苏教版高一数学必修5数列的概念及函数特征测试题及答案
高一数学数列的概念试题答案及解析
高一数学数列的概念试题答案及解析1.已知数列{an }满足an= nk n(n∈N*,0 < k < 1),下面说法正确的是( )①当时,数列{an}为递减数列;②当时,数列{an}不一定有最大项;③当时,数列{an}为递减数列;④当为正整数时,数列{an}必有两项相等的最大项.A.①②B.②④C.③④D.②③【答案】C【解析】选项①:当时,,有,,则,即数列不是递减数列,故①错误;选项②:当时,,因为,所以数列可有最大项,故②错误;选项③:当时,,所以,即数列是递减数列,故③正确;选项④:,当为正整数时,;当时,;当时,令,解得,,数列必有两项相等的最大项,故④正确.所以正确的选项为③④.【考点】数列的函数特征.2.在数列中,,,则=()A.B.C.D.【答案】D【解析】由已知可得:由此可猜想数列是以3为周期的周期数列,所以,故选D.另此题也可:设,则有从而可知数列是以0为首项,为公差的等差数列,从而可求得进而求得的值.【考点】数列的概念.3.数列{}中,,则为___________.【答案】19【解析】由已知可得,所以,,。
【考点】数列的递推关系式。
4.数列的一个通项公式是()A.B.C.D.【答案】B【解析】.【考点】数列的通项公式.5.数列1,1,2,3,5,8,x,21,34,55中,x等于()A.11B.12C.13D.14【答案】C【解析】观察数列特点,从第三项起每一项等于它的前两项的和,因此【考点】数列点评:由数列前几项的特点归纳出通项,进而求得任意一项6.在数列{}中,若,则()A.1B.C.2D.1.5【答案】D【解析】根据题意,由于体现了数列的递推式的运用,故选D.【考点】数列的递推式点评:解决的关键是根据首项,结合递推式得到数列的其余的各项,同时能结合周期性得到结论,属于基础题。
7.已知数列的前项和,则 .【答案】=1,当n时,则=,综合上述可知【解析】解:因为,那么当n=1,得到a1结论为8.已知数列中,,若,则()A.B.C.D.【答案】C【解析】解:因为,说明是公差为4的等差数列,,选C9.数列的一个通项公式是A.B.C.D.【答案】D【解析】解:因为数列的前几项为摆动数列,因此一个通项公式是,也可以特殊值验证法得到,选D10.在2与32中间插入7个实数,使这9个实数成等比数列,该数列的第7项是 .【答案】16【解析】记此数列为{an},则设公比为q,则11.若数列的通项公式为,则()A.为递增数列B.为递减数列C.从某项后为递减数列D.从某项后为递增数列【答案】D【解析】解:∵an ="n!" /10n ,∴当n!<10n时,数列{an}为递减数列,当n!>10n时,数列{an}为递递数列,故选D12.已知数列、都是公差为1的等差数列,其首项分别为,且设,则数列的前10项和等于()A.55B.70C.85D.100【答案】C【解析】解:∵a1+b1=5,a1,b1∈N*,a1>b1,a1,b1∈N*(n∈N*),∴a1,b1有3和2,4和1两种可能,当a1,b1为4和1的时,ab1=4,前10项和为4+5+…+12+13=85;当a1,b1为3和2的时,ab1=4,前10项和为4+5+…+12+13=85;故数列{abn}的前10项和等于85,故选C.13.已知数列是首项为1,公比为的等比数列,则.【答案】【解析】解:因为数列是首项为1,公比为的等比数列14.定义一种新的运算“”对任意正整数n满足下列两个条件:(1)则____________【答案】 4023【解析】令是以1为首项,2为公差的等差数列,=402315.,则此数列的通项公式_____;【答案】【解析】解:因为,根据分母的与分子与项数的关系可知16.数列的通项公式为,则此数列的前项的和等于 ( ) A.B.C.D.【答案】B【解析】验证法:17.数列的前n项的和,则= ___ .【答案】【解析】解:因为,当n=1时,则当n2时,则验证当n=1不适合上式,因此得到=18.已知数列1,,,,…的一个通项公式是an=_________.【答案】【解析】分子为2n-1,分母为n2,所以通项公式为19.已知数列{an }的通项公式为an=23-4n,Sn是其前n项之和,则使数列的前n项和最大的正整数n的值为 .【答案】10.【解析】,所以,由得,所以数列的前n项和最大的正整数n的值为1020.在数列中,等于()A.B.C.D.【答案】C【解析】21.在数列中,,,则( )A.B.C.D.【答案】A【解析】解:因为数列中,,22.已知数列的前几项和为.那么这个数列的通项公式= .【答案】.【解析】,当时,,.23.在数列中,,求:⑴数列的最大项⑵数列的前n项和【答案】(1)当;(2)【解析】数列的单调性的运用,求解数列的最大项;运用错位相减法。
高中数学必修五数列知识点+练习含答案解析(非常详细)
