BD 相交于点E ,∠AEB =45°,BD =2,将△ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B ′,则DB ′ 的长为________________.三.解答题1.(2013广西钦州,21,6分)如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标.(2)画出△A 1B 1C 1绕原点O 旋转180°后得到的△A 2B 2C 2,并写出点A 2的坐标.2.(2013湖北孝感,20,8分)如图,已知△ABC 和点O .(1)把△ABC 绕点O 顺时针旋转90°得到△A 1B 1C 1,在网格中画出△A 1B 1C 1;(2)用直尺和圆规作△ABC 的边AB ,AC 的垂直平分线,并标出两条垂直平分线的交点P (要求保留作图痕迹,不写作法);指出点P 是△ABC 的内心,外心,还是重心?3.(2013·潍坊,22,11分)如图1所示,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至'''D F CE ,旋转角为α.(1)当点'D 恰好落在EF 边上时,求旋转角α的值;(2)如图2,G 为BC 的中点,且0°<α<90°,求证:D E GD ''=;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,'DCD ∆与'CBD ∆能否全等?若能,直接写出旋转角α的值;若不能,说明理由.4.(2013四川巴中,24,10分)△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)作△ABC 关于点C 成中心对称的△A 1B 1C 1.(2)将△A 1B 1C 1向右平移4个单位,作出平移后的△A 2B 2C 2.(3)在x 轴上求作一点P ,使PA 1+PC 2的值最小,并写出点P 的坐标(不写解答过程,直接写出结果)5.(2013黑龙江省哈尔滨市,22)如图。
在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB 和直线MN ,点A 、B 、M 、N 均在小正方形的顶点上.(1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD 是以直线MN 为对称轴的轴对称图形,点A 的对称点为点D ,点B 的对称点为点C ;(2)请直接写出四边形ABCD 的周长.6.(2013贵州省六盘水,24,10分)(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为.(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD 上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为.(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN 的值最小,保留作图痕迹,不写作法.7.(2013重庆市(A),20,7分)作图题:(不要求写作法)如图,△ABC在平面直角坐标系中,其中点A、B、C的坐标分别为A(-2,1),B(-4,5),C(-5,2).(1)作△ABC关于直线l:x=-1对称的△A1B1C1,其中,点A、B、C的对应顶点分别为A1、B1、C1;(2)写出点A1、B1、C1的坐标.8.(2013湖南益阳,20,10分)如图8,在ABC Δ中,︒=∠36A ,AC AB =,ABC ∠的平分线BE 交AC 于E .(1)求证:BC AE =;(2)如图8(2),过点E 作EF ∥BC 交AB 于F ,将AEF Δ绕点A 逆时针旋转角α)1440(︒<<︒α得到F E A ''Δ,连结E C ',F B ',求证:CE BF ''=;(3)在(2)的旋转过程中是否存在E C '∥AB ?若存在,求出相应的旋转角α;若不存在,请说明理由.9.(2013四川宜宾,21,7分)如图,已知△ABC 的三个顶点的坐标分别为A (-2.3)、B (-6,0)、C (-1,0)(1)请直接写出点A 关于y 轴对称点的坐标;(2)将△ABC 绕坐标原点O 逆时针旋转90°.画出图形,直接写出点B 的对应点的坐标;(3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.10.(2013重庆,20,7分)如图,在边长为1的小正方形组成的10×10网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线的左侧,其四个顶点A,B,C,D分别在网格的顶点上.(1)请你在所给的网格中画出四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于直线对称,其中点A′,B′,C′,D′分别是点A,B,C,D的对称点;(2)在(1)的条件下,结合你所画的图形,直接写出线段A′B′的长度.11.(2013广东广州,20,10分)已知四边形ABCD是平行四边形(如图9),把△ABD沿对角线BD翻折180°得到△AˊBD.(1)利用尺规作出△AˊBD.(要求保留作图痕迹,不写作法);(2)设DAˊ与BC交于点E,求证:△BAˊE≌△DCE.12.(2013山东日照,20,10分)(本题满分10分)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为__________.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.13.(2013四川成都,17,8分)如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°.(1)画出旋转后的△AB′C′;(2)求线段AC在旋转过程中所扫过的扇形的面积.。