2019九年级第三届“睿达杯”数学智能竞赛一试试卷

合集下载

九年级第三届“睿达杯”浙江省初中科学邀请赛一试答案

九年级第三届“睿达杯”浙江省初中科学邀请赛一试答案

第三届“睿达杯”浙江省初中科学邀请赛九年级一试参考解答一、选择题(本大题共16小题,每题3分,共48分,每题只有一个正确的答案,多选、错选、不选均得零分)题号 1 2 3 4 5 6 7 8 9 答案 C C A B D C C A C 题号 10 11 12 13 14 15 16 答案ACBCCBA 、B二、简答题(本题共8小题,每空2分,共28分)17.(1)f (2)肺 18.(1)抗体 (2)人工免疫19.Fe 、Ag 和Cu , Fe (NO 3)2 、B a (N O 3)2 ; 20.变小,等于; 21.2个;Na 2CO 3 22.2Ω或 8Ω 23.10024.小于,大于三、实验探究题(本题共5小题,每空2分,共38分)25.(1)蛋白质(2)唾液淀粉酶能催化淀粉的分解 (3)将NaCl 溶液换成Na 2SO 4溶液 (4)NaCl+Ag NO 3 = NaNO 3 + AgCl↓ (5)④ 26.(1)植物光合作用释放氧气(2)植物的呼吸作用释放二氧化碳 澄清的石灰水 (3)二氧化碳(4)塑料袋应该绑在植物茎的基部 27.(1)57.0%(2)①BaCl 2[Ba(OH)2、Ba(NO 3)2]。

溶液沉淀后,在上层清液中滴加BaCl 2, 若无沉淀生成,则BaCl 2已过量。

②%100197106ma ③方案二。

理由是方案一中没有排除水蒸气对实验数据的干扰,方案二已经考虑,结果更准确。

28.(1)4.5 0.65 (2)10 0.23四、分析计算题(本题共5小题,29题4分,30、32题各8分,31题10分,33题6分,共36分)29.(1)1.47×105~2.94×105牛(本答案既有计算,其中对手掌的大小又要进行估算,所以给出一个范围,只要是这个范围的即可给分) (2)4.73秒。

30.(1)19:00和5:00 (2)b (3)78mg(4)中午光照强烈,为减少体内水分散失,气孔关闭,通过气孔进入的CO2量减少31.(1)关闭活塞k,将末端导管插入试管A的水中,用酒精灯微热硬质玻璃管,若导管末端有气泡冒出,撤去酒精灯冷却后,在导管内形成一段水柱,则证明装置的气密性良好。

第五届“睿达杯”初中生数学能力竞赛答案卷(A卷)九年级

第五届“睿达杯”初中生数学能力竞赛答案卷(A卷)九年级

3 a 2 3 b 2 a 6 ( ) 6 ( ) , 得 24a 2 36b 2 , 所以 . 4 3 4 6 b 2
9. 延长 AE 交 BC 于 F , 易得等腰 ABF 和□ AFCD , 则 AD = CF = BC BF = BC AB =
3 . 2
10.如图,作 GP ⊥ DC .可得, AFE ≌ PHG ,从而 GP = AE =3, 当 CH 最小时, GHC 面积最小,此时要求 DH 最大, 又 DE 长度固定,则要求 EH 最大,又 EF = EH , 即要求 EF 最大,又 AE 长度固定,则要求 AF 最大, 显然,当点 F 与点 B 重合时, GHC 面积最小.
2 x, 3
(2 分)
CF=
6 1 2 x ,由 DF:AD=AD:AB,得 x: 1 1:x ,则 x . 3 3 2
1 1 ,从而 CF= x , x x
④ 如图 5,DF:AD=AD:AB,易得,DF= 由 CH:CF=AD:AB,易得,CH=1
2
1 , பைடு நூலகம்2
由 GH:BH=AD:AB,易得,CH= x 1 , 由 CH+BH=AD,得1
2
2 2
(4 分)
x 2
2
(2 分)
图1
图2 第 3 页 共 4 页
图3
图4
(2) ① 如图 2,由 DF:AD=AD:AB,得 : 1 1:x ,则 x
x 3
3;
(4 分)
② 如图 3,在图 1 的基础上把矩形 BCFE 自相似 2 分割,此时 x
2;
(4 分)
③ 如图 4,由 AD:CH=DF:CF,得 DF:CF=1:2,又 DF+CF=x,得 DF=

睿达杯初三试题及答案

睿达杯初三试题及答案

睿达杯初三试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 地球是方的B. 地球是平的C. 地球是圆的D. 地球是三角形的答案:C2. 以下哪个不是化学元素的符号?A. HB. OC. ND. Xy答案:D3. 光年是什么单位?A. 长度单位B. 质量单位C. 时间单位D. 速度单位答案:A4. 以下哪个不是中国的传统节日?A. 春节B. 圣诞节C. 端午节D. 中秋节答案:B5. 以下哪个选项是正确的?A. 植物通过光合作用产生氧气B. 植物通过呼吸作用产生氧气C. 植物通过光合作用产生二氧化碳D. 植物通过呼吸作用产生二氧化碳答案:A6. 以下哪个是正确的数学公式?A. 圆的面积公式:A = πr²B. 圆的面积公式:A = 2πrC. 圆的周长公式:C = 2πrD. 圆的周长公式:C = πr²答案:A7. 以下哪个是正确的物理定律?A. 牛顿第一定律:物体在没有外力作用下会保持静止或匀速直线运动B. 牛顿第二定律:物体的加速度与作用力成正比,与质量成反比C. 牛顿第三定律:作用力和反作用力大小相等,方向相反D. 所有选项都是正确的答案:D8. 以下哪个是正确的历史事件?A. 秦始皇统一六国B. 秦始皇统一八国C. 秦始皇统一九州D. 秦始皇统一五国答案:A9. 以下哪个是正确的生物分类?A. 动物界、植物界、微生物界B. 动物界、植物界、细菌界C. 动物界、植物界、真菌界D. 动物界、植物界、病毒界答案:C10. 以下哪个是正确的地理现象?A. 地球自转方向为自东向西B. 地球自转方向为自西向东C. 地球公转方向为自东向西D. 地球公转方向为自西向东答案:B二、填空题(每题2分,共20分)1. 地球的赤道周长大约是________公里。

答案:400752. 化学中,水的化学式为________。

答案:H₂O3. 光年是指光在一年内通过的距离,其长度大约为________公里。

2019-2020年九年级第一次模拟考试数学试题 Word版含答案

2019-2020年九年级第一次模拟考试数学试题 Word版含答案

2019-2020年九年级第一次模拟考试数学试题 Word 版含答案一、选择题(共12小题,每小题3分,满分36分)2.下列二次根式中,最简二次根式是( ).A .B .C .D .3.已知一个正多边形的每个外角都是36°,则该正多边形的边数是(). A .7 B .8 C .9D .104.下列计算正确的选项是( )5. 要判断马力同学的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的( ).A .方差B .中位数C .平均数D .众数 6. 抛物线的顶点坐标是( )A .(3,2)B .(3,) C .(,2) D .(,)7.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2的度数是( )A. 155°B. 135°C. 125°D.115°8.关于x 的一元二次方程的一个根为0,则实数a 的值为( )A .1B .C .0D .或19.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A.19B.18C.16D.15 10.如图,是一个正六棱柱的主视图和左视图,则图中的a =( ). A . B . C .D .11.如图,在等边△ABC 中,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC,垂足分别为M 、N ,如果MN =1,那么△ABC 的面积为( )第11题图左视图主视图第10题图A.3B.C.4D.12.如图,在矩形ABCD 中,点E 为AB 的中点,E F⊥EC 交AD 于点F , 连接CF (AD >AE ),下列结论正确的是( )①∠AEF=∠BCE ;②AF+BC >CF ;③S △CEF =S △EAF +S △CBE ; ④若=,则△CEF ≌△CDF .A. ①②③ B ①②④ C ①③④ D ①②③④二、填空题(共6小题,每小题3分,满分18分)13. -3的倒数是 .14.在平面直角坐标系中,点(3,)与(-3,b )关于原点对称,则b = . 15.因式分解: .16.一组数据如下10,10,8,,已知这组数据的众数与平均数相等,则这组数据的中位数为17.观察下列各等式:①,②,③,④,…,猜想第n (n 是正整数)个等式是 .18.已知△ABC 中,,,平分交于,过作交于,作平分交于,过作交于,则线段的长度为 .(用含有的代数式表示)三、解答题(共8小题,满分66分)19.(6分)计算:(-2)×5+3.20.(6分)解不等式组:⎪⎩⎪⎨⎧-<-≤-33203x x , 并把解集在数轴上表示出来.21.(6分)如图,直线分别交x 轴、y 轴于A (1,0)、B (0,),交双曲线于点C 、D . (1)求k 、b 的值; (2)写出不等式的解集.C 第18题图B 1BA B 2 B 3 B 4 第21题图第12题图22.(8分)已知:如图,△ABC 中,AB =AC ,矩形BCDE 的边DE 分别与AB 、AC 交于点F 、G . 求证:EF =DG23.(8分)如图是某货站传送货物的平面示意图, AD 与地面的夹角为60°.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°成为37°, 因此传送带的落地点由点B 到点C 向前移动了2米.(1)求点A 与地面的高度;(2)如果需要在货物着地点C 的左侧留出2米,那么请判断距离D 点14米的货物Ⅱ是否需要挪走,并说明理由.(参考数据:sin37°取0.6,cos37°取0.8,tan37°取0.75,取)24.(10分)王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是________;(2)估算袋中白球的个数;(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树形图或列表的方法计第23题图 AB C D EF G 第22题图算他两次都摸出白球的概率.25.(10分)已知:如图,点C 在以AB 为直径的⊙O 上,点D 在AB 的延长线上,∠BCD=∠A . (1)求证:CD 为⊙O 的切线;(2)过点C 作CE ⊥AB 于E .若CE=2,co s ∠D=,求AD 的长.26.(12分)如图,在平面直角坐标系中,已知抛物线经过,两点,顶点为.(1)求、的值;(2)将绕点顺时针旋转90°后,点A 落到点C 的位置,该抛物线沿轴上下平移后经过点,求平移后所得抛物线的表达式;(3)设(2)中平移后所得的抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足△的面积是△面积的3倍,求点的坐标.xx 年4月九年级一模考试参考答案及评分标准(数学)一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2. B ; 3. D ; 4.A ; 5.A ; 6.B ; 7.D ; 8.B ; 9.C ; 10.A ; 11.B ; 12.C ;二、填空题:(本大题共12题,每题4分,满分48分)13. ; 14.6; 15. ; 16.10; 17.n n 21121...21212132-=++++; 18. (或) 三、解答题(本大题共7题,满分78分)19.解:原式= -10+3 …………………………………………………3分 = -7 ……………………………………………………6分20.解:由①得:x ≤3 …………………………………………………………1分 由②得: …………………………………………………………3分………………………5分∴ 原不等式组的解集为: ………………………6分21. 解:(1)∵直线过点(1,0)和(0,-1),∴, ……………………………………………………2分 ∴. ……………………………………………………4分 (2)不等式的解集是:…………………6分22. 证明:∵AB =AC∴∠ABC =∠ACB ……………………………………………………1分 又∵四边形BCDE 是矩形∴BE =DC ,∠E =∠D =∠EBC =∠BCD =90°…………………………3分 ∴ ∠EBF =∠DCG ……………………………………………………5分 ∴△BEF ≌△CDG ……………………………………………………7分 ∴EF =DG ……………………………………………………8分23.解:(1)作AE ⊥BC 于点E , ……………………………………………………1分设,在Rt△ACE中,4cot3CE AE ACE x=⋅∠=,……………………………………2分在Rt△ABE中,,……………………………………3分∵BC=CE-BE,解得.………………………………………………………4分答:点A与地面的高度为6米.(2)结论:货物Ⅱ不用挪走.………………………………………………………5分在Rt△ADE中,cot63ED AE ADE=⋅∠=⨯=……………………6分…………………………………………………………7分∴CD=CE+ED=……………………………………………………………8分∴货物Ⅱ不用挪走.24.解:(1)0.251;……………………………………………………………1分0.25;……………………………………………………………2分(2)设袋中白球为x个,依题意,得:,……………………………………………………………5分x=3 ……………………………………………………………6分答:估计袋中有3个白球。

