spss实验报告---方差分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
——(方差分析)
一、实验目的
熟练使用SPSS软件进行方差分析。学会通过方差分析分析不同水平的控制变量是否对结果产生显著影响。
二、实验内容
1、某职业病防治院对31名石棉矿工中的石棉肺患者、可疑患者及非患者进行了用力肺活量(L)测定,问三组石棉矿工的用力肺活量有无差别?(自建数据集)
石棉肺患者可疑患者非患者
1.8
2.3 2.9
1.4
2.1
3.2
1.5
2.1 2.7
2.1 2.1 2.8
1.9
2.6 2.7
1.7
2.5
3.0
1.8
2.3
3.4
1.9
2.4
3.0
1.8
2.4
3.4
1.8 3.3
2.0
3.5
SPSS计算结果:
在建立数据集时定义group1为石棉肺患者,group2为可疑患者,group3为非患者。
零假设:各水平下总体方差没有显著差异。
相伴概率为0.075,大于0.05,可以认为各个组的方差是相等的,可以进行方差检验。
从上表可以看出3个组之间的相伴概率都小于显著性水平0.05,拒绝零假设,说明3个组之间都存在显著差别。
2、某汽车经销商在不同城市进行调查汽车的销售量数据分析工作,每个城市分别处于不同的区域:东部、西部和中部,而且汽车经销商在不同城市投放不同类型的广告,调查数据放置于附件中数据文件“汽车销量调查.sav”。
(1)试分析不同区域与不同广告类型是否对汽车的销量产生显著性的影响?(2)如果考虑到不同城市人均收入具有差异度时,再思考不同区域和不同广告类型对汽车销量产生的影响差异是否改变,这说明什么问题?
SPSS计算结果:
(1)此为多因素方差分析
相伴概率为0.054大于0.05,可以认为各个组总体方差相等可以进行方差检验。
不同地区贡献的离差平方和为7149.781,均方为3574.891;不同广告贡献的离差平方和为7625.708,均方为3812.854。说明不同广告和不同地区对汽车销量都有显著性影响。广告对于销量的影响略大于地区对销量的影响。
从地区这个变量比较:
第一组和第三组的相伴概率为0.000,低于显著性水平,一、三组均值差异显著;第二组和第三组的相伴概率为0.028,低于显著性水平,二、三组均值差异显著。
从广告这个变量比较:
第一组和第三组的相伴概率为0.000,低于显著性水平,一、三组均值差异显著;第二组和第三组的相伴概率为0.025,低于显著性水平,二、三组均值差异显著。
从上表中可以看出,地区变量的各个水平之间的相伴概率都小于显著性水平,说明3个地区之间都存在显著差异。
综上所述,不同地区和不同广告对于汽车销量都有显著影响。
(2)此为协方差分析
控制变量为地区和广告类型
协变量为人均收入
控制变量部分:不同地区贡献的离差平方和为350.908,均方为175.454;不同广告贡献的离差平方和为1252.887,均方为626.443;且相伴概率均大于显著性水平0.05,认为没有对销量造成显著差异,均与第一小题中的结果有较大出入。
协变量部分:再看人均收入,贡献的离差平方和为1673.083,均方为1673.083,相伴概率0.016小于显著性水平,表明协变量人均收入对观察结果造成了显著影响。