关键词 随机过程 状态与状态空间 样本函数 有限维分布函数 均值函数-PPT文档资料

合集下载

概论与数理统计之随机过程

概论与数理统计之随机过程

定义:设T 是一无限实数集,X (e, t ), e S , t T 是对应于e和t的实数, 即为定义在S 和T 上的二元函数。 若此函数对任意固定的t T , X e, t 是一个随机变量, 则称 X (e, t ), e S , t T 是随机过程;
对于随机过程 X (e, t ), e S , t T 进行一次试验,即e给定, 它是t的函数,称为随机过程的样本函数。

分布函数 两种描述 特征数
FX ( x, t ) P X (t ) x,x R,称为随机过程 X (t ), t T 的一维分布函数
FX ( x, t ), t T 称为一维分布函数族
一般地,对任意n(n 2,3,)个不同的时刻,t1 , t2 , tn T n维随机变量 X (t1 ), X (t2 ), X (tn ) 的分布函数:xi R, i 1, 2, n FX ( x1 , x2 , xn;t1 , t2 , tn ) P X (t1 ) x1 , X (t2 ) x2 , X (tn ) xn , 称为随机变量 X (t ), t T 的n维分布函数
2 X t RX t , t
各数字特征之间的关系如下:
C X t1 , t2 RX t1 , t2 X t1 X t2

2 X
t C X t , t RX t , t t
2 X
14
2 X (t ) DX (t ) E [ X (t ) X (t )]2 ---方差函数 2 X (t ) X (t ) ---标准差函数 2 X (t ) E[ X (t )] 均值函数 X (t ) E[ X 2 (t )] 均方值函数

随机过程的基本概念ppt课件

随机过程的基本概念ppt课件
求X(t)的均值、均方值和方差。
.
2.3 平稳随机过程
三、相关系数及相关时间
也称为归一化协方差函 数或标准协方差函数。
相关系数: rX()KXX 2 ()RX()X 2mX 2
相关时间:
0
0 rX()d
rX ( )
1
rX(0) 0.05
0
0
相关时间示意图
.
2.3 平稳随机过程
三、相关系数及相关时间
为随机过程X(t)的二维概率分布。定义
fX(x1,x2,t1,t2)2FX(xx11,xx22,t1,t2)
为随机过程X(t)的二维概率密度。 注意:X(t1)及X(t2)为同一随机过程上的随机变量。
.
2.2 随机过程的统计描述
2、二维概率分布
例2、设随机相位信号
X (n )co s( n/1 0 )
.
2.2 随机过程的统计描述
二、随机过程的数字特征(连续)
• 协方差函数
K X ( t 1 , t 2 ) E { [ X ( t 1 ) m X ( t 1 ) ] [ X ( t 2 ) m X ( t 2 ) ] } (1)如果 KX(t1,t2)0,则称 X (t1 )和 X (t2 )是不相关的。
.
2.3 平稳随机过程
一、定义
(1)严格平稳随机过程
f X ( x 1 , ,x n ,t 1 , ,t n ) f X ( x 1 , ,x n ,t 1 , ,t n )
一维概率密度: fX(x,t)fX(x)
二维概率密度: fX (x 1 ,x 2 ,t1 ,t2 ) fX (x 1 ,x 2 ,) t1 t2
接收机噪声
5
x1(t) 0

《数学随机过程》PPT课件

《数学随机过程》PPT课件
所以X与Y不相关。 故 (X,Y )=0 X与Y不相关
几何直观意义
3.3 随机分析初步
附注C—关于赋范线性空间概念的回顾
设V是一个线性空间,若 V,存在一个实数|| ||与
之对应,且具有下列性质:
(1) || ||0 , 且|| ||=0 =0 ; (2) ||c· ||= |c|·|| || , 特别 ||- ||= || ||; c R (3) || + || || ||+ || ||; V 则称|| || 为V中元素 的范数(norm)(模、长度),此时线
CXX (t1, t2 ) cov{ X (t1), X (t2 )} E{[ X (t1) mX (t1)][ X (t2 ) mX (t2 )]} | CXX (t1, t2 ) |2 | cov{ X (t1), X (t2 )} |2 | E{[ X (t1) mX (t1)][ X (t2 ) mX (t2 )]} |2 {E | [ X (t1) mX (t1)][ X (t2 ) mX (t2 )] |}2 E | X (t1) mX (t1) |2 E | X (t2 ) mX (t2 ) |2 D[ X (t1)]D[ X (t2 )]
3.3 随机分析初步
附注A—关于线性空间概念的回顾
设V是一个非空的集合,K是一个数域,又设
(a)在V中定义加法: , V : + V ; (b)在V中定义数乘: V, k K: k · V ; 且 , , V , k,l K , 满足 (1) k ,l K, , V : (2) +( +)= ( + )+ ; (3) + = + ; (4)0V, V: +0= ; (5) V, V: +=0 (6) 1 K: 1· = ; (7) k ,l K, V: (kl)· =k·(l) ; (8)k ,l K, V: (k+l) = k +l ; (9) k K, , V : k( + )= k + k .

