人教版九年级数学上册21.3实际问题与一元二次方程(第三课时)导

合集下载

21.3 实际问题与一元二次方程 第3课时

21.3  实际问题与一元二次方程  第3课时
2元或6元
某店销售一种小工艺品。该工艺品每 件进价12元,售价为20元。每周可售 出40件。经调查发现,若把每件工艺 品的售价提高1元,就会少售出2件。 设每件工艺品售价提高x元,请完成下 面问题: 1.填空:每件工艺品售价提高x元后的 利润为___元,每周可售出工艺品___件; 2.若每周的利润达到384元,则每件工 艺品的售价应确定为多少元?
1 8 2 9 3 4 6 7
5
10 11 12
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
循环类问题
单循环公式(握手、签合同、比赛)
双循环公式(送礼品、比赛)
n(n 1) 2
n(n 1)
生物兴趣小组的同学,将自己 收集的标本向本组其他成员各 赠送一件,•全组共互赠了182 件,如果全组有名同学,则根 据题意列出的方程是
21.3 实际问位 数字与个位数字之和是8. 如果把十位数字与个位数 字调换,所得的两位数与 原来的两位数的乘积为 1855.求原来的两位数。
下表是某月的一张月历,在此月 历上用一个正方形任意画出2×2 个数,它们组成正方形(如2、3、 9、10),如果圈出的4个数中, 最小数与最大数的积为128,求这 四个数的和是多少?
如图,在长方形ABCD中,AB=5cm,BC=7cm,点P 从点A开始沿线段AB向点B以1cm/s的速度移 动,点Q从点B开始沿线段BC向点C以2cm/s的 速度移动,点P,Q分别从A,B两点同时出发t 秒钟,直至两动点中某一点到达端点后停止 (0<t≤3.5) (1)经过几秒钟后,PQ的长度等于5cm? (2)经过几秒钟后,△BPQ的面积等于4cm?
一个小组有若干人,新 年互送贺卡,若全组共 送贺卡72张,这个小组 共有多少人?

21.3 第3课时 几何面积问题与一元二次方程 人教版数学九年级上册课件

21.3 第3课时 几何面积问题与一元二次方程 人教版数学九年级上册课件

y
y
整理得: y2 - 16y + 90 = 0 ,
∵Δ = -104 < 0,
2
∴ 围成的鸡场面积不能达到 180 平方米.
3. 如图,在 Rt△ABC 中,∠C = 90°,AC = 6 cm,BC = 8 cm. 点 P 沿 AC 边从点 A 向终点 C 以 1 cm/s 的速度移 动;同时点 Q 沿 CB 边从点 C 向终点 B 以 2 cm/s 的速度 移动,且当其中一点到达终点时,另一点也随之停止移
分析: 审题 找等量关系
中央矩形面积= ×封面面积
27 cm
找关系式 正中央与封面长宽比例相同 设元
设合适的未知数
21cm
合作探究 ①根据题目的已知条件,可以推出中央的矩形的 长宽之比也是 27∶21 = 9∶7,那你知道上、下边衬 与左、右边衬的宽度之比是多少吗?请你推一推:
设中央的矩形的长和宽分别是 9a cm 和 7a cm. 由此得上、下边衬与左、右边衬的宽度之比是
导入新课 引例:要设计一本书的封面,封面长 27 cm,宽 21 cm, 正中央是一个与整个封面长宽比例相同的长方形,如果 要使四周的彩色边衬所占面积是封面面积的四分之一, 上、下边衬等宽,左、右边衬等宽,应如何设计四周边 衬的宽度(精确到 0.1 cm)?
探究新知 知识点1:几何图形与一元二次方程
镶一条金色纸边,制成一幅长方形挂图,如图所示,
如果要使整个挂图的面积是 5400 cm2,设金色纸边的
宽为 x cm,那么 x 满足的方程是( B )
A.x2 + 130x - 1400 = 0 B.x2 + 65x - 350 = 0
x 80 cm x
C.x2 - 130x - 1400 = 0

人教版九年级数学上册教案-21.3 第3课时 几何图形与一元二次方程2带教学反思

人教版九年级数学上册教案-21.3   第3课时  几何图形与一元二次方程2带教学反思

21.3 实际问题与一元二次方程(3)教学内容根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题.教学目标掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题.重难点关键1.•重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.2.•难点与关键:根据面积与面积之间的等量关系建立一元二次方程的数学模型.教具、学具准备小黑板教学过程一、复习引入(口述)1.直角三角形的面积公式是什么?•一般三角形的面积公式是什么呢?2.正方形的面积公式是什么呢?长方形的面积公式又是什么?3.梯形的面积公式是什么?4.菱形的面积公式是什么?5.平行四边形的面积公式是什么?6.圆的面积公式是什么?(学生口答,老师点评)二、探索新知现在,我们根据刚才所复习的面积公式来建立一些数学模型,解决一些实际问题.例1.某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,•上口宽比渠深多2m,渠底比渠深多0.4m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?分析:因为渠深最小,为了便于计算,不妨设渠深为xm,则上口宽为x+2,•渠底为x+0.4,那么,根据梯形的面积公式便可建模.解:(1)设渠深为xm则渠底为(x+0.4)m,上口宽为(x+2)m依题意,得:12(x+2+x+0.4)x=1.6整理,得:5x2+6x-8=0解得:x1=45=0.8m,x2=-2(舍)∴上口宽为2.8m,渠底为1.2m.(2)1.675048⨯=25天答:渠道的上口宽与渠底深各是2.8m和1.2m;需要25天才能挖完渠道.学生活动:例2.如图,要设计一本书的封面,封面长27cm,宽21cm,•正中央是一个与整个封面长宽比例相同的矩形,•如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,•应如何设计四周边衬的宽度(精确到0.1cm)?九年级 练数学 习同步老师点评:依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7,•由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm,•则左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为(27-18x)cm,宽为(21-14x)cm.因为四周的彩色边衬所点面积是封面面积的14,则中央矩形的面积是封面面积的.所以(27-18x)(21-14x)=34×27×21整理,得:16x2-48x+9=0解方程,得:x=64±,x1≈2.8cm,x2≈0.2所以:9x1=25.2cm(舍去),9x2=1.8cm,7x2=1.4cm因此,上下边衬的宽均为1.8cm,左、右边衬的宽均为1.4cm.三、巩固练习有一张长方形的桌子,长6尺,宽3尺,有一块台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相同,求台布的长和宽各是多少?(精确到0.1尺)四、应用拓展例3.如图(a)、(b)所示,在△ABC中∠B=90°,AB=6cm,BC=8cm,点P从点A•开始沿AB边向点B以1cm/s的速度运动,点Q从点B开始沿BC边向点C以2cm/s的速度运动.(1)如果P、Q分别从A、B同时出发,经过几秒钟,使S△PBQ=8cm2.(2)如果P、Q分别从A、B同时出发,并且P到B后又继续在BC边上前进,Q到C•后又继续在CA边上前进,经过几秒钟,使△PCQ的面积等于12.6cm2.(友情提示:过点Q•作DQ⊥CB,垂足为D,则:DQ CQ AB AC)(a)BACQP(b)BACQ DP分析:(1)设经过x秒钟,使S△PBQ=8cm2,那么AP=x,PB=6-x,QB=2x,由面积公式便可得到一元二次方程的数学模型.(2)设经过y秒钟,这里的y>6使△PCQ的面积等于12.6cm2.因为AB=6,BC=8,由勾股定理得:AC=10,又由于PA=y,CP=(14-y),CQ=(2y-8),又由友情提示,便可得到DQ,那么根据三角形的面积公式即可建模.解:(1)设x秒,点P在AB上,点Q在BC上,且使△PBQ的面积为8cm2.则:12(6-x)·2x=8整理,得:x2-6x+8=0解得:x1=2,x2=4∴经过2秒,点P到离A点1×2=2cm处,点Q离B点2×2=4cm处,经过4秒,点P到离A点1×4=4cm处,点Q离B点2×4=8cm处,所以它们都符合要求.(2)设y秒后点P移到BC上,且有CP=(14-y)cm,点Q在CA上移动,且使CQ=(2y-8)cm,过点Q作DQ⊥CB,垂足为D,则有DQ CQ AB AC=∵AB=6,BC=8∴由勾股定理,得:∴DQ=6(28)6(4) 105y y--=则:12(14-y)·6(4)5y-=12.6整理,得:y2-18y+77=0解得:y1=7,y2=11即经过7秒,点P在BC上距C点7cm处(CP=14-y=7),点Q在CA上距C点6cm处(CQ=•2y-8=6),使△PCD的面积为12.6c m2.经过11秒,点P在BC上距C点3cm处,点Q在CA上距C点14cm>10,∴点Q已超过CA的范围,即此解不存在.∴本小题只有一解y1=7.五、归纳小结本节课应掌握:利用已学的特殊图形的面积公式建立一元二次方程的数学模型并运用它解决实际问题.六、布置作业1.教材P53综合运用5、6 拓广探索全部.2.选用作业设计:一、选择题1.直角三角形两条直角边的和为7,面积为6,则斜边为().AB.5 C.72.有两块木板,第一块长是宽的2倍,第二块的长比第一块的长少2m,宽是第一块宽的3倍,已知第二块木板的面积比第一块大108m2,这两块木板的长和宽分别是().A.第一块木板长18m,宽9m,第二块木板长16m,宽27m;B.第一块木板长12m,宽6m,第二块木板长10m,宽18m;C.第一块木板长9m,宽4.5m,第二块木板长7m,宽13.5m;D.以上都不对3.从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是().A.8cm B.64cm C.8c m2 D.64cm2二、填空题1.矩形的周长为,面积为1,则矩形的长和宽分别为________.2.长方形的长比宽多4cm,面积为60cm2,则它的周长为________.3.如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为_______.三、综合提高题1.如图所示的一防水坝的横截面(梯形),坝顶宽3m,背水坡度为1:2,迎水坡度为1:1,若坝长30m,完成大坝所用去的土方为4500m2,问水坝的高应是多少?(说明:•背水坡度CFBF=12,迎水坡度11DEAE)(精确到0.1m)BACEDF2.在一块长12m,宽8m的长方形平地中央,划出地方砌一个面积为8m2•的长方形花台,要使花坛四周的宽地宽度一样,则这个宽度为多少?3.谁能量出道路的宽度:如图22-10,有矩形地ABCD一块,要在中央修一矩形花辅EFGH,使其面积为这块地面积的一半,且花圃四周道路的宽相等,今无测量工具,•只有无刻度的足够长的绳子一条,如何量出道路的宽度?请同学们利用自己掌握的数学知识来解决这个实际问题,相信你一定能行.答案:一、1.B 2.B 3.D二、1.2.32cm3.20m 和7.5m 或15m 和10m 三、1.设坝的高是x ,则AE=x ,BF=2x ,AB=3+3x ,依题意,得:12(3+3+3x )x ×30=4500 整理,得:x 2+2x-100=0 解得x ≈220.102-+即x ≈9.05(m ) 2.设宽为x ,则12×8-8=2×8x+2(12-2x )x 整理,得:x 2-10x+22=0解得:x 1,x 2=3.设道路的宽为x ,AB=a ,AD=b 则(a-2x )(b-2x )=12ab 解得:x=14[(a+b )量法为:用绳子量出AB+AD (即a+b )之长,从中减去BD 之长(对角线,得L=•AB+AD-BD ,再将L 对折两次即得到道路的宽4AB AD BD +-.~。

