特征函数-习题

合集下载

随机过程课后题答案

随机过程课后题答案

第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。

求X 的特征函数,EX 及DX 。

其中01,1p q p <<=-是已知参数。

解()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。

解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 10(())x p p e x dx ∞--Γ=⎰ (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。

数学物理方程与特征函数-02

数学物理方程与特征函数-02
n n / l, n 1,2,3, n n2 n / l2
n
X n (x) Bn sin l x
2u u(t02,
t)
a2
2u x2
,
0,u(l,
t
)
0,
u ( x,0)
(
x),
u ( x,0) t
(
x),
0 x l,t 0
t0 0 xl
n
X
n(
n
x)
/ l2, n
Bn sin
sin
n
l
x
(x)s
x 0 x
in m
l
l,t 0
u (Cn
l
n1
u(x,0)
t
n 1
x
cos Dn
na
l
t
Dn
s
in
na sin n x
l
l
na t) sin
l
(x)
n
l
x
l sin m
0
l
x
n1
Cn
sin
n
l
xdx
l (x) sin m
0
l
xdx
l
n
0 Cn sin n1
cos na
l
t
Dn sin
na t) sin
l
n
l
x
sin n x
l
2l n
cos na t,
l
na
l
sin na t
l
f na 2 2l
f1
a 2l
a2 T
v f na 2l a T
2l n
驻波法

特征函数

特征函数
0 0 0


t it 1 [ 2 2 i 2 2 ] (1 ) t t
二、随机变量特征函数的性质
1. (t ) (0) 1 2. (t ) (t ) 其中 (t )为 (t )的共轭。 3.若Y aX b,其中a, b为常数,则Y的特征函数为
五、多元特征函数
1、多元特征函数的定义 设n元随机变量为(1 , 2 , , n )的分布函数为
F ( x1 , x2 , , xn ), 则它的特征函数定义为
f (t1 , t2 ,, tn ) ei( t1 x1 t2 x2 tn xn ) dF ( x1 , x2 ,, xn )
对于任意实数a,有 e ia 1 a .
事实上 对于实数a 0,有 eia 1 eix dx eix dx a.
0 0 ia ia a a
对于实数a 0,有 e 1 e (e
ia
1) e
ia
1 a
e itx1 e itx2 itx e it ( x1 x2 ) 1 itx2 itx 因此有 e e e x2 x1 it it 即J T中被积函数有界,所以积分可交换次序,得 1 JT 2 1 2
1 JT 2 1 2
e itx1 e itx2 itx T it e dt f ( x)dx
T T
sin t ( x x1 ) sin t ( x x2 ) dt f ( x)dx t t 0 1
(t ) 2 it 2 2
(i 2t ) 2 e
所以 E ( X )
i D( X ) (0) ( (0)) 2 2 X X

14特征函数

14特征函数

性质6 特征函数与矩的关系,若随机变量X的 n阶矩存在,则X的特征函数 g ( t ) 的k 阶导数 g ( t )
k
存在,且
E( X k ) i ( k ) g k (0),
(k n).
Ex.8 X N ( , 2 ) ,利用特征函数求期望与 方差。
三、反演公式及唯一性定理 由随机变量X的分布函数可惟一确定其特征 函数: F ( x ) φ(t ).
唯一性定理 分布函数F ( x1 , x2 ,, xn )由其特 征函数唯一决定
(5) 性质5
若(1 , 2 , , n )的特征函数为f ( t1 , t2 ,, t n ),而 j 的特征函数为f j ( t ), j 1, 2, , n, 则随机变量1 , 2 , , n相互独立的充要条件为
如果f ( t1 , t 2 , , t n )是(1 , 2 , , n )的特征函数 则 a11 a2 2 an n的特征函数为
f (t ) f (a1t , a2t ,, ant )
(3) 性质3
n
如果矩E( )存在,则 kn E (1k1 2k2 n )

k
e

k 0,1, 2,
(t ) e
k 0
ikt
k
k!
e

e e

e it
e
( e it 1)
.
Ex.4 设X ~ N (0,1), 求其特征函数。
解:由X ~ N (0,1)知概率密度为 2 所以特征函数为 f ( x) 1 e
x2 2
x
问题
能否由X的特征函数唯一确定其分布函数?

随机过程及应用:预备知识:特征函数

随机过程及应用:预备知识:特征函数

e
jtxφ(t
)dt
反演公式


φ(t)
e
jtx
f
(
x)dx
对于连续型随机变量X,概率密度与特征 函数互为富氏变换.
特征函数
推论3 随机变量X 是离散型的,其分布律为
pk PX k, k 0,1,2.
则 φ(t ) pke jkt , t R. k
1
pk 2π
π e j tkφ(t )dt
φ(t) e jt0(1 p) e jt1 p 1 p pe jt q pe jt , t R.
Ex.3 二项分布 φ(t) (q pe jt )n , t R
Ex.4 泊松分布 φ(t ) e(e jt 1) , t R
Hale Waihona Puke 特征函数Ex.5 指数分布
ex ,
f (x) 0,
e
jtxdF
(
x)
求随机变 量函数的 数学期望
注 1)t R, costx 和 sintx 均为有界函数, 故
E(e jtX ) 总存在.
2) E(e j是tX )实变量t 的函数.
特征函数
定义5.1 设X是定义在(Ω,F , P )上的随机变 量,称
φ(t ) E(e jtX )
e
jtxdF
π
反演公式
证 设 s 有N ,
πe jtsφ(t )dt π
π π
pk e jkte jtsdt
k
特征函数
π
π psdt
π π
pke
jt(k s)dt
2ps
0
k
ks
其中当k s时
π
e
jt(k s)dt

浙大《概率论》习题

浙大《概率论》习题

习题第一讲1. 由盛有号码为N ,,2,1 的球的箱子中有放回的摸了n 次, 依次记其号码, 求这些号码按严格上升次序排列的概率.2. 对任意凑在一起的40人, 求他们中没有两人生日相同的概率.3. 从n 双不同的鞋子中任取)2(2n r r ≤只, 求下列事件的概率:(1) (1) 没有成双的鞋子; (2)只有一双鞋子; (3) 恰有二双鞋子; (4) 有r 双鞋子.4. 从52张的一副扑克牌中, 任取5张, 求下列事件的概率:(1) (1) 取得以A 为打头的顺次同花色5张;(2) (2) 有4张同花色;(3) (3) 5张同花色;(4) (4) 3张同点数且另2张也同点数.思考题:1.(分房、占位问题)把n 个球随机地放入N 个不同的格子中,每个球落入各格子内的概率相同(设格子足够大,可以容纳任意多个球)。