2019年初三数学竞赛试卷及答案

2019年初三数学竞赛试卷及答案

2019年初三数学竞赛试卷学校___________________年级___________班 姓名_________________ 一、选择题(共5小题,每小题6分,共30分)1、抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为223y x x =--,则b c 、的值为 ( ) A 、22b c ==, B 、20b c ==, C 、21b c =-=-, D 、32b c =-=,2、如图,在等腰三角形△ABC 的斜边AB 上取两点M 、N ,使∠MCN =45°,记AM =m ,MN =x ,BN =n ,则以x 、m 、n 为边长的三角形的形状是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、随x 、m 、n 变化而变化3、如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,延长BG 交CD 于F 点,若CF=1,FD=2,则BC 的长为( ) A. B.C. D.4、已知函数2|82|y x x =﹣﹣和y kx k =+(k≠0,k 为常数),则不论k 为何值,这两个函数的图象( )A 、有且只有一个交点B 、有且只有二个交点C 、有且只有三个交点D 、有且只有四个交点5、已知关于x 的不等式组 恰有5个整数解,则t 的取值范围是( ).A 、6-<t <112-B 、6-≤t <112-C 、6-<t ≤112-D 、6-≤t ≤112-二、填空题(共5小题,每小题6分,共30分)6、如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为 .FAAB CN255332x xx t x +⎧->-⎪⎪⎨+⎪-<⎪⎩7、如图,△ABC 内接于⊙O ,且AB =AC ,直径AD 交BC 于E ,F 是OE 的中点.如果BD//CF ,BC =25,则线段CD 的长度为__________________.8、如图,在平面直角坐标系内放置一个直角梯形AOCD .已知AB =3,AO =8,OC =5,若点P 在梯形内,且S △PAD =S △POC ,S △PAO =S △PCD ,那么点P 的坐标是________.9、在平面直角坐标系xOy 中,不论k 取什么样的实数,直线y =kx ﹣3k +4总经过一个定点P ,若以原点O 为圆心的圆过点A (13,0),与⊙O 交于B 、C 两点,则弦BC 的长的最小值为10、小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.三、解答题(共4题,满分60分)11、如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D .求∠DBC -∠CBE .(第11题)12、如图,已知AB 为圆O 的直径,C 为圆周上一点,D 为线段OB 内一点(不是端点),满足CD AB ⊥,DE CO ⊥,垂足为E .若10CE =,且AD 与DB 的长均为正整数,求线段AD 的长.13、已知:y 关于x 的函数y =(k -1)x 2-2kx +k +2的图象与x 轴有交点.(1)求k 的取值范围;(2)若x 1,x 2是函数图象与x 轴两个交点的横坐标,且满足(k -1)x 12+2kx 2+k +2=4x 1x 2. ①求k 的值;②当k ≤x ≤k +2时,请结合函数图象确定y 的最大值和最小值.14、如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数).求正整数n 的最小值,使得存在互不相同的正整数12n a a a ,,…,,满足对任意一个正整数m ,在12n a a a ,,…,中都至少有一个为m 的魔术数.参考答案 1、B2、15、B ;提示:作∠CAD =∠BAM ,AD =AM , 可得△ABM ≌△ACD ,再得△MN ≌△AND ,可得结论3. B ; 【解析】过点E 作EM ⊥BC 于M ,交BF 于N ,易证得△ENG ≌△BNM (AAS ),MN 是△BCF 的中位线,根据全等三角形的性质,即可求得GN =MN =12,由折叠的性质,可得BG =3,求得BF =2BN =5,由勾股定理即可求得BC 的长.4. B ;【解析】函数y =8-2x -x 2中,令y =0,解得:x =-4或2.则二次函数与x 轴的交点坐标是(-4,0)和(2,0).则函数的图象如图.一次函数y =kx +k (k 为常数)中,令y =0,解得:x =-1,故这个函数一定经过点(-1,0).经过(-1,0)的直线无论k 多大,都是2个交点.故选B . 5、C . 解:根据题设知不等式组有解,解得,32t -<x <20.由于不等式组恰有5个整数解,这5个整数解只能为15,16,17,18,19,因此14≤32t -<15,解得6-<t ≤112-. 6、解:因为DCFE 是平行四边形,所以DE //CF ,且EF //DC.连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC ,因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6. 78、ABCM ND(第6题)9、2410、207; 解:设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y 所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又 20134()343503x y y y =++<⨯+,所以204y >,故y 的最小值为207,此时141x =.11、解:将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B .将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.…………5分抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC=CEBE=因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.…………10分因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠.所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.…………20分12、解:连接AC ,BC ,则90ACB ∠=︒.又CD AB ⊥,DE CO ⊥,由Rt △CDE ∽Rt △COD 可得2CE CO CD ⋅=,由Rt △ACD ∽Rt △CBD 可得(第11题)2CD AD BD =⋅,所以CE CO AD BD ⋅=⋅.设AD a DB b ==,,a b ,为正整数,则2a bCO +=,又10CE =,代入上式得 102a bab +⋅=, …………10分 整理得(5)(5)25a b --=.考虑到a b >,只能是550a b ->->,得52551a b -=-=,. 因此30AD a ==. …………20分13、【解析】(1)当k =1时,函数为一次函数y =-2x +3,其图象与x 轴有一个交点. 当k ≠1时,函数为二次函数,其图象与x 轴有一个或两个交点,令y =0得(k -1)x 2-2kx +k +2=0.△=(-2k )2-4(k -1)(k +2)≥0,解得k ≤2.即k ≤2且k ≠1.12x =综上所述,k 的取值范围是k ≤2.(2)①∵x 1≠x 2,由(1)知k <2且k ≠1.由题意得(k -1)x 12+(k +2)=2kx 1.将(*)代入(k -1)x 12+2kx 2+k +2=4x 1x 2中得:2k (x 1+x 2)=4x 1x 2. 又∵x 1+x 2=21k k -,x 1x 2=21k k +-, ∴2k ·21k k -=4·21k k +-.解得:k 1=-1,k 2=2(不合题意,舍去).∴所求k 值为-1. ②如图5,∵k 1=-1,y =-2x 2+2x +1=-2(x -12)2+32. 且-1≤x ≤1.由图象知:当x =-1时, y 最小=-3;当x =12时,y 最大=32. ∴y 的最大值为32,最小值为-3. 14、解:若n ≤6,取m =1,2,…,7,根据抽屉原理知,必有12n a a a ,,…,中的一个正整数M 是(1i j ,≤i <j ≤7)的公共的魔术数,即7|(10M i +),7|(10M j +).则有7|(j i -),但0<j i -≤6,矛盾.故n ≥7. …………10分又当12n a a a ,,…,为1,2,…,7时,对任意一个正整数m ,设其为k 位数(k 为正整数).则10ki m +(12i =,,…,7)被7除的余数两两不同.若不然,存在正整数i ,(1j ≤i <j ≤7),满足7|[(10)(10)]k kj m i m +-+,即7|10()k j i -,从而7|()j i -,矛盾. 故必存在一个正整数i (1≤i ≤7),使得7|(10)ki m +,即i 为m 的魔术数. 所以,n 的最小值为7.。

九年级第三届“睿达杯”浙江省初中科学邀请赛一试试题卷

九年级第三届“睿达杯”浙江省初中科学邀请赛一试试题卷
(第 10 题)
A.
18
B.
C.
D.
11. O 是科实验中常用的一种示踪原子,用仪器可以观测到它在化学变化中的行踪。在某一饱和硫酸 铜溶液(不含 18O)中,加入 A 克带标记 18O 的无水硫酸铜粉末(CuSO4 中的氧元素全部为 18O),如 果保持温度不变,其结果是( ▲ ) A.无水硫酸铜不再溶解,A 克带标记 18O 的无水硫酸铜粉末没有发生改变 B.溶液中可找到带标记 18O 的 SO42,且白色粉末变为蓝色晶体,其质量小于 A 克 C.溶液中可找到带标记 18O 的 SO42,且白色粉末变为蓝色晶体,其质量大于 A 克 D.有部分带标记 18O 的 SO42进入溶液中,但固体质量保持不变 12.一个由薄玻璃围成且中间是空气的“三棱镜”置于水中,一细束白光 通过该装置后折射为各种单色光,其中 a、b、c 三种光分别为红光、 绿光、紫光它们的合理排序是( ▲ ) A.a 为红光、b 为绿光、c 为紫光 B.a 为紫光、b 为绿光、c 为红光 (第 12 题) C.a 为绿光、b 为紫光、c 为红光 D.a 为红光、b 为紫光、c 为绿光 13. 即将进站的列车发出一鸣号声, 持续时间为 1 秒钟, 若列车的速度为 30 米/秒, 空气中的声速为 330 米/秒,则站台上的人听到鸣号声持续的时间为( ▲ ) A.1 秒 B.1.09 秒 C.0.91 秒 D.0.091 秒 14.如图所示,一轻绳的一端系在固定粗糙斜面上的 O 点,另一端系一小球,给 小球一足够大的初速度,使小球在斜面上做圆周运动。在此过程中( ▲ ) A.重力对小球不做功 B.小球的机械能不变 C.绳的拉力对小球不做功 (第 14 题) D.小球克服摩擦力所做的功总是等于小球动能的减少 15.将一装有压缩空气的钢瓶的瓶塞突然打开,使压缩空气迅速跑出,当瓶内气体压强降到等于大气压 p0 时,立即盖紧瓶塞,过一段时间后,瓶内压强将(设瓶外环境温度不变,钢瓶能导热) ( ▲ ) A.仍为 p0 B.大于 p0 C.小于 p0 D.无法确定 16.如图所示,置于水平地面上的立柱质量为 M,有一质量为 m 的猴子从立柱上 匀速下滑。已知猴子沿立柱滑下时,受到摩擦力为 f,则猴子下滑时立柱对地 面的压力为( ▲ A.Mg+mg ) B.Mg+f C.Mg-f D. Mg+mg+f