第一部分必修五数列知识点整理第二章 数列1、数列的定义及数列的通项公式:①. ()n a f n =,数列是定义域为N 的函数()f n ,当n 依次取1,2,⋅⋅⋅时的一列函数值②i.归纳法若00S =,则n a 不分段;若00S ≠,则n a 分段iii. 若1n n a pa q +=+,则可设1()n n a m p a m ++=+解得m,得等比数列{}n a m +iv. 若()nn S f a =,先求1a 11()()n n n n S f a S f a ++=⎧⎨=⎩得到关于1n a +和n a 的递推关系式例如:21n n S a =+先求1a ,再构造方程组:112121n n n n S a S a ++=+⎧⎨=+⎩⇒(下减上)1122n n n a a a ++=-2.等差数列:① 定义:1n n a a +-=d (常数),证明数列是等差数列的重要工具。
② 通项0d ≠时,n a 为关于n 的一次函数;d >0时,na 为单调递增数列;d <0时,n a 为单调递减数列。
③ 前n 1(1)2n n na d -=+,0d ≠时,n S 是关于n 的不含常数项的一元二次函数,反之也成立。
④ 性质:ii. 若{}n a 为等差数列,则m a ,m k a +,2m k a +,…仍为等差数列。
iii. 若{}n a 为等差数列,则n S ,2n n S S -,32n n S S -,…仍为等差数列。
iv 若A 为a,b 的等差中项,则有2a bA +=。
3.等比数列: ① 定义:1n na q a +=(常数),是证明数列是等比数列的重要工具。
② 通项时为常数列)。
③.前n 项和需特别注意,公比为字母时要讨论.④.性质:ii.{}仍为等比数列则为等比数列 ,,,,2k m k m m n a a a a ++,公比为k q 。
iii. {}232,,,,n n n n n n a S S S S --K 为等比数列则S 仍为等比数列,公比为n q 。
苏教版必修5高中数学2.2.1《等差数列的概念及通项公式》练习题
苏教版必修5高中数学2.2.1《等差数列的概念及通项公式》练习题2.2.1 等差数列的概念及通项公式1.如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列叫做等差数列.这个常数叫做等差数列的公差.2.如果数列{an}是公差为d的等差数列,则a2=a1+d;a3=a2+d=a1+2d. 3.等差数列的通项公式为an=a1+(n-1)d.4.等差数列{an}中,an=a1+(n-1)d=a2+(n-2)d=a3+(n-3)d,因此等差数列的通项公式又可以推广到an=am+(n-m)d(n>m).5.由an=am+(n-m)d,得d=连线的斜率.6.如果在a与b之间插入一个数A,使a,A,b成等差数列,那么A可以用a,b表示为A=an-am,则d就是坐标平面内两点A(n,an),B(m,am)n-ma+b2,A称为a,b 的等差中项.7.如果数列{an}的通项公式an=a・n+b,则该数列是公差为a的等差数列. 8.等差数列的性质.若{an}是等差数列,公差为d,则:(1)an,an-1,…,a2,a1亦构成等差数列,公差为-d; (2)ak,ak+m,ak+2m,…(m∈N)也构成等差数列,公差为md;(3)λa1+μ,λa2+μ,…,λan+μ,…(λ,μ是常数)也构成等差数列,公差为λd; (4)an=am+(n-m)d(m,n∈N)是等差数列通项公式的推广,它揭示了等差数列中任意两项之间的关系,还可变形为d=***an-am; n-m(5)若m,n,k,l∈N,且m+n=k+l,则am+an=ak+al,即序号之和相等,则它们项的和相等,例如:a1+an=a2+an-1=… ?基础巩固一、选择题1.等差数列{an}中,a1+a5=10,a4=7,则数列{an}的公差为(B)A.1 B.2 C.3 D.4a1+a5解析:由等差中项的性质知a3==5,又a4=7,∴公差d=a4-a3=7-5=2.22.在-1和8之间插入两个数a,b,使这四个数成等差数列,则(A)A.a=2,b=5 B.a=-2,b=5 C.a=2,b=-5 D.a=-2,b=-5解析:考查项数与d之间关系.3.首项为-20的等差数列,从第10项起开始为正数,则公差d的取值范围是(C)A.d> B.d≤ C.<d≤ D.≤d<?a10>0,??-20+9d>0,20?5即?即<d≤.2??a9≤0,??-20+8d≤0,92209522095220952解析:由题意知?4.已知a,b,c成等差数列,则二次函数y=ax+2bx+c的图象与x轴的交点的个数为(D)A.1个 B.0个 C.2个 D.1个或2个解析:∵Δ=(2b)-4ac=(a+c)-4ac,∴Δ=(a-c)≥0.∴A与x轴的交点至少有1个.故选D.5.(2021・重庆卷)在等差数列{an}中,a1=2,a3+a5=10,则a7=(B)222A.5 B.8 C.10 D.14解析:设出等差数列的公差求解或利用等差数列的性质求解.方法一设等差数列的公差为d,则a3+a5=2a1+6d=4+6d=10,所以d=1,a7=a1+6d=2+6=8.方法二由等差数列的性质可得a1+a7=a3+a5=10,又a1=2,所以a7=8. 二、填空题6.