北师大版第二单元《实数》检测题(C卷)

合集下载

八年级数学上册第二章《实数》测试卷-北师大版(含答案)

八年级数学上册第二章《实数》测试卷-北师大版(含答案)

八年级数学上册第二章《实数》测试卷-北师大版(含答案)一、选择题(每题3分,共30分)1.在π,227,-3,38,3.14,0这些数中,无理数的个数是( )A .1B .2C .3D .4 2.下列各式中,无意义的是( )A .- 3B .-3C .3-3 D .(-3)2 3.下列计算错误的是( )A .8=2 2B .2-1=12 C .16=±4 D .|3-2|=2-3 4.与a 3b 不是同类二次根式的是( )A .ab2 B .b a C .1abD .b a 35.下列计算错误的是( )A .62×3=6 6B .27÷3=3C .32-2=3 2D .(2-3)(2+3)=1 6.当1<x <4时,化简(1-x )2-(x -4)2结果是( )A .-3B .3C .2x -5D .57.已知y =(x -4)2-x +5,当x 分别取1,2,3,…,2 022时,所对应y 值的总和是( )A .2 034B .2 033C .2 032D .2 031 8.已知a +b =4,ab =2,则a -b 的值为( )A .2 2B .2 3C .±2 2D .±2 39.将4块尺寸完全相同的长方形薄木板(薄木板如图,厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个框内.已知薄木板的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .219+2B .19+4C .219+4D .19+210.正方形ABCD 在数轴上的位置如图所示,点A ,D 对应的数分别为1和0,若正方形ABCD 绕着顶点按顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2,则翻转2 022次后,数轴上数2 022对应的点是( ) A .D B .C C .B D .A 二、填空题(每题3分,共15分) 11.化简:32=________________,23=____________.12.计算3-64125的结果等于________________.13.已知a ,b 满足-()4+a 2=2 022||b -3,a 2+b 2的平方根为________. 14.对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =a +ba -b ,如:3⊕2=3+23-2=5,那么12⊕4=________. 15.观察下列各式:①223=2+23;②338=3+38;③4415=4+415;….根据这些等式反映的规律,若x 2 022y =x +2 022y ,则x 2-y =________.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.实数与数轴上的点一一对应,无理数也可以在数轴上表示出来.(1)如图1,点A表示的数是________;(2)如图2,直线l垂直数轴于表示4的点,请用尺规作出表示1-13的点(不写作法,保留作图痕迹).17.计算:(1)18+|3-8|-(3)2;(2)2+32-3-(3+6)(3-6).18.解方程:(1)9(x+2)2-64=0;(2)12(x +3)3=108.19.求代数式a+a2-2a+1的值,其中a=-2 022.小亮的解法为:原式=a+(1-a)2=a+1-a=1.小芳的解法为:原式=a+(1-a)2=a+a-1=-4 045.(1)________的解法是错误的;(2)求代数式a+2a2-6a+9的值,其中a=-2 022.20.已知m-15的平方根是±2,33+4n=3,求m+n的算术平方根.21.已知:如图.化简:a2-(a+b)2+(b-c)2+(a+c)2.22.阅读下面的内容:我们规定:用[x]表示实数x的整数部分,用<x>表示实数x的小数部分,如[3.14]=3,<3.14>=0.14;[2]=1,而大家知道2是无理数,无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1来表示2的小数部分,即<2>=2-1.事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是2的小数部分,又例如:∵22<(7)2<32,即2<7<3,∴[7]=2,<7>=7-2.请解答以下问题:(1)[11]=________,<11>=________;(2)如果<5>=a,[41]=b,求a+b-5的平方根.23.(5+2)(5-2)=1,a·a=a(a≥0),(b+1)(b-1)=b-1(b≥0)……像这样,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如,5与5,2+1与2-1,23+3与23-3等都互为有理化因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)化简:233;(2)计算:12-3+13-2;(3)比较 2 023- 2 022与 2 022- 2 021的大小,并说明理由.参考答案一、1. B 2. B 3. C 4. A 5. D 6. C 7. A 8. C 9. C 10. C 二、11. 42;63 12. -45 13. ±19 14. 2 15. 1 三、16. 解:(1) 5(2)如图,点P 即为所求.17. 解:(1)原式=32+3-22-3=2.(2)原式=(2+3)2(2-3)×(2+3)-(9-6)=4+43+3-3=4+43.18. 解:(1)因为9(x +2)2-64=0,所以9(x +2)2=64, 所以(x +2)2=649, 所以x +2=±83, 所以x =23或x =-143. (2)因为12(x +3)3=108, 所以(x +3)3=216, 所以x +3=6,所以x =3. 19. 解:(1)小芳(2)a +2a 2-6a +9=a +2(a -3)2, 因为a =-2 022,所以a -3<0,所以原式=a +2(3-a )=a +6-2a =6-a =6-(-2 022)=6+2 022= 2 028,即代数式的值是2 028.20.解:因为m-15的平方根是±2,所以m-15=(±2)2,所以m=19.因为33+4n=3,所以3+4n=27,所以n=6.所以m+n的算术平方根为m+n=19+6=5.21.解:根据数轴可得a<0,a+b<0,b-c<0,a+c<0,所以原式=|a|-|a+b|+|b-c|+|a+c|=-a+a+b+c-b-a-c=-a.22.解:(1)3;11-3(2)因为2<5<3,6<41<7,且<5>=a,[41]=b,所以a=5-2,b=6,所以a+b-5=5-2+6-5=4,所以a+b-5的平方根是±2.23.解:(1)233=2×333×3=239.(2)12-3+13-2=2+3(2-3)×(2+3)+3+2(3-2)×(3+2)=2+3+3+2=2+23+2.(3) 2 023- 2 022< 2 022- 2 021.理由如下:因为 2 023- 2 022=12 023+ 2 022,2 022- 2 021=12 022+ 2 021,2 023+ 2 022> 2 022+ 2 021,所以 2 023- 2 022< 2 022- 2 021.。

北师大版八年级上学期数学第二章“实数”单元测试试题(含答案)

北师大版八年级上学期数学第二章“实数”单元测试试题(含答案)

八年级第二章实数单元测试试题(满分120分 时间120分钟)一、单选题。

(每小题3分,共30分) 1.下列是无理数的是( )A.0B.2022C.﹣π0D.√932.√81的平方根是( )A.9B.±9C.3D.±3 3.计算|√7-3|的结果是( )A.√7+3B.﹣√7-3C.3-√7D.√7-3 4.下列不是最简二次根式的是( )A.√56B.√7C.√21D.√395.下列说法中:①﹣164的立方根是﹣18;②0.081的算术平方根是0.9;③√9=±3;④算术平方根和立方根都等于本身的是0;⑤0.027的立方根为0.3,其中正确的有( )个。

A.0 B.1 C.2 D.3 6.估计8-√17的值在( )A.1和2之间B.2和3之间C.3和4之间D.4和5之间 7.下列计算正确的是( )A.√2+√3=√5B.√42+52=4+5=9C.√24÷√6=2D.4√3-√3=4 8.下列说法正确的是( )A.无限小数都是无理数B.任何数都有算术平方根和平方根C.实数分为正有理数和负有理数D.√10的小数部分是√10-39.若x ,y 都是实数,且满足y=√x -3×√3-x5-2,则x y 的值为( )A.6B.﹣6C.9D.1910.如果一个等腰三角形的两条边长分别为3√3和4√7,那么这个等腰三角形的周长为( )A.6√3+4√7B.6√3+8√7C.6√3+4√7或6√3+8√7D.3√3+8√7 二、填空题。

(每小题3分,共18分)11.﹣√(﹣23)2= .12.一个正数的两个平方根分别是3x+5和﹣x+1,则这个正数是 . 13.若√x +4在实数范围内有意义,则x 的取值范围是 .14.实数a 在数轴上对应的点位置如图所示,则化简|a -√4|-√(1-a )2= .15. 6-√5的整数部分是a ,6+√5的小数部分是b ,则(a+√5)(b -1)= . 16.我们规定:a △b=√b (√2a -√b ),例如:2△3=√3(√4-√3),则8△9= . 三、解答题。