随机过程随机过程的基本概念ppt课件

随机过程随机过程的基本概念ppt课件
个“呼叫次数—时间函数”是不可能预先确定的,只有通过测量 才能得到. 由于呼叫的随机性,在相同条件下,每次测量都产生不 同的“呼叫次数—时间函数”.
6
2.1 随机过程的定义
例2.1.2 电子元件或器件由于内部微观粒子 (电子)的随机热噪声引起的端电压称为热 噪声电压,它在任一确定时刻的值是随机变 量,记为V(t). 如果t 从0变到+∞,t 时刻的热 噪声电压需要用一族随机变量{V(t), t ∈[0, +∞]}来表示,则该随机变量就是一个随机过 程. 对某种装置做一次试验,便可得到一个 “电压—时间函数”v(t) . 这个“电压—时间 函数”是不可能预先确知的,只有通过测量才 能得到. 如果在相同的条件下独立地再进行一 次测量,则得到的记录是不同的.
; 取V=0,则
x(t)=0;取V3=1,则x(3t)=cosωt. 这些都是 t 的
确定函数,即随机过程的样本函数.
12
2.1 随机过程的定义
(2) 当t=0时,X(0)=V,故X(0)的概率密度函 数就是V的概率密度函数,即
1,0 x 1 fX (0) (x) 0,其他
当 故
1,0 v 1 fV (v) 0,其他
(1) 画出{X(t) ,﹣∞<t<+∞}的几条样本曲线;
(率2)密求度t 函 0数, 4;
,
3 4
,

时随机变量X(t)的概
(3)求
t
2
时X(t)的分布函数
11
2.1 随机过程的定义

(1) 取 V 2 则x(t) 2 cost
定义2.1.3 设{X(t), t ∈T }是随机过程,则 当ω ∈ Ω固定时, X(t)是定义在上T不具有 随机性的普通函数,记为x(t), 称为随机过 程的一个样本函数. 其图像成为随机过程 的一条样本曲线(轨道或实现).

随机过程讲义1

随机过程讲义1

关键词第十二章随机过程基本概念关键词:随机过程状态和状态空间样本函数有限维分布函数均值函数方差函数自相关函数自协方差函数互相关函数互协方差函数独立不相关确定性过程确具有确定形式的变化过程,或者说具有必然的变化规律,用数学语言来说,就是事物的变化过程可以用一个时间t的确定函数来描述。

例如电容器通过电阻放电时电容两端例如,电容器通过电阻放电时,电容两端的电位差随时间的变化就是一个确定性函数。

2随机过程没有确定的变化形式,也即,每次对它的测量结果没有一个确定的变化规律。

用数学语言来说,这类事物的变化过程不能用一个时间t的确定性函数来描述:如果对该事物的变化全过程进行一次观察,可得到个时间t的函数,但若对该事物的变化过程重复地到一个时间的函数但若对该事物的变化过程重复地独立地进行多次观察,则每次所得到的结果是不相同的。

3§1 随机过程的概念是参数集对任意定义(){},(),T t T X t X t t T ∈∈设是一参数集,对任意是一个定义:随机变量,则称是随机过程.(,)X t e •(1)(,)X t •是随机变量(,e)X t 所有可能取值的全体称为状态空间(2)(,e)t X 是的函数,称为样本函数具体观察结果对随机过程的一次就是一条样本函数随机过程的分类:按照参数集T可分为离散时间和连续时间两种情况,状态空间为离散状态和连续状态两种况,状态空间为离散状态和连续状态两种。

11.离散时间离散状态续2.离散时间连续状态3.连续时间离散状态44.连续时间连续状态51例:()某人在打靶每次的命中率为二项过程,n n p S 并且各次的结果相互独 某人在打靶,每次的命中率为表示前次命中的次数立。