I. I. 若这n 个球是可以区分的,求(1)指定的n 个格子各有一球的概率;(2)有n 个格子各有一球的概率;若这n 个球是不可以区分的,求(1)某一指定的盒子中恰有k 个球的概率;(2)恰好有m 个空盒的概率。

2.取数问题)从1-9这九个数中有放回地依次取出五个数,求下列各事件的概率:(1) (1) 五个数全不同;(2)1恰好出现二次;(3)总和为10.第二讲1. 在一张打方格的纸上投一枚直径为1的硬币, 问方格要多小时才能使硬币与线不相交的概率小于0.01?2. 在某城市中共发行三种报纸:甲、乙、丙。

在这个城市的居民中,订甲报(记为A)的有45%,订乙报(记为B)的有35%,订丙报(记为C)的有30%,同时订甲、乙两报(记为D)的有10%,同时订甲、丙两报(记为E)的有8%,同时订乙、丙两报(记为F)的有5%,同时订三中报纸(记为G)的有3%. 试表示下列事件, 并求下述百分比:(1)只订甲报的;(2)只订甲、乙两报的;(3)只订一种报纸的;(4)正好订两种报纸的;(5)至少订一种报纸的;(6)不订任何报纸的.3. 在线段[0,1]上任意投三个点, 求0到这三点的三条线段能构成三角形的概率.4. 设A, B, C, D 是四个事件, 似用它们表示下列事件:(1) (1) 四个事件至少发生一个;(2) (2) 四个事件恰好发生两个;(3) (3) A,B 都发生而C, D 不发生;(4) (4) 这四个事件都不发生;(5) (5) 这四个事件至多发生一个;(6) (6) 这四个事件至少发生两个;(7) (7) 这四个事件至多发生两个.5. 考试时共有n 张考签, 有)(n m m ≥个同学参加考试. 若被抽过的考签立即放回, 求在考试结束后, 至少有一张考签没有被抽到的概率.6. 在§3例5中, 求恰好有)(n k k ≤个人拿到自己的枪的概率.7. 给定)(),(),(B A P r B P q A P p ⋃===, 求)(B A P 及)(B A P .思考题1.(蒲丰投针问题续)向画满间隔为a 的平行线的桌面上任投一直径)(a l l <为的半圆形纸片,求事件“纸片与某直线相交”的概率;第三讲1. n 件产品中有m 件废品, 任取两件, 求:(1) (1) 在所取两件中至少有一件是废品的条件下, 另一件也是废品的概率;(2) (2) 在所取两件中至少有一件不是废品的条件下, 另一件是废品的概率.2. 袋中有)3(≥a a 只白球, b 只黑球, 甲乙丙三人依次从袋中取出一球(取后不放回). 试用全概率公式分别求甲乙丙各取得白球的概率.3. 敌机被击中部位分成三部分: 在第一部分被击中一弹, 或第二部分被击中两弹, 或第三部分被击中三弹时, 敌机才能被击落. 其命中率与各部分面积成正比. 假如这三部分面积之比为0.1, 0.2, 0.7. 若已中两弹, 求敌机被击落的概率.4. 甲乙两人从装有九个球, 其中三个是红球的盒子中, 依次摸一个球, 并且规定摸到红球的将受罚.(1) (1) 如果甲先摸, 他不受罚的概率有多大?(2) (2) 如果甲先摸并且没有受罚, 求乙也不受罚的的概率.(3) (3) 如果甲先摸并且受罚, 求乙不受罚的的概率.(4) (4) 乙先摸是否对甲有利?(5) (5) 如果甲先摸, 并且已知乙没有受罚, 求甲也不受罚的概率.5. 设事件A, B, C 相互独立, 求证: B A AB B A -⋃,,也相互独立.思考题1. 甲、乙两人轮流掷一均匀的骰子。

《概率论与数理统计课件》 特征函数

《概率论与数理统计课件》 特征函数
n n it k 1
k
it n

20
k 1
例 如果我们已知 X ~ N 0, 1 的特征函数是 t e 令Y ~ N
t2 2

,
2 ,则 Y X ,因此,
Y t X t e X t
it
eit X t eit e
所以其特征函数
x0 , x0
x ixt ixt x x t e f x dx e e dx e costxdx i e sin txdx 0 0 0
t it 2 2 i 2 2 1 . t t
e ihx 1 e
i hx 2 hx i i hx hx hx 2 2 e e 2 sin 2 2 2 ha 2 .
24
所以,对于所有的 t ,
,有
t h t
x a
e
ihx
2 2
dx
e
it
i t
2t 2
2
1 2
it
it

dz e
i t
2t 2
2

在计算积分
it
e

z2 2
dz 中,我们用到了复变函数中的围道积分.
12
二.特征函数的性质
13
性质 1 证明:
t 0 1 .
我们只就 X 是连续型随机变量的情形予以证明. X 是 设 连续型随机变量,其密度函数为 f x .
t


