【初赛】2011年迎春杯四年级
2008-2016四年级迎春杯初赛真题高清汇编
10. 老师在黑板上写了三个不同的整数, 小明每次先擦掉第一个数, 然后在最后写上另两个
数的平均数,如此做了 7 次,这时黑板上三个数的和为 159.如果开始时老师在黑板上 写的三个数之和为 2008,且所有写过的数都是整数.那么开始时老师在黑板上写的第 一个数是 .
11. 请将 1~12 这 12 个自然数分别填入到右图的方框中, 每
排在偶数个上各数的平均数是_________.
3. 小红去买水果.如果买 5 千克苹果则少 4 元;如果买 6 千克梨则少 3 元.已知苹果比梨每
500 克贵 5 角 5 分,那么小红买水果共带了_________元.
二、填空题Ⅱ(每题 10 分,共 40 分) 4. 数一数,下边图形中有_________个平行四边形.
图所示)上的棋子数均为偶数. 那么 “8× 8” 的方格中最多可以放 枚棋子.
12. 如图,一个长方形被分成 A、B、C 三块,其中 B 和 C 都是长方形,
A 的八条边的边长分别是 1、2、3、4、5、6、7、8 厘米.那么 B 和 C 的面积和最多是 平方厘米. (示意图不成比例) A C B
多对一道题,超越500人
图1 图2
请你在每格中填入 1, 2, 4. 如图, 4×4 方格被分成了五块. 3,4 中的一个,使得每行、每列的四个数各不相同,且 每块上所填数的和都相等.那么,A、B、C、D 处所填 的四个数的和是 .
A
B
C
D
多对一道题,超越500人
第 1 页
兴趣是最好的老师
做完一道检查一道,会做争取不错
做错了的题是几分的就思考几分钟哦
做错了的题是几分的就思考几分钟哦
2011 迎春杯四年级初赛真题
2011年“迎春杯”数学解题能力展示复赛试卷(小高组)-含答案解析
2021年“迎春杯〞数学解题能力展示复赛试卷〔小高组〕一、填空题Ⅰ〔每题8分,共40分〕1.〔8分〕定义一种新运算a☆b满足:a☆b=b×10+a×2,那么2021☆130=.2.〔8分〕从1999年到2021年的12年中,物价涨幅为150%〔即1999年用100元能购置的物品,2021年要比原来多花150元才能购置〕.假设某个企业的一线员工这12年来工资都没有变,按购置力计算,相当于工资下降了%.3.〔8分〕如图中大圆的半径是20厘米,7个小圆的半径都是10厘米.那么阴影图形的面积是平方厘米〔π取3.14〕.4.〔8分〕某届“数学解题能力展示〞读者评选活动初试共有12000名学生参加,分为初中、小学高年级、小学中年级三个组别、小学的两个组共占总人数的,不是小学高年级组的占总人数的.那么小学中年级组参赛人数为人.5.〔8分〕如图是一个除法竖式,这个除法竖式的被除数是多少?二、填空题Ⅱ〔每题10分,共50分〕6.〔10分〕算式1!×3﹣2!×4+3!×5﹣4!×6+…+2021!×2021﹣2021!×2021+2021!的计算结果是.7.〔10分〕春节临近.从2021年1月17日〔星期一〕起工厂里的工人陆续回家过年,与家人团聚.假设每天离厂的工人人数相同,到1月31日,厂里还剩下工人121名,在这15天期间,统计工厂工人的工作量是2021个工作日〔一人工作一天为1个工作日,工人离厂当天及以后不需要统计〕,其中周六、日休息,且无人缺勤,那么截止到1月31日,回家过年的工人共有人.8.〔10分〕有一个整数,它恰好是它的约数个数的2021倍,这个整数的最小值是.9.〔10分〕一个新建5层楼房的一个单元每层有东西2套房:各层房号如下图,现已有赵、钱、孙、李、周五家入住,一天他们5人在花园中聊天:赵说:“我家是第3个入住的,第1个入住的就住我对门.〞钱说:“只有我一家住在最高层.〞孙说:“我家入住时,我家的同侧的上一层和下一层都已有人入住了.〞李说:“我家是五家中最后一个入住的,我家楼下那一层全空着.〞周说:“我家住在106号,104号空着,108号也空着.〞他们说的话全是真话,设第1、2、3、4、5家入住的房号的个位数依次为A、B、C、D、E,那么五位数=.10.〔10分〕6支足球队,每两队间至多比赛一场如果每队恰好比赛了2场,那么符合条件的比赛安排共有种.三、填空题Ⅲ〔每题12分,共60分〕11.〔12分〕0~9可以组成两个五位数A和B,如果A+B的和是一个末五位数字相同的六位数,那么A×B的不同取值共有个.12.〔12分〕甲乙两人分别从A、B两地同时出发,在A、B往返行走;甲出发的同时,丙也从A出发去B.当甲乙两人第一次迎面相遇在C地时,丙还有100米才到C;当丙走到C时,甲又往前走了108米;当丙到B时,甲乙正好第二次迎面相遇.那么A、B两地间的路程是多少米?13.〔12分〕如图,大正方形被分成了面积相等的五块.假设AB长为3.6厘米,那么大正方形的面积为平方厘米.14.〔12分〕用36个3×2×1的实心小长方体拼成一个6×6×6的大正方体,在各种拼法中,从大正方体外的某一点看过去最多能看到个小长方体.15.〔12分〕平面中有15个红点,在这些红点间连一些线段,一个红点连出了几条线段,就在这个红点上标几.所有标有相同数的红点之间互不连线,那么这15个红点间最多连了条线段.2021年“迎春杯〞数学解题能力展示复赛试卷〔小高组〕参考答案与试题解析一、填空题Ⅰ〔每题8分,共40分〕1.〔8分〕定义一种新运算a☆b满足:a☆b=b×10+a×2,那么2021☆130=5322.【解答】解:根据分析可得,2021☆130=130×10+2021×2=1300+4022=5322;故答案为:5322.2.〔8分〕从1999年到2021年的12年中,物价涨幅为150%〔即1999年用100元能购置的物品,2021年要比原来多花150元才能购置〕.假设某个企业的一线员工这12年来工资都没有变,按购置力计算,相当于工资下降了60%.【解答】解:100+100×150%=100+150=250〔元〕1﹣100÷250=1﹣40%=60%答:按购置力计算,相当于工资下降了60%.故答案为:60.3.〔8分〕如图中大圆的半径是20厘米,7个小圆的半径都是10厘米.那么阴影图形的面积是942平方厘米〔π取3.14〕.【解答】解:观察图象可知阴影局部的面积=7个小圆面积﹣一个大圆面积=7•π•102﹣π•202=300π=942,故答案为:942.4.〔8分〕某届“数学解题能力展示〞读者评选活动初试共有12000名学生参加,分为初中、小学高年级、小学中年级三个组别、小学的两个组共占总人数的,不是小学高年级组的占总人数的.那么小学中年级组参赛人数为5250人.【解答】解:1﹣=,﹣=,12000×=5250〔人〕;答:小学中年级组参赛人数为5250人.故答案为:5250.5.〔8分〕如图是一个除法竖式,这个除法竖式的被除数是多少?【解答】解:由题意,除数的两个倍数分别是2□□和91□,如果2□□是除数的2倍,根据余数为130,除数为131以上,149以下,这样91□只能是除数的7倍,131×7=917,那么第三个被除数为91□或81□,它等于除数的某个倍数减1,只能是7倍减1,即916,被除数等于131×277﹣1=36286,经检验符合题意;如果2□□是除数的1倍,那么91□是除数的4倍,可能是912或916,除数可能是228或229,第三个被除数为91□或81□,除以除数之后余数为130,可能是228×3+130=814或229×3+130=817,被除数相应为228×143+130=32734或229×143+130=32877,但无论哪种,第一个差都是两位数,所以不符合题意.