人教版九年级数学上册《21-3 实际问题与一元二次方程(第3课时)》教学课件PPT初三优秀公开课

人教版九年级数学上册《21-3 实际问题与一元二次方程(第3课时)》教学课件PPT初三优秀公开课

原方程没有实数根,从而知用35m的篱笆按图示方式不
能围成面积为160m²的鸡场.
巩固练习
如图,一农户要建一个矩形猪舍,猪舍的一边利用长为
12m的住房墙,另外三边用25m长的建筑材料围成,为方
便进出,在垂直于住房墙的一边留一个1m的门,所围矩
形 猪舍的长、宽分别为多少时,猪舍面积为80平方米?
解:设矩形猪舍垂直于住房墙的一边长为x m, 则平行于住房墙的一边长(25-2x+1)m.
解:设剪去的小正方形的边长为xcm,则纸盒的长为(19-2x) , 宽为(15-2x)cm,依题意得(19-2x)(15-2x)=77 . 整理得:x²-17x+52=0. 解方程,得:(x-13)(x-4)=0. 解得:x1=4,x2=13(舍去). 因此剪去的小正方形的边长应为3cm.
素养目标
解:设四周垂下的宽度为x尺时,则台布的长为(2x+6)尺,宽为(2x+3)尺,依题意得: (6+ 2 x )( 3 + 2x )= 2 ×6× 3.
整 理 方 程 得 :2x ²+ 9 x- 9 = 0.
解得:x1≈0.84 ,x2≈- 5.3(不合题意,舍去). 因此:台布的长为:2×0.84 +6≈7.7(尺).
探究新知
小路所占面积是矩形 面积的四分之一
2x
30-4x
2x
3x
剩余面积是矩形面积 的四分之三
30-4x
4x
20-6x 20㎝
20-6x
3x
6x
30㎝
解:设横、竖小路的宽度分别为3x、 2x,
于是可列方程
(30-4x)(20-6x)= 3 ×20×30. 4

21.3 实际问题第3课时 降价促销问题-九年级数学上册课件(人教版)

21.3 实际问题第3课时 降价促销问题-九年级数学上册课件(人教版)
整理得,x2-30x+200=0 解方程得,x1=10,x2=20 因为要尽快减少库存,所以x=10舍去. 答:每件衬衫应降价20元.
某商城在销售中发现:“宝宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接” 十一”国庆节,商场决定采取适当的降价措施.经调查发现,如果每件童装降价4元,那么平 均每天就可多售出8件.要想平均每天盈利1200元,那么每件童装应该降价多少元? 解:设每件童装应降价x元,每件童装的利润 (40- x)元,每天销售的童装件数(20+2x) 件,根据题意,得
单件利润
原来 变化
销量
总利润
原来 变化
单件利润
原来 变化
销量
总利润
原来 变化
知识要点1 降价促销问题数量关系:
(原有利润 -变化利润)(原有销量 +变化销量)=总利润;
典例讲解
例1 某商场销售一批衬衫,平均每天可售出 20 件,每件盈利 40 元.经 调查发现,如果每件衬衫降价 1 元,商场平均每天可多售出 2 件.若商 场平均每天要盈利1200 元,每件衬衫应降价多少元?
解:设每件衬衫降价 x 元,根据题意得 (40 − x)(20 + 2x) = 1200,
整理得,x2 − 30x + 200 = 0. 解方程得,x1 = 10,x2 = 20. 因为要尽快减少库存,所以应取 x = 20. 答:每件衬衫应降价 20 元.
例2 某超市销售一种利润为每千克10元的水产品,一个月能销售出500 kg. 经市场分析,销售单价每涨价1元,月销售量就减少10 kg. 要使得 月销售利润达到8 000元,又要“薄利多销”,销售单价应涨价多少元 ?解:设销售单价应涨价 x元,由题意,得

