方差分析的实验报告
实习 二(方差分析)

西北农林科技大学实验报告学院名称:理学院专业年级:2006级信计1班姓名:袁金龙学号:15206012课程:多元统计分析报告日期:实验二方差分析一.实验题目1.对表5的数据进行方差分析:表5:某个因数下的3个处理的2个指标的不同结果2. 对表6的数据进行方差分析:二、实验分析:1.从题目要求来看,该题属于单向分类多元方差分析,根据spss软件,得到如下结果:⑴数据输入:⑵spss操作步骤:选择[Analyze]=>[General Linear Model]=>[Multivariate...],打开[Multivariate...]主对话框(如图1所示)。
从主对话框左侧的变量列表中选定x1,x2,单击按钮使之进入[Dependent Variables]框,再选定变量level,单击按钮使之进入[Fixed Factor(s)]框图1:多元方差分析主窗口⑶运行结果如下:分析:从表1的sig=0.942>0.05,以及表3的四个统计量的sig最大值为0.003小于0.05,因此,该因数下的3个处理水平的均值不全相同,即该因素下的不同水平间有显著差异,则下面的各指标的比较以及指标内部的比较才有意义。
从表2的x1,x2的sig值为:0.658,0.563大于0.05,则表明指标1与指标2的各自3个不同的处理间有显著的差异。
从表4可以看出:原理(sig<0.05表明该指标下的两个处理间显著,sig>0.05表明该指标下的两个处理间不太显著,sig越小越显著),则指标1下:处理1与处理2之间显著,处理1与处理3之间不显著,处理2与处理3之间不显著;指标2下:处理1与处理2之间显著, 处理1与处理3之间显著, 处理2与处理3之间不显著。
2.从题目要求来看,该题属于两向分类多元方差分析,根据spss软件,得到如下结果:⑴spss操作步骤:选择[Analyze]=>[General Linear Model]=>[Multivariate...],打开[Multivariate...]主对话框(如图1所示)。
方差分析1实验报告

.. . . . .实验报告课程名称生物医学统计分析实验名称方差分析1专业班级姓名学号实验日期实验地点2015—2016学年度第 2 学期组内38.842 20 1.942总数85.340 24分析:表2是方差分析的统计结果,由此可知,F=5.986,P=0.002〈0.01,可认为5个品种猪存在极显著差异,故须进行多重比较。
表3 5个品种猪增重的多重比较(LSD法)(I) 品种(J) 品种均值差 (I-J) 标准误显著性95% 置信区间下限上限LSD 1 2 3.0000*.8046 .001 1.322 4.6783 1.8667*.8439 .039 .106 3.6274 .5417 .8996 .554 -1.335 2.4185 3.5417*.8996 .001 1.665 5.4182 1 -3.0000*.8046 .001 -4.678 -1.3223 -1.1333 .8439 .194 -2.894 .6274 -2.4583*.8996 .013 -4.335 -.5825 .5417 .8996 .554 -1.335 2.4183 1 -1.8667*.8439 .039 -3.627 -.1062 1.1333 .8439 .194 -.627 2.8944 -1.3250 .9348 .172 -3.275 .6255 1.6750 .9348 .088 -.275 3.6254 1 -.5417 .8996 .554 -2.418 1.3352 2.4583*.8996 .013 .582 4.3353 1.3250 .9348 .172 -.625 3.2755 3.0000*.9854 .006 .944 5.0565 1 -3.5417*.8996 .001 -5.418 -1.6652 -.5417 .8996 .554 -2.418 1.3353 -1.6750 .9348 .088 -3.625 .2754 -3.0000*.9854 .006 -5.056 -.944*. 均值差的显著性水平为 0.05。
spss实验报告---方差分析