北师大版八年级数学上册第2章《实数》单元测试卷含答案

北师大版八年级数学上册第2章《实数》单元测试卷含答案

北师大版八年级上册第2章《实数》单元测试卷一.选择题(共12小题,满分36分,每小题3分)1.下列式子一定是二次根式的是()A.B.C.D.2.25的算术平方根是()A.5B.﹣5C.12.5D.﹣12.53.下列各数中,为无理数的是()A.3.14 B.C.D.0.10100100014.下列式子中,为最简二次根式的是()A.B.C.D.5.若实数a﹣2有平方根,那么a可以取的值为()A.﹣1B.0C.1D.26.下列说法正确的是()A.有理数、零、无理数统称为实数B.没有绝对值最小的实数C.最小的无理数是D.数轴上的点都表示实数7.下列计算错误的是()A.=12B.=﹣0.6C.=±4D.=8.已知+|b﹣2a|=0,则a+2b的值是()A.4B.6C.8D.109.如图,数轴上有O,A,B,C,D五点,根据图中各点所表示的数,表示数的点会落在()A.点O和A之间B.点A和B之间C.点B和C之间D.点C和D之间10.把根号外的因式移入根号内得()A.B.C.D.11.已知:a+b=﹣5,ab=1,则+的值为()A.5B.﹣5C.25D.5或﹣512.规定:一个数的平方等于﹣1,记作i2=﹣1,于是可知i3=i2×i=(﹣1)×i,i4=(i2)2=(﹣1)2=1……,按照这样的规律,i2019等于()A.1B.﹣1C.i D.﹣i二.填空题(共7小题,满分28分,每小题4分)13.若二次根式在实数范围内有意义.则a的取值范围是.14.比较大小:23.(填“>”,“=”,“<”号)15.一个实数在数轴上对应的点在负半轴上,且到原点距离等于,则这个数为.16.若计算×m的结果为正整数,则无理数m的值可以是(写出一个符合条件的即可).17.甲同学利用计算器探索.一个数x的平方,并将数据记录如表:x16.216.316.416.516.616.716.816.917.0 x2262.44265.69268.96272.25275.56278.89282.24285.61289请根据表求出275.56的平方根是.18.对于任意不相等的两个实数a,b.定义运算※如下:a※b=,如3※2==,那么8※4=.19.观察并分析下列数据:寻找规律,那么第10个数据应该是.三.解答题(共8小题,满分56分)20.(6分)计算(1)2﹣6+3(2)(3+﹣4)÷21.(6分)计算:求下列各式中的x(1)x2﹣4=0 (2)2x3=﹣1622.(6分)若实数a,b,c在数轴上的对应点如图所示,试化简:﹣+|b+c|+|a﹣c|.23.(7分)在数轴上表示下列各数,并用“<”连接起来.﹣|﹣4.5|,0,,(﹣2)2,.24.(7分)若最简二次根式和是同类二次根式.(1)求x,y的值;(2)求的值.25.(7分)(1)当a=15时,求代数式﹣+的值.(2)已知x﹣1=,求代数式(x+1)2﹣4(x+1)+4的值.26.(8分)(1)观察被开方数a的小数点与算术平方根的小数点的移动规律:a0.00010.011100100000.01x1y100填空:x=,y=.(2)根据你发现的规律填空:①已知≈1.414,则=,=;②=0.274,记的整数部分为x,则=.27.(9分)“双剑合璧,天下无敌”,其意思是指两个人合在一起,取长补短,威力无比.在二次根式中也常有这种相辅相成的“对子”,如:(2+)(2﹣)=1,=3,它们的积中不含根号,我们说这两个二次根式是互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样解:,=7+4.像这样通过分子、分母同乘一个式子把分母中的根号化去的方法,叫做分母有理化.解决下列问题:(1)将分母有理化得;+1的有理化因式是;(2)化简:=;(3)化简:……+.参考答案一.选择题(共12小题,满分36分,每小题3分)1.解:不论x取什么值,x2+1恒大于0.故一定是二次根式.当x取有些值时,﹣x2+1、x、x2﹣1会小于0,故、、不一定是二次根式.故选:D.2.解:∵52=25,∴25的算术平方根是5.故选:A.3.解:A.3.14是有限小数,属于有理数;B.是分数,属于有理数;C.是无理数;D.0.1010010001是有限小数,属于有理数.故选:C.4.解:A、=,不是最简二次根式,故本选项不符合题意;B、是最简二次根式,故本选项符合题意;C、=2,不是最简二次根式,故本选项不符合题意;D、=4,不是最简二次根式,故本选项不符合题意;故选:B.5.解:∵实数a﹣2有平方根,∴a﹣2≥0,∴a≥2,∴D符合题意,故选:D.6.解:A、有理数、无理数统称为实数,故此选项错误;B、绝对值最小的实数是0,故此选项错误;C、没有最小的无理数,故此选项错误;D、数轴上的点都表示实数,正确.故选:D.7.解:A.=12,此选项计算正确;B.﹣=﹣0.6,此选项计算正确;C.=4,此选项计算错误;D.=,此选项计算正确;故选:C.8.解:∵+|b﹣2a|=0,∴a﹣2=0,b﹣2a=0,解得:a=2,b=4,故a+2b=10.故选:D.9.解:=﹣2,∵4<<5,∴2<﹣2<3,因此在点A和点B之间,故选:B.10.解:∵成立,∴﹣>0,即m<0,∴原式=﹣=﹣.故选:D.11.解:∵a+b=﹣5,ab=1,∴a<0,b<0,+=﹣﹣=﹣,又∵a+b=﹣5,ab=1,∴原式=﹣=5;故选:B.12.解:∵i=i,i2=﹣1,i3=﹣i,i4=1,i5=i……∴从上计算可知,i的指数循环周期是4,①当指数除以4余数为0时,其结果是1;②当指数除以4余数为1时,其结果是i;③当指数除以4余数为2时,其结果是﹣1;④当指数除以4余数为3时,其结果是﹣i;∵2019÷4=504 (3)∴i2019=﹣i.故选:D.二.填空题(共7小题,满分28分,每小题4分)13.解:由题意得:a﹣1≥0,解得:a≥1,故答案为:a≥1.14.解:∵2=,3=,∴<,即2<3.故答案为:<.15.解:∵一个实数在数轴上对应的点在负半轴上,且到原点距离等于,∴这个数为:﹣.故答案为:﹣.16.解:若计算×m的结果为正整数,则无理数m的值可以是:(答案不唯一).故答案为:(答案不唯一).17.解:观察表格数据可知:=16.6所以275.56的平方根是±16.6.故答案为±16.6.18.解:根据题中的新定义得:8※4===,故答案为:.19.解:1=,2=,2=,4=,4=,8=.则第10个数据是:=16.故答案是:16.三.解答题(共8小题,满分56分)20.解:(1)原式=4﹣2+12=14;(2)原式=(9+﹣2)÷4=8÷4=2.21.解:(1)∵x2﹣4=0,∴x2=4,则x=±2;(2)∵2x3=﹣16,∴x3=﹣8,则x=﹣2.22.解:根据题意得:a<b<0<c,且|c|<|b|<|a|,∴a+b<0,b+c<0,a+c<0,则原式=|a|﹣|a+b|+|b+c|+|a﹣c|=﹣a+a+b﹣b﹣c﹣a+c=﹣a.23.解:∵﹣|﹣4.5|=﹣4.5,=2,(﹣2)2=4,=﹣3,∴﹣4.5<﹣3<0<2<4,即﹣|﹣4.5|<<0<<(﹣2)2.在数轴上表示为:24.解:(1)根据题意知,解得:;(2)当x=4、y=3时,===5.25.解:(1)当a=15时,原式=﹣+=3﹣5+6=4;(2)(x+1)2﹣4(x+1)+4=(x+1﹣2)2=(x﹣1)2,∵x﹣1=,∴原式=()2=3.26.解:(1)观察表格数据可知:x==0.1;y==10;故答案为:0.1;10;(2)∵≈1.414,∴=14.14,=0.1414故答案为:14.14;0.1414;(3)∵=0.274,记的整数部分为x,∴x=27,则=故答案为.27.解:(1)==,(+1)(﹣1)=()2﹣12=2﹣1=1,即+1的有理化因式是﹣1,故答案为:,﹣1;(2)===﹣,故答案为:﹣.(3)原式=﹣1+﹣+﹣+…+﹣=﹣1=10﹣1=9.。

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)班级:姓名:座号:成绩:一、选择题(30 分)1. 16 的平方根是( )A.4B. ±42.下列各式正确的是( )A.√16 =±4B.±√16 =43. 下列各数中,为无理数的是( )22A. π B 一.74. 下列各数中的无理数是( )1A .0B .25. 下列说法正确的是( )A.所有无限小数都是无理数C.有理数都是有限小数6. 实数9 的算术平方根为( )A.3 B.士37. 下列根式中不是最简二次根式的是(A. √10B. √88. 下列变形正确的是( )C.8D. ±8 C.√(−4)2 =-4 D.3√−27 =-3C. 0D. -2 C. D.B.所有无理数都是无限小数D.不是有限小数就不是有理数C.士 3 D.士3)C.√6D.√2A.√(−16)(−25)= √−16 × √−25B.√161 = √16 × √1 =4×14 4 2C.√(−1) 2 =1D.√252 − 242 =25-24=13 39. 若最简二次根式√2x + 1和√4x − 3能合并,则x 的值为( )A.0.5B.1C.2D.2.510.若将−√2,√6,−√3,√11 四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A . −√2B . √6C . −√3D . √113 8 5二、填空题(28 分)11. 16 的算术平方根是12. 比较大小: 4 3 713. 若已知 a 一3 + (b 一5)2 = 0 ,那么以a ,b 为边长的直角三角形的第三边长为.14. 请写出一个大于1且小于2的无理数:.15.若= 1 + 7 ,则的整数部分是,小数部分是.16. 计算: ( 4) 2-20220 =.17.如图,,,,是数轴上的四个点,这四个点中最适合表示7 的点是 .三、解答题18.计算:(4×4=16分)(1) ﹣2 (2) 8 + 32 一 2(3) (3 + 5)(2 一 5 )(4) (5 一3)219.再计算:(4×4=16分)(1)(2)27 一一2 3 一 3 x(2 一π)0+(一1)20222 3 (4) .20.还是计算:(4×4=16分)1 1(1) 20×(-3 48)÷ 2 (2) 12( 75+33- 48)(3) 27 ×3-182+8(4)√ ( − 3)2-(-1)2023 -(π-1)0+(|(21-121. 阅读下列材料:(6 分)∵√4< √7< √9,即 2 < √7 < 3 ,∴√7请你观察上述的规律后试解下面的问题:的整数部分为2,小数部分为√7 − 2 .如果√5 的小数部分为ᵄ, √13 的小数部分为ᵄ,求ᵄ + ᵄ−√5 的值.(3)22. 阅读理解:1已知a = ,求 2a 2 一 8a +1的值.2 一 3常a 一 2 = 3 .常 一 =,即 a 2 一 4a + 4 = 3 .常a 2 一 4a = 一1 .常2a 2 一 8a +1 = 2(a 2 一 4a) +1 = 2 x (一1) +1 = 一1 .请根据以上解答过程,解决如下问题:(8 分) 1 = .2 +11 3+2 3 (2 (1)计算:(2)计算:(a 2)2 3 1100 + 2 3 ;99 4 + 3 2 3 2 +1+…+ 2+ +11 ,1 +a = = = + 一一 3)(2 + 3)参考答案6 A11. 212. <13. 5 或 714. 2 ( 3 答案不唯一)15. 3 , 7 216. 317. P18. (1)1 (2) 5 2 (3)1 5 (4)28 10 319. (1)2 3 (2) 1 (3)1+ 2 2 (4)10 + 6 220. (1) 2 10 (2)12 (3)4 (4)521. 13 522. (1) 2 1(2) 910B3A 2D4C 7B5B8C9C1B。

北师大版八年级数学上册《第二章实数》单元测试题(含答案)

北师大版八年级数学上册《第二章实数》单元测试题(含答案)