21.3 实际问题与一元二次方程 三课时 优秀教案

21.3 实际问题与一元二次方程 三课时 优秀教案

第1课时文档设计者:设计时间:文档类型:文库精品文档,欢迎下载使用。

Word精品文档,可以编辑修改,放心下载教学内容21.3 实际问题与一元二次方程(1):由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.教学目标1.掌握用“倍数关系”建立数学模型,并利用它解决实际问题.2.经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.教学重点用“倍数关系”建立数学模型.教学难点用“倍数关系”建立数学模型.教学过程一、导入新课问题1:列方程解应用题下表是某一周甲、乙两种股票每天每股的收盘价(收盘价:股票每天交易结果时的价格):某人在这周内持有若干甲、乙两种股票,若按照两种股票每天的收盘价计算(不计手续费、税费等),则在他帐户上,星期二比星期一增加200元,星期三比星期二增加1300元,这人持有的甲、乙股票各多少股?分析:一般用直接设元,即问什么就设什么,即设这人持有的甲、乙股票各x、y张,由于从表中知道每天每股的收盘价,因此,两种股票当天的帐户总数就是x或y乘以相应的每天每股的收盘价,再根据已知的等量关系;星期二比星期一增加200元,星期三比星期二增加1300元,便可列出等式.解:设这人持有的甲、乙股票各x、y张.则0.5(0.2)2000.40.61300x yx y+-=⎧⎨+=⎩解得1000(1500(xy=⎧⎨=⎩股)股)答:(略)二、新课教学上面这道题是一种利用二元一次方程组的数量关系建立的数学模型,那么还有没有利用其它形式,也就是利用我们前面所学过的一元二次方程建立数学模型解应用题呢?请同学们完成下面问题.问题2:某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?分析:直接假设二月份、三月份生产电视机平均增长率为x.•因为一月份是1万台,那么二月份应是(1+x)台,三月份应是在二月份的基础上以二月份比一月份增长的同样“倍数”增长,即(1+x)+(1+x)x=(1+x)2,那么就很容易从第一季度总台数列出等式.解:设二月份、三月份生产电视机平均增长的百分率为x,则1+(1+x)+(1+x)2=3.31.去括号,得1+1+x+1+2x+x2=3.31.整理,得x2+3x-0.31=0.解得:x=10%答:(略)以上这一道题与我们以前所学的一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型.例某电脑公司2001年的各项经营中,一月份的营业额为200万元,一月、•二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.分析:设这个增长率为x,由一月份的营业额就可列出用x表示的二、三月份的营业额,又由三月份的总营业额列出等量关系.解:设平均增长率为x,则200+200(1+x)+200(1+x)2=950.整理,得x2+3x-1.75=0.解得:x=50%答:所求的增长率为50%.三、巩固练习1.填空题.(1)某农户的粮食产量,平均每年的增长率为x,第一年的产量为6万kg,•第二年的产量为_______kg,第三年的产量为_______,三年总产量为_______.(2)某糖厂2002年食糖产量为a t,如果在以后两年平均增长的百分率为x,•那么预计2004年的产量将是________.(3)我国政府为了解决老百姓看病难的问题,决定下调药品价格,•某种药品在2009年涨价30%•后,2011年降价70%•至a•元,则这种药品在2009年涨价前价格是__________.参考答案(1)6(1+x) 6(1+x)26+6(1+x)+6(1+x)2(2)A(1+x)2t(3)100 39a2.某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其它依此类推.解:设这种存款方式的年利率为x则:1000+2000x·80%+(1000+2000x·8%)x·80%=1320整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0解得:x1=-2(不符,舍去),x2=18=0.125=12.5%答:所求的年利率是12.5%.四、课堂小结本节课应掌握:利用“倍数关系”建立关于一元二次方程的数学模型,并利用恰当方法解它.五、布置作业习题21.3 第6题.第2课时教学内容21.3实际问题与一元二次方程(2):建立一元二次方程的数学模型,解决增长率与降低率问题.教学目标1.掌握建立数学模型以解决增长率与降低率问题.2.经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述.3.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.教学重点如何解决增长率与降低率问题.教学难点某些量的变化状况,不能衡量另外一些量的变化状况.教学过程一、导入新课问题:某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,•商场要想平均每天盈利120元,每张贺年卡应降价多少元?分析:总利润=每件平均利润×总件数.设每张贺年卡应降价x元,•则每件平均利润应x×100).是(0.3-x)元,总件数应是(500+0.1解:设每张贺年卡应降价x元,则x)=120.(0.3-x)(500+1000.1解得:x=0.1.答:每张贺年卡应降价0.1元.我们分析了一种贺年卡原来平均每天可售出500张,每张盈利0.3元,为了减少库存降价销售,并知每降价0.1元,便可多售出100元,为了达到某个目的,每张贺年卡应降价多少元?如果本题中有两种贺年卡或者两种其它东西,量与量之间又有怎样的关系呢?即绝对量与相对量之间的关系.二、新课教学例1 某商场礼品柜台春节期间购进甲、乙两种贺年卡,甲种贺年卡平均每天可售出500张,每张盈利0.3元,乙种贺年卡平均每天可售出200张,每张盈利0.75元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果甲种贺年卡的售价每降价0.1元,那么商场平均每天可多售出100张;如果乙种贺年卡的售价每降价0.25元,•那么商场平均每天可多售出34•张.•如果商场要想每种贺年卡平均每天盈利120元,那么哪种贺年卡每张降价的绝对量大.分析:原来,两种贺年卡平均每天的盈利一样多,都是150元;0.30.751000.10.2534=≈,从这些数目看,好象两种贺年卡每张降价的绝对量一样大,下面我们就通过解题来说明这个问题.解:(1)从上面可知,商场要想平均每天盈利120元,甲种贺年卡应降价0.1元. (2)乙种贺年卡:设每张乙种贺年卡应降价y 元, 则:(0.75-y )(200+0.25y×34)=120. 即(34-y )(200+136y )=120 整理:得68y 2+49y -15=0y =49268-±⨯∴y ≈-0.98(不符题意,应舍去) y ≈0.23元答:乙种贺年卡每张降价的绝对量大.因此,我们从以上一些绝对量的比较,不能说明其它绝对量或者相对量也有同样的变化规律.例2 两年前生产1 t 甲种药品的成本是5 000元,生产1 t 乙种药品的成本是6 000元,随着生产技术的进步,现在生产1 t 甲种药品的成本是3 000元,生产1 t 乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?分析和解答见教材第20页. 三、巩固练习 1.填空.(1)一个产品原价为a 元,受市场经济影响,先提价20%后又降价15%,现价比原价多_______%.(2)甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%,•最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了_________元.(3)一个容器盛满纯药液63L ,第一次倒出一部分纯药液后用水加满,•第二次又倒出同样多的药液,再加水补满,这时容器内剩下的纯药液是28L ,设每次倒出液体x L ,则列出的方程是________.参考答案:(1)2 (2)1 (3)(1-63x )2=28632.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg ,销售单价每涨1元,月销售量就减少10kg ,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算销售量和月销售利润. (2)设销售单价为每千克x 元,月销售利润为y 元,求y 与x 的关系式.(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?分析:(1)销售单价定为55元,比原来的销售价50元提高5元,因此,销售量就减少5×10kg .(2)销售利润y =(销售单价x -销售成本40)×销售量[500-10(x -50)] (3)月销售成本不超过10000元,那么销售量就不超过1000040=250kg ,在这个提前下,求月销售利润达到8000元,销售单价应为多少.解:(1)销售量:500-5×10=450(kg );销售利润:450×(55-40)=450×15=6 750元. (2)y =(x -40)[500-10(x -50)]=-10x 2+1 400x -40 000(3)由于水产品不超过10 000÷40=250kg ,定价为x 元,则(x -400)[500-10(x -50)]=8 000.解得:x1=80,x2=60.当x1=80时,进货500-10(80-50)=200kg<250kg,满足题意.当x2=60时,进货500-10(60-50)=400kg>250kg,(舍去).四、课堂小结本节课应掌握:建立多种一元二次方程的数学建模以解决如何全面地比较几个对象的变化状况的问题.五、布置作业习题21.3 第7题.第3课时教学内容21.3 实际问题与一元二次方程(3):根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题.教学目标1.掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.2.利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题.3.经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述.教学重点根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.教学难点根据面积与面积之间的等量关系建立一元二次方程的数学模型.教学过程一、导入新课教师引导学生复习三角形、正方形、长方形、梯形、菱形、平行四边形和圆的面积公式,导入新课的教学.现在,我们根据刚才所复习的面积公式来建立一些数学模型,解决一些实际问题.二、新课教学例某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠深多2m,渠底比渠深多0.4m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?分析:因为渠深最小,为了便于计算,不妨设渠深为x m,则上口宽为x+2,渠底为x +0.4,那么,根据梯形的面积公式便可建模.解:(1)设渠深为x m,则渠底为(x+0.4)m,上口宽为(x+2)m.依题意,得12(x+2+x+0.4)x=1.6.整理,得5x2+6x-8=0.解得:x1=45=0.8m,x2=-2(不合题意,舍去)∴上口宽为2.8m,渠底为1.2m.(2)1.675048=25天.答:渠道的上口宽与渠底深各是2.8m和1.2m;需要25天才能挖完渠道.三、巩固练习1.矩形的周长为,面积为1,则矩形的长和宽分别为________.2.长方形的长比宽多4cm,面积为60cm2,则它的周长为________.3.如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为_______.参考答案:1.2.32cm3.20m和7.5m或15m和10m四、课堂小结本节课应掌握:利用已学的特殊图形的面积公式建立一元二次方程的数学模型并运用它解决实际问题.五、布置作业习题21.3 第8、9题.可以编辑的试卷(可以删除)。

人教版九年级数学上册 实际问题与一元二次方程(第三课时)导学案含答案解析

人教版九年级数学上册 实际问题与一元二次方程(第三课时)导学案含答案解析

21.3 实际问题与一元二次方程(第3课时)导学探究:阅读教材P20-21,回答下列问题:1、探究3中有哪些数量关系?2、中央是一个与整个封面长宽比例相同的长方形,这个比是多少?上、下边衬与左、右边衬宽度之比是多少?3.教科书是根据什么选取未知数的?又是利用怎样的数量关系列出方程的?4.如果根据正中央的长方形的长、宽比为9,7,设正中央长方形的长、宽,并利用“中央长方形面积=封面面积的四分之三”列方程,间接求上、下边衬与左、右边衬宽可以吗?若可以,你试一试.归纳梳理1.列方程解应用题,一般直接设元,即问什么就设什么; 有时为了好理解,也采用间接设未知数的方法,列方程求解.2.利用一元二次方程分析解决几何图形问题,要抓住图形的特征(如面积关系、图形性质等),在分析题意的基础上建立方程,通过解方程来解决实际问题.3一元二次方程解决实际问题,要回到实际问题中进行解释和________,看求出的解是否符合__________.典例探究【例1】(·广西百色)在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m 长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2.(1)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?总结:解决几何图形问题的关键是掌握常见几何图形的面积、体积公式,并能熟练计算由基本图形构成的组合图形的面积.对于不规则图形的面积问题,往往通过平移、割补等方法把不规则图形转化为规则图形,运用规则图形的面积公式列出方程.练1:(秋•番禺区校级月考)如图,在宽为20m,长为32m的矩形耕地上,修筑宽度一样的三条道路(如图),把耕地分成大小相等的6块作为试验田,要使试验田面积为504m2,求每条道路的宽度为多少米.练2.(•金湾区校级一模)某幼儿园有一道长为16米的墙,计划用32米长的围栏利用一面墙如图围成一个矩形草坪ABCD.(1)当矩形草坪面积为120平方米时候,求该矩形草坪BC边的长.(2)怎样围能得到面积最大的草坪?夯实基础1、(•槐荫区三模)如图,矩形ABCD是由三个矩形拼接成的.如果AB=8,阴影部分的面积是24,另外两个小矩形全等,那么小矩形的长为()A.7 B.6 C.5 D.42、(•东西湖区校级模拟)如图,某广场一角的矩形花草区,其长为40m,宽为26m,其间有三条等宽的路,一条直路,两条曲路,路以外的地方全部种上花草,要使花草的面积为864m2,求路的宽度为m.3.(•红塔区模拟)如图,在长为80米,宽为60米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为4524米2,则道路的宽应为多少米?4、(春•昆明校级期末)如图,在长为32米,宽为20米的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上小草.要使草坪的面积为540平方米,则道路的宽为_______5.(•长宁区二模)如图,为了给小区居民增加锻炼场所,物业拟在一宽为40米、长为60米的矩形区域内的四周修建宽度相同的鹅卵石小路,阴影部分用作绿化.当阴影部分面积为800平方米时,小路宽x为多少米.6.(•赣州模拟)如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.(1)问:依据规律在第6个图中,黑色瓷砖有28 块,白色瓷砖有42 块;(2)某新学校教室要装修,每间教室面积为68m2,准备定制边长为0.5米的正方形白色瓷砖和长为0.5米、宽为0.25米的长方形黑色瓷砖来铺地面.按照此图案方式进行装修,瓷砖无须切割,恰好完成铺设.已知白色瓷砖每块20元,黑色瓷砖每块10元,请问每间教室瓷砖共需要多少元?7.光明小区要修建一个圆形花坛,平面设计图如图.(1)花坛的直径为10m,在它周围要铺一条2m宽的鹅卵石环形小路,这条小路的面积是多少平方米?(2)要在花坛中最大的正方形区域里种植花卉,种植花卉的面积有多大?(3)花坛内其余的部分用来种植草坪,种植草坪的面积有多大?典例探究答案【例1】(·广西百色)在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m 长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2.(1)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?【考点】一元二次方程的应用.【分析】(1)根据题意表示出长方形的长,进而利用长×宽=面积,求出即可;(2)分别计算出每一规格的地板砖所需的费用,然后比较即可.【解答】(1)设这地面矩形的长是xm,则依题意得:x(20-x)=96,解得x1=12,x2=8(舍去),答:这地面矩形的长是12米;(2)规格为0.80×0.80所需的费用:96÷(0.80×0.80)×55=8250(元).规格为1.00×1.00所需的费用:96÷(1.00×1.00)×80=7680(元).因为8250>7680,所以采用规格为1.00×1.00所需的费用较少.【点评】此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解。

