晋江市2015-2016年八年级下期末学业跟踪检测数学试卷含答案

合集下载

15-16第二学期期末八年级数学答案

15-16第二学期期末八年级数学答案

2015-2016学年第二学期期末八年级数学答案 第1页(共2页)2015—2016学年第二学期期末考试八年级数学试题参考答案及评分标准二、填空题(每小题2分,共10分)16.> 17.100 18.x >1 19.15° 或105° (只填一个答案不能得分) 20.241cm n (无单位不能得分) 三、解答题(本大题共6个小题;共60分) 21.(本题满分12分,每小题3分)(1)12 (2)2 (3)0 (4)ab 2-(以上四个小题,如果结果不正确便不能得分) 22.(本题满分8分)(1)证明:∵四边形ABCD是正方形 ∴AD ∥BC∴∠E=∠DAE---------------------------------------------------2分 ∵AC=EC∴∠E=∠CAE -------------------------------------------------4分 ∴∠DAE =∠CAE即AE 平分∠CAD --------------------------------------------5分 (2)解: ∵正方形ABCD 是正方形且边长为1 ∴∠B=90° AB=BC=1 ∴ EC =AC==--------------------------------7分∴BE=1+∴△ABE 的面积是(1+) ---------------------------8分(其他做法参照此评分标准酌情给分) 23. (本题满分10分) 解:(1)10 ----------------------------------------------------------2分 (2)∵A (1,0),B (9,0),AD=6.∴D (1,6). 将B ,D 两点坐标代入y=kx+b 中, 得, ----------------------------------------4分解得 ,---------------------------------------------6分∴. ----------------------------------8分(3)或.----------------------10分(只答对一个给1分)(第22题图)(第23题图)2015-2016学年第二学期期末八年级数学答案 第2页(共2页)24、(本小题满分10分) 解:(1)甲厂的平均数=(7+8+9+9+9+11+13+14+16+17+19)÷11=12,∴甲厂的广告利用了统计中的平均数;---------------------------------------------------------2分 由于乙厂数据中12出现3次,是众数,故乙厂的广告利用了统计中的众数;------4分 丙厂数据中的中位数是12,故丙厂的广告利用了统计中的中位数;-------------------6分(2)选用甲厂的产品.因为它的平均数较真实地反映灯管的使用寿命.----------10分(如果考生回答选用丙厂的产品.因为丙厂有一半以上的灯管使用寿命超过12个月,可得满分;如果只回答选用乙厂的产品,有适当理由也不扣分,如果没有适当理由则扣1--2分。

2016年秋季晋江市八年级期末跟踪测试数学精彩试题

2016年秋季晋江市八年级期末跟踪测试数学精彩试题

实用文档文案大全2016年秋季晋江市八年级期末跟踪测试数学试题(满分:150分,考试时间:120分钟)一.选择题(每小题4分,共40分)1.实数15是()A. 整数B. 分数C.有理数D. 无理数2. 64的平方根是()A.8B.-8C.8? D.323.抛一枚硬币若干次,有11次出现正面,9次出现反面,则出现正面的频率是()A.11B.9C.55%D.45%4.下列算式中,计算结果等于6a的是()A.33aa?B. aa?5C. (a4)2D.212aa?5.如图,在四边形ABCD中AB=AD,添加下列一个条件后,仍然不能证明ABC?≌ADC?,那么这个条件是()A.CD=CBB. AC平分∠BADC. ∠B=∠D=90°D. ∠ACB=∠ACD6.在Rt△ABC中,∠A=90°,AB=5,BC=12,则AC的长是()A.13B119 C13119或 D.177.下列选项中,可以用来说明命题“若a2>4,则a>2”是假命题的反例是()A.a=-3B. a=3C.a=2D.a=-28.如图,用4张全等的长方形拼成一个正方形,用两种方法表示图中阴影部分的面积可得出一个代数恒等式。

若长方形的长和宽分别为a、b,则这个代数恒等式是()A.(a+b)2=a2+2ab+b2B. (a-b)2=(a+b)2-4ab22222第8题图ab实用文档文案大全9.22591201759120162017201820165881181587588xyz???????????设,,,则x、y、z的大小关系是()A.y<z<xB.x<z<yC.y<x<zD.z<y<x 10.如图,是一个长、宽、高分别为4cm、2cm、8cm的无盖长方体盒子,现有一只蚂蚁从点A处沿盒子的内壁爬到点B,则爬行的最短距离为()A. 148cmB. ??280cm?C. 116cmD.10cm二、填空题(每小题4分,共24分)11.计算:38127___________???12.如图是小米一家三口在元旦期间外出旅游中费用支出情况,那么表示购物的扇形圆心角的度数为__________.13.命题“直角三角形的两个锐角互余”的逆命题是__________________________________. 14.如图,在△ABC中,AC<BC,AB的垂直平分线交AB于点D,交BC于点E,连结AE,若△ACE的周长为14cm,BD=5cm,则△ABC的周长是_________. 15.如图在4×4的方格中,每个小方格的边长都为1,点A、B在格点上,则线段AB的长度是__________.16.已知4??ba,abba???)4)(3(. (1)a的取值范围是.(2)若53222?????bb ab aa,则ba?的值是.三、解答题(共86分)17.(10分)(1)3528)1(5aaaa???(2)26(6)(6)xxx????()18.(6分)因式分解:222753bba?第14题图DABCE第12题图购物食宿30%消费45%第15题图AB第10题2cm8cm实用文档文案大全 19.(9分)先化简,再求值:??)()4(3)6(222xyyxxyxy??????)(,其中65?x,53??y.20(9分) 如图,点ECFB、、、在同一直线上,已知AB=DE,AC=DF,BF=EC.求证:DFEACB .21.(8分)某中学组织“纪念红军长征胜利80周年”知识竞赛活动,其中八年级6个班每班参赛人数相同,学校对该年级的获奖人数进行统计,得到平均每班获奖15人,并制作如下图所示不完整的条形统计图。

2015--2016学年度第二学期期末考试初二数学

2015--2016学年度第二学期期末考试初二数学

2015--2016学年度第二学期期末考试初二 数学(考试时间:120分钟 满分:150分) 得分一、选择题(本大题共6小题,每小题3分,满分18分.在每小题所给出的四个选项中,恰有一项是正确的,请将正确选项的字母代号填在题后括号内) 1.下列调查中,适合普查的是( )A .某品牌电冰箱的使用寿命B .公民保护环境的意识C .长江中现有鱼的种类D .你班每位同学穿鞋的尺码 2.下列运算正确的是( )A .12223=-B .27226=+C .257=- D .312=+3.下列事件是确定事件的是( )A .在标准大气压下,温度低于0℃时冰融化B .抛掷一枚质地均匀的硬币正面朝上C .买一张电影票,座位号是奇数D .打开电视,正在播广告 4.在平面直角坐标系中,函数kx y =与xky -=(k >0)的图像是下列图像中的( )5.下列说法正确的是( )A .一组对边相等的四边形是平行四边形B .对角线相等的四边形是矩形C .有一个角是直角的菱形是正方形D .平行四边形的对角互补 6.如果09622=+-b ab a ,那么ba ba 22-+的值等于( )A.-7B.-7bC.7D.7b二、填空题(本大题共有10小题,每小题3分,共30分) 7.若分式312--x x 有意义,则x 的取值范围是 . 8.计算)53)(35(-+= .第14题DOEABCF D COE BA第13题9.在温度不变的条件下,一定量的气体的压强p (Pa )与它的体积V (m 3)成反比例,已知当V =125 m 3时p =80 Pa ,则当V =200 m 3时p = Pa . 10.当a = 时,最简二根根式3-a 与a -93是同类二次根式.11.将容量是200的样本分成5组,其中,第1组的频数是20,第2、3组的频数都是40,第4组的频率是0.3,那么第5组的频数是 . 12.如果关于x 的方程mx x -=23的解为x =6,则m = . 13.如图,△ABC 的中线AF 与中位线DE 相交于O ,若DO =2,则BC = . 14.如图,矩形ABCD 的对角线相交于O ,AC =2AB ,E 是边BC 延长线上一点,且CE =OC ,则∠E 等于 °.15.平行四边形ABCD 中,边AB 的长为6,一条对角线AC 的长为8,则另一条对角线BD 长的取值范围是 . 16.如图,双曲线 x y 1=(x >0)经过Rt △OCB 的斜边OB 的中点A ,点B 在双曲线xk y = (x >0)上,则△OBC 的面积= .三、解答题(本大题共有10小题,共102分) 17.(12分)计算:(1)752712-- (2)b a ab ab ab a 33322+⋅+ (3) 21823xx x +-)0(≥x18.(8分)解方程:3233252---=--x x x x 第16题19.(8分)如图,小方格的边长为1. (1)BC = ,△ABC 的面积为 ; (2)将△ABC 绕点O 逆时针旋转90°,请画出对应的△A 1B 1C 1; (3)请在图中找出:以A 1、B 1、C 1为顶点的矩形的第四个顶点D 1.20.(10分)某市教育局为了了解初二学生第一学期参加社会实践活动的情况,随机抽查了本市部分初二学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)扇形统计图中a 的值为 %,该扇形圆心角的度数为 ; (2)补全条形统计图;(3)如果该市共有初二学生20 000人,请你估计“活动时间不少于5天”的大约有多少人?21.(8分)在一个暗箱里放有a 个除颜色外其它完全相同的红、白、蓝三种球,其中红球有2个,白球有5个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%.天和7天以上53天学生参加实践活动天数的人数分布扇形统计图7天和7天以上学生参加实践活动天数DA(1)试求出a 的值;(2)从中任意摸出一个球,①该球是红球②该球是白球③该球是蓝球,估计这三个事件发生的可能性的大小,将三个事件的序号按发生的可能性从小到大的顺序排列.22.(10分)某校为迎接市中学生运动会,计划由八年级(1)班的3个小组制作240面彩旗,后因1个小组另有任务,其余2个小组的每名学生要比原计划多做4面彩旗才能完成任务.如果这3个小组的人数相等,那么每个小组有学生多少名?23.(10分)甲、乙两港口分别位于长江的上、下游,相距s km ,一艘游轮往返其间,若游轮在静水中的速度为a km/h ,水流速度为b km/h (b <a ). (1)该游轮往返两港口所需的时间相差多少?(2)若水流速度为3 km/h 时游轮在两港口往返一次的时间为t 1,水流速度为0 km/h (静水中)时游轮在两港口往返一次的时间为t 2,问t 1与 t 2哪个大?为什么?24.(10分)如图,点E 、F 为菱形ABCD 对角线BD 的两个三等分点. (1)求证:四边形AECF 是菱形;(2)若菱形ABCD 的周长为52,BD 为24,试求四边形AECF 的面积.…………………………25.(12分)已知正方形OABC 的面积为4,O 是坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数)0,0(>>=k x x k y 的图像上,点P (m , n )是函数)0,0(>>=k x xky 的图像上任意一点.过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,若设矩形OEPF 和正方形OABC 不重合部分的面积为S. (1)求B 点的坐标和k 的值; (2)当38=S 时,求点P 的坐标; (3)当521≤≤m 时,求S 的最大值.26.(14分)如图,矩形ABCD 中,AB =6cm ,AD =8cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm/s 的速度沿A →D →C 移动,一直到达点C 为止;点Q 以2cm/s 的速度向点B 移动,到B 停止.(1)经过多长时间,四边形ABQP 为矩形?(2)P 、Q 两点在运动过程中,直线PQ 能否垂直平分线段BD ?为什么?(3)若以A 为坐标原点,AD 为x 轴正方向,以BA 为y 轴正方向,建立平面直角坐标系,问:是否存在某一时刻,点P 、Q 既在某反比例函数图像上又在某一次函数的图像上?为什么?备用图。

2015泉州市晋江初中数学质量检查(二)试题和答案

2015泉州市晋江初中数学质量检查(二)试题和答案

2015年晋江市初中学业质量检查(二)数 学 试 题(试卷满分:150分;考试时间:120分钟)一、选择题(每小题3分,共21分):每小题有四个答案,其中有且只有一个答案是正确的.请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答一律得0分.1.的相反数是( ).A. B. C. D.2.下列计算正确的是().A. B. C. D.3.如图,数轴上表示的是某一不等式组的解集,则这个不等式组可能是().≥0A. B. C. D.≤0≤0≥0(第3题图)-224.下面左图是由六个完全相同的正方体堆成的物体,则这一物体的主视图是( ).A. B. C. D.(第4题图)正面5.分解因式结果正确的是().A. B. C. D.6.关于的一元二次方程有两个相等的实数根,则的值可以是().A. B. C. D.240(第7题图)O124 5t(小时)s(千米)甲乙甲乙7.甲、乙两辆运输车沿同一条道路从A地出发前往B地,他们离出发地的路程(千米)和行驶时间(小时)之间的函数关系的图象如图所示,根据图中提供的信息判断,下列说法错误的是().A.甲乙两车都行驶了240千米B.甲乙两车同时到达目的地C.甲车比乙车早出发1小时,但甲车在途中停留了1小时D.相遇后,乙车的速度大于甲车的速度二、填空题(每小题4分,共40分):在答题卡上相应题目的答题区域内作答.8.的立方根是.9.据报道,2015年中国试验时速高达米的动车组,将数据用科学记数法表示为 .10.如图,在中,,,则 °.B(第10题图)CA11.计算:.12.方程组的解是 .13.一组数据、、、、、的中位数是 .14.六边形的内角和为.15.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为 . 16.若、均为正整数,且,,则的最小值是.17.无论取什么实数,点都在直线上.(1)当时,点的坐标为;(2)若是直线上的动点,则的值等于.三、解答题(共89分):在答题卡上相应题目的答题区域内作答.18.(9分)计算:.19.(9分)先化简,再求值:,其中.20.(9分)如图,四边形是平行四边形,点、分别在边、上,且,连结、.求证:.EA(第20题图)BCDF21.(9分)在一个不透明的口袋里装有四个小球,四个小球上分别标有数字:1、3、5、7,它们除了所标数字不同之外,没有其它区别.(1)随机地从口袋里抽取一个小球,求取出的小球上的数字为5的概率;(2)若小刚先随机地从口袋里抽取一个小球后,小丽再从剩余的三个球中随机地抽取一个小球.以小刚取出的小球上所标的数作为等腰三角形的腰,以小丽取出的小球上所标的数作为等腰三角形的底.请你用画树状图或列表的方法表示所有等可能的结果,并求出能构成等腰三角形的概率.22.(9分)如图,反比例函数()的图象与直线交于、两点.(第22题图)xOyPQA(1)直接写出的值;(2)若直线与轴交于点,,当时,求出相应的的取值范围.23.(9分)某校为了了解学生完成课前预习的具体情况,对本校学生进行跟踪抽查,抽查结果只分为四类,A:很好;B:较好;C:一般;D:较差.并将抽查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次抽查的学生共有 名;(2)扇形统计图中、分别为: , ,并在图中补全条形统计图;(3)若该校共有名学生,请你估计该校有多少名学生能很好完成课前预习工作.所抽查学生的课前预习情况条形统计图48481020304050ABCD类别人数m%25%n%5%DCAB所抽查学生的课前预习情况扇形统计图(第23题图)24.(9分)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/12001000件)售价(元/13801200件)(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B 种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?(注:获利 = 售价 — 进价)25.(12分)如图,的顶点分别为,,,点为边上的一个动点,过作于点,为中点,连结、.(1)填空: , , ;(2)当点落在轴上时,试判断四边形的形状,并说明理由;(3)设点的坐标为,求与的函数表达式,并写出自变量的取值范围.BAPyOxC(第25题图)DE26.(14分)在平面直角坐标系中,是坐标原点,抛物线()与轴交于、两点,与 轴交于点.(1)用含的代数式直接表示;(2)若该抛物线的顶点为,点的坐标为.①当为何值时,四边形为正方形;②连结、,当时,请求出该抛物线的函数表达式.yABxOCD(第26题图)E。