第二章实数测试题一、选择题(每题3分,共30分)1.有一组数如下:-π,13,|-2|,4,7,39,0.808008…(相邻两个8之间0的个数逐次加1).其中无理数有( )A .4个B .5个C .6个D .7个2.下列说法中,正确说法的个数是( ) ①-64的立方根是-4; ②49的算术平方根是±7; ③127的立方根是13; ④116的平方根是14. A .1 B .2 C .3 D .43.下列各组数中,互为相反数的一组是( )A .-3与3-27 B .-3与(-3)2 C .-3与-13D .||-3与34.下列各式计算正确的是( )A .2+3= 5B .43-33=1C .23×33=6 3D .27÷3=35.下列各式中,无论x 为任何数都没有意义的是( )A .-7xB .-1999x3C .-0.1x2-1D .3-6x2-56.若a =15,则实数a 在数轴上的对应点P 的大致位置是( )图17.如图2是一数值转换机,若输出的结果为-32,则输入的x的值为( )图2A.-4B.4C.±4D.±58.若a,b均为正整数,且a>7,b>320,则a+b的最小值是( )A.6 B.5 C.4 D.39.实数a,b在数轴上所对应的点的位置如图3所示,且||a>||b,则化简a2-||a+b 的结果为( )图3A.2a+b B.-2a+bC.b D.2a-b10.已知x=2-3,则代数式(7+4 3)x2+(2+3)x+3的值是( )A.2+ 3 B.2- 3 C.0 D.7+4 3请将选择题答案填入下表:第Ⅱ卷 (非选择题 共70分)二、填空题(每题3分,共18分) 11.计算:252-242=________.图412.如图4,正方形ODBC 中,OC =1,OA =OB ,则数轴上点A 表示的数是________. 13.用计算器计算并比较大小:39________7.(填“>”“=”或“<”) 14.若|x -y|+y -2=0,则xy -3的值是________.15.若规定一种运算为a ★b =2(b -a),如3★5=2×(5-3)=22,则2★3=________.16.设a ,b 为非零实数,则a |a|+b2b所有可能的值为________. 三、解答题(共52分)17.(6分)实数a ,b 在数轴上所对应的点的位置如图5所示,试化简:a2-b2-(a -b )2.图518.(6分)计算:(1)()-62-25+(-3)2;(2)50×8-6×32;(3)(3+2-1)(3-2+1).19.(6分)已知a ,b 互为相反数,c ,d 互为倒数,x 是2的平方根,求5(a +b )a2+b2-2cd+x 的值.20.(6分)如果a 是100的算术平方根,b 是125的立方根,求a2+4b +1的平方根.21.(6分)某中学要在操场的一块长方形土地上进行绿化,已知这块长方形土地的长为510 m ,宽为415 m .(1)求该长方形土地的面积(精确到0.1 m 2);(2)如果绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金约为多少元?22.(6分)如图6所示,某地有一地下工程,其底面是正方形,面积为405 m2,四个角是面积为5 m2的小正方形渗水坑,根据这些条件如何求a的值?与你的同伴进行交流.图6下面是小康提供的解题方案,根据解题方案请你完成本题的解答过程:①设大正方形的边长为x m,小正方形的边长为y m,那么根据题意可列出关于x的方程为__________,关于y的方程为__________;②利用平方根的意义,可求得x=________(取正值,结果保留根号),y=________(取正值,结果保留根号);③所以a=x-2y=____________=__________(结果保留根号);④答:________________________.23.(8分)如图7,在Rt△OA1A2中,∠A1=90°,OA1=A1A2=1,以OA2为直角边向外作直角三角形,…,使A1A2=A2A3=A3A4=…=A n-1A n=1.(1)计算OA2和OA3的长;(2)猜想OA75的长(结果化到最简);(3)请你用类似的思路和方法在数轴上画出表示-3和10的点.图724.(8分)先阅读材料,再回答问题:因为(2-1)(2+1)=1,所以12+1=2-1;因为(3-2)(3+2)=1,所以13+2=3-2;因为(4-3)(4+3)=1,所以14+3=4- 3.依次类推,你会发现什么规律?请用你发现的规律计算式子12+1+13+2+…+1100+99的值.答案1.A 2.B 3.B 4.D 5.C 6.B 7.C 8.A 9.C 10.A 11.7 12.-213.< 14.1215.6-2 16.±2,017.解:由数轴易知a <0,b >0,|a |<|b |, 所以原式=-a -b -(b -a )=-2b . 18.解:(1)原式=6-5+3=4.(2)原式=5 2×2 2-3 22=20-3=17. (3)(3+2-1)(3-2+1)=[]3+(2-1)[]3-(2-1) =3-(2-1)2=3-3+2 2 =2 2.19.解:由题意知a +b =0,cd =1,x =±2. 当x =2时,原式=-2+2=0; 当x =-2时,原式=-2-2=-2 2, 故原式的值为0或-2 2.20.[解析] 先根据算术平方根、立方根的定义求得a ,b 的值,再代入所求代数式即可计算.解:因为a 是100的算术平方根,b 是125的立方根, 所以a =10,b =5,所以a2+4b+1=121,所以a2+4b+11=11,所以a2+4b+11的平方根为±11.21.[解析] (1)根据这块长方形土地的长为5 10 m,宽为415 m,直接得出面积即可;(2)利用绿化该长方形土地每平方米的造价为180元,即可求出绿化该长方形土地所需资金.解:(1)该长方形土地的面积为510×415=100 6≈244.9(m2).(2)因为绿化该长方形土地每平方米的造价为180元,所以180×244.9=44082(元).答:绿化该长方形土地所需资金约为44082元.22.解:①x2=405 y2=5②9 55③9 5-2 57 5④a的值为7 523.解:(1)OA2=12+12=2,OA3=()22+12=3.(2)OA75=75=5 3.(3)如图所示:24.解:规律:当n是正整数时,1n+1+n=n+1-n,故12+1+13+2+…+1100+99=(2-1)+(3-2)+…+(100-99)=100-1=9.。

北师大版八年级数学上册实数测试题及答案(C)

北师大版八年级数学上册实数测试题及答案(C)

北八上第二章《实数》水平测试(C)一、 选择题(每小题3分,共30分)1、-|-3|的倒数是( )A 、3B 、31C 、-31 D 、-3 2、估算24+3的值( )A 、 在5和6之间B 、 在6和7之间C 、 在7和8之间D 、在8和9之间3、已知x ,y 是实数,43+x +(y-3)2=0,若axy-3x=y ,则实数a 的值是( )A 、41 B 、-41 C 、47 D 、-47 4、某正数的平方根为3a 和392-a ,则这个数为( ) A 、1 B 、2 C 、4 D 、95、已知|a|=5,2b =3,且ab >0,则a+b 的值为( )A 、8B 、-2C 、8或-8D 、2或-26、制作一个表面积为12的正方体纸盒,则这个正方体的棱长是( )A 、23B 、2C 、2D 、3127、一个数的立方根是4,这个数的平方根是( )A 、8B 、-8C 、8或-8D 、4或-48、在实数0.3、3π、71、3.6024×103、2、-1中无理数的个数为( ) A 、 1个 B 、2个 C 、3个 D 、4个9、下列语句中,正确的是( )A 、 一个无理数与一个有理数的和一定是无理数B 、 一个无理数与一个有理数的积一定是无理数C 、 两个无理数的积一定是无理数D 、 两个无理数的差一定是无理数10、有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17是的平方根,其中正确的有( )A 、 0个B 、1个C 、2个D 、3个二、 填空题(每小题3分,共30分)11、已知2x+1的平方根是±5,则5x+4的立方根是 .12、点P 在数轴上和原点相距5单位,点Q 在数轴和原点相距4个单位,且点Q 在点P 左边,则P 、Q 之间的距离为 .13、一个数的立方根等于它本身,这个数是 .14、由下列等式322+=232,833+=383,1544+=4154…所提示的规律,可得出一般性的结论是 (用含n 的式子表示)15、已知x 3+1=87,则x= . 16、若a 、b 互为相反数,c 、d 互为倒数,|x|=1,则(a+b )3-x 2+4cd = . 17、若xx 4|33--=-2,则x 0. 18、用计算器探索,按一定规律排列的一组数:1,2,-3,2,5,-6,7,…如果从1开始一次连续选取若干个数,使它们的和大于5,那么至少要选 个数.19、当x= 时,4-29x -有最小值,其最小值为 .20、一个圆的面积变为原来的n 倍,则半径变为原来的 倍;一个正方体的体积变为原来的n 倍,则棱长变为原来的 倍.三﹑解答题(共60分)21、(每小题3分,共12分)计算下列各题(细心算对哟)(1)18315.012+-- (2))278(183⨯÷(3))62()8213316(-⨯--(4)|)32(31|)313(3.01])1()22([22222--⨯÷-⨯---22、(6分)已知一个正方体盒子的容积为64cm 3,问做一个这样的正方体盒子(无盖)需要多大的木板?23、(6分)已知|a-b-1|与3(a-2b+3)2互为相反数,求a 和b 的值.24、(6分)若a 的倒数是a 、b 的相反数是b ,c 的算术平方根等于c ,求a+b+c 的值(你有能力考虑全)25、(6分)已知2a-1的平方根是±3,4是3a+b-1的算术平方根,求a+2b 的值.26、(6分)设2+6的整数部分和小数部分分别是x 、y ,试求x 、y 的值与x-1的算术平方根.27、(6分)已知三角形三边长分别为a 、b 、c ,其中a 、b 满足08)6(2=-+-b a ,那么这个三角形最长边c 的取值范围是多少?。

北师大版八年级数学上册第二章《实数》测试题及答案

北师大版八年级数学上册第二章《实数》测试题及答案

八年级上学期第二章《实数》单元测试及答案一、选择(每小题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)1.下列说法中正确的是().(A)4是8的算术平方根(B)16的平方根是4(C)是6的平方根(D)没有平方根2.下列各式中错误的是().(A)(B)(C)(D)3.若,则().(A)-0。

7 (B)±0.7 (C)0.7 (D)0。

494.的立方根是().(A)-4 (B)±4 (C)±2 (D)-25.,则的值是().(A)(B)(C)(D)6.下列四种说法中:(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)的平方根是;(4).共有()个是错误的.(A)1 (B)2 (C)3 (D)4+的值为()7.x是9的平方根,y是64的立方根,则x yA.3 B.7 C.3,7 D.1,7-=+-)82x1x1x1A. x ≥1B. x ≥—1C.—1≤x ≤1 D 。

x ≥1或x ≤—19. 计算515202145+-所得的和结果是( ) A .0 B .5- C .5 D .5310. x --23 (x ≤2)的最大值是( )A .6B .5C .4D .3二、填空(每小题3分,共30分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的) 1.若,则是的__________,是的___________.2.9的算术平方根是__________,的平方根是___________. 3.下列各数:①3。

141、②0.33333……、③75-、④π、⑤252.±、⑥32-、⑦0。

3030003000003……(相邻两个3之间0的个数逐次增加2)、⑧))((2727+-中.其中是有理数的有_______;是无理数的有_______.(填序号)4.的立方根是__________,125的立方根是___________.5.若某数的立方等于-0。

(常考题)北师大版初中数学八年级数学上册第二单元《实数》检测题(有答案解析)

(常考题)北师大版初中数学八年级数学上册第二单元《实数》检测题(有答案解析)