2019年初三数学竞赛试卷附答案

2019年初三数学竞赛试卷附答案

2019年初三数学竞赛模拟试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共6小题,每小题4分,共24分)1.从分数组中删去两个分数,使剩下的数之和为1,则删去两个数是()A.B.C.D.2.将正三角形每条边四等份,然后过这些分点作平行于其它两边的直线,则以图中线段为边的菱形个数为()A.15 B.18 C.21 D.243.以正方形ABCD的BC边为直径作半圆O,过点D作直线切半圆于点F,交AB边于点E.则三角形ADE和直角梯形EBCD周长之比为()A.3:4 B.4:5 C.5:6 D.6:74.如图,在边长为1正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,3AE=EB,有一只蚂蚁从E点出发,经过F、G、H,最后回点E点,则蚂蚁所走的最小路程是()A.2 B.4 C.D.5.把正整数按下图所示的规律排序,那么从2005到2007的箭头方向依次为()A.B.C.D.6.将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是()A.3 B.8 C. D.2第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,每小题5分,共30分)7.当整数m=时,代数式的值是整数.8.规定一种运算“*”:对于任意实数对(x,y)恒有(x,y)*(x,y)=(x+y+1,x2﹣y ﹣1).若实数a,b满足(a,b)*(a,b)=(b,a),则a=,b=.9.一个七边形棋盘如图所示,7个顶点顺序从0到6编号,称为七个格子.一枚棋子放在0格,现在依逆时针移动这枚棋子,第一次移动1格,第二次移动2格,…,第n次移动n格.则不停留棋子的格子的编号有.10.如图,在斜坡的顶部有一铁塔AB,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=14m,塔影长DE=36m,小明和小华的身高都是1.6m,小明站在点E处,影子也在斜坡面上,小华站在沿DE方向的坡脚下,影子在平地上,两人的影长分别为4m 与2m,那么,塔高AB=m.11.如图,从卫生纸的包装纸上得到以下资料:两层300格,每格11.4cm×11cm,图甲.用尺量出整卷卫生纸的半径(R)与纸筒内芯的半径(r),分别为5.8cm和2.3cm,图乙.那么该两层卫生纸的厚度为cm.(π取3.14,结果精确到0.001cm)12.如图,等腰直角三角形ABD,点C是直角边AD上的动点,连接CB.现在将点C绕点A逆时针方向旋转90°得点E,再将点C绕点B顺时针方向旋转90°得点F.如果,设△AED,△BFD,△ABC的面积分别为S1,S2,S3,那么S1+S2﹣S3=.评卷人得分三.解答题(共4小题,共46分)13.(10分)已知,x、y满足,求(x+y)+(x2+2y)+(x3+3y)+…+(x199+199y)的值.14.(12分)如图,△ABC中,∠BAC=60°,AB=2AC.点P在△ABC内,且PA=,PB=5,PC=2,求△ABC的面积.15.(12分)是否存在质数p.q,使得关于x的一元二次方程px2﹣qx+p=O有有理数根?16.(12分)操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况.研究:(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明;(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由;(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明.参考答案与试题解析1.解:由,而,故删去后,可使剩下的数之和为1.故选:C.2.解:图中只有边长为1或2的两种菱形,每个菱形恰有一条与其边长相等的对角线,原正三角形内部每条长为1的线段,恰是一个边长为1的菱形的对角线,这种线段有18条,对应着18个边长为1的菱形;原正三角形的每条中位线恰是一个边长为2的菱形的对角线,三条中位线对应着3个边长为2的菱形.共得21个菱形.故选:C.3.解:根据切线长定理得,BE=EF,DF=DC=AD=AB=BC.设EF=x,DF=y,则在直角△AED中,AE=y﹣x,AD=CD=y,DE=x+y.根据勾股定理可得:(y﹣x)2+y2=(x+y)2,∴y=4x,∴三角形ADE的周长为12x,直角梯形EBCD周长为14x,∴两者周长之比为12x:14x=6:7.故选:D.4.解:延长DC到D',使CD=CD',G关于C对称点为G',则FG=FG',同样作D'A'⊥CD',D'A'=DA,H对应的位置为H',则G'H'=GH,再作A'B'⊥D'A',E的对应位置为E',则H'E'=HE.容易看出,当E、F、G'、H'、E'在一条直线上时路程最小,最小路程为EE'===2.故选:C.5.解:∵1和5的位置相同,∴图中排序每四个一组循环,而2005除以4的余数为1,∴2005的位置和1的位置相同,∴20052007.故选:D.6.解:连接CA、CD;根据折叠的性质,知所对的圆周角等于∠CBD,又∵所对的圆周角是∠CBA,∵∠CBD=∠CBA,∴AC=CD(相等的圆周角所对的弦相等);∴△CAD是等腰三角形;过C作CE⊥AB于E.∵AD=4,则AE=DE=2;∴BE=BD+DE=7;在Rt△ACB中,CE⊥AB,根据射影定理,得:BC2=BE•AB=7×9=63;故BC=3.故选:A.7.解:∵要使代数式的值是整数,∴3m﹣1只能在±1、±2、±3、±6这四个数中取值,∵当3m﹣1=1时,∴m=,当3m﹣1=﹣1时,m=0,当3m﹣1=2时,m=1,当3m﹣1=﹣2时,m=﹣,当3m﹣1=3时,m=,当3m﹣1=﹣3时,m=﹣,当3m﹣1=6时,m=,当3m﹣1=﹣6时,m=﹣,又∵m也是整数,∴可得m=0或1,故答案为0或1.8.解:由题意得:,解得,故答案两空分别填﹣1,1.9.解:因棋子移动了n次后走过的总格数是1+2+3+…+n=n(n+1),应停在第=n(n+1)﹣7p格,这时p是整数,且使0≤n(n+1)﹣7p≤6,分别取n=1,2,3,4,5,6,7时,n(n+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停留棋子,若7<n≤10,设n=7+t(t=1,2,3)代入可得,=n(n+1)﹣7p=7m+12t(t+1),由此可知,停棋的情形与n=t时相同,故第2,4,5格没有停留棋子.故答案为:2,4,5.10.解:作DF⊥CD,交AE于点F,过F作FG⊥AB,垂足为G,可得矩形BDFG.由题意得:=∴DF==14.4(m);∵GF=BD=CD=7(m),同理可得:=,∴AG=1.6÷2×7=5.6(m),∴AB=14.4+5.6=20(m).∴铁塔的高度为20m.故答案为:20.11.解:设该两层卫生纸的厚度为hcm .根据题意,得 11.4×11×h ×300=π(5.82﹣2.32)×11 37620h=π(33.64﹣5.29)×11 h ≈0.026.答:两层卫生纸的厚度为0.026cm .12.解:作CM ⊥AB ,DN ⊥BF 垂足分别为M ,N , 由旋转的性质可知AC=AE ,BC=BF , 设AC=x ,则CM=x ,又AD=BD=,∴AB=2,那么S △AED =×AE ×AD=x ,S △ABC =×AB ×CM=x ,而△BDN ∽△CBD ,那么,那么DN ×BC=BD 2=2,∴S △BFD =×BF ×DN=×DN ×BC=1, ∴S 1+S 2﹣S 3=S △AED +S △BFD ﹣S △ABC =x +1﹣x=1.故答案为:1.13.解:∵且,∴y ﹣2x=0, ∴x=1,y=2;(x+y)+(x2+2y)+(x3+3y)+…+(x199+199y),=(1+2)+(1+4)+(1+6)+…+(1+398),=3+5+7+ (399)=,=39999.14.解:如图,作△ABQ,使得∠QAB=∠PAC,∠ABQ=∠ACP,则△ABQ∽△ACP.∵AB=2AC,∴△ABQ与△ACP相似比为2.∴AQ=2AP=2,BQ=2CP=4,∠QAP=∠QAB+∠BAP=∠PAC+∠BAP=∠BAC=60°.由AQ:AP=2:1知,∠APQ=90°,于是PQ=AP=3,∴BP2=25=BQ2+PQ2,从而∠BQP=90°,过A点作AM∥PQ,延长BQ交AM于点M,∴AM=PQ,MQ=AP,∴AB2=AM2+(QM+BQ)2=PQ2+(AP+BQ)2=28+8,=AB•ACsin60°===3+.故S△ABC故答案为:3+.15.解:设方程有有理数根,则判别式为平方数.令△=q2﹣4p2=n2,规定其中n是一个非负整数.则(q﹣n)(q+n)=4p2.(5分)由于1≤q﹣n≤q+n,且q﹣n与q+n同奇偶,故同为偶数,因此,有如下几种可能情形:、、、、消去n,解得.(10分)对于第1,3种情形,p=2,从而q=5;对于第2,5种情形,p=2,从而q=4(不合题意,舍去);对于第4种情形,q是合数(不合题意,舍去).又当p=2,q=5时,方程为2x2﹣5x+2=0,它的根为,它们都是有理数.综上所述,存在满足题设的质数.(15分)16.解:(1)连接PC.∵△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE=90°,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE;(2)共有四种情况:①当点C与点E重合,即CE=0时,PE=PB;②CE=2﹣,此时PB=BE;③当CE=1时,此时PE=BE;④当E在CB的延长线上,且CE=2+时,此时PB=EB;(3)MD:ME=1:3.过点M作MF⊥AC,MH⊥BC,垂足分别是F、H.∴MH∥AC,MF∥BC.∴四边形CFMH是平行四边形.∵∠C=90°,∴▱CFMH是矩形.∴∠FMH=90°,MF=CH.∵,HB=MH,∴.∵∠DMF+∠DMH=∠DMH+∠EMH=90°,∴∠DMF=∠EMH.∵∠MFD=∠MHE=90°,∴△MDF∽△MEH.∴.。

第三届“睿达杯”中小学数学智能竞赛一试答案

第三届“睿达杯”中小学数学智能竞赛一试答案

第三届“睿达杯”中小学数学智能竞赛一试四年级年级参考解答及评分标准1. 2011×2011-2012×2010=2011×2010+2011-(2011×2010+2010)=2011-2010=1.2. 35×72+6=2526,2526÷53=47……35.3. 铜牌数为(88+4) ÷4=23(块),从而得到银牌27块,金牌38块.4.(4+2)÷2×3=9(岁).5.(52-2×5)÷(2+5)=6(cm),6×6+52=88(cm2).6. 4+2×(2012-1)=4026,(4+4026)÷2=2015.7. 50×(5+2+4+1)÷(4+1+2+1)=75(千米/小时).8. 2×(104÷4+1)×2=108(面).9. 8×3+7×2+6×1+(4+3+2+1)×2=64(个);或32+20+10+2=64(个).10. 30÷3+30×2=70(度).11.(5×13+7)÷3=24.12. 180×(10-2)=1440(度).13. 井深为2×7-3×1=11(米),绳长为2×(11+7) =3×(11+1)=36(米).14. 画直线图可得.15.(30×4+3+10)÷7=19(周),2013年2月10日是周日.16. 3.5×3×2+3.5×2=28(元).17.(55+70)×[30×2÷(70-55)]= 500(米).18. 24×2÷4=12(厘米),12×12=144(平方厘米).二、解答题(本大题共2小题,每小题15分,共30分)19. 10元9张,5元6张,2元5张. (5分) 2元的张数必须是5的倍数,因此只能是5张. 5元和10元共15张,合计120元. 5元: (150-120) (10-5) =6(张);10元: 20-6-5=9(张). (10分)20. 数阵排列规律是:将自然数依次“从左下向右上”成“斜行”往复排列。