用。

{;1,2,}n S n ==L L 是一个离散时间离散状态的随机过程。

状态空间 则{0,1,2,}.I 状态空间)样本函数为: 所有{}123,1111,,...)011i i i i s s s s s s s s s ++====+(:或,或ns 65324n876543211例考虑抛掷颗骰子的试验例2:考虑抛掷一颗骰子的试验:{}{}(1),1)1(n n X n n X n ≥≥设是第次抛掷的点数,的状态空间为1,2,3,4,5,6。

02第二讲随机过程概念及数字特征精品PPT课件

02第二讲随机过程概念及数字特征精品PPT课件

'
dt
'
E
1 T
T
2 T
2
T
2 T
2
(t)
(t
'
)e
j
(t t '
)dtdt
'
1 T
T
2 T
2
T
2 T
R(t
t ' )e
j(tt' )dtdt '
2
E[ FT () 2 ] 1
2
R(0)R()Fra bibliotek0二、功率谱密度
付氏变换(能量谱密度)F () f (t)e jtdt 沟通了确定信号时域和频
域的关系,随机过程在频率域中要讨论功率谱密度 ,主要原因有二 :
1. 对于随机过程来说,它由许许多多个样本函数来构成, 所以无法求其付氏 变换,可以说,随机过程不存在付氏变换。 2. 随机过程属于功率信号而不属于能量信号,所以讨论功率谱密度。
自相关遍历
R( )
遍历过程即指宽遍历过程.
四、严遍历过程或窄义遍历过程
的所有统计平均特性和其样函数所有相应的时间平 均特性以概率为一相等 1.遍历过程必定是平稳过程,但平稳过程不一定是遍历过程。
2.若 是平稳高斯过程, 且

:
则 是遍历过程
3.对于遍历过程,只要根据其一个样函数,便可得到其数字特征。
x1x2
10 x1 100
x2
dx1dx2
5
5 x2
5 5
x1
10
x1 100
x2
dx1dx2
5
5 x2
320500dx2
0
CX (t1,t2 ) E{[ X (t1) E[ X (t1)]][X (t1) E[ X (t1)]]} E[ X (t1) X (t1)] 0

《随机过程》课件

《随机过程》课件

马尔可夫过程的定义与性质
马尔可夫过程是一种重要的随机过程,具有马尔可夫性质,即未来状态只与当前状态有关。本部分将详 细介绍马尔可夫过程的定义和特性。
马尔可夫过程的应用
马尔可夫过程在很多领域都有广泛的应用,如金融风险评估、自然语言处理和社交网络分析等。我们将 义与性质
《随机过程》PPT课件
随机过程是一个重要的数学概念,本课件将深入介绍随机过程的定义、分类 以及常见例子,帮助您全面理解随机过程的本质。
随机过程的定义与随机变量的区别
了解随机过程和随机变量的不同之处对于理解随机过程的基本概念至关重要,本部分将详细讨论它们的 区别及其意义。
随机过程的分类及常见例子
随机过程可以根据其性质和特征进行分类,例如马尔可夫过程、泊松过程、布朗运动等。我们将介绍每 种类型的定义和常见应用。
布朗运动在金融和物理领域的 应用
布朗运动在金融领域和物理领域有着广泛的应用,如金融市场模型和粒子扩 散模型。我们将介绍一些相关的应用场景。
随机过程在数据分析中的应用
频率分析
利用随机过程的特性进行频率域信号分析, 如功率谱估计和频谱分析。
信号处理
利用随机过程的随机性和噪声模型进行信号 处理和滤波。
泊松过程是一种重要的随机过程,具有独立增量和平稳增量的特性。本部分 将详细介绍泊松过程的定义以及其它一些重要的性质。
泊松过程的应用
泊松过程在很多实际问题中具有重要的应用,如事件发生的模拟、人流和交通流量的预测等。我们将分 享一些实际案例。
布朗运动的定义与性质
布朗运动是一种连续时间的随机过程,具有随机漂移和随机扩散的特性。本部分将详细探讨布朗运动的 定义和一些重要的性质。
时域分析
通过对随机过程的统计特性进行分析,如均 值、方差和自相关函数。