一、选择题1.,2π,0.其中无理数出现的频率为( ) A .0.2 B .0.4 C .0.6 D .0.8 2.下列各数中,介于6和7之间的数是( )A 2+BC 2D3.已知实数x 、y 满足|x -0,则以x 、y 的值为两边长的等腰三角形周长是( ) A .20或16B .20C .16D .184.若方程2(1)5x -=的解分别为,a b ,且a b >,下列说法正确的是( ) A .a 是5的平方根 B .b 是5的平方根 C .1a -是5的算术平方根D .1b -是5的算术平方根5.对于两个不相等的有理数a ,b ,我们规定符号{},max a b 表示a ,b 两数中较大的数,例如{}2,42max -=.则方程{},34max x x x -=+的解为( ) A .-1B .-2C .-1或-2D .1或26...的是( )A B .23<<C .5D .|22=7. )A .8 B .4C D8.如x 为实数,在“1)□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( )A 1B 1C .D .1-9.在实数3.14,227-, 1.70,-π中,无理数有( ) A .2个B .3个C .4个D .5个10.已知三角形的三边长a 、b 、c 满足2(a +|c |=0,则三角形的形状是( ) A .等腰三角形 B .等边三角形C .直角三角形D .不能确定11.下列说法正确的是( )A .4的平方根是2B ±4C .-36的算术平方根是6D .25的平方根是±512.下列说法正确的是( ) A .5是有理数 B .5的平方根是5 C .2<5<3D .数轴上不存在表示5的点二、填空题13.方程()2116x +=的根是__________.14.若x =2﹣1,则x 3+x 2﹣3x +2035的值为_____. 15.计算()()2323-⨯+的结果是_____. 16.如图,数轴上点A 表示的数是__________.17.10的整数部分是a .小数部分是b ,则2a b -=______.18.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________. 19.2x +有意义,则实数x 的取值范围是_________. 20.36,3,2315,则第100个数是_______.三、解答题21.根据阅读材料,解决问题.若一个正整数,从左到右各位数上的数字与从右到左各位数上的数字对应相同,则称为“对称数”(例如:1、232、4554是对称数).对于一个三位对称数A ,将它各个数位上的数字分别两倍后取个位数字,得到三个新的数字x ,y ,z ,我们对A 规定一个运算:() K A xyz =,例如:535A =是一个三位的“对称数”,其各个数位上的数字分别2倍后取个位数字分别是:0、6.0.则()5350600K =⨯⨯=;262A =是一个三位的“对称数”,其各个数位上的数字分别2倍后取个位数字分别是: 4、2、4,则()26242432K =⨯⨯=. 请解答:(1)请你直接写出最大的两位对称数: 最小的四位对称数: ;(2)一个三位的“对称数”B ,将其各个数位的数字分别2倍后取个位数字分别为:a ,b ,a ,若()8K B =,请求出B 的所有值.22.阅读下列问题:()()()121121122121⨯-==-++-;()()()132132323232⨯-==-++-;以上化简的方法叫作分母有理化,仿照以上方法化简: (1)165=+______; (2)求120212020+的值:(3)求22n n n n+++-(n 为正整数)的值.23.计算:120203118(3.14)224.先化简,再求值:2(2)4(1)(21)(21)a a a a a ---++-,其中21a =-.25.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方. 例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n aa a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________; (2)关于除方,下列说法错误的是____________; A .任何非零数的圈2次方都等于1; B .对于任何大于等于2的整数c ,;C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数; (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?除方211112222222222⎛⎫→=÷÷÷=⨯⨯⨯=→ ⎪⎝⎭④乘方幂的形式(1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫= ⎪⎝⎭⑨___________; (2)将一个非零有理数a 的圈n 次方写成幂的形式为____________; (3)将(m 为大于等于2的整数)写成幂的形式为_________.26.化简 (1)2323212+(211888【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据无理数的意义和频率意义求解. 【详解】 解:∵4235=,,π是无限不循环小数,∴35π,,4,是有理数,∴由30.65=可得无理数出现的频率为0.6, 故选C . 【点睛】本题考查无理数和频率的综合应用,熟练掌握无理数和频率的意义是解题关键.2.B解析:B 【分析】根据夹逼法逐项判断即得答案. 【详解】 解:A 、479<<4275∴<<,故本选项不符合题意;B 、∵364549<<6457∴<<,故本选项符合题意;C 、364749<44725∴<<,故本选项不符合题意;D 、253536<<5356∴<<,故本选项不符合题意.故选:B .本题考查了无理数的估算,属于常考题型,掌握夹逼法解答的方法是关键.3.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x与y的值.由于没有说明x与y是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B.【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.4.C解析:C【分析】根据方程解的定义和算术平方根的意义判断即可.【详解】∵方程2x-=的解分别为,a b,(1)5∴2a-=,(1)52b-=,(1)5∴a-1,b-1是5的平方根,∵a b>,∴11->-,a b∴a-1是5的算术平方根,故选C.【点睛】本题考查了方程解的定义,算术平方根的定义,熟记定义,灵活运用定义是解题的关键. 5.A解析:A利用题中的新定义化简已知方程,求解即可. 【详解】①当0x >时,即x x >-,此时max }{34x x x x -==+,, 解得2x =-,不符合题意舍去.②当0x <时,即x x <-,此时max }{34x x x x -=-=+,, 解得1x =-且符合题意. 故选:A . 【点睛】此题考查了新定义下实数的运算以及解一元一次方程,运用分类讨论的思想是解答本题的关键.6.C解析:C 【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可. 【详解】解:AB 、23,说法正确,不符合题意;C 、5的平方根是,故原题说法错误,符合题意;D 、|22-=,说法正确, 不符合题意;故选C . 【点睛】本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数.7.B解析:B 【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可. 【详解】4===, 故选:B . 【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.8.C【分析】根据题意,添上一种运算符号后逐一判断即可. 【详解】解:A 、1)1)0-=,故选项A 不符合题意;B 、1)1)2⨯=,故选项B 不符合题意;C 1与C 符合题意;D 、1)(10+-=,故选项D 不符合题意. 故选:C . 【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.9.A解析:A 【分析】由于无理数就是无限不循环小数,利用无理数的定义即可判断得出答案. 【详解】3=-,∴3.14,227-,- 1.7,0都是有理数,-π是无理数,共2个,故选:A . 【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.10.C解析:C 【分析】根据非负数的性质可知a ,b ,c 的值,再由勾股定理的逆定理即可判断三角形为直角三角形. 【详解】解:()220a c -+-=∴ 0a =,30b -= , 0c = ∴a =,3b = , c =又∵ 222279a c b +=+==∴该三角形为直角三角形 故选C . 【点睛】本题考查了非负数的性质及勾股定理的逆定理,解题的关键是解出a ,b ,c 的值,并正确运用勾股定理的逆定理.11.D解析:D 【分析】根据平方根和算术平方根的定义判断即可. 【详解】解:A. 4的平方根是±2,故错误,不符合题意;±2,故错误,不符合题意; C. -36没有算术平方根,故错误,不符合题意; D. 25的平方根是±5,故正确,符合题意; 故选:D . 【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.12.C解析:C 【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案. 【详解】解:A A 错误;B 、5的平方根是B 错误;C ∴23,故C 正确;D D 错误; 故选:C . 【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.二、填空题13.或【分析】根据平方根的定义求解即可【详解】解:两边开方得或解得或【点睛】本题考查了平方根的意义解题关键是熟练运用平方根的意义准确进行计算解析:3x =或5x =-.【分析】根据平方根的定义求解即可. 【详解】解:()2116x +=,两边开方得,14x +=或14x +=-, 解得,3x =或5x =-. 【点睛】本题考查了平方根的意义,解题关键是熟练运用平方根的意义,准确进行计算.14.2034【分析】直接利用二次根式的混合运算法则代入计算即可【详解】解:x3+x2﹣3x +2035=x2(x +1)﹣3x +2035∵x =﹣1∴原式=(﹣1)2(﹣1+1)﹣3(﹣1)+2035=(3﹣解析:2034 【分析】直接利用二次根式的混合运算法则代入计算即可. 【详解】解:x 3+x 2﹣3x +2035, =x 2(x +1)﹣3x +2035, ∵x﹣1,∴1)2﹣1+1)﹣3﹣1)+2035,=(3﹣)3+2035,=4﹣+3+2035, =2034. 故答案为:2034. 【点睛】本题主要考查了二次根式的混合运算,准确计算是解题的关键.15.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1 【分析】根据二次根式混合运算的法则进行计算即可. 【详解】解:原式=222431-=-=,故答案为:1. 【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.16.【分析】根据勾股定理得到圆弧的半径长利用数轴上两点间的距离公式即可求解【详解】解:根据题意可得:圆的半径为则点A表示的数是故答案为:【点睛】本题考查勾股定理数轴上两点间的距离利用勾股定理求出半径长是解析:1【分析】根据勾股定理得到圆弧的半径长,利用数轴上两点间的距离公式即可求解.【详解】=则点A表示的数是1,故答案为:1【点睛】本题考查勾股定理、数轴上两点间的距离,利用勾股定理求出半径长是解题的关键.17.6-16【分析】先估算确定ab的值进而即可求解【详解】∵<<∴3<<4又∵a是的整数部分b是的小数部分∴a=3b=−3∴3-(−3)2=3-(10-6+9)=3-10+6-9=6-16故答案是:6-解析:-16【分析】,确定a,b的值,进而即可求解.【详解】∵∴3<4,又∵a b的小数部分,∴a=3,b−3,∴2-=−3)2-16.a b故答案是:-16.【点睛】本题考查无理数的估算、完全平方公式,确定a、b的值是解决问题的关键.18.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴解析:5cm3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.19.且【分析】根据二次根式中的被开方数是非负数分式分母不为0列出不等式解不等式得到答案【详解】解:由题意得x+2≥0x≠0解得x≥-2且x≠0故答案为:x≥-2且x≠0【点睛】本题考查了二次根式有意义的解析:2x ≥-且0x ≠【分析】根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得,x+2≥0,x≠0,解得,x≥-2且x≠0,故答案为:x≥-2且x≠0.【点睛】本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.20.【分析】原来的一列数即为于是可得第n 个数是进而可得答案【详解】解:原来的一列数即为:∴第100个数是故答案为:【点睛】本题考查了数的规律探求属于常考题型熟练掌握二次根式的性质找到规律是解题的关键解析:【分析】,于是可得第n 进而可得答案.【详解】, ∴第100=.故答案为:【点睛】本题考查了数的规律探求,属于常考题型,熟练掌握二次根式的性质、找到规律是解题的关键. 三、解答题21.(1)99,1001;(2)111,666,161,616.【分析】(1)根据对称数的概念进行求解即可;(2)先根据K (B )=8,求出a ,b 的值,进而求出三位的“对称数”,即可得出结论.【详解】解:(1)最大的两位对称数是99;最小的三位对称数是1001.故答案为:99,1001;(2)∵一个三位的“对称数”B ,将其各个数位的数字分别2倍后取个位数字分别为:a ,b ,a ,∴a 可以取0,2,4,6,8;b 可以取0,2,4,6,8,又∵K (B )=8,∴a×b×a =8,即:a 2b=8,∴a =2,b =2,∴对称数B 为:111,666,161,616.【点睛】此题主要考查了新定义数字问题,用分类讨论的思想解决问题是解本题的关键.22.(1;(2-3)1++n .【分析】(1)分子分母同乘以计算即可;(2)分子分母同乘以)化简即可;(3)分子分母同乘以,化简彻底.【详解】解(1)∵==(2===;(3)原式=1n =++【点睛】本题考查了二次根式的分母有理化,抓住根式特点,确定有理化因式是解题的关键. 23.-2【分析】直接利用乘方,零指数幂的性质,负整数指数幂的性质,二次根式的性质分别化简得出答案.【详解】 解:1202003118( 3.14)2121(2)=-+-+-2=-【点睛】 本题主要考查了实数运算,熟悉相关性质,能正确化简各数是解题关键.24.23a +,6-【分析】先把整式进行化简,得到最简整式,再把1a =代入计算,即可得到答案. 【详解】解:原式22224444413a a a a a a =-+-++-=+,∴当1a =时,原式21)36=+=-【点睛】本题考查了整式的混合运算,整式的化简求值,解题的关键是掌握运算法则,正确的进行化简.25.【初步探究】(1)17,64-;(2)C ;【深入思考】(1)415⎛⎫- ⎪⎝⎭,72;(2)21n a -⎛⎫ ⎪⎝⎭;(3)4m n a +-【分析】初步探究:(1)根据新定义的运算法则进行计算,即可得到答案;(2)根据新定义的运算法则进行判断,即可得到答案;深入思考:(1)由题目中的运算法则转换成幂的形式,即可得到答案;(2)把幂的形式转换为一般形式即可;(3)先把代数式进行化简,然后写成幂的形式即可.【详解】解:【初步探究】(1)177777=÷÷=③;111111()()()()()44444464⎛⎫-=-÷-÷-÷-÷-= ⎪⎭-⎝⑤; 故答案为:17;64-; (2)由题意: A 、任何非零数的圈2次方都等于1;正确;B 、对于任何大于等于2的整数c ,;正确; C 、7188888888888=÷÷÷÷÷÷÷÷=⑨, 619999999999=÷÷÷÷÷÷÷=⑧, ∴89≠⑨⑧,则C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;正确;故选:C .【深入思考】(1)4111111(5)(5)()()()()()()555555-=-⨯-⨯-⨯-⨯-⨯-=-⑥; 71122222222222⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯= ⎪⎝⎭⑨; 故答案为:41()5-;72;(2)由(1)可知,根据乘方的运算法则,则将一个非零有理数a 的圈n 次方写成幂的形式为:21n a -⎛⎫= ⎪⎝⎭; 故答案为:21n a -⎛⎫ ⎪⎝⎭;(3)=224m n m n a a a --+-•=; 故答案为:4m n a +-.【点睛】本题考查了新定义的运算法则,幂的乘方,有理数的乘法和除法运算,解题的关键是熟练掌握新定义的运算法则、乘方的运算法则进行解题.26.(1)143-+;(2)524【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.。

