第7章虚拟变量回归
第七章 虚拟变量
第七章虚拟变量第一节虚拟变量的引入一、什么是虚拟变量前面几章介绍的解释变量都是可以直接度量的,称为定量变量。
如收入、支出、价格、资金等等。
但在现实经济生活中,影响应变量变动的因素,除了这些可以直接获得实际观测数据的定量变量外,还包括一些无法定量的解释变量的影响,如性别、民族、国籍、职业、文化程度、政府经济政策变动等因素,他们只表示某种特征的存在与不存在,所以称为属性变量或定性变量。
属性变量:不能精确计量的说明某种属性或状态的定性变量。
在计量经济模型中,应当包含属性变量对应变量的影响作用。
那怎么才能把定性变量包括在模型中呢?属性变量通常是非数值变量,直接纳入回归方程中进行回归,显然是很困难的。
为此,人们采取了一种构造人工变量的方法,将这些定性变量进行量化,使其能与定量变量一样在回归模型中得以应用。
由于定性变量通常是表明某种特征或属性是否存在,如性别变量中以男性为分析基础的话,那就只有男性、非男性;政策变动变量中以政策不变为基准,则有政策不变,和政策变动;至于有两种以上的状态的话,比如学历分高中,本科,本科以上等等,我们又怎么办呢?把疑问留到后面去解决。
既然定性变量只有存在或不存在两种状态,所以量化的一般方法是取值为0或1。
称为虚拟变量。
虚拟变量:人工构造的取值为0或1的作为属性变量代表的变量。
一般常用D表示。
D=0,表示某种属性或状态不存在D=1,表示某种属性或状态存在比如前面说的性别变量,以男性为基准,则当样本为男性时,虚拟变量取0,当样本为女性时,则虚拟变量取1。
当虚拟变量作为解释变量引入计量经济模型时,对其回归系数的估计和统计检验方法都与定量解释变量相同。
二、虚拟变量的作用1、作为属性因素的代表,如,性别、种族等2、作为某些非精确计量的数量因素的代表,如:受教育程度、年龄段等;3、作为某些偶然因素或政策因素的代表,如战争、911等。
4、时间序列分析中作为季节(月份)的代表(比如对某些明显有淡季、旺季之分的产品)5、分段回归,研究斜率、截距的变动;6、比较两个回归模型;7、虚拟应变量概率模型,应变量本身是定性变量(比如你研究某产品的购买率,应变量本身就是买或不买)三、虚拟变量的设置规则1、虚拟变量D取值为0,还是取值为1,要根据研究的目的决定。
虚拟变量回归模型
PART 07
虚拟变量回归模型的发展 趋势和未来展望
发展趋势
模型应用范围不断扩大
随着数据科学和统计学的发展,虚拟变量回归模型的应用范围不断扩大,不仅局限于传统的回归分析,还广泛应用于 分类、聚类、预测等领域。
模型复杂度不断提高
为了更好地处理复杂的数据结构和特征,虚拟变量回归模型的复杂度不断提高,出现了多种新型的模型,如集成学习 模型、深度学习模型等。
医学领域的应用
流行病学研究
在流行病学研究中,利用虚拟变量回归模型分析疾病发病率和死亡 率的影响因素,如年龄、性别、生活习惯等。
临床医学研究
在临床医学研究中,利用虚拟变量回归模型分析治疗效果的影响因 素,如治疗方案、患者特征、疾病严重程度等。
药物研究
在药物研究中,利用虚拟变量回归模型分析药物疗效的影响因素, 如药物剂量、给药方式、患者生理特征等。
模型解释性要求更高
随着人们对数据分析和模型结果的关注度提高,虚拟变量回归模型的解释性要求也更高,需要更加清晰、 直观地解释模型结果和变量之间的关系。
未来展望
模型可解释性研究
未来将更加注重虚拟变量回归模型的可解释性研究,以提高模型结果的透明度和可信度。
新型特征选择和降维技术
随着数据规模的扩大和特征维度的增加,未来将更加关注新型的特征选择和降维技术,以提取关 键特征并降低模型复杂度。
PART 01
引言
目的和背景
探索自变量与因变量之间的关系
虚拟变量回归模型主要用于探索自变量与因变量之间的数量关系,帮助我们理 解不同类别数据对结果的影响。
处理分类变量
当自变量是分类变量时,虚拟变量回归模型能够将这些分类变量转换为一系列 二进制(0和1)的虚拟变量,从而进行回归分析。
第7章 Dummy Variables 虚拟变量
Case 1: y = b0 + d0d + b1x + u
• 考虑一个简单工资方程:
wage = b0 + d0 female + b1 educ + u
• If female =0, then wage = b0 + b1educ + u • If female =1, then wage = (b0 + d0) + b1educ + u
• d0 = E(wage| female=1, educ) - E(wage| female=0, educ)
• d0 (an intercept shift): 给定教育年限educ,女性平 均工资比男性平均工资高d0元。
Example of d0 > 0
E(wage|female,educ) = b0 + d0 female + b1 educ
扩展:多个虚拟变量回归模型
• female(1 female; 0 male); married(1 married; 0 single) • marrfem( 1 female married; 0 others) • marrmale (1 male married; 0 others) • singlefem (1 female single; 0 others) • singlemale (1 male single; 0 others)
• A dummy variable 是一种只取1或0两个数值的变量. • Examples: (1) sex: 1: male 2: female
male (= 1 if male, 0 otherwise); female (= 1 if female, 0 otherwise) (2) region: 1. eastern; 2. central ; 3. western) eastern (=1 if eastern, 0 otherwise); central (=1 if central, 0 otherwise) western (=1 if western, 0 otherwise) • Dummy variables are also called: 二值变量(binary variables), 0-1变量(zero-one variables)
虚拟变量回归课件
虚拟变量回归面临的问题
在进行虚拟变量回归时,我们可能会面临多重共线性问题。为了解决这个问 题,我们将介绍哑变量陷阱和特征选 收集数据 2. 对数据进行预处理 3. 分析数据 4. 建立模型 5. 模型的评估与优化
虚拟变量回归
