课程释疑7 第七章 假设检验

合集下载

教案_第七章 假设检验

教案_第七章 假设检验

《统计学》教案第七章假设检验教学目的:介绍假设检验的基本思想、步骤和规则,两类错误的概念,以及重要总体参数的检验方法。

基本要求:通过本章学习要求同学们理解假设检验的基本思想、规则和两类错误的概念,掌握假设检验的步骤和总体均值、成数、方差的检验方法。

重点和难点:假设检验的基本思想、规则和两类错误的概念。

教学内容:§1假设检验的一般问题§2 一个正态总体的参数检验§3二个正态总体的参数检验§4假设检验中的其它问题学时分配:4学时主要参考书目:1、陈珍珍等,统计学,厦门:厦门大学出版社,2003年版2、于磊等,统计学,上海:同济大学出版社,2003年3、徐国强等,统计学,上海:上海财经大学出版社,2001年版思考题:1、请阐述假设检验的步骤2、假设检验的结果是接受原假设,是否表明原假设是正确的?3、如何构造检验统计量?§1假设检验的一般问题教学内容一、假设检验的概念1.概念⏹事先对总体参数或分布形式作出某种假设⏹然后利用样本信息来判断原假设是否成立2.类型⏹参数假设检验----检验总体参数⏹非参数假设检验----检验总体分布形式3.特点⏹采用逻辑上的反证法⏹依据统计上的小概率原理----小概率事件在一次试验中不会发生二、假设检验的步骤▪提出原假设和备择假设▪确定适当的检验统计量▪规定显著性水平α▪计算检验统计量的值▪作出统计决策三、假设检验中的小概率原理在一次试验中小概率事件一旦发生,我们就有理由拒绝原假设。

因为我们拒绝发生错误的可能性至多是α四、假设检验中的两类错误1. 第一类错误(弃真错误)⏹原假设为真时,我们拒绝了原假设⏹第一类错误的概率为α2. 第二类错误(取伪错误)⏹原假设为假时,我们接受了原假设⏹第二类错误的概率为 β⏹比第一类错误更容易发生即接受原假设很容易发生五、Neyman和Pearson检验原则在控制犯第一类错误的概率α条件下, 尽可能使犯第二类错误的概率β减小。

第7章假设检验

第7章假设检验
表达:原假设:H0:EX=75;备择假设: H1:EX≠75
判断结果:接受原假设,或拒绝原假设。
基本思想
参数的假设检验:已知总体的分布类型,对分布函数或 密度函数中的某些参数提出假设,并检验。
基本原则——小概率事件在一次试验中是不可能发生的。
思想:如果原假设成立,那么某个分布已知的统计 量在某个区域内取值的概率应该较小,如果样本的观 测数值落在这个小概率区域内,则原假设不正确,所以, 拒绝原假设;否则,接受原假设。
Hypothesis Testing
■ 假设检验
抗氧化剂
乙酰胆碱酯酶抑制剂 抗炎药物
假设检验是统计钙推通断的道另阻一重滞要剂内容。正是应用统计推断的 理论和方法,人们才能顺利地通过有限的样本信息去把握总体特征, 实现抽样研究的目的。
21
问题实质上都是希望通过样本统计量与 总体参数的差别,或两个样本统计量的 差别,来推断总体参数是否不同。这种 识别的过程,就是本章介绍的假设检验 (hypothesis test)。
假设检验——根据问题的要求提出假设,构造适当的统 计量,按照样本提供的信息,以及一定的 规则,对假设的正确性进行判断。
基本原则——小概率事件在一次试验中是不可能发生的。
1、假设检验的基本思想
假设检验是利用小概率反证法思想,从问
题的对立面(H0)出发间接判断要解决的问 题(H1)是否成立。然后在H0成立的条件下 计算检验统计量,最后获得P值来判断。
Hypothesis Testing
H0: 0 H1: 0
• H1 的内容反映了检验的单双侧。若 H1
为 0 或 < 0,则为单侧检验(onesided test)。若 H1 为 0,则为双侧

《概率论与数理统计》第七章假设检验.

《概率论与数理统计》第七章假设检验.

《概率论与数理统计》第七章假设检验.第七章假设检验学习⽬标知识⽬标:理解假设检验的基本概念⼩概率原理;掌握假设检验的⽅法和步骤。

能⼒⽬标:能够作正态总体均值、⽐例的假设检验和两个正态总体的均值、⽐例之差的假设检验。

参数估计和假设检验是统计推断的两种形式,它们都是利⽤样本对总体进⾏某种推断,然⽽推断的⾓度不同。

参数估计是通过样本统计量来推断总体未知参数的取值范围,以及作出结论的可靠程度,总体参数在估计前是未知的。

⽽在假设检验中,则是预先对总体参数的取值提出⼀个假设,然后利⽤样本数据检验这个假设是否成⽴,如果成⽴,我们就接受这个假设,如果不成⽴就拒绝原假设。

当然由于样本的随机性,这种推断只能具有⼀定的可靠性。

本章介绍假设检验的基本概念,以及假设检验的⼀般步骤,然后重点介绍常⽤的参数检验⽅法。

由于篇幅的限制,⾮参数假设检验在这⾥就不作介绍了。

第⼀节假设检验的⼀般问题关键词:参数假设;检验统计量;接受域与拒绝域;假设检验的两类错误⼀、假设检验的基本概念(⼀)原假设和备择假设为了对假设检验的基本概念有⼀个直观的认识,不妨先看下⾯的例⼦。

例7.1 某⼚⽣产⼀种⽇光灯管,其寿命X 服从正态分布)200 ,(2µN ,从过去的⽣产经验看,灯管的平均寿命为1550=µ⼩时,。

现在采⽤新⼯艺后,在所⽣产的新灯管中抽取25只,测其平均寿命为1650⼩时。

问采⽤新⼯艺后,灯管的寿命是否有显著提⾼?这是⼀个均值的检验问题。

灯管的寿命有没有显著变化呢?这有两种可能:⼀种是没有什么变化。

即新⼯艺对均值没有影响,采⽤新⼯艺后,X 仍然服从)200 ,1550(2N 。

另⼀种情况可能是,新⼯艺的确使均值发⽣了显著性变化。

这样,1650=X 和15500=µ之间的差异就只能认为是采⽤新⼯艺的关系。

究竟是哪种情况与实际情况相符合,这需要作检验。

假如给定显著性⽔平05.0=α。

在上⾯的例⼦中,我们可以把涉及到的两种情况⽤统计假设的形式表⽰出来。

概率论与数理统计教案 第7章 假设检验

概率论与数理统计教案 第7章 假设检验

40
Sw
11 n1 n2
~ t(n1 n2 2)
拒绝域
U u
2
U u
U u T t (n1 n2 2)
2
未知,但
2 1
2 2
1 2 1 2
1, 2
已知
2 1
2 2
2 1
2 2
2 1
2 2
1, 2
未知
2 1
22
2 1
2 2
2 1
2 2
1 2 1 2
2 1
2 2
2 1
2 2
2 1
2
未知,关于方差比
2 1 2 2
的检验
检验假设: H 0
:
2 1
2 2
,
H1
:
2 1
2 2
.
选取统计量为 F
S12
S
2 2
2 1
2 2
S12
2 1
S 22
2 2