北师大版八年级数学上册《第二章实数》单元测试卷带答案

北师大版八年级数学上册《第二章实数》单元测试卷带答案

北师大版八年级数学上册《第二章实数》单元测试卷带答案一、单选题1.下列根式中,最简二次根式是( )A .4B .12C 8D .22.下列说法错误的是( )A .3±是9的平方根B 164±C .25的平方根为5±D .负数没有平方根3.下列运算正确的是( )A .222()a b a b +=+B .a 6a2=a 3(a ≠0)C 2a a =D .326()a a =4.根据表中的信息判断,下列判断中正确的是( )x 16 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 17 2x 256 259.21262.44265.69268.96272.25275.56278.89282.24285.61289A 27.889 1.67=B .265的算术平方根比16.3大C .若一个正方形的边长为16.2,那么这个正方形的面积是262.44D .只有3个正整数n 满足16.416.5n <<5.下列式子正确的是( )A 3320212021-=B .164=C .93=±D .√(−2022)2=−20226.下列说法错误的是( )A .1的平方根是±1B .-1的立方根是-1C 2是2的平方根D .-3是2(3)-7.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 3和﹣1,则点C 所对应的实数是( )A .3B .3C .3﹣1D .3+18.已知正实数m ,n 满足222m mn n =mn 的最大值为( )A .13B .23C 3D .239. 已知x ,x 2,x}表示取三个数中最小的那个数,例如:当x =9,x ,x 2,x}=992,9}=3.当x ,x 2,x}=116时,则x 的值为( ) A .116B .18C .14D .1210.观察下列二次根式的化简1221111111212S =++=+- S 2=√1+112+122+√1+122+132=(1+11−12)+(1+12−13) S 3=√1+112+122+√1+122+132+√1+132+142=(1+11−12)+(1+12−13)+(1+13−14),则20232023S =( ). A .12022B .20222021C .20242023D .20252024二、填空题11.下列各数:0.5 2π 1.264850349 02270.2121121112…(相邻两个2之间1的个数逐次加1),其中有理数有 个.12.实数16 03π 3.14159 2279- 0.010010001……(相邻两个1之间依次多一个0),其中,无理数有 个.13.数轴上有两个点A 和B ,点A 31,点B 与点A 相距3个单位长度,则点B 所表示的实数是 .14.一个正数x 的平方根是2a ﹣3与5﹣a ,则a = . 15.35 22,则这个三角形的面积为16.如图,在矩形ABCD 中4,6AB AD ==,点,E F 分别是边BC ,CD 上的动点,连接,AE AF ,将矩形沿,AE AF 折叠,使,AB AD 的对应边,AB AD ''落在同一直线上,若点F 为CD 的中点,则AE = .17.如图所示,数轴上点A 表示的数是-1,0是原点以AO 为边作正方形AOBC ,以A 为圆心、AB 线段长为半径画半圆交数轴于12P P 、两点,则点1P 表示的数是 ,点2P 表示的数是 .三、解答题18.计算:(1)15202(262324319.已知21a +的算术平方根是5,103b +的平方根是4,c ±1932a b c -+的平方根.20.已知6x -和314x +分别是a 的两个平方根,22y +是a 的立方根.(1)求a ,x ,y 的值;(2)求14x -的平方根和算术平方根.21.已知 (253530x y -++--= .(1)求 x , y 的值; (2)求 xy 的算术平方根.22.把一个长、宽、高分别为50cm ,8cm ,20cm 的长方体锻造成一个立方体铁块,问锻造的立方体铁块的棱长是多少 cm?23.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m.(1)m = ______.(2)求11m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有26c +4d -互为相反数,求23c d +的平方跟.24.阅读以下信息,完成下列小题材料一:对数是高中数学必修一中的一个重要知识点,是高中运算的基础.材料二:对数的基本运算法则:对数公式是数学中的一种常见公式,如果x a N =(0a >,且1a ≠),则x 叫做以a 为底N 的对数,记做log a x N =,其中a 要写于log 右下.其中a 叫做对数的底,N 叫做真数.通常以10为底的对数叫做常用对数,记作lg;以e为底的对数称为自然对数,记作ln.(1)请把下列算式写成对数的形式:328=3101000=2416=(2)平方运算是对数运算的基础.完成下列运算:33=99=1212=(3)对数和我们在初中阶段学习的平方根的运算也有相似之处.请完成有关平方根的知识点的填空.平方根,又叫二次方根,表示为〔〕,其中属于的平方根称之为算术平方根(arithmetic square root),是一种方根.一个正数有个实平方根,它们互为,负数在范围内没有平方根,0的平方根是0参考答案1.【答案】D2.【答案】B3.【答案】D4.【答案】C5.【答案】A6.【答案】D7.【答案】D8.【答案】B9.【答案】C10.【答案】D11.【答案】412.【答案】313.343214.【答案】﹣215.1516.【答案】517.【答案】12-;12-18.【答案】(1)2 5+2(2)4219.【答案】6±20.【答案】(1)64a = 2x =- 1y =;(2)3± 3.21.【答案】(1)(2530x -≥ 530y -≥ (253530x y -++--=530x ∴-= 530y --=解得: 53x =- 53y =+; (2)(535325322xy =+=-=xy ∴ 的算术平方根为22.22.【答案】解:35082020()cm ⨯⨯=答:立方体铁块的棱长是20cm.23.【答案】(1)2+2(2)2 (3)624.【答案】(1)2log 83= lg10003= 4log 162=(2)918log + 1215log + 27 (3)aa 两,相反数,实数。

北师大版八年级上数学第二章《实数》单元测试题

北师大版八年级上数学第二章《实数》单元测试题

八年级(上)第二章《实数》单元测试题一.选择题:1. 边长为1的正方形的对角线长是( )A. 整数B. 分数C. 有理数D. 不是有理数2. 在下列各数中是无理数的有( )-0.333…, 4, 5, π-, 3π, 3.1415, 2.010101…(相邻两个1之间有1个0),76.0123456…(小数部分由相继的正整数组成).A.3个B.4个C. 5个D. 6个3. 下列说法正确的是( )A. 有理数只是有限小数B. 无理数是无限小数C. 无限小数是无理数D.3π是分数 4. 下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C. 2是2的平方根D. –3是2)3(-的平方根5. 若规定误差小于1, 那么60的估算值为( )A. 3B. 7C. 8D. 7或86. 下列平方根中, 已经简化的是( )A. 31B. 20C. 22D. 1217. 下列结论正确的是( ) A.6)6(2-=-- B.9)3(2=- C.16)16(2±=- D.251625162=⎪⎪⎭⎫ ⎝⎛-- 8. 下列说法正确的是( )A.064.0-的立方根是0.4B.9-的平方根是3±C.16的立方根是316D.0.01的立方根是0.0000019. 以下语句及写成式子正确的是( )A.7是49的算术平方根,即749±=B.7是2)7(-的平方根,即7)7(2=-C.7±是49的平方根,即749=±D.7±是49的平方根,即749±=10. 若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a二. 填空题:11. 把下列各数填入相应的集合内:-7, 0.32, 31,46, 0, 8,21,3216,-2π. ①有理数集合: { …};②无理数集合: { …}; ③正实数集合: { …};④实数集合: { …}.12. 9的算术平方根是 ;3的平方根是 ; 0的平方根是 ;-2的平方根是 .13. –1的立方根是 ,271的立方根是 , 9的立方根是 . 14. 2的相反数是 , 倒数是 , -36的绝对值是 .15. 比较大小; 310; 6 2.35.(填“>”或“<”) 16.=-2)4( ;=-33)6( ; 2)196(= .三. 解答题: 17.求下列各数的平方根和算术平方根:① 1; ②410-.18. 求下列各数的立方根:①21627; ②610--.19.求下列各式的值:①44.1; ②3027.0-; ③610-; ④649 ; ⑤25241+; ⑥ 327102---.20. 化简: ①44.1-21.1; ②2328-+;③92731⋅+; ④0)31(33122-++;⑤)31)(21(-+; ⑥2)52(-;⑦2)3322(+; ⑧)32)(32(-+.21. 小芳想在墙壁上钉一个三角架(如图), 其中两直角边长度之比为3:2, 斜边长520厘米, 求两直角边的长度.22.八年级二班两位同学在打羽毛球, 一不小心球落在离地面高为6米的树上. 其中一位同学赶快搬来一架长为7米的梯子, 架在树干上, 梯子底端离树干2米远, 另一位同学爬上梯子去拿羽毛球. 问这位同学能拿到球吗?。

北师大版八年级数学上册第二章《实数》复习检测题及解析

北师大版八年级数学上册第二章《实数》复习检测题及解析

(1)
(2)
.
39. 观察下图,每个小正方形的边长均为 1.
(1)图中阴影部分(正方形)的面积是多少?它的边长是多少?
(2)估计阴影部分(正方形)的边长在哪两个整数之间?
40. 已知:2m+2 的平方根是±4,3m+n+1 的பைடு நூலகம்方根是±5,求 m+2n 的值.
4
北师大版八年级数学上册第二章《实数》复习检测题及解析 解析答案
34. 已知:|a-2|+|a+2b|+(c-b)2=0,求 a+b-c 的平方根.
35. 对于两个不相等的实数 a,b,定义一种新的运算如下:
a*b=
R -
(a+b>0),如 3*2=
R -
.
请你计算:
(1)8*7;
(2)6*(5*4).
36. 若 x,y 为实数,且 y=4
- +3
-
+1,求
-
的值.
B. 的值应在 (
C. )
D. -
B. 2 与 3 之间
C. 3 与 4 之间
D. 4 与 5 之间
1
北师大版八年级数学上册第二章《实数》复习检测题及解析
10. A. -1 11. 下列命题:
①负数没有立方根; ②一个数的立方根不是正数就是负数; ③一个正数或负数的立方根和这个数同号,0 的立方根是 0; ④如果一个数的立方根是这个数本身,那么这个数必是 1 或 0. 其中错误的是 ( )
(- ) 的立方根是 B. 0
(
)
C. 1
D. ±1
A. ①②③
B. ①②④
C. ②③④

北师大版八年级数学上册《第二章实数》单元测试卷(带答案)

北师大版八年级数学上册《第二章实数》单元测试卷(带答案)

北师大版八年级数学上册《第二章实数》单元测试卷(带答案)一、选择题、1.8、π这4个数中,无理数有()1.在√6、32A.1个B.2个C.3个D.4个2.下列说法错误的是()A.4的算术平方根是2B.√2是2的平方根C.−1的立方根是−1D.−3是√(−3)2的平方根3.下列式子中,属于最简二次根式的是()A.√8B.√11C.√45D.√164.如图,√7在数轴上对应的点可能是()A.点E B.点F C.点M D.点P5.无理数−√10+1在()A.−3和−2之间B.−4和−3之间C.−5和−4之间D.−6和−5之间6.若使二次根式√x−3在实数范围内有意义,则x的取值范围是()A.x≤3B.x≥3C.x≠3D.x>37.下列计算正确的是()A.(2√2)2=4√2B.√2×√3=√6C.√2+√3=√5D.√12÷√3=48.如图,在数轴上点B表示的数为1,在点B的右侧作一个边长为1的正方形BACD,将对角线BC绕点B 逆时针转动,使对角线的另一端落在数轴负半轴的点M处,则点M表示的数是()A.√2B.√2 +1 C.1﹣√2D.﹣√2二、填空题9.若一个正数的两个平方根分别是5a+1和a+5,则a的值是.10.一个数的平方等于64,则这个数的立方根是 .11.若a 是√7的整数部分,b 是它的小数部分,则a ﹣b = .12.计算:|1−√3|+√14= . 13.若x ,y 是实数,且y =√x −4+√4−x +3,则12√xy 的值为 .三、解答题14.计算:(1)√−273+√(−3)2+√−13; (2)−12+√643−(−2)×√9.15.计算:(1)√27÷√3−2√15×√10+√8 (2) √3(√2−√3)−√24−|√6−3|16.把下列各实数填在相应的大括号内整 数{ …};分 数{ …};无理数{ …}.17.已知5a +2的立方根是3,4a +2b +1的平方根是±5,求a -2b 的算术平方根.18.如图,有一块长方形木板,木工沿虚线在木板上截出两个面积分别为12 dm 2和27 dm 2的正方形木板,求原长方形木板的面积.1.B2.D3.B4.C5.A6.B7.B8.C9.−110.±211.4−√712.√3−1213.√314.(1)解:√−273+√(−3)2+√−13 =﹣2+|﹣3|﹣1=﹣4+3﹣1=﹣5;(2)解:−12+√645−(−2)×√9=﹣5+4﹣(﹣2)×4=3﹣(﹣6)=3+6=9.15.(1)解:原式=3√3÷√3−25√5×√10+2√2=3−2√2+2√2=3(2)解:原式=√6−3−2√6−3+√6=−617.解:因为5a+2的立方根是3,4a+2b+1的平方根是±5,所以5a+2=27,4a+2b+1=25,解得a =5,b=2,所以a-2b=5-4=1,所以a-2b的算术平方根为118.解:∵两个正方形的面积分别为12 dm2和27 dm2∴这两个正方形的边长分别为√12 dm和√27 dm由题图可知,原长方形的长为(√12+√27) dm,宽为√27 dm∴原长方形的面积为:(√12+√27)×√27=18+27=45(dm2).。