综上所述,被除数等于36286,除数为131,商为276.二、填空题Ⅱ〔每题10分,共50分〕6.〔10分〕算式1!×3﹣2!×4+3!×5﹣4!×6+…+2021!×2021﹣2021!×2021+2021!的计算结果是1.【解答】解:分组找规律:2021!×2021﹣2021!×2021+2021!=2021!〔2021﹣2021×2021+2021×2021〕=2021!那么2007!×2021﹣2021!×2021+2021!=2007!〔2021﹣2021×2021+2021×2021〕=2007!由奇数项向前裂变抵消规律得原式=2021!×2021﹣2021!×2021+2021!+…+5!×7﹣4!×6+3!×5﹣2!×4+1!×3=1!=1故答案为:17.〔10分〕春节临近.从2021年1月17日〔星期一〕起工厂里的工人陆续回家过年,与家人团聚.假设每天离厂的工人人数相同,到1月31日,厂里还剩下工人121名,在这15天期间,统计工厂工人的工作量是2021个工作日〔一人工作一天为1个工作日,工人离厂当天及以后不需要统计〕,其中周六、日休息,且无人缺勤,那么截止到1月31日,回家过年的工人共有120人.【解答】解:依题意可知:设每天回家的人数为x人,那么15天共走15x人,其中有2个周六周日共4天休息不工作.周末剩余人数为9x〔周六〕,8x〔周日〕,2x〔周六〕,x〔周日〕.121×11+〔3+4+5+6+7+10+11+12+13+14〕x=2021∴x=8,15x=120〔人〕故答案为:1208.〔10分〕有一个整数,它恰好是它的约数个数的2021倍,这个整数的最小值是16088.【解答】解:用列举法因为2021×8=16088,所以,满足条件的最小整数为16088,故答案为16088.9.〔10分〕一个新建5层楼房的一个单元每层有东西2套房:各层房号如下图,现已有赵、钱、孙、李、周五家入住,一天他们5人在花园中聊天:赵说:“我家是第3个入住的,第1个入住的就住我对门.〞钱说:“只有我一家住在最高层.〞孙说:“我家入住时,我家的同侧的上一层和下一层都已有人入住了.〞李说:“我家是五家中最后一个入住的,我家楼下那一层全空着.〞周说:“我家住在106号,104号空着,108号也空着.〞他们说的话全是真话,设第1、2、3、4、5家入住的房号的个位数依次为A、B、C、D、E,那么五位数=69573.【解答】解:根据分析,因为104和108都空着,而孙的楼上楼下都有人了,所以孙住在左侧,只有钱一家住在最高层,说明剩余4人住在101,102,103,105,106,107,里面的6家,全空着的一层只能是第一层或第二层,这样才能使得孙和楼上楼下都有人.如果全空着的是第一层,那么李住在第二层的103,李氏最后入住的,所以孙住在107,且105和109都在这之前有人住了,赵是第三个入住的,所以孙一定是第四个入住的,根据钱的话,钱住在109,有对门的是105和106,周住在106,所以赵住在105,而且周的第一个入住的,故答案是:69573.10.〔10分〕6支足球队,每两队间至多比赛一场如果每队恰好比赛了2场,那么符合条件的比赛安排共有70种.【解答】解:6支球队分2组每组3支,这3支球队间相互比赛:分组方法:〔6×5×4〕÷〔3×2×1〕÷2=10〔选3支球队和剩3支球队重复,所以除2〕;6支球队围成圈,相邻的球队之间比赛:方法:5×4×3×2×1÷2=60 〔顺时针与逆时针重复,所以除2〕,所以符合条件的比赛安排共有10+60=70种.答:符合条件的比赛安排共有70种.故答案为:70.三、填空题Ⅲ〔每题12分,共60分〕11.〔12分〕0~9可以组成两个五位数A和B,如果A+B的和是一个末五位数字相同的六位数,那么A×B的不同取值共有384个.【解答】解:依题意可知:六位数字的首位一定是1,根据弃九法后5位都是7.所以这两个五位数的首位之和是17.后四个数字和为7的数字两两配对.把和为7的数字两两配对,首位是9的那个五位数有8×6×4×2=384〔种〕.根据不同情况下两个五位数的差不同,差小积大,这384个乘积也各不相同.故答案为:384.12.〔12分〕甲乙两人分别从A、B两地同时出发,在A、B往返行走;甲出发的同时,丙也从A出发去B.当甲乙两人第一次迎面相遇在C地时,丙还有100米才到C;当丙走到C时,甲又往前走了108米;当丙到B时,甲乙正好第二次迎面相遇.那么A、B两地间的路程是多少米?【解答】解:甲从A走到C时,丙走了100÷=1250〔米〕,AC的距离为1250×=1350〔米〕,甲乙速度之和是丙的速度的3倍,那么乙的速度是丙的〔3﹣〕倍,BC的距离为1250×〔3﹣〕=2400〔米〕,所以AB的距离为1350+2400=3750〔米〕答:A、B两地间的路程是3750米.13.〔12分〕如图,大正方形被分成了面积相等的五块.假设AB长为3.6厘米,那么大正方形的面积为1156平方厘米.【解答】解:根据分析,设正方形边长为一个单位,如图,因为正方形分成面积相等的五份,故每一份的面积都等于,故AG=,D到FH的距离=C到EF的距离=,因为A到左边EG的距离等于A到上边EF的距离的,所以C到EG的距离也等于C 到EF的距离的,即;C到FH的距离为1﹣=,类似,D到右边FH的距离为,因为C到EF的距离:C到右边FH的距离==10:21,故D到EF的距离也等于D到FH的距离的,即:×=,故D到GH的距离=1﹣=;又三角形BDH的面积=,故BH==,AB=1﹣﹣=÷=34〔厘米〕,正方形的面积=34×34=1156平方厘米.故答案是:1156.14.〔12分〕用36个3×2×1的实心小长方体拼成一个6×6×6的大正方体,在各种拼法中,从大正方体外的某一点看过去最多能看到31个小长方体.【解答】解:如图,为了从外面看到的个数最多,需要使外面看到的长方形尽可能“深入〞正方形里面,结果如下:共6×3+3×4+3×1+1=31〔个〕.故答案为:31.15.〔12分〕平面中有15个红点,在这些红点间连一些线段,一个红点连出了几条线段,就在这个红点上标几.所有标有相同数的红点之间互不连线,那么这15个红点间最多连了85条线段.【解答】解:将15个点分为5组,每组分别有1,2,3,4,5个点,〔1×14+2×13+3×12+4×11+5×10〕÷2=170÷2=85〔条〕答:这15个红点间最多连了85条线段.故答案为:85.。
历年迎春杯三四年级初赛试题汇编教学文案
历年迎春杯三四年级初赛试题汇编计算【2007年中年级初赛第1题】——速算巧算计算:=49999459999933999598699999922996197++799999991+++++【2007年中年级初赛第2题】——大数的计算有一个2007位的整数,其每个数位上的数字都是9,这个数与它自身相乘,所得的积的各个数位上的数字的和是。
【2008年三年级初赛第1题】——速算巧算计算:24+63+52+17+49+81+74+38+95=_____________。
【2008年三年级初赛第2题】——速算巧算计算:53574743⨯-⨯=_____________。