H0 为真时, F
S12 S22
~
F(n1 1, n2
1) ,可得显著性水平为的拒绝域为
三.单侧检验
F
F1
2
(n1
1, n2
1)

F
40
选取检验统计量为 T
X
Y Sw
( 1
1
1
2
)
,其中
Sw2
n1 n2
(n1 1)S12 (n2 1)S22 n1 n2 2

当 H0 为真时,统计量T X Y
Sw
11 n1 n2
~ t(n1 n2 2) ,
可得显著性水平为 的拒绝域为{T t (n1 n2 2)}.

第七章 假设检验基础()精品PPT课件

第七章 假设检验基础()精品PPT课件

差值
1 1206.44
1678.44
472.00
2
921.69
1293.36
Hale Waihona Puke 371.673 1294.08
1711.66
417.58
4
945.36
1416.70
471.34
5
721.36
1204.55
483.19
6
692.32
1147.30
454.97
7
980.01
1379.59
399.58
➢ 买小米手机吗? 对手机评价:适合(买)、不适合(不买)
➢ 国庆节去八里沟怎样吗? 对景区的评价:好玩(去)、不好玩(不去)
所有的决策都遵循相同的基本模式
陈述多种可供选择的方案(假设) 收集支持这些方案的证据 根据证据的强弱做出决策 根据决定执行某种行为
统计学中的假设检验也是一种决策过程,同样遵循 这一基本模式。
研究结果可供选择的结论(目前的假设)有哪些?
1.该县儿童总体平均闭合月龄与一般儿童没有差异 2.该县儿童总体平均闭合月龄迟于一般儿童
两种假设在统计上的含义
抽样研究存在抽样误差!!
样本1
总体 均数=14.1
样本2
X1 14.3 X2 14.0
从总体1中抽样
样本1 X1 14.3
µ1=14.1
样本2 X2 14.0
s/ n 5.08/ 36
自由度:
n 1 3 6 1 35
3.确定P值
P值的定义 如果H0成立的条件下,出现统计量目
前值及更不利于H0的数值的概率。
直观地看:就是统计量对应分布曲线下 的尾部面积。
通过查表可以得到 对应统计量的尾部 面积,即P值

课程释疑第七章假设检验

课程释疑第七章假设检验

r
ai 0
ij相互独立,且都服从N(0,2)
i1
假设H0 :1 =2 =…=r 可改写为
H0 :a1 =a2 =…=ar =0
3/3/2021
宁波工程学院 理学院
第八章 方差分析与回归分析
第12页
8.1.3 平方和分解(理论分析)
一、组内偏差与组间偏差
i.
1m m j 1
ij,
1r
ri 1
i.1 ni r1jm 1
ij
1、组内偏差 y ij y i. (i ij) (i i) ij i
仅反映组内数据与组内平均的随机误差;
2、组间偏差 y i . y (i i .) ( ) a i i .
除反映随机误差外还反映了第i个水平的效应ai
3、总偏差 y ij y ( y ij y i.) ( y i. y ) a i ij
3/3/2021
宁波工程学院 理学院
第八章 方差分析与回归分析
第5页
本例中,我们要比较的是三种饲料对鸡的增肥 作用是否相同。为此,把饲料称为因子,记为A, 三种不同的配方称为因子A的三个水平,记为A1, A2, A3,使用配方Ai下第 j 只鸡60天后的重量用yij 表示,i=1, 2, 3, j=1, 2,, 8。我们的目的是比较 三种饲料配方下鸡的平均重量是否相等,为此, 需要做一些基本假定,把所研究的问题归结为 一个统计问题,然后用方差分析的方法进行解 决。
y2
┆┆
yr1 yr2 … yrm
Tr
yr
Ty
宁波工程学院 理学院
第八章 方差分析与回归分析
第11页
单因子方差分析的统计模型如下:
y ijiij,诸 ij相 互 独 立 , 且 都 服 从 N (0 , 2 )

第七章 假设检验

第七章 假设检验

|u| = x 0 2.2 1.96, 0 / n
于是根据小概率事件实际不可能性原理,拒绝假设 H0 ,
认为包装机工作不正常.
(2)若取定 0.01,
则 k u / 2 u0.005 2.58,
|u|= x 0 2.2 2.58, 于是 0 / n
接受假设 H0 , 认为包装机工作正常.
注:上述 称为显著性水平.此例表明假设检验的结论与选取的显著性水平 有 密切的关系.所以,必须说明假设检验的结论是在怎样的显著水平 下作出的.
ch3-8
2.假设检验的基本思想及推理方法
1)假设检验基本思想 (1) 在假设检验中,提出要求检验的假设,称为原假设或零假设,
记为 H0 ,原假设如果不成立,就要接受另一个假设,这另一 个假设称为备择假设或对立假设,记为 H1 。 (2) 假设检验的依据——小概率原理:小概率事件在一次试验中 实际上不会发生。 (3) 假设检验的思路是概率性质的反证法。即首先假设成立,然 后根据一次抽样所得的样本值信息,若导致小概率事件发生, 则拒绝原假设,否则接受原假设。
C3 12
p3 (1
p)9
0.0097
0.01
这是 小概率事件 , 一般在一次试验中
是不会发生的, 现一次试验竟然发生, 故认
为原假设不成立, 即该批产品次品率p 0.04
则该批产品不能出厂.
P12 (1)
C1 12
p1 (1
p)11
0.306
0.3
ch3-12
这不是小概率事件,没理由拒绝原假设,
因为 X 是 的无偏估计量,所以,若 H 0 为真,则 X 0 不ch应3-6X 太大, Nhomakorabea0
0 / n