《随机过程》课件

《随机过程》课件

泊松过程
定义
泊松过程是一种计数随机过程,其事件的发生是 相互独立的,且具有恒定的平均发生率。
例子
放射性衰变、电话呼叫次数、交通事故等。
应用领域
物理学、工程学、保险学等。
03
随机过程的变换与函数
随机过程的线性变换
线性变换的定义
线性变换是指对随机过程中的每个时间点,将该点的随机变量或随机向量乘以一个常数 或矩阵,并加上另一个常数或矩阵。
应用
微分在随机过程的理论和应用中非常重要,例如在金融 领域中,可以通过计算股票价格的导数来预测股票价格 的变动趋势。
积分的定义
随机过程的积分是指对随机过程中的每个时间点,将该 点的随机变量进行积分。
积分的性质
积分运算可以改变随机过程的统计特性,例如期望、方 差和协方差等。
应用
积分在随机过程的理论和应用中也有重要应用,例如在 信号处理中,可以通过对信号进行积分来提取信号的特 征或进行信号的合成。
连续随机过程
01
定义
连续随机过程是在时间或空间上 连续取值的随机现象的数学模型 。
02
03
例子
应用领域
电子信号、温度波动、随机漫步 等。
物理、工程、金融等。
马尔可夫过程
定义
马尔可夫过程是一种特殊的随机过程,其未来状态只依赖于当前 状态,与过去状态无关。
例子
赌徒输赢的过程、天气变化等。
应用领域
统计学、计算机科学、人工智能等。
将随机信号视为随时间变化的随机变量序列,具有时间和概率的统 计特性。
随机模型
根据实际需求建立信号的随机模型,如高斯过程、马尔可夫过程等 。
信号的滤波与预测
滤波器设计
根据随机模型设计滤波 器,用于提取有用信号 或抑制噪声。

《随机过程》PPT课件

《随机过程》PPT课件
2
主要内容
随机过程的定义
随机过程的分类
按统计特性是否变化分为平稳随机过程和非平稳随机过程 按照是否具有记忆性分为纯粹随机过程、Markov过程、独 立增量过程 按照一阶变差是否有限分类:若随机过程{t}t≥0的一阶 变差有限,称为有界变差过程。 按照二阶矩是否有限分类:若随机过程的均值和方差都有 限,称为二阶矩过程,例如前面提到的宽平稳过程。 3 按照概率分布特征分类:如Weiner过程,Poission过程等。
随机过程的分类——平稳随机过程
按统计特性是否变化分为平稳随机过程和
非平稳随机过程
统计特性不随时间变化而变化的随机过程,
称为平稳过程,否则,统计特性随时间变化而变化
的随机过程,称为非平稳过程。
平稳过程的严格定义为:对于时间t 的n个
任意的时刻t1,t2,…,tn 和任意实数C,若随机过程
{t }t≥0的分布函数满足
例如:如果有两列时间序列数据表现出一致的 变化趋势(非平稳的),即使它们没有任何有意义 的关系,但进行回归也可表现出较高的可决系数。
在现实经济生活中:
情况往往是实际的时间序列数据是非平稳的, 而且主要的经济变量如消费、收入、价格往往表现 为一致的上升或下降。这样,仍然通过经典的因果 关系模型进行分析,一般不会得到有意义的结果。12
宽平稳的不变性表现在统计平均的一、二阶
矩上,而平稳过程的不变性表现在统计平均的概率
分布上,所以二者不同,并且不能由平稳随机过程
得到宽平稳随机过程。二阶矩存在的平稳随机过程
一定是宽平稳随机过程。
6
§3.1 时间序列的平稳性及其检验
一、问题的引出:非平稳变量与经典回归模型 二、时间序列数据的平稳性 三、平稳性的单位根检验 四、单整、趋势平稳与差分平稳随机过程