通过介绍虚拟变量回归,我们将探讨其概念、作用以及应用。还将讨论面临 的问题和解决方法,以及如何进行虚拟变量回归并提高模型精度。
什么是虚拟变量回归
虚拟变量回归是一种统计方法,用于处理具有分类特征或非数字特征的数据。 它将非数字变量转换为二元变量,以便在回归模型中使用。
虚拟变量回归的应用
总结
虚拟变量回归具有自身的优点和局限性。我们将总结这些,并探讨未来的发 展方向。最后,我们将分享一些提高模型精度的技巧和建议。
计量经济学(安徽财经大学)知到章节答案智慧树2023年
计量经济学(安徽财经大学)知到章节测试答案智慧树2023年最新第一章测试1.计量经济学是( )的一个分支学科参考答案:经济学2.计量经济分析工作的基本步骤是( )参考答案:模型设定、模型估计、模型检验、模型应用3.下列各种数据中,以下不应该作为经济计量分析所用数据的是( )参考答案:计算机随机生成的数据4.在( )中,为了全面描述经济变量之间的关系,合理构造模型体系,有时需要引入一些非随机的恒等方程。
参考答案:联立方程模型5.从变量的因果关系看,经济变量可分为( )参考答案:被解释变量;解释变量6.使用时序数据进行经济计量分析时,要求指标统计的( )参考答案:对象及范围可比;时间可比;计算方法可比;口径可比7.一个计量经济模型由以下哪些部分构成( )参考答案:方程式;随机误差项;变量;参数8.计量经济学模型研究的经济关系有两个基本特征:随机关系和相关关系。
( )参考答案:错9.计量经济模型检验仅包括经济意义检验、统计检验、计量经济学检验。
( )参考答案:错10.参数反映计量经济模型中经济变量之间的数量联系,通常具有不稳定性。
( )参考答案:错第二章测试1.在一元线性回归模型中,样本回归方程可表示为( )参考答案:2.回归分析中定义( )参考答案:被解释变量是随机变量,解释变量是非随机变量3.最常用的统计检验包括拟合优度检验、解释变量显著性检验和( )参考答案:方程显著性检验4.最小二乘准则是指使( )达到最小值的原则确定样本回归方程参考答案:5.对于经典线性回归模型,回归系数的普通最小二乘估计量具有的优良性有( )参考答案:方差最小性;线性性;无偏性6.利用普通最小二乘法求得的样本回归直线具有以下特点( )参考答案:必然通过点();的平均值与的平均值相等;残差的均值为07.随机误差项产生的原因有( )参考答案:数据的测量与归并误差;随机因素的影响;模型中被忽略因素的影响;模型函数形式设定误差8.只有满足基本假设条件的计量经济模型的普通最小二乘参数估计量才具有无偏性和有效性()参考答案:对9.可决系数不仅反映了模型拟合程度的优劣,而且有直观的经济含义:它定量地描述了Y的变化中可以用回归模型来说明的部分,即模型的可解释程度()参考答案:对10.在计量经济模型中,通常是就参数而言判断是否为线性回归模型,而对解释变量X则可以是线性的也可以是非线性的()参考答案:对第三章测试1.( )表示由解释变量所解释的部分,表示x对y的线性影响参考答案:回归平方和2.用一组有40个观测值的样本估计模型后,在0.05的显著性水平上对的显著性作t检验,则显著地不等于零的条件是其统计量t大于等于( )参考答案:3.多元线性回归分析中,调整后的判定系数与判定系数之间的关系是( )参考答案:4.在多元回归分析中,F检验是用来检验( )参考答案:回归模型的总体线性关系是否显著5.对于线性回归模型,各回归系数的普通最小二乘估计具有的优良特性有( )参考答案:有效性;一致性;无偏性6.若模型满足古典假定,则下列各式成立的有( )参考答案:;;7.常见的非线性回归模型主要有( )参考答案:半对数模型;倒数模型;多项式模型;对数模型8.如果模型对样本有较高的拟合优度,F检验一般都能通过()参考答案:对9.若建立计量经济模型的目的是用于预测,则要求模型的远期拟合误差较小。
第七章 虚拟变量 虚拟变量回归模型ppt汇总 计量经济学
• 在回归分析中,被解释变量的影响因素 除了量(或定量)的因素还有质(或定 性)的因素,这些质的因素可能 会使回 归模型中的参数发生变化,为了估计质 的因素产生的影响,在模型中就需要引 入一种特殊的变量—虚拟变量。
2020/6/16
(二)作用
• 1、可以描述和测量定性(或属性)因素 的影响;
2、多个因素各两种属性
• 如果有m个定性因素,且每个因素各有两个不同的 属性类型,则引入m个虚拟变量。
• 例2
• 研究居民住房消费函数时,考虑到城乡差异和不同 收入层次的影响将消费函数设定为:
Yt=b0+b1Xt+a1D1t+ a2D2t+ μt
Yt=居民住房消费支出
Xt=居民可支配收入
1城镇居民
2020/6/16
虚拟变量对截距的影响
y
有适龄子女
b0
o
图1 虚拟变量对截距的影响
x
2020/6/16
2、乘法方式引入虚拟变量
• 基本思想:以乘法方式引入虚拟解释变量
,是在所设定的计量经济模型中,将虚拟 解释变量与其他解释变量相乘作为新 的解释变量,以达到其调整模型斜率的
目的。 • 该方式引入虚拟变量主要作用:
D=
0 无适龄子女
将家庭教育费用支出函数写成:Yt=b0+b1Xt+aDt+μt 即以加法形式引入虚拟变量。
2020/6/16
子女年龄结构不同的家庭教育 费用支出函数为:
• 无适龄子女家庭的教育费用支出函数(D=0 ):Yt=b0+b1Xt+μt
• 有适龄子女家庭的教育费用支出函数(D=1 ):Yt=(b0+a)+b1Xt+μt
虚拟变量回归模型_OK
是一样的,但两者的平均薪金水平相差 a。
可以通过传统的回归检验,对 a的统计显著性进行检验,以
判断男女职工的平均薪金水平是否显著差异。
16
例7.1.4 居民家庭的教育费用支出除了受收入水平的影响之外,还与子女 的年龄结构密切相关。如果家庭中有适龄子女(6-21岁),教育费用支出就 多。因此,为了反映“子女年龄结构”这一定性因素,设置虚拟变量:
当tt*=1978年, Dt = 1
ˆyt = bˆ0 aˆxt + bˆ1 + aˆ xt
32
28
例如,进口消费品数量Y主要取决于国民收入 X的多少,中国在改革开放前后,Y对X的回归关 系明显不同。
这时,可以t*=1978年为转折期,以1978年的 国民收入Xt*为临界值,设如下虚拟变量:
1 Dt = 0
t t* t t*
则进口消费品的回归模型可建立如下:
yt = b0 + b1 xt + a xt xt Dt + ut
9
概念:
同时含有一般解释变量与虚拟变量的模型称为 虚 拟 变 量 模 型或 者 方差 分 析 ( analysis-of variance: ANOVA)模型。
一个以性别为虚拟变量考察企业职工薪金的模型:
Yt = b 0 + b1 Xt + b 2Dt + mt