【2009年三年级初赛第1题】——速算巧算计算:4⨯=_____________.+126126⨯6【2009年三年级初赛第2题】——速算巧算计算:=253262930_____________.22827-++-+1⋯+++-【2009年四年级初赛第1题】——速算巧算计算:200937300(373)÷+÷⨯=.【2010年三年级初赛第1题】——速算巧算计算:8⨯++⨯+⨯++⨯=______;⨯++⨯⨯611791⨯851014123154132【2010年四年级初赛第1题】——速算巧算计算:19+⨯⨯+⨯=______;+288264⨯37734691【2011年三年级初赛第1题】——速算巧算计算:82-38+49-51= .【2011年三年级初赛第5题】——找规律计算已知:1×9+2=1112×9+3=111123×9+4=1111……△×9+○=111111那么△+○= .【2011年四年级初赛第1题】——速算巧算计算:8037+4763=⨯⨯。
【2011年四年级初赛第6题】——定义新运算规定12123※,如果15165a==+++=※,那=+=※,54567826※,232349=++=么a=。
迎春杯年年中高年级初赛复赛试题真题整理
迎春杯2011年-2017年中高年级初赛复赛试题真题整理2011年少儿迎春杯三年级初赛(试题)2010年12月19日“数学解题能力展示”读者评选活动三年级组初赛试题(活动时间:12月19日11:00—12:00;满分150)一、填空题Ⅰ(每题8分,共40分)1.计算:82-38+49-51=.2.超市中的某种汉堡每个10元,这种汉堡最近推出了“买二送一”的优惠活动,即花钱买两个汉堡,就可以免费获得一个汉堡,已知东东和朋友需要买9个汉堡,那么他们最少需要花元钱。
3.小亮家买了72个鸡蛋,他们家还养了一只每天都下一个蛋的母鸡;如果小亮家每天吃4个鸡蛋,那么,这些鸡蛋够他们家连续吃天。
个只由数字8组成的自然数之和为1000,其中最大的数与第二大的数之差是.5.已知:1×9+2=1112×9+3=111123×9+4=1111……△×9+○=111111那么△+○=.二、填空题Ⅱ(每题10分,共50分)6.四月份共有30天,如果其中有5个星期六和星期日,那么4月1日是星期.(星期一至星期日用数字1至7表示)7.小明把三支飞镖掷向下图所示的镖盘上,然后把三支飞镖的得分相加,镖盘上的数字代表这个区域的得分,未中镖盘记0分.那么小明不可能得到的总分最小是.8.一天中午,孙悟空吃了10个桃子,猪八戒吃了25个包子,孙悟空说猪八戒太能吃了,但猪八戒说自己的包子比桃子小得多,还是孙悟空吃的多.聪明的沙僧用天平得到了下面两种情况,(圆圈是桃子,三角是包子长方形表示重量为所标数值的砝码),那么1个桃子和1个包子共重克.9.在算式=2010中,不同的字母代表不同的数字.那么,A+B+C+D+E+F+G=.10.红星小学组织学生参加队列演练,一开始只有40个男生参加,后来调整队伍,每次调整减少3个男生,增加2个女生,那么调整次后男生女生人数就相等了.三、填空题Ⅲ(每题12分,共60分)11.如图1是一个3×3的方格表,每个方格(除了最后一个方格)都包含了1~9中某个数字和一个箭头,每一个方格中的箭头都正好指向了下一个数字所在方格的方向,如1号方格的箭头指向右方,代表2号方格在1号方格右方,2号方格指向斜下,代表3号方格在2号斜下方,3号方格指向上方,代表4号方格在3号方格上方,……(指向的方格可以不相邻),这样正好从1到9走完整个方格表。
迎春杯压轴题精讲
1
本讲概要
一、结合近三年压轴大题讲解解题方法
二、分析压轴题解题心态
(11年迎春杯三年级初赛第十五题)
花园里有向日葵、百合花、牡丹三种植物,
⑴在一个星期内只有一天这三种花能同时开放;
⑵没有一种花能连续开放三天;
⑶在一周之内,任何两种花同时不开的日子不会超过一天;
⑷向日葵在周2、周4、周日不开放;
⑸百合花在周4、周6不开放;
⑹牡丹在周日不开放;
那么三种花在星期 同时绽放。
(星期一至星期日用数字1至7表示)
(11年迎春杯三年级初赛第十三题)
羊村小学四年级进行一次数学测验,测验共有10道题。
如果小喜喜、小沸沸、小美美、小懒懒都是恰好答对8道题,那么他们四人都答对的题至少有 道。
(11年迎春杯三年级初赛第七题)
小明把三支飞镖掷向下图所示的镖盘上,然后把三支飞镖的得分相加,镖盘上的数字代表这个区域的得分,未中镖盘记0分。
那么小明不可能得到的总分最小是 。
(09年迎春杯三年级初赛第十一题)
一些奇异的动物在草坪上聚会。
有独角兽(1个头、1只脚)、双头龙(2个头、4只脚)、三脚猫(1个头、3只脚)和四脚蛇(1个头、4只脚)。
如果草坪上的动物共有58个头、160只脚,且四脚蛇的数量恰好是双头龙数量的2倍。
那么,有_______只独角兽参加聚会。
迎春杯压轴题精讲。
三年级迎春杯初赛试题分类汇总(答案)
2006年至2011年迎春杯试题分类汇编一、计算部分1.计算:24+63+52+17+49+81+74+38+95=_____________。
【解析】凑整法。
『2008年初赛第1题』【答案】493原式=(38+52)+(63+17)+(49+81)+74+24+95= 90+80+130+98+95=4932.计算:82-38+49-51=_____________。
【解析】凑整法。
『2011年初赛第1题』【答案】42原式=82-38-2=82-40=423.计算:98+197+2996+39995+499994+5999993+69999992+799999991= .【答案】876 543 256 『2007年初赛第1题』【分析】先观察每一个数的特征,看它们分别和哪些数接近,然后采用凑整的方法;并且要注意看清每个数的位数;原式=(100-2)+(200-3)+(3000-4)+(40000-5)+(500000-6)+(6000000-7)+(70000000-8)+(800000000-9)=876543300-44=8765432564.计算:126×6+126×4=_____________.【答案】1260 『2009年初赛第1题』【解析】考查速算巧算能力,提取公因数126。
得到126×(6+4),得到12605.计算:30+29-28+27+26-25+……+3+2-1=_____________.【答案】175 『2009年初赛第2题』【解析】原式=(30+27+…+3)+10=(30+3)×10÷2+10=165+10=1756.计算:53×57—47×43=_____________。
【答案】1000 『2008年初赛第2题』【解析】运用乘法分配律凑整。
=⨯+⨯-⨯-⨯原式5357534353434743=⨯+-+⨯53(5743)(5347)43=-⨯(5343)100=10007.计算:1×15+2×14+3×13+4×12+5×11+6×10+7×9+8×8=_______。
迎春杯历年题目分类解析
“迎春杯”历年题目分类解析(四年级)(学而思名师解题)1答案:5操作问题:将1、3、5、7、9 称为奇数格,将2、4、6、8称为偶数格。