第7章假设检验

第7章假设检验

第七章假设检验上一章介绍了总体均数的估计方法—区间估计,即在给定的置信度下(如95%),采用样本统计量X估计总体参数 的可能范围。

区间估计属于统计推断(statistical inference)的内容之一,本章介绍另一类重要的统计推断方法―假设检验(hypothesis test)。

第一节基本思想下面通过两个例子介绍假设检验的目的和基本思想。

例7.1 将病情相似的某病患者随机分配到两组,分别接受A和B两种不同的治疗方法,观察两组疗效的差异,结果见表7.1。

表7.1 两组患者的疗效比较治疗方法疗效合计有效率(%) 有效无效A 46 48 94 48.9B 34 60 94 36.2合计80 108 188 42.6 在本例中,A治疗方法共治疗了94例病人,其中46例有效,有效率为48.9%;B治疗方法也治疗了94例病人,其中34例有效,有效率为36.2%。

两种方法有效率的差异为12.7%,可否据此认为A治疗方法的疗效优于B方法呢?如果真实的情况是A方法与B方法具有相同的疗效,那么理论上A治疗组的有效率应该等于B治疗组的有效率。

但是,由于个体之间存在变异,即使两组使用同样的治疗方法,实际上也不一定得到完全相同的样本有效率。

A组的有效率48.9%是一个样本率,可以看成A治疗方法的总体有效率的一个样本估计值;B组的有效率36.2%也是一个样本率,也可以看成B治疗方法的总体有效率的一个样本估计值。

因此,这里不能立刻得出A治疗方法优于B治疗方法的结论。

A组与B组有效率之差为12.7%,其产生的原因可能有两种:一是仅由于抽样误差造成;二是总体率之差造成,即体现了两种疗法效果的本质差异。

这里所谓的“抽样误差造成”,指的是两种疗法的总体有效率本相同,样本率之差是由于偶然性造成的。

那么,本例中12.7%的有效率之差究竟是偶然性造成的,还是体现了两种疗法总体有效率的差异呢?假设检验可以帮助回答这个问题。

假设A 疗法和B 疗法的总体有效率相等,那么由于偶然性得到两组有效率相差12.7%以及更极端的情况(大于12.7%)的可能性有多大?如果能够算出这个可能性(即概率P 值)的大小,就可以下结论了。

第七章-假设检验PPT

第七章-假设检验PPT

(Xi X )2
i 1

n
[例7-5]某制药厂试制某种安定神经的新药,给10个病人 试服,结果各病人增加睡眠量如表7-2所示。
表7-1 病人服用新药增加睡眠量表
病人号码
1
2
34
5 6 7 8 9 10
增加睡眠(小时) 0.7 -1.1 -0.2 1.2 0.1 3.4 3.7 0.8 1.8 2.0
n N 1
其中, 是假设的总体比例,p 是样本比例
7.3.1 单个总体比例检验
❖ 这个检验统计量近似服从标准正态分布。如果抽样比例n/N 很小时,也可以使用下列形式:
Z p (1 )
n
[例7-7]某企业的产品畅销国内市场。据以往调查,购买该 产品的顾客有50%是30岁以上的男子。该企业负责人关心这 个比例是否发生了变化,而无论是增加还是减少。于是,该企 业委托了一家咨询机构进行调查,这家咨询机构从众多的购买 者中随机抽选了400名进行调查,结果有210名为30岁以上的 男子。该厂负责人希望在显著性水平0.05下检验“50%的顾客 是30岁以上的男子”这个假设。
解:从题意可知,X =1.36米,0=1. 32米, =0.12米。 (1)建立假设:H0: =1.32,H1: 1.32
(2)确定统计量:
Z X 1.36 1.32 1.67 / n 0.12 / 25
(3)Z的分布:Z~N(0,1)
(4)对给定的 =0.05确定临界值。因为是双侧备择假设所以
动生产率的标准差相等.问:在显著性水平0.05下,改革前、 后平均劳动生产率有无显著差异? 解:(1)建立假设H0:1 2 (没有差别)。
H1:1 2 (有差别)(左单侧备择假设) (2)计算统计量:

第七章假设检验

第七章假设检验

第七章 假设检验一、教材说明本章主要讲假设检验的基本思想与概念、正态总体参数的假设检验这2节的内容. 1、本章的教学目的与要求(1)使学生了解假设检验的基本概念; (2)使学生了解假设检验的基本思想; (3)使学生掌握假设检验的基本步骤;(4)使学生会计算检验的两类错误,搞清楚两类错误的关系;(5)使学生掌握正态总体参数的假设检验,主要是检验统计量及其分布,检验拒绝域的确定;(6)使学生灵活运用所学知识解决实际问题. 2、本章的重点与难点本章的重点是正态总体参数的各种假设检验中的检验统计量及其分布,难点是假设检验拒绝域的确定.二、教学内容下面主要分2节来讲解本章的主要内容.§7.1 假设检验的基本思想与概念教学目的:要求学生了解假设检验的基本思想,理解假设检验的基本概念,认识假设检验问题,熟悉假设检验的基本步骤.教学重点:基本概念,假设检验的基本步骤. 教学难点:基本概念的理解.教学内容:本节内容包括假设检验的基本概念,假设检验的基本步骤. 7.1.1 假设检验的基本概念1.统计假设、原假设、备择假设把任意一个有关未知分布的假设统称为统计假设,简称假设.例7.1.1 某厂生产的合金强度服从正态分布)16,(θN ,其中θ的设计值为不低于110(Pa ),为保证质量,该厂每天都要对生产情况做例行检查,以判断生产是否正常进行,即该合金的平均强度不低于110(Pa ),某天从生产中随机抽取25块合金,测得强度值为2521,,,x x x ,其均值为)(108Pa x =,问当时生产是否正常?如果生产是正常进行的,则合金平均强度不低于110(Pa ),而合金强度服从)16,(θN ,故平均强度110≥θ,如果生产不正常,则110<θ.现在的问题是据样本得到的信息来判断110≥θ还是110<θ,此问题不是参数估计问题,而是一假设检验问题.这样对未知参数,提出两个对立的假设:称110:0≥θH 为原假设,110:1<θH 为备择假设.通常将不应轻易加以否定的假设做为原假设,以0H 记,当0H 被拒绝时而接受的假设称为备择假设,用1H 表示.2.参数假设、非参数假设参数假设:总体分布类型已知,对分布中的未知参数的假设. 非参数假设:不同于参数假设的其他假设(包括对母体分布函数的类型及分布的某些特征的假设).我们的任务就是根据样本得到的信息,在原假设0H 与备择假设1H 两者中做出一个判断:拒绝还是接受0H .7.1.2 假设检验的基本步骤1、建立假设依据实际问题建立一对假设,例7.1.1的假设为110:110:10<≥θθH vsH2、选择检验统计量,给出拒绝域形式在0H 与1H 两者中做出一个选择,也即完成一次判断,必须建立一个检验法则,而由样本对原假设进行判断总是通过一个统计量完成的,该统计量称为检验统计量.一般而言,检验统计量的选择应该使在0H 、1H 分别成立时,统计量的值有较大差异,从而能够做出判断.在例7.1.1中,样本均值x 就是一个很好的检验统计量,它是总体参数θ的无偏估计.样本均值x 愈大,意味着总体均值θ也大;样本均值愈小,意味着总体均值θ也小.由于样本的随机性,只有当x 小到一定程度,则应认为原假设0H 不正确.故在样本均值x 的取值中有一个临界值C (待定),使得当C x ≤时,认为0H 不正确,也即拒绝0H ,此时称}:{C x x W ≤=为该检验的拒绝域,当C x >时,认为0H 正确,则接受0H ,对应的}:{C x x W >=为该检验的接受域.一般地,使原假设0H 被拒绝的样本观测值所在区域称为拒绝域,记为W ,从而规定:当W x x n ∈),,(1 时,拒绝0H ;当W x x n ∈),,(1 时 ,接受0H .从而一个拒绝域W 唯一确定一个法则.3、选择显著性水平 α 通常=α0.05,0.01,0.1.4、给出拒绝域W利用统计量),,(1n x x T ,使得01),,((H W x x T P n ∈ 为真)α=5、做判断将样本观测值代入检验统计量,看该统计量的值是否落入拒绝域W ,当W x x T n ∈),,(1 时,拒绝0H ,当W x x T n ∉),,(1 时,接受0H .三、假设检验的两类错误与势函数 1、两类错误对给出的拒绝域W ,由于样本的随机性,我们做出的判断不可能100%正确,它可能会犯两类错误:第一:0H 为真时,W x x n ∈),,(1 ,从而拒绝0H .这种错误称为第一类错误,其发生的概率称为犯第一类错误的概率或拒真概率,通常记为α,即α=P (拒绝0H 0H 为真)=01),,((H W x x T P n ∈ 为真)=01],),,[(Θ∈∈θθW x x P n第二:在0H 不真时,W x x n ∈),,(1 ,从而接受0H .这种错误称为第二类错误,其发生的概率称为犯第二类错误的概率或受伪概率,通常记为β,即β=P (接受0H 0H 不真)=01),,((H W x x T P n ∈ 不真)=111],),,[(1]),,[(Θ∈∈-=∈θθθW x x P W x x P n n2、势函数定义7.1.1 设检验问题1100::Θ∈Θ∈θθH vs H 的拒绝域为W ,则样本观测值),,(1n x x 落入拒绝域W 内的概率称为该检验的势函数,即101],),,[()(Θ⋃Θ=Θ∈∈=θθθW x x P g n其中10,ΘΘ是参数空间两个互不相交的子集. 注 由以上α、β及势函数的定义知⎩⎨⎧Θ∈-Θ∈=10),(1),()(θθβθθαθg3、两类错误的关系对例7.1.1,}:{c x x W ≤=,故)4()44(][)(θθθθθ-Φ=-≤-=≤=c c c x P c x P g ,从而犯两类错误的概率)(θα,)(θβ分别为:0),54()(Θ∈-Φ=θθθαc1),54(1)(Θ∈-Φ-=θθθβc从而当α减少时,c 也减少,而c 的减少必导致β的增大;当β减少时,c 会增大,而c 的增大必导致α的增大,故得到两类错误的关系:(1)在样本容量n 一定时,α、β不能同时小,α的增大必导致β的减少;α的减少必导致β的增大;(2)要使α、β同时小,则必须n 充分大,但这又是不现实的.为此,采用折中的方法:控制α,使β尽量小,但有时这样的检验也不存在,从而我们只控制α,而不管β,此时求拒绝域W 只涉及原假设0H ,而不管备择假设1H .4、水平为α的显著性检验 定义7.1.2 对检验问题1100::Θ∈Θ∈θθH vs H ,如果一个检验满足对任意的0Θ∈θ,都有αθ≤)(g则称该检验是显著性水平为α的显著性检验,简称水平为α的检验. 在例7.1.1 取=α0.05,则110≥∀θ有05.0)54()(≤-Φ=θθc g ,由于)(θg 是θ的减函数,故只须05.0)54110()110(=-Φ=c g ,即05.0)]110(45[=-Φc从而684.108645.18.0110645.1)110(4595.0)]110(45[=⨯-=⇒=-⇒=-Φc c c 拒绝域为}684.108:{≤=x x W ,又因为684.108108<=x ,所以拒绝0H ,认为该日生产不正常.§7.2 正态总体参数假设检验教学目的:理解和掌握单个以及两个正态总体均值的假设检验的方法与思想,掌握正态总体方差检验的方法.