2015-2016学年八年级下学期期末质量检测数学试题带答案

2015-2016学年八年级下学期期末质量检测数学试题带答案

E ODC BA2015-2016学年度第二学期期末质量检测八年级 数学一、选择题(本大题共10题,每题3分,共30分) 1.下列二次根式中,是最简二次根式的是A. B. 0.5 C.50 D.5下列计算正确的是 A.752=+ C. D.4. 若平行四边形中两个内角的度数比为1:2,则其中较大的内角是 A .120° B .90° C .60° D .45°5. 已知一组数据5、3、5、4、6、5、14.关于这组数据的中位数、众数、平均数, 下列说法正确的是A.中位数是4B.众数是14C.中位数和众数都是5D.中位数和平均数都是5 6.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为BC 的中点, 则下列式子中,一定成立的是A.OE BC 2=B. OE AC 2=C.OE AD =D.OE OB = 7. 要得到y=2x-4的图象,可把直线y=2xA . 向左平移4个单位 B. 向右平移4个单位 C. 向上平移4个单位 D. 向下平移4个单位 8. 对于函数y=-3x+1,下列结论正确的是A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大9.甲、乙两班举行电脑汉字录入比赛,参加学生每分钟录入汉字的个数统计计算后填入下表:某同学根据上表分析得出如下结论:22540=÷15)15(2-=-5112题①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀); ③甲班的成绩波动情况比乙班的成绩波动大. 其中正确结论的序号是A. ①②③ B .①② C .①③ D .②③10.王老师开车从甲地到相距240千米的乙地,如果油箱剩余油量Y (升)与行驶路程X (千米)之间是一次函数关系,如图,那么到达乙地时油 箱剩余油量是A. 10升B.20升C. 30升D. 40升二.填空题(本大题共6题,每题3分, 共18分)11 .函数3X2X Y +=的自变量X 的取值范围是______________12. 四边形ABCD 是周长为20cm 的菱形,点A 的坐标是则点B 的坐标为___________13.已知样本x 1 ,x 2 , x 3 , x 4的平均数是3,则x 1+3,x 2+3, x 3+3, x 4+3的平均数为 ____14.若一次函数y =(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是____15.如图,以Rt △ABC 的三边为斜边分别向外作等 腰直角三角形,若斜边AB =3,则图中阴影部分 的面积为________.16.如图,矩形ABCD 中,AB=3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B落在点B ′处,当△AEB ′为直角三角形时,BE 的长为___三、解答题(本大题共8题,共72分,解答时要写出必要的文字说明,演算步骤或推证过程)17.计算(本题共2小题,每小题5分,共10分) (1) 32)48312123(÷+-(2) (18.(本题满分8分)已知一次函数的图象经过(-2,1)和(1,4)两点, (1)求这个一次函数的解析式; (2)当x =3时,求y 的值。

2016年秋季晋江市八年级期末跟踪测试数学精彩试题

2016年秋季晋江市八年级期末跟踪测试数学精彩试题

2016年秋季晋江市八年级期末跟踪测试数学试题(满分:150分,考试时间:120分钟)一.选择题(每小题4分,共40分)1.实数15是( )A. 整数B. 分数C.有理数D. 无理数 2. 64的平方根是( ) A .8B .-8C .8±D .323.抛一枚硬币若干次,有11次出现正面,9次出现反面,则出现正面的频率是( ) A .11B .9C .55%D .45%4.下列算式中,计算结果等于6a 的是( )A.33a a +B. a a ⋅5C. (a 4)2D.212a a ÷5.如图,在四边形ABCD 中AB=AD ,添加下列一个条件后,仍然不能证明ABC ∆≌ADC ∆,那么这个条件是( )A.CD=CBB. AC 平分∠BADC. ∠B=∠D=90°D. ∠ACB=∠ACD 6.在Rt △ABC 中,∠A=90°,AB=5,BC=12,则AC 的长是( ) A .13B.13 D .177.下列选项中,可以用来说明命题“若a 2>4,则a>2”是假命题的反例是( ) A.a=-3 B. a=3 C.a=2 D.a=-28.如图,用4张全等的长方形拼成一个正方形,用两种方法表示图中阴影部分的面积 可得出一个代数恒等式。

若长方形的长和宽分别为a 、b ,则这个代数恒等式是( )A.(a+b)2=a 2+2ab+b 2B. (a-b)2=(a+b)2-4ab C.(a+b)(a-b)=a 2-b 2D. (a-b)2=a 2-ab+b 2第8题图9.259120175912016201720182016x y z =⨯-⨯=-⨯设,, 则x 、y 、z 的大小关系是( )A.y<z<xB.x<z<yC.y<x<zD.z<y<x 10.如图,是一个长、宽、高分别为4cm 、2cm 、8cm 的无盖长方体盒子,现有 一只蚂蚁从点A 处沿盒子的内壁爬到点B ,则爬行的最短距离为( )B.(2cm C.D.10cm二、填空题(每小题4分,共24分)11.___________12.如图是小米一家三口在元旦期间外出旅游中费用支出情况,那么表示购物的扇形圆心角的度数为__________.13.命题“直角三角形的两个锐角互余”的逆命题是__________________________________. 14.如图,在△ABC 中,AC<BC ,AB 的垂直平分线交AB 于点D ,交BC 于点E ,连结AE ,若△ACE 的周长为14cm ,BD=5cm ,则△ABC 的周长是_________. 15.如图在4×4的方格中,每个小方格的边长都为1,点A 、B 在格点上, 则线段AB 的长度是__________.16.已知4=-b a ,ab b a <+-)4)(3(. (1)a 的取值范围是 .(2)若53222=+-++b b ab a a ,则b a +的值是 .三、解答题(共86分)17.(10分)(1)3528)1(5a a a a ÷-- (2)26(6)(6)x x x +-+-()18.(6分)因式分解:222753b b a -AB第12题图第15题图A第10题图8cm19.(9分)先化简,再求值:[])()4(3)6(222xy y x xy xy -÷---+)(,其中65=x ,53-=y .20. (9分) 如图,点E C F B 、、、在同一直线上,已知AB=DE ,AC=DF ,BF=EC.求证:DFE ACB ∠=∠.21.(8分)某中学组织“纪念红军长征胜利80周年”知识竞赛活动,其中八年级6个班每班参赛人数相同,学校对该年级的获奖人数进行统计,得到平均每班获奖15人,并制作如下图所示不完整的条形统计图。

2016年春晋江市八下期末数学卷

2016年春晋江市八下期末数学卷

xyOPA(第7题图)晋江市2016年春季八年级期末学业跟踪检测数 学 试 题题号 一 二 三总分1-7 8-17 18 19 20 21 22 23 24 25 26得分一、选择题(每小题3分,共21分) 1.计算13-的结果是( ). A .3-B .31-C .31D .1-2.若分式122-+x x 有意义,则x 的取值范围是( ). A .21>x B .21≠x C .2-≠xD .21=x 3.在平行四边形、矩形、菱形、正方形中,既是轴对称图形又是中心对称图形的有( ).A .1个B .2个C .3个D .4个4.一组数据8,9,10,11,12的方差是( ). A .4B .2C .2D .1 5.点()4,3-A 到x 轴的距离是( ). A .7B .3C .5D . 46.在同一直角坐标系中,若直线3+=kx y 与直线b x y +-=2平行,则 ( ). A .2-=k ,3≠b B .2-=k ,3=b C .2-≠k , 3≠b D .2-≠k ,3=b 7.如图,点P 是双曲线()06>=x xy 上的一个动点,过点P 作x PA ⊥ 轴于点A ,当点P 从左向右移动时,OPA ∆的面积( ). A .逐渐增大 B .逐渐减小C .先增大后减小 D. 保持不变B M PQ(第17题图) (第16题图) A C D O (第13题图) A B DE (第15题图) A B C 二、填空题(每小题4分,共40分) 8.计算:()_____220=-;9.某种细菌病毒的直径为5000000.0米,5000000.0米用科学记数法表示为米.10.计算:222+++a a a = . 11.在正比例函数()x k y 2-=中,y 随x 的增大而增大,则k 的取值范围是____________.12.已知:一次函数b kx y +=的图象在直角坐标系中如图所示,则0____kb (填“>”、“<”或“=”).13.如图,把矩形ABCD 纸片沿着过点A 的直线AE 折叠,使得点D落在BC 边上的点F 处,若︒=∠40BAF ,则︒=∠_____DAE .14.若反比例函数xm y 1-=图象的两个分支分布在第二、四象限,则整数..m 可以是 (写出一个即可).15.如图,在□ABCD 中,︒=∠-∠40B A ,则._____︒=∠A16.如图,菱形ABCD 的周长为20,对角线AC 与BD 相交于点O ,8=AC ,则______=BD .17.已知等腰直角ABC ∆的直角边长与正方形MNPQ 的边长均为cm 10,CA 与MN 在同一条直线上,点A 从点M 开始向右移动,设点A 的移动距离为xcm ()20 0x ,重叠部分的面积为S ()2cm .(1)当点A 向右移动cm 4时,重叠部分的面积2_____cm S =;(2)当x cm <10 cm 20时,则S 与x 的函数关系式为________________. 三、解答题(共89分)18.(9分)计算:411622---a a a .Oxy ≤ ≤ ≤(第21题图)ABOxy19.(9分)先化简,再求值:933122-+÷⎪⎭⎫ ⎝⎛--a a a a a ,其中2-=a .20.(9分)如图, 在□ABCD 中,点E 、F 分别为AD 、BC 边上的一点,且CF AE =. 求证:四边形BFDE 是平行四边形.21.(9分)如图,直线221+=x y 分别与x 轴、y 轴相交于点A 、点B . ⑴求点A 和点B 的坐标;⑵若点P 是y 轴上的一点,设AOB ∆、ABP ∆的面积分别 为AOB S ∆与ABP S ∆,且AOB ABP S S ∆∆=2,求点P 的坐标.(第20题图)ABCE22.(9分)某校举办“书香校园”读书活动,经过对八年级(1)班的42个学生的每人读书数量进行统计分析,得到条形统计图如图所示:⑴填空:该班每个学生读书数量的众数是本,中位数是本;⑵若把上述条形统计图转换为扇形统计图,求该班学生“读书数量为4本的人数”所对应扇形的圆心角的度数.23.(9分)在校园手工制作活动中,现有甲、乙两人接到手工制作纸花任务,已知甲每小时制作纸花比乙每小时制作纸花少20朵,甲制作120朵纸花的时间与乙制作160朵纸花的时间相同,求乙每小时制作多少朵纸花?24.(9分)已知:在ABC∆中,AB AC=,点D、E、F分别在边BC、AB、AC上,⑴若DE∥AC,DF∥AB,且AFAE=,则四边形AEDF是______形;⑵如图,若ABDE⊥于点E,ACDF⊥于点F,作ABCH⊥于点H,求证:DFDECH+=.(第24题图)AB CEFH24681012141612345人数读书数量(本)(第22题图)25.(13分)已知:如图,正比例函数kx y =1()0>k 的图象与反比例函数xy 62=的图象相交于点A 和点C ,设点C 的坐标为()n ,2. (1)①求k 与n 的值;②试利用函数图象,直接..写出不等式06<-xkx 的解集; (2)点B 是x 轴上的一个动点,连结AB 、BC , 作点A 关于直线BC 的对称点Q ,在点B 的移动过程中,是否存在点B ,使得四边形ABQC 为菱形?若存在,求出点B 的坐标;若不存在,请说明理由.B O xACy(第25题图)OxACy(备用图)26.(13分)如图,正方形ABCO 的边OA 、OC 在坐标轴上,点B 坐标为()6,6,将正方形ABCO 绕点C 逆时针旋转角度α()︒<<︒900α,得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连结CH 、CG . (1)求证:CG 平分DCB ∠;(2)在正方形ABCO 绕点C 逆时针旋转的过程中,求线段HG 、OH 、BG 之间的数量关系;(3)连接BD 、DA 、AE 、EB ,在旋转过程中,四边形AEBD 能否成为矩形?若能,试求出直线DE 的解析式;若不能,请说明理由.(第26题图)A BCGHD Fxy O。

福建省晋江市2015年初中学业质量检查数学试题(含答案)

福建省晋江市2015年初中学业质量检查数学试题(含答案)