2019-2020年中考数学一诊试卷含解析

2019-2020年中考数学一诊试卷含解析

2019-2020年中考数学一诊试卷含解析一、选择题(本大题12个小题,每小题4分,共48分)1.﹣4的倒数是()A.4 B.﹣4 C.D.2.计算(2x3)2的结果是()A.4x6B.2x6C.4x5D.2x53.下列商标是中心对称图形的是()A.B.C.D.4.在函数中,x的取值范围是()A.x≥﹣1 B.x≤﹣1 C.x≠﹣1 D.x>﹣15.如图,a∥b,将﹣块三角板的直角顶点放在直线a上,若∠1=42°,则∠2的度数为()A.46° B.48° C.56° D.72°6.如图,△ABC是⊙O的内接三角形,∠AOB=135°,则∠ACB的度数为()A.35° B.55° C.60° D.67.5°7.关于x的一元二次方程ax2﹣bx+3=0的一个根为x=2,则代数式4b﹣8a+3的值为()A.﹣3 B.3 C.6 D.98.一组数据3,x,4,5,8的平均数为5,则这组数据的众数、中位数是()A.5,6 B.4,4.5 C.5,5 D.5,4.59.如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,=3cm2,则△BCF的面积为()S△CDEA.6cm2B.9cm2C.18cm2D.27cm210.在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是()A.小莹的速度随时间的增大而增大B.小梅的平均速度比小莹的平均速度大C.在起跑后180秒时,两人相遇D.在起跑后50秒时,小梅在小莹的前面11.图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3)…,则第6个图形的周长是()A.32 B.64 C.128 D.25612.已知二次函数y=ax2+bx+c(a≠0)与x轴一个交点在﹣1,﹣2之间,对称轴为直线x=1,图象如图,给出以下结论:①b2﹣4ac>0;②abc>0;③2a﹣b=0;④8a+c<0;⑤<0.其中结论正确的个数有()A.1 B.2 C.3 D.4二、填空题(本大题6个小题,每小题4分,共24分)13.重庆育才中学现已有一校四区:重庆育才中学,重庆育才成功学校,双福育才中学习水育才中学,总占地440亩,约290000平方米,将290000用科学记数法表示为.14.计算(﹣1)2005﹣|﹣2|+(﹣)﹣1﹣2sin60°的值为.15.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为.16.如图,AB为半圆O的直径,点C在AB的延长线上,CD与半圆O相切于点D,且AB=2CD=4,则图中阴影部分的面积为.17.从﹣4、﹣1、1、4这四个数中,任选两个不同的数分别作为m、n的值,恰好使得关于x的不等式组有3个整数解,且点(m,n)落在双曲线上的概率为.18.如图,△ABC中,AB=AC=4,∠BAC=120°,以A为一个顶点的等边三角形ADE绕点A在∠BAC内旋转,AD、AE所在的直线与BC边分别交于点F、G.若点B关于直线AD的对称点为B′,当△FGB′是以点G为直角顶点的直角三角形时,BF的长为.三、解答题(本大题2个小题,每小题7分,共14分)19.解方程组:20.自1939年创办以来,重庆育才中学一直坚守文化底线,不断挑战自我极限,在沧桑文化中愈加根深叶茂.在今年,即将推出的本部改造计划不仅是文化审美层面的颠覆尝试,也是学校发展的巨大工程,其中三种style的民国大门各具特色,A磅礴大气,B清爽简约,C典雅古朴款,为调查民意学校让教职工进行投票呈现了四种结果,喜欢A款、喜欢B款、喜欢C款、都可以,现调查结果如下:(1)如图,喜欢C款的占20%,喜欢B款的占15%,则调查总人数为,扇形统计图中认为“都可以”的所占圆心角为度;根据题中信息补全条形统计图.(2)我们学校共有600名教职工,请根据上图估算喜欢A款的有多少人?四、解答题(本大题4个小题,每小题l0分,共40分)21.化简:(1)(x+2)2+(x+2)(x﹣2)﹣2(2x+1)(3﹣x)(2).22.如图,一次函数y=kx+b与反比例函数的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式.(2)根据所给条件,请直接写出不等式kx+b>的解集..(3)连接OA、OB,求S△ABO23.上星期我市某水果价格呈上升趋势,某超市第一次用1000元购进的这种水果很快卖完,第二次又用960元购进该水果,但第二次每千克的进价是第一次进价的1.2倍,购进数量比第一次少了20千克.(1)求第一次购进这种水果每千克的进价是多少元?(2)本星期受天气影响,批发市场这种水果的数量有所减少.该超市所购进的数量比上星期所进购的总量减少了4a%,每千克的进价在上星期第二次进价的基础上上涨5a%,结果本星期进货总额比上星期进货总额少16元,求a的值.24.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若a+4=,且a、m、n均为正整数,求a的值?五、解答题(本大题2个小题,每小题l2分,共24分)25.在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A 在BC的同侧,连结BE,点G是BE的中点,连结AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,已知AC=,CD=2,求AG的长度;(2)如图②,当∠BAC=∠DCF=60°时,AG与DG有怎样的位置和数量关系,并证明;(3)当∠BAC=∠DCF=α时,试探究AG与DG的位置和数量关系(数量关系用含α的式子表达).26.如图,在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与轴交于A、B两点,与y轴交于点C,点D 为抛物线的顶点.(1)求直线AC的解析式,并直接写出D点的坐标.(2)如图1,在直线AC的上方抛物线上有一动点P,过P点作PQ垂直于x轴交AC于点Q,PM∥BD 交AC于点M.①求△PQM周长最大值;②当△PQM周长取得最大值时,PQ与x轴交点为H,首位顺次连接P、H、O、D构成四边形,它的周长为L,若线段OH在x轴上移动,求L最小值时OH移动的距离及L的最小值.(3)如图2,连接BD与y轴于点F,将△BOF绕点O逆时针旋转,记旋转后的三角形为△BOF′,B′F′所在直线与直线AC、直线OC分别交于点G、K,当△CGK为直角三角形时,直接写出线段BG的长.2016年重庆市育才成功学校中考数学一诊试卷参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)1.﹣4的倒数是()A.4 B.﹣4 C.D.【考点】倒数.【专题】计算题.【分析】根据倒数的定义:乘积是1的两个数,即可求解.【解答】解:﹣4的倒数是﹣.故选D.【点评】本题主要考查了倒数的定义,正确理解定义是解题关键.2.计算(2x3)2的结果是()A.4x6B.2x6C.4x5D.2x5【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则化简求出即可.【解答】解:(2x3)2=4x6.故选:A.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.3.下列商标是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念判断即可.【解答】解:A、不是中心对称图形,故不正确;B、是中心对称图形,故正确;C、不是中心对称图形,故不正确;D、不是中心对称图形,故不正确;故选:B.【点评】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.在函数中,x的取值范围是()A.x≥﹣1 B.x≤﹣1 C.x≠﹣1 D.x>﹣1【考点】函数自变量的取值范围.【分析】根据分母不能为零,被开方数是非负数,可得答案.【解答】解:由中,得x+1>0,解得x>﹣1,故选:D.【点评】本题考查了函数自变量的取值范围,利用分母不能为零,被开方数是非负数得出不等式是解题关键.5.如图,a∥b,将﹣块三角板的直角顶点放在直线a上,若∠1=42°,则∠2的度数为()A.46° B.48° C.56° D.72°【考点】平行线的性质.【分析】求出∠3,根据平行线的性质得出∠2=∠3,代入求出即可.【解答】解:如图:∵∠1=42°,∴∠3=90°﹣42°=48°,∵a∥b,∴∠2=∠3,∴∠2=48°,故选B.【点评】本题考查了平行线的性质的应用,能求出∠2=∠3是解此题的关键,注意:两直线平行,内错角相等.6.如图,△ABC是⊙O的内接三角形,∠AOB=135°,则∠ACB的度数为()A.35° B.55° C.60° D.67.5°【考点】圆周角定理.【分析】直接根据圆周角定理进行解答即可.【解答】解:∵∠AOB与∠ACB是同弧所对的圆心角与圆周角,∠AOB=135°,∴∠ACB=∠AOB=67.5°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.关于x的一元二次方程ax2﹣bx+3=0的一个根为x=2,则代数式4b﹣8a+3的值为()A.﹣3 B.3 C.6 D.9【考点】一元二次方程的解.【分析】把x=2代入已知方程得到:4a﹣2b=﹣3,然后将其整体代入所求的代数式进行求值即可.【解答】解:把x=2代入,得4a﹣2b+3=0,所以4a﹣2b=﹣3,所以4b﹣8a+3=﹣2(4a﹣2b)+3=﹣2×(﹣3)+3=9.故选:D.【点评】本题考查一元二次方程的解的意义,即使等号成立的自变量的值.8.一组数据3,x,4,5,8的平均数为5,则这组数据的众数、中位数是()A.5,6 B.4,4.5 C.5,5 D.5,4.5【考点】众数;算术平均数;中位数.【专题】计算题;压轴题.【分析】根据平均数先求出x,再根据众数、中位数的定义求解即可.【解答】解:∵一组数据3,x,4,5,8的平均数为5,∴(3+x+4+5+8)÷5=5,∴x=5,∴这组组数据的众数为5;这组数据按从小到大的顺序排列为:3、4、5、5、8,∴中位数是5,故选C.【点评】本题考查了众数和中位数的定义,一组数据中出现次数最多的数据叫做众数.一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.另外,还涉及到了平均数的知识.9.如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,S=3cm2,则△BCF的面积为()△CDEA.6cm2B.9cm2C.18cm2D.27cm2【考点】相似三角形的判定与性质;平行四边形的性质.【专题】计算题.【分析】根据平行四边形的性质得BC=AD,BC∥AD,CD∥AB,∠D=∠B,则BC=3DE,再证明△CDE∽△FBC,然后利用三角形相似的性质可计算出△BCF的面积.【解答】解:∵四边形ABCD为平行四边形,∴BC=AD,BC∥AD,CD∥AB,∠D=∠B,∵AE=2ED,∴BC=3DE,∵CD∥AF,∴∠DCE=∠F,∴△CDE∽△FBC,∴=()2=,∴S=9×3=27(cm2).△FBC故选D.【点评】本题考查了相似三角形的判定与性质:两个三角形相似对应角相等,对应边的比相等;相似三角形面积的比等于相似比的平方.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.10.在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是()A.小莹的速度随时间的增大而增大B.小梅的平均速度比小莹的平均速度大C.在起跑后180秒时,两人相遇D.在起跑后50秒时,小梅在小莹的前面【考点】函数的图象.【专题】压轴题;数形结合.【分析】A、由于线段OA表示所跑的路程S(米)与所用时间t(秒)之间的函数图象,由此可以确定小莹的速度是没有变化的,B、小莹比小梅先到,由此可以确定小梅的平均速度比小莹的平均速度是否小;C、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D、根据图象知道起跑后50秒时OB在OA的上面,由此可以确定小梅是否在小莹的前面.【解答】解:A、∵线段OA表示所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴小莹的速度是没有变化的,故选项错误;B、∵小莹比小梅先到,∴小梅的平均速度比小莹的平均速度小,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴小梅是在小莹的前面,故选项正确.故选D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.11.图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3)…,则第6个图形的周长是()A.32 B.64 C.128 D.256【考点】规律型:图形的变化类.【分析】图1周长为1+=4=22,图2周长为2+3+1+1+1=2(1+)=8=23,图3周长为4+6+2+2+2=2(2+3+1+1+1)=16=24,…,由此得出一般规律.【解答】解:观察图形周长变化规律可知,图1周长为1+=4=22,图2周长为2+3+1+1+1=2(1+)=8=23,图3周长为4+6+2+2+2=2(2+3+1+1+1)=16=24,…,第6个图形的周长是26+1=128,故选C.