教学重点:检验方法的掌握,检验方法思想的理解. 教学难点:检验方法的掌握.教学内容:本节内容包括单个正态总体均值的假设检验,两个正态总体均值差的检验,正态总体方差的检验.参数假设检验常见的有三种基本形式 (1)0010::H vs H θθθθ≤>(2)0010::<H vs H θθθθ≥ (3)0010:=:H vs H θθθθ≠一般来说,对这三种假设采取的检验统计量是相同的,差别在拒绝域上.当备择假设1H 在原假设0H 一侧时的检验称为单侧检验,当备择假设1H 分散在原假设0H 两侧时的检验称为双侧检验.(1),(2)是单侧检验,(3)是双侧检验.7.2.1 单个正态总体均值的假设检验设n x x x ,,,21 是来自正态总体),(2σμN 的样本,对均值μ考虑如下的检验: 0100::μμμμ>≤H vs H (1) 0100::μμμμ<≥H vs H (2) 0100::μμμμ≠=H vs H (3)一 2σ已知时的u 检验对单侧检验(1),由于x 是μ的无偏估计,选取统计量u=故当样本均值x 不超过设定均值0μ时,应接受0H ,而当样本均值x 超过设定均值0μ时,应拒绝0H ,但由于样本的随机性,x 比0μ大一点就拒绝0H 似乎不当,只有当x 比0μ大到一定程度时拒绝0H 才是恰当的.故存在临界值c ,拒绝域12{(,,,);}n W x x x u c =≥ ,常简记为{}u c ≥.若要求水平为α,则c 应满足0()=P u c μα≥,因为21~(,)x N nμσ,故0μμ=时~(0,1)x u N =知1c u α-=,所以拒绝域1{;}W u u u α-=≥.该检验用的检验统计量是u 统计量,一般称为u 检验. 易验证1{;}W u u u α-=≥是检验0100::μμμμ>≤H vs H 的显著性水平为α的检验.类似地对0100::μμμμ<≥H vs H 的显著性水平为α的拒绝域{;}W u u u α=<;0100::μμμμ≠=H vs H 的显著性水平为α的拒绝域12{;}W u u u α-=≥.例7.2.1 从甲地发送一个讯号到乙地,设乙地接受到的讯号值是一个服从正态分布)2.0,(2μN 的随机变量,其中μ为甲地发送的真实讯号值.现甲地重复发送同一讯号5次,乙地接受到的讯号值为8.05 8.15 8.2 8.1 8.25设接受方有理由猜测甲地发送的讯号值为8,问能否接受该猜测?=α0.05 分析 此时正态分布的方差已知,对均值进行检验,利用U —检验. 解 总体2~(,0.2)X N μ ,待检验的原假设0H 与备择假设分别为1H :01:8:8H vs H μμ=≠.这是一个双侧检验问题,检验的拒绝域为12{;}u u uα-≥,取0.975=0.05,=1.96u α,计算得=8.15,15-8)/0.2=1.68x u ,u 值未落入拒绝域内,故不能拒绝原假设,及接受原假设,可认为猜测成立.2、σ未知时的t 检验若2σ未知,则上述的随机变量x u =不再是统计量,自然我们要用2σ的无偏估计2211()1n ii s x x n ==--∑代替2σ,此时有0()x t s μ-=,且0μμ=时~(1)t t n =-,类似于2σ已知时均值μ的检验问题的讨论得到:0100::μμμμ>≤H vs H 的水平为α的拒绝域为1{;(1)}W t t t n α-=≥- 0100::μμμμ<≥H vs H 的水平为α的拒绝域为{;(1)}W t t t n α=≤-0100::μμμμ≠=H vs H 的水平为α的拒绝域为12{;(1)}W t t tn α-=≥-例7.2.2 某厂生产的某种铝材的长度服从正态分布,其均值设定为240cm ,现从该厂抽取5件产品,测得其长度为(单位:cm )239.7 239.6 239 240 239.2试判断该厂此类铝材的长度是否满足设定要求?=α0.05分析 此时正态分布的方差未知,对均值进行检验,利用T —检验. 解 略.综上,关于单个正态总体均值的假设检验问题可汇总成如下的表:7.2.2 两个正态总体均值差的检验设m x x x ,,,21 是来自总体X 服从),(211σμN 的样本,n y y y ,,,21 是来自总体Y 服从),(222σμN 的样本,且两样本相互独立,考虑如下的三种检验:0:0:211210>-≤-μμμμH vs H (1)0:0:211210<-≥-μμμμH vs H (2)0:0:211210≠-=-μμμμH vs H (3)主要分两种情况讨论.12,σσ已知时的两样本u 检验此时21μμ-的估计y x -的分布完全已知,),(~222121nmN y x σσμμ+--,由此可采用u 检验法,检验统计量为x yu =在21μμ=时,~(0,1)x yu N =.检验的拒绝域取决于备择假设的形式.上述三对假设检验的拒绝域分布为:1{;}W u u u α-=≥ {;}W u u u α=<12{;}W u u uα-=≥σσσ==21但未知时的两样本t 检验在22221σσσ==未知时,类似于单个正态总体方差未知时均值的检验,我们仍用2σ的无偏估计代替2σ,而此时可以证明2σ的无偏估计为:2222211(1)(1)1[()()]22m n x y wi i i i m s n s s x x y y m n m n ==-+-=-+-=+-+-∑∑ 于是有~(2)x y t t m n =+-从而检验统计量为x yt =在021=-μμ时,)2(~11-++-=n m t nm S y x T w.上述三对假设检验的拒绝域分布为:1{;(2)}W t t t m n α-=≥+-{;(2)}W t t t m n α=≤+-12{;(2)}W t t tm n α-=≥+-例7.2.3 某厂铸造车间为提高铸件的耐磨性而试制了一种镍合金铸件以取代铜合金铸件,从两种铸件中各抽取一个容量分别为8和9的样本,测得其硬度(一种耐磨性指标)为:镍合金 76.43 76.21 73.58 69.69 65.29 70.83 82.75 72.34铜合金 73.66 64.27 69.34 71.37 69.77 68.12 67.27 68.07 62.61 根据专业经验,硬度服从正态分布,且方差保持不变,试在显著性水平=α0.05下判断镍合金的硬度是否有明显提高? 解 略.一、 单个正态总体方差的2χ检验设总体),(~2σμN X ,n x x x ,,,21 是来自该总体的样本,对方差2σ考虑如下的三种检验:221220::σσσσ>≤H vs H (1) 221220::σσσσ<≥H vs H (2)2212020::σσσσ≠=H vs H (3)1、均值μ未知时方差的检验由于μ未知,2211()1n ii s x x n ==--∑是2σ的无偏估计,且202σσ=有)1(~)1(22022--=n S n χσχ对于显著性水平α,对应上述三种假设检验的拒绝域分布为:2221{;(1)}W n αχχχ-=≥- 222{;(1)}W n αχχχ=≤-22212{;(1)W n αχχχ-=≥-或222(1)}n αχχ≤-例7.2.4 某类钢板每块的重量X 服从正态分布,其一项质量指标是钢板重量的方差不得超过0.0162kg .