在等差数列{an}中,a3+a7=37,则a2+a4+a6+a8=________.解析:根据等差数列的性质,a2+a8=a4+a6=a3+a7=37. ∴原式=37+37=74. 答案:747.(2021・广东卷)在等差数列{an}中,已知a3+a8=10,则3a5+a7=________.解析:由a3+a8=10得a1+2d+a1+7d=10,即2a1+9d=10, 3a5+a7=3(a1+4d)+a1+6d=4a1+18d=2(2a1+9d)=20.答案:208.在等差数列{an}中,a3=50,a5=30,则a7=________.解析:2a5=a3+a7,∴a7=2a5-a3=2×30-50=10. 答案:10 三、解答题9.在等差数列{an}中,已知a1+a6=12,a4=7. (1)求a9;(2)求此数列在101与1 000之间共有多少项.解析:(1)设首项为a1,公差为d,则2a1+5d=12, a1+3d=7,解得a1=1,d=2,∴a9=a4+5d=7+5×2=17.(2)由(1)知,an=2n-1,由101<an<1 000知 101<2n-1<1 000, 1 001∴51<n<. 2∴共有项数为500-51=449.111110.已知数列{an}中,a1=,=+,求an.2an+1an3111?1?111n+5解析:由=+知??是首项为2,公差为的等差数列,∴=2+(n-1)×=. an+1an3?an?3an33∴an=3*(n∈N). n+5?能力升级一、选择题11.数列{an}的首项为3,{bn}为等差数列,且bn=an+1-an(n∈N),若b3=-2,b10=12,则a8=(B)A.0 B.3 C.8 D.11解析:由b3=-2和b10=12得b1=-6,d=2,∴bn=2n-8,即an+1-an=2n-8,由叠加法得(a2-a1)+(a3-a2)+(a4-a3)+…+(a8-a7)=-6-4-2+0+2+4+6=0.∴a8=a1=3.12.等差数列{an}中,前三项依次为:151,,,则a101等于(D) x+16xx*12A.50 B.13 332C.24 D.83解析:由11511+=2×解得x=2,故知等差数列{an}的首项为,公差d=,故a101x+1x6x31211262=a1+100d=+100×==8. 3123313.已知数列-1,a1,a2,-4与数列1,b1,b2,b3,-5各自成等差数列,则等于(B)11A. B. 4211C.- D.-24解析:设数列-1,a1,a2,-4的公差是d,则a2-a1=d==-2,故知-4-(-1)-5+1=-1,b2=4-12a2-a1b2a2-a11=. b22二、填空题14.设数列{an},{bn}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=________. 21-714解析:∵{an},{bn}都是等差数列,∴{an+bn}也是等差数列,其公差为==7.22∴a5+b5=7+(5-1)×7=35. 答案:3515.已知递增的等差数列{an}满足a1=1,a3=a2-4,则an=________.解析:利用等差数列的通项公式求解.设等差数列公差为d,则由a3=a2-4,得1+2d=(1+d)-4,∴d=4.∴d=±2.由于该数列为递增数列,∴d=2.∴an=1+(n-1)×2=2n-1(n∈N).答案:2n-1(n∈N) 三、解答题16.等差数列{an}中,a1+a4+a7=15,a2a4a6=45,求数列{an}的通项公式.解析:由题设条件可得*2222??a1+a1+3d+a1+6d=15,? ?(a1+d)(a1+3d)(a1+5d)=45,???a1=-1,??d=2??a1=11,??d=-2.解得?或?*∴数列{an}的通项公式为an=2n-3或an=13-2n,n∈N. 17.已知111222,,是等差数列,求证:a,b,c是等差数列. b+cc+aa+b112+=, b+ca+bc +a证明:由已知条件,得∴2b+a+c2=. (b+c)(a+b)c+a∴(2b+a+c)(a+c)=2(b+c)(a+b).∴a+c=2b,即a,b,c是等差数列.222222感谢您的阅读,祝您生活愉快。
苏教版高中数学必修五高一测试题—数列的的概念及表示.doc
高中数学学习材料唐玲出品高一数学测试题—数列的的概念及表示一、选择题:1、有下列5个命题:①数列0,1,0,-1与数列-1,0,1,0是相同的数列; ②数列{a n }中不能有相等的项;③数列2,4,6,8…可表示为{2,4,6,8…}; ④数列1,3,5…,2n -1,…可表示为{2n -1}; ⑤数列1,2,3…不一定是无穷递增数列. 其中正确命题的个数为 ( )A .1B .2C .3D .42、已知数列1, 5 , 3, 13 ,…,则5 在这个数列中的项数为 ( )A .5B .6C .7D .83、已知数列a n =1562+n n,则数列{a n }中最大的项为 ( )A .12B .13C .12或13D .不存在4、数列35, 810, b a +17 , 24b a - ,……中,有序数对(a,b)可以是( ) A .