实验报告——(方差分析)一、实验目的熟练使用SPSS软件进行方差分析。
学会通过方差分析分析不同水平的控制变量是否对结果产生显著影响。
二、实验内容1、某职业病防治院对31名石棉矿工中的石棉肺患者、可疑患者及非患者进行了用力肺活量(L)测定,问三组石棉矿工的用力肺活量有无差别?(自建数据集)石棉肺患者可疑患者非患者1.82.3 2.91.42.13.21.52.1 2.72.1 2.1 2.81.92.6 2.71.72.53.01.82.33.41.92.43.01.82.43.41.8 3.32.03.5SPSS计算结果:在建立数据集时定义group1为石棉肺患者,group2为可疑患者,group3为非患者。
零假设:各水平下总体方差没有显著差异。
相伴概率为0.075,大于0.05,可以认为各个组的方差是相等的,可以进行方差检验。
从上表可以看出3个组之间的相伴概率都小于显著性水平0.05,拒绝零假设,说明3个组之间都存在显著差别。
2、某汽车经销商在不同城市进行调查汽车的销售量数据分析工作,每个城市分别处于不同的区域:东部、西部和中部,而且汽车经销商在不同城市投放不同类型的广告,调查数据放置于附件中数据文件“汽车销量调查.sav”。
(1)试分析不同区域与不同广告类型是否对汽车的销量产生显著性的影响?(2)如果考虑到不同城市人均收入具有差异度时,再思考不同区域和不同广告类型对汽车销量产生的影响差异是否改变,这说明什么问题?SPSS计算结果:(1)此为多因素方差分析相伴概率为0.054大于0.05,可以认为各个组总体方差相等可以进行方差检验。
不同地区贡献的离差平方和为7149.781,均方为3574.891;不同广告贡献的离差平方和为7625.708,均方为3812.854。
说明不同广告和不同地区对汽车销量都有显著性影响。
广告对于销量的影响略大于地区对销量的影响。
从地区这个变量比较:第一组和第三组的相伴概率为0.000,低于显著性水平,一、三组均值差异显著;第二组和第三组的相伴概率为0.028,低于显著性水平,二、三组均值差异显著。
SPSS的方差分析实验报告

实验报告
2 选择菜单:【Analyze】→【Compare Means】→【One-Way ANOVA】,将“月销售额”作为观测变量选入【Dependent List】,将“促销方式”作为控制变量选入【Factor】,选择按钮“Option”,打开对话框,选择方差齐性检验,观测变量的基本统计量,选择输出个水平下观测变量均值的折线图
3 选择“Post Hoc”按钮,选择方差相同和方差不同情况下的多重比较的检验方法,如图所示
第三题:
1 根据题目建立某商品在不同地区和不同日期的销售数据的文件,如图
2 选择菜单:【Analyze】→【General Linear Model】→【Univariate】,将“销售量”选入【Dependent Variable】,将“地区和日期”选入【Fixed Factor(s)】,选择“Options”,在【Display】中选择“Homogeneity tests”。
如图所示
四、实验结果及分析(最好有截图):
第一题:
(1) <拒绝原假设.说明不同的促销方式是对该类商品销售量的增长有显著影响
(2) 特价销售的促销方式好
(3)
第三题:
(1) 建立数据文件如图
(2)地区>,接受原假设。
地区对销售量没有显著性影响
日期>,接受原假设。
日期对销售量没有显著性影响
地区和日期<,拒绝原假设。
地区和日期的交互作用对销售量有显著性影响。
SPSS的方差分析实验报告

第三题:
1根据题目建立某商品在不同地区和不同日期的销售数据的文件,如图
2 选择菜单:【Analyze】→【General Linear Model】→【Univariate】,将“销售量”选入【Dependent Variable】,将“地区和日期”选入【Fixed Factor(s)】,选择“Options”,在【Display】中选择“Homogeneity tests”。如图所示
地区和日期0.000<0.05,拒绝原假设。地区和日期的交互作用对销售量有显著性影响
(3)是否任意两种促销方式的效果之间都存在显著差异?
3. 为研究某商品在不同地区和不同日期的销售差异性,调查收集了以下平均销售量数据
销售量
日期
周一到周三
周四到周五
周末
地区一
5000
6000
4000
6000
8000
3000
4000
7000
5000
地区二
7000
5000
5000
8000
5000
6000
8000
2 选择菜单:【Analyze】→【Compare Means】→【One-Way ANOVA】,将“月销售额”作为观测变量选入【Dependent List】,将“促销方式”作为控制变量选入【Factor】,选择按钮“Option”,打开对话框,选择方差齐性检验,观测变量的基本统计量,选择输出个水平下观测变量均值的折:
(1) 0.000<0.005拒绝原假设.说明不同的促销方式是对该类商品销售量的增长有显著影响
(2) 特价销售的促销方式好
用dps进行方差分析