【点评】考查了规律型:图形的变化,本题是一道找规律的题目,关键是把各周长和的结果写成2的指数次方,得出指数与图形序号的关系.12.已知二次函数y=ax2+bx+c(a≠0)与x轴一个交点在﹣1,﹣2之间,对称轴为直线x=1,图象如图,给出以下结论:①b2﹣4ac>0;②abc>0;③2a﹣b=0;④8a+c<0;⑤<0.其中结论正确的个数有()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断即可.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,①正确;∵抛物线开口向上,∴a>0,∵对称轴在y轴的右侧,∴b<0,∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,②正确;∵﹣=1,∴2a+b=0,③错误;∵x=﹣2时,y>0,∴4a﹣2b+c>0,即8a+c>0,④错误;根据抛物线的对称性可知,当x=3时,y<0,∴9a+3b+c<0,∴<0,⑤正确.综上所述,正确的结论是:①②⑤.故选:C.【点评】本题考查的是二次函数图象与系数的关系,掌握二次函数y=ax2+bx+c系数符号与抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数的关系是解题的关键.二、填空题(本大题6个小题,每小题4分,共24分)13.重庆育才中学现已有一校四区:重庆育才中学,重庆育才成功学校,双福育才中学习水育才中学,总占地440亩,约290000平方米,将290000用科学记数法表示为 2.9×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将290000平方米用科学记数法表示为:2.9×105.故答案为:2.9×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.计算(﹣1)2005﹣|﹣2|+(﹣)﹣1﹣2sin60°的值为﹣6 .【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】分别根据数的开方法则、负整数指数幂的计算法则、绝对值的性质及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=﹣1﹣(2﹣)﹣3﹣2×=﹣1﹣2+﹣3﹣=﹣6.故答案为:﹣6.【点评】本题考查的是实数的运算,熟知数的开方法则、负整数指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.15.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为12米.【考点】解直角三角形的应用-坡度坡角问题.【分析】在Rt△ABC中,根据坡面AB的坡比以及BC的值,求出AC的值,再通过解直角三角形即可求出斜面AB的长.【解答】解:∵Rt△ABC中,BC=6米,迎水坡AB的坡比为1:,∴BC:AC=1:,∴AC=•BC=6(米),∴AB===12(米)故答案为12米.【点评】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键.16.如图,AB为半圆O的直径,点C在AB的延长线上,CD与半圆O相切于点D,且AB=2CD=4,则图中阴影部分的面积为.【考点】切线的性质;扇形面积的计算.【分析】根据已知条件证得三角形ODC是等腰直角三角形,得到∠DOB=45°,然后根据扇形的面积公式计算即可.【解答】解:∵AB为半圆O的直径,∴AB=2OD,∵AB=2CD=4,∴OD=CD=2,∵CD与半圆O相切于点D,∴∠ODC=90°,∴∠DOB=45°,∴阴影部分的面积==,故答案为:.【点评】本题考查了切线的性质,扇形的面积的求法,等腰直角三角形的性质,证得△ODC是等腰直角三角形是解题的关键.17.从﹣4、﹣1、1、4这四个数中,任选两个不同的数分别作为m、n的值,恰好使得关于x的不等式组有3个整数解,且点(m,n)落在双曲线上的概率为.【考点】列表法与树状图法;一元一次不等式组的整数解;反比例函数图象上点的坐标特征.【分析】首先用列表法或树形图得到所用可能的情况,若使点(m,n)落在双曲线上,则mn=﹣4,由此得到mn的关系式,再根据恰好使得关于x,y的二元一次方程组有3个整数解,即可求出m,n 的值,由此可得到点(m,n)落在双曲线上的概率.【解答】解:画树状图得:若使点(m,n)落在双曲线上,则mn=﹣4,∴点(m,n)可以是(1,﹣4)、(﹣4,1),(﹣1,4),(4,﹣1),∵恰好使得关于x,y的二元一次方程组有3个整数解,∴点(m,n)可以是(﹣4,1),(1,﹣4),∴且点(m,n)落在双曲线y=﹣上的概率为==,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比18.如图,△ABC中,AB=AC=4,∠BAC=120°,以A为一个顶点的等边三角形ADE绕点A在∠BAC内旋转,AD、AE所在的直线与BC边分别交于点F、G.若点B关于直线AD的对称点为B′,当△FGB′是以点G为直角顶点的直角三角形时,BF的长为4﹣4 .【考点】旋转的性质;轴对称的性质.【专题】计算题.【分析】作AH⊥BC于H,如图1,先根据等腰三角形的性质和含30度的直角三角形三边的关系求出BC=4,再把△ACG绕点A顺时针旋转120°得到△ABG′,连结FG′、AB′,如图,则根据旋转的性质得BG′=CG,AG=AG,∠ABG′=∠C=30°,∠1=∠BAG′,所以∠FBG′=60°,再证明△AFG≌△AFG′得到FG=FG′,接着利用对称性质得FB=FB′,AB=AB′,∠2=∠3,易得∠1=∠4,AC=AB′,则可判断△AB′G与△ACG关于AG对称,得到GB′=GC,则GB′=BG′,然后证明△FB′G≌△FBG′得到∠FGB′=∠BG′F=90°,于是在Rt△BFG′中含30度的直角三角形三边的关系得BG′=BF,FG′=BF,则BF+BF+BF=BC=4,然后解关于BF的方程即可.【解答】解:作AH⊥BC于H,如图1,∵AB=AC=4,∠BAC=120°,∴∠B=30°,BH=CH,在Rt△ABH中,AH=AB=2,BH=AH=2,∴BC=2BH=4,把△ACG绕点A顺时针旋转120°得到△ABG′,连结FG′、AB′,如图,则BG′=CG,AG=AG,∠ABG′=∠C=30°,∠1=∠BAG′,∴∠FBG′=60°,∵∠FAG=60°,∴∠1+∠2=60°,∴∠FA G′=60°,在△AFG和△AFG′中,,∴△AFG≌△AFG′,∴FG=FG′,∵点B关于直线AD的对称点为B′,∴FB=FB′,AB=AB′,∠2=∠3,而∠3+∠4=60°,∠1+∠2=60°,∴∠1=∠4,而AC=AB=AB′,∴△AB′G与△ACG关于AG对称,∴GB′=GC,∴GB′=BG′,在△FB′G和△FBG′中,,∴△FB′G≌△FBG′,∴∠FGB′=∠BG′F=90°,在Rt△BFG′中,∵∠FBG′=60°,∴BG′=BF,FG′=BF,∴CG=BF,FG=BF,∴BF+BF+BF=BC=4,∴BF=4﹣4.故答案为4﹣4.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质和对称的性质.三、解答题(本大题2个小题,每小题7分,共14分)19.解方程组:【考点】解二元一次方程组.【专题】计算题.【分析】此题用代入法和加减法均可.【解答】解:由(1)得:y=2x+4.代入(2)得:4x﹣5(2x+4)=﹣23,所以x=.代入(1)得:2×﹣y=﹣4,y=5.故方程组的解为.【点评】这类题目的解题关键是掌握二元一次方程组解法中的加减消元法和代入消元法.20.自1939年创办以来,重庆育才中学一直坚守文化底线,不断挑战自我极限,在沧桑文化中愈加根深叶茂.在今年,即将推出的本部改造计划不仅是文化审美层面的颠覆尝试,也是学校发展的巨大工程,其中三种style的民国大门各具特色,A磅礴大气,B清爽简约,C典雅古朴款,为调查民意学校让教职工进行投票呈现了四种结果,喜欢A款、喜欢B款、喜欢C款、都可以,现调查结果如下:(1)如图,喜欢C款的占20%,喜欢B款的占15%,则调查总人数为,扇形统计图中认为“都可以”的所占圆心角为度;根据题中信息补全条形统计图.(2)我们学校共有600名教职工,请根据上图估算喜欢A款的有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)观察统计图,利用喜欢C款的人数除以它所占的百分比即可得到调查的总人数,进一步求得喜欢B款的人数和都可以的人数;得到“都可以”的人数,再计算出它所占的百分比,用360°乘以“都可以”的百分比即可求得所占圆心角的度数;然后补全条形统计图;(2)用样本中持“喜欢A款”的百分比乘以600估算喜欢A款的有多少人.【解答】解:(1)12÷20%=60(人)60×15%=9(人)60﹣28﹣12﹣9=11(人)扇形统计图中认为“都可以”的所占圆心角为360×=66度;图如下:(2)600×=280(人)答:估算喜欢A款的有280人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和样本估计总体.四、解答题(本大题4个小题,每小题l0分,共40分)21.化简:(1)(x+2)2+(x+2)(x﹣2)﹣2(2x+1)(3﹣x)(2).【考点】分式的混合运算;整式的混合运算.【专题】计算题;分式.【分析】(1)原式利用完全平方公式,平方差公式,以及多项式乘多项式法则计算,去括号合并即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=x2+4x+4+x2﹣4﹣12x+4x2﹣6+2x=6x2﹣6x﹣6;(2)原式=•=•=﹣.【点评】此题考查了分式的混合运算,以及整式的混合运算,熟练掌握运算法则是解本题的关键.22.如图,一次函数y=kx+b与反比例函数的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式.(2)根据所给条件,请直接写出不等式kx+b>的解集..(3)连接OA、OB,求S△ABO【考点】反比例函数与一次函数的交点问题.【分析】(1)根据反比例函数图象上点的坐标特征求出m 和n ,利用待定系数法求出一次函数的解析式;(2)根据函数图象得到答案;(3)求出直线与x 轴的交点坐标,根据三角形的面积公式计算即可.【解答】解:(1)∵反比例函数的图象经过A (2,3),∴m=2×3=6,∴反比例函数的解析式为:y=,∵反比例函数的图象经过于B (﹣3,n ), ∴n==﹣2, ∴点B 的坐标(﹣3,﹣2),由题意得,,解得,, ∴一次函数的解析式为:y=x+1;(2)由图象可知,不等式kx+b >的解集为:﹣3<x <0或x >2;(3)直线y=x+1与x 轴的交点C 的坐标为(﹣1,0),则OC=1,则S △ABO =S △OBC +S △ACO =×1×2+×1×3=.【点评】本题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式的一般步骤是解题的关键,注意数形结合思想的运用.23.上星期我市某水果价格呈上升趋势,某超市第一次用1000元购进的这种水果很快卖完,第二次又用960元购进该水果,但第二次每千克的进价是第一次进价的1.2倍,购进数量比第一次少了20千克.(1)求第一次购进这种水果每千克的进价是多少元?(2)本星期受天气影响,批发市场这种水果的数量有所减少.该超市所购进的数量比上星期所进购的总量减少了4a%,每千克的进价在上星期第二次进价的基础上上涨5a%,结果本星期进货总额比上星期进货总额少16元,求a 的值.【考点】分式方程的应用.【分析】(1)设第一次购进水果单价x 元,则第二次购进水果单价1.2x 元,根据第二次比第一次的重量少了20千克,可得出分式方程,解出即可;(2)根据(1)中所求的数据可以求得上周进货量为180千克和进价是12元,则依据“超市所购进的数量比上星期所进购的总量减少了4a%,每千克的进价在上星期第二次进价的基础上上涨5a%,结果本星期进货总额比上星期进货总额少16元”列出关于a 方程,通过解方程来求a 的值即可.【解答】解:(1)设第一次购进水果单价x 元,则第二次购进水果单价1.2x 元由题意得﹣=20,解得:x=10,经检验的x=10是原方程的解,答:第一次购进这种水果每千克的进价是10元.(2)上周进货总量: +=180(千克) 上周第二次的进价每千克:12元1000+960﹣12(1+5a%)×180(1﹣4a%)=16令a%=t ,化简得:200t 2﹣10t ﹣1=0,解得 t 1=0.1,t 2=﹣0.05(舍去),所以 a=10.【点评】本题考查了一元二次方程及分式方程的应用,解答此类题目的关键是仔细审题,找到题目中的等量关系及不等关系,从而利用数学知识解答.24.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= m2+3n2,b= 2mn ;(2)利用所探索的结论,找一组正整数a、b、m、n填空: 4 + 2 =( 1 + 1 )2;(3)若a+4=,且a、m、n均为正整数,求a的值?【考点】二次根式的混合运算.【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.。