( 21,-5)B.(16,-1)C .( -241,211) D .(241,-211 )5、已知S k 表示数列{a k }前k 项和,且S k + S k+1 = a k+1 (k ∈N*),那么此数列是( ) A .递增数列 B . 递减数列 C .常数列 D . 摆动数列6、有穷数列1, 2 3, 2 6, 29, …,2 3 n + 6的项数是 ( ) A .3n+7 B .3n+6 C .n+3 D .n+27、数列{a n }中,a 1=1,对所有的n ≥2,都有a 1a 2a 3 ……a n =n 2,则a 3 +a 5等于 ( )A .1661B .925 C .1625 D .15318、已知数列{a n }的通项公式 a n = 9998--n n (n ∈N*),则数列{a n }的前30项中最大项为( )A .a 30B .a 10C .a 9D .a 1二、填空题: 9、数列23,1 , 85,83,……的通项公式a n =_____. 10、已知数列{a n }的前n 项S n 是n 的二次函数,且它的前三项依次是-2,2,6,那么a 100=_____. 11、己知数列{a n },且满足log 2 (S n +1)= n+1.则通项a n =_____ . 12、已知a n =a n -2+a n -1(n ≥3),a 1=1,a 2=2,b n =1+n na a ,则数列{b n }的前四项依次是 ______________. 三、解答题:13、根据下面各数列的前几项的值,写出数列的一个通项公式.①2,3,5,9,17,33 …… ② 2, 5, 10,17 …… ③53 ,-85, 117 ,-149, 1711……14、已知数列{a n }中,a n = n 2+λn(n ∈N*),且a n+1 >a n 对任意n ∈N*恒成立,求实数λ的取值范围.15、设函数f(x)= log 2 x -log x 2 (0<x<1),数列a n 满足f(2a n)=2n(n=1,2,3,……) ①求数列{a n }的通项公式; ②判定数列{a n }的单调性.16、有固定项的数列{a n }的前n 项的和S n =2n 2+n,现从中抽去某一项(不包括首项、末项)后,余下的项的平均值是79. ①求数列{a n }的通项a n ;②求这个数列的项数,抽取的是第几项?高一数学测试题—参考答案数列的概念一、BCCDC CAB二、(9)1634112+-n n (10)394 (11)⎩⎨⎧≥==)2(2)1(3n n a n n (12)85,53,32,21三、(13)①联想到数列1,4,8,16,32……即{}12-n ,可知数列的通项121+=-n na②数列{}16,9,4,1:2n……,可知数列的通项a n=12+n ③分母5,8,11,14,17……为等差数列,故通项为3n+2.分子3,5,7,9,11……也为等差数列,故通项为2n+1.2312)1(1++-=∴+n n a n n 通项 (14)分析:对任意的n 都有,1n n a a >+即指数列是单调递增的.可直接代入求λ的取值范围.解:".":.3.3)]12([1,)]12([)12()1()1(,max max 1*221分离参数法式用到了本题的解恒成立的不等注故时有显然当恒成立等式不所以要使得对任意->-=+-=+->⇔>∈+->⇔+>+++∴>++λλλλλn n n a a N n n n n n n a a n n n n(15)①由已知得)3,2,1(1,0,1020.1.02,21,22log 12log 221222 =+-=∴<<<<+±==-=-∴=--n n n a a x n n a na a n a a n n n a n n n nn a a nnn 即解得②),3,2,1(011)1()1(111)1()1(22221 =<<++++++=+-++-+=+n a n n n n n n n n a a n n 而n n a a >∴+1,可知数列{}n a 是递增数列.注:数列是一类特殊的函数,判定数列的单调性与判定函数的单调性的方法是相同的,只需比较a n+1与a n 的大小(16)解:①由S n =2n 2+2n,得a 1=S 1=3.当n ≥2时,a n =S n -S n -1=4n -1.显然a 1满足通项,故数列{}n a 的通项公式是a n =4n -1.所以{}n a 是递增的等差数列,公差d=4.②设抽取的是第k 项(1<k<n ),则S n -a k =79(n -1),得由,.79782)1(79)2(122⎩⎨⎧<>+-=--+=∴n kk k a a a a n n n n n a 38<n<40,结合n {}n k a k k a n N 故数列解得由取.20,14793978392.39,2*=-=+⨯-⨯=∴=∈有39项,抽取的是第20项.。
新高中数学(苏教版,必修五)同步练习:2.12.1数列(1)(含答案解析)