开始时奇数格总和比偶数格总和大5, 而每一次变化并不影响这个结果所以A=5点评:操作题目,要寻找不变量,进行突破2答案:161提示:从里到外层数逐渐增加,差值逐渐增大,表n可以看成是n层,可以得到:N=1 S1=1N=2 S2=1+8X1X2N=3 S3=1+8X(1X2+2X3)N=4 S4=1+8X(1X2+2X3+3X4)=161N=5 S5=1+8X(1X2+2X3+3X4+4X5)N=6 S6=1+8X(1X2+2X3+3X4+4X5+5X6)=561由于差值逐渐增大,差值为400的情况只可能出现在前面,所以N=4符合要求。
题目:3答案:2346奇数位和是2345×1005,每个偶数位比它对应的奇数位大1,所以1005个偶数位比1005个奇数位大1005,那么偶数位和是2345×1005+1005=2346×1005,平均数自然是23464答案:30点评:此题难度不大,通过奇偶分析可得5个连续数应为3偶2奇,不难通过尝试得到4+5+6=7+8,结果是30题目:10月16日试题答案:第一题:446点评:排成一排,空隙数量比球多一个,所以去掉1红之后1红— 2黄—6蓝(2008-1)÷9×2=446第二题:60点评:一笔画问题结合行程,难度不大,只需算出总路程即可,图中共4个奇点,而A进A出的要求是所有点均是偶点,需要多走两条连接奇点的线才能保证所有点都变成偶点,那么需要多走两次260 即(480×3+200×3+260×4+260×2)÷60=60(分)注:在高年级学过勾股定理之后,260米的边长是可以计算出来的,不需题目给出条件10月17日试题:10月17日试题答案:第一题:28第二题:2682(其它年级所占的是5份少78人,标准和差倍)10月21日试题:10月21日试题答案:第一题:20点评:从这两天可以看出,应用题在迎春杯中考察还是相对简单的,如果孩子能够熟练掌握方程,做出第一、第二档的应用题应该难度不大10月22日试题:第二题:30点评:这两道题都是标准的列方程解应用题,在四年级迎春杯初赛中,题号比较靠前的应用题请特别注意方程的应用10月23日试题:10月23日试题答案:第一题:48(提示:画线段图,最后三段剩下的刚好是等差数列,公差是两段线段)第二题:21(提示:1个男生会有左右两个牵手,共60次牵手,男女牵手共18次,男男牵手则有(60-18)÷2=21(次)那么就会分成21组,此题难度还是比较大的)10月24日试题:10月24日试题答案:第一题:7提示:此题考察鸡兔同笼多个动物打包思想有四脚蛇是双头龙的2倍,把2个四脚蛇和1个双头龙打1个包作为新动物,包内是4头12脚发现4头12脚正好是4只三脚猫,所以包内的新动物和三脚猫一样,这三个动物和一起算做1个,其实本题相当于对三脚猫和独角兽做鸡兔同笼,可求出独角兽的只数(160-58)÷(3-1)=51 58-51=7第二题:英语提示:应用题和逻辑推理结合问题,采取枚举法,让9本分别是数学、语文、英语、历史,进行尝试计算,只有9本是英语书时4个数不重复,其余均有重复10月28日试题——数字谜今天开始进入数字谜阶段~中年级最重要的是加法数字谜!10月28日试题答案:第一题:10第二题:3010月29日试题:10月31日题目1.(2013年四年级组第9题)2.(2013年三年级组第6题)10月31日答案1、20342、3135(提示:这两道题都可以通过尝试得到,但如果掌握弃9法的话,做出来将会非常简单)1.11月4日题目——计数篇1.(2013四年级第6题)2.(2013三年级第10题)(此题难度很大,当年正确率不超过1%)11月4日答案1、7(特别提示:本题当年答案5也算作正确了,因为4=1+3,6=1+5这两组偶数不算作和)2、3211月5日答案1、62、21000昨天这两道题目不难哈!~ 11月6日题目11月6日答案:1、30(提示:实际操作法很有效哦!)2、30(提示:湖人只能在第6场或第7场获胜,所以比分是4:2或4:3,之后用树形图方法分两类讨论)11月7日题目:11月8日试题答案:第一题:18种第二题:25128(提示:这道题方法真的是一点一点算的,没有特别简单的解法,类似的题目华杯总决赛也考过,而且数比今天这个还大!)11月11日试题——逻辑推理11月12日答案:11月13日试题:11月13日答案:(点评:这次的两道题都是从六年级的考题当中摘下来的,难度虽然很大,但从知识点上四年级绝对可以)1、2、7192511月14日题目:11月14日答案11月18日题目(标准鸡兔同笼)(从本周开始,做一些杯赛最爱考的配套类型题目哈)1、在某电视机厂质量检测评比中,每生产出一台合格电视机记5分,每生产出一台不合格电视机扣10分。
2012年“迎春杯”数学解题能力展示初赛试卷(四年级)-含答案解析
2021年“迎春杯〞数学解题能力展示初赛试卷〔四年级〕一、填空题1.〔8分〕计算:12+34×56+7+89=.2.〔8分〕骆驼有两种,背上只有一个驼峰的单峰骆驼和背上有两个驼峰的双峰骆驼,单峰骆驼比拟高大,四肢较长,在沙漠中可走可跑;双峰骆驼四肢短粗,适合在沙漠和雪地中行走.有一群骆驼有23个驼峰,60只脚,这些骆驼有只.3.〔8分〕在如图的每个方框中填入一个数字,使得乘法竖式成立.那么,这个算式的乘积是.4.〔8分〕A、B、C三人采西瓜.A与B所采西瓜的个数之和比C少6个;B与C所采西瓜的个数之和比A多16个;C与A所采西瓜的个数之和比B多8个;请问他们共采西瓜个.二、填空题5.〔10分〕30名同学按身高由低到高排成一队,相邻两个同学的身高差相同.前10名同学的身高和是12.5米,前20名同学的身高和是26.5米,那么这30名同学的身高和是米.6.〔10分〕正方形ABCD与长方形BEFG如图放置,AG=CE=2厘米,那么正方形ABCD 的面积比长方形BEFG的面积大平方厘米.7.〔10分〕红、黄、蓝3种颜色的球分别有11、12、17个,每次操作可以将2个不同颜色的球换成2个第三种颜色的球,那么在操作过程中,红色球至多有个.8.〔10分〕宁宁、蕾蕾和凡凡三人合租一辆轿车从学校回家〔如图〕,他们约定:共同乘坐的局部所产生的车费由乘坐者平均分摊;单独乘坐的局部所产生的车费,由乘坐者单独承当.结果,三人承当的车费分别为10元、25元、85元,宁宁家距离学校12公里,凡凡家距离学校公里.三、填空题9.〔12分〕甲乙二人相距30米面对面站好,两人玩“石头、剪子、布〞.胜者向前走3米,负者向后退2米,平局两人各向前走1米,玩了15局后,甲距出发点17米,乙距出发点2米.甲胜了次.10.〔12分〕在羊羊运动会上,喜羊羊、沸羊羊、懒羊羊、暖羊羊和灰太郎进行了400米赛跑,赛完结束后,五人谈论比赛结果.第一名说:“喜羊羊跑得比懒羊羊快.〞第二名说:“我比暖羊羊跑得快.〞第三名说:“我比灰太郎跑得快.〞第四名说:“喜羊羊比沸羊羊跑得快.〞第五名说:“暖羊羊比灰太郎跑得快.〞如果五人中只有灰太郎说了假话,那么喜羊羊得了第名.11.〔12分〕假设三位数〔其中a、b、c都是非零数字〕满足>>,那么称该三位数为“龙腾数〞,那么共有个“龙腾数〞.12.〔12分〕在边缘的每个空白格内都填入一个箭头,方格中的数字表示指向该数字的箭头个数,箭头的方向可以是上、下、左、右、左上、左下、右上、右下,但每个箭头必须指向一个数字,例如,图2的填法是图1的答案,请按照此规律在图3中填入箭头,那么指向右下方向的箭头共有个.2021年“迎春杯〞数学解题能力展示初赛试卷〔四年级〕参考答案与试题解析一、填空题1.