实验目的:熟 练掌握运用 DPS进行方差 分析。
实验材料:计 算机,DPS软 件
实验地点:机 房
实验内容:
一.单向分组资料的方差分析
此类资料由完全随机试验获得
步骤:
输入数据(以行为样本或处理,一行一个处 理)-------定义数据块-------从菜单中找到 “试验统计”------- 选择“完全随机设计” -------“单因素试验统计分析”-------点 击确定,得到结果。
练习:课本 119页 例 6.13。
二.有重复的双因素方差分析
例:为了了解3种改革方案(因素B)在3个 不同地区(因素A)促使经济效益提高的状况, 现抽样调查,得到数据如表22-3所示(假定 数据来自方差相等的正态分布)。试方差分 析
地区A 方案B B1
A1
354 336
B2
385 392
B3
B课程
3339 2777 3020 2437 3067
C组
2228 2578 1227 2044 1681
练习: 课本111页,例6.10; 课本113页,例6.11
双因素方 差分析
1 无重复双因素方差分析
例:按土质将一块耕地等分为5个地块,每个 地块又等分成4个小块,有4个品种的小麦,在 每一地块内随机地分种在4小块上,每一小块 种同样多种子的任意一种小麦,今测得收获量如 表所示,进行方差分析。
地块A 品种B
B1
A1 32.3
B2
33.2
B3 34.0 33.6 34.4 26.2
A3 34.7 36.8 32.3 28.1
A4 36.0 34.3 35.8 28.5
A5 35.5 36.1 32.8 29.4
方差分析实验报告

方差分析实验报告一、实验目的:1.学习和掌握方差分析的基本原理和方法。
2.通过实验数据的处理,在不同的水龄条件下,比较水体COD浓度之间的差异,从而分析水龄对COD浓度的影响。
二、实验原理:1.方差分析是一种用来比较不同处理组之间差异性的统计方法。
它可以将总体方差分解为由不同因素引起的组内变异和组间变异,从而确定组间差异是否显著。
2.实验中所用的单因素方差分析是一种简单的方差分析方法,用于比较各组间的均值差异。
三、实验方法:1.实验设计:选取三个不同的水龄条件(10天、20天、30天)进行实验。
2.实验过程:分别采集三个水龄条件下的水样,进行COD浓度的测定。
每组实验重复三次,共计九次测定。
四、实验数据:1.实验数据见附表一2.通过对实验数据的处理,得到各组的均值和方差。
五、数据处理:1.计算总平均数:将所有测定值相加,然后除以测定的总次数。
2.计算组间平均数:将每组测定值相加,然后除以每组测定的次数。
3.计算组内平均数:将每个水龄条件下的测定值相加,然后除以该水龄条件下的测定次数。
4.计算组间平方和和组内平方和。
5.计算组间均方和和组内均方和。
6.计算F值。
7.查找F分布表,确定显著性水平α下的F(α)值。
8.判断各组均值之间的差异是否显著。
六、结果分析:1.通过计算可得,总平均数为X,组间平均数为X1、X2、X3,组内平均数为X1、X2、X32.计算得到组间平方和为SSB,组内平方和为SSW,组间均方和为MSB,组内均方和为MSW。
3.计算得到F值为F=MSB/MSW。
4.查找F分布表,确定显著性水平α下的F(α)值。
若F>F(α),则拒绝原假设,即各组之间的均值差异显著。
5.若各组均值差异显著,则可以进一步比较各组均值之间的差异。
七、实验结论:1.经过方差分析得知,在水龄条件下,水体COD浓度之间存在显著差异。
2.进一步比较各组均值之间的差异,可以得到水龄越长,水体COD浓度越高的结论。
单因素实验设计报告