第2章数列§2.1 数列 ( 一)课时目标 1.理解数列及其相关观点; 2.理解数列的通项公式,并会用通项公式写出数列的随意一项; 3.关于比较简单的数列,会依据其前 n 项写出它的通项公式.1.依照必定序次摆列的一列数称为______,数列中的每个数叫做这个数列的____.数列中的每一项都和它的序号相关,排在第一位的数称为这个数列的第 1 项 ( 往常也叫做____项),排在第二位的数称为这个数列的第 2 项,,排在第n 位的数称为这个数列的第 ____项.2.数列的一般形式能够写成a1, a2,, a n,,简记为______.3.假如数列 {a n} 的第 n 项与序号 n 之间的关系能够用一个公式来表示,那么这个公式叫做这个数列的 ______公式.一、填空题1.已知数列 {a n} 的通项公式为a n=1(n∈ N * ),那么1是这个数列的第 ______n n+ 2120项.3n+ 1n为正奇数,则它的前 4 项挨次为 _____.2.已知数列 {a n} 的通项公式为a n=n为正偶数4n- 13.已知数列 {a n} 的通项公式为a n=n2-n- 50,则- 8 是该数列的第 ________项.31,53,7,一个通项公式是 ________.4.,,52117175.数列 0.3,0.33,0.333,0.333 3 ,的一个通项公式是a n= __________.6.设 a n=1+ 1 +1++1(n∈ N *) ,那么 a n+1- a n= ________.n+ 1n+2n+32n7.用火柴棒按以下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数a n与所搭三角形的个数n 之间的关系式能够是______________.8.传说古希腊毕达哥拉斯(Pythagoras,约公元前570 年—公元前 500 年)学派的数学家常常在沙岸上研究数学识题,他们在沙岸上画点或用小石子来表示数.比方,他们将石子摆成如下图的三角形状,就将其所对应石子个数称为三角形数,则第数是 ______.10 个三角形9.由 1,3,5, ,2n - 1, 组成数列 {a n } ,数列 {b n } 知足 b 1= 2,当 n ≥2时, b n = ab n - 1,则 b 6= ________.10.已知数列 {a n } 知足: a 4n - 3= 1,a 4n - 1= 0,a 2n = a n ,n ∈ N * ,则 a 2 009= ________,a 2 014= ________.二、解答题11.依据数列的前几项,写出以下各数列的一个通项公式:(1)- 1,7,- 13,19, (2)0.8,0.88,0.888 ,(3)1, 1,- 5, 13,- 29, 61, 2 48 16 32 64 (4)3, 1, 7 , 9,(5)0,1,0,1 ,2 10 179n 2- 9n +212.已知数列9n2-1;(1)求这个数列的第 10 项;(2)10198是否是该数列中的项,为何?(3)求证:数列中的各项都在区间 (0,1)内;(4)在区间1, 2内有、无数列中的项?如有,有几项?若没有,说明原因.3 3能力提高13.依据以下 5 个图形及相应点的个数的变化规律,试猜想第n 个图中有多少个点.14.在数列 {a n} 中,a1= 1,a2n- a n+1- 1= 0,则此数列的前 2 010 项之和为 ______________.1.与会合中元素的性质对比较,数列中的项也有三个性质:(1)确立性:一个数在不在数列中,即一个数是否是数列中的项是确立的.(2)可重复性:数列中的数能够重复.(3)有序性:一个数列不单与组成数列的“数”相关,并且与这些数的摆列序次也相关.2.并不是全部的数列都能写出它的通项公式.比如,π的不一样近似值,依照精准的程度可形成一个数列3,3.1,3.14,3.141,,它没有通项公式.3.假如一个数列有通项公式,则它的通项公式能够有多种形式.比如:数列-1,1,-1,1,- 1,1,的通项公式可写成a n= (- 1)n,也能够写成a n= (- 1)n+2,还能够写成-1n=2k- 1 ,a n=n= 2k 此中 k∈ N* .1,第 2 章 数 列§2.1 数列 ( 一)答案知识梳理1.数列 项 首n2.{a n }3.通项作业设计 1. 10分析 ∵1= 1,∴ n(n +2) =10×12,∴ n = 10. nn +2 1202. 4,7,10,153. 7分析n 2- n - 50=- 8,得 n = 7 或 n =- 6(舍去 ).4. a n =n +23n + 2 115.3(1- 10n )1- 16.2n + 1 2n + 2分析 ∵ a n = 1+ 1+ 1+ + 1,n + 1 n + 2 n +3 2n∴ a + = 1 + 1 + +1+ 1 + 1 ,n 1n + 2 n +3 2n 2n +1 2n + 2∴ a n +1- a n = 1 + 1 - 1= 1 - 1 .2n + 1 2n + 2 n + 1 2n + 1 2n + 2 7. a n = 2n + 1分析a 1= 3, a 2= 3+ 2= 5, a 3= 3+2+ 2= 7, a 4 =3+ 2+ 2+ 2= 9, ,∴ a n = 2n + 1.8. 