其中:Yt为企业职工的薪金,Xt为工龄, Dt=1,若是男性,Dt=0,若是女性。
D4=
1 喜欢某种商品 0 不喜欢某种商品
5)表示天气变化的虚拟变量可取为
D5=
1 晴天 0 雨天
6
2.引入虚拟变量的作用 引入虚拟变量的作用,在于将定性因素或属性因素对因变量
计量经济学复习要点1
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载计量经济学复习要点1地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容计量经济学复习要点参考教材:伍德里奇《计量经济学导论》第1章绪论数据类型:截面、时间序列、面板用数据度量因果效应,其他条件不变的概念习题:C1、C2第2章简单线性回归回归分析的基本概念,常用术语现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值。
简单线性回归模型是只有一个解释变量的线性回归模型。
回归中的四个重要概念总体回归模型(Population Regression Model,PRM)--代表了总体变量间的真实关系。
总体回归函数(Population Regression Function,PRF)--代表了总体变量间的依存规律。
样本回归函数(Sample Regression Function,SRF)--代表了样本显示的变量关系。
样本回归模型(Sample Regression Model,SRM)---代表了样本显示的变量依存规律。
总体回归模型与样本回归模型的主要区别是: = 1 \* GB3 ① 描述的对象不同。
总体回归模型描述总体中变量y与x的相互关系,而样本回归模型描述所关的样本中变量y与x的相互关系。
= 2 \* GB3 ② 建立模型的依据不同。
总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。
= 3 \* GB3 ③ 模型性质不同。
总体回归模型不是随机模型,而样本回归模型是一个随机模型,它随样本的改变而改变。
总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。
计量课后习题第七章答案
习题7.1 解释概念(1)分类变量 (2)定量变量 (3)虚拟变量 ( 4)虚拟变量陷阱 (5)交互项(6)结构不稳定 (7)经季节调整后的时间序列答:(1)分类变量:在回归模型中,我们对具有某种特征或条件的情形赋值1,不具有某种特征或条件的情形赋值0,这样便定义了一个变量D :1,0,D ⎧=⎨⎩具有某种特征不具有某种特征我们称这样的变量为分类变量。
(2)具有数值特征的变量,如工资、工作年数、受教育年数等,这些变量就称为定量变量。
(3)在回归模型中,我们对具有某种特征或条件的情形赋值1,不具有某种特征或条件的情形赋值0,这样便定义了一个变量D :1,0,D ⎧=⎨⎩具有某种特征不具有某种特征 我们称这样的变量为虚拟变量(dummy variable )。
(4)虚拟变量陷阱是指回归方程包含了所有类别(特征)对应的虚拟变量以及截距项,从而导致了完全共线性问题。
(5)交互项是指虚拟变量与定量变量相乘,或者两个定量变量相乘或是两个虚拟变量相乘,甚至更复杂的形式。
比如模型:12345i i i i i i i household lwage female married female married u βββββ=++++⋅+female married ⋅就是交互项。
(6)如果利用不同的样本数据估计同一形式的计量模型,可能会得到1β、2β不同的估计结果。
如果估计的参数之间存在着显著性差异,就称为模型结构不稳定。
(7)一些重要的经济时间序列,如果是受到季节性因素影响的数据,利用季节虚拟变量或者其他方法将其中的季节成分去除,这一过程被称为经季节调整的时间序列。
7.2 如果你有连续几年的月度数据,为检验以下假设,需要引入多少个虚拟变量?如何设定这些虚拟变量?(1)一年中的每一个月份都表现出受季节因素影响;(2)只有2、7、8月表现出受季节因素影响。
答:(1)对于一年中的每个月份都受季节因素影响这一假设,需要引入三个虚拟变量。
伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-第一篇(第7~9章)【圣才出品】
第7章含有定性信息的多元回归分析:二值(或虚拟)变量7.1 复习笔记考点一:带有虚拟自变量的回归★★★★★1.对定性信息的描述定性信息是指通常以二值信息(0-1)的形式出现的信息,如性别、是否结婚等。
在计量经济学中,二值变量又称为虚拟变量。
2.只有一个虚拟自变量(1)只有一个虚拟自变量的简单模型考虑决定小时工资的简单模型:wage=β0+δ0female+β1educ+u。
根据多元回归的解释方式,δ0表示控制educ不变时,female变化1单位给wage带来的变化。
假定零条件均值假定E(u|female,educ)=0成立,那么:δ0=E(wage|female=1,educ)-E(wage|female=0,educ),其中female=1表示女性,female=0表示男性。
可以发现,在任意教育水平下,男性与女性的工资差异是固定的,女性工资比男性工资多δ0。
除了β0之外,模型中只需要引入一个虚拟变量。
因为female+male=1,所以引入两个虚拟变量会导致完全多重共线性,即虚拟变量陷阱。
(2)当因变量为log(y)时,对虚拟解释变量系数的解释当变量中有一个或多个虚拟变量,且因变量以对数的形式存在时,虚拟变量的系数可以理解为百分比的变化。
将虚拟变量的系数乘以100,表示的是在保持所有其他因素不变时y的百分数差异,精确的百分数差异为:100·[exp (β∧1)-1]。
其中β∧1是一个虚拟变量的系数。
3.使用多类别虚拟变量 (1)在方程中包括虚拟变量的一般原则如果回归模型具有g 组或g 类不同截距,一种方法是在模型中包含g -1个虚拟变量和一个截距。
基组的截距是模型的总截距,某一组的虚拟变量系数表示该组与基组在截距上的估计差异。
如果在模型中引入g 个虚拟变量和一个截距,将会导致虚拟变量陷阱。
另一种方法是只包括g 个虚拟变量,而没有总截距。
这种方法存在两个实际的缺陷:①对于相对基组差别的检验变得更繁琐;②在模型不包含总截距时,回归软件通常都会改变R 2的计算方法。
计量复习
计量复习第一章导论1.计量经济学的含义是什么?计量经济学是以经济理论为指导,以实际观测资料为背景,运用数学、统计学方法和计算机技术,通过建立经济数学模型,分析经济变量之间的数量关系,对经济现象进行研究的一门经济学科。