〔8分〕计算:12+34×56+7+89=2021.【解答】解:12+34×56+7+89=12+1904+7+89=1916+7+89=1923+89=2021;故答案为:2021.2.〔8分〕骆驼有两种,背上只有一个驼峰的单峰骆驼和背上有两个驼峰的双峰骆驼,单峰骆驼比拟高大,四肢较长,在沙漠中可走可跑;双峰骆驼四肢短粗,适合在沙漠和雪地中行走.有一群骆驼有23个驼峰,60只脚,这些骆驼有15只.【解答】解:60÷4=15〔只〕,答:一共有15只.故答案为:15.3.〔8分〕在如图的每个方框中填入一个数字,使得乘法竖式成立.那么,这个算式的乘积是837.【解答】解:依题意可知:根据结果的尾数是7,推理出第一个乘数的个位是7,再根据乘积的结果首位是2.可推理出第一个乘数是27;再根据27乘以一个数字尾数是1同时是2位数,那么只能是27×3=81;所以27×31=837.故答案为:8374.〔8分〕A、B、C三人采西瓜.A与B所采西瓜的个数之和比C少6个;B与C所采西瓜的个数之和比A多16个;C与A所采西瓜的个数之和比B多8个;请问他们共采西瓜18个.【解答】解:根据分析,第一句可知,C﹣〔A+B〕=6;第二句可知,B+C﹣A=16;第三句可知,C+A﹣B=8;将三个等式加起来得:〔A+B﹣C〕+〔B+C﹣A〕+〔C+A﹣B〕=﹣6+16+8⇒2〔A+B+C〕﹣〔A+B+C〕=A+B+C=18∴他们共采西瓜18故答案是:18.二、填空题5.〔10分〕30名同学按身高由低到高排成一队,相邻两个同学的身高差相同.前10名同学的身高和是12.5米,前20名同学的身高和是26.5米,那么这30名同学的身高和是42米.【解答】解:根据分析,30名同学的身高是一个等差数列,设第n名同学的身高为a n,前n名同学的身高和为S n,那么S10=12.5米,S20=26.5米,根据等差数列的性质,S10=a1+a2+…a10;S20﹣S10=a11+a12+…+a20;S30﹣S20=a21+a22+…+a30.易知,S10;S20﹣S10;S30﹣S20是等差数列,得S20﹣S10﹣12.5=14米;S30﹣S20=S10+2×〔14﹣12.5〕=12.5+3=15.5米;⇒S30=S20+15.5=26.5+15.5=42米.∴这30名同学的身高和是42米.故答案是:42米.6.〔10分〕正方形ABCD与长方形BEFG如图放置,AG=CE=2厘米,那么正方形ABCD 的面积比长方形BEFG的面积大4平方厘米.【解答】解:根据分析,图中公共局部为长方形GHCB,故:正方形ABCD的面积﹣长方形BEFG的面积=长方形ADHG的面积﹣长方形EFHC的面积=AG×AD﹣CE×CH=2×AD﹣2×CH=2×〔AD﹣CH〕=2×〔CD﹣CH〕=2×DH=2×2=4〔平方厘米〕.故答案是:4.47.〔10分〕红、黄、蓝3种颜色的球分别有11、12、17个,每次操作可以将2个不同颜色的球换成2个第三种颜色的球,那么在操作过程中,红色球至多有39个.【解答】解:三种球的个数除以3的余数分别为2.0、2,任意操作一次后,除以3的余数均加2,因此黄色球和蓝色球除以3的余数不可能相同,即不能出现0个黄色球和0个蓝色球的情况,所以红色球的个数不可能有40个.经验证.前两次将红色球和蓝色球换成黄色球,球数变为9、16、15;再把黄色球和蓝色球换成红色球,球数变为39、1、0.所以操作过程中,红色球至多有39个.答:红色球至多有39个.故答案为:39.8.〔10分〕宁宁、蕾蕾和凡凡三人合租一辆轿车从学校回家〔如图〕,他们约定:共同乘坐的局部所产生的车费由乘坐者平均分摊;单独乘坐的局部所产生的车费,由乘坐者单独承当.结果,三人承当的车费分别为10元、25元、85元,宁宁家距离学校12公里,凡凡家距离学校48公里.【解答】解:[〔25﹣10〕×2+〔85﹣25〕]÷〔10×3÷12〕+12=[30+60]÷2.5+12=90÷2.5+12=36+12=48〔公里〕答:凡凡家距离学校48公里.三、填空题9.〔12分〕甲乙二人相距30米面对面站好,两人玩“石头、剪子、布〞.胜者向前走3米,负者向后退2米,平局两人各向前走1米,玩了15局后,甲距出发点17米,乙距出发点2米.甲胜了7次.【解答】解:依题意可知:那么如果有胜负那么前进1米,如果平局前进2米.他们共同15次前进19米.那么15局如果都是胜负局故有15米的距离.所以是有4局平局.11局胜负局.17﹣4=13〔米〕.根据11局胜负可前进13米.如果全部是赢需要进33米.数量差是33﹣13=20〔米〕每一局差5分,共是4局差20分.故甲是7胜4负.7×3﹣4×2=13〔米〕.故答案为:710.〔12分〕在羊羊运动会上,喜羊羊、沸羊羊、懒羊羊、暖羊羊和灰太郎进行了400米赛跑,赛完结束后,五人谈论比赛结果.第一名说:“喜羊羊跑得比懒羊羊快.〞第二名说:“我比暖羊羊跑得快.〞第三名说:“我比灰太郎跑得快.〞第四名说:“喜羊羊比沸羊羊跑得快.〞第五名说:“暖羊羊比灰太郎跑得快.〞如果五人中只有灰太郎说了假话,那么喜羊羊得了第二名.【解答】解:假设第三名为灰太狼,那么其他人说的都是真话.即暖羊羊比灰太狼快,第二名比暖羊羊快,而灰太狼就是第三名,此时暖羊羊介于第二名和第三名之间,矛盾.同理假设灰太狼是第五名,根据表达可知,也是矛盾的.所以,所以灰太狼一定是第四名.其他人说的都是正确的,接下来就有:喜羊羊比懒羊羊快、第二名比暖羊羊快、第三名比灰太狼快、沸羊羊比喜羊羊快、暖羊羊比太狼快.所以,沸羊羊是第一名、喜羊羊是第二名、暖羊羊是第三名、懒羊羊是第五名.、11.〔12分〕假设三位数〔其中a、b、c都是非零数字〕满足>>,那么称该三位数为“龙腾数〞,那么共有120个“龙腾数〞.【解答】解:根据分析,>>,那么a≥b≥c,分三种情况:①a=b>c时,有=36个;②a>b=c时,由>可知,c>a与题意矛盾,故不成立;③a>b>c时,a、b、c可以取1~9之间不相等的数,有=84个.综上,共有:36+84=120个“龙腾数〞.故答案是:120.12.〔12分〕在边缘的每个空白格内都填入一个箭头,方格中的数字表示指向该数字的箭头个数,箭头的方向可以是上、下、左、右、左上、左下、右上、右下,但每个箭头必须指向一个数字,例如,图2的填法是图1的答案,请按照此规律在图3中填入箭头,那么指向右下方向的箭头共有2个.【解答】解:根据题干分析可得:图3中填入箭头如下:那么指向右下方向的箭头共有2个.故答案为:2.。
2011年迎春杯小高组复赛详解
8 8
…… ……
所以答案为 2011 8=16088
9.一个新建 5 层楼房的一个单元每层有东西 2 套房:各层房号如右图所示,现已有赵、钱、孙、李、周五 家入住,一天他们 5 人在花园中聊天; 钱说:“只有我一家住在最高层.” 赵说:“我家是第 3 个入住的,第 1 个入住的就住我对门.”
孙说:“我家入住时,我家的同侧的上一层和下一层都已有人入住了.” 李说:“我家是五家中最后一个入住的,我家楼下那一层全空着.” 周说:“我家住在 106 号,104 号空着,108 号也空着.” 他们说的话全是真话,设第 1、2、3、4、5 家入住的房号的个位数依次为 A 、 B 、 C 、 D 、 E ,那么 五位数 ABCDE ____________.