e ixt f x dx

随机变量的特征函数

随机变量的特征函数

第四章 大数定律与中心极限定理4.1特征函数容提要1. 特征函数的定义 设X 是一个随机变量,称)()(itX e E t =ϕ为X 的特征函数,其表达式如下(),()().(), 在离散场合, 在连续场合,itx i iitX itx x e P X x t E e t e p x dx ϕ+∞-∞⎧=⎪==-∞<<+∞⎨⎪⎩∑⎰由于1sin cos 22=+=tx tx e itx ,所以随机变量X 的特征函数)(t ϕ总是存在的.2. 特征函数的性质 (1) 1)0()(=≤ϕϕt ;(2) ),()(t t ϕϕ=-其中)(t ϕ表示)(t ϕ的共 轭; (3) 若Y =aX +b ,其中a ,b 是常数.则);()(at e t X ibt Y ϕϕ=(4) 若X 与Y 是相互独立的随机变量,则);()()(t t t Y X Y X ϕϕϕ⋅=+(5) 若()l E X 存在,则)(t X ϕ可l 次求导,且对l k ≤≤1,有);()0()(k k k X E i =ϕ (6) 一致连续性 特征函数)(t ϕ在),(+∞-∞上一致连续(7) 非负定性 特征函数)(t ϕ是非负定的,即对任意正整数n ,及n 个实数n t t t ,,,21 和n 个复数n z z z ,,21,有 ;0)(11≥-∑∑==j k j nk nj k z z t t ϕ(8) 逆转公式 设F (x )和)(t ϕ分别为X 的分布函数和特征函数,则对F (x )的任意两个点21x x <,有=-+--+2)0()(2)0()(1122x F x F x F x F ;)(21lim21dt t it e e TT itx itx T ϕπ⎰-+∞→-特别对F (x )的任意两个连续点21x x <,有;)(21lim)()(2112dt t it e e x F x F TT itx itx T ϕπ⎰-+∞→-=-(9) 唯一性定理 随机变量的分布函数有其特征函数唯一决定;(10) 若连续随机变量X 的密度函数为p (x ),特征函数为).(t ϕ如果+∞<⎰+∞∞-dt t )(ϕ,则dt t e x p itx )(21)(ϕπ⎰∞+∞--=3. 常用的分布函数特征表习题与解答4.11. 设离散随机变量X 的分布列如下,试求X 的特征函数.解 t i t i it x e e e t 321.02.03.04.0)(+++=ϕ2. 设离散变量X 服从几何分布 .,2,1,)1()(1 =-===-k p p k X P k 试求X 的特征函数,并以此求E(X )和V a r(x ).解 记q =1-p , 则ititK itit k k itk itxqe pe q e pe p qe e E t -====∑∑+∞=+∞=-1)()()(111ϕ,()2'1)(it itqe ipe t -=ϕ,42'')1()1(2)1()(it itit it it it qe qe qe pe qe pe t -=----=ϕ, p q p i X E 1)1()0(1)(2'=-==ϕ,242''21)1()1(2)1()0(1)(pqq q pq q p i X E +=--+-==ϕ,22222)1(1)]([)()(pqp p q X E X E X Var =-+=-= 3.设离散随机变量X 服从巴斯卡分布 ,)1(11)(rk r p p r k k X P --⎪⎪⎭⎫ ⎝⎛--== ,1,,k r r =+试求X 的特征函数.解 设r X X X ,,,21 是相互独立同分布的随机变量,且都服从参数为p 的几何分布Ge(p ),则由上一题知j X 的特征函数为,1)(X ititqepe t j -=ϕ 其中q =1-p . 又因为r X X X X +++= 21,所以X 的特征函数为∏=-==rj ritit x X qe pe t t j 1)1()()(ϕϕ. 4.求下列分布函数的特征函数,并由特征函数求其数学期望和方差.(1)dt e a x F x t a ⎰∞--=2)(1 (a >0); (2) dt a t a x F x⎰∞-+=2221)(π (a >0). 解 (1)因为此分布的密度函数为 ,2)(1xa e a x p -= .+∞<<∞-x 所以此分布的特征函数为010()22itx ax itxax a at e e dx ee dx ϕ+∞--∞=⋅+⋅⎰⎰(cos sin )(cos sin )22ax axa atx i tx e dx tx i tx e dx +∞--∞=+⋅++⋅⎰⎰=.cos 222ta a dx txea ax+=⎰+∞-又因为,)(2)(2222'1t a ta t +-=ϕ ,0)0('1=ϕ ,)()3(2)(322222''1t a a t a t +-=ϕ ,2)0(2''1a -=ϕ 所以 0,(0)1)('1==ϕi X E V a r(X )= .a2(0)1)(2''122==ϕi X E(2) 因为此分布的密度函数为 ,1)(222a x ax p +⋅=π .+∞<<∞-x 所以此分布的特征函数为,cos 2)(022222⎰⎰+∞+∞∞-+=+=dx ax txadx a x e ax itx ππϕ 又因为当t >0时,有(见菲赫金哥尔茨《微积分学教程》第二卷第三分册或查积分表).2cos 022⎰+∞-=+ate a dx a x tx π 所以当t >0时,有 .22)(2at ate e aa t --=⋅=ππϕ 而当t <0时,有 ,)()(22t a e t t -=-=ϕϕ所以.22)(2ta at e e aa t --=⋅=ππϕ 又因为)(2t ϕ在t =0处不可导,故此分布(柯西积分)的数学期望不存在.注:⎰+∞∞-+=dx ax e ax itx222)(πϕ也可利用复变函数中的留数理论来计算,方法如下:t >0时,⎪⎪⎭⎫ ⎝⎛=+⋅=+=⎰+∞∞-ai z a z e i adx a x e ax itz itx ,Res 2)(22222πππϕ ta taitz ai z e ai e ai ai z e i a--→==+⋅=22lim 2ππ5. 设),,(~2σμN X 试用特征函数的方法求X 的3阶及4阶中心矩. 解 因为正态分布),(2σμN 的特征函数为,)(2/22t t i e t σμϕ-=所以,)0('μϕi = ,)0()('μϕ==iX E,)0(22''σμϕ--= ,)0()(222''2σμϕ+==i X E ,3)0(23'''μσμϕi i --= ,3)0()(333'''3μσμϕ+==i X E,36)0(4224''''σσμμϕ++= .36)0()(42244''''4σσμμϕ++==i X E由此得X 的3阶及4阶中心矩为,0)(3)(3)())((2233=+-=-μμX E X E X E X E X E.3)(4)(6)(4)())((44343344σμμμμ=+-+-=-X E X E X E X E X E X E6. 试用特征函数的方法证明二项分布的可加性:若X ~ b (n , p),Y ~ b(m , p),且 X 与Y 独立,则X+Y ~ b(n + m, p).证 记q=1-p, 因为 n it X q pe t )()(+=ϕ, m it Y q pe t )()(+=ϕ, 所以由 X 与Y 的独立性得()()()()it n m X Y X Y t t t pe q ϕϕϕ++==+,这正是二项分布b(n + m, p)的特征函数,由唯一性定理知X+Y~b(n+m,P ).7. 试用特征函数的方法证明泊松分布的可加性:若X ~P (λ1),Y ~ P (λ2),且X与Y 独立,则X +Y ~P (λ1+λ2).证:因为 ,)(,)()1()1(21====it ite Y eX et e t λλϕϕ 所以由X 与Y 独立性得,)()()()1)2(-+==+it e et t t Y X Y X λλϕϕϕ这正是泊松分布 P (λ1+λ2).的特征函数,由唯一性定理知X +Y ~ P (λ1+λ2). .8. 试用特征函数的方法证明伽玛分布的可加性:若),,(~1λa Ga X),(~2λa Ga Y ,且X 与Y 独立,则),(~21λa a Ga Y X ++.证 因为 1)1()(a X it t --=λϕ,2)1()(a Y itt --=λϕ,所以由X 与Y 的独立性得)(21)1()()()(a a Y X Y X itt t t +-+-==λϕϕϕ,这正是伽玛分布),(21λa a Ga +的特征函数,由唯一性定理知),(~21λa a Ga Y X ++.9.试用特征函数的方法证明2χ分布的可加性:若)(~2n X χ,)(~2m Y χ,且X 与Y 独立,则).(~2m n Y X ++χ。