创始人是弗里希。
2.计量经济学与经济理论、统计学、数学的联系是什么?计量经济学与经济理论、统计学、数学的联系主要体现在计量经济学对经济理论、统计学、数学的应用方面,分别如下:1)计量经济学对经济理论的利用主要体现在以下几个方面。
①计量经济模型的选择和确定。
②对经济模型的修改和调整。
③对计量经济分析结果的解读和应用2)计量经济学对统计学的应用。
①数据的收集、处理、。
②参数估计。
③参数估计值、模型和预测结果的可靠性的判断3)计量经济学对数学的应用。
①关于函数性质、特征等方面的知识。
②对函数进行对数变换、求导以及级数展开③参数估计。
④计量经济理论和方法的研究。
3.怎样理解理论计量经济学与应用计量经济学的区别和联系?4.计量经济学的研究对象和任务是什么?计量经济学的研究对象是经济现象。
研究目的是基于对经济变量之间的数学分析,揭示经济规律。
5.计量经济学主要应用于哪些方面?计量经济学主要应用于结构分析、经济预测、政策平价和实证研究等方面。
6.计量经济学模型为什么要进行检验,检验方法有哪些?原因:模型中的参数被估计后,一般来说还不能直接应用该模型,还需对估计的模型做某些检验,检验其准确性和可靠性,检验的实质是对已得到的参数估计值进行评价,研究其在理论上是否有意义,统计上是否显著,进而研究模型是否正确反映经济系统各因素之间的关系。
模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。
①在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号、大小、参数之间的关系是否与根据人们的经验和经济理论所拟订的期望值相符合;②在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质,有拟合优度检验、变量显著检验、方程显著性检验等;③在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;④模型的预测检验,主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。
数据分析与Stata软件应用 第7章 变量间回归关系分析与Stata实现
n
( y j yˆ j )2 (n k 1)
j 1
7 变量间回归关系分析与Stata实现
ቤተ መጻሕፍቲ ባይዱ
• (3)回归系数的显著性检验(t检验)
• H0: i 0(i 1, 2, , k)
t i
Si
t(n k1)
7 变量间回归关系分析与Stata实现
• (4)多重共线性检验 • Stata提供了多种多重共线性的诊断方法。 • ①容许度(Tolerance) • ②方差膨胀因子(Variance Inflation Factor, VIF) • ③条件指数(Condition Index, CI) • ④特征值和方差比例
• 7.2.3 Stata基本命令
• 引入虚拟变量的回归分析使用的主要命令仍为 regress,其语法与经典回归分析中的语法是相同 的,唯一区别之处在于首先要将类别变量设置为 虚拟变量,将虚拟变量引入回归模型中,只需将 其看作普通的变量即可。
变量间回归关系分析与Stata实现
7 变量间回归关系分析与Stata实现 经典线性回归分析与Stata实现 含虚拟自变量的线性回归分析 可转化为线性形式的非线性回归分析 Logistic回归分析
变量间回归关系分析与Stata实现
变量间回归关系分析与Stata实现
线性回归分析
经
含
典 线 性 回 归 分
7 变量间回归关系分析与Stata实现
• 1. regress命令 • regress命令用于完成基本回归分析,regress命令
的输出结果包括参数估计,参数的标准差,F检验、 t检验的统计量值和相伴概率,以及95%的置信区 间。
• regress命令的基本语法为: . regress depvar indepvars [if] [in] [weight] [, reg_options]
虚拟变量回归
这里的 D1i 和 D2i代表的是两个不同的定性变量,各分为两种类
型基础类型: E(Yi Xi , D1 0, D2 0) 0 1Xi
对比类型: E(Yi Xi , D1 1, D2 0) (0 1) 1Xi
E(Yi Xi , D1 0, D2 1) (0 2 ) 1Xi
E(Yi Xi , D1 1, D2 1) (0 1 2 ) 1 Xi
差异
●一个定性变量有多种类型时,虚拟变量可同时取值为0,
但不能同时取值为1,因同一定性变量的各类型间“非此
即彼”
17
4、解释变量包含一个定量变量和两个定性变量
例如模型: Yi 0 1D1i 2D2i X i ui
Y为文化支出,X为收入
D1i 0 农村居民 D1i 1 城镇居民
D2i 0 高中以下文化程度 D2i 1 高中及以上文化程度
如 伊拉克战争、“911事件”、四川汶川大地震
● 时间序列分析中——作为季节(月份)的代表
● 分段回归——研究斜率、截距的变动
● 比较两个回归模型的差异
● 虚拟被解释变量模型:被解释变量本身是定性变量
● 面板数据回归中的应用
6
二、虚拟变量模型
虚拟变量模型:包含有虚拟变量的模型称虚拟变量模型 三种类型: 1. 解释变量中只包含虚拟变量
D1 1, D2 0, D3 0时
Yi 1 X i ui
D2 1, D1 0, D3 0时
Yi 2 X i ui
D3 1, D1 0, D2 0时
Yi 3 X i ui
11
第二节 虚拟解释变量回归
定性变量作为解释变量,既可以影响模型的截距,也可以 影响模型的斜率,还可以同时影响截距和斜率
虚拟变量(哑变量)回归
二、虚拟变量回归系数的意义
因变量为大学生的月支出,自变量有家庭月收入,年级,性别 建立回归方程:
^
Y b 0 b 1 I N C O M E b 2 D G 2 b 3 D G 3 b 4 D G 4 b 5 D S (0)
其中, DG2=1,是大二,否则为0; DG3=1,是大三,否则为0; DG4=1,是大三,否则为0。 DS=1,是女生,否则为0
对于虚拟变量,由于取值只能为0和1,所以检验的是取值为1的类别与参 照类(所有取值为0)的平均值是否有显著性差异
虚拟变量回归只能做其他类和参照类的比较
直接对任意两个回归系数之差进行检验的方法:
1、建立无差异假设:H0:Bi=Bj; H1:Bi≠Bj
2、构造t统计量:
t
bi bj S(bi bj )
Di = 1 ,是女性
= 0 ,不是女性
例2:大学生年级变量具有四个类别,如何构造?