帅
【考点】逻辑推理 【难度】☆☆☆ 【答案】69573
【解析】因为 104 和 108 都空着,而孙的楼上楼下都有人了,所以孙住在左侧.只有钱一 家住在最高层, 说明剩余 4 人住在 101, 102, 103, 105, 106,107, 里面的 6 家. 全 空着的一层只能是第一层或第二层,这样才能使得孙和楼上楼下都有人. 如果全空着的是第一层, 则李住在第二层的 103, 李是最后入住的, 所以孙住在 107, 且 105 和 109 都在这之前有人住了. 赵是第三个入住的, 所以孙一定是第四个入住的. 根据钱的话, 钱住在 109. 有 对门的是 105 和 106,周住在 106,所以赵住在 105,而且周的第一个入住的,答案为 69573.
迎春杯历年真题必会20题解析(四年级)
迎春杯历年真题必会20题(四年级)1.(2011年迎春杯四年级初赛)定义@A B B B A A =⨯-⨯,则1@2+3@4+5@6+···+99@100=.【考点】定义新运算【难度】☆☆【答案】(1)5050(2)4【分析】A@B=A+B ,比如211122+=⨯⨯-.故而原式为1到100之和,为5050.2.某校学生参加一个数学竞赛,男生平均分是96分,女生平均分是90分,全体同学的平均分是92分,女生比男生多20人,求男女各多少人?【考点】平均数,移多补少【难度】☆☆【答案】男生20人,女生40人【分析】整体思路:男生拿出=女生得到。
男生每人拿出:96-92=4,女生每人得到:92-90=2,因此女生人数应该是男生人数4÷2=2倍。
根据差倍关系得到男生为20人,女生为20×2=40人。
3.(2006年迎春杯四年级初赛)从1999这个数里减去253以后,再加上244;然后再减去253,再加上244;……这样一直算下去,当减去第_________次时,得数恰好第一次等于0.【考点】计算,周期【难度】☆【答案】195【分析】()()19992532532441195-÷-+=(次)4.(2016年迎春杯四年级初赛)下边的乘法算式中只有四个位置上的数已知,它们分别是2、0、1、6.请你在空白位置填上数字,使得算是能够成立。
那么乘积为______.【考点】数字谜【难度】☆☆【答案】2205【分析】突破口:第二个乘积的末位数字应该是9,由末位分析法得知3×3=9,即63×3=189.再经试验可得第二个乘数末位为5可使得第一个乘积十位为1,即63×5=315.所以最终算式为63×35=2205在下面的方框中填入适当的数字,使得乘法竖式成立,那么两个乘数之和为_____.【考点】数字谜【难度】☆☆【答案】96【分析】突破口:进位分析可得第二个乘积的十位为9,□5×□=19□,可能为95×2=190(不能使十位往百位进位,舍掉)或者65×3=195,进而由位数分析法得知第二个乘数个位必为1,即65×31=2015.答案65+31=966.(2014年迎春杯四年级初赛)下面的除法算式给出了部分数字,请将其补充完整。
迎春杯初赛四年级年级题库
模块一、计算(一)、凑整【例 1】(2007年数学解题能力展示中年级初赛 1题)计算:98 +197 + 2996 + 39995 + 499994 + 5999993 + 69999992 + 799999991 = .(二)、提取公因数【例 2】(2008 年“数学解题能力展示”读者评选活动四年级组初赛 1 题)计算:l2345×2345 + 2469×38275 = 。
【例 3】(2009“数学解题能力展示"读者评选活动四年级初赛1 题)计算:2009 ÷ 37 + 300 ÷ (37 ×3) = .(三)、多位数计算【例 4】(2007年数学解题能力展示中年级初赛 2题)有一个2007位的整数,其每个数位上的数字都是9,这个数与它自身相乘,所得的积的各个数位上的数字的和是.(四)、公式法【例 5】(2010 年数学解题能力展示四年级初试1 题)计算:64×46 + 73× 37 + 82×28 + 91×19 = .【例 6】(2009“数学解题能力展示"读者评选活动四年级初赛10 题)老师在黑板上写了三个不同的整数,小明每次先擦掉第一个数,然后在最后写上另两个数的平均数,如此做了7 次,这时黑板上三个数的和为159.如果开始时老师在黑板上写的三个数之和为2008,且所有写过的数都是整数.那么开始时老师在黑板上写的第一个数是.(五)、等差数列【例 7】(2010 年数学解题能力展示四年级初试2 题)2010 个连续自然数由小到大排成一排,排在奇数个上的各数的平均数是2345,那么,排在偶数个上各数的平均数是.模块二、几何(一)一笔画问题【例 8】(2009“数学解题能力展示"读者评选活动四年级初赛 6 题)如图所示,某小区花园的道路为一个长480 米,宽200 米的长方形;一个边长为260 米的菱形和十字交叉的两条道路组成.一天,王大爷A 处进入花园,走遍花园的所有道路并从A 处离开.如果他每分钟走60 米,那么他从进入花园到走出花园最少要用分.(二)平面几何——等积变换【例 9】(2007年数学解题能力展示中年级初赛 7题)如图2,六边形ABCDEF 为正六边形,P为对角线CF 上一点,若PBC、PEF 的面积为3与4 ,则正六边形ABCDEF 的面积是.C DB P EF2(三)平面几何——周长与面积【例 10】(2008 年“数学解题能力展示”读者评选活动四年级组初赛12 题)如图,一个长方形被分成A、B、C三块,其中B 和C 都是长方形,A 的八条边的边长分别是l、2、3、4、5、6、7、8 厘米。
2011年少儿迎春杯四年级初赛(试题)
2010年12月19日“数学解题能力展示”读者评选活动四年级组初试试卷(测评时间:2010年12月19日11:00—12:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议签名:一、填空题Ⅰ(每题8分,共40分)1.计算:80×37+47×63= .2.如右图所示的竖式中,相同图形表示相同数字,不同图形表示不同数字,则△+○+□=____________.3.大果粒酸奶每盒4元,某超市最近推出“买二送一”的优惠活动,即花钱买两盒酸奶,就可以免费获得一盒酸奶.东东要买10盒大果粒酸奶,那么他至少需要花___________元钱.4.学校校园里有一块长方形的地,想种上红花、黄花和绿草.一种设计方案如上右图,其中红花的面积是____________㎡.5.某校学生总人数比四年级人数的6倍少78人,并且除了四年级外其他各年级的学生人数总和为2222人;那么该校共有学生_____________人。
二、填空题Ⅱ(每题10分,共50分)6.规定1※2=1+2=3,2※3=2+3+4=9,5※4=5+6+7+8=26,如果※15=165,那么=____________.7.教室里所有人的平均年龄是11岁.如果不算1个30岁的老师,其余人的平均年龄是10岁.那么教师里有___________人.8.在算式=2010中,不同的字母代表不同的数字.那么, .9.7个红球5个白球共重43克,5个红球7个白球共重47克,那么4个红球8个白球共重克.10.羊村小学四年级进行一次数学测验,测验共有15道题.如果小喜喜、小沸沸、小美美、小懒懒都是恰好答对的题目数分别是11道、12道、13道、14道,那么他们四人都答对的题目至少有___________道.三、填空题Ⅲ(每题12分,共60分)11.今天是12月19日,我们将电子数字1、2、1、9放在了图中8×5的长方形中,每个阴影小格子都是边长为1的正方形;将它旋转180°,就变成了“6121”.如果将这两个8×5的长方形重叠放置,那么重叠的1×1的阴影格子共有个.12.花园里有向日葵、百合花、牡丹三种植物,1)在一个星期内只有一天这三种花能同时开放;2)没有一种花能连续开放三天;3)在一周之内,任何两种花同时不开的日子不会超过一天;4)向日葵在周2、周4、周日不开放;5)百合花在周4、周6不开放;6)牡丹在周日不开放;那么三种花在星期同时绽放.13.镖盘上的数字代表投中这个区域的得分,未中镖盘记0分.把三支飞镖掷向右图所示的镖盘上,然后把三支飞镖的得分相加,那么不可能得到的整数分中最小是 .14.如图,一个长方形被分成4个小长方形,其中长方形A、B、C的周长分别是10厘米、12厘米、14厘米,那么长方形D的面积最大是_______平方厘米.15.美国篮球职业联赛(NBA)总决赛在洛杉矶湖人队和波士顿凯尔特人队之间进行,比赛采用7场4胜制,即先获得4场胜利的球队将得到总冠军.比赛分为主场和客场,由于洛杉矶湖人队常规赛战绩较好,所以第1,第2,第6,第7场均在洛杉矶进行,第3—5场在波士顿进行.最终湖人队在自己的主场获小学一年级英语下册教学计划一、学生情况分析:本班大部分学生的英语都不错,有个别同学在上学之前未曾接触过英语学习,因此英语底子比较薄弱,但他们聪明好学,通过一学期的英语学习.相信在以后的学习中会后来居上。