最新北师版八年级初二上册数学第2章《实数》单元测试试卷及答案

最新北师版八年级初二上册数学第2章《实数》单元测试试卷及答案

新版北师大版八年级数学上册第2章《实数》单元测试试卷及答案(2)本检测题满分:100分,时间:90分钟一、选择题(每小题3分,共30分)1. 有下列说法:(1)开方开不尽的数的方根是无理数; (2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示. 其中正确的说法的个数是( ) A .1 B .2 C .3 D .4 2. ()20.9-的平方根是( )A .0.9-B .0.9±C .0.9D .0.81 3. 若、b 为实数,且满足|-2|+=0,则b -的值为( )A .2B .0C .-2D .以上都不对 4. 下列说法错误的是( )A .5是25的算术平方根B .1是1的一个平方根C .的平方根是-4D .0的平方根与算术平方根都是05. 要使式子有意义,则x 的取值范围是( )A .x >0B .x ≥-2C .x ≥2D .x ≤2 6. 若均为正整数,且,,则的最小值是( )A.3B.4C.5D.6 7. 在实数,,,,中,无理数有( )A.1个B.2个C.3个D.4个 8. 已知=-1,=1,=0,则的值为( )A.0 B .-1 C. D.9. 有一个数值转换器,原理如图所示:当输入的=64时,输出的y 等于( )第9题图A .2B .8C .3D .210. 若是169的算术平方根,是121的负的平方根,则(+)2的平方根为( )A. 2B. 4C.±2D. ±4二、填空题(每小题3分,共24分)11. 已知:若≈1.910,≈6.042,则≈ ,±≈ .12. 绝对值小于的整数有_______. 13.的平方根是 ,的算术平方根是 .14. 已知5-a +3+b ,那么.15. 已知、b 为两个连续的整数,且,则= . 16. 若5+的小数部分是,5-的小数部分是b ,则+5b = .17. 在实数范围内,等式+-+3=0成立,则= . 18. 对实数、b ,定义运算☆如下:☆b =例如2☆3=.计算[2☆(-4)]×[(-4)☆(-2)]= 三、解答题(共46分)19.(6分)已知,求的值.20.(6分)先阅读下面的解题过程,然后再解答:形如n m 2±的化简,只要我们找到两个数,使m b a =+,n ab =,即m b a =+22)()(,n b a =⋅,那么便有:b a b a n m ±=±=±2)(2)(b a >.例如:化简:347+.解:首先把347+化为1227+,这里7=m ,12=n , 由于,,即7)3()4(22=+,1234=⨯,所以347+1227+32)34(2+=+.根据上述方法化简:42213-.21.(6分)已知28-++=b a a M 是()8+a 的算术平方根,423+--=b a b N 是()3-b 的立方根,求N M +的平方根. 22. (6分)比较大小,并说理:(1)与6;(2)与.23.(6分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部地写出来,于是小平用-1来表示的小数部分,你同意小平的表示方法吗?事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分. 请解答:已知:5+的小数部分是, 5-的整数部分是b ,求+b 的值.24.(8分) 若实数满足条件,求的值.25.(8分)阅读下面问题:12)12)(12()12(1121-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.试求:(1)671+的值;(2)nn ++11(n 为正整数)的值.(3122334989999100+⋅⋅⋅+++++++.参考答案一、选择题1.C 解析:本题考查对无理数的概念的理解.由于0是有理数,所以(3)应为无理数包括正无理数和负无理数.2.B 解析:=0.81,0.81的平方根为3.C 解析:∵ |-2|+=0,∴=2,b=0,∴b-=0-2=-2.故选C.4.C 解析:A.因为=5,所以A正确;B.因为±=±1,所以1是1的一个平方根说法正确;C.因为±=±=±4,所以C错误;D.因为=0,=0,所以D正确.故选C.5. D 解析:∵二次根式的被开方数为非负数,∴ 2-x≥,解得x≤2.6.C 解析:∵均为正整数,且,,∴的最小值是3,的最小值是2,则的最小值是5.故选C.7. A 解析:因为所以在实数,0,,,中,有理数有,0,,,只有是无理数.8.C 解析:∵∴,∴.故选C.9.D 解析:由图表得,64的算术平方根是8,8的算术平方根是2.故选D.10.C 解析:因为169的算术平方根为13,所以 =13.又121的平方根为,所以 =-11,所以4的平方根为,所以选C.二、填空题11.604.2 0.019 1 解析:;±0.019 1.12.±3,±2,±1,0 解析:,大于-的负整数有:-3、-2、-1,小于的正整数有:3、2、1,0的绝对值也小于. 13.3 解析:;,所以的算术平方根是3.14. 8 解析:由5-a +3+b ,得,所以.15.11 解析:∵,、b 为两个连续的整数,又<<,∴ =6,b =5,∴ .16.2 解析:∵ 2<<3,∴ 7<5+<8,∴ =-2.又可得2<5-<3,∴ b =3-.将、b 的值代入+5b 可得+5b =2.故答案为2.17.8 解析:由算术平方根的性质知,又+-y +3=0,所以2- =0,-2=0,-y +3=0,所以=2,y =3,所以==8.18.1 解析:[2☆(-4)]×[(-4)☆(-2)]=2-4×(-4)2=×16=1.三、解答题 19.解:因为,所以,即,所以.故,从而,所以,所以.20. 解:根据题意,可知,由于,所以.21. 解:因为是的算术平方根,所以又是的立方根,所以解得所以M=3,N=0,所以M + N=3.所以M + N的平方根为22.分析:(1)可把6转化成带根号的形式再比较被开方数即可比较大小;(2)可采用近似求值的方法来比较大小.解:(1)∵ 6=,35<36,∴<6;(2)∵ -+1≈-2.236+1=-1.236,- ≈-0.707,1.236>0.707,∴<.23. 解:∵ 4<5<9,∴ 2<<3,∴ 7<5+<8,∴=-2.又∵-2>->-3,∴ 5-2>5->5-3,∴ 2<5-<3,∴b=2,∴+b=-2+2=.24. 分析:分析题中条件不难发现等号左边含有未知数的项都有根号,而等号右边的则都没有.由此可以想到将等式移项,并配方成三个完全平方数之和等于0的形式,从而可以分别求出的值.解:将题中等式移项并将等号两边同乘4得,∴,∴,∴,,,∴,,,∴∴.∴ =120.25. 解:(1)671+1(76)(76)(76)⨯-=+-=76-.(2)11(1)11(1)(1)n n n n n n n n n n ⨯+-==+-+++++-.(3)11111122334989999100+++⋅⋅⋅+++++++。

北师大版八年级上册数学第二章《实数》单元测试卷(含答案)

北师大版八年级上册数学第二章《实数》单元测试卷(含答案)

北师大版八年级上册数学第二章《实数》单元测试卷(含答案)一、选择题(每题3分,共30分)1.下列各数中,是无理数的是()A.3.141 5 B. 4 C.227D.62.在-4,-2,0,4这四个数中,最小的数是() A.4 B.0 C.- 2 D.-43.【中考·黄石】若式子x-1x-2在实数范围内有意义,则x的取值范围是()A.x≥1且x≠2 B.x≤1 C.x>1且x≠2 D.x<1 4.下列二次根式中,是最简二次根式的是()A.15B.10 C.50 D.0.55.已知a-3+|b-4|=0,则ab的平方根是()A.32B.±32C.±34D.346.【2020·重庆】下列计算中,正确的是()A.2+3= 5 B.2+2=2 2 C.2×3= 6 D.23-2=3 7.实数a,b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b| C.a+b>0 D.a b<0(第7题) (第8题)8.【教材P39议一议变式】小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A 作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A.1和2之间B.2和3之间C.3和4之间D.4和5之间9.【教材P15习题T6变式】已知a=3+22,b=3-22,则a2b-ab2的值为() A.1 B.17 C.4 2 D.-42 10.【教材P11习题T12变式】如图,长方形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.2B.2C.2 2 D.6二、填空题(每题3分,共24分)11.实数-2的相反数是________,绝对值是________.12.计算:3-8=________.13.一个正数的平方根分别是x+1和x-5,则x=__________.14.【教材P34习题T2(1)改编】比较大小:10-13________23(填“>”“<”或“=”).15.【2020·青海】对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b =a +b a -b ,如:3⊕2=3+23-2=5,那么12⊕4=________. 16.【教材P 11习题T 12变式】若利用计算器求得 6.619≈2.573,66.19≈8.136,则估计6 619的算术平方根是________.17.如图,在△ABC 中,若AB =AC =6,BC =4,D 是BC 的中点,则AD 的长为________.(第17题) (第18题)18.已知a ,b ,c 在数轴上对应点的位置如图所示,化简a 2-(a +b )2+(c -a )2+(b +c )2的结果是________.三、解答题(19题16分,其余每题10分,共66分)19.计算下列各题:(1)(-5)2+(π-3)0+|7-4|; (2)⎝ ⎛⎭⎪⎫-12-1-214-3(-1)2 023;(3)(6-215)×3-612;(4)48÷3-215×30+(22+3)2.20.已知5是2a-3的算术平方根,1-2a-b的立方根为-4.(1)求a和b的值;(2)求3b-2a-2的平方根.21.一个正方体的表面积是2 400 cm2.(1)求这个正方体的体积;(2)若该正方体的表面积变为原来的一半,则体积变为原来的多少?22.已知7+5和7-5的小数部分分别为a,b,试求代数式ab-a+4b-3的值.23.拦河坝的横断面是梯形,如图,其上底是8 m,下底是32 m,高是 3 m.(1)求横断面的面积;(2)若用300 m3的土,可修多长的拦河坝?24.【教材P48习题T4拓展】先阅读材料,再回答问题.已知x=3-1,求x2+2x-1的值.计算此题时,若将x=3-1直接代入,则运算非常麻烦.仔细观察代数式,发现由x=3-1得x+1=3,所以(x +1)2=3.整理,得x2+2x=2,再代入求值会非常简便.解答过程如下:解:由x=3-1,得x+1=3,所以(x+1)2=3.整理,得x2+2x=2,所以x2+2x-1=2-1=1.请仿照上述方法解答下面的题目:已知x=5+2,求6-2x2+8x的值.参考答案一、1.D2.D3.A4.B5.B6.C7.D8.C9.C10.B二、11.2;212.-213.214.>15.216.81.3617.4218.-a点拨:原式=|a|-|a+b|+(c-a)+|b+c|=-a+(a+b)+(c-a)-(b +c)=-a+a+b+c-a-b-c=-a.三、19.解:(1)原式=5+1+4-7=10-7;(2)原式=-2-94-3-1=-2-32+1=-52;(3)原式=18-245-6×22=32-65-32=-65;(4)原式=16-26+11+46=15+26.20.解:(1)因为5是2a -3的算术平方根,1-2a -b 的立方根为-4,所以2a -3=25,1-2a -b =-64.所以a =14,b =37.(2)由(1)知a =14,b =37,所以3b -2a -2=3×37-2×14-2=81.所以3b -2a -2的平方根为±81=±9.21.解:(1)设这个正方体的棱长为a cm(a >0).由题意得6a 2=2 400,所以a =20.则体积为203=8 000(cm 3).(2)若该正方体的表面积变为原来的一半,则有6a 2=1 200.所以a =102.所以体积为(102)3=2 0002(cm 3). 因为2 00028 000=24,所以体积变为原来的24.22.解:因为5的整数部分为2,所以7+5=9+a ,7-5=4+b , 即a =-2+5,b =3-5.所以ab -a +4b -3=(-2+5)(3-5)-(-2+5)+4(3-5)-3=-11+55+2-5+12-45-3=0.23.解:(1)S=12(8+32)×3=12(22+42)×3=12×62×3=36(m2).答:横断面的面积为3 6 m2.(2)3003 6=1006=100 66×6=100 66=50 63(m).答:可修5063m长的拦河坝.24.解:由x=5+2得x-2=5,所以(x-2)2=5.整理,得x2-4x=1.所以6-2x2+8x=6-2(x2-4x)=6-2×1=4.。