Y i b 0 b 1 D 1 i b 2 D 2 i b 3 D 3 i b 4 D 4 i u i“虚陷拟阱变”量
其中,
D1=1,是大一,否则为0; D2=1,是大二,否则为0; D3=1,是大三,否则为0; D4=1,是大三,否则为0。
虚拟变量回归系数的意义
参照类:大一男生(所有虚拟变量均取0)
^
Yb0b1INCOME
变式1:大二男生(DG2=1,虚拟变量均取0)
^
Yb0b1INCOM Eb2
(1) (2)
变式2:大一女生(DS=1,虚拟变量均取0)
^
Yb0b1INCOM Eb4
(3)
参照类中,b0为直线的截距,b1为直线斜率,即 INCOME 的回归系数
例:分析妇女的年龄(AGE)、文化程度(EDU)及居住地(AREA)
计量经济学习题第7章单方程回归模型的几个专题
计量经济学习题第7章单方程回归模型的几个专题第7章单方程回归模型的几个专题一、名词解释1、虚拟变量2、模型设定误差3、工具变量4、工具变量法5、变参数模型6、分段线性回归模型7、虚拟变量模型二、简答题1、模型中引入虚拟变量的作用是什么?2、虚拟变量引入的原则是什么?3、虚拟变量引入的方式及每种方式的作用是什么?4、判断计量经济模型优劣的基本原则是什么?5、模型设定误差的类型有那些?6、工具变量选择必须满足的条件是什么?7、滞后变量模型包括哪几种类型?写出各自的模型形式。
8、设定误差产生的主要原因是什么?9、在建立计量经济学模型时,什么时候,为什么要引入虚拟变量?三、单项选择题1、设某地区消费函数i i i x c c y μ++=10中,消费支出不仅与收入x 有关,而且与消费者的年龄构成有关,若将年龄构成分为小孩、青年人、成年人和老年人4个层次。
假设边际消费倾向不变,则考虑上述构成因素的影响时,该消费函数引入虚拟变量的个数为()A.1个B.2个C.3个D.4个2、当质的因素引进经济计量模型时,需要使用()A. 外生变量B. 前定变量C. 内生变量D. 虚拟变量3、.由于引进虚拟变量,回归模型的截距或斜率随样本观测值的改变而系统地改变,这种模型称为()A. 系统变参数模型B.系统模型C. 变参数模型D. 分段线性回归模型4、.假设回归模型为i i i x y μβα++=,其中Xi 为随机变量,Xi 与Ui 相关则β的普通最小二乘估计量( )A.无偏且一致B.无偏但不一致C.有偏但一致D.有偏且不一致5、假定正确回归模型为i i i i x x y μββα+++=2211,若遗漏了解释变量X2,且X1、X2线性相关则1β的普通最小二乘法估计量( )A.无偏且一致B.无偏但不一致C.有偏但一致D.有偏且不一致6、对于误差变量模型,模型参数的普通最小二乘法估计量是( )A.无偏且一致的B.无偏但不一致C.有偏但一致D.有偏且不一致7、系统变参数模型分为( )A.截距变动模型和斜率变动模型B.季节变动模型和斜率变动模型C.季节变动模型和截距变动模型D.截距变动模型和截距、斜率同时变动模型8、虚拟变量( )A.主要来代表质的因素,但在有些情况下可以用来代表数量因素B.只能代表质的因素C.只能代表数量因素D.只能代表季节影响因素9、. 分段线性回归模型的几何图形是( )A.平行线B.垂直线C.光滑曲线D.折线10、如果一个回归模型中不包含截距项,对一个具有m 个特征的质的因素要引入虚拟变量数目为( )A.mB.m-1C.m-2D.m+111、设某商品需求模型为Yt=β0+β1Xt+Ut ,其中Y 是商品的需求量,X 是商品的价格,为了考虑全年12个月份季节变动的影响,假设模型中引入了12个虚拟变量,则会产生的问题为()A .异方差性B .序列相关C .不完全的多重共线性D .完全的多重共线性四、多项选择题1、系统变参数模型中,参数变化是( )A.随机的B.离散的C.非随机的D.连续的E.系统的2、在包含有随机解释变量的回归模型中,可用作随机解释变量的工具变量必须具备的条件有,此工具变量( )A.与该解释变量高度相关B.与其它解释变量高度相关C.与随机误差项高度相关D.与该解释变量不相关E.与随机误差项不相关3、关于虚拟变量,下列表述正确的有()A .是质的因素的数量化B .取值为l 和0C .代表质的因素D .在有些情况下可代表数量因素E .代表数量因素4、虚拟变量的取值为0和1,分别代表某种属性的存在与否,其中()A 、0表示存在某种属性B 、0表示不存在某种属性C 、1表示存在某种属性D 、1表示不存在某种属性E 、0和1代表的内容可以随意设定5、在截距变动模型i i i x D y μβαα+++=10中,模型系数()A 、0α是基础类型截距项B 、1α是基础类型截距项C 、0α称为公共截距系数D 、1α称为公共截距系数E 、01αα-为差别截距系数6、对于线性回归模型i i i i Dx x D y μββαα++++=)(2110,其中D 为虚拟变量,有()A 、其图形是两条平行线B 、基础类型的截距项是0αC 、基础类型的截距为1βD 、差别截距系数为1αE 、差别斜率系数为12ββ-7、对于分段线性回归模型t t t t D x x x y μβββ+-++=)(*210,其中()A 、虚拟变量D 代表品质因素B 、虚拟变量D 代表数量因素C 、以*x x t =为界,前后两段回归直线的斜率不同D 、以*x x t =为界,前后两段回归直线的截距不同E 、该模型是系统变参数模型的一种特殊形式五、计算题1、家庭消费C ,除依赖于收入Y 之外,还同下列因素有关:(1)民族:汉、蒙、满、回、藏(2)家庭小孩数:没有孩子、1-2个孩子、3个及以上孩子(3)户主的文化程度:高中以下、高中、大专以上试设定该家庭消费函数的回归模型。