历年迎春杯三四年级初赛试题汇编
【2007年中年级初赛第1题】——速算巧算计算:【2007年中年级初赛第2题】——大数的计算有一个2007位的整数,其每个数位上的数字都是9,这个数与它自身相乘,所得的积的各个数位上的数字的和是 。
【2008年三年级初赛第1题】——速算巧算计算:24+63+52+17+49+81+74+38+95=_____________。
【2008年三年级初赛第2题】——速算巧算计算:53574743⨯-⨯=_____________。
【2009年三年级初赛第1题】——速算巧算计算:=_____________.【2009年三年级初赛第2题】——速算巧算计算:_____________.【2009年四年级初赛第1题】——速算巧算计算:200937300(373)÷+÷⨯= . 【2010年三年级初赛第1题】——速算巧算计算:8897106115124133142151⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯?______;【2010年四年级初赛第1题】——速算巧算计算:1991288237734664⨯+⨯+⨯+⨯?______;【2011年三年级初赛第1题】——速算巧算计算:82-38+49-51= .【2011年三年级初赛第5题】——找规律计算已知:1×9+2=1112×9+3=111123×9+4=1111……△×9+○=111111那么 △+○= .【2011年四年级初赛第1题】——速算巧算计算: 。
【2011年四年级初赛第6题】——定义新运算规定,,,如果,那么= 。
计算典型应用题【2006年中年级初赛第1题】——典型应用题“神六”于2005年10月12日9时0分在酒泉卫星发射中心升空,2005年10月17日4时33分成功着陆内蒙古着陆场,征空双雄安全返回地球,中国神舟六号载人飞行获得圆满成功!那么,“神六”空中遨游了_________分;在学生时代被同学们称为数学王的航天员是_____________ 。
迎春杯历年题目分类解析汇报
“迎春杯”历年题目分类解析(四年级)(学而思名师解题)1答案:5操作问题:将1、3、5、7、9 称为奇数格,将2、4、6、8称为偶数格。
开始时奇数格总和比偶数格总和大5, 而每一次变化并不影响这个结果所以A=5点评:操作题目,要寻找不变量,进行突破2答案:161提示:从里到外层数逐渐增加,差值逐渐增大,表n可以看成是n层,可以得到:N=1 S1=1N=2 S2=1+8X1X2N=3 S3=1+8X(1X2+2X3)N=4 S4=1+8X(1X2+2X3+3X4)=161N=5 S5=1+8X(1X2+2X3+3X4+4X5)N=6 S6=1+8X(1X2+2X3+3X4+4X5+5X6)=561由于差值逐渐增大,差值为400的情况只可能出现在前面,所以N=4符合要求。
题目:3答案:2346奇数位和是2345×1005,每个偶数位比它对应的奇数位大1,所以1005个偶数位比1005个奇数位大1005,那么偶数位和是2345×1005+1005=2346×1005,平均数自然是23464答案:30点评:此题难度不大,通过奇偶分析可得5个连续数应为3偶2奇,不难通过尝试得到4+5+6=7+8,结果是30题目:第一题:446点评:排成一排,空隙数量比球多一个,所以去掉1红之后1红— 2黄—6蓝(2008-1)÷9×2=446第二题:60点评:一笔画问题结合行程,难度不大,只需算出总路程即可,图中共4个奇点,而A进A出的要所有点均是偶点,需要多走两条连接奇点的线才能保证所有点都变成偶点,那么需要多走两次260 即(480×3+200×3+260×4+260×2)÷60=60(分)注:在高年级学过勾股定理之后,260米的边长是可以计算出来的,不需题目给出条件10月17日试题:第一题:28第二题:2682(其它年级所占的是5份少78人,标准和差倍)10月21日试题:10月21日试题答案:第一题:20第二题:49点评:从这两天可以看出,应用题在迎春杯中考察还是相对简单的,如果孩子能够熟练掌握方程,做出第一、第二档的应用题应该难度不大10月22日试题:第一题:24第二题:30点评:这两道题都是标准的列方程解应用题,在四年级迎春杯初赛中,题号比较靠前的应用题请特别注意方程的应用10月23日试题:10月23日试题答案:第一题:48(提示:画线段图,最后三段剩下的刚好是等差数列,公差是两段线段)第二题:21(提示:1个男生会有左右两个牵手,共60次牵手,男女牵手共18次,男男牵手则有(60-18)÷2=21(次)那么就会分成21组,此题难度还是比较大的)10月24日试题:10月24日试题答案:第一题:7提示:此题考察鸡兔同笼多个动物打包思想有四脚蛇是双头龙的2倍,把2个四脚蛇和1个双头龙打1个包作为新动物,包是4头12脚发现4头12脚正好是4只三脚猫,所以包的新动物和三脚猫一样,这三个动物和一起算做1个,其实本题相当于对三脚猫和独角兽做鸡兔同笼,可求出独角兽的只数(160-58)÷(3-1)=51 58-51=7第二题:英语提示:应用题和逻辑推理结合问题,采取枚举法,让9本分别是数学、语文、英语、历史,进行尝试计算,只有9本是英语书时4个数不重复,其余均有重复10月28日试题——数字谜今天开始进入数字谜阶段~中年级最重要的是加法数字谜!10月28日试题答案:第一题:10第二题:3010月29日试题:10月31日题目1.(2013年四年级组第9题)2.(2013年三年级组第6题)10月31日答案1、20342、3135(提示:这两道题都可以通过尝试得到,但如果掌握弃9法的话,做出来将会非常简单)1.2.11月4日题目——计数篇1.(2013四年级第6题)2.(2013三年级第10题)(此题难度很大,当年正确率不超过1%)11月4日答案1、7(特别提示:本题当年答案5也算作正确了,因为4=1+3,6=1+5这两组偶数不算作和)2、3211月5日答案1、 62、21000昨天这两道题目不难哈!~ 11月6日题目11月6日答案:1、30(提示:实际操作法很有效哦!)2、30(提示:湖人只能在第6场或第7场获胜,所以比分是4:2或4:3,之后用树形图方法分两类讨论)11月7日题目:11月8日试题答案:第一题:18种第二题:25128(提示:这道题方法真的是一点一点算的,没有特别简单的解法,类似的题目华杯总决赛也考过,而且数比今天这个还大!)11月11日试题——逻辑推理11月13日试题:(点评:这次的两道题都是从六年级的考题当中摘下来的,难度虽然很大,但从知识点上四年级绝对可以)1、2、7192511月14日题目:11月14日答案11月18日题目(标准鸡兔同笼)(从本周开始,做一些杯赛最爱考的配套类型题目哈)1、在某电视机厂质量检测评比中,每生产出一台合格电视机记5分,每生产出一台不合格电视机扣10分。