2015年晋江市初中学业质量检查数 学 试 题(试卷满分:150分;考试时间:120分钟)一、选择题(每小题3分,共21分.每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分.) 1.52011-的相反数是( ). A .5201 B .5201- C .52011D .52011-2.下列运算正确的是( ).A .523a a a =+B .22223=-a aC .523a a a =⋅D .236a a a =÷ 3.下列左图所示的立体图形的主视图...是( ).4.对于解不等式2332>-x ,正确的结果是( ). A .49-<x B .49->x C .1->x D .1-<x5.下列四边形不是..轴对称图形的是( ). A .正方形B .矩形C .菱形D .平行四边形6.若一个多边形的内角和︒900,则这个多边形的边数为( ). A .5B .7C .9D .127.若二次函数()02<++=a c bx ax y 的图象如图所示, 且关于x 的方程k c bx ax =++2有两个不相等的实根,A.B. C. D.B(第9题图)AT(第15题图)xy O(第7题图)-341则常数k 的取值范围是( ). A .40<<kB .13<<-kC .3-<k 或1>kD .4<k二、填空题(每小题4分,共40分):在答题卡上相应题目的答题区域内作答.8.据报道,春节期间微信红包收发高达3270000000次,则3270000000用科学记数法表示为 .9.如图,直线OB AO ⊥于点O ,OT 平分AOB ∠, 则=∠AOT °. 10.计算:___________111=---m m m . 11.已知点()3,2-A 在双曲线xky =上,则______=k . 12.在学生演讲比赛中,六名选手的成绩(单位:分)分别为:80、85、86、88、90、93,则这组数据的中位数为 分.13.如图,直线a ∥b ,直线c 与直线a 、b 都相交,︒=∠1151,则=∠2 °.14.如图,在等腰ABC ∆中,AC AB =,若︒=∠100A ,则︒=∠______B . 15.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,点M 是CD 边的中点,连结ABCD 的周长为cm ________.16.如图,在矩形ABCD 中,AC DE ⊥于点E ,12=AB ,20=AC ,则________cos =∠ADE .17.如图,CD 是半圆O 的直径, AB 是弦,且6=CD ,︒=∠30ADB , 则︒=∠_____AOB ;(第13题图)(第14题图)(第17题图)若用扇形AOB 围成一个圆锥,则该圆锥的底面圆的半径为________.三、解答题(共89分):在答题卡上相应题目的答题区域内作答. 18.(9分)计算:5312)15(6410--⨯+---.19.(9分)先化简,再求值:())3(3)4(2-+++a a a ,其中5=a .20.(9分)如图,AB ∥CD , AB =CD ,点E 、F 在AD 上,且AE DF =.求证:ABE ∆≌DCF ∆.(第16题图)ABC DE F(第20题图)21.(9分)如图(一)(二),现有两组扑克牌,每组3张扑克,第一组分别是红桃5、红桃6、红桃7,第二组分别是梅花3、梅花4、梅花5.(1)现把第一组扑克牌背面朝上并搅匀,如图(一)所示,若从第一组中随机抽取一张牌, 求“抽到红桃6”的概率;(2)如图(一)(二),若把两组扑克牌背面朝上各自搅匀,并分别从两组中各抽取一张牌, 试求“抽出一对牌(即数字相同)”的概率(要求用树状图或列表法求解).22.(9分)如图,在等腰OAB ∆中,OB OA =,以点O 为圆心,作圆与底边AB 相切于点C . (1)求证:BC AC =;(2)若42=AB ,9=OC ,求等腰OAB ∆的周长.(图一)(图二)第一组第二组(第21题图)(第22题图)B23.(9分)如图,某校合作学习小组随机抽样统计部分高年级男同学对必修球类“篮球、足球、排球”三大球的喜爱程度的人数,绘制出不完整的统计图表如下: (1)试把表格中的数据填写完整:(2)试利用上述表格中的数据,补充完成条形统计图的制作(用阴影部分表示); (3)若再随机抽查该校高年级男学生一人,则该学生喜爱的三大球最大可能是什么?(第23题图)球类篮球 足球 排球 三大球喜爱人数分布直方图三大球喜爱人数扇形统计图(第23题图)t (时)(第24题图)d 学生队伍 通讯员OAC0.9 4.5B(千米)3.1524.(9分)一队学生从学校出发去劳动基地军训,行进的路程与时间的图象如图所示,队伍走了0.9小时后,队伍中的通讯员按原路加快速度返回学校拿材料,通讯员经过0.5小时后回到学校,然后随即按原来加快的速度追赶队伍................,恰好在劳动基地追上学生队伍.设学生队伍与学校的距离为1d ,通讯员与学校的距离为2d ,试根据图象解决下列问题: (1)填空:学生队伍的行进速度______=v 千米/小时; (2)当15.39.0≤≤t 时,求2d 与t 的函数关系式; (3)已知学生队伍与通讯员的距离不超过3千米时, 能用无线对讲机保持联系,试求在上述过程中 通讯员离开队伍后........他们能用无线对讲机保持联 系时t 的取值范围.25.(13分)已知抛物线c bx x y ++=231与直线BC 相交于B 、C 两点,且()0,6B 、()3,0C .(1)填空:_____=b ,_____=c ;(2)长度为5的线段DE 在线段CB 上移动,点G 与点F 在上述抛物线上,且线段EF 与DG 始 终平行于y 轴.①连结FG ,求四边形DGFE 的面积的最大值, 并求出此时点D 的坐标;②在线段DE 移动的过程中,是否存在GF DE =?若存在,请直接写出....此时点D 的 坐标,若不存在,试说明理由.(第25题图)(备用图)26.(13分)已知直线b x y +=43与x 轴、y 轴分别相交于A 、B 两点,点D 在x 轴正半 轴上,且6=OD ,点C 、M 是线段OD 的三等分点(点C 在点M 的左侧). (1)若直线AB 经过点()6,4, ①求直线AB 的解析式; ②求点M 到直线AB 的距离; (2)若点..Q 在.x 轴上方的直线......AB 上.,且 CQD ∠是 锐角,试探究:在直线 AB 上是否存在符合条件的点Q ,使得54sin =∠CQD ;若存在,求出b的取值范围,若不存在,请说明理由.(以下空白作为草稿纸)xyABOC DM (备用图)xAB OC D My(第26题图)2015年初中学业质量检查数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分) 1.C2.C3.A 4.A5. D6.B7.D二、填空题(每小题4分,共40分)8.91027.3⨯ 9.45 10.1 11.6- 12.87 13.65 14.40 15.20 16.53 17.60; 21 三、解答题(共89分) 18.(本小题9分) 解:原式=5418-+- ………………………………………………………………………………8分 =6 ………………………………………………………………………………………… 9分19.(本小题9分) 解:原式=916822-+++a a a ……………………………………………………………………4分 =7822++a a ……………………………………………………………………………6分当5=a 时,原式758)5(22+⨯+⨯=75852++⨯=5817+=………………………………………9分20.(本小题9分) 证明:∵AB ∥CD ,∴A D ∠=∠, ……………………………………4分又∵AB =CD ,AE DF = (6)分 ∴ABE ∆≌DCF ∆.………………………………………………9分21.(本小题9分) 解:(1)P (抽到红桃6)31=;……………………………………4分 (2)方法一:画树状图如下:……………………………………………………………………………………………8分 由树状图可知,共有9种机会均等的情况,其中抽出一对牌(即数字相同)只有一种情况,∴P (抽出一对牌)=91. ……………………………………………………………9分 方法二:列表如下:第一组567 第二组345345345ABC DF………………………………………………………………………………………8分 由树状图可知,共有9种机会均等的情况,其中抽出一对牌(即数字相同)只有一种情况,∴P (抽出一对牌)=91. ………………………………………………9分 22.(本小题9分) (1) 证明:∵AB 与⊙O 相切于点C ,∴AB OC ⊥.…………………………………………………………………………………2分 又∵OAB ∆是等腰三角形,∴BC AC =. …………………………………………………………………………………4分 (2)解:由(1)得:BC AC =,又42=AB , ∴12242121=⨯===AB BC AC .………………………………………………………6分 在OCB Rt ∆中,9=OC ,12=BC ,由勾股定理得:151292222=+=+=BC OC OB …………………………………………………8分∴等腰OAB ∆的周长54152415=++=++=OB AB OA .……………………………9分23.(本小题9分) 解:(1)…………………………………………6分(2)补全条形统计图如图所示:……………………………………………8分 (3)篮球…………………………………9分24.(本小题9分)解:(1)5;………………………………2分 (2)设线段AB 的解析式为:()02≠+=k b kt d ()4.19.0≤≤t ,又过点()5.4,9.0A 、()0,4.1B ,(第23题图)球类篮球 足球 排球 三大球喜爱人数分布直方图∴⎩⎨⎧=+=+04.1,5.49.0b k b k ,解得⎩⎨⎧=-=6.129b k ,∴线段AB 的解析式为:6.1292+-=t d ()4.19.0≤≤t .………………………………………………………………………………………4分 ∵通讯员按原来的速度随即追赶队伍,∴速度为9千米/小时.设线段BC 的解析式为:m t d +=92()1.4 3.15t <≤,又过点()0,4.1B , m +⨯=4.190,6.12-=m ,∴线段BC 的解析式为:6.1292-=t d ()1.4 3.15t <≤.∴2912.6(0.9 1.4)912.6(1.4 3.15)t t d t t -+≤≤⎧=⎨-<≤⎩……………………………………6分(3)设线段OC 的解析式为:()01≠=n nt d ,又过点()5.4,9.0A ,∴n 9.05.4=,5=n .∴线段OC 的解析式为:t d 51=.………………………………………………………………7分设时间为t 小时,学生队伍与通讯员相距不超过3千米,下面分两种情况讨论: ①当4.19.0≤<t 时,321≤-d d ,即()36.1295≤+--t t ,解得:3539≤t ,∴35399.0≤<t . ②当1.4 3.15t <≤时,321≤-d d ,即()36.1295≤--t t ,解得:512≥t ,∴2.4 3.15t ≤≤. 故通讯员离开队伍后他们能用无线对讲机保持联系时t 的取值范围为35399.0≤<t 或2.4 3.15t ≤≤.……………………………………………………………………………………9分(注:若第②种情况答案如下,则不扣分:当1.4 3.15t <<时,321≤-d d ,即()36.1295≤--t t ,解得:512≥t ,∴2.4 3.15t ≤<). 25.(本小题13分)(1) 25-=b ,3=c ;……………………………………………………………4分 (2) ①设直线BC 的解析式为:()110y k x b k =+≠ ,又过点()0,6B 、()3,0C ,∴11160,3k b b +=⎧⎨=⎩,解得:111,23k b ⎧=-⎪⎨⎪=⎩, ∴直线BC 的解析式为:321+-=x y .……………………………………………………………7分∵点D 、E 在直线321+-=x y 上,∴设⎪⎭⎫ ⎝⎛+-321,p p D 、⎪⎭⎫⎝⎛+-321,q q E ,其中p q >,如图,过点E 作DG EH ⊥于点H ,则p q EH -=,EH ∥x 轴,则CBO DEH ∠=∠ ∴CBO DEH ∠=∠tan tan ,OB CO HE DH =,2163==HE DH , 在DHE Rt ∆中,令DH t =,则2EH t =,由勾股定理得:222DE EH DH =+,即()2222t t +=,解得:1t =(舍去负值),则1=DH ,2=EH .2=-p q ……………9分∵DG ∥y 轴∥EF ,∴⎪⎭⎫ ⎝⎛+-32531,2p p p G ,⎪⎭⎫ ⎝⎛+-32531,2q q q F ∴p p p p p DG 2313253132122+-=⎪⎭⎫⎝⎛+--⎪⎭⎫ ⎝⎛+-=,q q q q q EF 2313253132122+-=⎪⎭⎫⎝⎛+--⎪⎭⎫ ⎝⎛+-=.(第25题图)∴()()()q p q p q q p p EH EF DG S DGFE+++-=⋅⎪⎭⎫⎝⎛+-+-=⋅+=2312223123122222梯形 把2+=p q 代入上式,得:()()()222212882162222333333DGFE S p p p p p p p ⎡⎤=-+++++=-++=--+⎣⎦四边形.当2=p 时,DGFE S 四边形有最大值,最大值为316.∴此时点D 的坐标为()2,2………………………………………………………………………………………11分 ②符合条件的点D 的坐标为()2,2或⎪⎭⎫⎝⎛45,27. ……………………………………………………………………………………………13分 26.(本小题13分) 解:(1) ①把()6,4代入b x y +=43中,得:b +⨯=4436,解得:3=b . ∴直线AB 的解析式为:343+=x y .……………………………………………………3分②∵6=OD ,点C 、M 是线段OD 的三等分点. ∴463232=⨯==OD OM , ∴点M 的坐标为()0,4.过点M 作AB ME ⊥于点E ,则ME 的长是点M 到直线AB 的距离. 在343+=x y 中,令0=x ,则3=y , ∴3=OB .…………………………………4分(第26题图)令0=y ,则4-=x ,∴4=OA .在AOB Rt ∆中,由勾股定理,得:53sin ==∠AB OB BAO , 在EAM Rt ∆中,sin AM EM MAE ==∠∴点M 到直线AB 的距离524.……………………………7分 (2)在CD 的垂直平分线上取点I (41.5)以I 为圆心,ID 为半径作圆,则⊙I 过点C , 在MID Rt ∆中, 由勾股定理,得5.25.1222=+=ID .54sin ==∠ID MD MID …………8分当直线AB 与⊙I 相切点),使得54sin =∠CQD ,此时设在直线b x y +=43中,令0=y ,则x =由勾股定理,得:b AB 35=.∵QNI ABO ∠=∠,90IQN AOB ∠=∠=︒,∴IQN ∆∽AOB ∆,∴ABNIAO IQ =,b NI b 35345.2=,825=NI . ∴252512371.58888NM =+=+=,⎪⎭⎫ ⎝⎛837,4N .…………………………………10分 则把⎪⎭⎫⎝⎛837,4N 代入b x y +=43中,得:813=b ,此时直线AB 的解析式为:81343+=x y . 若直线AB 过点C ,则把()0,2C 代入b x y +=43中,得:23-=b ,若直线AB 过点D ,则把()0,6D 代入b x y +=43中,得:29-=b ,∴当813>b 或29-≤b 时,点Q 不存在;当813=b 或2329-≤-b <时,存在符合条件的一个点Q ;当81323<-b <时,存在符合条件的两个点Q .…………………………………………………………………………13分。

2015-2016学年八年级下期末质量数学试题含答案

2015-2016学年八年级下期末质量数学试题含答案

21.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.22.如图:已知:AD是△ ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F.求证:四边形AEDF是菱形;23.一个多边形的内角和比四边形的内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?24.已知:如图所示,E为正方形ABCD外一点,AE=AD,∠ ADE=75°,求∠AEB的度数.25.甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的 3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.2.分解因式:2244423x xy y x y ++---2.如图,在平面直角坐标系中,AB ∥OC ,A (0,12),B (a ,c ),C (b ,0),并且a ,b 满足b=++16.一动点P 从点A 出发,在线段AB 上以每秒2个单位长度的速度向点B 运动;动点Q 从点O 出发在线段OC 上以每秒1个单位长度的速度向点C 运动,点P 、Q 分别从点A 、O 同时出发,当点P 运动到点B 时,点Q 随之停止运动.设运动时间为t (秒)(1)求B 、C 两点的坐标;(2)当t 为何值时,四边形PQCB 是平行四边形?并求出此时P 、Q 两点的坐标;(3)当t 为何值时,△PQC 是以PQ 为腰的等腰三角形?并求出P 、Q 两点的坐标.八年级下学期期末学业水平考试数学试题【答案】1、选择题(每小题3分,共36分)∴∠FDB=∠B∴DF=BF ..............3分∴DE+DF=AB=AC;..............4分(2)图②中:AC+DE=DF.. ............6分图③中:AC+DF=DE...............8分(3)当如图①的情况,DF=AC-DE=6-4=2;..............9分当如图②的情况,DF=AC+DE=6+4=10...............10分27、(1)证明:如图1,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);..............3分(2)证明:如图1,∵BE平分∠DBC,OD是正方形ABCD的对角线,∴∠EBC=∠DBC=22.5°,..............4分由(1)知△BCE≌△DCF,∴∠EBC=∠FDC=22.5°(全等三角形的对应角相等);∴∠BGD=90°(三角形内角和定理),∴∠BGF=90°;..............5分在△DBG和△FBG中,,BD==,BF=,BC=﹣(﹣,﹣)、(,).每个坐标:(1), ,, 故;:,,:,,当时,:,;(3)当时,过Q作,根据题意得:,计算得出:,故,,当时,过P作轴,根据题意得:,,则,计算得出:,,故P( ,12),. .............12分。

2015-2016学年八年级下学期期末考试数学试题带答案(精品)

2015-2016学年八年级下学期期末考试数学试题带答案(精品)