计量经济学第7章 含有定性信息的多元回归分析
第7章含有定性信息的多元回归分析:二值(或虚拟)变量在前面几章中,我们的多元回归模型中的因变量和自变量都具有定量的含义。
就像小时工资率、受教育年数、大学平均成绩、空气污染量、企业销售水平和被拘捕次数等。
在每种情况下,变量的大小都传递了有用的信息。
在经验研究中,我们还必须在回归模型中考虑定性因素。
一个人的性别或种族、一个企业所属的产业(制造业、零售业等)和一个城市在美国所处的地理位置(南、北、西等)都可以被认为是定性因素。
本章的绝大部分内容都在探讨定性自变量。
我们在第7.1节介绍了描述定性信息之后,又在第7.2、7.3和7.4节中说明了,如何在多元回归模型中很容易地包含定性的解释变量。
这几节几乎涵盖了定性自变量用于横截面数据回归分析的所有流行方法。
我们在第7.5节讨论了定性因变量的一种特殊情况,即二值因变量。
这种情形下的多元回归模型具有一个有趣的含义,并被称为线性概率模型。
尽管有些计量经济学家对线性概率模型多有中伤,但其简洁性还是使之在许多经验研究中有用武之地。
虽然我们在第7.5节将指出其缺陷,但在经验研究中,这些缺陷常常都是次要的。
7.1 对定性信息的描述定性信息通常以二值信息的形式出现:一个人是男还是女;一个人有还是没有一台个人计算机;一家企业向其一类特定的雇员提供还是不提供退休金方案;一个州实行或不实行死刑。
在所有这些例子中,有关信息可通过定义一个二值变量(binary variable)或一个0-1变量来刻画。
在计量经济学中,对二值变量最常见的称呼是虚拟变量(dummy variable),尽管这个名称并不是特别形象。
在定义一个虚拟变量时,我们必须决定赋予哪个事件的值为1和哪个事件的值为0。
比如,在一项对个人工资决定的研究中,我们可能定义female为一个虚拟变Array量,并对女性取值1,而对男性取值0。
这种情形中的变量名称就是取值1的事件。
通过定义male在一个人为男性时取值1并在一个人为女性时取值0,也能刻画同样的信息。
计量经济学(数字教材版)课后习题参考答案
课后习题参考答案第二章教材习题与解析1、 判断下列表达式是否正确:y i =β0+β1x i ,i =1,2,⋯ny ̂i =β̂0+β̂1x i ,i =1,2,⋯nE(y i |x i )=β0+β1x i +u i ,i =1,2,⋯n E(y i |x i )=β0+β1x i ,i =1,2,⋯nE(y i |x i )=β̂0+β̂1x i ,i =1,2,⋯ny i =β0+β1x i +u i ,i =1,2,⋯ny ̂i =β̂0+β̂1x i +u i ,i =1,2,⋯n y i =β̂0+β̂1x i +u i ,i =1,2,⋯n y i =β̂0+β̂1x i +u ̂i ,i =1,2,⋯n y ̂i =β̂0+β̂1x i +u ̂i ,i =1,2,⋯n答案:对于计量经济学模型有两种类型,一是总体回归模型,另一是样本回归模型。
两类回归模型都具有确定形式与随机形式两种表达方式:总体回归模型的确定形式:X X Y E 10)|(ββ+= 总体回归模型的随机形式:μββ++=X Y 10样本回归模型的确定形式:X Y 10ˆˆˆββ+= 样本回归模型的随机形式:e X Y ++=10ˆˆββ 除此之外,其他的表达形式均是错误的2、给定一元线性回归模型:y =β0+β1x +u (1)叙述模型的基本假定;(2)写出参数β0和β1的最小二乘估计公式;(3)说明满足基本假定的最小二乘估计量的统计性质; (4)写出随机扰动项方差的无偏估计公式。
答案:(1)线性回归模型的基本假设有两大类,一类是关于随机误差项的,包括零均值、同方差、不序列相关、满足正态分布等假设;另一类是关于解释变量的,主要是解释变量是非随机的,如果是随机变量,则与随机误差项不相关。
(2)12ˆi iix yxβ=∑∑,01ˆˆY X ββ=- (3)考察总体的估计量,可从如下几个方面考察其优劣性:1)线性性,即它是否是另一个随机变量的线性函数; 2)无偏性,即它的均值或期望是否等于总体的真实值;3)有效值,即它是否在所有线性无偏估计量中具有最小方差;4)渐进无偏性,即样本容量趋于无穷大时,它的均值序列是否趋于总体真值; 5)一致性,即样本容量趋于无穷大时,它是否依概率收敛于总体的真值;6)渐进有效性,即样本容量趋于无穷大时,它在所有的一致估计量中是否具有最小的渐进方差。
第七章虚拟变量回归
第七章虚拟变量回归第七章虚拟变量回归第⼀节虚拟变量的性质在实际建模过程中,被解释变量不但受定量变量影响,同时还受定性变量影响。
例如需要考虑性别、民族、不同历史时期、季节差异、政府的更迭(⼯党-保守党)、经济体制的改⾰、固定汇率变为浮动汇率、从战时经济转为和平时期经济等。