九年级数学上册 第21章 一元二次方程 21.3 实际问题与一元二次方程(第3课时 几何图形问题)习

九年级数学上册 第21章 一元二次方程 21.3 实际问题与一元二次方程(第3课时 几何图形问题)习

阴影矩形的面积相等,而阴影矩形的长﹑
宽分别为(32-2x)m﹑(20-2x)m,根
据矩形的面积公式就可以列出方程,解方
32
程即可.
20-2x x
20
第3课时 几何图形问题
解:设小道的宽为xm. 依题意,得(32-2x)(20-2x)=504.
整理,得x²-36x+68=0. 解得 x1 =2,x2 =34(不合题意,舍去).
=9(3-a):7(3-a)
=9:7
第3课时 几何图形问题
解:设上下边衬的宽均为9xcm,左右边衬的宽均为7xcm,则
中央的矩形长为(27-18x)cm,宽为(21-14x)cm.中央的矩形的
面积是封面面积的四分之三.于是可列方程
(27-18x)(21-14x)= 43×27×21
方程的哪个根
整理,得 16x²-48x+9=0
答:小道的宽为2m.
①若是规则图形,则套用面积公式; ②若是不规则图形,通过割补平移的方法转换为 规则图形,再根据面积间的和﹑差关系求解.
第3课时 几何图形问题
例2 要设计一本书的封面,封面长27㎝,宽21cm,正中央是一个 与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是 封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设 计四周边衬的宽度?(精确到0.1cm)
×27×21
解得
x1
3
3 2
,
x2
3 3 (舍去)
2
所以上下边衬的宽度为 27 9x 1.8
2
左右边衬的宽度为
21 7 x 1.4 2
第3课时 几何图形问题
例3 要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面 积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB和BC的长 分别是多少米?

数学人教版九年级上册21.3 实际问题与一元二次方程(3)

数学人教版九年级上册21.3 实际问题与一元二次方程(3)

21.3实际问题与一元二次方程刘洪妮教学目标:知识与技能:1.以封面设计为问题背景,边衬的宽度问题中的数量关系列出一元二次方程,体会方程刻画现实世界的模型作用.2.培养学生的阅读能力与分析能力3.能根据具体问题的实际意义,检验结果是否合理.过程与方法:通过自主探究,独立思考与合作交流,使学生弄清实际问题的背景,挖掘隐藏的数量关系,把有关数量关系分析透彻,找出可以作为列方程依据的主要相等关系,正确的建立一元二次方程.情感态度与价值观:在分析解决问题的过程中逐步深入地体会一元二次方程的应用价值.学情分析:1、知识掌握方面:学生对列方程解应用题的一般步骤已经熟悉,适合由特殊到一般的探究方式。

2、学生年龄特点:九年级学生具有丰富的想象力、好奇心和好胜心理。

容易开发他们的主观能动性,适合自主探究、合作交流的数学学习方式。

教学重点:建立数学模型,找等量关系,列方程教学难点:找等量关系,列方程教学过程设计:一.复习回顾导语:通过上节课的学习,谈谈列一元二次方程解决实际问题的一般步骤及应注意的问题.列方程解应用题的一般步骤是什么?第一步:审题,明确已知和未知;弄清题意和题目中的已知数、未知数,第二步:设元,(设未知数);第三步:列方程(找相等关系);第四步:解方程;第五步:检验根的合理性.第六步:作答简单说:审、设、列、解、检、答二.1.创设情境,导入新知问题1 要设计一本书的封面,封面长 27 cm ,宽 21 cm ,正中央是一个矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下、左、右边衬等宽,应如何设计四周边衬的宽度? 解:设四周边衬的宽度为 x cm(利用未知数表示边长,通过面积之间的等量关系建立方程解决问题.)2.动脑思考,解决问题问题2 要设计一本书的封面,封面长 27 cm ,宽 21 cm ,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、212743⨯⨯=下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位) ?分析(1)怎么理解“应如何设计边衬的宽度”这句话? “设计边衬的宽度要求几个未知数?哪几个,为什么?”“上下边衬等宽,左右边衬等宽”得出“设计边衬的宽度要求两个未知数(上面的边衬宽度和左面的边衬宽度)”(2)如何理解“正中央是一个与整个封面长宽比例相同的矩形”这句话?“四周的彩色边衬所占面积是封面面积的四分之一”能告诉我们什么?封面的长宽之比是9∶7,中央的矩形的长宽之比也应是 9∶7.设中央的矩形的长和宽分别是 9a cm 和 7a cm ,由此得上、下边衬与左、右边衬的宽度之比是1/2(27-9a):1/2(21-7a)=9:7解法一:设上、下边衬的宽均为 9y cm ,左、右边衬宽均为 7y cm ,依题意得 (27-18y)(21-14y)=3/4*27*21整理得:16y 2 - 48y + 9 = 0解方程得方程的哪个根合乎实际意义?为什么?≈1.8 cm ≈1.4 cm .上 下边衬的宽均为1.8cm,左 右边衬的宽均为1.4cm解法二:设正中央的矩形两边分别为 9x cm ,7x cm ,依题意得 4336±=y 4327549-=y 4321427-=y 4336-=y 2127437·9⨯⨯=x x解得: (不合题意,舍去) 故上、下边衬的宽度为:≈1.8 cm ,左、右边衬的宽度为: ≈1.4 cm 上 下边衬的宽均为1.8cm,左 右边衬的宽均为1.4cm三,课堂训练 如图,要设计一副宽20cm ,长30cm 的图案,其中有两横两竖的彩条,横 竖彩条的宽度比为3:2,如果要使彩条所占面积是图案面积的四分之一,应如何设计彩条的宽度(结果保留小数点后一位)?四.小结归纳回顾前面几节课的学习内容,你能总结一下建立一元二次方程模型解决实际问题的基本步骤吗?需要注意哪些问题?1.列一元二次方程解应用题的步骤与列一元一次方程解应用题的步骤类似,即审、设、列、解、检、答.2.这里要特别注意:在列一元二次方程解应用题时,由于所得的根一般有两个,所以要检验这两个根是否符合实际问题2331=x 2332-=x =÷⨯-=-22339272927x 432754-=÷⨯-=-22337212721x 432142-的要求.五.布置作业教科书习题 21.3第 8 题。

人教版九年级数学上册:21.3实际问题与一元二次方程握手问题和互赠礼物问题说课稿

人教版九年级数学上册:21.3实际问题与一元二次方程握手问题和互赠礼物问题说课稿

人教版九年级数学上册:21.3 实际问题与一元二次方程握手问题和互赠礼物问题说课稿一. 教材分析人教版九年级数学上册第21.3节“实际问题与一元二次方程——握手问题和互赠礼物问题”,是在学生学习了方程与方程组、一元二次方程的基础上进行的教学。

本节课通过生活中的握手问题和互赠礼物问题,引导学生运用一元二次方程解决实际问题,培养学生的数学应用能力。

二. 学情分析九年级的学生已经具备了一定的方程解法能力和问题解决能力,但对于如何将实际问题转化为数学模型,并运用一元二次方程进行求解,仍然存在一定的困难。

因此,在教学过程中,需要帮助学生建立实际问题与一元二次方程之间的联系,提高他们的数学应用能力。

三. 说教学目标1.知识与技能目标:让学生掌握一元二次方程在实际问题中的应用,学会将实际问题转化为数学模型,并运用一元二次方程进行求解。

2.过程与方法目标:通过解决握手问题和互赠礼物问题,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。

四. 说教学重难点1.教学重点:握手问题和互赠礼物问题的数学模型建立与求解。

2.教学难点:如何引导学生将实际问题转化为一元二次方程,并运用方程求解。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法,引导学生主动参与课堂,提高他们的实践能力。