《概率论与数理统计》课件-随机过程

《概率论与数理统计》课件-随机过程

06
随机过程的未来发展与挑战
随机过程理论的发展趋势
随机过程与大数据的结合
随着大数据技术的快速发展,如何将随机过程与大数据分 析相结合,挖掘出更多有价值的信息和模式,是未来的一 个重要研究方向。
复杂系统中的随机过程
研究复杂系统中的随机过程,如金融市场、生态系统、社 交网络等,以揭示其内在的运行规律和动态特性。
02
随机过程的基本ቤተ መጻሕፍቲ ባይዱ型
独立增量过程
总结词
描述随机过程中事件发生次数随时间变化的过程,其中每次事件的发生都是独立 的。
详细描述
独立增量过程是指随机过程中事件发生次数在不相重叠的时间区间内相互独立, 即每次事件的发生与其他时间点的事件无关。这种过程在保险、金融等领域有广 泛应用。
马尔科夫过程
总结词
描述一个随机系统在给定当前状态的情况下,未来状态只依 赖于当前状态的过程。
详细描述
马尔科夫过程是一种特殊的随机过程,其中下一个状态只与 当前状态有关,而与过去状态无关。这种过程在自然现象、 社会现象和工程领域中都有广泛的应用,如天气预报、股票 价格波动等。
泊松过程
总结词
描述随机事件在单位时间内按照恒定速率独立发生的随机过程。
该方法通过大量随机抽样,得到概率分布的近似结果,具有简单、灵活和通用性强 的特点。
蒙特卡洛方法在金融、物理、工程等领域有广泛应用,如期权定价、核反应堆模拟 等。
离散事件模拟方法
离散事件模拟方法是一种基于 事件驱动的模拟方法,适用于 描述离散状态变化的过程。
该方法通过跟踪系统中的事件 发生和状态变化,来模拟系统 的动态行为。
离散事件模拟方法在交通运输 、生产制造、通信网络等领域 有广泛应用。

随机过程及其统计描述ppt课件.ppt

随机过程及其统计描述ppt课件.ppt

任意时刻下,观测目的是X取什么值;全程的情况下, 观测目的是X(t)的函数形式.
7
12.1 随机过程的概念
随机相位正弦波
随机过程举例
考虑: X (t) a cos(t ), t (,)
式中 a,是正常数,是 (0, 2 ) 上服从均匀分布的随机变量。
当 在(0, 2 ) 内随机的取一个值 i ,可得样本函数:
2
0 cos(t1 ) cos(t2 ) f ( )d
a2
2
2
0 cos(t1 ) cos(t2 )d
a2
4
2
0 {cos[(t1 t2 ) 2 ] cos(t1 t2 )}d
a2 2
cos (t1
t2 )
方差函数
2 X
(t)
RX
(t , t )
2 X
(t)
a2 2
18
12.2 随机过程的统计描述
随机过程举例
抛掷一枚硬币的试验,样本空间是S={H,T}, 现借此定义随机过程:
cos t,
X (t) t,
当出现H, 当出现T,
t (, )
可将此随机过程改写为
X (t) Y cost (1Y )t ,
其中
Y
1, 0,
出现H 出现T
,
t (, )
X对Y和t的依赖,决定了X是一个随机过程. 确定了 Y之后,即可确定任意时刻和全程的观测结果.
集平均(统计平均)
X (t)是随机过程的所有样本函数在时刻 t 的函数值的平均值,通常称
这种平均为集平均或统计平均。
12
12.2 随机过程的统计描述
(二) 随机过程的数字特征
均方值函数
Ψ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例 5 : 以 N () t表 示 0 , t 内 到 某 保 险 公 司 理 赔 的 人 数 。 则 N () t, t 0 是 连 续 时 间 离 散 状 态 的 随 机 过 程 , 状 态 空 间 是 0 , 1 , 2 , .
假 设 不 会 有 两 人 或 两 人 以 上 同 时 理 赔 , 设 第 i 人 理 赔 的 时 间 为 t , i 则 0 t t t . . . , 对 应 的 样 本 函 数 为 : 1 2 3
s
n
6
5
4
3
2
1
1
2
3
4
5
6
7
8
n
例2:考虑抛掷一颗骰子的试验:
( 1 )设 X 是 第 n 次 ( n 1 ) 抛 掷 的 点 数 , n X , n 1 的 状 态 空 间 为 1 , 2 , 3 , 4 , 5 , 6 。 n ( 2 )设 Y 是 前 n 次 出 现 的 最 大 点 数 , Yn , 1 n n 的 状 态 空 间 仍 是 1 ,2 , 3 ,4 , 5 ,6 。