这些因素也应该包括在模型中。
⼀、基本概念由于定性变量通常表⽰的是某种特征的有和⽆,所以量化⽅法可采⽤取值为1或0。
这种变量称作虚拟变量(dummy variable )。
虚拟变量也称:哑元变量、定性变量等等。
通常⽤字母D 或DUM 加以表⽰(英⽂中虚拟或者哑元Dummy 的缩写)。
⽤1表⽰具有某⼀“品质”或属性,⽤0表⽰不具有该“品质”或属性。
虚拟变量使得我们可以将那些⽆法定量化的变量引⼊回归模型中。
虚拟变量应⽤于模型中,对其回归系数的估计与检验⽅法和定量变量相同。
虚拟变量表⽰两分性质,即“是”或“否”,“男”或“⼥”等。
下⾯给出⼏个可以引⼊虚拟变量的例⼦。
例1:你在研究学历和收⼊之间的关系,在你的样本中,既有⼥性⼜有男性,你打算研究在此关系中,性别是否会导致差别。
例2:你在研究某省家庭收⼊和⽀出的关系,采集的样本中既包括农村家庭,⼜包括城镇家庭,你打算研究⼆者的差别。
例3:你在研究通货膨胀的决定因素,在你的观测期中,有些年份政府实⾏了⼀项收⼊政策。
你想检验该政策是否对通货膨胀产⽣影响。
上述各例都可以⽤两种⽅法来解决,⼀种解决⽅法是分别进⾏两类情况的回归,然后看参数是否不同。
另⼀种⽅法是⽤全部观测值作单⼀回归,将定性因素的影响⽤虚拟变量引⼊模型。
⼆、虚拟变量设置规则虚拟变量的设置规则涉及三个⽅⾯: 1.“0”和“1”选取原则虚拟变量取“1”或“0”的原则,应从分析问题的⽬的出发予以界定。
从理论上讲,虚拟变量取“0”值通常代表⽐较的基础类型;⽽虚拟变量取“1”值通常代表被⽐较的类型。
“0”代表基期(⽐较的基础,参照物);“1”代表报告期(被⽐较的效应)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•共点回归:截距相同斜率不同
•交叉(不同)回归:截距斜率均不同
第7章虚拟变量回归
三、虚拟解释变量综合应用
所谓综合应用是指将引入虚拟解释变量的加法方 式、乘法方式进行综合使用。 基本分析方式仍然是条件期望分析。 本课主要讨论
(1)结构变化分析; (2)交互效应分析; (3)分段回归分析
第7章虚拟变量回归
•虚拟变量数量的设置规
则
•1.若定性因素具有 个
相互排斥属性
(或几个水平),当回归模型有截距项时,只能引
入
• 个虚拟变量; •2.当回归模型无截距项时,则可引入 个虚拟 变量;否则,就会陷入“虚拟变量陷阱”。(为 什么?)
第7章虚拟变量回归
•一个例子(虚拟变量陷阱)
研究居民住房消费支出 和居民可支配收入 之间的
第7章虚拟变量回归
•表8.1 国民总收入与居民储蓄存款
单位:亿元
•数据来源:《中国统计年鉴2004》,中国统计出版社。表中“城乡居民人民币 储蓄存款年增加额”为年鉴数值,与用年底余额计算的数第7值章有虚拟差变量异回。归
第7章虚拟变量回归
•问题:如何刻画同时发展油菜籽生产和养蜂生产 的交互作用? •基本思想:在模型中引入相关的两个变量的乘积。 •区别之处在于,上页定义中的交互效应是针对数 量变量,而现在是定性变量,又应当如何处理?
第7章虚拟变量回归
•为了反映交互效应,将(1)变为:
•同时发展油菜籽和 •养蜂生产: •发展油菜籽生产:
第7章虚拟变量回归
•二、乘法类型
基本思想 以乘法方式引入虚拟变量时,是在所设立的模型中,将虚拟 解释变量与其它解释变量的乘积,作为新的解释变量出现在 模型中,以达到其调整设定模型斜率系数的目的。或者将模 型斜率系数表示为虚拟变量的函数,以达到相同的目的。 乘法引入方式:
(1)截距不变; (2)截距和斜率均发生变化; 分析手段:仍然是条件期望。
一、加法类型
以加法方式引入虚拟变量时,主要考虑的问 题是定性因素的属性和引入虚拟变量的个数。
分为四种情形讨论:
(1)解释变量只有一个定性变量而无定量变量, 而且定性变量为两种相互排斥的属性;
(2)解释变量分别为一个定性变量(两种属性) 和一个定量解释变量;
第7章虚拟变量回归
(3)解释变量分别为一个定性变量(两种以上属 性)和一个定量解释变量;
• •居民消费趋势方程:
•(t=1955,1956,…,2004)
第7章虚拟变量回归
•分析
•1979年之前,回归模型的斜率为 ;
•1979年之前,回归模型的斜率为
;
•■
•若统计检验表明, 显著不为零,则我国居民的 消费行为在1979年前后发生了明显改变。
第7章虚拟变量回归
第三节 案例分析
•为了考察改革开放以来中国居民的储蓄存款与收 入的关系是否已发生变化,以城乡居民人民币储 蓄存款年底余额代表居民储蓄( ),以国民总 收入GNI代表城乡居民收入,分析居民收入对储 蓄存款影响的数量关系,并建立相应的计量经济 学模型 。
•共同的特征:截距发生改变(?)
第7章虚拟变量回归
(3)一个定性解释变量(两种以上属性)和一个定 量解释变量的情形
第7章虚拟变量回归
第7章虚拟变量回归
(4)两个定性解释变量(均为两种属性)和一个定 量解释变量的情形
第7章虚拟变量回归
•夏季、农村居民
•冬季、农村居民
第7章虚拟变量回归
•上述图形的前提条件是什么?
•发展养蜂生产:
•基础类型:
第7章虚拟变量回归
•如何检验交互效应是否存在?