2.教学手段:利用多媒体课件、实物模型等辅助教学,生动形象地展示问题解决过程。

六. 说教学过程1.导入新课:通过一个简单的握手问题,激发学生的兴趣,引出本节课的主题。

2.知识讲解:讲解握手问题和互赠礼物问题的数学模型建立方法,引导学生掌握一元二次方程在实际问题中的应用。

3.案例分析:分析具体的握手问题和互赠礼物问题,引导学生运用一元二次方程进行求解。

4.小组讨论:让学生分组讨论其他实际问题,尝试将问题转化为一元二次方程,并求解。

5.总结提升:对本节课的知识进行总结,引导学生学会将实际问题转化为数学模型,并运用一元二次方程进行求解。

21.3 实际问题与一元二次方程 第3课时 用一元二次方程解决几何图形问题

21.3 实际问题与一元二次方程  第3课时 用一元二次方程解决几何图形问题

知识点1:一般图形的面积问题 1.一个面积为35 m2的矩形苗圃,它的长比宽多2 m,则这个苗圃 的长为( C ) A.5 m B.6 m C.7 m D.8 m 2.(2014·襄阳)用一条长40 cm的绳子围成一个面积为64 cm2的长 方形.设长方形的长为x cm,则可列方程为( B ) A.x(20+x)=64 B.x(20-x)=64 C.x(40+x)=64 D.x(40-x)=64 3.一个直角三角形的两条直角边相差5 cm,面积是7 cm2,这两 2cm,7cm 条直角边长分别为______________ .
11 . 如图 , 已知点 A 是一次函数 y = x - 4 图象上的一点 , 且矩形 (3,-1)或(1,-3) . ABOC的面积等于3,则点A的坐标为___________________ 12.如图是一个矩形花园,花园的长为100米,宽为50米,在它的 四角各建一个同样大小的正方形观光休息亭,四周建有与观光休息 亭等宽的观光大道 , 其余部分 ( 图中阴影部分 ) 种植的是不同花 草.已知种植花草部分的面积为3600平方米,那么花园各角处的正 方形观光休息亭的边长为多少米? 解:设正方形观光休息亭的边长为x米,依题意得(100-2x)(50-2x) =3600,整理得x2-75x +350 =0 ,解得x1=5 , x2=70 ,∵x2=70 >50,不合题意,舍去,∴x=5,即矩形花园各角处的正方形观光 休息亭的边长为5米
解:(1)设x秒后,△PBQ的面积等于4 cm2,根据题意得x(5-x)= 4,解得x1=1,x2=4. ∵当x=4时 ,2x=8>7,不合题意,舍去,∴x=1 (2)设x秒后,PQ的长度等于5 cm,根据题意得(5-x)2+(2x)2=25, 解得x1=0(舍去),x2=2,∴x=2 (3)设x秒后,△PBQ的面积等于7 cm2,根据题意得x(5-x)=7, 此方程无解,所以不能

人教版2021年九年级上数学21.3实际问题与一元二次方程课时3几何图形面积问题

人教版2021年九年级上数学21.3实际问题与一元二次方程课时3几何图形面积问题

人教版2021年九年级上数学21.3实际问题与一元二次方程课时3几何图形面积问题学校:___________姓名:___________班级:___________考号:___________一、单选题1.某中学准备建一个面积为375m2的矩形游泳池,且游泳池的宽比长短10m.设游泳池的长为xm,则可列方程()A.x(x﹣10)=375 B.x(x+10)=375 C.2x(2x﹣10)=375D.2x(2x+10)=3752.在半径为R的圆形钢板上,挖去四个半径都为r的小圆.若R=16.8,剩余部分的面积为272π,则r的值是()A.3.2B.2.4C.1.6D.0.83.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是( )A.x2+9x-8=0 B.x2-9x-8=0C.x2-9x+8=0 D.2x2-9x+8=04.某小区规划在一个长为40m,宽为26m的矩形场地ABCD上修建三条同样宽的甬路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪的面积都为2144m(如图),则甬路的宽为()A.3m B.4m C.2m D.5m5.如图,把长40cm,宽30cm的矩形纸板剪掉2个小正方形和2个小矩形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为x cm(纸板的厚度忽略不计),若折成长方体盒子的表面积是9502cm,则x的值是()A .3B .4C .4.8D .5二、填空题 6.一个直角三角形三边长是三个连续整数,则它的周长为_______,面积为______. 7.现要在一个长为40m,宽为26m 的矩形花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为864m 2,那么小道的宽度应是____m.8.你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程25140x x +-=即(5)14x x +=为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是2(5)x x ++,其中它又等于四个矩形的面积加上中间小正方形的面积,即24145⨯+,据此易得2x =.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程24120x x --=的正确构图是_____.(只填序号)三、解答题9.已知如图所示的图形的面积为24,根据图中条件,求出x 的值.10.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m 2?11.如图所示,某农户准备利用现有的34米长的篱笆靠墙AB (墙长18米)围成一个面积是120平方米的长方形养鸡场,要在与墙垂直的一边和与墙平行的一边各开一扇2米宽的门,且篱笆没有剩余这个养鸡场的两条邻边长各是多少米?晓华的解题过程如下:(解)设垂直于墙的一边长为x 米,则平行于墙的一边长为(382)x -米.依题意得(382)120x x -=,整理得219600x x -+=,解得1215,4x x ==.当15x =时,3828x -=;当4x =时,38230x -=.答:这个养鸡场的两条邻边长各是15米、8米或4米、30米.请问晓华的解题过程正确吗?如果不正确,给出正确的解题过程.12.在一块长16m 、宽12m 的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半.下面分别是小明和小颖的设计方案.小明说:我的设计方案如图(1),其中花园四周小路的宽度相等.通过解方程,我得到小路的宽为2m .小颖说:我的设计方案如图(2),其中花园中每个角上的扇形相同.(1)你认为小明的结果对吗?请计算说明;(2)请你帮助小颖求出图中的x (结果保留根号和);13.如图,已知正方形ABCD 的边长为4cm ,动点P 从点B 出发,以2cm /s 的速度沿B C D →→方向向点D 运动且不与点D 重合,动点Q 从点A 出发,以1cm/s 的速度沿A B →方向向点B 运动且不与点B 重合,若P ,Q 两点同时出发,运动时间为s t .(1)连接,,PD PQ DQ ,求当t 为何值时,PQD △的面积为27cm .(2)当点P 在BC 上运动时,是否存在这样的t 使得PQD △是以PD 为一腰的等腰三角形?若存在,请求出符合条件的t 的值;若不存在,请说明理由.参考答案1.A【解析】由题意得,x (x ﹣10)=375,所以选A.2.C【分析】根据大圆面积-4个小圆面积=272π,即可求出r 的值.【详解】由题意得,16.82π-4πr 2=272π解得r 2=2.56r=1.6或r=-1.6(不合题意,舍去)故答案为C【点睛】本题考查列方程解应用题,根据题意找出等量关系是解题的关键.3.C【详解】解:设人行道的宽度为x 米,根据题意得,(18﹣3x )(6﹣2x )=60,化简整理得,x 2﹣9x+8=0.故选C .4.C【分析】设小路的宽为xm ,那么小路所占面积为(40x+2×26x-2x 2),于是六块草坪的面积为[40×26-(40x+2×26x-2x 2)],根据面积之间的关系可列方程40×26-(40x+2×26x-2x 2)=144×6,解方程求解,并根据实际意义进行值的取舍即可确定甬路的宽.【详解】解:设甬路的宽为m x .根据题意得()240264022621446x x x⨯-+⨯-=⨯,整理得246880x x -+=,解得1244,2x x ==,当44x =时不符合题意,故舍去,所以2x =.故选C .【点睛】本题考查的是一元二次方程的应用以及矩形面积计算公式,难度一般.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.5.D【分析】 观察图形可知阴影部分小长方形的长为402()2x x cm -+,再根据去除阴影部分的面积为9502cm ,列一元二次方程求解即可.【详解】解:由图可得出, 2402403022()9502x x x x整理,得,2201250x x 解得,125,25x x (不合题意,舍去).故选:D .【点睛】本题考查的知识点是一元二次方程的应用,根据图形找出阴影部分小长方形的长是解此题的关键.6.12 6【分析】先根据题意设该直角三角形较长的直角边长为x ,则另外两边长分别为1,1x x -+,再根据勾股定理得出方程,从而得出三角形的周长和面积【详解】解:设该直角三角形较长的直角边长为x ,则另外两边长分别为1,1x x -+.依题意,得222(1)(1)x x x -+=+,解得10x =(舍去),24x =,∴直角三角形的三边长分别为3,4,5,∴三角形的周长为34512++=,三角形的面积为13462⨯⨯=. 故答案为:12,6【点睛】本题考查了勾股定理、解一元二次方程以及三角形的周长和面积,熟练掌握相关知识是解题的关键7.2【分析】根据图形可知剩余的长为(40-2x)m ,剩余的宽为(26-x)m ,然后根据矩形的面积公式列出方程即可.【详解】解:设小道的宽为x 米,依题意得(40-2x)(26-x)=864,解之得x 1=44(舍去),x 2=2.故答案为2.【点睛】本题考查了一元二次方程的应用,解题的关键是根据种植花草的面积为864m 2找到正确的等量关系并列出方程.8.②.【分析】仿造案例,构造面积是2(4)x x +-的大正方形,由它的面积为24124⨯+,可求出6x =,此题得解.【详解】解:24120x x --=即()412x x -=,∴构造如图②中大正方形的面积是2(4)x x +-,其中它又等于四个矩形的面积加上中间小正方形的面积,即24124⨯+,据此易得6x=.故答案为②.【点睛】本题考查了一元二次方程的应用,仿造案例,构造出合适的大正方形是解题的关键.9.x的值为4.【详解】由题意得(x+1)2-1=24,整理得:(x+1)2=25即:x+1=5或x+1=-5,∴x=4或x=-6.∵x>0,∴x=-6不合题意,舍去.∴x的值是4.10.当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.【详解】解法一:设矩形温室的宽为xm,则长为2xm.根据题意,得(x﹣2)•(2x﹣4)=288.解这个方程,得x1=﹣10(不合题意,舍去),x2=14.所以x=14,2x=2×14=28.答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.解法二:设矩形温室的长为xm,则宽为12xm.根据题意,得(12x﹣2)•(x﹣4)=288.解这个方程,得x1=﹣20(不合题意,舍去),x2=28.所以x=28,12x=12×28=14.答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.11.不正确,这个养鸡场的两条邻边长各是15米、8米,见解析【分析】设垂直于墙的一边长为x米,则平行于墙的一边长为(382)x-米,根据题意,列出方程,即可求出x的值,然后根据实际意义取舍即可.【详解】解:晓华的解题过程不正确,正确解题过程如下:设垂直于墙的一边长为x 米,则平行于墙的一边长为(382)x -米.依题意得(382)120x x -=,整理得219600x x -+=,解得1215,4x x ==.当15x =时,3828x -=;当4x =时,3823018x -=>,不合题意,舍去.答:这个养鸡场的两条邻边长各是15米、8米.【点睛】此题考查的是一元二次方程的应用,解题关键是解方程的实际应用题时,要注意根是否符合实际意义,如本题中,需分析两个取值是否符合实际情况.12.(1)小明的结果正确;(2)x =【分析】(1)设小路宽为y 米,列方程求解就可判断小明的结果是否正确;(2)由题意可知四个扇形刚好可以合成一个半径为x 米的圆,由此可列出方程求解;【详解】解:(1)小明的结果正确. 理由如下:设小路的宽为y m ,则由题意可得: 1(162)(122)16122y y --=⨯⨯, 解得:12212y y ,==(不合题意,舍去)∴2y =,故小明的结果正确;(2)四个角上的四个扇形可合并成一个圆,根据题意可得:2116122x π=⨯⨯,解得x =13.(1)1或9s 4;(2)存在, 43t =或4 【分析】 (1)根据正方形的性质和面积公式,利用割补法即可求解; (2)分当PD DQ =时和当PD PQ =时,进行讨论.【详解】解:(1)∵正方形ABCD 的边长为4cm ,∴4AB BC CD AD ====,当点P 在BC 边上,4,2,42AQ t QB t BP t PC t ==-==-.1111642(4)4(42)7222PQD ADQ BPQ DPC ABCD S S S S S t t t t =---=-⨯⨯-⨯⨯--⨯⨯-=正方形∴ 2210t t -+=,解得121t t ==.当点P 在CD 边上时,182,(82)472PQD DP t S t ∆=-=-⨯=, 解得94t =. 当t 为1或9s 4时,PQD △的面积为27cm . (2)存在.理由如下:①当PD DQ =时,根据勾股定理,得2216(42)16t t +-=+, 解得124,43t t ==(不符合题意,舍去). ②当PD PQ =时,根据勾股定理,得22216(42)(4)(2)t t t +-=-+,解得124,4t t ==-(不符合题意,舍去).所以存在43t =或4时,使得PQD △是以PD 为一腰的等腰三角形. 【点睛】本题考查了正方形、一元二次方程、等腰三角形的相关知识,解决本题的关键是分类讨论思想的运用.。