现从某天生产的钢板中随机抽取25块,得其样本方差2S =0.0252kg .问该天生产的钢板重量的方差是否满足要求?=α0.05.解 略.2、均值μ已知时方差的检验此时,检验统计量取为20212)(σμχ∑=-=ni ix,且220σσ=时)(~)(220212n xni iχσμχ∑=-=故对均值μ已知时方差的三种检验,我们只需将均值μ未知时方差的三种检验中2χ—分布的自由度变一下就可得到检验的拒绝域.)二 两个正态总体方差比的F 检验设m x x x ,,,21 是来自总体X 服从),(211σμN 的样本,n y y y ,,,21 是来自总体Y 服从),(222σμN 的样本,且两样本相互独立,考虑如下的三种检验:2221122210::σσσσ>≤H vs H (1) 2221122210::σσσσ<≥H vs H (2) 2221122210::σσσσ≠=H vs H (3) 此处21,μμ均未知,22,x y s s 分别表示总体X 、Y 的样本方差,易知221()x E s σ=,222()yE s σ= 从而建立检验统计量22xys F s =当2212σσ=时,22~(1,1)xys F F m n s =--,此时,上述三个检验的拒绝域分别为:)}1,1(;{1--≥=-n m F F F W α )}1,1(:{--≤=n m F F F W α)1,1(:{21--≥=-n m FF F W α或)}1,1(2--≤n m F F α例7.2.5 甲、乙两台机床加工零件,零件的直径服从正态分布,总体方差反映了加工的精度,为比较两台机床的加工精度有无区别,现从各自加工的零件中分别抽取7件产品和8件产品,测得直径为:X (机床甲) 16.2 16.4 15.8 15.5 16.7 15.6 15.8Y (机床乙) 15.9 16.0 16.4 16.1 16.5 15.8 15.7 15.0 取 =α0.05. 解 略.)1)1§7.3 其他分布参数的假设检验教学目的:了解指数分布参数的假设检验,比例的检验,大样本检验,会解决简单的实际问题.教学重点:对于检验方法的理解. 教学难点:解决简单的实际问题.教学内容:本节内容包括指数分布参数的假设检验,比例p 的检验,大样本检验,检验的p 值.7.3.1 指数分布参数的假设检验设n x x x ,,,21 是来自指数分布1()Exp θ的样本,现考虑关于θ的如下检验问题:0010::H vs H θθθθ≤>,拒绝域的自然形式是={}W x c ≥,下面讨论x 的分布.考虑θ的充分统计量x ,在0=θθ时,0=1=~(,1)ni i nx x Ga n θ∑,由咖玛分布的性质可知2202=~(2)nxn χχθ,于是可用2χ作为检验统计量并利用2(2)n χ的分位数建立检验的拒绝域221-={(2n)}W αχχ≥.类似可得,对关于θ的另两种检验问题:0010::<H vs H θθθθ≥, 0010:=:H vs H θθθθ≠检验统计量仍是2χ,拒绝域分别是22={(2n)}W αχχ≤,22221-22={(2n)(2n)}W ααχχχχ≤≥或.例7.3.1 设我们要检验某种元件的平均寿命不小于6000h ,假定元件寿命为指数分布,现取5个元件投入试验,观测到如下5个失效时间(h ) 395 4094 119 11572 6133 解:这是一个假设检验问题,检验的假设为 01:6000:<6000H vs H θθ≥经计算=4462.6x ,故检验的统计量为201044626===7.43776000xχθ, 若取=0.05α,查表得20.05(10)=3.94χ,由于220.05>(10)χχ,故接受原假设,可以认为平均寿命不低于6000h.7.3.2 比例p 的检验比例p 可看做某时间发生的概率,即看作二点分布(1,)b p 中的参数.作n 次独立重复试验,以x 记该事件发生的次数,则~(n,)x b p . 现考虑如下单边假设检验问题 0010::H p p vs H p p ≤>,找一个0c ,使得00--0000==+1(1-)>>(1-)nni n ii n i i c i c n n p p p p i i α⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭∑∑,0=+1c c 可得水平为α的检验.对检验问题0010::<H p p vs H p p ≥,检验的拒绝域为={x }W c ≤,c 为满足-00=0(1-)ci n ii n p p i α⎛⎫≤ ⎪⎝⎭∑的最大正整数. 对检验问题0010:=:H p p vs H p p ≠,检验的拒绝域为12={x x c }W c ≤≥或,1c 为满足1-00=0(1-)2c i n i i n p p i α⎛⎫≤ ⎪⎝⎭∑的最大正整数,2c 为满足2-00=c (1-)2ni n i i n p p i α⎛⎫≤ ⎪⎝⎭∑的最小正整数.例7.3.2 某厂生产的产品优质品率一直保持在40%,近期对该厂生产的该类产品抽检20件,其中优质品7件,在=0.05α下能否认为优质品率仍保持在40%?解:这是一个假设检验问题,以p 表示优质品率,以x 表示20件产品中的优质品数,则~(20,)x b p ,待检验的原假设为01:=0.4:0.4H p vs H p ≠,拒绝域为12={x x c }W c ≤≥或,下求1c ,2c .由于(3)=0.0160<0.P x P x ≤≤,故取1=3c ,又由于(11)=0.0565>0.025>(12)=0.0210P x P x ≥≥,故取2=12c ,拒绝域为={x 3x 12}W ≤≥或由于观测值没有落入拒绝域,故接受原假设.7.3.2 大样本检验设12,,,n x x x 是来自某总体的样本,该总体均值为θ,方差为θ的函数,记为2σθ(),则对下列三类假设检验问题:(1)0010::H vs H θθθθ≤>; (2)0010::<H vs H θθθθ≥, (3)0010:=:H vs H θθθθ≠.在样本容量n 充分大时,利用中心极限定理2~(,()/n)x N θσθ故在0=θθ时.可采用检验统计量(0,1)u N,对应上述三类假设检验问题的拒绝域分别为1-={u}W uα≥,={u}W uα≤,1-2={}W u uα≥.例7.3.3例7.3.47.3.4 检验的p值例7.3.5 略从例7.3.5可以看到,对同一个假设检验问题,若取不同的显著水平α,会得到不同的结论,0.0179是能用观测值2.10做出“拒绝H”的最小的显著性水平,这就是p值.定义7.3.1 在一个假设检验问题中,利用观测值能够做出拒绝原假设的最小显著性水平称为检验的p值.引进检验的p值的概念有如下好处:(1)它比较客观,避免了事先确定显著水平.(2)由检验的p知与人们心目中的显著性水平α进行比较可以很容易做出检验的结论:如果pα≥,则在显著性水平α下拒绝H;如果<pα,则在显著性水平α下应接受H.