特征函数知识点总结归纳

特征函数知识点总结归纳

特征函数知识点总结归纳一、定义及用处1. 定义特征函数是描述输入数据特征的函数,其作用是将输入数据映射到输出数据的过程中。

特征函数可以是简单的数学函数,也可以是复杂的复合函数,其形式通常由具体的问题和建模任务所决定。

特征函数在统计学和机器学习中有着广泛的应用,它是数据建模和分析中不可或缺的组成部分。

2. 用处特征函数在机器学习和统计建模中有着重要的作用,它可以用于描述输入数据的特征,帮助模型更好地理解和理解数据。

通过特征函数,我们可以将原始数据映射到模型可理解和可处理的特征空间中,从而提高模型的表达能力和泛化能力。

此外,特征函数还可以帮助模型更好地适应现实世界中复杂多变的数据分布,从而提高模型的预测精度和鲁棒性。

二、常见类型特征函数的类型多种多样,根据其在模型中的位置和作用不同,可以将其划分为输入特征函数、隐变量特征函数、输出特征函数等不同类型。

下面我们分别对这几种常见的特征函数进行介绍和分析。

1. 输入特征函数输入特征函数是描述输入数据特征的函数,其作用是将原始输入数据映射到模型可理解和可处理的特征空间中。

输入特征函数通常用于对原始数据进行预处理和特征提取,帮助模型更好地理解和利用数据。

输入特征函数的形式多种多样,可以是简单的数学函数,也可以是复杂的数据转换算法。

常见的输入特征函数包括多项式特征、核函数特征、傅立叶变换特征等。

2. 隐变量特征函数隐变量特征函数是描述隐变量特征的函数,其作用是将隐变量映射到模型可理解和可处理的特征空间中。

隐变量特征函数通常用于隐变量模型的建模和推断,帮助模型更好地理解和解释数据。

隐变量特征函数的形式多种多样,可以是简单的数学函数,也可以是复杂的变分推断算法。

常见的隐变量特征函数包括指数族分布特征、隐变量模型特征、潜在变量特征等。

3. 输出特征函数输出特征函数是描述输出数据特征的函数,其作用是将模型预测的输出数据映射到可观测的特征空间中。

输出特征函数通常用于对模型输出进行后处理和特征解释,帮助模型更好地理解和利用预测结果。

陈国华等主编概率论与数理统计第五章习题解答

陈国华等主编概率论与数理统计第五章习题解答

x>0 x≤0
(α > 0, β > 0)
a a 1 1 1 dx = ∫ cos(tx) ⋅ dx + ∫ sin(tx) ⋅ dx −a −a −a 2a 2a 2a 1 1 1 = ⋅ sin(tx) |a sin(at ) x =− a = at 2a t t −1 (2)参数为 λ 的指数分布的特征函数为, φ X (t ) = (1 − i ) ,参数为 λ 的指数分布可看做
1
π (1 + x 2 )
(−∞ < x < +∞) ;
⎧A ⎪ (D) X i 的概率函数为 : g ( x) = ⎨ x 3 ⎪0 ⎩
x ≥1 x <1
(i = 1,2,3, ) .
答案:CABAD 三.解答题
1.一颗骰子连续掷 4 次,点数总和记为 X ,估计 p (10 < X < 18) .
3.已知随机变量 X 的数学期望为 10,方差 DX 存在且 P (−20 < X < 40) ≤ 0.1 ,则
DX ≥ . 4.设 X 1 , X 2 , , X n, 为独立同分布的随机变量序列,且 X i (i = 1,2, ) 服从参数为 2 的
指数分布,则 n → ∞ 当时, Yn =
1 n 2 ∑ X i 依概率收敛于 n i =1
1 1 ln n + ln n = 0 2 2
n
DX n = EX n = ln n
n 1 1 D ( Xi) = 2 ∑ 2 n n i =1
2
∑ ln i → 0(n → ∞)
i =1
根据马尔可夫大数定律, {X n } 服从大数定律。
3 、 已 知 随 机 变 量 X 和 Y 的 数 学 期 望 、 方 差 以 及 相 关 系 数 分 别 为 E ( X ) = E (Y ) = 2 ,

§4.1特征函数§4.2大数定律§4.3随机变量序列的两种收敛性

§4.1特征函数§4.2大数定律§4.3随机变量序列的两种收敛性

第10页
特征函数的定理
定理4.1.1 一致连续性.
定理4.1.2 非负定性.
定理4.1.3 逆转公式.
定理4.1.4 定理4.1.5
分布函数的唯一性.
连续场合,求p(密x)度函21数. eitx(t)dt
第11页
定理4.1.5 设X为连续型随机变量,密度函数
为p(x),若 | (t) | dt ,则 p(x) 1 eitx(t)dt 2
二、给定 n 和概率,求 y
例4 P237 15 设一家有500间客房的大旅馆的每间 客房装有一台2kw的空调机.若开房率为80%, 问需要多少kw的电力才能有99%的可能性保证 有足够的电力使用空调机?
第53页
三、给定 y 和概率,求 n
例5 用调查对象中的收看比例 作为某电
视节目的收视率 p 的估计 pˆ . 要有 90% 的把握,使调查所得收视率 pˆ与实际收
第44页
练习 P238 6 某汽车销售点每天出售的汽车数服 从参数为λ=2的泊松分布,若一年365天都经 营汽车销售,且每天出售的汽车数相互独立, 求一年中售出700辆以上汽车的概率.
第45页
例2 P238 4 掷一颗骰子100次,记第i次掷出的点
数为Xi , i=1,2,…,100,试求概率
å P{3 # 1
性质4.1.1 |(t)| (0)=1
性质4.1.2 (t) (t)
性质4.1.3 aX b(t) eibtX (at)
第7页
性质4.1.4 若 X 与 Y 独立,则
X Y (t) X (t)Y (t)
性质4.1.5 若 E(X l )存在,则对0≤k≤l有
(k)(0) ik E(X k )

(整理)随机过程课后习题

(整理)随机过程课后习题

习题一1.设随机变量X 服从几何分布,即:(),0,1,2,...k P X k pq k ===。

求X 的特征函数、EX 及DX 。

其中01,1p q p <<=-是已知参数。

2.(1)求参数为(p,b )的Γ分布的特征函数,其概率密度函数为(2)求其期望和方差;(3)证明对具有相同的参数b 的Γ分布,关于参数p 具有可加性。

3.设X 是一随机变量,F (x )是其分布函数,且是严格单调的,求以下随机变量的特征函数。

(1)(),(0,)Y aF X b a b =+≠是常数; (2)Z=ln F()X ,并求()k E Z (k 为自然数)。

4.设12,,...,n X X X 相互独立,具有相同的几何分布,试求 的分布。

5.试证函数 为一特征函数,并求它所对应的随机变量的分布。

6.试证函数 为一特征函数,并求它所对应的随机变量的分布。

7.设12,,...,n X X X 相互独立同服从正态分布2(,)N a σ,试求n 维随机向量12,,...,n X X X 的分布,并求出其均值向量和协方差矩阵,再求 的概率密度函数。

8.设X 、Y 相互独立,且(1)分别具有参数为(m, p)及(n, p)的二项分布;(2)分别服从参数为12(,),(,)p b p b 的Γ分布。

求X+Y 的分布。

9.已知随机向量(X, Y )的概率密度函数为试求其特征函数。

10.已知四维随机向量X ,X ,X ,X 1234()服从正态分布,均值向量为0,协方差矩阵为B σ⨯kl 44=(),求(X ,X ,X ,X E 1234)。