【新】人教版九年级数学上册21.3实际问题与一元二次方程(第三课时)及答案

【新】人教版九年级数学上册21.3实际问题与一元二次方程(第三课时)及答案

22.3实际问题与一元二次方程(第三课时)◆随堂检测1、一个两位数等于它的个位数的平方,且个位数字比十位数字大3,•则这个两位数为( )A .25B .36C .25或36D .-25或-362、一个多边形有9条对角线,则这个多边形有多少条边( )A 、6B 、7C 、8D 、93、为了美化环境,某市加大对绿化的投资.2007年用于绿化投资20万元,2009年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x ,根据题意所列方程为( )A .22025x = B .20(1)25x +=C .220(1)25x +=D .220(1)20(1)25x x +++=4、某辆汽车在公路上行驶,它行驶的路程s (m )和时间t (s )•之间的关系为:•s=2103t t +,那么行驶200m 需要多长时间?(分析:这是一个加速运动,根据已知的路程求时间.因此,只要把s=200•代入求关于t 的一元二次方程即可.)◆典例分析一辆汽车以20m/s 的速度行驶,司机发现前方路面有情况,•紧急刹车后汽车又滑行25m 后停车.(1)从刹车到停车用了多少时间?(2)从刹车到停车平均每秒车速减少多少?(3)刹车后汽车滑行到15m 时约用了多少时间(精确到0.1s )?分析:本题涉及到物理学中的运动知识,具体分析如下:(1)刚刹车时时速还是20m/s ,以后逐渐减少,停车时时速为0.•因为刹车以后,其速度的减少都是受摩擦力而造成的,所以可以理解是匀速的,因此,其平均速度为2002+=10m/s ,那么根据:路程=速度×时间,便可求出所求的时间.(2)刚要刹车时车速为20m/s ,停车车速为0,车速减少值为20-0=20,因为车速减少值20,是在从刹车到停车所用的时间内完成的,所以20除以从刹车到停车的时间即可.(3)设刹车后汽车滑行到15m 时约用除以xs .•由于平均每秒减少车速已从上题求出,所以便可求出滑行到15米的车速,从而可求出刹车到滑行到15m 的平均速度,再根据:路程=速度×时间,便可求出x 的值.解:(1)从刹车到停车所用的路程是25m ; 从刹车到停车的平均车速是2002+=10(m/s ).那么从刹车到停车所用的时间是2510=2.5(s ). (2)从刹车到停车车速的减少值是20-0=20. 从刹车到停车每秒平均车速减少值是202.5=8(m/s ). (3)设刹车后汽车滑行到15m 时约用了x s ,这时车速为(20-8x )m/s. 则这段路程内的平均车速为20(208)2x +-=(20-4x )m/s. ∴x (20-4x )=15,整理得:2420150x x -+=,解方程:得x=52±,∴1x ≈4.08(不合题意,舍去),2x ≈0.9(s ). ∴刹车后汽车滑行到15m 时约用了0.9s.◆课下作业●拓展提高1、为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为210m 提高到212.1m ,若每年的年增长率相同,则年增长率为( )A .9%B .10%C .11%D .12%2、如图,在△ABC 中,∠B=90°,点P 从点B 开始,沿AB 边向点B 以1cm/s•的速度移动,点Q 从点B 开始,沿BC 边向点C 以2cm/s 的速度移动,如果AB=6cm ,BC=12cm ,•P 、Q 都从B 点同时出发,几秒后△PBQ 的面积等于8cm 2?3、某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,•为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,•如果每件衬衫每降价一元,商场平均每天可多售出2件.(1)若商场平均每天赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?4、有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:PA AB AQ A C A买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:(1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少?(2)若此单位恰好花费7500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?●体验中考1、(2009年,甘肃定西)在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=-,求方程(4⊕3)⊕24x =的解.(点拨:本题是新定义运算,将一元二次方程的求解问题应用到了新定义运算的领域,具有一定的综合性.)2、(2009年,湖州)随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.(1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.(提示:本题综合了二元一次方程及不等式的有关知识解决问题.)参考答案:◆随堂检测1、C . 设这个两位数的十位数字为x ,则个位数字为3x +.依题意得:2103(3)x x x ++=+解得:122,3x x ==.∴这个两位数为25或36.故选C.2、A . 设这个多边形有n 条边.依题意,得:(3)92n n -=, 解得:126,3n n ==-(不合题意,舍去).∴这个多边形有6条边.故选A.3、C.4、解:当s=200时,2103200t t +=,整理,得23102000t t +-=,解得:1220,103t t ==-(不合题意,舍去). ∴t =203(s ) 答:行驶200m 需203s . ◆课下作业●拓展提高1、B. 设年增长率x ,可列方程()210112.1x +=,解得10.110%x ==,2 2.1x =-(不合题意,舍去),所以年增长率10%,故选B.2、解:设x 秒后△PBQ 的面积等于8cm 2. 这时PB=x ,BQ=2x 依题意,得:1282x x ⋅=,解得x =±,即12x x ==-∵移动时间不能是负值,∴2x =-x =答:秒后△PBQ 的面积等于8cm 2. 3、解:(1)设每件衬衫应降价x 元.则依题意,得:(40-x )(20+2x )=1200,整理,得2302000x x -+=,解得:1210,20x x ==.∴若商场平均每天赢利1200元,每件衬衫应降价10元或20元.(2)设每件衬衫降价x 元时,商场平均每天赢利最多为y ,则y=(40-x )(20+2x )=222608002(30)800x x x x -++=--+22(15)1250x =--+ ∵22(15)0x --≤,∴x =15时,赢利最多,此时y=1250元.∴每件衬衫降价15元时,商场平均每天赢利最多.4、解:(1)在甲公司购买6台图形计算器需要用6(800206)4080⨯-⨯=(元);在乙公司购买需要用75%80063600⨯⨯=(元)4080<(元).应去乙公司购买.(2)设该单位买x 台,若在甲公司购买则需要花费(80020)x x -元;若在乙公司购买则需要花费75%800600x x ⨯=元. ①若该单位是在甲公司花费7500元购买的图形计算器,则有(80020)x x -7500=,解之得1525x x ==,.当15x =时,每台单价为8002015500440-⨯=>,符合题意.当25x =时,每台单价为8002025300440-⨯=<,不符合题意,舍去.②若该单位是在乙公司花费7500元购买的图形计算器,则有6007500x =,解之得12.5x =,不符合题意,舍去.故该单位是在甲公司购买的图形计算器,买了15台.●体验中考1、解:∵22a b a b ⊕=-,∴2222(43)(43)77x x x x ⊕⊕=-⊕=⊕=-.∴22724x -=.∴225x =.∴5x =±.2、解:(1)设家庭轿车拥有量的年平均增长率为x .则依题意得:()2641100x +=, 解得:11254x ==%,294x =-(不合题意,舍去). ∴()100125%125+=.答:该小区到2009年底家庭轿车将达到125辆.(2)设该小区可建室内车位a 个,露天车位b 个.则:0.50.1152 2.5a b a b a +=⎧⎨⎩①≤≤② 由①得:b =150-5a 代入②得:20a ≤≤1507, a Q 是正整数,∴a =20或21.当20a =时50b =,当21a =时45b =.∴方案一:建室内车位20个,露天车位50个;方案二:室内车位21个,露天车位45个.。