55分析三角形数挨次为: 1,3,6,10,15, ,第 10 个三角形数为: 1+ 2+ 3+ 4+ + 10= 55.9. 33分析∵ b n = ab n -1,∴ b 2= ab 1= a 2= 3,b 3= ab 2= a 3= 5, b 4= ab 3= a 5= 9,b 5= ab 4= a 9= 17, b 6= ab 5= a 17= 33.10.1分析a2 009=a4×503-3=1,a2 014=a1 007=a252×4-1=0.11.解 (1) 符号问题可经过 (- 1)n或 (- 1)n +1 表示,其各项的绝对值的摆列规律为:后面的数的绝对值总比前方数的绝对值大n *6,故通项公式为 a n = (- 1) (6n - 5)(n ∈ N ). (2)数列变形为 8 8-0.01)8 0.001), ,∴ a n = 8 1- 1 *(1- 0.1), (1 , (1- 910n (n ∈ N ).9 99(3)各项的分母分别为1, 2, 3,42,3,4 项的分子分别比分母少3.所以把第 12 2 2 2 , 易看出第 2- 312342 - 32 -32-3 2 - 3项变成-2 ,所以原数列可化为-21 , 22 ,-23 ,24 , ,∴ a n = (- 1) n 2n - 3 *).· n (n ∈ N2(4)将数列一致为 3,5, 7 , 9, 关于分子3,5,7,9, ,是序号的 2倍加 1,可得分子25 1017的通项公式为 b n = 2n + 1,关于分母2,可2,5,10,17, 联想到数列 1,4,9,16 即数列 {n } 得分母的通项公式为c n = n 2+ 1,∴可得它的一个通项公式为a = 2n 2+ 1*).nn + 1 (n ∈ N0 n 为奇数n- 1 (n ∈N *)或 a n = 1+cos n(5)a n =n 为偶数或 a n =1+12 29n 2- 9n + 23n - 1 3n - 2 3n -2 12. (1)解 设 f(n) ==3n -13n +1=9n 2- 13n +1.令 n =10,得第 10 项 a 10= f(10) = 2831.π * (n ∈N ).3n - 298(2)解令= ,得 9n =300.此方程无正整数解,所以98不是该数列中的项.101(3)证明∵a n =3n - 2 3n + 1- 33,== 1-3n + 13n + 13n + 1又 n ∈N *,∴ 0< 3<1 ,3n+ 1∴ 0<a n <1.∴数列中的各项都在区间(0,1)内.7(4)解13n - 2 2 ,则 3n +1<9n - 6n>67 8.令 <a n = 3n + 1 < ,即8.∴ <n<3 3 9n - 6<6n +26 3n<3又∵ n ∈ N * ,∴当且仅当 n = 2 时,上式建立,故区间 1 2 3,3 上有数列中的项,且只有一4项为 a 2=7.13.解 图 (1) 只有 1 个点,无分支;图 (2)除中间 1个点外,有两个分支,每个分支有 1个点;图 (3)除中间 1 个点外,有三个分支,每个分支有 2 个点;图 (4)除中间有四个分支,每个分支有 3 个点;;猜想第 n 个图中除中间一个点外,有1 个点外,n 个分支,每个分支有 (n- 1)个点,故第n 个图中点的个数为1+ n(n- 1)= n2-n+ 1. 14.- 1 0032分析∵ a n+1=a n- 1, a1= 1,∴ a2= 0, a3=- 1, a4= 0, a5=- 1,,n 为奇数时,除a1= 1 外, a n=- 1.∴ S2 010= a1+ [(a2+a3)++ (a2 008+ a2 009)] + a2 010= 1+ (- 1) ×1 004+ 0=- 1 003.。
高一数学数列的概念试题答案及解析
高一数学数列的概念试题答案及解析1.已知数列的前项和为,数列是公比为的等比数列,是和的等比中项. (1)求数列的通项公式;(2)求数列的前项和.【答案】(1);(2).【解析】解题思路:(1)利用已知条件先求出,再求;(2)用错位相减法求数列前n项和.规律总结:1求数列的通项公式一般有三种类型:①利用等差数列、等比数列的基本量求通项公式;②已知数列的首项与递推式,求通项公式;③利用与的关系求通项公式;因为是等差数列,是等比数列,则求的和利用错位相减法.注意点:利用时,一定要验证的式子是否满足的表达式.试题解析:(1)∵是公比为的等比数列,∴,∴,从而,,∵是和的等比中项∴,解得或,当时,,不是等比数列,∴.∴,当时,,∵符合,∴;(2),,,两式相减,得,.【考点】1.已知求;2.错位相减法.2.已知数列{an }是等差数列,数列{bn}是等比数列,且对任意的n∈N*,都有a1b1+a2b2+a3b3+···+an bn=n·2n+3.(1)若{bn }的首项为4,公比为2,求数列{an+bn}的前n项和Sn;(2)若a1=8.①求数列{an }与{bn}的通项公式;②试探究:数列{bn}中是否存在某一项,它可以表示为该数列中其它r(r∈N,r≥2)项的和?