例7.3.6 设nxxx,,,21是来自(1,)bθ的样本,要检验如下假设0010::H vs Hθθθθ≤>设检验的显著性水平为α,则检验的拒绝域为={}iW x c≥∑,在得到观测值0=i x t∑后,计算={}ip P x tθ≥∑,就是检验的p值.例如,00=40,=0.1,=8n tθ,则40397334040=1-0.9-0.10.9--0.10.9=0.0419 17p⎛⎫⎛⎫⨯⨯⎪ ⎪⎝⎭⎝⎭,若取=0.05α,则>pα,应拒绝原假设.例7.3.7 略§7.4 分布拟合检验教学目的:了解有限离散总体分布的拟合检验、列联表的独立性检验和正态性检验.教学重点:列联表的独立性检验和正态性检验.教学难点:解决简单的实际问题.教学内容:本节内容包括总体分布只取有限个值的情况,列联表的独立性检验.正态性检验.前面讨论的检验问题都是在总体分布形式已知的前提下对分布的参数建立假设并进行检验,它们都属于参数假设检验问题.这一节我们对总体分布的形式建立假设并进行检验,这一类检验问题统称为分布的拟合检验,属于非参数假设检验.7.4.1 总体分布只取有限个值的情况设总体X 可以分成k 类,记为12,,,k A A A ,现对该总体做了n 次观测,k 个类出现的频数分别为12,n ,,n k n ,且=1=ki i n n ∑,要检验的假设为0:P(A )=,=1,2,,.i i H p i k (7.4.1)=1=1,p0.ki ii p ≥∑其备择假设是(7.4.1)诸等式不全成立.下面我们分两种情况讨论7.4.1的检验问题. 一 诸i p 均已知如果0H 成立,则对每一类i A ,其频率in n与概率i p 应较接近.据此,选用检验统计量22=1(-)=ni i i i n np np χ∑,可证明在0H 成立时,对充分大的n ,2χ近似服从自由度为-1n 的2χ分布.因此,对给定的显著性水平0<<1)αα(,该检验的拒绝域为221-={(-1)}W k αχχ≥. 例7.4.1 二 诸i p 不完全已知诸i p =1,2,,.i k 可由(<)r r k 个未知参数1,,r θθ 确定,即1=),i=1,k.i i r p p θθ (,, 为对假设(7.4.1)做检验,由样本给出诸i θ,=1,2,,r.i 的最大似然估计^^1,,r θθ ,再给出诸i p ,=1,2,,.i k 的最大似然估计^^^1=),r i i p p θθ (,,取检验统计量 ^22^=1(-)=ki i i in n p n p χ∑,可证明2χ近似服从自由度为k-r-1的2χ分布.因此,对给定的显著性水平0<<1)αα(,该检验的拒绝域为221-={(--1)}W k r αχχ≥.例7.4.27.4.2 列联表的独立性列联表是将观测数据按两个或更多属性(定性变量)分类时所列出的频数表. 一般,若总体中的个体可按两个属性,A B 分类, A 有r 个类1,,r A A , B 有c 个类1,,B c B ,从总体中抽取大小为n 的样本,设其中有ij n 个个体既属于A 类,又属于B 类,ij n 称为频数,将r c ⨯个ij n 排列为一个r 行c 列的二维列联表,简称r c ⨯表.对二维列联表,提出假设“,A B 两属性独立”,即0:=p p ,=1,2,,r,j=1,2, c.ij i j H p i 取检验统计量^22^=1=1(-)=rcij ij i j ijn n p n p χ∑∑,则在原假设成立时,2χ近似服从自由度为-(+-2)-1=(-1)(-1)rc r c r c 的2χ分布,其中^ij p 是ij p 的最大似然估计.因此,对给定的显著性水平0<<1)αα(,该检验的拒绝域为221-={((-1)(c-1))}W r αχχ≥. 例7.4.37.4.3 正态性检验用来判断总体分布是否为正态分布的检验方法称为正态性检验. 一正态概率纸概率纸是一种具有特殊刻度的坐标纸.使用这种坐标纸即可以很快判断总体分布的类型又能粗略地估计总体的参数,是检验总体分布的一种简单工具.正态概率纸是一张刻有直角坐标的图纸,它的横坐标轴的刻度是均匀的,表示观察值,纵坐标轴的刻度是不均匀的,表示概率,具体的刻度是按标准正态分布换算出来的,即在普通的直角坐标xot 的纵坐标轴(t 轴)上原坐标为t 的点刻度为du et u t2221)(-∞-⎰=Φπ,例如纵轴上,原坐标为1处的刻度为8413.0)1(=Φ,原坐标为2处的刻度为9772.0)2(=Φ,原坐标为-1处的刻度为1587.0)1(=-Φ,但习惯上,在正态概率纸上的纵坐标轴上标明的数字是换算出的刻度的100倍,又由于x 是在+∞∞-~取值,概率不可能为0,也不可能为1,故一般概率纸的纵轴的刻度都是从99.99~01.0.例7.4.4 随机选取10个零件,测得其直径与标准尺寸的偏差如下: 9.4 8.8 9.6 10.2 10.1 7.2 11.1 8.2 8.6 9.6 利用正态概率纸作正态性检验的步骤如下:1. 首先把样本观察值按从小到大的次序排列:(n)(2)(1)x x x ≤≤≤ 9.6 9.810.1 10.2 11.1具体数据为 7.2 8.2 8.6 8.8 9.42. 对每一个i ,计算修正的频率n ,,2,1i ),25.0n /()375.0i (F i=+-=结果为12345F =0.061F =0.159F =0.256F =0.354F =0.451 ,,,,,678910F =0.549F =0.646F =0.743F =0.841F =0.939 ,,,,3. 将点n ,,2,1i ),F ,x (i (i)=逐一点在正态概率纸上 4. 判断若诸点在一条直线附近,则认为该样本来自正态总体;若诸点明显不在一条直线附近,则认为该样本不是来自正态分布总体.如果从正态概率纸上确认总体是非正态分布时,可对原始数据进行变换后再在正态概率纸上描点,若变换后的点在正态概率纸上近似在一条直线附近,则可认为变换后的数据来自正态分布,这样的变换称为正态性变换.常用的正态性变换有:对数变换,倒数变换和根号变换.例7.4.5 利用对数变换二 夏皮洛-威尔克检验夏皮洛-威尔克检验也简称W 检验,这个检验当850n ≤≤时可以使用,过小样本对偏离正态分布的检验不太有效.W 检验是建立在次序统计量的基础上,将n 个独立观测值按非降次序排列,记为(1)(2)(n)x ,x ,,x ,检验统计量为2=1=122=1=1[(-)(-)]=(-)(-)n ni i i i n niii i a a x x W a a x x ∑∑∑∑,系数12,,,n a a a 在样本容量为n 时有特定的值,可查附表.系数12,,,n a a a 还具有性质:+1-=-,=1,2,,[]2i n i n a a i2=1=1=0,=1n ni ii i a a∑∑故可将统计量简化为[]22(+1-)()=12()=1[(-)]=(-)n i n i i i ni i a x x W xx ∑∑,可以证明,在原假设成立,即总体分布为正态分布时,W 的值应该接近1,因此在显著性水平α下,如果统计量W 的值小于其α分位数,则拒绝原假设,即拒绝域为{}W W α≤. 例7.4.6 略。