实际问题与一元二次方程(第3课循环问题)九年级数学上册(人教版)

实际问题与一元二次方程(第3课循环问题)九年级数学上册(人教版)
人教版数学九年级上册
人教版数学九年级上册
第21.3实际问题与一元二次方程 (第3课时循环问题)
学习目标
人教版数学九年级上册
1.会分析实际问题(循环问题)中的数量关系并会列一元 二次方程. 2.正确分析问题(循环问题)中的数量关系. 3.会找出问题(循环问题)中的相等关系并建模解决问题.
情境引入
人教版数学九年级上册
2.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,
全组共互赠了182件,如果全组有x名同学,那么根据题意列出的方程是
( B)
A. x(x+1)=182
B. x(x-1)=182
C. 2x(x+1)=182
D. x(1-x)=182×2
小试牛刀
人教版数学九年级上册
3.某校在冬运会中,其中一项为乒乓球赛,赛制为参赛的 每两个人之间都要比赛一场,根据胜场积分确定排名,由于场 地和时间等条件,赛程安排3天,每天安排15场比赛,求共有 多少学生参加了冬运会乒乓球赛?
谢谢聆听
人教版数学九年级上册
课堂小结
人教版数学九年级上册
“单循环”问题: 例如甲、乙之间只需要一次(握手、签合同、比赛等). 公式:0.5x(x-1)=m.
“双循环”问题: 例如甲、乙之间需要两次(比赛、互送礼物等). 公式:x(x-1)=m.
课后作业
人教版数学九年级上册
1.在小华的某个微信群中,若每人给其他成员都发一个红包, 该微信群共发了90个红包,那么这个微信群共有__1_0__人. 2.九年级(7)班文学小组在举行的图书共享仪式上互赠图书, 每个同学都把自己的图书向本组其他成员赠送一本,全组共互 赠了132本图书,如果设全组共有x名同学,依题意,可列出的 方程是_x_(_x_−__1_)_=__1_3_2__.

初中九年级初三数学课件 实际问题与一元二次方程(第3课时)

初中九年级初三数学课件 实际问题与一元二次方程(第3课时)
27
21
2.动脑思考,解决问题
问题2 要设计一本书的封面,封面长 27 cm,宽 21 cm,正中央是一个与整个封面长宽比例相同的矩形,如 果要使四周的彩色边衬所占面积是封面面积的四分之一, 上、下边衬等宽,左、右边衬等宽,应如何设计四周边 衬的宽度(结果保留小数点后一位) ?
分析:封面的长宽之比是
解:相设等每关盆系花:苗增平加均的单株株数盈为利x株×,株则数每=盆10花元苗有_(_x_+_3__)株,平均单 株盈利为__(_3_-_0_._5_x_)_元. 由题意,得
(x+3)(3-0.5x)=10 化简,整理,得 x2-3x+2=0
经检验,x1=1,x2=2解都这是个方方程程的,解得,:x且1=1符, x合2=题2 意. 答:要使每盆的盈利达到10元,每盆应植入4株或5株.
列一元二次方程解应题
6、放铅笔的V形槽如图,每往上一层可以多 放一支铅笔.现有190支铅笔,则要放几层 ? 解:要放x层,则每一 层放(1+x) 支铅笔. 得
x (1+x) =190×2 X2+ X -380=0
解得X1=19, X2= - 20(不合题意)
答:要放19层.
列一元二次方程解应题
补充练习:
解:设截去正方形的边长x厘米,
则图中虚线部分长等于_6_0__2_x_厘米,
宽等于___4_0_-_2_x__厘米
依题意得:60- 2x40- 2x 800
解得:x1 10, x2 40 经检验, x2 40不合题意,应舍去.
x 10
答:截去正方形的边长为10厘米。
例1 在长方形钢片上冲去一个 长方形,制成一个四周宽相等的
九年级 上册
21.3 实际问题与一元二次方程 (第3课时)

(人教版)最新九年级数学上册教材配套教学课件:21.3.3 实际问题与一元二次方程(三)握手类型问题

(人教版)最新九年级数学上册教材配套教学课件:21.3.3 实际问题与一元二次方程(三)握手类型问题

每年过年朋友们都会在微信中发祝福信息,一个微信群中的朋友 们都分别给群里其他好友发送了一条信息,这样共有380条信息, 这个微信群中共有多少个好友?
解:设这个微信群中共有x个好友,列式得:
x x 1 380
x2 x 380 0
解得: x1 20 , x2 19 (舍去)
答:这个微信群中共有20个好友.
织者应邀请多少只球队参赛?设比赛组织者应邀请x支球队参赛,
根据题意列出的方程是_____________________.
5.我市为了增强学生体质,开展了乒乓球比赛活动.部分同学进入了半决赛,赛制为单循环式(即每两个选
手之间都赛一场),半决赛共进行了6场,则共有___4___人进入半决赛.
6.要组织一次排球邀请赛,计划安排28场比赛,每两队之间都要比赛一场,组织者打算邀请x个队参赛,则可列出方
【分析】如果有x个队伍参加比赛.
x x 1
每个队伍要进行__(_x__-__1__) 场比赛;一共进行_____2____场比赛.
解:设应邀请x个球队参加比赛,列式得:
x x 1
15 2
x2 x 30 0
解得: x1 6 , x2 5 (舍去) 答:应邀请6个球队参加比赛.
与例1一样吗?
C.x2=10
D. (x−1)2 =10×2
3.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线
,若平面上不同的n个点最多可确定21条直线.则n的值为( C)
A.5
B.6
C.7 D.8
4.要组织一场足球比赛,参赛的每个队之间都要比赛一场,根据场
地和时间等条件,赛程计划安排7天,每天安排4场比赛,问比赛组
变式:要组织一场篮球联赛, 每两队之间都赛2场(双循环),计

人教版九年级数学上册 21.3几何图形与一元二次方程(第三课时)

人教版九年级数学上册 21.3几何图形与一元二次方程(第三课时)

方程是( B ) 常见几何图形面积是等量关系.
答:上下边衬的宽度为:1.
(6x-5)(x-10)=0
答:上下边衬的宽度为:1.
程:

A.x2+130x-1400=0
B.x2+65x-350=0
分析:设水渠宽为xm,将所有耕地的面积拼在一起,变成一个新的矩形,长为 (92 – 2x )m, 宽(60 - x)m.
即 x2 - 40x + 360=0.
解方程,得
x1 = 20 2 10 x2=20 2 10 25 (舍去),
答:鸡场的为( 20 2 10 )m满足条件.
2.如图,长方形ABCD,AB=15m,BC=20m, 四周外围环绕着宽度相等的小路,已知小 路的面积为246m2,求小路的宽度.
A
D
B
C
解:设小路宽为x米,则
(20 2x)(15 2x) 24615 20
化简得,2x2 35x 123 0 (x 3)(2x 41) 0
x1
3,
x
2
41 2
(舍去)
答:小路的宽为3米.
课堂小结
例1 要设计一本书的封面,封面长27㎝,宽21cm正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应
答:上下边衬的宽度为:1.8cm,左右边衬的宽度为:1.4cm.
试一试
如果换一种设未知数的方法,是否可以更简单地解决上面
的问题?
解:设正中央的矩形两边别为9xcm,7xcm。
27cm
依题意得
9x 7x 3 27 21, 4
解得
x2
3
3 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21.3 实际问题与一元二次方程(第3课时)导学探究:阅读教材P20-21,回答下列问题:1、探究3中有哪些数量关系?2、中央是一个与整个封面长宽比例相同的长方形,这个比是多少?上、下边衬与左、右边衬宽度之比是多少?3.教科书是根据什么选取未知数的?又是利用怎样的数量关系列出方程的?4.如果根据正中央的长方形的长、宽比为9,7,设正中央长方形的长、宽,并利用“中央长方形面积=封面面积的四分之三”列方程,间接求上、下边衬与左、右边衬宽可以吗?若可以,你试一试.归纳梳理1.列方程解应用题,一般直接设元,即问什么就设什么; 有时为了好理解,也采用间接设未知数的方法,列方程求解.2.利用一元二次方程分析解决几何图形问题,要抓住图形的特征(如面积关系、图形性质等),在分析题意的基础上建立方程,通过解方程来解决实际问题.3一元二次方程解决实际问题,要回到实际问题中进行解释和________,看求出的解是否符合__________.典例探究【例1】(2016·广西百色)在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2.(1)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?总结:解决几何图形问题的关键是掌握常见几何图形的面积、体积公式,并能熟练计算由基本图形构成的组合图形的面积.对于不规则图形的面积问题,往往通过平移、割补等方法把不规则图形转化为规则图形,运用规则图形的面积公式列出方程.练1:(2014秋•番禺区校级月考)如图,在宽为20m,长为32m的矩形耕地上,修筑宽度一样的三条道路(如图),把耕地分成大小相等的6块作为试验田,要使试验田面积为504m2,求每条道路的宽度为多少米.练2.(2014•金湾区校级一模)某幼儿园有一道长为16米的墙,计划用32米长的围栏利用一面墙如图围成一个矩形草坪ABCD.(1)当矩形草坪面积为120平方米时候,求该矩形草坪BC边的长.(2)怎样围能得到面积最大的草坪?夯实基础1、(2015•槐荫区三模)如图,矩形ABCD是由三个矩形拼接成的.如果AB=8,阴影部分的面积是24,另外两个小矩形全等,那么小矩形的长为()A.7 B.6 C.5 D.42、(2015•东西湖区校级模拟)如图,某广场一角的矩形花草区,其长为40m,宽为26m,其间有三条等宽的路,一条直路,两条曲路,路以外的地方全部种上花草,要使花草的面积为864m2,求路的宽度为m.3.(2014•红塔区模拟)如图,在长为80米,宽为60米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为4524米2,则道路的宽应为多少米?4、(2015春•昆明校级期末)如图,在长为32米,宽为20米的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上小草.要使草坪的面积为540平方米,则道路的宽为_______米.5.(2014•长宁区二模)如图,为了给小区居民增加锻炼场所,物业拟在一宽为40米、长为60米的矩形区域内的四周修建宽度相同的鹅卵石小路,阴影部分用作绿化.当阴影部分面积为800平方米时,小路宽x为多少米.6.(2015•赣州模拟)如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.(1)问:依据规律在第6个图中,黑色瓷砖有28 块,白色瓷砖有42 块;(2)某新学校教室要装修,每间教室面积为68m2,准备定制边长为0.5米的正方形白色瓷砖和长为0.5米、宽为0.25米的长方形黑色瓷砖来铺地面.按照此图案方式进行装修,瓷砖无须切割,恰好完成铺设.已知白色瓷砖每块20元,黑色瓷砖每块10元,请问每间教室瓷砖共需要多少元?7.光明小区要修建一个圆形花坛,平面设计图如图.(1)花坛的直径为10m,在它周围要铺一条2m宽的鹅卵石环形小路,这条小路的面积是多少平方米?(2)要在花坛中最大的正方形区域里种植花卉,种植花卉的面积有多大?(3)花坛内其余的部分用来种植草坪,种植草坪的面积有多大?典例探究答案【例1】(2016·广西百色)在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2.(1)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?【考点】一元二次方程的应用.【分析】(1)根据题意表示出长方形的长,进而利用长×宽=面积,求出即可;(2)分别计算出每一规格的地板砖所需的费用,然后比较即可.【解答】(1)设这地面矩形的长是xm,则依题意得:x(20-x)=96,解得x1=12,x2=8(舍去),答:这地面矩形的长是12米;(2)规格为0.80×0.80所需的费用:96÷(0.80×0.80)×55=8250(元).规格为1.00×1.00所需的费用:96÷(1.00×1.00)×80=7680(元).因为8250>7680,所以采用规格为1.00×1.00所需的费用较少.【点评】此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解。