2019年秋九年级数学竞赛试题(含答案)

2019年秋九年级数学竞赛试题(含答案)

九年级数学竞赛试题一.选择题:(每题4分,共32分)1.若m 为实数,则代数式||m +m 的值一定是( ).A .正数B .0C .负数D .非负数2.若10<<a ,化简2211()4()4a a a a-+++-的结果为( )A .2a -B .2aC .-2aD .2a 3.如果a ,b ,c 都不为零且0a b c ++=,则222222222111b c a c a b a b c +++-+-+-的值是( ) A .零 B .正数 C .负数 D .不能确定4.已知四边形的边长分别是m ,n ,p ,q ,且满足222222m n p q mn pq +++=+,则这个四边形是( )A .平行四边形B .对角线互相垂直的四边形C .对角线相等的四边形D .平行四边形或对角线互相垂直的四边形5.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .143≤<mB .43≥mC .10≤≤mD .143≤≤m6.如下图,已知函数y ax b =+和2(0)y ax bx c a =++≠,那么它们的图象可以是( )A B C D7.记35311+-=x y ,25212+=x y ,523+-=x y ,对每一个实数x ,都有唯一的一个值y 1,y 2,y 3与之对应,取y 为三数之中的最小值,当x 取遍所有实数时,所有y 值中的最大值为( )A .1B .2C .3D .58.如图,矩形ABCD 中,AB =4,BC =12.5,O 在BC 上,OB =3.5.以O 为坐标原点,建立如图所示的平面直角坐标系,M 坐标为(5,0),以OM 为一边作等腰△OMP ,P 点落在矩形ABCD 的边上,则符合条件的P 点共有( )个A .5B .6C .7D .8二.填空题:(每题4分,共32分)9.规定][a 表示不超过a 的最大整数,当1-=x 时,代数式6323+-nx mx 的值为16,则]32[n m -的值为________.10.若52=a ,94=a ,并且所有正整数n 满足1611=+++-n n n a a a ,则2016a = . 11.在△ABC 中,AB =3,AC =4,BC =5,△ABD .△ACE .△BCF 是等边三角形,则四边形AEFD的面积为_______.12.如图,在平面直角坐标系中,⊙O 的半径为1,点P 在经过点A (-4,0),B (0,4)的直线上,PQ 切⊙O 于点Q ,则切线长PQ 的最小值为________.yxO MDC B AEFDAB PBA O yx第8题图 第11题图 第12题图 13.设抛物线452)12(2++++=a x a x y 与x 轴只有一个交点.则243-+a a 的值为_________. 14.已知实数x ,y 满足0332=-++y x x ,则y x +的最大值为 .15.如图,把一副三角板如图甲放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =6cm ,DC =7cm ,把三角板DCE 绕点C 顺时针旋转15°得到△D ′CE ′,如图乙.这时AB 与CD ′相交于点O ,D ′E ′与AB 相交于点F .则线段AD ′的长为___________.16.如图①,在正方形ABCD 中,点P 沿边DA 从点D 开始向点A 以1cm /s 的速度移动;同时,点Q沿折线A —B —C 从点A 开始向点C 以2cm /s 的速度移动.当点P 移动到点A 时,P ,Q 同时停止移动.设点P 出发x 秒时,△P AQ 的面积为ycm 2,y 与x 的函数图象如图②,写出线段EF 所对应的函数关系式并指出自变量的取值范围:____________________.图①PQDCB A第15题图 第16题图ACBE D(甲)E 'ACBOF D '(乙)三.解答题:(56分) 17.(8分)在学校文化艺术节中,有A ,B ,C ,D 四个班的同学参加集体舞表演,已知A ,B 两个班共16名演员,B ,C 两个班共20名演员,C ,D 两个班共34名演员,且各班演员的人数正好按A ,B ,C ,D 次序从小到大排列,求各班演员的人数. 18.(8分)△ABC 三边长分别为a ,b ,c ,满足下列条件:①c b a >>;②b c a 2=+;③b 为正整数,a ,c 不一定是正整数;④842222=++c b a .根据以上条件: (1)用含b 的代数式表示ac ;(3分)(2)求b 的值.(5分)19.(8分)如图,在△ABC 中,AC =BC ,∠ACB =90°,D ,E 是边AB 上的两点,AD =3,BE =4,∠DCE =45°.(1)求证:AD 2+BE 2=DE 2;(4分) (2)求△ABC 的面积.(4分)EDB CA20.(8分)如图,△ABC 内接于⊙O ,AC >BC ,点D 为的中点.(1)求证:CD 平分∠ACE ;(3分)(2)求证:AD 2=AC ·BC +CD 2.(5分)ODCBA21.(12分)某公司市场信息部经过调研发现:如果单独投资A 产品,则所获利润y A (万元)与投资金额x (万元)之间存在一次函数关系1+=kx y A .并且当投资5万元时,获得利润3万元;如果单独投资B 产品,则所获利润y B (万元)与投资金额x (万元)之间存在二次函数关系bx ax y B +=2.并且当投资2万元时,获得利润2.4万元;投资4万元时,获得利润3.2万元. (1)分别求出上述的一次函数和二次函数的解析式;(4分)(2)如果该公司只投资一种产品,当投资金额在什么范围内,投资B 产品合算?(4分)(3)如果该公司同时对A ,B 两种产品投资,共投资10万元.请设计一种投资方案,使获得的总利润最大,最大总利润是多少万元?(4分)22.(12分)如图,已知抛物线()2y ax bx c a 0=++≠的对称轴为x =-1,且经过A (1,0),C (0,3)两点,与x 轴交于点B .(1)求抛物线和直线BC 的解析式;(4分)(2)N 点是抛物线上第二象限的一个动点,当△NBC 面积最大时,求N 点坐标;(4分) (3)设点P 在抛物线的对称轴x =-1上,且△BPC 是直角三角形,直接写出点P 的坐标.(4分)九年级数学竞赛题参考答案一.选择题(每题4分,共32分)1.D2.B3.A4.D5.A6.C7.B8.C二.填空题(每题4分,共32分)9.-410.211.612.13.814.415.516.三.解答题:17.设A班有x名演员,则B班有(16-x)名演员,C班有20-(16-x)=(x+4)名演员,D 班有34-(x+4)=(30-x)名演员.由已知得:,解得:.∵x为整数,所以.所以:A班有7名演员,B班有9名演员,C班有11名演员,D班有23名演员.18.(1)由④得:,由②得:,即:,∴,.………………3分(2)于是a,c可以看作方程两根,∵a,c是三角形的边长,所以,解得.∵b为正整数,所以,b=4.…………………8分19.(1)将△BCE绕点C顺时针旋转90°到△ACF位置,连接DF.这时,∠DCF=∠DCA+∠FCA=∠DCA+∠BCE=90°-∠DCE=45°.在△DEC和△DFC中,CE=CF,∠DCE=∠DCF,CD=CD,∴△DEC≌△DFC,∴DE=DF.∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=∠BAC=45°,∴∠DAF=90°.在△DAF中,由勾股定理可得:AD2+AF2=DF2.∵AF=BE,DF=DE,所以:AD2+BE2=DE2.…………………4分(2)由(1)得:DE=5,所以:AB=3+4+5=12.过C作CH⊥AB,垂足为H,则CH=AB=6,所以:△ABC的面积S==36.…………………8分20.(1)∵D为的中点,∴∠ACD=∠BAD.∵四边形ABCD是圆内接四边形,∴∠DCE=∠BAD,∴∠ACD=∠DCE,∴CD平分∠ACE.………………3分(2)连接BD,过D作DM⊥AC于M,DN⊥BE于N.∵D为的中点,∴AD=BD.∵CD平分∠ACE,DM⊥AC,DN⊥BE,∴DM=DN.在Rt△ADM和Rt△BDN中,,所以Rt△ADM≌Rt△BDN,∴AM=BN.在Rt△DCM和Rt△DCN中,,所以Rt△DCM≌Rt△DCN,∴CM=CN.在△ADM和△CDM中,由勾股定理得:,.∴=.……………8分21.(1),;…………………4分(2)当时,=,解得:,.∴当时,;…………………8分(3)设对B产品投资t万元,则A产品投资(10-t)万元,总利润为w万元,则:.,当时,w的最大值为6.8万元.即对A产品投资7万元,B产品投资3万元,所获利润最大,最大利润是6.8万元.………………12分22.(1)抛物线的解析式为:;…………………2分直线的解析式为:.…………………4分(2)过N点作x轴的垂线交直线BC于M,设N点的横坐标为t,则N点坐标为(t,),M点的坐标为(t,),则MN=; e则△NBC的面积S===.………7分即当时,S的最大值是,此时,N点的坐标为(,).………8分(3)P1(-1,4),P2(-1,-2),P3(-1,),P3(-1,).…………………12分。

2019年初三数学竞赛试卷附答案

2019年初三数学竞赛试卷附答案

2019年初三数学竞赛模拟试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共6小题,每小题4分,共24分)1.从分数组中删去两个分数,使剩下的数之和为1,则删去两个数是()A.B.C.D.2.将正三角形每条边四等份,然后过这些分点作平行于其它两边的直线,则以图中线段为边的菱形个数为()A.15 B.18 C.21 D.243.以正方形ABCD的BC边为直径作半圆O,过点D作直线切半圆于点F,交AB边于点E.则三角形ADE和直角梯形EBCD周长之比为()A.3:4 B.4:5 C.5:6 D.6:74.如图,在边长为1正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,3AE=EB,有一只蚂蚁从E点出发,经过F、G、H,最后回点E点,则蚂蚁所走的最小路程是()A.2 B.4 C.D.5.把正整数按下图所示的规律排序,那么从2005到2007的箭头方向依次为()A.B.C.D.6.将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是()A.3 B.8 C. D.2第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,每小题5分,共30分)7.当整数m=时,代数式的值是整数.8.规定一种运算“*”:对于任意实数对(x,y)恒有(x,y)*(x,y)=(x+y+1,x2﹣y ﹣1).若实数a,b满足(a,b)*(a,b)=(b,a),则a=,b=.9.一个七边形棋盘如图所示,7个顶点顺序从0到6编号,称为七个格子.一枚棋子放在0格,现在依逆时针移动这枚棋子,第一次移动1格,第二次移动2格,…,第n次移动n格.则不停留棋子的格子的编号有.10.如图,在斜坡的顶部有一铁塔AB,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=14m,塔影长DE=36m,小明和小华的身高都是1.6m,小明站在点E处,影子也在斜坡面上,小华站在沿DE方向的坡脚下,影子在平地上,两人的影长分别为4m 与2m,那么,塔高AB=m.11.如图,从卫生纸的包装纸上得到以下资料:两层300格,每格11.4cm×11cm,图甲.用尺量出整卷卫生纸的半径(R)与纸筒内芯的半径(r),分别为5.8cm和2.3cm,图乙.那么该两层卫生纸的厚度为cm.(π取3.14,结果精确到0.001cm)12.如图,等腰直角三角形ABD,点C是直角边AD上的动点,连接CB.现在将点C绕点A逆时针方向旋转90°得点E,再将点C绕点B顺时针方向旋转90°得点F.如果,设△AED,△BFD,△ABC的面积分别为S1,S2,S3,那么S1+S2﹣S3=.评卷人得分三.解答题(共4小题,共46分)13.(10分)已知,x、y满足,求(x+y)+(x2+2y)+(x3+3y)+…+(x199+199y)的值.14.(12分)如图,△ABC中,∠BAC=60°,AB=2AC.点P在△ABC内,且PA=,PB=5,PC=2,求△ABC的面积.15.(12分)是否存在质数p.q,使得关于x的一元二次方程px2﹣qx+p=O有有理数根?16.(12分)操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况.研究:(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明;(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由;(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明.参考答案与试题解析1.解:由,而,故删去后,可使剩下的数之和为1.故选:C.2.解:图中只有边长为1或2的两种菱形,每个菱形恰有一条与其边长相等的对角线,原正三角形内部每条长为1的线段,恰是一个边长为1的菱形的对角线,这种线段有18条,对应着18个边长为1的菱形;原正三角形的每条中位线恰是一个边长为2的菱形的对角线,三条中位线对应着3个边长为2的菱形.共得21个菱形.故选:C.3.解:根据切线长定理得,BE=EF,DF=DC=AD=AB=BC.设EF=x,DF=y,则在直角△AED中,AE=y﹣x,AD=CD=y,DE=x+y.根据勾股定理可得:(y﹣x)2+y2=(x+y)2,∴y=4x,∴三角形ADE的周长为12x,直角梯形EBCD周长为14x,∴两者周长之比为12x:14x=6:7.故选:D.4.解:延长DC到D',使CD=CD',G关于C对称点为G',则FG=FG',同样作D'A'⊥CD',D'A'=DA,H对应的位置为H',则G'H'=GH,再作A'B'⊥D'A',E的对应位置为E',则H'E'=HE.容易看出,当E、F、G'、H'、E'在一条直线上时路程最小,最小路程为EE'===2.故选:C.5.解:∵1和5的位置相同,∴图中排序每四个一组循环,而2005除以4的余数为1,∴2005的位置和1的位置相同,∴20052007.故选:D.6.解:连接CA、CD;根据折叠的性质,知所对的圆周角等于∠CBD,又∵所对的圆周角是∠CBA,∵∠CBD=∠CBA,∴AC=CD(相等的圆周角所对的弦相等);∴△CAD是等腰三角形;过C作CE⊥AB于E.∵AD=4,则AE=DE=2;∴BE=BD+DE=7;在Rt△ACB中,CE⊥AB,根据射影定理,得:BC2=BE•AB=7×9=63;故BC=3.故选:A.7.解:∵要使代数式的值是整数,∴3m﹣1只能在±1、±2、±3、±6这四个数中取值,∵当3m﹣1=1时,∴m=,当3m﹣1=﹣1时,m=0,当3m﹣1=2时,m=1,当3m﹣1=﹣2时,m=﹣,当3m﹣1=3时,m=,当3m﹣1=﹣3时,m=﹣,当3m﹣1=6时,m=,当3m﹣1=﹣6时,m=﹣,又∵m也是整数,∴可得m=0或1,故答案为0或1.8.解:由题意得:,解得,故答案两空分别填﹣1,1.9.解:因棋子移动了n次后走过的总格数是1+2+3+…+n=n(n+1),应停在第=n(n+1)﹣7p格,这时p是整数,且使0≤n(n+1)﹣7p≤6,分别取n=1,2,3,4,5,6,7时,n(n+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停留棋子,若7<n≤10,设n=7+t(t=1,2,3)代入可得,=n(n+1)﹣7p=7m+12t(t+1),由此可知,停棋的情形与n=t时相同,故第2,4,5格没有停留棋子.故答案为:2,4,5.10.解:作DF⊥CD,交AE于点F,过F作FG⊥AB,垂足为G,可得矩形BDFG.由题意得:=∴DF==14.4(m);∵GF=BD=CD=7(m),同理可得:=,∴AG=1.6÷2×7=5.6(m),∴AB=14.4+5.6=20(m).∴铁塔的高度为20m.故答案为:20.11.解:设该两层卫生纸的厚度为hcm .根据题意,得 11.4×11×h ×300=π(5.82﹣2.32)×11 37620h=π(33.64﹣5.29)×11 h ≈0.026.答:两层卫生纸的厚度为0.026cm .12.解:作CM ⊥AB ,DN ⊥BF 垂足分别为M ,N , 由旋转的性质可知AC=AE ,BC=BF , 设AC=x ,则CM=x ,又AD=BD=,∴AB=2,那么S △AED =×AE ×AD=x ,S △ABC =×AB ×CM=x ,而△BDN ∽△CBD ,那么,那么DN ×BC=BD 2=2,∴S △BFD =×BF ×DN=×DN ×BC=1, ∴S 1+S 2﹣S 3=S △AED +S △BFD ﹣S △ABC =x +1﹣x=1.故答案为:1.13.解:∵且,∴y ﹣2x=0, ∴x=1,y=2;(x+y)+(x2+2y)+(x3+3y)+…+(x199+199y),=(1+2)+(1+4)+(1+6)+…+(1+398),=3+5+7+ (399)=,=39999.14.解:如图,作△ABQ,使得∠QAB=∠PAC,∠ABQ=∠ACP,则△ABQ∽△ACP.∵AB=2AC,∴△ABQ与△ACP相似比为2.∴AQ=2AP=2,BQ=2CP=4,∠QAP=∠QAB+∠BAP=∠PAC+∠BAP=∠BAC=60°.由AQ:AP=2:1知,∠APQ=90°,于是PQ=AP=3,∴BP2=25=BQ2+PQ2,从而∠BQP=90°,过A点作AM∥PQ,延长BQ交AM于点M,∴AM=PQ,MQ=AP,∴AB2=AM2+(QM+BQ)2=PQ2+(AP+BQ)2=28+8,=AB•ACsin60°===3+.故S△ABC故答案为:3+.15.解:设方程有有理数根,则判别式为平方数.令△=q2﹣4p2=n2,规定其中n是一个非负整数.则(q﹣n)(q+n)=4p2.(5分)由于1≤q﹣n≤q+n,且q﹣n与q+n同奇偶,故同为偶数,因此,有如下几种可能情形:、、、、消去n,解得.(10分)对于第1,3种情形,p=2,从而q=5;对于第2,5种情形,p=2,从而q=4(不合题意,舍去);对于第4种情形,q是合数(不合题意,舍去).又当p=2,q=5时,方程为2x2﹣5x+2=0,它的根为,它们都是有理数.综上所述,存在满足题设的质数.(15分)16.解:(1)连接PC.∵△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE=90°,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE;(2)共有四种情况:①当点C与点E重合,即CE=0时,PE=PB;②CE=2﹣,此时PB=BE;③当CE=1时,此时PE=BE;④当E在CB的延长线上,且CE=2+时,此时PB=EB;(3)MD:ME=1:3.过点M作MF⊥AC,MH⊥BC,垂足分别是F、H.∴MH∥AC,MF∥BC.∴四边形CFMH是平行四边形.∵∠C=90°,∴▱CFMH是矩形.∴∠FMH=90°,MF=CH.∵,HB=MH,∴.∵∠DMF+∠DMH=∠DMH+∠EMH=90°,∴∠DMF=∠EMH.∵∠MFD=∠MHE=90°,∴△MDF∽△MEH.∴.。