CBA2015—2016学年第二学期初二期末试卷数 学学校 姓名 准考证号考 生 须 知1.本试卷共6页,共三道大题,26道小题.满分100分,考试时间100分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和考号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系xOy 中,点P (-3,5)关于y 轴对称的点的坐标是( ) A .(-3,-5)B .(3,-5)C .(3,5)D .(5,-3)2.下列图形中,既是中心对称图形又是轴对称图形的是( )3.一个多边形的内角和为540°,则这个多边形的边数是( ) A .4B .5C.6D.74.菱形ABCD 的边长为4,有一个内角为120°,则较长的对角线的长为( ) A .43B .4C .23D .25.如图,利用平面直角坐标系画出的正方形网格中, 若A (0,2),B (1,1),则点C 的坐标为( ) A .(1,-2) C .(2,1)B .(1,-1) D .(2,-1)6.如图,D ,E 为△ABC 的边AB ,AC 上的点,DE ∥BC , 若:1:3AD DB =,AE =2,则AC 的长是( ) A .10 B.8 C .6 D .47.关于x 的一元二次方程2210mx x -+=有两个实数根,则m 的取值范围是( )A .1m ≤ C .1m <且0m ≠B .1m <D .1m ≤且0m ≠8.如图,将边长为3cm 的等边△ABC 沿着边BC 向右平移2cm ,得到△DEF ,则 四边形ABFD 的周长为( ) A .15cmB .14cmC .13cmD .12cmA .B .C .D .EDA B CD ABCP第13题图 第14题图 第8题图 第9题图9.园林队在某公园进行绿化,中间休息了一段时间.绿化面积S (单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为( ) A .40平方米B .50平方米C .80平方米D .100平方米10.如右图,矩形ABCD 中,AB =2,BC =4,P 为矩形边上的一个动点,运动路线是A →B →C →D →A ,设P 点 经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y , 则下列图象能大致反映y 与x 的函数关系的是( )二、填空题(本题共18分,每小题3分)11.如图,点D ,E 分别为△ABC 的边AB ,BC 的中点,若DE =3cm ,则AC = cm .12.已知一次函数2()y m x m =++,若y 随x 的增大而增大,则m 的取值范围是 .13.如图,在△ABC 中,D 是AB 边上的一点,连接CD ,请添加一个适当的条件 ,使△ACD ∽△ABC (只填一个即可).14.如图,在□ABCD 中,BC =5,AB =3,BE 平分∠ABC 交AD 于点E ,交对角线AC 于点F ,则AEFCBFS S △△= .D AB CFE D B C A EDABCS t /平方米/小时16060421ODA FE CB第15题图15.如图,矩形ABCD 中,AB =8,AD =10,点E 为DC 边上的一点,将△ADE 沿直线AE 折叠,点D 刚好落在 BC 边上的点F 处,则CE 的长是 .16.如图,在平面直角坐标系xOy 中,一次函数y =x +1与x 、y 轴分别交于点A 、B ,在直线 AB 上截取BB 1=AB ,过点B 1分别 作x 、y 轴的垂线,垂足分别为点A 1、C 1, 得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别 作x 、y 轴的垂线,垂足分别为点A 2 、C 2, 得到矩形OA 2B 2C 2;在直线AB 上截取B 2B 3= B 1B 2,过点B 3分别 作x 、y 轴的垂线,垂足分别为点A 3、C 3, 得到矩形OA 3B 3C 3;……;则点B 1的坐标是 ;第3个矩形OA 3B 3C 3的面积是 ; 第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分)解答应写出文字说明,演算步骤或证明过程. 17.用适当的方法解方程:2610x x --=.18.如图,在□ABCD 中,E ,F 是对角线BD上的两点且BE =DF ,联结AE ,CF . 求证:AE =CF .19.一次函数1y kx b =+的图象与正比例函数2y mx =交于点A (-1,2),与y 轴交于点B (0,3). (1)求这两个函数的表达式;(2)求这两个函数图象与x 轴所围成的三角形的面积.yxy =x+1C 3C 2A 3A 2C 1B 3B 2B 1A B A 1OFE CADBEFCD A B20.如图,在矩形ABCD 中,E 为AD 边上的一点,过C 点作CF ⊥CE 交AB 的延长线于点F .(1)求证:△CDE ∽△CBF ;(2)若B 为AF 的中点,CB =3,DE =1,求CD 的长.21.已知关于x 的一元二次方程2(32)60mx m x -++=(0)m ≠. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.22.如图,Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB上的中线,分别过点A ,C 作AE ∥DC ,CE ∥AB , 两线交于点E .(1)求证:四边形AECD 是菱形;(2)若602B BC ∠=︒=,,求四边形AECD 的面积.23.列方程解应用题:某地区2013年的快递业务量为2亿件,受益于经济的快速增长及电子商务发展等多重因素,快递业务迅猛发展,2015年的快递业务量达到3.92亿件.求该地区这两年快递业务量的年平均增长率.24.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照 “提高电价”收费.设每个家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题: (1)“基础电价”是_________元/度;(2)求出当x >240时,y 与x 的函数表达式; (3)小石家六月份缴纳电费132元,求小石家这个月用电量为多少度?y x (元)(度)400120240216B AOEDAFB CEDBAC图1 图225.已知正方形ABCD 中,点M 是边CB (或CB 的延长线)上任意一点,AN 平分∠MAD ,交射线DC 于点N . (1)如图1,若点M 在线段CB 上 ①依题意补全图1;②用等式表示线段AM ,BM ,DN 之间的数量关系,并证明;(2)如图2,若点M 在线段CB 的延长线上,请直接写出线段AM ,BM ,DN 之间的数量关系.ADBCM26.在平面直角坐标系xOy 中,过象限内一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等, 则这个点叫做“和谐点”.如右图,过点H (-3,6)分 别作x 轴,y 轴的垂线,与坐标轴围成的矩形OAHB 的周长与面积相等,则点H (3,6)是“和谐点”.(1)H 1(1,2), H 2(4,-4), H 3(-2,5)这三个点中的“和谐点”为 ; (2)点C (-1,4)与点P (m ,n )都在直线y x b =-+上,且点P 是“和谐点”.若m >0,求点P 的坐标.——————————————草 稿 纸——————————————ADB C MADBCM y x1A BHO2015—2016学年第二学期期末试卷 初二数学 试卷答案及评分参考阅卷须知:为便于阅卷,解答题中的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.若考生的解法与给出的解法不同,正确者可参照评分参考给分.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、 选择题(本题共30分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案CABADBDCBB二、填空题(本题共18分,每小题3分)11.6 12.2m >- 13.ACD B ∠=∠(或ADC ACB ∠=∠或AD ACAC AB=) 14.925 15.3 16.(1,2);12(1)n n +;或2n n +(每空1分) 三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分) 17.18.证明一:联结AF ,CE ,联结AC 交BD 于点O.∵四边形ABCD 是平行四边形 ∴OA =OC ,OB =OD ⋯⋯⋯⋯⋯2分 又∵BE =DF∴OE =OF ⋯⋯⋯⋯⋯3分 ∴四边形AECF 是平行四边形 ⋯⋯4分 ∴AE =CF ⋯⋯⋯⋯⋯5分证明二:∵四边形ABCD 是平行四边形∴AB =CD ,AB ∥CD ⋯⋯⋯⋯⋯1分 ∴∠1=∠2 ⋯⋯⋯⋯⋯2分OFE CADB解法一: 26919x x -+=+ ⋯⋯⋯⋯⋯1分2310x -=() ⋯⋯⋯⋯⋯3分310x -=± ⋯⋯⋯⋯⋯4分 12310,310x x ∴==+-⋯⋯5分解法二:2140⨯⨯=---= △(6)41() ⋯⋯1分6402x ±∴=⋯⋯⋯⋯⋯3分 62102x ±∴= ⋯⋯⋯⋯⋯4分12310,310x x ∴==+- ⋯⋯5分在△ABE 和△CDF 中12 AB CD BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS ) ⋯⋯⋯⋯⋯4分∴AE CF = ⋯⋯⋯⋯⋯5分 19.解:(1)∵2y mx =过点A (-1,2)∴-m =2 ∴m =-2 ⋯⋯⋯⋯⋯1分 ∵点A (-1,2)和点B (0,3)在直线1y kx b =+上2133k b k b b -+==⎧⎧∴∴⎨⎨==⎩⎩⋯⋯⋯⋯⋯3分 ∴这两个函数的表达式为:13y x =+和2-2y x=⋯⋯⋯⋯⋯3分(2)过点A 作AD ⊥x 轴于点D ,则AD =2∵13y x =+交x 轴于点C (-3,0) ⋯⋯4分∴1=2AOC S OC AD⨯⨯△ 1=322⨯⨯ =3 ⋯⋯5分即这两个函数图象与x 轴所围成的三角形的面积是3.20.(1)证明:∵四边形ABCD 是矩形∴∠D=∠1=∠2+∠3=90° ⋯⋯⋯⋯⋯1分 ∵CF ⊥CE ∴∠4+∠3=90°∴∠2=∠4∴△CDE ∽△CBF ⋯⋯⋯⋯⋯2分(2) 解:∵四边形ABCD 是矩形∴CD =AB ∵B 为AF 的中点∴BF =AB ∴设CD=BF= x ⋯⋯⋯3分∵△CDE ∽△CBF21.(1)证明:∵0m ≠ ∴2(32)60mx m x -++=是关于x 的一元二次方程∵2[(32)]46m m =-+-⨯△ ⋯⋯⋯⋯⋯1分2912424m m m =++- 29-124m m =+23-20m =()≥ ⋯⋯⋯⋯⋯2分21FECADByx–11–1–2–3–41234D CBA O4321EDAFBC∴CD DE CB BF = ⋯⋯4分 ∴13x x =∵x >0 ∴3x = ⋯⋯⋯5分即:3CD =∴此方程总有两个实数根. ⋯⋯⋯⋯⋯3分(2) 解:∵(3)(2)0x mx --=∴1223,x x m ==⋯⋯⋯⋯⋯4分∵方程的两个实数根都是整数,且m 是正整数∴m =1或 m =2 ⋯⋯⋯⋯⋯5分22.(1)证明:∵AE ∥DC ,CE ∥AB∴四边形AECD 是平行四边形 ⋯⋯⋯⋯⋯1分 ∵Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB 上的中线 ∴CD =AD∴四边形AECD 是菱形 ⋯⋯⋯⋯⋯2分(2) 解:联结DE .∵90ACB ∠=︒,60B ∠=︒∴30BAC ∠=︒ ∴423A ABC ==, ⋯⋯⋯⋯⋯3分∵四边形AECD 是菱形 ∴EC =AD =DB 又∵EC ∥DB ∴四边形ECBD 是平行四边形∴ED = CB =2⋯⋯⋯⋯⋯4分∴2322322AECD AC ED S ⨯⨯===菱形 ⋯⋯⋯⋯⋯5分23. 解:设该地区这两年快递业务量的年平均增长率为x . 根据题意,得 ⋯⋯1分 22(1) 3.92x += ⋯⋯⋯⋯⋯3分解得120.4, 2.4x x ==-(不合题意,舍去) ⋯⋯⋯⋯⋯4分 ∴0.440x ==%答:该地区这两年快递业务量的年平均增长率为40%. ⋯⋯⋯⋯⋯5分24.(1)0.5 ⋯⋯⋯⋯⋯ 1分 (2)解:当x >240时,设y =kx+b ,由图象可得:2401200.640021624k b k k b b +==⎧⎧∴⎨⎨+==-⎩⎩⋯⋯⋯⋯⋯2分 ∴0.624(240)y x x =-> ⋯⋯⋯⋯⋯3分(3)解:∵132120y =>∴令0.624=132x -, ⋯⋯⋯⋯⋯4分 得:=260x ⋯⋯⋯⋯⋯5分∴小石家这个月用电量为260度.EDBAC25.(1)①补全图形,如右图所示. ⋯⋯⋯⋯⋯1分 ②数量关系:AM BM DN =+ ⋯⋯⋯⋯⋯2分 证明:在CD 的延长线上截取DE =BM ,联结AE .∵四边形ABCD 是正方形∴190B ∠=∠=︒,AD AB =,AB CD ∥ ∴6BAN ∠=∠ 在△ADE 和△ABM 中1 AD AB B DE BM =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ABM (SAS ) ∴AE AM =,32∠=∠ ⋯⋯⋯⋯⋯⋯3分又∵54∠=∠ ∴EAN BAN ∠=∠ 又∵6BAN ∠=∠ ∴6EAN ∠=∠∴AE NE = ⋯⋯⋯⋯⋯4分 又∵AE AM =,NE DE DN BM DN +=+=∴AM BM DN =+ ⋯⋯⋯⋯⋯5分 (证法二:在CB 的延长线上截取BF =DN ,联结AF ) (2)数量关系:AM DN BM =- ⋯⋯⋯⋯⋯6分26.(1)H 2 ⋯⋯⋯⋯⋯1分 (2)解:∵点C (-1,4)在直线y x b =-+上∴14b += ∴3b =∴3y x =-+ ⋯⋯⋯⋯⋯2分 ∴3y x =-+与x 轴,y 轴的交点为N (3, 0),M (0,3) ∵点P (m ,n )在直线3y x =-+上 ∴点P (m ,-m +3)过点P 分别作x 轴,y 轴的垂线,垂足为D ,E ∵m >0∴点P 可能在第一象限或第四象限(解法一) ① 若点P 在第一象限,如图1,则,3OD m PD n m +=== -∴3)6PEOD C m m ++==2(-矩形654321EN AD B CMNADB CMyy = -x+33)PEOD S m m +=(-矩形∵点P 是“和谐点”∴3)6m m +(-= ⋯⋯⋯3分 260m m +-3=2(-3)460=-⨯△<∴此方程无实根∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分② 若点P 在第四象限,如图2,则,3)3OD m PD n m m -=+=-== --( ∴3)46PEOD C m m m +=-=2(-矩形3)PEOD S m m =(-矩形 ∵点P 是“和谐点”∴3)46m m m -(-= ⋯⋯5分 260m m +-7=1261m m ==,∵点P (m ,-m +3)在第四象限 ∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分综上所述,满足条件的点P 的坐标为P (6,-3).(解法二)① 若点P 在第一象限,如图1,则,3OD m PD n m +=== - ∴3)6PEOD C m m ++==2(-矩形∵133 4.52MON S ⨯⨯==△ ⋯⋯⋯3分而MONPEOD S S <△矩形 ∴PEOD PEOD C S 矩形矩形≠∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分 ② 若点P 在第四象限,如图2,则,OD m PD n == -∴)PEOD C m n =2(-矩形PEOD S mn =-矩形∵点P 是“和谐点”∴2)m n mn (-=- ⋯⋯⋯⋯⋯5分 ∴22mn m =-∵点P (m ,n )在直线3y x =-+上 ∴3n m =-+yxy = -x+3EDP (m ,-m +3)O y x 33y = -x+3E D MN OP (m ,-m +3)图1∴232m m m =-+-260m m +-7= 1261m m ==, 经检验,1261m m ==,是方程232m m m =-+-的解 ∵点P (m ,-m +3)在第四象限∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分 综上所述,满足条件的点P 的坐标为P (6,-3).yx y = -x+3E D P (m ,-m +3)O。

2015-2016学年度八年级第二学期期末考试数学试题及参考答案

2015-2016学年度八年级第二学期期末考试数学试题及参考答案

2015-2016学年度第二学期期末考试八年级数学试题(时间:120分钟 满分:150分)请注意:所有试题的答案均填写在答题卡上,答案写在试卷上无效。

一、选择题:(本大题共6小题,每小题3分,计18分) 1.下列式子中,为最简二次根式的是 ( ▲ ) A .10B .8C .21D .212.下列图形中,既是轴对称图形又是中心对称图形的是( ▲ )A .B . C.D.3.与分式x--11的值相等的是( ▲ ) A .11--xB .x+-11 C .x+11D .11-x 4. 已知实数0<a ,则下列事件中是必然事件的是( ▲ ) A .03>aB .03<-aC .03>+aD .03>a5.矩形具有而平行四边形不一定具有的性质是( ▲ ) A .对角线互相平分 B .两组对角相等 C .对角线相等D .两组对边相等6.如图,△ABC 的三个顶点分别为A (1,2),B (1,3),C (3,1).若反比例函数xky =在第一象限内的图象与△ABC 有公共点,则k 的取值范围是( ▲ ) A .32≤≤k B .42≤≤k C .43≤≤kD .5.32≤≤k二、填空题:(本大题共10小题,每小题3分,计30分)7x 的取值范围是 ▲ .8.如图,将△ABC 绕点A 按顺时针方向旋转60°得△ADE ,则∠BAD= ▲ °.9.若分式392+-x x 的值为0,则x 的值为 ▲ .10.若b a <,则2)(b a -可化简为 ▲ .11.若一元二次方程020162=-+bx ax 有一根为1-=x ,则b a -的值为 ▲ .12.在菱形ABCD 中,对角线AC ,BD 的长分别是6和8,则菱形的周长是 ▲ . 13.如图,在Rt △ABC 中,∠ACB=90°,点D 、E 、F 分别是AB 、AC 、BC 的中点,若CD=5,则EF 的长为 ▲ .第8题图 第13题图 第16题图14.某药品2014年价格为每盒120元,经过两年连续降价后,2016价格为每盒76.8元,设这两年该药品价格平均降低率为x ,根据题意可列方程为 ▲ . 15.已知)2,(m A 与)3,1(-m B 是反比例函数xky =图像上的两个点,则m 的值为 ▲ . 16.如图,矩形ABCD 中,AB=7cm,BC=3cm,P 、Q 两点分别从A 、B 两点同时出发,沿矩形ABCD 的边逆时针运动,速度均为1cm/s ,当点P 到达B 点时两点同时停止运动,若PQ 长度为5cm 时,运动时间为 ▲ s . 三、解答题:(本大题共10小题,计102分) 17.(本题10分)计算:(1)0)21()12(8+-+(2))32)(32(-+18.(本题10分)解下列一元二次方程: (1)x x 3322=-(用公式法解) (2)93)3(2-=-x x19.(本题8分)先化简,再求值:121441222+-÷-+-+-a a a a a a ,其中12+=a20.(本题8分)一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其它区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.21.(本题10分)2016年某校组织学生进行综合实践活动,准备从以下几个景点中选择一处进行参观。

2015-2016学年福建省泉州市晋江市八年级(下)期末数学试卷(解析版)

2015-2016学年福建省泉州市晋江市八年级(下)期末数学试卷(解析版)