历年迎春杯三四年级初赛试题汇编
计算【2007 年中年级初赛第 1 题】——速算巧算计算:【2007 年中年级初赛第 2 题】——大数的计算有一个 2007 位的整数,其每个数位上的数字都是9,这个数与它自身相乘,所得的积的各个数位上的数字的和是。
【2008 年三年级初赛第 1 题】——速算巧算计算: 24+63+52+17+49+81+ 74+38+95=______ 。
【2008 年三年级初赛第 2 题】——速算巧算计算:53 57 47 43 _________ 。
【2009 年三年级初赛第 1 题】——速算巧算计算:= .【2009 年三年级初赛第 2 题】——速算巧算计算:__________ .【2009 年四年级初赛第 1 题】——速算巧算计算: 2009 37 300 (37 3) .【2010 年三年级初赛第 1 题】——速算巧算计算:1 15 2 14 3 13 4 12 5 11 6 10 7 9 8 8 ? _________ ;【2010 年四年级初赛第 1 题】——速算巧算计算:64 46 73 37 82 28 91 19? ______ ;【2011 年三年级初赛第 1 题】——速算巧算计算: 82-38+49-51= .【2011 年三年级初赛第 5 题】——找规律计算已知: 1×9+2=1112×9+3=111123×9+4=1111△×9+○=111111 那么△+○=.【2011 年四年级初赛第 1 题】——速算巧算计算:。
【2011 年四年级初赛第 6 题】——定义新运算规定,,,如果,那么 = 。
典型应用题【2006 年中年级初赛第 1 题】——典型应用题“神六”于2005年10月 12日 9时 0分在酒泉卫星发射中心升空, 2005年 10月17日 4时33 分成功着陆内蒙古着陆场,征空双雄安全返回地球,中国神舟六号载人飞行获得圆满成功!那么,“神六”空中遨游了__ 分;在学生时代被同学们称为数学王的航天员是【2006 年中年级初赛第 5 题】——平均数问题某校男老师的平均年龄是 27 岁,女老师的平均年龄是 32 岁,全体老师的平均年龄是 30 岁。
2013年迎春杯四年级高频考点汇总
第1讲 计算专题高频考点知识储备 一、等差数列1.通项公式:第n 项=首项+项=首项+((n -1)1)×公差×公差×公差 2.项数公式:项数=.项数公式:项数=((末项-首项末项-首项))÷公差+÷公差+1 1 3.求和公式:⑴和=.求和公式:⑴和=((首项+末项首项+末项))×项数÷×项数÷2 2 ⑵和=中间项×项数⑵和=中间项×项数4. 重要结论:重要结论:11+3+5+7+…=n =n 21+2+3+…+n +…+3+2+1=n 2二、经典公式 1.平方差公式:a 2-b 2=(a +b )×(a -b )2.平方和公式:.平方和公式:112+22+32+42+…+n 2=n (n +1)(2n +1)1)÷÷6 三、重要方法 1.硬算.硬算 2.凑整法.凑整法3.乘法分配律.乘法分配律 4.等差数列应用.等差数列应用5.公式法.公式法 6. 找规律找规律找规律 ………… 一、硬算 【例1】(1)(2010年迎春杯初赛试题)计算:6446733782289119´+´+´+´= 。
(2)(2011年迎春杯初赛试题)计算80×37+47×63=______ (3)(2012年迎春杯初赛试题)计算:计算:121212++3434××5656++7+8989==________________。
(4)(2010年迎春杯复赛试题)计算:()289181982914´+´+´¸=_______(5)(2011年迎春杯复赛试题) 计算:11)×9-1199 +1111(9-2011´´´´=____________(6)(2012年迎春杯复赛试题)计算:(2012-284+1352012-284+135)×)×)×77÷69=_________ 定义新运算(2011年迎春杯初赛试题):规定1※2=1+2=3, 2※3=2+3+4=9, 5※4=5+6+7+8=26. 如果a ※15=165,那a=_______. 二、凑整法 【例2】(2007年迎春杯初赛试题) 计算:计算: 98 98+197197++29962996++3999539995++499994499994++59999935999993++6999999269999992++799999991799999991==________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011“数学解题能力展示”读者评选活动
四年级组初赛试题
(测评时间:2010年12月19日11:00—12:00)
一、填空题Ⅰ(每题8分,共40分)
1.计算:=⨯+⨯63473780.
2.如右图所示的竖式中,相同图形表示相同数字,不同图形表示不
同数字,则△+○+□= .
3.大果粒酸奶每盒4元,某超市最近推出了“买二送一”的优惠活动,
即花钱买两盒酸奶,就可以免费获得一盒酸奶.东东要买10
盒大果粒酸奶,那么他至少需要花 元钱.4.学校校园里有一块长方形的地,想种上红花、黄花和绿草.一种设计方案如右图,其中红花的面积是 m 2.5.某校学生总人数比四年级人数的6倍少78人,并且除了四年级外其他各年级的学生人数总和为2222人;那么该校共有学生人.
二、填空题Ⅱ(每题10分,共50分)
6.规定12123=+=※,232349※=++=,54567826※=+++=.如果 15165※a =,
那么=a .
7.教室里所有人的平均年龄是11岁.如果不算其中1个30岁的老师,其余人的平均年龄
是10岁.那么教室里有 .人.
8.在算式2010=+EFG ABCD 中,不同的字母代表不同的数字.那么,
G F E D C B A ++++++= .
9.7个红球5个白球共重43克,5个红球7个白球共重47克,那么4个红球8个白球共
重____________克.
10.羊村小学四年级进行一次数学测验,测验共有15道题.如果小喜喜、小沸沸、小美美、
小懒懒答对的题目数分别是11道、12道、13道、14道,那么他们四人都答对的题目至少有
道.18米
12米
8
12
23
3
1三.填空题Ⅲ(每题12分,共60分)
11.今天是12月19日,我们将由边长为1的阴影小正方形组成的数字1、2、1、9放在8×5
的大长方形中,将大长方形旋转180°,就变成了“6121”.如果将这两个8×5的大长方形重叠放置,那么重叠的1×1的阴影格子共有 个.
12.花园里有向日葵、百合花、牡丹三种植物,
1)
在一个星期内只有一天这三种花能同时开放;2)
没有一种花能连续开放三天;3)
在一周之内,任何两种花同时不开的日子不会超过一天;4)
向日葵在周2 、周4 、周日不开放;5)
百合花在周4 、周6 不开放;6)牡丹在周日不开放;
那么三种花在星期 同时绽放.
(星期一至星期日用数字1至7表示) 13.镖盘上的数字代表投中这个区域的得分,未中镖盘记0分.小明把三支飞镖掷向右图所示的镖盘上,然后把三支飞镖的得分相加,那么小明不可能得到的整数分中最小是 .
14.如图,一个长方形被分成4个小长方形,其中长方形A 、B 、C 的周长分别是10厘米、
12厘米、厘米14,那么长方形D 的面积最大是 平方厘米.
15.美国篮球职业联赛(NBA )总决赛在洛杉矶湖人队和波士顿凯尔特人队之间进行,比
赛采用7场4胜制,即先获得4场胜利的球队将得到总冠军.比赛分为主场和客场,由于洛杉矶湖人队常规赛战绩较好,所以第1,第2,第6,第7场均在洛杉矶进行,第3—5场在波士顿进行.最终湖人队在自己的主场获得了总冠军,那么比赛过程中的胜负结果共有
种可能.
【参考答案】
2011“数学解题能力展示”读者评选活动
四年级组初赛试题
(测评时间:2010年12月19日11:00—12:00
)。