若存在,请求出该项;若不存在,请说明理由.【答案】(1)Sn =2n+2+n2+3n-4(2)①an=4n+4,bn=2,②不存在【解析】(1)条件“a1b1+a2b2+a3b3+···+anbn”实质为数列前n项的和,所以按已知求方法进行化简.∵a1b1+a2b2+a3b3+···+anbn=n·2n+3∴a1b1+a2b2+a3b3+···+a n-1b n-1=(n-1)·2n+2(n≥2) 两式相减得:an bn=n·2n+3-(n-1)·2n+2=(n+1)·2n+2(n≥2) 而当n=1时,a1b1=24适合上式,∴an bn=(n+1)·2n+2 (n∈N*)∵{bn}是首项为4、公比为2的等比数列∴bn=2n+1∴a n=2n+2,∴{an +bn}的前n项和Sn=+=2n+2+n2+3n-4(2)①由(1)有anbn=(n+1)·2n+2,设an =kn+b,则bn=∴bn-1=(n≥2) 设{b n}的公比为q,则==q对任意的n≥2恒成立,即k(2-q)n2+b(2-q)n+2(b-k)=0对任意的n≥2恒成立,∴又∵a 1=8,∴k +b =8∴k =b =4,∴a n =4n +4,b n =2n ②存在性问题,一般从假设存在出发,有解就存在,无解就不存在.本题从范围角度说明解不存在. 解:(1)∵a 1b 1+a 2b 2+a 3b 3+···+a n b n =n·2n+3 ∴a 1b 1+a 2b 2+a 3b 3+···+a n -1b n -1=(n -1)·2n+2 (n≥2) 两式相减得:a n b n =n·2n+3-(n -1)·2n+2=(n +1)·2n+2 (n≥2) 而当n =1时,a 1b 1=24适合上式,∴a n b n =(n +1)·2n+2 (n ∈N*) ∵{b n }是首项为4、公比为2的等比数列 ∴b n =2n+1 ∴a n =2n +2,∴{a n +b n }的前n 项和S n =+=2n+2+n 2+3n -4 (2)①设a n =kn +b ,则b n =,∴b n -1=(n≥2)设{b n }的公比为q ,则==q 对任意的n≥2恒成立,即k(2-q)n 2+b(2-q)n +2(b -k)=0对任意的n≥2恒成立, ∴∴又∵a 1=8,∴k +b =8∴k =b =4,∴a n =4n +4,b n =2n②假设数列{b n }中第k 项可以表示为该数列中其它r 项的和,即,从而,易知k≥t r +1∴k <t r +1,此与k≥t r +1矛盾,从而这样的项不存在. 【考点】已知求,等差数列与等比数列基本性质3. 数列{}中,,则为___________. 【答案】19【解析】由已知可得,所以,,。
苏教版数学必修五2.1数列及等差数列的概念(习题+解析)
苏教版数学必修五2.1数列及等差数列的概念(习题+解析)高中数学 数列及等差数列的概念*1. 已知数列{a n }的通项公式为a n =-n 2+17n +8,则数列的最大项的值为________。
*2. 已知数列{a n }满足1111+--+++n n n n a aa a=n (n 为正整数),且a 2=6,则数列{a n }的一个通项公式为________。
*3. 已知数3,3,15,21,…,那么9是数列的第______项。
4. 在-1和8之间插入两个数a ,b ,使这四个数成等差数列,则公差为________。
**5. 数列{a n }满足a n +1=⎪⎪⎩⎪⎪⎨⎧<<-<<,121,12,210,2n n n n a a a a 若a 1=76,则a 20的值为________。
**6. 设函数f (x )=b x -1+2,若a ,b ,c 成等差数列(公差不为零),则f (a )+f (c )=________。
*7. 数列{a n }中,a n =1235lg+n ,判断该数列是否4. 3 解析:由已知a -(-1)=b -a =8-b =d ,∴8-(-1)=3d , ∴d =3。
5. 75 解析:逐步计算,可得a 1=76,a 2=712-1=75,a 3=710-1=73,a 4=76,a 5=712-1=75,…,这说明数列{a n }是周期数列,T =3,而20=3×6+2,所以a 20=a 2=75。
6. 4 解析:由已知,得b -a =c -b ,∴c -b =-(a -b ),∴f (a )+f (c )=b a -1+2+b c -1+2=b c b a -+-11+4=0+4=4。
7. 解:∵a n =lg1235+n ,∴a n +1=lg 3235+n ,∴a n +1-a n =lg 3235+n -lg1235+n=lg (53351232++⨯n n )=lg321233++n n =lg231=lg 31=-lg3, ∴数列{a n }是等差数列。
苏教版必修5高中数学21《数列》练习题
2。
1 数列1.设A、B是两个集合,按照某一法则f,对于集合A中的每一个元素,集合B中都有唯一确定的元素和它对应,那么,法则f叫做集合A到集合B的映射。