2019-2020学年数学北师大版八年级上册第二章《实数》单元测试卷C卷

2019-2020学年数学北师大版八年级上册第二章《实数》单元测试卷C卷

2019-2020学年数学北师大版八年级上册第二章《实数》单元测试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共11题;共22分)1. (2分)16的平方根是()A . ±4B . 4C . -4D . 82. (2分)下列实数中,属于有理数的是()A . -B .C . πD .3. (2分)的平方根是()A . ±4B . ±2C . 4D . 24. (2分)已知是整数,则满足条件的最小正整数n为()A . 2B . 3C . 4D . 55. (2分)下列说法①任何数的平方根都是两个②如果一个数有立方根,那么它一定有平方根③算术平方根一定是正数④非负数的立方根一定是非负数,正确的个数为()A . 4B . 3C . 2D . 16. (2分)下列选项中的实数,属于无理数的是()A .B . 0.36C .D . ﹣27. (2分)下列各式正确的是()A .B .C .D .8. (2分)已知α是一元二次方程 -x-1=0较大的根,则下面对α的估计正确的是()A . 0<α<1B . 1<α<1.5C . 1.5<α<2D . 2<α<39. (2分)若|a|=4,=3,且a+b<0,则a﹣b的值是()A . 1,7B . -1,7C . 1,-7D . -1,-710. (2分)计算的结果是()A . ±3B . 3C . ﹣3D .11. (2分)(2015•包头)观察下列各数:1,,,,…,按你发现的规律计算这列数的第6个数为()A .B .C .D .二、填空题 (共4题;共5分)12. (1分)若一个数的立方根等于这个数的算术平方根,则这个数是________.13. (2分)把下列各数填入相应的集合中:﹣7,,,,,﹣(﹣2)﹣2 ,,,,0,3.1010001000001…(相邻两个1之间0的个数逐渐增加2)无理数集合{________…}负数集合{________…}.14. (1分)函数中自变量的取值范围是________.15. (1分)a²=16,则a=________.三、计算题 (共7题;共46分)16. (5分)计算: .17. (5分)计算:x2﹣49=018. (5分)已知 2a-1的算术平方根是3,3a+b+4的立方根是2,求3a+b的平方根.19. (5分)如图所示的一块地,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m,求这块地的面积。

(常考题)北师大版初中数学八年级数学上册第二单元《实数》检测(答案解析)

(常考题)北师大版初中数学八年级数学上册第二单元《实数》检测(答案解析)