2015-2016学年福建省泉州市晋江市八年级(下)期末数学试卷一、选择题(每小题3分,共21分)1.(3分)计算3﹣1的结果是()A.B.C.3D.﹣32.(3分)若分式有意义,则x的取值范围是()A.x>B.x≠C.x≠﹣2D.x=3.(3分)在平行四边形、矩形、菱形、正方形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个4.(3分)计算一组数据:8,9,10,11,12的方差为()A.1B.2C.3D.45.(3分)点A(3,﹣4)到x轴的距离是()A.B.3C.5D.46.(3分)在同一直角坐标系中,若直线y=kx+3与直线y=﹣2x+b平行,则()A.k=﹣2,b≠3B.k=﹣2,b=3C.k≠﹣2,b≠3D.k≠﹣2,b=3 7.(3分)如图,点P是双曲线y=上的一个动点,过点P作P A⊥x轴于点A,当点P从左向右移动时,△OP A的面积()A.逐渐增大B.逐渐减小C.先增大后减小D.保持不变二、填空题(每小题4分,共40分)8.(4分)计算:=.9.(4分)某种细菌病毒的直径为0.0000005米,0.0000005米用科学记数法表示为米.10.(4分)计算:=.11.(4分)在正比例函数y=(k﹣2)x中,y随x的增大而增大,则k的取值范围是.12.(4分)已知:一次函数y=kx+b的图象在直角坐标系中如图所示,则kb0(填“>”、“<”或“=”).13.(4分)如图,把矩形ABCD纸片沿着过点A的直线AE折叠,使得点D落在BC边上的点F处,若∠BAF=40°,则∠DAE=°.14.(4分)若反比例函数图象的两个分支分布在第二、四象限,则整数m可以是(写出一个即可).15.(4分)如图,在▱ABCD中,∠A﹣∠B=40°,则∠A=°.16.(4分)如图,菱形ABCD的周长为20,对角线AC与BD相交于点O,AC=8,则BD =.17.(4分)已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为10cm,CA与MN 在同一条直线上,点A从点M开始向右移动,设点A的移动距离为xcm(0≤x≤20),重叠部分的面积为S(cm2).(1)当点A向右移动4cm时,重叠部分的面积S=cm2;(2)当10cm<x≤20cm时,则S与x的函数关系式为.三、解答题(共89分)18.(9分)计算:.19.(9分)先化简,再求值:,其中a=﹣2.20.(9分)如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:四边形BFDE是平行四边形.21.(9分)如图,直线y=x+2分别与x轴、y轴相交于点A、点B.(1)求点A和点B的坐标;(2)若点P是y轴上的一点,设△AOB、△ABP的面积分别为S△AOB与S△ABP,且S△ABP =2S△AOB,求点P的坐标.22.(9分)某校举办“书香校园”读书活动,经过对八年级(1)班的42个学生的每人读书数量进行统计分析,得到条形统计图如图所示:(1)填空:该班每个学生读书数量的众数是本,中位数是本;(2)若把上述条形统计图转换为扇形统计图,求该班学生“读书数量为4本的人数”所对应扇形的圆心角的度数.23.(9分)在校园手工制作活动中,现有甲、乙两人接到手工制作纸花任务,已知甲每小时制作纸花比乙每小时制作纸花少20朵,甲制作120朵纸花的时间与乙制作160朵纸花的时间相同,求乙每小时制作多少朵纸花?24.(9分)已知:在△ABC中,AB=AC,点D、E、F分别在边BC、AB、AC上,(1)若DE∥AC,DF∥AB,且AE=AF,则四边形AEDF是形;(2)如图,若DE⊥AB于点E,DF⊥AC于点F,作CH⊥AB于点H,求证:CH=DE+DF.25.(13分)已知:如图,正比例函数y1=kx(k>0)的图象与反比例函数y2=的图象相交于点A和点C,设点C的坐标为(2,n).(1)①求k与n的值;②试利用函数图象,直接写出不等式kx﹣<0的解集;(2)点B是x轴上的一个动点,连结AB、BC,作点A关于直线BC的对称点Q,在点B 的移动过程中,是否存在点B,使得四边形ABQC为菱形?若存在,求出点B的坐标;若不存在,请说明理由.26.(13分)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB 于点G,ED的延长线交线段OA于点H,连结CH、CG.(1)求证:CG平分∠DCB;(2)在正方形ABCO绕点C逆时针旋转的过程中,求线段HG、OH、BG之间的数量关系;(3)连接BD、DA、AE、EB,在旋转过程中,四边形AEBD能否成为矩形?若能,试求出直线DE的解析式;若不能,请说明理由.2015-2016学年福建省泉州市晋江市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共21分)1.【解答】解:原式=.故选A.2.【解答】解:∵分式有意义,∴2x﹣1≠0.解得:x≠.故选:B.3.【解答】解:平行四边形不是轴对称图形,是中心对称图形;矩形是轴对称图形,是中心对称图形;菱形是轴对称图形,是中心对称图形;正方形是轴对称图形,是中心对称图形,故选:C.4.【解答】解:样本8、11、9、10、12的平均数=(8+11+9+10+12)÷5=10,∴S2=×(4+1+1+0+4)=2.故选:B.5.【解答】解:∵点P到x轴的距离为其纵坐标的绝对值即|﹣4|=4,∴点P到x轴的距离为4.故选:D.6.【解答】解:∵直线y=kx+3与直线y=﹣2x+b平行,∴k=﹣2,b≠3.故选:A.7.【解答】解:∵P A⊥x轴,∴S△OP A=|k|=×6=3,即Rt△OP A的面积不变.故选:D.二、填空题(每小题4分,共40分)8.【解答】解:(2﹣)0=1.故答案为:1.9.【解答】解:0.0000005=5×10﹣7.故答案为:5×10﹣7.10.【解答】解:原式==1.故答案为:1.11.【解答】解:∵正比例函数y=(k﹣2)x中,y随x的增大而增大∴k﹣2>0∴k>2故答案为:k>212.【解答】解:∵y随着x的增大而减小,∴k<0,∵与y轴交于负半轴,∴b<0,∴kb>0,故答案为:>.13.【解答】解:由余角的性质,得∠DAF=90°﹣∠BAF=90°﹣40°=50°.由翻折的性质,得△DAE≌△F AE,∠DAE=∠F AE=∠DAF=×50°=25°,故答案为:25.14.【解答】解:∵反比例函数图象的两个分支在第二、四象限,∴m﹣1<0,∴m<1,∴小于1的所有整数均可,如0,故答案为:0(答案不唯一);15.【解答】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A﹣∠B=40°,∴2∠A=220°,∴∠A=110°.故答案为:110.16.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=AC=4,BO=DO,AD=AB=DC=BC,∵菱形ABCD的周长为20,∴AB=5,∴BO==3,∴DO=3,∴DB=6,故答案为:6.17.【解答】解:(1)当x=4cm时,AM=4,重叠部分的面积S=AM2=×4×4=8(cm2).(2)当10cm<x≤20cm时,如图所示.AN=x﹣MN=x﹣10,∴S=S△ABC﹣S△ANE=AC2﹣AN2=×102﹣(x﹣10)2=﹣x2+10x(10<x≤20).故答案为:S=﹣x2+10x(10<x≤20).三、解答题(共89分)18.【解答】解:原式=====.19.【解答】解:原式=(﹣)•=•=﹣,当a=﹣2时,原式=.20.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD﹣AE=BC﹣CF,∴ED=BF,又∵AD∥BC,∴四边形BFDE是平行四边形.21.【解答】解:(1)在中,令y=0,则,解得:x=﹣4,∴点A的坐标为(﹣4,0).令x=0,则y=2,∴点B的坐标为(0,2).(2)∵点P是y轴上的一点,∴设点P的坐标为(0,y)又点B的坐标为(0,2),∴BP=|y﹣2|,∵,,又S△ABP=2S△AOB,∴2|y﹣2|=2×4,解得:y=6或y=﹣2.∴点P的坐标为(0,6)或(0,﹣2).22.【解答】解:(1)由条形统计图可知,读书数量为4本的人数最多,有14人,故众数为4本;中位数为=4(本),故答案为:4,4;(2)读书数量为1本的人数占被调查人数的百分比为:×100%≈4.8%,对应扇形圆心角为:360°×≈17.2°;读书数量为2本的人数占被调查人数的百分比为:×100%≈14.3%,对应扇形圆心角为:360°×≈51.4°;读书数量为3本的人数占被调查人数的百分比为:×100%≈23.8%,对应扇形圆心角为:360°×≈85.7°;读书数量为4本的人数占被调查人数的百分比为:×100%≈33.3%,对应扇形圆心角为:360°×≈120°;读书数量为5本的人数占被调查人数的百分比为:×100%≈23.8%,对应扇形圆心角为:360°×≈85.7°;把上述条形统计图转换为扇形统计图如下:∴该班学生“读书数量为4本的人数”所对应的扇形的圆心角的度数为120°.23.【解答】解:设乙每小时制作x朵纸花,依题意得:解得:x=80,经检验,x=80是原方程的解,且符合题意.答:乙每小时制作80朵纸花.24.【解答】解:(1)结论:菱形.理由:如图1中,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AE=AF,∴四边形AEDF是菱形.(2)解法一:如图2,连接AD,∵,,又S△ABC=S△ABD+S△ACD,∴,又AB=AC,∴CH=DE+DF.解法二:如图3,过C作CG⊥DE交ED的延长线于点G,则∠CGE=90°,∵∠GEH=∠EHC=90°,∴四边形EGCH是矩形,∴CH=EG=ED+DG,∵∠B+∠BDE=90°,∠ACB+∠CDF=90°,而由AB=AC可知:∠B=∠ACB∴∠BDE=∠CDF,又∵∠BDE=∠CDG,∴∠CDF=∠CDG,在△CDF和△CDG中,,∴△CDF≌△CDG,∴DF=DG,∴CH=DE+DF.25.【解答】解:(1)①把点C的坐标为(2,n)代入,解得:n=3∴点C的坐标为(2,3),把点C(2,3)代入y1=kx得:3=2k,解得:k=;②由两函数图象可知,kx﹣<0的解集是:x<﹣2或0<x<2;(2)如图1,当点B在x轴的正半轴且AB=AC时,四边形ABQC为菱形.∵点A与点Q关于直线BC对称,∴AC=QC,AB=QB,∴AC=QC=AB=QB.∴四边形ABQC为菱形.由(1)中点C的坐标(2,3),可求得:OC=,∵点A与点C关于原点对称,∴点A的坐标为(﹣2,﹣3),∴OA=OC=,AC=2,∴AC=AB=2.作AH⊥x轴于点H,则AH=3.在Rt△AHB中,由勾股定理得:BH==,又∵OH=2,∴OB=BH﹣OH=﹣2,∴点B的坐标为,如图2,当点B在x轴的负半轴且AB=AC时,四边形ABQC为菱形.作AT⊥x轴于点T,同理可求得:,又∵OT=2,∴,∴点B的坐标为,综上,当点B的坐标为或时,四边形ABQC为菱形.26.【解答】解:(1)证明:∵正方形ABCO绕点C旋转得到正方形CDEF,∴CD=CB,∠CDG=∠CBG=90°,在Rt△CDG和Rt△CBG中,,∴Rt△CDG≌Rt△CBG(HL).∴∠DCG=∠BCG,即CG平分∠DCB.(2)由(1)证得:Rt△CDG≌Rt△CBG,∴BG=DG,在Rt△CHO和Rt△CHD中,,∴Rt△CHO≌Rt△CHD(HL),∴OH=HD,∴HG=HD+DG=OH+BG.(3)假设四边形AEBD可为矩形.当G点为AB中点时,四边形AEBD为矩形,如图所示.∵G点为AB中点,∴,由(2)证得:BG=DG,则,又AB=DE,∴四边形AEBD为矩形.∴AG=EG=BG=DG.∵,∴G点的坐标为(6,3).设H点的坐标为(x,0),则HO=x,∴HD=x,DG=3,∵OH=DH,BG=DG,在Rt△HGA中,HG=x+3,GA=3,HA=6﹣x,由勾股定理得:(x+3)2=32+(6﹣x)2,解得:x=2,∴H点的坐标为(2,0).设直线DE的解析式为:y=kx+b(k≠0),将点H(2,0)、G(6,3)代入y=kx+b中,得:,解得:,∴直线DE的解析式为:.故四边形AEBD能为矩形,此时直线DE的解析式为:.。