11.设X 1,X 2 和X 3相互独立,且都服从(0,1)N ,试求随机变量112Y X X =+和213Y X X =+组成的随机向量(Y 1, Y 2)的特征函数。

12.设X 1,X 2 和X 3相互独立,且都服从2(0,)N σ,试求:(1)随机向量(X 1, X 2, X 3)的特征函数;1,0()0,0()p p bxb x e x p x p x --⎧>⎪Γ⎨⎪≤⎩=0,0b p >>1nkk X =∑(1)()(1)jt jnt jt e e f t n e -=-21()1f t t=+11ni i X X n ==∑221[1()],1,1(,)40,xy x y x y p x y ⎧+--<<⎪=⎨⎪⎩其他(2)设112123123,,S X S X X S X X X ==+=++,求随机向量(S 1, S 2, S 3)的特征函数;(3)121Y X X =-和232Y X X =-组成的随机向量(Y 1, Y 2)的特征函数。

随机变量的特征函数

随机变量的特征函数

第四章 大数定律与中心极限定理4、1特征函数内容提要1、 特征函数得定义 设X 就是一个随机变量,称)()(itX e E t =ϕ为X 得特征函数,其表达式如下(),()().(), 在离散场合, 在连续场合,itx i iitX itx x e P X x t E e t e p x dx ϕ+∞-∞⎧=⎪==-∞<<+∞⎨⎪⎩∑⎰由于1sin cos 22=+=tx tx e itx ,所以随机变量X 得特征函数)(t ϕ总就是存在得、2、 特征函数得性质 (1) 1)0()(=≤ϕϕt ;(2) ),()(t t ϕϕ=-其中)(t ϕ表示)(t ϕ得共 轭;(3) 若Y =aX +b ,其中a ,b 就是常数、则);()(at e t X ibt Y ϕϕ= (4) 若X 与Y 就是相互独立得随机变量,则);()()(t t t Y X Y X ϕϕϕ⋅=+ (5) 若()l E X 存在,则)(t X ϕ可l 次求导,且对l k ≤≤1,有);()0()(k k k X E i =ϕ (6) 一致连续性 特征函数)(t ϕ在),(+∞-∞上一致连续(7) 非负定性 特征函数)(t ϕ就是非负定得,即对任意正整数n ,及n 个实数n t t t ,,,21 与n 个复数n z z z ,,21,有 ;0)(11≥-∑∑==j k j nk nj k z z t t ϕ(8) 逆转公式 设F (x )与)(t ϕ分别为X 得分布函数与特征函数,则对F (x )得任意两个点21x x <,有=-+--+2)0()(2)0()(1122x F x F x F x F ;)(21lim21dt t it e e TT itx itx T ϕπ⎰-+∞→-特别对F (x )得任意两个连续点21x x <,有;)(21lim)()(2112dt t it e e x F x F TT itx itx T ϕπ⎰-+∞→-=-(9) 唯一性定理 随机变量得分布函数有其特征函数唯一决定;(10) 若连续随机变量X 得密度函数为p (x ),特征函数为).(t ϕ如果+∞<⎰+∞∞-dt t )(ϕ,则dt t e x p itx )(21)(ϕπ⎰∞+∞--=3、 常用得分布函数特征表习题与解答4、11、 设离散随机变量X 得分布列如下,试求X 得特征函数、解 t i t i it x e e e t 321.02.03.04.0)(+++=ϕ2、 设离散变量X 服从几何分布 .,2,1,)1()(1 =-===-k p p k X P k 试求X 得特征函数,并以此求E(X )与V a r(x )、解 记q =1-p , 则ititK itit k k itk itxqe pe q e pe p qe e E t -====∑∑+∞=+∞=-1)()()(111ϕ, ()2'1)(it itqe ipe t -=ϕ,42'')1()1(2)1()(it itit it it it qe qe qe pe qe pe t -=----=ϕ, p q p i X E 1)1()0(1)(2'=-==ϕ,242''21)1()1(2)1()0(1)(pqq q pq q p i X E +=--+-==ϕ,22222)1(1)]([)()(pqp p q X E X E X Var =-+=-= 3.设离散随机变量X 服从巴斯卡分布 ,)1(11)(rk r p p r k k X P --⎪⎪⎭⎫ ⎝⎛--== ,1,,k r r =+试求X 得特征函数、解 设r X X X ,,,21 就是相互独立同分布得随机变量,且都服从参数为p 得几何分布Ge(p ),则由上一题知j X 得特征函数为,1)(X ititqepe t j -=ϕ 其中q =1-p 、 又因为r X X X X +++= 21,所以X 得特征函数为∏=-==rj ritit x X qe pe t t j 1)1()()(ϕϕ、 4.求下列分布函数得特征函数,并由特征函数求其数学期望与方差、(1)dt e a x F x t a ⎰∞--=2)(1 (a >0); (2) dt a t a x F x⎰∞-+=2221)(π (a >0)、解 (1)因为此分布得密度函数为 ,2)(1xa e a x p -= .+∞<<∞-x 所以此分布得特征函数为010()22itx ax itx axa at e e dx e e dx ϕ+∞--∞=⋅+⋅⎰⎰00(cos sin )(cos sin )22ax axa a tx i tx e dx tx i tx e dx +∞--∞=+⋅++⋅⎰⎰ =.cos 222ta a dx txea ax+=⎰+∞-又因为,)(2)(2222'1t a ta t +-=ϕ ,0)0('1=ϕ ,)()3(2)(322222''1t a a t a t +-=ϕ ,2)0(2''1a -=ϕ 所以 0,(0)1)('1==ϕi X E V a r(X )= .a2(0)1)(2''122==ϕi X E(2) 因为此分布得密度函数为 ,1)(222a x ax p +⋅=π .