练1:(2014秋•番禺区校级月考)如图,在宽为20m,长为32m的矩形耕地上,修筑宽度一样的三条道路(如图),把耕地分成大小相等的6块作为试验田,要使试验田面积为504m2,求每条道路的宽度为多少米.分析:试验田的面积=矩形耕地的面积﹣三条道路的面积+道路重叠部分的两个小正方形的面积.如果设道路宽x,可根据此关系列出方程求出x的值,然后将不合题意的舍去即可.解答:解:设道路为x米宽,由题意得20×32﹣20x×2﹣32x+2x2=504,整理得x2﹣36x+68=0,解得x=2,x=34,经检验x=2,x=34都是原方程的解,但是x=34>20,因此不合题意舍去.答:每条道路的宽度为2m.点评:此题主要考查了一元二次方程的应用,对于面积问题应熟记各种图形的面积公式.另外应熟悉以下关系:整体面积=各部分面积之和;剩余面积=原面积﹣截去的面积.本题也可通过平移,把分散的小路集中到一起,得到的试验田为一个矩形,由此可得出方程(x-2x)(20-x)=504,并求解.练2.(2014•金湾区校级一模)某幼儿园有一道长为16米的墙,计划用32米长的围栏利用一面墙如图围成一个矩形草坪ABCD.(1)当矩形草坪面积为120平方米时候,求该矩形草坪BC边的长.(2)怎样围能得到面积最大的草坪?分析:(1)可设矩形草坪BC边的长为x米,则AB的长是,根据长方形的面积公式列出一元二次方程求解;(2)根据配方法即可得到怎样围能得到面积最大的草坪.解答:解:(1)设矩形草坪BC边的长为x米,则x•=120,解得x1=12,x2=20(舍去).故该矩形草坪BC边的长为12米,.(2)s=x•=﹣x2+16x=﹣(x﹣16)2+128,故当矩形草坪长为16米,宽为8米的时候,所围的草坪面积最大.点评:本题考查了一元二次方程的应用,注意得出结果后要判断所求的解是否符合题意,舍去不合题意的解.注意本题表示出矩形草坪的长和宽是解题的关键.夯实基础答案1、(2015•槐荫区三模)如图,矩形ABCD是由三个矩形拼接成的.如果AB=8,阴影部分的面积是24,另外两个小矩形全等,那么小矩形的长为()A.7 B.6 C.5 D.4解:设小矩形的长为x,则小矩形的宽为8﹣x,根据题意得:x[x﹣(8﹣x)]=24,解得:x=6或x=﹣2(舍去),故选B.2、(2015•东西湖区校级模拟)如图,某广场一角的矩形花草区,其长为40m,宽为26m,其间有三条等宽的路,一条直路,两条曲路,路以外的地方全部种上花草,要使花草的面积为864m2,求路的宽度为m.解:设路的宽度是xm.根据题意,得(40﹣2x)(26﹣x)=864,x2﹣46x+88=0,(x﹣2)(x﹣44)=0,x=2或x=44(不合题意,应舍去).答:路的宽度是2m.3.(2014•红塔区模拟)如图,在长为80米,宽为60米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为4524米2,则道路的宽应为多少米?解:设道路的宽应为x米.由题意得:(80﹣x)(60﹣x)=4524,化简得:x2﹣140x+276=0,解得:x1=2,x2=138(不符合题意舍去).答:道路的宽应为2米.4、(2015春•昆明校级期末)如图,在长为32米,宽为20米的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上小草.要使草坪的面积为540平方米,则道路的宽为_______米.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】把四块耕地拼到一起正好构成一个矩形,矩形的长和宽分别是(32-x)和(20-x),根据矩形的面积公式,列出关于道路宽的方程求解.【解答】解:设道路的宽是x米,(32-x)(20-x)=540,解得:x1=48(舍)x2=2.答:道路的宽是2米,故答案为:2.【点评】本题考查了一元二次方程的应用,关键将四个矩形恰当的方式拼成大矩形列出等量关系。

5.(2014•长宁区二模)如图,为了给小区居民增加锻炼场所,物业拟在一宽为40米、长为60米的矩形区域内的四周修建宽度相同的鹅卵石小路,阴影部分用作绿化.当阴影部分面积为800平方米时,小路宽x为多少米.解:设小路的宽为x米,根据题意得:(40﹣2x)(60﹣2x)=800,解得:x=10或x=40(舍去)答:小路的宽为10米.6.(2015•赣州模拟)如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.(1)问:依据规律在第6个图中,黑色瓷砖有28 块,白色瓷砖有42 块;(2)某新学校教室要装修,每间教室面积为68m2,准备定制边长为0.5米的正方形白色瓷砖和长为0.5米、宽为0.25米的长方形黑色瓷砖来铺地面.按照此图案方式进行装修,瓷砖无须切割,恰好完成铺设.已知白色瓷砖每块20元,黑色瓷砖每块10元,请问每间教室瓷砖共需要多少元?解:(1)通过观察图形可知,当n=1时,黑色瓷砖有8块,白瓷砖2块;当n=2时,黑色瓷砖有12块,白瓷砖6块;当n=3时,黑色瓷砖有16块,用白瓷砖12块;则在第n个图形中,黑色瓷砖的块数可用含n的代数式表示为4(n+1),白瓷砖的块数可用含n的代数式表示为n(n+1),当n=6时,黑色瓷砖的块数有4×(6+1)=28块,白色瓷砖有6×(6+1)=42块;故答案为:28,42;(2)设白色瓷砖的行数为n,根据题意,得:0.52×n(n+1)+0.5×0.25×4(n+1)=68,解得n1=15,n2=﹣18(不合题意,舍去),白色瓷砖块数为n(n+1)=240,黑色瓷砖块数为4(n+1)=64,所以每间教室瓷砖共需要:20×240+10×64=5440元.答:每间教室瓷砖共需要5440元.7.光明小区要修建一个圆形花坛,平面设计图如图.(1)花坛的直径为10m,在它周围要铺一条2m宽的鹅卵石环形小路,这条小路的面积是多少平方米?(2)要在花坛中最大的正方形区域里种植花卉,种植花卉的面积有多大?(3)花坛内其余的部分用来种植草坪,种植草坪的面积有多大?【考点】有关圆的应用题.【专题】应用题;平面图形的认识与计算.【分析】(1)根据环形面积=外圆面积-内圆面积,内圆半径加上环宽等于外圆半径,把数据代入公式解答即可.(2)根据题干,圆内最大的正方形的对角线等于这个圆的直径,则根据正方形的面积=对角线×对角线÷2,求出正方形的面积是10×10÷2=50(平方厘米).(3)根据圆的面积S=πr 2可求出圆的面积,再减去正方形面积就是种植草坪的面积.【解答】解:(1)10÷2=5(米),3.14×[(5+2)2-52]=3.14×[49-25]=3.14×24=75.36(平方米).答:这条路的面积是75.36平方米.(2)10×10÷2=50(平方米)答:这个正方形的面积是50平方厘米.(3)3.14×(10÷2)2-50=3.14×25-50=28.5(平方米)答:种植草坪的面积是28.5平方米.【点评】本题的考查的知识点:圆的面积公式S=πr2,正方形的面积=对角线×对角线÷2。

相关文档
最新文档