睿达杯数学试题及答案

睿达杯数学试题及答案

睿达杯数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的结果:(3x^2 - 2x + 1) - (x^2 + 4x - 3) = ?A. 2x^2 - 6x + 4B. 2x^2 - 2x - 2C. x^2 - 6x + 4D. x^2 - 2x + 2答案:A3. 一个圆的直径是10厘米,那么它的半径是多少?A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A4. 一个数的平方等于36,这个数可能是?A. 6B. -6C. 6或-6D. 都不是答案:C5. 如果一个三角形的两边长分别为3和4,那么第三边的长度x满足什么条件?A. 1 < x < 7B. 1 < x < 5C. 3 < x < 7D. 4 < x < 7答案:C6. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A7. 一个数加上它的相反数等于?A. 0B. 1C. -1D. 2答案:A8. 一个等腰三角形的两个底角相等,如果一个底角是45度,那么顶角是多少度?A. 45度B. 90度C. 135度D. 180度答案:B9. 一个数的立方等于-8,这个数是?A. 2B. -2C. 8D. -8答案:B10. 下列哪个图形的面积是最大的?A. 边长为4的正方形B. 半径为2的圆C. 底为3,高为4的三角形D. 长为5,宽为3的矩形答案:B二、填空题(每题4分,共20分)11. 一个数的绝对值是5,这个数可能是________。

答案:±512. 一个数的平方根是2,那么这个数的立方根是________。

答案:2√213. 一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是________。

答案:514. 如果一个数x满足方程2x - 3 = 7,那么x的值是________。

2019年初三数学竞赛试卷及答案

2019年初三数学竞赛试卷及答案

2019年初三数学竞赛试卷及答案2019年初三数学竞赛试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一.选择题(共6小题,每小题4分,共24分)1.用甲乙两种饮料按照x:y(重量比)混合配制成一种新饮料,原来两种饮料成本是:甲每500克5元,乙每500克4元。

现甲成本上升10%,乙下降10%,而新饮料成本恰好保持不变,则x:y=()A。

4:5B。

3:4C。

2:3D。

1:22.一个立方体的每一个面都写有一个自然数,并且相对的两个面内的两数之和都相等,如图是这个立方体的平面展开图,若20、__、9的对面分别写的是a、b、c,则a²+b²+c²-ab-bc-ca的值为()A。

481B。

301C。

602D。

9623.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数y=x²+mx+n的图象与x轴有两个不同交点的概率是()A。

1/12B。

1/6C。

1/4D。

1/34.设$f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$,S是曲线$y=f(x)$与x轴所围成的面积,$S_1$是曲线$y=\frac{1}{2}f(x)$与x轴所围成的面积,则4$S_1$的整数部分等于()A。

4B。

5C。

6D。

75.横坐标、纵坐标都是整数的点叫做整点,函数y=$\frac{1}{x}$在第一象限内有整点,这些整点的个数是()A。

3个B。

4个C。

6个D。

8个6.有红色、黄色、蓝色三个盒子,其中有一个盒子内放有一个苹果;三个盒子上各写有一句话,红色盒子上写着“该盒子没有苹果”,黄色盒子上写着“该盒子内有苹果”,蓝色盒子上写着“黄色盒子内没有苹果”;已知这三句话中有且只有一句是真的,那么XXX在哪个盒子内()A。

红色B。

黄色C。

2019-2020年初中数学竞赛初赛试题(一,含详解).docx

2019-2020年初中数学竞赛初赛试题(一,含详解).docx

2019-2020 年初中数学竞赛初赛试题(一,含详解)一、选择题(共8 小题,每小题 5 分,共 40 分)1.要使方程组3x 2 y a的解是一对异号的数,则 a 的取值范围是()2x 3 y2(A)4a3( B)a4( C)a 3 (D)a3或a4 3332.一块含有30AB= 8cm,里面空心DEF 的各边与ABC 的对应边平行,且各对应边的距离都是1cm,那么DEF 的周长是()(A)5cm(B)6cm(C)( 6 3 )cm(D) (3 3 )cm3.将长为15cm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有( )(A)5 种 (B) 6种 (C)7种 (D)8种4.作抛物线 A 关于x轴对称的抛物线B,再将抛物线 B 向左平移 2 个单位,向上平移 1 个单位,得到的抛物线 C 的函数解析式是y2( x1)21,则抛物线 A 所对应的函数表达式是 ()(A)y 23)22 ( x(C)y 21)22( x(B)y 2( x 3) 22(D)y2( x 3 )2 25.书架上有两套同样的教材,每套分上、下两册,在这四册教材中随机抽取两册,恰好组成一套教材的概率是( )(A)2111(B)3(C)(D)3266.如图,一枚棋子放在七边形ABCDEFG的顶点处,现顺时针方向移动这枚棋子10 次,移动规则是:第k次依次移动k 个顶点。

如第一次移动 1 个顶点,棋子停在顶点 B 处,第二次移动 2 个顶点,棋子停在顶点D。

依这样的规则,在这10 次移动的过程中,棋子不可能分为两停到的顶点是()(A)C,E,F (B)C,E,G (C)C,E(D)E,F.7.一元二次方程ax 2bx c0( a0 )中,若a ,b都是偶数,C是奇数,则这个方程() (A)有整数根 (B) 没有整数根 (C) 没有有理数根 (D) 没有实数根8.如图所示的阴影部分由方格纸上 3 个小方格组成,我们称这样的图案为L 形,那么在由4 5 个小方格组成的方格纸上可以画出不同位置的L 形图案个数是( )(A)16 (B) 32(C) 48 (D) 64二、填空题:( 共有 6 个小题,每小题 5 分,满分30 分)9.已知直角三角形的两直角边长分别为3cm,4cm,那么以两直角边为直径的两圆公共弦的长为cm.10.将一组数据按由小到大 ( 或由大到小 ) 的顺序排列,处于最中间位置的数 ( 当数据的个数是奇数时 ) ,或最中间两个数据的平均数 ( 当数据的个数是偶数时 ) 叫做这组数据的中位数,现有一组数据共 100 个数,其中有 15 个数在中位数和平均数之间,如果这组数据的中位数和平均数都不在这100 个数中,那么这组数据中小于平均数的数据占这100 个数据的百分比是11 .ABC 中, a , b, c 分别是A, B, C 的对边,已知a10 ,b3 2 ,C3 2 ,则bsinB c sinC 的值是等于。

睿达杯二试模拟测试题

睿达杯二试模拟测试题

第三届“睿达杯”中小学数学智能竞赛试题卷八年级 第二试 时间90分钟 满分150分一、填空题(本大题共18小题,每空6分,共120分)1.钟表的时针与分针在4点 分重合.2.已知等腰ABC ∆的三边长c b a 、、均为整数,且满足24=+++ca b bc a ,则这样的三角形共有 个.3.2000642-++-+-+-x x x x 的最小值是 .4.已知四边形ABCD 为正方形,P 为平面内的一点,满足PAB ∆、PBC ∆、PCD ∆、PAD∆均为等腰三角形的点P 有 个.5.已知正整数n 小于2006,且263nn n =⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡,则这样的n 有 个.6.设100510041005100443433232212122222222⨯+++⨯++⨯++⨯+= A ,则[]A = . 7.分解因式93523-++x x x = .8.如果关于x 的不等式组⎩⎨⎧<-≥-0607n x m x 的整数解仅为1、2、3,那么适合这个不等式组的整数对()n m ,共有 对.9.已知点()()1,3,3,2B A -,点P 在x 轴上,若PB PA +长度最小,则最小值为 ;若PB PA -长度最大,则最大值为 .10.甲、乙两同学下棋,胜一盘得2分,和一盘各得1分,负一盘得0分.连下三盘,得分多者胜,则甲取胜的概率是 .11.如图,ABCD 与BEFG 是并列放在一起的两个正方形. O 是BF 与EG 的交点.如果正方形ABCD 的面积是29cm ,CG =cm 2,则三角形DEO 的面积是 cm .12.用长度相等的100根火柴棒摆放成一个三角形,使最大边的长度是最小边长度的三倍,则满足此条件的三角形有 个.13.已知非负实数z y x 、、满足433221-=-=-z y x ,记z y x W 543++=.则W 的最小值是 ,最大值是 .14.、如下图是用棋子摆成的“上”字:如果按照以上规律继续摆下去,通过观察,可以发现:第n 个“上”字需用 枚棋子.15.若实数c b a 、、满足01244,4322=--+-=+c b c b a ,则c b a ++= .16.规定:B A O 表示A 、B 中较大的数,B A ∆表示A 、B 中较小的数.若 ()()963535=∆+O ⨯∆+O A B B A ,且A 、B 均为大于0的自然数,B A ⨯的 所有取值为 .17.已知012=--x x ,则5412x x x ++= .18.如图,将等边ABC ∆沿BC 方向平移得到111C B A ∆.若3=BC ,31=∆C PB S ,则1BB = .二、解答题(本大题共2小题,每小题15分,共30分)19.设200821,,,x x x 是整数,且满足下列条件:(1)21≤≤-n x (2008,,2,1 =n );(2)200200821=+++x x x ;(3)2008220082221=+++x x x .求320083231x x x +++ 的最小值与最大值.20.如图,在ABC Rt ∆中,AB CD ACB ⊥=∠,90 于D ,设,,,c AB a BC b AC ===h CD =.求证:(1)222111h b a =+;(2)h c b a +<+;(3)以b a +、h 、h c +为边的三角形是直角三角形.。