+∞<<∞-x所以此分布得特征函数为,cos 2)(022222⎰⎰+∞+∞∞-+=+=dx ax txadx a x e ax itx ππϕ 又因为当t >0时,有(见菲赫金哥尔茨《微积分学教程》第二卷第三分册或查积分表).2cos 022⎰+∞-=+ate a dx ax tx π 所以当t >0时,有 .22)(2at ate e aa t --=⋅=ππϕ 而当t <0时,有 ,)()(22t a e t t -=-=ϕϕ所以.22)(2ta at e e aa t --=⋅=ππϕ 又因为)(2t ϕ在t =0处不可导,故此分布(柯西积分)得数学期望不存在、注:⎰+∞∞-+=dx a x e ax itx222)(πϕ也可利用复变函数中得留数理论来计算,方法如下:t >0时,⎪⎪⎭⎫ ⎝⎛=+⋅=+=⎰+∞∞-ai z a z e i adx a x e ax itz itx ,Res 2)(22222πππϕ ta taitz ai z e ai e ai ai z e i a--→==+⋅=22lim 2ππ5、 设),,(~2σμN X 试用特征函数得方法求X 得3阶及4阶中心矩、 解 因为正态分布),(2σμN 得特征函数为,)(2/22t t i e t σμϕ-=所以,)0('μϕi = ,)0()('μϕ==i X E ,)0(22''σμϕ--= ,)0()(222''2σμϕ+==iX E ,3)0(23'''μσμϕi i --= ,3)0()(333'''3μσμϕ+==i X E,36)0(4224''''σσμμϕ++= .36)0()(42244''''4σσμμϕ++==i X E由此得X 得3阶及4阶中心矩为,0)(3)(3)())((2233=+-=-μμX E X E X E X E X E.3)(4)(6)(4)())((44343344σμμμμ=+-+-=-X E X E X E X E X E X E6、 试用特征函数得方法证明二项分布得可加性:若X ~ b (n , p),Y ~ b(m , p),且 X 与Y 独立,则X+Y ~ b(n + m, p)、证 记q=1-p, 因为 n it X q pe t )()(+=ϕ, m it Y q pe t )()(+=ϕ, 所以由 X 与Y 得独立性得()()()()it n m X Y X Y t t t pe q ϕϕϕ++==+,这正就是二项分布b(n + m, p)得特征函数,由唯一性定理知X+Y~b(n+m,P )、7、 试用特征函数得方法证明泊松分布得可加性:若X ~P (λ1),Y ~ P (λ2),且X与Y 独立,则X +Y ~P (λ1+λ2)、证:因为 ,)(,)()1()1(21====ititeY eX e t e t λλϕϕ 所以由X 与Y 独立性得,)()()()1)2(-+==+it e et t t Y X Y X λλϕϕϕ这正就是泊松分布 P (λ1+λ2)、得特征函数,由唯一性定理知X +Y ~ P (λ1+λ2)、 、8、 试用特征函数得方法证明伽玛分布得可加性:若),,(~1λa Ga X),(~2λa Ga Y ,且X 与Y 独立,则),(~21λa a Ga Y X ++、证 因为 1)1()(a X it t --=λϕ,2)1()(a Y itt --=λϕ,所以由X 与Y 得独立性得)(21)1()()()(a a Y X Y X itt t t +-+-==λϕϕϕ,这正就是伽玛分布),(21λa a Ga +得特征函数,由唯一性定理知),(~21λa a Ga Y X ++、9、试用特征函数得方法证明2χ分布得可加性:若)(~2n X χ,)(~2m Y χ,且X 与Y 独立,则).(~2m n Y X ++χ证 因为2)21()(n X it t --=ϕ,2)21()(mY it t --=ϕ,所以由X 与Y 得独立性得2)()21()()()(m n Y X Y X it t t t +-+-=+=ϕϕϕ,这正就是2χ分布2χ(n+m)得特征函数,由唯一性定理知).(~2m n Y X ++χ10、 设i X 独立同分布,且n i Exp X i ,,2,1),(~ =λ、试用特征函数得方法证明:∑==ni i n n Ga X Y 1),(~λ、证 因为1)1()(--=λϕitt i X ,所以由诸i X 得相互独立性得n Y 得特征函数为n Y itt n--=)1()(λϕ,这正就是伽玛分布),(λn Ga 得特征函数,由唯一性定理知),(~λn Ga Y n 、11、 设连续随机变量X 服从柯西分布,其密度函数如下:+∞<<-∞-+⋅=x x x p ,)(1)(22μλλπ,其中参数+∞<<-∞>μλ,0,常记为),(~μλCh X ,(1) 试证X 得特征函数为{}t t i λμ-exp ,且利用此结果证明柯西分布得可加性; (2) 当1,0==λμ时,记Y =X,试证)()()(t t t Y X Y X ϕϕϕ=+,但就是X 与不独立; (3) 若n X X X ,,,21 相互独立,且服从同一柯西分布,试证:)(121n X X X n+++ 与X i 同分布、证 (1) 因为μ-=X Y 得密度函数为+∞<<-∞+⋅=x yx p ,1)(22λλπ,由本节第4题(2)知Y 得特征函数为{}()exp ||Y t t φλ=-、由此得μ+=Y X 得特征函数{}{}t t i t t i t t Y Y X λμϕμϕϕμ-===+exp )(exp )()(、下证柯西分布得可加性: 设)2,1(=i X i 服从参数为i i λμ,得柯西分布,其密度函数为: 2,1,,)(1)(22=+∞<<-∞-+⋅=i x x x p i i μλλπ、若1X 与2X 相互独立,则(){}t t i t t t X X X X )(exp )()()(21212121λλμμϕϕϕ+-+==+,这正就是参数为2121,λλμμ++柯西分布得特征函数、所以由唯一性定理知,21X X +服从参数为2121,λλμμ++得柯西分布、(2) 当1,0==λμ时有 {}t t X -=exp )(ϕ,{}t t Y -=exp )(ϕ,所以 )2()()(2t t t X X Y X ϕϕϕ==+{}{}{}t t t --=-=exp exp 2exp )()(t t Y X ϕϕ=、 由于Y=X,当然X 与Y 不独立、此题说明,由)()()(t t t Y X Y X ϕϕϕ=+不能推得X 与Y 独立、(3) 设i X 都服从参数为λμ,得柯西分布,则特征函数为{}t t i t λμϕ-=exp )(、由相互独立性得, ∑=n i i X n 11 得特征函数为 []{}t t i n t nλμϕ-=exp )/(,即 ∑=n i i X n 11与X 1具有相同得特征函数,由唯一性定理知它们具有相同得分布、12、设连续随机变量X 得密度函数为p (x ),试证:p (x )关于原点对称得充要条件就是它得特征函数就是实得偶函数、证:记X 得特征函数为)(t X ϕ、先证充分性,若)(t X ϕ就是实得偶函数,则)()(t t X X ϕϕ=-或)()(t t X X -=-ϕϕ,这表明X 与-X 有相同得特征函数,从而X 与-X有相同得密度函数,而-X 得密度函数为p (-x ),所以得p (x )=p (-x ),即p (x )关于原点就是对称得、再证必要性、若p (x )=p (-x ),则X 与-X 有相同得密度函数,所以X 与-X 有相同得特征函数、由于-X 得特征函数为)(t X ϕ,所以)()(t t X X ϕϕ=-=________)(t X ϕ,故)(t X ϕ就是实得偶函数、13、设n X X X ,,,21 独立同分布,且都服从N (2,σϕ)分布,试求∑==ni iX n X 1___1得分布、解:因为X j 得特征函数为2/22)(t t i j e t σϕϕ-=,所以由诸X i 互相独立得___X 得特征函数为)2/(22))/(()(n t t i n i X e n t t σϕϕϕ-==这就是正态分布N (n /,2σϕ)得特征函数,所以由唯一性定理知∑==ni i X n X 1___1~N (n /,2σϕ)。