一、选择题1.下列计算正确的是( ) A .32221-= B .1025÷=C .325+=D .(4)(2)22-⨯-=2.计算82÷的结果是( ) A .10B .6C .4D .23.将尺寸如图的4块完全相同的长方形薄木块(厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个方框内.已知小木块的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .2192+B 194C .2194D 192+4.与数轴上的点一—对应的数是( )A .分数或整数B .无理数C .有理数D .有理数或无理数5.如x 为实数,在“31)□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( ) A 31B 31C .33D .13-6.下列计算正确的是( ). A .()()22a b a b b a +-=- B .224x yxy +=C .()235a a -=-D .81111911=7.下列说法中不正确的是( ) A .0是绝对值最小的实数 B ()222-=C .3是9的一个平方根D .负数没有立方根8.在实数3.14,227-,9 1.750,-π中,无理数有( ) A .2个B .3个C .4个D .5个9.下列说法中正确的是( )A 25±5B .两个无理数的和仍是无理数C .-3没有立方根.D 22-a b .10.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近﹣10的是( )A .点MB .点NC .点PD .点Q11.在代数式13x -中,字母x 的取值范围是( ) A .x >1B .x ≥1C .x <1D .x 13≤12.如图,在数轴上作长、宽分别为2和1的长方形,以原点为圆心,长方形对角线的长为半径画弧,与数轴相交于点A .若点A 对应的数字为a ,则下列说法正确的是( )A .a>-2.3B .a<-2.3C .a=-2.3D .无法判断二、填空题13.已知21a -的平方根是3±,31a b --的算术平方根是4,那么2a b -的平方根是__________.14.两个数a 与2在数轴上对应的点之间的距离为3,已知b 2=4,且a <b ,则a ﹣b 的值为_____.15.对两数a ,b 规定一种新运算:2a b ab ⊗=,例如:2422416⊗=⨯⨯=,若不论x 取何值时,总有a x x ⊗=,则a =______.16.化简题中,有四个同学的解法如下: 3(52)5252(52)(52)==++-(52)(52)525252==++()()()()a b a b a b a b a b a b --==++-()()a b a b a b a b a b==++他们的解法,正确的是___________.(填序号)17.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是_____.若点B 表示 3.14-,则点B 在点A 的______边(填“左”或“右”).18.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________. 19.已知223y x x =--,则xy 的值为__________.20.2x +有意义,则实数x 的取值范围是_________. 三、解答题21.(1)计算:()2325205125-(2)先化简,再求值:2111xy y x y x y ⎛⎫÷+ ⎪++-⎝⎭,其中2x =,3y =22.(1)计算: 27123;3232). (2)解方程: ①4(x -1)2-9 =0; ②8x 3+125=0. 23.计算:3161532272-24.先化简,再求值:2(2)4(1)(21)(21)a a a a a ---++-,其中21a =.25.本学期第四章《实数》中,我们学习了平方根和立方根,下表是平方根和立方根的部分内容:平方根立方根定义一般地,如果一个数x 的平方等于a ,即2x a =,那么这个数x 就叫做a 的平方根(也叫做二次方根).一般地,如果一个数x 的立方等于a ,即3x a =,那么这个数x 就叫做a 的立方根(也叫做三次方根).运算 求一个数a 的平方根的运算叫做开平方.开平方和平方互为逆运算.求一个数a 的立方根的运算叫做开立方.开立方和立方互为逆运算性质一个正数有两个平方根,它们互为相反数:正数的立方根是正数;0的立方根是0;负数(类比探索)(1)探索定义:填写下表.(2)探究性质:①1的四次方根是;②16的四次方根是;③8116的四次方根是;④12的四次方根是;⑤0的四次方根是;⑥625-(填“有"或"“没有”)四次方根.类比平方根和立方根的性质,归纳四次方根的性质:;(3)在探索过程中,你用到了哪些数学思想?请写出两个:.(拓展应用)(1)(2=;(3.26.化简(1)+(2【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】二次根式的混合运算,加减法的基础是同类二次根式;除法运算按照法则进行,二次根式的化简,先乘后化简即可.【详解】∵=∴选项A错误;∵2=,2∴选项B错误;∵∴选项C错误;∵∴选项D正确.故选D.【点睛】本题考查了二次根式的混合运算,熟记二次根式混合运算的基本法则,特别是同类二次根式是加减运算的基础是解题的关键.2.D解析:D【分析】=(a≥0,b>0)进行计算即可.【详解】=2,故选:D.【点睛】此题主要考查了二次根式的除法,关键是注意结果要化成最简二次根式.3.C解析:C【分析】设木块的长为x,结合图形知阴影部分的边长为x-2,根据其面积为19得出(x-2)2=19,利用平方根的定义求出符合题意的x的值,由AD=2x可得答案.【详解】解:设木块的长为x,根据题意,知:(x-2)2=19,则2x -=∴2x =22x =-<(舍去)则24BC x ==, 故选:C . 【点睛】本题主要考查算术平方根,解题的关键是结合图形得出木块长、宽与阴影部分面积间的关系.4.D解析:D 【分析】实数与数轴上的点一一对应,实数包括有理数和无理数. 【详解】A. 分数或整数,只是有理数,不是数轴上所有点,故此项不正确;B. 只是无理数,不是数轴上所有点,故此项不正确;C. 只是有理数,不是数轴上所有点,故此项不正确;D. 有理数和无理数是实数的组成,实数与数轴上的点一一对应,故此项正确; 故选D . 【点睛】此题考查了实数的意义,能掌握实数与数轴的关系是解答此题的关键.5.C解析:C 【分析】根据题意,添上一种运算符号后逐一判断即可. 【详解】解:A 、1)1)0-=,故选项A 不符合题意;B 、1)1)2⨯=,故选项B 不符合题意;C 1与C 符合题意;D 、1)(10+-=,故选项D 不符合题意. 故选:C . 【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.6.D解析:D 【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.A.原式=a2−b2,故A错误;B.2x与2y不是同类项,不能合并,故B错误;C.原式=a6,故C错误;D.原式=D正确;故选:D.【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.7.D解析:D【分析】根据实数,平方根和立方根的概念逐一判断即可.【详解】0的绝对值是0,负数的绝对值为正数,正数的绝对值为正数,正数大于0,故A正确;2,故B正确;9的平方根是3±,故C正确;任何数都有立方根,故D错误;故选D.【点睛】本题考查了实数的概念,求一个数的平方根或立方根,熟练掌握平方根和立方根的概念是本题的关键.8.A解析:A【分析】由于无理数就是无限不循环小数,利用无理数的定义即可判断得出答案.【详解】=-,3∴3.14,22-,- 1.7,0都是有理数,7-π是无理数,共2个,故选:A.【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.9.D解析:D根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可. 【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=C 选项错误;D 选项正确;故选D . 【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.10.B解析:B 【分析】根据无理数的估值方法进行判断即可; 【详解】 ∵-3.16, ∴ 点N 最接近故选:B . 【点睛】本题考查了实数与数轴,无理数的估算,熟练掌握知识点是解题的关键;11.B解析:B 【分析】根据二次根式有意义的条件求解即可; 【详解】由题意得,x ﹣1≥0, 解得x≥1, 故选:B . 【点睛】本题考查了二次根式有意义的条件,正确掌握知识点是解题的关键;12.A解析:A 【分析】先利用勾股定理求出长方形对角线OB 的长,即为OA 的长,然后根据A 在原点的左边求出数轴上的点A 所对应的实数为22.3 5.295=>判断出 2.3>-即可得答案. 【详解】解:如图,连接OB ,长方形对角线的长OB 22215+= 5OA OB ∴==,点A 在原点的左边,∴点A 所对应的实数为5a =又∵22.3 5.295=>, ∴5 2.3,∴5 2.3>-,即 2.3a >-. 故选A . 【点睛】本题考查实数与数轴上的点的对应关系,勾股定理、比较无理数大小,求出5OA =题的关键.二、填空题13.±1【分析】首先根据2a-1的平方根是±3可得:2a-1=9据此求出a 的值是多少;然后根据3a+b-1的算术平方根是4可得:3a+b-1=16据此求出b 的值是多少进而求出a-2b 的平方根是多少即可【解析:±1 【分析】首先根据2a -1的平方根是±3,可得:2a -1=9,据此求出a 的值是多少;然后根据3a +b -1的算术平方根是4,可得:3a +b -1=16,据此求出b 的值是多少,进而求出a -2b 的平方根是多少即可. 【详解】解:∵2a -1的平方根是±3, ∴2a -1=9, 解得a =5;∵3a +b -1的算术平方根是4, ∴3a +b -1=16, ∴3×5+b -1=16, 解得b =2, ∴a -2b =5-2×2=1,∴a -2b 的平方根是:1=±. 故答案为:±1. 【点睛】此题主要考查了平方根、算术平方根的性质和应用.要熟练掌握,解答此题的关键是要明确:①被开方数a 是非负数;②算术平方根a 本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.14.-3【分析】求出b=±2根据a <b 确定a 再求a ﹣b 的值【详解】解:∵b2=4∴b=±2∵a 与2在数轴上对应的点之间的距离为3当a 在2左侧时a=-1当a 在2右侧时a=5∵a <b ∴a=-1b=2a ﹣b=解析:-3. 【分析】求出b=±2,根据a <b 确定a ,再求a ﹣b 的值. 【详解】 解:∵b 2=4, ∴b=±2,∵a 与2在数轴上对应的点之间的距离为3, 当a 在2左侧时,a=-1, 当a 在2右侧时,a=5, ∵a <b , ∴a=-1,b=2, a ﹣b=-1-2=-3 故答案为:-3. 【点睛】本题考查了数轴上点的距离和平方根,解题关键是根据题意求出a 、b 的值.15.【分析】将转化为2ax=x 来解答【详解】解:∵可转化为:2ax=x 即∵不论x 取何值都成立∴解得:故答案为:【点睛】本题考查实数的运算正确理解题目中的新运算是解题的关键 解析:12【分析】将a x x ⊗=,转化为2ax=x 来解答. 【详解】解:∵a x x ⊗=可转化为:2ax=x , 即()210a x -=,∵不论x 取何值,()210a x -=都成立, ∴210a -=,解得:12a=,故答案为:12.【点睛】本题考查实数的运算,正确理解题目中的新运算是解题的关键.16.①②④【分析】对于分子分母都乘以分母的有理化因式计算约分后可判断①对于把分子化为再分解因式约分后可判断②对于当时分子分母都乘以分母的有理化因式计算约分后可判断③对于把分子化为再分解因式约分后可判断④解析:①②④【分析】-,计算约分后可判断①,对于,把分子化为22-,再分解因式,约分后可判断②,对于≠,计算约分后可判断③,把分子化为22-,再分解因式,约分后可判断④,从而可得答案.【详解】()()22333====-故①符合题意;22-===,故②符合题意;≠时,()a ba b-===-故③不符合题意;22-===故④符合题意;故答案为:①②④.【点睛】本题考查的是分母有理化,掌握平方差公式的应用,分母有理化的方法是解题的关键.17.-π右【分析】因为圆从原点沿数轴向左滚动一周可知OA=π再根据数轴的特点及π的值即可解答【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周∴OA之间的距离为圆的周长=πA点在原点的左边∴A解析:-π 右【分析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点及π的值即可解答.【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴OA之间的距离为圆的周长=π,A点在原点的左边.∴A点对应的数是-π.∵π>3.14,∴-π<-3.14.故A点表示的数是-π.若点B表示-3.14,则点B在点A的右边.故答案为:-π,右.【点睛】本题考查数轴、圆的周长公式、利用数轴比较数的大小.需记住两个负数比较大小,绝对值大的反而小.18.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴解析:5cm3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】343cm,解:∵一个正方体的木块的体积是3∴(cm3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm3),∴每个小正方体的表面积为6×3.52=73.5(cm3).故答案为73.5cm3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.19.6【分析】根据二次根式有意义的条件可得关于x的不等式组进而可求出xy 然后把xy的值代入所求式子计算即可【详解】由题意得:所以x=2当x=2时y=3所以故答案为:6【点睛】本题考查了二次根式有意义的条解析:6【分析】根据二次根式有意义的条件可得关于x 的不等式组,进而可求出x 、y ,然后把x 、y 的值代入所求式子计算即可.【详解】由题意得:2020x x -≥⎧⎨-≥⎩,所以x=2, 当x=2时,y=3,所以236xy =⨯=.故答案为:6.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.20.且【分析】根据二次根式中的被开方数是非负数分式分母不为0列出不等式解不等式得到答案【详解】解:由题意得x+2≥0x≠0解得x≥-2且x≠0故答案为:x≥-2且x≠0【点睛】本题考查了二次根式有意义的解析:2x ≥-且0x ≠【分析】根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得,x+2≥0,x≠0,解得,x≥-2且x≠0,故答案为:x≥-2且x≠0.【点睛】本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.三、解答题21.(1)2;(2【分析】(1)先去绝对值,再利用二次根式的性质及立方根化简得出结果;(2)先将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【详解】解:(1)原式)12525=+⨯=;(2)原式()()()122x y x y x y y x y x xy+--=⨯=+;将x ,y =原式. 【点睛】本题考查了实数的运算及分式的化简求值,正确掌握相关运算法则是解题的关键. 22.(1)①5;②6-;(2)52x =或12x =-; ②52x =-. 【分析】(1)①先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算; ②根据平方差公式计算即可;(2)①将方程移项,再整理为2x a =的的形式,再根据平方根定义求解即可; ②将方程移项,再整理为3x a =根据立方根定义求解即可;【详解】解:(1)解:①原式== 5=.②原式1218=-6=-.(2)解:①原方程可化为29(1)4x -=则312x -=或312x -=-, 解得,52x =或12x =-. ②原方程可化为31258x =-, 解得,52x =-. 【点睛】 本题考查了平方根、立方根及实数的运算,主要考查学生的运算能力,题目比较好,解题关键是理解平方根、立方根的意义.23.【分析】根据二次根式的性值计算即可;【详解】原式662=--⨯+,+6,;【点睛】本题主要考查了二次根式的混合运算,准确计算是解题的关键.24.23a +,6-【分析】先把整式进行化简,得到最简整式,再把1a =代入计算,即可得到答案. 【详解】解:原式22224444413a a a a a a =-+-++-=+,∴当1a =时,原式21)36=+=-【点睛】本题考查了整式的混合运算,整式的化简求值,解题的关键是掌握运算法则,正确的进行化简.25.【类比探索】(1)依次为:±1,±2,±3;一般地,如果一个数x 的四次方等于a ,即4x a =,那么这个数x 就叫做a 的四次方根;(2)①±1;②2±;③32±;④⑤0;⑥没有;一个正数有两个四次方根,它们互为相反数;0的四次方根是0;负数没有四次方根;(3)类比、分类讨论、从特殊到一般等.【拓展应用】(1)4±;(2)25;(3)>. 【分析】 (1)先计算填表,在类比平方根,立方根的定义,即可给四次方根下定义;(2)根据四次方根的定义求解,类比平方根,立方根的的性质即可得到四次方根的性质特征;(3)探索四次方根的定义和性质时,运用了类比,分类讨论的和由特殊到一般的思想,利用四次方根的定义求解,再计算并比较两个数的四次方,进而得出答案.【详解】(1)类比平方根,立方根的定义,当41x =时1x =±,当416x =时2x =±,当481x =时3x =±,所以填表如下:四次方根等于a ,那么这个数叫做a 的四次方根,这就是说,如果4x a =,那么x 叫做 a 的四次方根.(2)根据四次方根的定义计算:①1的四次方根是±1;②16的四次方根是2±;③8116的四次方根是32±;④12的四次方根是;⑤0的四次方根是0;⑥625-没有四次方根;类比平方根,立方根的性质可得四次方根的性质为:一个正数由两个四次方根,他们互为相反数;0的四次方根是0;负数没有四次方根.(3)探索四次方根的定义和性质时,运用了类比,分类讨论的和由特殊到一般的思想,【拓展应用】根据四次方根的定义计算得:(1)4=±;(225=(3)49=,48=,98>,>【点睛】本题考查了方根的定义,类比平方根,立方根的定义和性质,学习四次方根,解题关键是在求四次方根时,注意正数的四次方根有2个,它们互为相反数.26.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二单元《实数》检测题(C 卷) 时间:120分钟 总分:100分姓名: 成绩
一、选择题(每题4分, 共28分)
1.若与|b +1|互为相反数,则的值为b-a=( ).
D.
2.在
,,0,,0.010010001……,,-0.333…,, 3.1415,2.010101…
(相邻两个1之间有1个0)中,无理数有( ).
A.1个
B.2个 C .3个 D.4个
3.下列说法:①-64的立方根是4,②49的算数平方根是±7 ,③的立方根是④的平方 根是 其中正确说法的个数是( ). A.1 B.2 C .3 D.4
4. 25的平方根是( ). A. B. C. D.
5.下列说法正确的是( ).
A.有理数只是有限小数
B.无理数是无限小数
C.无限小数是无理数
D.是无理数
6.下列说法错误的是( ).
A.1的平方根是1
B.–1的立方根是-1
C.是2的平方根
D.0的平方
根0
7.边长为2的正方形的对角线长是( ).
A. B. 2 C. 2 D. 4
8.下列运算中错误的有( )个.
①②=±③ ④ ⑤± A . 4 B .3 C .2 D .1 二、填空题(每题4分,共32分)
9.比较下列实数的大小(在 填上 > 、< 或 =)
①; ② ; ③ 10.平方根等于本身的实数是_________.
11.的算术平方根是;1的立方根是___________.
12.若,则=___________.
13.如图,在网格图中的小正方形边长为1,则图中的的面积等于. 2(a +111()02-3892
π52713116
14
155-5±5±3
π222416=49367
6332-=-3)3(2=-332=-22
15-21112531603)2(12=-+-+-z y x z y x ++ABC ∆
14.的平方根是_________. 15.化简:__________.
16.如图,图中的线段AE 的长度为_________.
三、解答题(共40分)
17.计算下列各题(每题5分,共20分)
18.(5分)若x 、y 都是实数,且y= 求x+y 的值.
19.(5分)已知2b+1的平方根为±3,3a+2b-1的算术平方根为4,求a+2b 的平方根.
20.(5分)如图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可
得到一些线段。

请在图中画出这样的线段,并选择其中的一个
说明这样画的道理.
9
4=-2)3(π5312-⨯2
36⨯)75)(57(+-2)62(+833+-+-x x 1352===EF CD AB 、、
21.探索猜想(5分).
判断下列各式是否成立。

你认为成立的请在()内打√ ,不成立的打×。

( ) ;

( );
(1)你判断完以后,发现了什么规律?请用含有n 的式子将规律表示出来,并说明n 的取值范围?
====。

相关文档
最新文档