•若拒绝原假设,即交互效应对 产生了影响 (应该引入模型)。
第7章虚拟变量回归
•(3)分段回归分析
•作用: 提高模型的描述精度。 •虚拟变量也可以用来代表数量因素的不同阶段。 •分段线性回归就是类似情形中常见的一种。 •一个例子: 研究不同时段我国居民的消费行为。 •实际数据表明,1979年以前,我国居民的消费支 •出 呈缓慢上升的趋势;从1979年开始,居民消 •费支出为快速上升趋势。
•则模型(1)为
•则对任一家庭都有:
,
•即产生完全共线,陷入了“虚拟变量陷阱”。
•“虚拟变量陷阱”的实质是:完全多重共线性。
第7章虚拟变量回归
• 虚拟变量在回归模型中的角 • 色虚拟变量既可作为被解释变量,也可作为解释
•变量,分别称其为虚拟被解释变量和虚拟解释变量。 • 虚拟被解释变量的研究是当前计量经济学研究 的前沿领域,如MacFadden、Heckmen等人的微观 计量经济学研究,大量涉及到虚拟被解释变量的分 析。 • 本课程只是讨论虚拟解释变量的问题
第7章虚拟变量回归
• 运用OLS得到回归结果,再用t检验讨论因素 • 是否对模型有影响。 • 加法方式引入虚拟变量的一般表达式:
• 基本分析方法: 条件期望。
第7章虚拟变量回归
•加法方式引入虚拟变量的主要作用为: • 1.在有定量解释变量的情形下,主要改变方程 • 截距; • 2.在没有定量解释变量的情形下,主要用于方 • 差分析。
第7章虚拟变量回归
(1)截距不变的情形 •模型形式: •例:研究消费支出 受收入 、年份状况 的影响
第7章虚拟变量回归
(2)截距和斜率均发生变化 •模型形式:
• 例,同样研究消费支出 、收入 、年份状况 间的影
• 响关系。
第7章虚拟变量回归
•不同截距、斜率的组合图形
•重合回归:截距斜率均相同
•平行回归:截距不同斜率相同
第7章虚拟变量回归
2020/11/27
第7章虚拟变量回归
• 引子:男女大学生消费真有差异吗?
• 在对在校学生的消费行为进行的调查中,发现在校生 的消费行为呈现多元化的结构。人际交往消费、手机类消 费、衣着类消费、化妆品类消费、电脑类消费、旅游类消 费占有较大的比例;而食品类消费、学习用品类消费不突 显。
• 例1
•问题: •为何只选0、1,选2、3、4行吗?为什么?
第7章虚拟变量回归
•属性的状态(水平)数与虚拟变量数 量的关系
•定性因素的属性既可能为两种状态,也可能为多种 状态。例如,性别(男、女两种)、季节(4种状 态),地理位置(东、中、西部),行业归属,所 有制,收入的分组等。
第7章虚拟变量回归
第7章虚拟变量回归
为了捕获该影响,设
。假设边际
消费倾向 依赖于财产 。一个简单的表示方法
就是
。代入消费函数,有:
由于 捕获了收入和财产之间的相互作用而被 称为交互作用项。
显然,刻画交互作用的方法,在变量为数量(定 量)变量时, 是以乘法方式引入虚拟变量的。
第7章虚拟变量回归
•例: 是否发展油菜籽生产与是否发展养蜂生产的 差异对农副产品总收益的影响研究。 模型设定为:
第7章虚拟变量回归
例:比较改革开放前、后我国居民(平均)“储 蓄—收入”总量关系是否发生了变化? 模型的设定形式为 :
第7章虚拟变量回归
•回归方程:
•显然,只要 、 不同时为零,上述模型就能刻画 改革开放前后我国居民储蓄收入模型结构是否发生 变化。
第7章虚拟变量回归
问题:
1.本例中,平行、共点回归、不同的回归三模型 的经济学背景解释是什么?
(1)结构变化分析
结构变化的实质是检验所设定的模型在样本期内 是否为同一模型。显然,平行回归、共点回归、 不同的回归三个模型均不是同一模型。 平行回归模型的假定是斜率保持不变(加法类型, 包括方差分析); 共点回归模型的假定是截距保持不变(乘法类型, 又被称为协方差分析); 不同的回归的模型的假定是截距、斜率均为变动 的(加法、乘法类型的组合)。
显然,男女生在消费上存在差异。为了了解男、女生的 消费支出结构差异,应当如何建立模型? • 面临的问题:如何把男女生这样的非数量变量引 入方程?
第7章虚拟变量回归
问题的一般性描述
在实际建模中,一些定性变量具有不可忽视的重要影响。 例如,研究某个企业的销售水平,产业属性(制造业、零 售业)、所有制(私营、非私营)、地理位置(东、中、 西部)、管理者的素质、不同的收入水平等是值得考虑的 重要影响因素,但这些因素共同的特征是定性描述的。 如何对非定量因素进行回归分析? 采用“虚拟变量”对定性变量进行量化一种思路。
第7章虚拟变量回归
•第二节 虚拟解释变量的回归
• 本节基本内容:
• ●加法类型 • ●乘法类型
●虚拟解释变量综合应用
第7章虚拟变量回归
• 在计量经济学中,通常引入虚拟变量的方式分为 •加法方式和乘法方式两种:即
•实质:加法方式引入虚拟变量改变的是截距;
•
乘法方式引入虚拟变量改变的是斜率。
第7章虚拟变量回归
n 从理论上讲,虚拟变量取“0”值通常代表比较 的基础类型;而虚拟变量取“1”值通常代表被 比较的类型。 “0”代表基期(比较的基础,参照物); “1”代表报告期(被比较的效应)。
第7章虚拟变量回归
•例如,比较收入时考察性别的作用。当研究男性收入是 否高于女性时,是将女性作为比较的基础(参照物),故 有男性为“1”,女性为“0”。
数量关系。回归模型的设定为:
现在要考虑城镇居民和农村居民之间的差异,如何办?
为了对 “城镇居民”、“农村居民”进行区分,分析
各自在住房消费支出 上的差异,设
为城镇;
为农村,则模型为
(模型有截距,“居民属性”定性变量只有两个相互排斥 的属性状态( ),故只设定一个虚拟变量。)
第7章虚拟变量回归
•若对两个相互排斥的属性 “居民属性” ,仍然 •引入 个虚拟变量,则有
(4)解释变量分别为两个定性变量(各自分别是 两种属性)和一个定量解释变量;
思考:
四种加法方式引入虚拟变量会产生什么效应?