第一节 特征函数

第一节 特征函数

)
取角 ,
使得
cos
a a b
2 2
, sin
a b
2
2
则 z a ib r (cos i sin )
复数的三角形式
其中 r a 2 b 2 为复数z的模长。
在三角形式下,令
z1 r1 (cos1 i sin 1 ),
我们有
z2 r2 (cos2 i sin 2 )
欧拉公式: 对于任何实数 ,记
e cos i sin
则复数的乘除法运算变成
i
把指数函数推广到 复变量的情形
i (1 2 )
z1 z2 re r2e 1
i1
i 2
r1r2e
z1 r1ei1 r1 i (1 2 ) i2 e z2 r2e r2
z1 z2 r1r2 (cos(1 2 ) i sin(1 2 )), z1 r1 (cos(1 2 ) i sin(1 2 )), z2 r2
复数的三角形式在复数的乘除法运算中占有相当 大的优势。 如考虑
(1 3i)2010 ? 2010 ( 3 i)
定理1(逆转公式) 设分布函数F(x)的特征函数为f (t),又
x 1 , x 2是F(x)的两个连续点,则
1 F ( x2 ) F ( x1 ) Tlim 2
eitx1 eitx2 T it f (t )dt
T
定理2 (唯一性定理)
分布函数可由特征函数唯一确定
定理3 (逆傅里叶变换) 设f (t)是特征函数,且 则分布函数F(x)的导数存在且连续,此时
第一节 特征函数
一般说来,数字特征不能完全确定随机变量的分布. 本 节将要介绍特征函数,既能完全决定分布函数,又具有 良好的性质,是研究随机变量的分布的有力的工具.

概率论习题及解答-第四章特征函数

概率论习题及解答-第四章特征函数

ξ = a min{Y, x} − bx.
从而平均利润
∫∞ E(ξ) = aE(min{Y, x}) − bx = a min{y, x}λe−λydy − bx
(∫ x
∫∞ 0
)
=a
yλe−λydy +
xλe−λydy − bx
(0
∫x x
)
= a − xe−λx + e−λydy + xe−λx − bx
∑ ∞
∑ ∞ ∑i
E(η) = iP(η = i) =
P(η = i)
i=1
i=1 k=1
∑ ∞ ∑ ∞
∑ ∞
=
P(η = i) = P(η k).
注意到
P(min{ξ1, ξ2, · · · , ξn}
k=1 i=k
k) = P(ξ1 k, ξ2
k=1
k, · · · , ξn
( ∑ )n
k) =
记 µk = p0 + p1 + · · · + pk−1, νk = 1 − µk, 试证明
∑ ∞ E(min{ξ1, ξ2, · · · , ξn}) = νkn,
k=1
∑ ∞ E(max(ξ1, ξ2, · · · , ξn)) = (1 − µnk ).
k=1
4
证明: 若 η 为取非负整值随机变量, 则

∑ ∞
∑ ∞
E(max{ξ1, ξ2, · · · , ξn}) = P(max{ξ1, ξ2, · · · , ξn} k) = (1 − µnk ).
k=1
k=1
练习4.1.11 设随机变量 ξ, η 独立同分布, ξ ∼ N (a, σ2), 试证明

特征函数.ppt

特征函数.ppt

t1 , t2为任意实数, 记
(t1 , t2 ) E[e j(t1X t2Y ) ]
e
dF ( j(t1xt2 y)
x,
y)
称 (t1, t2 ) 为( X ,Y ) 的特征函数.
连续型:
(t1 , t2 ) E[e ] j(t1X t2Y )
e
j( t1xt2
y)
f
(
x,
y)dxdy
求二维随机变量 ( X ,Y )的特征函数.
性质4.2.3 两个二元分布函数恒相等的充分必要条件是它们的 特征函数恒等.
性质4.2.4 设随机变量 ( X ,Y ) 的特征函数为(t1, t2 ),a1,a2 ,b为任
意常数, 则 Z a1 X a2Y b 的特征函数为
Z (t ) e jtb (a1t, a2t ).
例4.1.1 设随机变量X 服从退化分布, 即
求X 的特征函数.
P{X c} 1
( t ) E( e jtX ) e jtxk pk k
( t ) e jtxk pk
k
e jtC 1
e jtC
例4.1.2 设随机变量X 服从参数为p 的0-1分布(两点分布), 求其 特征函数.
第四章 特征函数
§4.1 一维特征函数的定义及其性质 §4.2 多维随机变量的特征函数 §4.3 母函数
§4.1 一维特征函数的定义及其性质
一、定义及例 二、性质 三、特征函数与矩的关系 四、反演公式及惟一性定理
随机变量的数字特征只反映随机变量取值某些方面的特征, 一般并不能通过它来确定随机变量的分布函数。引进一个工具, 既能与分布函数一一对应,但比分布函数具有更好的分析性质。
e jtX dF ( x)

第四章 数字特征与特征函数

第四章  数字特征与特征函数

复旦大学《概率论基础》习题答案(第一版)第四章 数字特征与特征函数1、解:∑∑∞=∞=+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++=+=011111)1(,k k kk k a a a a a k E ξ,令p a a =+)1(,则10<<p ,且∑∑∞=∞=-='⎪⎭⎫ ⎝⎛+='⎪⎭⎫ ⎝⎛=121)1(1k k k k p p a a p p p kp ,a a a a aa E =⎪⎭⎫ ⎝⎛+-+⋅+=∴211111ξ。

采用同样的方法并利用a E =ξ得[]∑∑∞=∞=+-+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++=11221)1(11111k k k kp k k a a a k a E ξ∑∑∞=∞=-+++=11)1(1111k k k kp k k a kp a"⎥⎦⎤⎢⎣⎡-++="⎪⎭⎫ ⎝⎛++=∑∞=)1(11212p p a p a p a p a k k 2322)1(21a a p a p a +=-⋅++= )1()2()(2222a a a a a E E D +=-+=-=ξξξ。

2、解:设n μμμμ+++= 21,其中⎩⎨⎧=出现次试验若第出现次试验若第A i ,A i i 0,1μ,则∑∑====ni i ni i p E E 11μμ,由试验独立得诸i μ相互独立,由此得)1(11i ni i n i i p p D D -==∑∑==μμ。

3、解:η服从两占分布,由第二章第29题得,P P ==}1{η{事件A 出现奇数次}===--}0{,)21(2121ηP p n P{事件A 出现偶数次}n p )21(2121-+=,所以 n p E )21(2121--=η,n n n p p p D 2)21(4141)21(2121)21(2121--=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--=η.4、解:设ξ表取一球的号码数。