福建省晋江市2016年初中学业质量检查(第二次)数学试题 Word版含答案

福建省晋江市2016年初中学业质量检查(第二次)数学试题 Word版含答案

晋江市2016年初中学业质量检查(第二次)数 学 试 题(试卷满分:150分;考试时间:120分钟)一、选择题(每小题3分,共21分.每小题有四个答案,其中有且只有一个答案是正确的, 请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分.) 1.9的算术平方根是( ). A .3B .3-C .3±D .9±2.计算()32b a 的结果是( ). A .b a 23B .32b aC .35b aD .36b a3.如图,数轴上表示的是某一不等式组的解集,则这个不等式组可能是( ). A .⎩⎨⎧>+>-0201x xB .⎩⎨⎧>+-0201x xC .⎩⎨⎧->+0 201x xD .⎩⎨⎧<-+020 1x x 4.在四个实数2-,0,3-,5中,最小的实数是( ).A .2-B .0C .3-D .55.学校美术作品展中,九年级8个班参展的作品(单位:件)分别为:3、5、2、4、3、2、3、4,则这组数据的中位数是( ).A .2B .3C .5.3D .46.如图,ABC Rt ∆中,︒=∠90ABC ,点D 为斜边AC 的中点,6=BD cm ,则AC 的长为( ).A .3B .6C .36D .127.点O 是ABC ∆的外心,若︒=∠80BOC ,则BAC ∠A .40°B .100°C .40°或140°D .40°或100° 二、填空题(每小题4分,共40分):在答题卡上相应题目的答题区域内作答. 8.2016的相反数是 . 9.计算:___________2422=---m m m . 10.崖城13-1气田是我国海上最大合作气田,年产气约为0000004003立方米,将数据0000004003用科学记数法表示为 .(第3题图)210-1(第6题图)≤ ≤ ≥11.如图,已知︒=∠115B ,如果BE CD //,那么︒=∠____1.12.因式分解:__________3=-x x . 13.方程)4(35-=x x 的解为 .14.如图,在ABC Rt ∆中,︒=∠90C ,6=BC ,10=AB ,则=A tan .15.如图,在□ABCD 中,BD AE ⊥于点E ,︒=∠30EAC ,12=AC ,则AE 的长为 . 16.已知二次函数c bx ax y ++=2中,函数y 与自变量x 的部分对应值如下表:x… 0 1 2 3 4 … y…343-5…则此二次函数图象的对称轴为直线 ;当0>y 时,x 的取值范围是 . 17.如图1,将半径为2的圆形纸片沿圆的两条互相垂直的直径AC 、BD 两次折叠....后,得到如图2所示的扇形OAB ,然后再沿OB 的中垂线EF 将扇形OAB 剪成左右两部分,则︒=∠OEF ;右边部分经过两次展开....并压平后所得的图形的周长为.三、解答题(共89分):在答题卡上相应题目的答题区域内作答. 18.(9分)计算:2)55(21841601----÷+⨯-.19.(9分)先化简,再求值:)34()32(2--+x x x ,其中51-=x .(第11题图)ED CBA1α°(第20题图)12F AB CD E 20.(9分)如图,在ABC ∆中,点D 、E 分别在AB 、AC 边上,BE 与CD 相交于点F ,且AE AD =,21∠=∠.求证:FCB FBC ∠=∠.21.(9分)将三张质地相同并分别标有数字1、2、3的卡片,背面朝上放在桌面上,洗匀后,甲同学从中随机抽取一张卡片.(1)甲同学抽到卡片上的数恰好是方程0342=+-x x 的根的概率为 ;(2)甲乙两人约定:甲先随机抽取一张卡片后,背面朝上放回桌面洗匀,然后乙再随机抽取一张卡片,若两人所抽取卡片上的数字恰好是方程0342=+-x x 的两个根...,则甲获胜;否则乙获胜.请你通过列表或画树状图的方法,说明这个游戏是否公平?22.(9分)某学校计划开设A 、B 、C 、D 四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如下所示的两个不完整统计图表.请根据图表信息,解答下列问题: (1)参与调查的学生有 名;(2)在统计表中,=a ,=b,请你补全条形统计图; (3)若该校共有2000名学生,请你估算该校有多少名学生选修A 课程?校本课程选修意向条形统计图 A B CD 课程人数(名)23.(9分)如图,在平面直角坐标系中,O 是坐标原点,菱形OABC 的顶点)4,3(A ,C 在x 轴的负半轴,抛物线k x y +--=2)2(34过点A . (1)求k 的值; (2)若把抛物线k x y +--=2)2(34沿x 轴向左平移m 个单位长度,使得平移后的抛物线经过菱形OABC 的顶点C .试判断点B 是否落在平移后的抛物线上,并说明理由.24.(9分)某微店销售甲、乙两种商品,卖出6件甲商品和4件乙商品可获利120元;卖出10件甲商品和6件乙商品可获利190元. (1)甲、乙两种商品每件可获利多少元?(2)若该微店甲、乙两种商品预.计.再次进货200件,全部卖完后总获利不低于2300元,已知甲商品的数量不少于120件.请你帮忙设计一个进货方案,使总获利最大.(第23题图)25.(13分)如图,在矩形ABCD 中,k AB 8=,k BC 5=(k 为常数,且)0>k ,动点P 在AB 边上(点P 不与A 、B 重合),点Q 、R 分别在BC 、DA 边上,且1:2:3::=DR BQ AP .点A 关于直线PR 的对称点为'A ,连接'PA 、'RA 、PQ . (1)若4=k ,15=PA ,则四边形'PARA 的形状是 ;(2)设x DR =,点B 关于直线PQ 的对称点为'B 点.①记'PRA ∆的面积为1S ,'PQB ∆的面积为2S .当21S S <时,求相应x 的取值范围及12S S -的最大值;(用含k 的代数式表示)②在点P 的运动过程中,判断点'B 能否与点'A 重合?请说明理由.26.(13分)如图,已知直线x y -=和双曲线y = (1)当2==n m 时,①直接写出k 的值;②将直线x y -=(2)将直线x y -=绕着原点O 旋转,设旋()0,0>>b a 和点C .设直线AB ,AC 值存在怎样的数量关系?请说明理由.(以下空白作为草稿纸)(第26题图)(第25题图) Q A'RP D CBA晋江市2016年初中学业质量检查(二)数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分) 1.A 2.D 3.C 4.A 5. B 6.D 7.C 二、填空题(每小题4分,共40分)8.2016- 9.2 10.9104.3⨯ 11.65 12.()()11-+x x x13.6-=x 14.4315.33 16.1=x ;31<<-x 17.90; 3434+π. 三、解答题(共89分) 18.(本小题9分) 解:原式=2134--+ …………………………………………………………………………………………8分4= …………………………………………………………………………………………………… 9分19.(本小题9分) 解:原式=x x x x 34912422+-++ ……………………………………………………………………………4分=915+x ………………………………………………………………………………………………6分 当51-=x 时,原式95115+⎪⎭⎫⎝⎛-⨯= ………………………………………………………………………7分6=………………………………………………………………………………………9分20.(本小题9分)证明:∵AE AD =,21∠=∠,A A ∠=∠,∴ABE ∆≌ACD ∆, …………………………………………………………………6分 ∴AC AB =,∴ACB ABC ∠=∠ ,∴21∠-∠=∠-∠ACB ABC ,∴FCB FBC ∠=∠.……………………………………………………………………9分21.(本小题9分) 解:(1)32;……………………………………………………………………………3分 (2)方法一:画树状图如下:…………………………………………………………………………………………………………………6分由树状图可知,共有9种等可能的结果,其中甲获胜有2种,乙获胜有7种.∵P (甲获胜)=92,P (乙获胜)=97, ∴P (甲获胜)<P (乙获胜),∴游戏不公平. ………………………………………………………………………………………………9分 方法二:列表如下:…………………………………………………………………………………………………………………6分由上表可知,共有9种等可能的结果,其中甲获胜有2种,乙获胜有7种. ∵P (甲获胜)=92,P (乙获胜)=97,1 2 31 ()1,1 ()2,1 ()3,1 2()1,2 ()2,2()3,2 3()1,3()2,3()3,31 23 1 2 3 13 甲 1 2 3 乙∴P (甲获胜)<P (乙获胜),∴游戏不公平. ………………………………………9分22.(本小题9分)解:(1)100; ………………………………………3分 (2)40=a ,15=b ,补全条形统计图如图所示:…………………………………………………6分 (3)8002000%40=⨯(名)答:该校有800名学生选修A 课程. ………………9分23.(本小题9分) 解:(1)∵k x y +--=2)2(34经过点)4,3(A ∴4)23(342=+-⨯-k 解得,316=k ;………………………………………………………………………………………………3分 (2)设AB 与y 轴交于点D ,则y AD ⊥轴,3=AD ,4=OD ,5432222=+=+=OD AD OA∵四边形OABC 是菱形,5===∴OC AB OA , 2=-=AD AB BD ,∴)4,2(-B , (5)令0=y ,得0316)2(342=+--x , 解得:01=x ,42=x ,∴抛物线316)2(342+--=x y 与x 轴交点为)0,0(O 和)0,4(E ,4=OE , 当5==OC m 时,平移后的抛物线为316)3(342++-=x y ,A B CD 课程人数(名) 校本课程选修意向条形统计图 (第23题图)令2-=x 得,4316)32(342=++--=y , ∴点B在平移后的抛物线316)3(342++-=x y 上;…………………………………………………8分 当9==CE m 时,平移后的抛物线为316)7(342++-=x y , 令2-=x 得,4316)72(342≠++--=y , ∴点B 不在平移后的抛物线316)7(342++-=x y 上.综上,当5=m 时,点B 在平移后的抛物线上;当9=m 时,点B 不在平移后的抛物线上.…………………………………………………9分24.(本小题9分)解:(1)设甲商品每件获利x 元、乙商品每件获利y 元,由题意,得 ⎩⎨⎧=+=+19061012046y x y x ,解得:⎩⎨⎧==1510y x .答:甲商品每件获利10元,乙商品每件获利15元.……………………………………………………4分(2)设甲商品进货a 件,总获利为w 元,由题意,得 )200(1510a a w -+=30005+-=a 由230030005≥+-a 解得:140≤a .∴a 的取值范围为140120≤≤a ,且a 是整数; ∵05<-,∴w 随a 增大而减小,∴当120=a 时,w 最大,此时80200=-a . ∴进货方案为甲商品进货120件,乙商品进货80件.…………………………………………………9分25.(本小题13分)(1)正方形;………………………………………………………………………………………………3分(2)解:①由题意可知,x BQ 2=,x PA 3=,x k AR -=5,x k BP 38-=,∵2111153(5)32222PRA S S AR AP k x x kx x ∆==⋅=-⋅=-, CDQRA' (B' )22382)38(2121x kx x x k BQ BP S S PQB -=⋅-=⋅==∆, 由21S S <可得,223823215x kx x kx -<-,∵0>x ,∴x 取值范围为k x 310<<.kx x S S 2123212+-=-22241)6(23k k x +--=∴当6k x =时,12S S -有最大值,最大值为2241k .…………………………………………………8分②点'B 不能与点'A 重合.理由如下:如图, 假设点'B 与点'A 重合,则有︒=∠+∠+∠+∠180''BPQ PQ B PR A APR , 由对称的性质可得,APR PR A ∠=∠',BPQ PQ B ∠=∠',∴︒=︒⨯=∠+∠9018021BPQ APR , 由︒=∠90A 可得,︒=∠+∠90PRA APR ,∴PRA BPQ ∠=∠, 又∵︒=∠=∠90B A ∴PAR Rt ∆∽QBP Rt ∆,∴BPARQB PA =,即QB AR BP PA ⋅=⋅. ∴x x k x k x 2)5()38(3⋅-=-,解得,01=x (不合题意舍去),k x 22=,………………………11分又∵'PA PA =,''PA PB PB ==, ∴PB PA =,∴x k x 383-=,解得k k x 234≠=故点'B 不能与点'A重合.…………………………………………………………………………………13分26.(本小题13分)解:(1)① 4=k ; …………………………………………………………………………………………3分11 ② 设平移后的直线为1b x y +-=,由⎪⎩⎪⎨⎧=+-=x k y b x y 1可得,x b x 41=+-, 整理可得,0412=+-x b x .当0414)(21=⨯⨯--=∆b ,即41±=b 时,方程0412=+-x b x 有两个相等的实数根,此时直线1b x y +-=与双曲线只有一个交点,∴只要将直线x y -=向上或向下平移4个单位长度,所得到的直线与双曲线只有一个交点.………8分(2)2=±ADAB AE AC ,理由如下:……………………9分 分两种情况讨论:由双曲线的对称性可知,),(b a C -- i)当点A 在直线BC 的上方时,如图所示, 过A 、B 、C 分别作y 轴的垂线,垂足分别为F 、G 、H . 则n OF =,b OH OG ==, ∴b n OG OF FG -=-=,b n OH OF FH +=+=,∵x BG AF ////轴, ∴nb n FO FG AD AB -==. ∵x AF //轴CH //, ∴nb n FO FH AE AC +==. ∴2=++-=+nb n n b n AD AB AE AC .…………………11分 ii) 当点A 在直线BC 的下方时,同理可求:n n b AD AB -=,nn b AE AC +=, ∴2=--+=-nn b n n b AD AB AE AC . 综上所述,2=±ADAB AE AC .…………………………………………………………………………………13分(第26题图)。

2015-2016学年福建省泉州市晋江市八年级(下)期末数学试卷打印版本

2015-2016学年福建省泉州市晋江市八年级(下)期末数学试卷打印版本

八年级(下)期末数学试卷一、选择题(每小题3分,共21分)1.(3分)计算3﹣1的结果是()A.B.C.3 D.﹣32.(3分)若分式有意义,则x的取值范围是()A.x>B.x≠C.x≠﹣2 D.x=3.(3分)在平行四边形、矩形、菱形、正方形中,既是轴对称图形又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个4.(3分)计算一组数据:8,9,10,11,12的方差为()A.1 B.2 C.3 D.45.(3分)点A(3,﹣4)到x轴的距离是()A.B.3 C.5 D.46.(3分)在同一直角坐标系中,若直线y=kx+3与直线y=﹣2x+b平行,则()A.k=﹣2,b≠3 B.k=﹣2,b=3 C.k≠﹣2,b≠3 D.k≠﹣2,b=3 7.(3分)如图,点P是双曲线y=上的一个动点,过点P作PA⊥x轴于点A,当点P从左向右移动时,△OPA的面积()A.逐渐增大B.逐渐减小C.先增大后减小D.保持不变二、填空题(每小题4分,共40分)8.(4分)计算:=.9.(4分)某种细菌病毒的直径为0.0000005米,0.0000005米用科学记数法表示为米.10.(4分)计算:=.11.(4分)在正比例函数y=(k﹣2)x中,y随x的增大而增大,则k的取值范围是.12.(4分)已知:一次函数y=kx+b的图象在直角坐标系中如图所示,则kb0(填“>”、“<”或“=”).13.(4分)如图,把矩形ABCD纸片沿着过点A的直线AE折叠,使得点D落在BC边上的点F处,若∠BAF=40°,则∠DAE=°.14.(4分)若反比例函数图象的两个分支分布在第二、四象限,则整数m可以是(写出一个即可).15.(4分)如图,在▱ABCD中,∠A﹣∠B=40°,则∠A=°.16.(4分)如图,菱形ABCD的周长为20,对角线AC与BD相交于点O,AC=8,则BD=.17.(4分)已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为10cm,CA与MN在同一条直线上,点A从点M开始向右移动,设点A的移动距离为xcm(0≤x≤20),重叠部分的面积为S(cm2).(1)当点A向右移动4cm时,重叠部分的面积S=cm2;(2)当10cm<x≤20cm时,则S与x的函数关系式为.三、解答题(共89分)18.(9分)计算:.19.(9分)先化简,再求值:,其中a=﹣2.20.(9分)如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:四边形BFDE是平行四边形.21.(9分)如图,直线y=x+2分别与x轴、y轴相交于点A、点B.(1)求点A和点B的坐标;(2)若点P是y轴上的一点,设△AOB、△ABP的面积分别为S△AOB 与S△ABP,且S△ABP=2S△AOB,求点P的坐标.22.(9分)某校举办“书香校园”读书活动,经过对八年级(1)班的42个学生的每人读书数量进行统计分析,得到条形统计图如图所示:(1)填空:该班每个学生读书数量的众数是本,中位数是本;(2)若把上述条形统计图转换为扇形统计图,求该班学生“读书数量为4本的人数”所对应扇形的圆心角的度数.23.(9分)在校园手工制作活动中,现有甲、乙两人接到手工制作纸花任务,已知甲每小时制作纸花比乙每小时制作纸花少20朵,甲制作120朵纸花的时间与乙制作160朵纸花的时间相同,求乙每小时制作多少朵纸花?24.(9分)已知:在△ABC中,AB=AC,点D、E、F分别在边BC、AB、AC上,(1)若DE∥AC,DF∥AB,且AE=AF,则四边形AEDF是形;(2)如图,若DE⊥AB于点E,DF⊥AC于点F,作CH⊥AB于点H,求证:CH=DE+DF.25.(13分)已知:如图,正比例函数y1=kx(k>0)的图象与反比例函数y2=的图象相交于点A和点C,设点C的坐标为(2,n).(1)①求k与n的值;②试利用函数图象,直接写出不等式kx﹣<0的解集;(2)点B是x轴上的一个动点,连结AB、BC,作点A关于直线BC的对称点Q,在点B的移动过程中,是否存在点B,使得四边形ABQC为菱形?若存在,求出点B的坐标;若不存在,请说明理由.26.(13分)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED 交线段AB于点G,ED的延长线交线段OA于点H,连结CH、CG.(1)求证:CG平分∠DCB;(2)在正方形ABCO绕点C逆时针旋转的过程中,求线段HG、OH、BG之间的数量关系;(3)连接BD、DA、AE、EB,在旋转过程中,四边形AEBD能否成为矩形?若能,试求出直线DE的解析式;若不能,请说明理由.八年级(下)期末数学试卷答案一、选择题(每小题3分,共21分)1.A.2.B.3.C.4.B.5.D.6.A.7.D.二、填空题(每小题4分,共40分)8.1.9.5×10﹣7.10.1.11.k>212.>.13.25.14.0(答案不唯一);15.110.16.6.17.【解答】解:(1)当x=4cm时,AM=4,重叠部分的面积S=AM2=×4×4=8(cm2).(2)当10cm<x≤20cm时,如图所示.AN=x﹣MN=x﹣10,∴S=S△ABC ﹣S△ANE=AC2﹣AN2=×102﹣(x﹣10)2=﹣x2+10x(10<x≤20).故答案为:S=﹣x2+10x(10<x≤20).三、解答题(共89分)18.【解答】解:原式=====.19.【解答】解:原式=(﹣)•=•=﹣,当a=﹣2时,原式=.20.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD﹣AE=BC﹣CF,∴ED=BF,又∵AD∥BC,∴四边形BFDE是平行四边形.21.【解答】解:(1)在中,令y=0,则,解得:x=﹣4,∴点A的坐标为(﹣4,0).令x=0,则y=2,∴点B的坐标为(0,2).(2)∵点P是y轴上的一点,∴设点P的坐标为(0,y)又点B的坐标为(0,2),∴BP=|y﹣2|,∵,,=2S△AOB,又S△ABP∴2|y﹣2|=2×4,解得:y=6或y=﹣2.∴点P的坐标为(0,6)或(0,﹣2).22.【解答】解:(1)由条形统计图可知,读书数量为4本的人数最多,由14人,故众数为4本;中位数为=14(本),故答案为:4,4;(2)读书数量为1本的人数占被调查人数的百分比为:×100%≈4.8%,对应扇形圆心角为:360°×≈17.2°;读书数量为2本的人数占被调查人数的百分比为:×100%≈14.3%,对应扇形圆心角为:360°×≈51.4°;读书数量为3本的人数占被调查人数的百分比为:×100%≈23.8%,对应扇形圆心角为:360°×≈85.7°;读书数量为4本的人数占被调查人数的百分比为:×100%≈33.3%,对应扇形圆心角为:360°×≈120°;读书数量为5本的人数占被调查人数的百分比为:×100%≈23.8%,对应扇形圆心角为:360°×≈85.7°;把上述条形统计图转换为扇形统计图如下:∴该班学生“读书数量为4本的人数”所对应的扇形的圆心角的度数为120°.23.【解答】解:设乙每小时制作x朵纸花,依题意得:解得:x=80,经检验,x=80是原方程的解,且符合题意.答:乙每小时制作80朵纸花.24.【解答】解:(1)结论:菱形.理由:如图1中,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AE=AF,∴四边形AEDF是菱形.(2)解法一:如图2,连接AD,∵,,=S△ABD+S△ACD,又S△ABC∴,又AB=AC,∴CH=DE+DF.解法二:如图3,过C作CG⊥DE交ED的延长线于点G,则∠CGE=90°,∵∠GEH=∠EHC=90°,∴四边形EGCH是矩形,∴CH=EG=ED+DG,∵∠B+∠BDE=90°,∠ACB+∠CDF=90°,而由AB=AC可知:∠B=∠ACB∴∠BDE=∠CDF,又∵∠BDE=∠CDG,∴∠CDF=∠CDG,在△CDF和△CDG中,,∴△CDF≌△CDG,∴DF=DG,∴CH=DE+DF.25.【解答】解:(1)①把点C的坐标为(2,n)代入,解得:n=3∴点C的坐标为(2,3),把点C(2,3)代入y1=kx得:3=2k,解得:k=;②由两函数图象可知,kx﹣<0的解集是:x<﹣2或0<x<2;(2)如图1,当点B在x轴的正半轴且AB=AC时,四边形ABQC为菱形.∵点A与点Q关于直线BC对称,∴AC=QC,AB=QB,∴AC=QC=AB=QB.∴四边形ABQC为菱形.由(1)中点C的坐标(2,3),可求得:OC=,∵点A与点C关于原点对称,∴点A的坐标为(﹣2,﹣3),∴OA=OC=,AC=2,∴AC=AB=2.作AH⊥x轴于点H,则AH=3.在Rt△AHB中,由勾股定理得:BH==,又∵OH=2,∴OB=BH﹣OH=﹣2,∴点B的坐标为,如图2,当点B在x轴的负半轴且AB=AC时,四边形ABQC为菱形.作AT⊥x轴于点T,同理可求得:,又∵OT=2,∴,∴点B的坐标为,综上,当点B的坐标为或时,四边形ABQC为菱形.26.【解答】解:(1)证明:∵正方形ABCO绕点C旋转得到正方形CDEF,∴CD=CB,∠CDG=∠CBG=90°,在Rt△CDG和Rt△CBG中,,∴Rt△CDG≌Rt△CBG(HL).∴∠DCG=∠BCG,即CG平分∠DCB.(2)由(1)证得:Rt△CDG≌Rt△CBG,∴BG=DG,在Rt△CHO和Rt△CHD中,,∴Rt△CHO≌Rt△CHD(HL),∴OH=HD,∴HG=HD+DG=OH+BG.(3)假设四边形AEBD可为矩形.当G点为AB中点时,四边形AEBD为矩形,如图所示.∵G点为AB中点,∴,由(2)证得:BG=DG,则,又AB=DE,∴四边形AEBD为矩形.∴AG=EG=BG=DG.∵,∴G点的坐标为(6,3).设H点的坐标为(x,0),则HO=x,∴HD=x,DG=3,∵OH=DH,BG=DG,在Rt△HGA中,HG=x+3,GA=3,HA=6﹣x,由勾股定理得:(x+3)2=32+(6﹣x)2,解得:x=2,∴H点的坐标为(2,0).设直线DE的解析式为:y=kx+b(k≠0),将点H(2,0)、G(6,3)代入y=kx+b中,得:,解得:,∴直线DE的解析式为:.故四边形AEBD能为矩形,此时直线DE的解析式为:.。