初三数学睿达杯试卷

初三数学睿达杯试卷

一、选择题(每题5分,共25分)1. 下列各数中,不是有理数的是()A. √9B. -√16C. πD. 0.52. 已知 a + b = 5,a - b = 1,则 ab 的值为()A. 4B. 6C. 8D. 103. 在等差数列 2, 5, 8, ... 中,第 10 项的值为()A. 21B. 23C. 25D. 274. 若一个正方形的对角线长为 10 cm,则其面积是()A. 50 cm²B. 100 cm²C. 200 cm²D. 250 cm²5. 下列函数中,是奇函数的是()A. y = x²B. y = x³C. y = |x|D. y = 1/x二、填空题(每题5分,共25分)6. 若(a + b)² = 25,且 a - b = 3,则a² + b² 的值为 _______。

7. 在直角三角形 ABC 中,∠C = 90°,∠A = 30°,则 BC 的长度是 AC 的_______ 倍。

8. 二项式(x + 2y)³ 展开后,x²y 的系数是 _______。

9. 若等比数列的首项为 2,公比为 3,则第 5 项的值为 _______。

10. 在平面直角坐标系中,点 A(2, 3),点 B(-3, 4),则线段 AB 的长度是_______。

三、解答题(每题15分,共45分)11. (15分)已知数列 {an} 的前 n 项和为 Sn,且Sn = 4n² - 3n,求第 10项 an 的值。

12. (15分)在等腰三角形 ABC 中,AB = AC,∠BAC = 40°,求∠ABC 的度数。

13. (15分)已知函数 y = -2x² + 3x + 1,求该函数的顶点坐标和对称轴。

四、附加题(25分)14. (10分)已知函数y = ax² + bx + c(a ≠ 0),若 a、b、c 成等差数列,且函数的图象经过点 (1, 2),求 a、b、c 的值。

第三届“睿达杯”小学生数学智能竞赛(A卷)一试试卷

第三届“睿达杯”小学生数学智能竞赛(A卷)一试试卷

第三届”睿达杯”中小学数学智能竞赛试题卷三年级第一试考试时间90分钟满分120分一、填空题(本大题共18小题,每小题5分,共90分)1、计算:1000-91-1-92-2-93-3-94-4-95-5-96-6-97-7-98-8-99-9= ___2、暑假的一天,小王午睡前从镜子里看了一下钟(如图所示)就睡了,睡了1小时30分钟后起床,他是时分起床的。

3、先观察,再根据计算结果找规律计算:1+2+1=41+2+3+2+1=91+2+3+4+3+2+1=161+2+3+4+5+4+3+2+1=251+2+3+…+39+40+39+…+3+2+1=_________。

4、根据规律,这8个数:3,7,0,7,7,4,1,5,后面的第9,第10个数应该是_____和_____。

5、如图所示,涂色部分的面积约占大正方形面积的_____分之一。

6、已知一个三位数的各位数字之和等于4,那么这样的三位数共有____个,把这样的数从大到小排列,排在第5个的是______。

7、小李计划3天做12道挑战题,结果多做了15道,实际平均每天多做了_______道。

8、如图所示是由16个完全一样的小正方形叠成的图形,现在要求剪一刀,使分成的两部分能拼成一个大正方形。

请在图上画线表示剪的方法,再在横线上画出拼成后的大正方形的草图。

9、学校买来6个篮球和5个排球共付455元,已知每个篮球比每个排球贵30元,篮球的单价是_______元,排球的单价是_____元。

10、一个长方形的长增加5厘米,宽减少2厘米,则周长增加__________厘米。

11、熊猫馆有三只小熊猫,团团和圆圆的平均年龄是8岁,团团和嘉嘉的平均年龄是10岁,那么圆圆比嘉嘉小_______岁。

12、小明去奶奶家看望奶奶,如果往返都乘车,那么在路上一共要用1时20分;如果去时乘车,回来时骑自行车,那么一共要用2时20分。

如果小明骑自行车回来需用_______分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三届“睿达杯”中小学数学智能竞赛试题卷
九年级 第一试 考试时间 90分钟 满分120分
考生须知:
1.作答必须用黑色墨迹签字笔或钢笔填写,答案必须写在答题纸上,答题时不得超出答题框,否则无效。

2.保持卷面清洁,不要折叠,不要弄破。

3.答题前,在答题纸左侧考生信息框中填写所在地、学校、姓名等信息。

4.本次考试采用网上阅卷,务必要正确填涂准考证号,准考证号填涂时需用2B 铅笔。

一、选择题(本大题共10小题,每小题4分,共40分,每题只有一个正确选项,多选、错选、不选均不得分)
1.若实数a b c ,,满足432-=+b a ,012442=--+c b c ,则c b a ++的值为( ▲ )
A .0
B .3
C .6
D .9
2.抛物线b x b a ax y --+=)(2,如图所示,则化简a b
b ab a -+-222的结果是( ▲ )
A .a b a 2-
B .a
a b -2 C .1 D .1- 3.如图所示,在梯形ABCD 中,//90A D B C D M ∠=,,是AB 的中点,若
6.5CM =,17BC CD DA ++=,则梯形ABCD 的面积为( ▲ )
A .20
B .30
C .36
D .45
4.如图所示,在一次函数3y x =-+的图象上取一点P ,作PA ⊥x 轴,垂足为A PB ,⊥y 轴,垂足为B ,且矩形OAPB 的面积为2,则这样的点P 共有( ▲ )
A .4个
B .2个
C .6个
D .无数个
5.如图所示,在△ABC 中,点D E ,分别在BC AB ,上,且:2:1
:1:3BD DC AE EB ==,,AD 与CE 相交于点F ,则FD
AF FC EF +的值为( ▲ ) A .12 B .1 C .32
D .2 6.方程x x x
2212-=-的实数根的情况是( ▲ ) A .只有三个实数根 B .只有两个实数根 C .只有一个实数根 D .没有实数根
(第4题) (第3题) (第2题) (第5题
)
7.若实数y x 、满足关系式x y x 62322=+,则22y x +的最大值为( ▲ )
A .4
B .92
C .2
D .52
8.如图所示,在平行四边形ABCD 中,∠102BAD AF BC =⊥,于点F ,AF 交
BD 于点E ,若2DE AB =,则∠AED =( ▲ )
A .62º
B .64º
C .66º
D .68º
9.若关于x 的方程0222=++b ax x 有实数根(其中b a 、都是奇数),则它
的根( ▲ )
A .一定是整数
B .一定是分数
C .一定是有理数
D .一定是无理数
10.给定两组数,A 组为:1,2,…,100;B 组为:12,22,…,1002.对于A 组中的数x ,若有B 组中的数y ,使x y +也是B 组中的数,则称x 为“关联数”,则A 组中这样的“关联数”有( ▲ )
A .24个
B .49个
C .61个
D .73个
二、填空题(本大题共6小题,每小题5分,共30分)
11.若2
55-=x ,则)4)(3)(2)(1(++++x x x x 的值为 ▲ . 12.如图所示,在三行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和
5点,3点和4点),开始时,骰子如左图所示摆放,朝上的点数是2,最后翻动到如右图所示位置,若要求翻动次数最少,则最后骰子朝上的点数为2的概率为 ▲ .
13.如图所示,菱形纸片ABCD 的一内角为60°,边长为2,将它绕对角线的交点O 顺时针旋转90°后到
''''A B C D ,,,位置,则旋转前后重叠部分多边形的面积为 ▲ .
14.已知关于x 的一元二次方程02=++c bx ax 没有实数根.甲由于看错了二次项系数,误求得两根为2
和4;乙由于看错了某项系数(包括常数项)的符号,误求得两根为1-和4,则代数式a
c b 32-的值为 ▲ .
15.对于三个一次函数x y =1,1312+=x y ,55
43+-=x y ,若无论x 取何值,y 总取1y 、2y 、3y

(第8题
) (第12题) (第13题) (第16题)
的最小值,则y 的最大值为 ▲ .
16.如图所示,点(1)A m ,和点(3)B n ,是反比例函数(0)k y k x
=>图象上的两点,点P 是线段AB 上的动点(不与A B ,重合),过点P 作PD x ⊥轴于D ,交反比例函数图象于点C ,则CD PC
的最小值为 ▲ .
三、解答题(本大题共5小题,每小题10分,共50分)
17.由数字1,2,3组成五位数,要求这五位数中1,2,3至少各出现一次,那么一共可以得到多少个这
样的五位数?
18.某景区设计接待的游客数在同一时刻最多为13200人,开放时间为早上8时到晚上8时.预计新年第
一天,景区早上8时开放时就有8000名游客进入,之后进入景区的人数S 与开放时间n (n 为不大于10的正整数)
的关系近似地可表示为:n S =,而开放后第二小时起每小时离开景区的人数为400人.问在晚上6点之前,景区游客人数会不会达到饱和? 若会达到,请计算在开放后第几小时,从而景区采取限流措施;若不会,请说明理由.
19.如图所示,在⊙O 中,AB 是一非直径的弦,点C 是弧AB 的中点,弦CD 与AB
交于点F ,连结BD ,作BE 平分∠FBD 交CD 于点E .
(1) 指出图中一定是等腰三角形的三角形和一定相似的三角形,并证明;
(2) 求证:
EF DE CE 111=+.
20.已知:点A (6,0)和B (0,3),点C 是线段AB 上的点(不与A B ,重合),过C 分别作CD ⊥x 轴于D ,
作CE ⊥y 轴于E .设过点C E ,的抛物线2y ax bx c =++的顶点为M ,点M 落在四边形ODCE 内(包括四条边).
(1) 若四边形ODCE 是正方形时,求a 的取值范围;
(2) 若P 为直线AB 上的一个动点,点M 关于直线CE 的对称点为N ,若以E C N P ,,,为顶点的四边
形为平行四边形时,求点C 横坐标c x 的取值范围.
21.阅读下面的资料再完成(1)、(2)小题:
“由02)()(222≥-+=-ab b a b a ,可得ab b a 222≥+,当且仅当b a =时,等号成立.类似的,对于正数b a 、,由02)()(2≥-+=-ab b a b a ,可得ab b a 2≥+,当且仅当b a =
时,
(第19题)
等号成立.由此对于函数x
b ax y +=(常数b a 、及变量x 均大于零),x
b ax x b ax y ⋅≥+=2ab 2=,当且仅当x b ax =时,等号成立.” (1) 拟建一面积为400米2的矩形污水处理池,池外圈(矩形的一周)建造单价为每米200
元,中间两条隔墙建造单价为每米250元,池底建造单价为每平方米80元(池壁的
厚度忽略不计,且池无盖).如图所示,设矩形的一边为x 米, 求总造价y (元)关
于x (米)的函数关系式,并求当污水处理池两邻边分别为多少米时池的总造价最
低,最低总造价为多少.
(2)一批货物随17列货车从A 市均以a 千米/小时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列火车之间的距离不得小于2
20⎪⎭
⎫ ⎝⎛a 千米,求这批货物全部运到B 市最快需要几小时,此时货车运行速度为多少?(货车长度不计)
(第21题)。

相关文档
最新文档