数学物理方程与特征函数-06

数学物理方程与特征函数-06

0
0
B A
0 A0
2 0 Acos Bsin
n n
n


2 n

n2 , n
1,2,3,
n An cos n Bn sin n
u1|a

u
u

| b

1

An

n2
2
An cosn

Bn
1

B
n2
2
Bn

s
in
nn



12 2
cos 2
A2
1

A2

4
2
A2
12 2
An

1

An

n2
2
An

0
n2
Bn

1

Bn

n2
2
Bn

0
u1|a
2
,
u(,0) u(,2 ),
1,0 2
0 2 1
u(, ) () ( )
1






1
2


0



1




1
2


0
1

1
2


2 0
X (0) A B 0 X (l) Ael Bel 0 A B 0 X (x) 0

高考数学复习数据的数字特征专题复习题(带答案)

高考数学复习数据的数字特征专题复习题(带答案)

高考数学复习数据的数字特征专题复习题(带答案)随机变量的数字特征在概率论中有什么意义?知道一个随机变量的散布函数,就掌握了这个随机变量的统计规律性。

以下是数据的数字特征专题温习题,请考生仔细练习。

一、选择题1.一个样本数据按从小到大的顺序陈列为13,14,19,x,23,27,28,31,其中位数为22,那么x为()A.21B.22C.20D.23[答案] A[解析] 由=22得x=21.2.以下说法正确的选项是()A.在两组数据中,平均值较大的一组方差较大B.平均数反映数据的集中趋向,规范差那么反映数据离平均值的动摇大小C.方差的求法是求出各个数据与平均值的差的平方后再求和D.在记载两团体射击环数的两组数据中,方差大的表示射击水平高[答案] B[解析] 平均数、中位数、众数都是反映一组数据的集中趋向的统计量,方差、规范差、极差都是反映数据的团圆水平的统计量,应选B.3.在一次歌声大奖赛上,七位评委为歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差区分为()A.9.4 0.484B.9.4 0.016C.9.5 0.04D.9.5 0.016[答案] D[解析] 去掉一个最高分和一个最低分后剩余分数为9.4,9.4,9.6,9.4,9.7.其平均数为==9.5.方差s2=(0.12+0.12+0.12+0.12+0.22)=0.08=0.016.4.在某次测量中失掉的A样本数据如下:82,84,84,86,86,86,88,88,88,88.假定B样本数据恰恰是A 样本数据每个都加2后所得数据,那么A,B两样本的以下数字特征对应相反的是()A.众数B.平均数C.中位数D.规范差[答案] D[解析] 此题考察样本的数字特征.A的众数88,B那么为88+2=90.各样本都加2后,平均数显然不同.A的中位数=86,B的中位数=88,而由规范差公式s=知D正确.5.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年竞赛进球个数的规范差为3;乙队平均每场进球数为1.8,全年竞赛进球个数的规范差为0.3,以下说法正确的有()甲队的技术比乙队好;乙队发扬比甲队动摇;乙队简直每场都进球;甲队的表现时好时坏A.1个B.2个C.3个D.4个[答案] D[解析] s甲s乙,说明乙队发扬比甲队动摇,甲乙,说明甲队平均进球多于乙队,但乙队平均进球数为1.8,规范差仅有0.3,说明乙队确实很少不进球.6.期中考试后,班长算出了全班40人数学效果的平均分为M,假设把M当成一个同窗的分数,与原来的40个分数一同,算出这41个分数的平均数为N,那么MN为()A. B.1C. D.2[答案] B[解析] 平均数是用一切数据的和除以数据的总个数而失掉的.设40位同窗的效果为xi(i=1,2,,,40),那么M=,N=.故MN=1.二、填空题7.假定样本x1+2,x2+2,,xn+2的平均值为10,那么样本2x1+3,2x2+3,,2xn+3的平均值为________.[答案] 19[解析] x1+2,x2+2,,xn+2的平均值为10,x1,x2,,xn的平均值为8,2x1+3,2x2+3,,2xn+3的平均值为28+3=19.8.某赛季,甲、乙两名篮球运发动都参与了11场竞赛,他们每场竞赛得分的状况用如下图的茎叶图表示,假定甲运发动的中位数为a,乙运发动的众数为b,那么a-b=________. 甲乙 7 9 8 0 7 8 5 5 7 9 1 1 1 3 3 4 6 2 2 0 2 3 1 0 1 4 0 [答案] 8[解析] 由茎叶图知a=19,b=11,a-b=8.三、解答题9.某校为了了解甲、乙两班的数学学习状况,从两班各抽出10名先生停止数学水平测试,效果如下(单位:分):甲班:82,84,85,89,79,80,91,89,79,74;乙班:90,76,86,81,84,87,86,82,85,83.(1)求两个样本的平均数甲和乙;(2)求两个样本的方差和规范差;(3)比拟两组数据的平均数,并估量哪个班的平均分较高;(4)比拟两组数据的规范差,并估量哪个班的数学效果比拟划一.[解析] (1)甲=(82+84+85+89+79+80+91+89+79+74)=83.2(分),乙=(90+76+86+81+84+87+86+82+85+83)=84(分).(2)s=[(82-83.2)2+(84-83.2)2+(85-83.2)2+(89-83.2)2+( 79-83.2)2+(80-83.2)2+(91-83.2)2+(89-83.2)2+(79-83.2 )2+(74-83.2)2]=26.36(分2),s=[(90-84)2+(76-84)2+(86-84)2+(81-84)2+(84-84)2+(87 -84)2+(86-84)2+(82-84)2+(85-84)2+(83-84)2]=13.2(分2),所以s甲=5.13(分),s乙=3.63(分).(3)由于甲乙,所以据此估量乙班的平均分较高.(4)由于s甲s乙,所以据此估量乙班的数学效果比甲班划一.数据的数字特征专题温习题及答案的全部内容就是这些,查字典数学网希望对考生温习数学有协助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中 p 1 , q 5 , k 0,1, 2,...n
66 求(1)特征函数X (t)
(2)用特征函数求随机变量的期望和方差
4 设X 服从[0,1]区间的均匀分布,求特征函数 X (t)
5 设X 服从参数为=3 的指数分布,求特征函数X (t)
(1)求特征函数 X ห้องสมุดไป่ตู้t)
(2)用特征函数求随机变量的期望和方差
6 设随机变量X服从正态分布 N(2, 9), (1)求特征函数X (t)
(2)用特征函数求随机变量的期望和方差
特征函数习题
1. 设随机变量X的分布为P{X=c}=1,其中 c为常数, (1)求特征函数 X (t) (2)用特征函数求随机变量的期望和方差
2. 设随机变量X服从0-1分布,其中P{X=1}=0.7, P{X=0}=0.3 ,
(1)求特征函数 X (t)
(2)用特征函数求随机变量的期望和方差
3 设随机变量X的分布列为 p{X k} Cnk pk qnk
相关文档
最新文档