15-16学年第二学期八年级期末数学试卷及参考答案

15-16学年第二学期八年级期末数学试卷及参考答案

2015-2016学年度第二学期期末质量监测八 年 级 数 学 试 题(时间:100分钟 总分:100分)温馨提示:1.亲爱的同学,欢迎你参加本次考试,本次考试满分100分,时间100分钟,祝你答题成功!2.数学试卷共6页,共22题.请你仔细核对每页试卷下方页码和题数,核实无误后再答题. 一、选择题:(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题意的,请把你认 为正确的选项前字母填写在该题后面的括号中.1. 在数﹣,0,1,中,最大的数是( )A .B .1C .0D . 2. 下列长度的三条线段能组成直角三角形的是( ) A .4,5,6 B .2,3,4 C .1,1, D .1,2,23.如图,在 ABCD 中,AD=2AB ,CE 平分∠BCD 交AD 边于点E ,且AE=3,则AB 的长为( )A .4B .3C .D .2第3题 第4题4. 如图,在 ABCD 中,对角线AC 、BD 相交于点O ,AC=10,BD=6,AD=4,则 ABCD 的面积是( ) A .12 B .12C .24D .30 5.函数y=2x ﹣1的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6. 若=b ﹣a ,则( )A .a >bB .a <bC .a ≥bD .a ≤b7. 为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,C.中位数40 D.这10户家庭月用电量共205度8. 两个一次函数y=ax﹣b,y=bx﹣a(a,b为常数),它们在同一直角坐标系中的图象可能是()A.B.C.D.9. 如图,是一长、宽都是3cm,高BC=9cm的长方体纸箱,BC上有一点P,PC=BC,一只蚂蚁从点A出发沿纸箱表面爬行到点P的最短距离是()A.6cm B.3cm C.10cm D.12cm第9题第10题10. 甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地,甲乙两车距A地的路程y(千米)与乙车行驶时间x(时)之间的函数图象如图所示,下列说法:①a=4.5;②甲的速度是60千米/时;③乙出发80分钟追上甲;④乙刚到达货站时,甲距B地180千米;其中正确的有()A.1个B.2个C.3个D.4个二、填空题:(本大题共6小题,每小题3分,共18分) 11. 若二次根式有意义,则x 的取值范围是 .12. 已知a 、b 、c 是的△ABC 三边长,且满足关系+|a ﹣b|=0,则△ABC 的形状为 .13. 如图,在线段AB 上取一点C ,分别以AC 、BC 为边长作菱形ACDE 和菱形BCFG ,使点D 在CF 上,连接EG ,H 是EG 的中点,EG=4,则CH 的长是 . 14. 在△ABC 中,∠ABC=30°,AB=8,AC=2,边AB 的垂直平分线与直线BC 相交于点F ,则线段CF 的长为 .第13题 第16题x 与方差S 2: 根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 . 16.如图,已知正方形ABCD ,以AB 为边向外作等边三角形ABE ,CE 与DB 相交于点F ,则∠AFD 的度数. 三、解答题:(本大题共6小题,共52分.解答应写明文字说明和运算步骤. )17.(本小题满分8分)计算:(1)﹣÷(2)(2﹣3)(3+2)18. (本小题满分8分)如图,直线y=kx+b经过A(0,﹣3)和B(﹣3,0)两点.(1)求k、b的值;(2)求不等式kx+b<0的解集.19.(本小题满分8分)分别在以下网格中画出图形.(1)在网格中画出一个腰长为,面积为3的等腰三角形.(2)在网格中画出一个腰长为的等腰直角三角形.20. (本小题满分8分)某校为了解八年级女生体能情况,抽取了50名八年级女学生进行“一分钟仰卧起坐”测试.测(1)通过计算得出这组数据的平均数是40,请你直接写出这组数据的众数和中位数,它们分别是、;(2)被抽取的八年级女生小红在“一分钟仰卧起坐”项目测试中的成绩是39次,小红认为成绩比平均数低,觉得自己成绩不理想,请你根据(1)中的相关数据分析小红的成绩;(3)学校根据测试数据规定八年级女学生“一分钟仰卧起坐”的合格标准为38次,已知该校八年级有女生250名,试估计该校八年级女生“一分钟仰卧起坐”的合格人数是多少?21. (本小题满分9分)A、B两个水果市场各有荔枝13吨,现从A、B向甲、乙两地运送荔枝,其中甲地需要荔枝14吨,乙地需要荔枝12吨,从A到甲地的运费为50元/吨,到乙地的运费为30元/吨,从B到甲地的运费为60元/吨,到乙地的运费为45元/吨.(2)设总运费为W元,请写出W与x的函数关系式,并直接写出x的取值范围.(3)怎样调送荔枝才能使运费最少?如图,已知正方形ABCD的边长为1,P是对角线AC上任意一点,E为AD上的点,且∠EPB=90°,PM⊥AD,PN⊥AB.(1)求证:四边形PMAN是正方形;(2)求证:EM=BN;(3)若点P在线段AC上移动,其它不变,设PC=x,AE=y,求y关于x的解析式,并写出自变量x的取值范围.2015-2016学年度第二学期期末质量监测八年级数学参考答案与评分标准一、选择题:(本大题共10小题,每小题3分,共30分)二、填空题:(本大题共6小题,每小题3分,共18分)11. x≥﹣1 12.等腰直角三角形 13. 214.或 15.甲 16. 60°三、解答题:(本大题共6小题,共52分.解答应写明文字说明和运算步骤. )17.(本小题满分8分)(1)解:原式=2﹣…………………………………………………3分=…………………………………………………………………4分(2)解:原式=(2)2﹣32…………………………………………2分=﹣1……………………………………………………………4分18.(本小题满分8分)解:(1)将A(0,﹣3)和(﹣3,0)代入y=kx+b得:,解得:k=﹣1,b=﹣3.…………………………………………………………………5分(2)x>﹣3.……………………………………………………………………………8分19.(本小题满分8分)解:(每小题4分,满分8分)20.(本小题满分8分)解:(1)38 ;38 ………………………………………………………………………2分(2)尽管低于平均数,但高于众数和中位数,所以还有比较好的;………………4分(3)合格人数为:250×80%=200(人).………………………………………………8分21.(本小题满分9分)(1)如下表:………………3分(2)根据题意得,W=50x+30(13﹣x)+60(14﹣x)+45(x﹣1)=5x+1185,……5分由,解得:1≤x≤13.……………………………………………………………………………6分(3)在函数W=5x+1185中,k=5>0,∴W随x的增大而增大,当x=1时,W取得最小值,最小值为5×1+1185=1190.此时A调往甲地1吨,调往乙地12吨,B调往甲地13吨.…………………………9分22.(本小题满分11分)解:(1)证明:∵四边形ABCD是正方形,∴∠BAD=90°,AC平分∠BAD,∵PM⊥AD,PN⊥AB,∴PM=PN,∠PMA=∠PNA=90°,∴四边形PMAN是矩形,∴四边形PMAN是正方形;………………………………………… 3分(2)证明:∵四边形PMAN是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE=∠NPB,在△EPM和△BPN中,,∴△EPM≌△BPN(ASA),∴EM=BN…………………………………………………………………………… 6分(3)解:作PF⊥BC于F,如图所示:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC=1,∠PCF=45°,∴AC==,△PCF是等腰直角三角形,∴AP=AC﹣PC=﹣x,BN=PF=x,∴EM=BN=x,∵∠PAM=45°,∠PMA=90°,∴△APM是等腰直角三角形,∴AP=AM=(AE+EM),即﹣x=(y+x),解得:y=1﹣x,……………………………………………………………… 10分x的取值范围为0≤x≤.………………………………………………………… 11分。

秋季晋江市八年级期末跟踪测试数学试题

秋季晋江市八年级期末跟踪测试数学试题

秋季晋江市八年级期末跟踪测试数学试题LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】2016年秋季晋江市八年级期末跟踪测试数学试题(满分:150分,考试时间:120分钟)一.选择题(每小题4分,共40分)1.实数15是( )A. 整数B. 分数C.有理数D. 无理数 2. 64的平方根是( ) A .8 B .-8 C .8±D .323.抛一枚硬币若干次,有11次出现正面,9次出现反面,则出现正面的频率是( ) A .11B .9C .55%D .45%4.下列算式中,计算结果等于6a 的是( )A.33a a +B. a a ⋅5C. (a 4)2D.212a a ÷ 5.如图,在四边形ABCD 中AB=AD ,添加下列一个条件后,仍然不能证明ABC ∆≌ADC ∆,那么这个条件是( )=CB B. AC 平分∠BAD C. ∠B=∠D=90° D. ∠ACB=∠ACD 6.在Rt △ABC 中,∠A=90°,AB=5,BC=12,则AC 的长是( ) A .13B 119C .13119或D .177.下列选项中,可以用来说明命题“若a 2>4,则a>2”是假命题的反例是( )=-3 B. a=3 =2 =-28.如图,用4张全等的长方形拼成一个正方形,用两种方法表示图中阴影部分的面积题号 一二三总分 得分 1~10 11~1617 18 19 20 21 22 23 24 2526可得出一个代数恒等式。

若长方形的长和宽分别为a、b,则这个代数恒等式是()A.(a+b)2=a2+2ab+b2B. (a-b)2=(a+b)2-4abC.(a+b)(a-b)=a2-b2D. (a-b)2=a2-ab+b29.259120175912016201720182016x y z=⨯-⨯=-⨯设,,则x、y、z的大小关系是()<z<x <z<y <x<z <y<x10.如图,是一个长、宽、高分别为4cm、2cm、8cm一只蚂蚁从点A处沿盒子的内壁爬到点B,则爬行的最短距离为()B.(2cm+ C.二、填空题(每小题4分,共24分)11.___________12.那么表示购物的扇形圆心角的度数为__________.13.命题“直角三角形的两个锐角互余”的逆命题是__________________________________.14.如图,在△ABC中,AC<BC,AB的垂直平分线交AB于点D,交BC于点E,连结AE,若△ACE的周长为14cm,BD=5cm,则△ABC的周长是15.如图在4×4的方格中,每个小方格的边长都为1,点A、B则线段AB的长度是__________.16.已知4=-ba,abba<+-)4)(3(.(1)a的取值范围是.(2)若53222=+-++bbabaa,则ba+的值是.三、解答题(共86分)第14题图A B第12题图第15题图A第10题图8cm第8题图17.(10分)(1)3528)1(5a a a a ÷-- (2)26(6)(6)x x x +-+-()18.(6分)因式分解:222753b b a -19.(9分)先化简,再求值:[])()4(3)6(222xy y x xy xy -÷---+)(,其中65=x ,53-=y .20. (9分) 如图,点E C F B 、、、在同一直线上,已知AB=DE ,AC=DF ,BF=EC.求证:DFE ACB ∠=∠.E21.(8分)某中学组织“纪念红军长征胜利80周年”知识竞赛活动,其中八年级6个班每班参赛人数相同,学校对该年级的获奖人数进行统计,得到平均每班获奖15人,并制作如下图所示不完整的条形统计图。