X :T S R X (t , e)
(1) X (t , )是随机变量
( 2 ) X ( , e ) 是 t 的 函 数 , 称 为 样 本 函 数
X ( t , e ) 所 有 可 能 取 值 的 全 体 称 为 状 态 空 间
对 随 机 过 程 的 一 次就 具 体 观 察 结 果 是 一 条 样 本 函 数
t T i
称 为 随 机 过 程 X () t, t T 的 有 限 维 分 布 函 数 族 它 完 全 确 定 了 随 机 过 程 的 统 计 特 性
注 : 随 机 过 程 在 不 同 的 时 间 点 的 随 机 变 量 不 一 定 独 立 , 而 不 能 直 接 把 它 们 当 成 独 立 处 理 。
状 态 空 间 是 [ , ] , 在 (0 ,2 ) 内 任 取 一 数 ,相 应 的 就 得 到 一 个 样 本 函 数 xt ( ) c o s ( t ), 这 族 样 本 函 数 的 差 异 在 于 它 们 相 位的 不 同 .
例 3 : ( 随 机 相 位 正 弦 波 ) X ( t ) c o s ( t ) , t , ,
随机过程的分类:
按照参数集T可分为离散时间和连续时间两种情 况,状态空间为离散状态和连续状态两种。
1.离散时间离散状态 2.离散时间连续状态 3.连续时间离散状态 4.连续时间连续状态
浙江大学随机过程 4
例 1 : ( 二 项 过 程 )
某 人 在 打 靶 , 每 次 的 命 中 率 为 p , 并 且 各 次 的 结 果 相 互
独 立 。 用 S 表 示 前 n 次 命 中 的 次 数 。 n 则 {; S n 1 , 2 ,} 是 一 个 离 散 时 间 离 散 状 态 的 随 机 过 程 。 n
状 态 空 间 I { 0 , 1 , 2 ,} . 所 有 样 本 函 数 为 :
( ,s : s 0 或 s 1 , s s s s 1 s 1 2,s 3 ,...) 1 1 i 1 i或 i 1 i
例 4 : 设 X ( t ) V c o s tt , , 是 正 常 数 ,
V ~ U [ 0 , 1 ] 。 则 { X ( t ) } 是 连 续 时 间 连 续 状 态 随 机 过 程 。
状 态 空 间 是 [ 1 ,1 ] .
所 有 样 本 函 数 是 : { x ( t ) v c o st : v [ 0 , 1 ] }
它 们 的 联 合 分 布 要 根 据 具 体 过 程 的 性 质 加 以 计 算 ,
浙江大学随机过程
13
例1:有10把步枪,其中两把已校正,命中率为p1; 其余 未校正,命中率为p2 , 这里p1 p2 .某人任取一把开始打靶, 1 第n次命中 令X n为第n次命中的次数,即X n 0 第n次未命中 ()对 1 n m,求(X n,X m)的联合分布律和边缘分布律。 (2)以Sn表示前n次命中的次数,求Sn的分布律。 (3)若p1 1 ,p2 0,写出所有样本函数,写出Sn的分布律. 此时对n m,X n和X m独立吗?为什么?
X(tn) xn,
称 为 n维 分 布 函 数 X(t),t T的
xi R,i 1 ,2,
FX (x1, x2,
xn;t1,t2, tn ) ti T称 为 n维 分 布 函 数 族
F ( xx ,2 , X 1
x ; t , t , t ) , n 1 , 2 , n 1 2 n
FX (x, t), t T称为一维分布函数族
n维 随 机 变 量 X(t1), X(t2), 它 的 分 布 函 数 记 为 : F X (x 1, x 2,
对 任 意 n(n 2,3, )个 不 同 的 时 刻 , t1,t2, tn T X(tn ),
xn; t1,t2, tn ) PX(t1) x1, X(t2) x2, n
n
x
y
n
6
5
(1)
6
(2)
y
n
4
3
x
n
5
4
3
2
2
1
1
2
3
1
4
5
6
7
n 8 浙江大学随机过程
1
2
3
4
5
6
7
8
6
n
和 是 正 常 数 , ~( U 0 , 2 ) 。 {( X t ) ; t , } 是 连 续 时 间 连 续 状 态 的 随 机 过 程 。
N (t)
4
3
2
1
t1
t2
t3
t4
t
§2 随机过程的有限维分布
布 函 数 分 两 种 描 述 征 数 特
设随机过程X (t), t T, 对每一固定的 t T, 随机变量X (t)的分布函数与t有关, 记为FX (x, t) PX (t) x, x R , 称为 X (t), t T的一维分布函数
第十章 随机过程基本概念
关键词: 随机过程 状态和状态空间 样本函数 有限维分布函数 均值函数 方差函数 自相关函数 自协方差函数 互相关函数 互协方差函数 独立 不相关 正态过程
§1 随机过程的定义和例子
定 义 : 设 T 是 一 参 数 集 , 对 任 意 t T , X t 是 一 个 随 机 变 量 , 则 称 X ( t ) , t T 是 随 机 过 程 .
相关文档
最新文档