教育统计学第七章 假设检验

教育统计学第七章  假设检验

例1 某地区的教育卫生部门多年积累的资料表 明,15岁儿童的平均身高为165 cm,标准差为10 cm, 今随机抽取120名15岁儿童测得平均身高为168 cm。 试问该地区全体15岁儿童的平均身高是否发生了变 化?
假设检验原理示意图
二、假设检验中的两类错误
统计学中将H0真实而拒绝H0时所犯的错误称做 Ⅰ型错误(弃真错误),由于这类错误的概率为 故称为 型错误 统计学中将H0假而接受H0时所犯的错误称做 Ⅱ开型错误(取伪错误),这类错误的概率以 表示,因而又叫做 型错误。
z 2.58
例2 某市小学五年级语文统考历年来平均分为85,标 准差为10,从今年小学五年级语文统考成绩中随机抽取80 个考分,算得平均分为87,请在=0.05水平上检验一下今 年该市小学五年级语文统考成绩是否高于往年。
Z 与临界值比较
P值范围
检验结果 保留H0,拒绝H1
显著性 不显著 显著 (*) 极其显 著 (**)
检验统计量:
t
X
X

X
X
n 1
(1)小样本的情况
例3 某市初三英语毕业考试平均为65分,现 从该市某校抽取20份初三英语毕业考试试卷,算 得平均分69.8,标准差为9.234。问该校初三英 语平均分数与全区是否一样?
t检验决断规则
t
与临界值的比较
P值范围 P>0.05 0.01< P≤0.05 P≤0.01
第七章 显著性检验
在处理调查或实验数据时,经常要讨论统计 值之间差异的问题。对于这些差异的讨论一般分 为两种情况: • (1) 样本统计量与相应总体参数的差异; • (2) 两个样本统计量之间的差异。
假设检验:从样本统计值推论总体参数

第七章假设检验(5讲)

第七章假设检验(5讲)
>α。
例7.3 ν=60-1=59,查附表3,t界值表,得t0.001/2,59≈3.460,
现t > t0.001/2,59 ,P<0.001。
2020/8/17
11
5.作出推断结论 ①当P≤α时,表示在H0成立的条件下,出 现等于及大于现有统计量的概率是小概率,根据小概率事件原 理,现有样本信息不支持H0,因而拒绝H0,结论为按所取检验 水准拒绝H0,接受H1,即差异有统计学意义,如例7.3 可认为 两总体血红蛋白均数有差别,高原地区成年男子血红蛋白平均 水平高于一般成年男子;②当P>α时,表示在H0成立的条件下, 出现等于及大于现有统计量的概率不是小概率,现有样本信息 还不能拒绝H0,结论为按所取检验水准不拒绝H0,即差异无统 计意义,尚不能认为两总体均数有差别。
2020/8/17
13
第三节 Ⅰ型错误和Ⅱ型错误
假设检验中作出的推断结论可能发生两种错误:①拒 绝了实际上是成立的H0,这叫Ⅰ型错误(typeⅠerror)或第 一类错误,也称为α错误。如图7.1,设H0:μ=0,H1:μ >0。若μ确实为0,则H0实际上是成立的,但由于抽样的
偶然性,得到了较大的t值,因t≥ t, P≤α,按所取检验
2020/8/17
4
本例两个均数不等有两种可能性:①高原地区成年男子 的血红蛋白总体均数(μ)与一般健康成年男子的血红蛋白总体 均数(μ0)是相同的,差别仅仅由于抽样误差所致;②受高原 环境因素的影响,μ与μ0是不相同的。如何作出判断呢?按照 逻辑推理,如果第一种可能性较大时(如P>0.05),可以接受 它 , 统 计 上 称 差 异 无 统 计 学 意 义 ( no statistical significance);如果第一种可能性较小时(如P≤0.05),可 以拒绝它而接受后者,统计上称差异有统计学意义 (statistical significance)。假设检验就是根据这种思维方法 建立起来的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

并未受到控制, 犯第二类错误的概率 β 并未受到控制,因此接受 H0 而 犯错误的可能性无法预料。 犯错误的可能性无法预料。
Байду номын сангаас
另一方面, 另一方面,仅仅凭一次试验的结果没有被拒绝的假设 从人们的心理上是不放心的,一般需要继续做试验, 从人们的心理上是不放心的,一般需要继续做试验,重 新取得数据作检验,根据多次试验的结果再作结论。 新取得数据作检验,根据多次试验的结果再作结论。 问8.3:同一问题及同一批数据,如使用不同的显著水平 :同一问题及同一批数据, 其检验结果是否不同? 其检验结果是否不同? 不同的显著水平下,检验的结论可能是不同的。 答:不同的显著水平下,检验的结论可能是不同的。 下是不能拒绝的, 例如可能在水平 α = 0.05下是不能拒绝的,而在 下被拒绝。 水平α = 0.10 下被拒绝。
问 8.4:一个显著水平 α 的检验的第一类错误概率与水 : 这两个概念有何差别? 平 α ,这两个概念有何差别? 这是两个不同的概念, 答:这是两个不同的概念,第一类错误概率与具体的检 验有关, 检验, 验有关,同一问题可以有不止一个水平α 检验,他们具 有不同的第一类错误概率,但是有一个共同点,就是第 有不同的第一类错误概率,但是有一个共同点, 一类错误概率都不超过 α 。水平 α 则是所有可能的水 检验的第一类错误概率的上界。 平 α 检验的第一类错误概率的上界。因此水平α 与具体 检验无关。 检验无关。
第七章 假设检验
问8.1:两类错误概率能否同时控制得很小? :两类错误概率能否同时控制得很小? 固定时,做不到。一般地说, 答:当样本容量 n 固定时,做不到。一般地说,当第 小时, 就显大, 一类错误概率α 小时,第二类错误概率 β 就显大,
1 的检验为例: 以下以正态总体 N (µ ,) 的参数 µ 的检验为例:
检验 H0 : µ ≡ 0 ↔ H1 : µ > 0 ,
1 拒绝域 R = { X > µ1−α } n
β 其二类错误概率 α,
,见图所示,其中右边曲线 见图所示,
的分布, 所围图形表示 H1 成立时 X 的分布,而左边则是 H0 的分布。显然, 小时, 变大; 成立时 X 的分布。显然,当 α 小时, β 变大; 反之亦然。 反之亦然。
问8.5:为什么不能称备选假设为对立假设? :为什么不能称备选假设为对立假设? 答:注意到某些原假设 H0 与备选假设 H1 并不是非此 即彼,例如 H0 : µ = µ0 , H1 : µ > µ0 . 此处 " µ > µ0" 即彼, 的对立陈述的一部分,而非全部。 只是" µ = µ0" 的对立陈述的一部分,而非全部。究竟备 选假设选择对立陈述中的哪一部分, 选假设选择对立陈述中的哪一部分,取决于收集数据的 目的。 目的。
β
1 Z1−α n
0
α
µ X
问8.2:未被一个显著性检验所拒绝的原假设 H0 是否 : 一定成立? 一定成立? 答:不一定。 不一定。 为一个水平α 显著性检验所拒绝的假设 H0 ,平均 来说每100 结论, 来说每100 次,作出拒绝 H0 结论,做错了的大约只有
α × 100 次。因而有一定的可靠度,但未被拒绝时, 因而有一定的可靠度,但未被拒绝时,
相关文档
最新文档