晋江初二数学期末试卷答案

晋江初二数学期末试卷答案

一、选择题(每题2分,共20分)1. 下列各数中,有理数是()A. √9B. πC. √-16D. 2/3答案:D2. 如果a=3,那么a^2-2a+1的值是()A. 4B. 6C. 8D. 10答案:A3. 一个等腰三角形的底边长是8cm,腰长是6cm,那么这个三角形的周长是()A. 16cmB. 20cmC. 24cmD. 28cm答案:C4. 下列函数中,一次函数是()A. y=2x^2+3B. y=x+2C. y=3x-5D. y=4/x答案:C5. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A. (2,-3)B. (-2,3)C. (2,5)D. (-2,-3)答案:A6. 下列各式中,完全平方公式是()A. (a+b)^2=a^2+2ab+b^2B. (a-b)^2=a^2-2ab+b^2C. (a+b)^2=a^2-2ab+b^2D. (a-b)^2=a^2+2ab+b^2答案:B7. 一个长方形的长是12cm,宽是5cm,那么它的面积是()A. 60cm^2B. 72cm^2C. 120cm^2D. 180cm^2答案:C8. 如果x=4,那么x^2+2x+1的值是()A. 17B. 18C. 19D. 20答案:B9. 下列各数中,无理数是()A. √4B. √9C. √-16D. √-25答案:D10. 一个等边三角形的边长是10cm,那么它的周长是()A. 20cmB. 30cmC. 40cmD. 50cm答案:B二、填空题(每题2分,共20分)11. √9的值是______。

答案:312. (a+b)^2的展开式是______。

答案:a^2+2ab+b^213. 一个长方形的面积是24cm^2,长是6cm,那么它的宽是______。

答案:4cm14. 如果x=5,那么x^2-2x+1的值是______。

答案:2415. 一个圆的半径是3cm,那么它的周长是______。

晋江初二数学期末试卷下册

晋江初二数学期末试卷下册

1. 下列各数中,有理数是()A. $\sqrt{3}$B. $\pi$C. $-2\sqrt{2}$D. $\frac{5}{7}$2. 已知 $a > 0$,$b < 0$,则 $-a + b$ 的符号是()A. 正B. 负C. 零D. 不确定3. 如果 $x^2 - 4x + 3 = 0$,那么 $x^2 - 6x + 5$ 的值是()A. 0B. 1C. 2D. 34. 下列函数中,自变量的取值范围是全体实数的是()A. $y = \sqrt{x}$B. $y = \frac{1}{x}$C. $y = x^2 - 1$D. $y =\sqrt{1 - x^2}$5. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A.(-2,-3)B.(2,3)C.(2,-3)D.(-2,-3)6. 若 $a > b$,则下列不等式中正确的是()A. $a + 1 > b + 1$B. $a - 1 < b - 1$C. $a + 2 < b + 2$D. $a - 2 > b - 2$7. 下列各式中,完全平方公式正确的是()A. $(a + b)^2 = a^2 + 2ab + b^2$B. $(a - b)^2 = a^2 - 2ab + b^2$C. $(a + b)^2 = a^2 - 2ab + b^2$D. $(a - b)^2 = a^2 + 2ab - b^2$8. 若 $x = 3$ 是方程 $x^2 - 5x + c = 0$ 的解,则 $c$ 的值为()A. 2B. 4C. 6D. 89. 下列图形中,不是轴对称图形的是()A. 等腰三角形B. 矩形C. 平行四边形D. 正方形10. 若 $a > 0$,$b > 0$,则 $\sqrt{a^2 + b^2}$ 的最小值是()A. $a$B. $b$C. $\sqrt{a^2 + b^2}$D. $a + b$11. 若 $a^2 = 9$,则 $a$ 的值为_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(第7题图)晋江市2015-2016年八年级下期末学业跟踪检测数学试卷含答案晋江市2016年春季八年级期末学业跟踪检测数 学 试 题一、选择题(每小题3分,共21分) 1.计算13-的结果是( ). A .3-B .31-C .31D .1-2.若分式122-+x x 有意义,则x 的取值范围是( ). A .21>x B .21≠x C .2-≠xD .21=x 3.在平行四边形、矩形、菱形、正方形中,既是轴对称图形又是中心对称图形的有( ).A .1个B .2个C .3个D .4个4.一组数据8,9,10,11,12的方差是( ). A .4B .2C .2D .1 5.点()4,3-A 到x 轴的距离是( ). A .7B .3C .5D . 46.在同一直角坐标系中,若直线3+=kx y 与直线b x y +-=2平行,则 ( ). A .2-=k ,3≠b B .2-=k ,3=b C .2-≠k , 3≠b D .2-≠k ,3=b 7.如图,点P 是双曲线()06>=x xy 上的一个动点,过点P 作x PA ⊥ 轴于点A ,当点P 从左向右移动时,OPA ∆的面积( ). A .逐渐增大 B .逐渐减小C .先增大后减小 D. 保持不变P(第17题图) (第16题图)C(第13题图) DE (第15题图) 二、填空题(每小题4分,共40分) 8.计算:()_____220=-;9.某种细菌病毒的直径为5000000.0米,5000000.0米用科学记数法表示为 米.10.计算:222+++a a a = . 11.在正比例函数()x k y 2-=中,y 随x 的增大而增大,则k 的取值范围是____________.12.已知:一次函数b kx y +=的图象在直角坐标系中如图所示,则0____kb (填“>”、“<”或“=”).13.如图,把矩形ABCD 纸片沿着过点A 的直线AE 折叠,使得点D落在BC 边上的点F 处,若︒=∠40BAF ,则︒=∠_____DAE .14.若反比例函数xm y 1-=图象的两个分支分布在第二、四象限,则整数..m 可以是 (写出一个即可).15.如图,在□ABCD 中,︒=∠-∠40B A ,则._____︒=∠A16.如图,菱形ABCD 的周长为20,对角线AC 与BD 相交于点O ,8=AC ,则______=BD .17.已知等腰直角ABC ∆的直角边长与正方形MNPQ 的边长均为cm 10,CA 与MN 在同一条直线上,点A 从点M 开始向右移动,设点A 的移动距离为xcm ()20 0x ,重叠部分的面积为S ()2cm .(1)当点A 向右移动cm 4时,重叠部分的面积2_____cm S =;(2)当x cm <10 cm 20时,则S 与x 的函数关系式为________________. 三、解答题(共89分)18.(9分)计算:411622---a a a .(第12题图)≤ ≤ ≤(第21题图)19.(9分)先化简,再求值:933122-+÷⎪⎭⎫ ⎝⎛--a a a a a ,其中2-=a .20.(9分)如图, 在□ABCD 中,点E 、F 分别为AD 、BC 边上的一点,且CF AE =. 求证:四边形BFDE 是平行四边形.21.(9分)如图,直线221+=x y 分别与x 轴、y 轴相交于点A 、点B . ⑴求点A 和点B 的坐标;⑵若点P 是y 轴上的一点,设AOB ∆、ABP ∆为AOB S ∆与ABP S ∆,且AOB ABP S S ∆∆=2,求点P(第20题图)22.(9分)某校举办“书香校园”读书活动,经过对八年级(1)班的42个学生的每人读书数量进行统计分析,得到条形统计图如图所示:⑴填空:该班每个学生读书数量的 众数是 本,中位数是 本; ⑵若把上述条形统计图转换为扇形 统计图,求该班学生“读书数量 为4本的人数”所对应扇形的 圆心角的度数.23.(9分)在校园手工制作活动中,现有甲、乙两人接到手工制作纸花任务,已知甲每小时制作纸花比乙每小时制作纸花少20朵,甲制作120朵纸花的时间与乙制作160朵纸花的时间相同,求乙每小时制作多少朵纸花?24.(9分)已知:在ABC ∆中,AB AC =,点D 、E 、F 分别在边BC 、AB 、AC 上,⑴若DE ∥AC ,DF ∥AB ,且AF AE =,则四边形AEDF 是______形; ⑵如图,若AB DE ⊥于点E ,AC DF ⊥于点F ,作AB CH ⊥于点H , 求证:DF DE CH +=.(第24题图)C(本)25.(13分)已知:如图,正比例函数kx y =1()0>k 的图象与反比例函数xy 62=的图象相交于点A 和点C ,设点C 的坐标为()n ,2. (1)①求k 与n 的值;②试利用函数图象,直接..写出不等式06<-xkx 的解集; (2)点B 是x 轴上的一个动点,连结AB 、BC , 作点A 关于直线BC 的对称点Q ,在点B 的移动过程中,是否存在点B ,使得四边形ABQC 为菱形?若存在,求出点B 的坐标;若不存在,请说明理由.(第25题图)(备用图)26.(13分)如图,正方形ABCO 的边OA 、OC 在坐标轴上,点B 坐标为()6,6,将正方形ABCO 绕点C 逆时针旋转角度α()︒<<︒900α,得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连结CH 、CG . (1)求证:CG 平分DCB ∠;(2)在正方形ABCO 绕点C 逆时针旋转的过程中,求线段HG 、OH 、BG 之间的数量关系;(3)连接BD 、DA 、AE 、EB ,在旋转过程中,四边形AEBD 能否成为矩形?若能,试求出直线DE 的解析式;若不能,请说明理由.晋江市2016年春季八年级期末学业跟踪检测数学试题参考答案及评分标准一、选择题:(每小题3分,共21分)1.C ;2.B ;3.C ;4.B ;5.D ;6.A ;7.D ; 二、填空题:(每小题4分,共40分)8.1;9. 7105-⨯; 10. 1; 11.2>k ; 12.>; 13. 25; 14.0(答案不唯一);15.110; 16.6; 17. (1) 8;(2) 21102S x x =-+. (第26题图)三、解答题:(共89分) 18.(9分)解:原式()()()()444442-++--+=a a a a a a …………………………………………4分()()()4442-++-=a a a a ……………………………………………………………………………6分()()4442-+--=a a a a()()444-+-=a a a ……………………………………………………………………………8分41+=a ……………………………………………………………………………………9分19.(9分)解:原式9333322-+÷⎪⎭⎫ ⎝⎛----=a a a a a a a ………………………………………………1分 933322-+÷---=a aa a a a ………………………………………………………………3分()()()33333-++÷--=a a a a a ………………………………………………………………5分()()()33333+-+⋅--=a a a a a ………………………………………………………………6分a3-=…………………………………………………………………………………7分当2a =-时,原式32=-- ……………………………………………………………………8分 3=2………………………………………………………………………9分 20. (9分) 证明:∵四边形ABCD 是平行四边形, ∴AD∥BC ,BC AD = ………………………………………………………………………4分 ∵CF AE =∴CF BC AE AD -=- 即BF DE =……………………………………………………………………………………8分又AD ∥BC ,即DE ∥BF ∴四边形BFDE 是平行四边形. ………………………………………………………………9分21.(9分) 解: (1)在221+=x y 中,令0=y ,则0221=+x ,解得:4-=x ,∴点A 的坐标为()0,4-.令0=x ,则2=y ,∴点B 的坐标为()2,0.(2) ∵点P 是y 轴上的一点,∴设点P 的坐标为()y ,0 又点B 的坐标为()2,0,∴2-=y BP ………………………………………………………………………5分∵4242121=⨯⨯=⋅=∆OB OA S AOB ,22422121-=⨯⋅-=⋅=∆y y OA BP S ABP 又AOB ABP S S ∆∆=2,∴4222⨯=-y ,解得:6=y 或2-=y .(第21题图)∴点P的坐标为()6,0 或()2,0-………………………………………………………………9分22.(9分) (1)44…………………………………………………………………………………6分 (2)︒=︒⨯1203604214∴该班学生“读书数量为4本的人数”所对应的扇形的圆心角的度数为︒120.……………9分23.(9分) 解:设乙每小时制作x 朵纸花,依题意得:……………………………………………………1分 x x 16020120=-…………………………………………………………………………………5分解得:80=x ,………………………………………………………………………………7分经检验,80=x 是原方程的解,且符合题意. ………………………………………………8分答:乙每小时制作80朵纸花. ………………………………………………………………9分 24.(9分)解:(1)菱. ……………………………………………………3分 (2)解法一:如图1,连接AD , ∵CH AB S ABC ⋅=∆21,DE AB S ABD ⋅=∆21,DF AC S ACD ⋅=∆21又ACD ABD ABC S S S ∆∆∆+=, ∴DF AC DE AB CH AB ⋅+⋅=⋅212121…………………………7分 又AB AC =,∴DF DE CH +=.……………………………………………9分解法二:如图2,过C 作DE CG ⊥交ED 的延长线于点G ,则︒=∠90CGE ,(第24题图1)∵︒=∠=∠90EHC GEH , ∴四边形EGCH 是矩形,∴DG ED EG CH +==,…………………………………………7分 ∵︒=∠+∠90BDE B ,︒=∠+∠90CDF ACB , 而由AC AB =可知:ACB B ∠=∠ ∴CDF BDE ∠=∠, 又∵CDG BDE ∠=∠, ∴CDG CDF ∠=∠,∵︒=∠=∠90DGC DFC ,CD CD =, ∴CDF ∆≌CDG ∆, ∴DG DF =,∴DF DE CH +=.……………………………………………9分 25. (13分) 解:(1)①把点C 的坐标为()n ,2代入xy 62=得:3=n ∴点C 的坐标为()3,2,……………………………………………………………………2分把点C ()3,2代入kx y =1得:k 23=,解得:23=k .………………………………………4分②由两函数图象可知,06<-xkx 的解集是2-<x 或20<<x .(2) (2)当点B 在x 轴的正半轴且AC AB =∵点A 与点Q 关于直线BC 对称 ∴QC AC =,QB AB =, ∴QB AB QC AC ===.∴四边形ABQC 为菱形.由(1)中点C 的坐标()3,2,可求得:=OC ∵点A 与点C 关于原点对称,(第24题图2)H GF E DC BA∴点A 的坐标为()3,2--, ∴13==OC OA ,132=AC , ∴132==AB AC .作x AH ⊥轴于点H ,则3=AH . 在AHB Rt ∆中,由勾股定理得:()43313222=-=BH ,又2=OH∴243-=-=OH BH OB ,∴点B 的坐标为()0,243-,……………………………11分当点B 在x 轴的负半轴且AC AB =时,四边形ABQC 为菱形. 作x BT ⊥轴于点T ,同理可求得:BT ==,又2=OT ,∴243+=+=OT BT OB ,∴点B 的坐标为()0,243--,综上,当点B 的坐标为()0,243-或()0,243--时,四边形ABQC 为菱形. …………………………13分26. (13分) (1)证明:∵正方形ABCO 绕点C 旋转得到正方形CDEF …………………………………………………1分 ∴CB CD =,︒=∠=∠90CBG CDG在CDG Rt ∆和CBG Rt ∆中,⎩⎨⎧==CBCD CG CG ,(第25题图2)∴CDG Rt ∆≌CBG Rt ∆()HL .…………………………………………………………………2分∴BCG DCG ∠=∠ 即CG 平分DCB ∠……………………………………………………………………………3分(2)由(1)证得:CDG Rt ∆≌CBG Rt ∆ BG DG =∴在CHO Rt ∆和CHD Rt ∆中,⎩⎨⎧==CD CO CH CH ,∴CHO ∆≌CHD ∆.∴OH HD =,…………………………6分∴HG HD DG OH BG =+=+………………………………………………………………7分(3)四边形AEBD 可为矩形. ………………………………………………………………8分 当G 点为AB 中点时,四边形AEBD 为矩形.如图,AB GA BG 21==,由(2)证得:DG BG =,则GE DE AB DG GA BG =====2121,又DE AB = ∴四边形AEBD 为矩形. …………………………………………………………………9分∴DG BG EG AG ===. ∵321==AB AG , ∴G 点的坐标为)3,6(.………………………………………………………………………10分设H 点的坐标为()0,x ,则x HO =. ∴x HD =,3=DG , ∵DH OH =,DG BG =,在HGA Rt ∆中,3+=x HG ,3=GA ,x HA -=6,由勾股定理得:()()222633x x -+=+,解得:2=x(第26题图)∴H 点的坐标为()0,2.…………………………………………………………………………12分设直线DE 的解析式为:b kx y +=()0≠k ,又过点H ()0,2、()3,6G ,∴⎩⎨⎧=+=+36,02b k b k ,解得:⎪⎪⎩⎪⎪⎨⎧-==23,43b k∴直线DE 的解析式为:2343-=x y . ………………………………………………………………………………………………13分。

相关文档
最新文档