单因素实验设计报告:因素实验报告设计单因素实验设计举例正交实验单因素实验设计方案篇一:实验报告单因素方差分析5.1、实验步骤: 1(建立数据文件。
定义2个变量:PWK和DCGJSL,分别表示排污口和大肠杆菌数量。
2. 选择菜单“分析?比较均值?单因素”,弹出“单因素方差分析”对话框。
在对话框左侧的变量列表中,选择变量“DCGJSL”进入“因变量”列表框,选择变量“PWK”进入“因子”列表框。
3(单击“确定”按钮,得到输出结果。
结果解读:由以上结果可以看到,观测变量大肠杆菌数量的总离差平方和为460.438;如果仅考虑“排污口”单个因素的影响,则大肠杆菌数量总变差中,排污口可解释的变差为308.188,抽样误差引起的变差为152.250,它们的方差(平均变差)分别为102.729和12.688,相除所得的F统计量的观测值为8.097,对应的概率P值为0.003。
在显著性水平α为0.05的情况下。
由于概率P值小于显著性水平α,则应拒绝零假设,认为不同的排污口对大肠杆菌数量产生了显著影响,它对大肠杆菌数量的影响效应不全为0。
因此,可判断各个排污口的大肠杆菌数量是有差别的。
5.2、实验步骤: 1(建立数据文件。
定义2个变量:Branch和Turnover,分别表示分店和日营业额。
将Branch的值定义为1=第一分店,2=第二分店,3=第三分店,4=第四分店,5=第五分店。
2. 选择菜单“分析?比较均值?单因素”,弹出“单因素方差分析”对话框。
在对话框左侧的变量列表中,选择变量“Turnover”进入“因变量”列表框,选择变量“Branch”进入“因子”列表框。
3(单击“确定”按钮,得到输出结果。
结果解读:由以上结果可以看到,观测变量日营业额的总离差平方和为1187668.733;如果仅考虑“分店”单个因素的影响,则日营业额总变差中,分店可解释的变差为366120.900,抽样误差引起的变差为821547.833,它们的方差(平均变差)分别为91530.225和14937.233,相除所得的F统计量的观测值为6.128,对应的概率P 值近似为0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方差分析的实验报告
方差分析的实验报告
引言:
方差分析是一种常用的统计方法,用于比较两个或多个组之间的均值差异是否
显著。
在本次实验中,我们将运用方差分析来研究三种不同肥料对植物生长的
影响。
通过对不同处理组的生长情况进行观察和数据分析,我们旨在探究不同
肥料对植物生长的影响是否存在显著差异。
实验设计与方法:
本实验采用了完全随机设计,共设置了四个处理组,分别为对照组和三个不同
肥料处理组。
每个处理组设置了十个重复样本。
实验的主要步骤如下:
1. 准备工作:选取相同品种的植物作为实验材料,并确保它们具有相似的生长
状态和健康状况。
同时,为了消除外界因素的干扰,我们将植物放置在相同的
环境条件下。
2. 分组处理:将植物随机分为四组,其中一组作为对照组,不施加任何肥料,
另外三组分别施加三种不同的肥料。
3. 数据收集:在实验开始后的每个固定时间点,我们测量每个植物的生长指标,如株高、叶片数、根长等,并记录下来。
这些数据将用于后续的方差分析。
数据分析与结果:
在实验结束后,我们对收集到的数据进行了方差分析。
通过计算各组的平均值、方差和标准差,我们得到了以下结果:
1. 株高:对照组的平均株高为30cm,标准差为2cm;肥料A组的平均株高为
35cm,标准差为3cm;肥料B组的平均株高为32cm,标准差为2.5cm;肥料
C组的平均株高为33cm,标准差为2.8cm。
方差分析结果显示,不同处理组之
间的株高差异是显著的(F=4.56, p<0.05)。
2. 叶片数:对照组的平均叶片数为15片,标准差为2片;肥料A组的平均叶
片数为18片,标准差为3片;肥料B组的平均叶片数为16片,标准差为2.5片;肥料C组的平均叶片数为17片,标准差为2.8片。
方差分析结果显示,不同处理组之间的叶片数差异是显著的(F=3.21, p<0.05)。
3. 根长:对照组的平均根长为25cm,标准差为2cm;肥料A组的平均根长为
28cm,标准差为3cm;肥料B组的平均根长为26cm,标准差为2.5cm;肥料
C组的平均根长为27cm,标准差为2.8cm。
方差分析结果显示,不同处理组之
间的根长差异是显著的(F=2.87, p<0.05)。
讨论与结论:
通过方差分析的结果,我们可以得出以下结论:
1. 不同肥料对植物的生长有显著影响。
在本次实验中,我们发现施加肥料A的
植物生长表现最好,其株高、叶片数和根长均显著高于对照组和其他两种肥料
处理组。
2. 方差分析是一种有效的统计方法,可以帮助我们比较不同处理组之间的差异。
通过该方法,我们可以确定哪种因素对实验结果产生了显著影响,并进一步深
入研究其原因和机制。
3. 在实验设计中,我们采用了完全随机设计,以确保实验结果的可靠性和可重
复性。
然而,在实际应用中,我们还可以考虑其他设计方法,如随机区组设计
或配对设计,以进一步提高实验的准确性和可信度。
总结:
本次实验通过方差分析的方法,研究了不同肥料对植物生长的影响。
实验结果表明,施加肥料A可以显著提高植物的生长表现,包括株高、叶片数和根长。
方差分析作为一种常用的统计方法,为我们提供了一种有效的手段来比较不同处理组之间的差异。
通过这种方法,我们可以更好地理解和分析实验结果,为后续的研究提供指导和依据。