2。
设函数f(x)=x(x∈R),则函数f(x)的图象是一条直线。
3.设函数f(x)=x(x∈N*),则函数f(x)的图象是一系列的点,它们分布在第一象限,且位于直线y=x上.4.设函数f(n)=错误!(n∈N*),则函数f(n)的图象是分布在函数f(x)=错误!(x>0)的图象上的一系列的点.5。
记a n=错误!(n∈N*),则a n就是以n为自变量的函数,若将n=1,2,3,4,…的函数值一一列出,这样的一列数就是一个数列.6.按照一定次序排列的一列数叫做数列。
7。
数列1,错误!,错误!,错误!,错误!,…中,错误!是数列中的第4项,这个数4就称为项数,该数列中项数是5的项是错误!。
8.数列a1,a2,a3,a4…,a n,…,简记为{a n},其中排在数列第一位的数a1称为数列的首项,a n是数列中的第n项,称为数列的通项.9。
项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列。
10。
如果a n+1>a n(n<∈N*),则该数列为单调递增数列.11。
如果数列的每一项都是同一个常数,这样的数列叫做常数列。
12.数列{a n}的第n项a n与项数n之间的关系可以用一个公式来表示,这个公式叫做数列的通项公式.13。
数列与函数的关系:数列可以看作以正整数集N*(或它的有限子集{1,2,…,k})为定义域的函数,当自变量从小到大依次取值时所对应的一列函数值14。
数列的表示方法.(1)数列的表示方法:通项公式法、列表法、图象法.(2)数列可用图象来表示,在平面直角坐标系中,以序号n为横坐标,相应的项a n为纵坐标描点画图,其图象是一些孤立的点,它们位于第一象限或第四象限或x轴的正半轴.15。
数列单调性的判断,依据a n+1与a n的大小,当a n+1>a n时,为递增数列;当a n+1<a n 时,为递减数列。
苏教版必修五2.1数列的通用项公式及性质(练习及答案)
数学·必修5(苏教版)2.1 数列的通项公式及性质情景导入:1.2019年第16届广州亚运会中国代表团夺得金、银、铜牌数分别为:199,119,98.,2.2006年世界几个主要大国:美国、日本、德国、英国、中国、法国、意大利的万亿美元分别为:14.5,4.66,2.73,2.23,2.05,1.97,1.71.,3.2019年7月国内某企业一科室7人的工资如下单位:元:,2500,2600,2700,2800,2900,3000,3100.,以上这些例子中的数字有规律吗?1、2与3有共同点吗?不同点是什么?►基础巩固一、选择题1.下列A.f(n)=2n-1(n∈N*)是数列的一个通项公式B.数列通项公式是一个函数关系式C.任何一个数列中的项都可以用通项公式来表示D.数列中有无穷多项的数列叫做无穷数列解析:考查数列的定义与特点.答案:C2.下列说法中正确的是( )A.数列2,3,5可表示为{2,3,5}B.数列2,4,6,8与数列8,6,4,2是相同的数列C.集合{1,3,5,7}与集合{7,5,3,1}是相同的集合D.数列1,3,5,7,…可记为{2n+1}(n∈N*)解析:考查数列的定义及数列与数集的区别.答案:C3.(2018·山东师大附中模拟题)数列{a n}中,a1=1,a n+1=1a n+1,则a4=( )数列A.53B.43 C .1 D.23[:解析:a 1=1,a 2=1a 1+1=2,a 3=1a 2+1=32,a 4=1a 3+1=53. 答案:A4.数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧ 2 =,n 2 ,则这个数列的前3项是( ) A .1,4,9 B .2,4,9C .2,1,4D .2,6,11解析:考查数列的通项.答案:B5.在数列2,5,22,11,…中,25( )A .是数列中的第5项B .是数列中的第6项C .是数列中的第7项D .不是数列中的项解析:观察法求数列通项公式与项.答案:C二、填空题6.数列{a n }的通项公式为a n =(-1)n 12n +1,则a 10=________;a 2n +1=________.解析:a 10=(-1)1012×10+1=121, a 2n +1=(-1)2n +11++1=-14n +3. 答案:121 -14n +37.已知a n =n 2-7n +6,则从第________项起{a n }的各项为正数.解析:由n 2-7n +6>0得n <1或n >6,而n∈N *,∴n>6.答案:78.数列2,4,6,8,…的第2 014项是________.解析:∵a n =2n ,∴a 2 014=2×2 014=4 028.答案:4 028三、解答题9.已知数列 {a n }的通项公式a n =n n +1,计算出该数列前5项的积.解析:a 1×a 2×a 3×a 4×a 5=12×23×34×45×56=16.10.已知数列{a n }满足a 1=1,a n +1=2a n +1,n∈N *,写出这个数列的前5项,并猜测数列的通项公式.解析:a 1=1,a 2=2×1+1=3,a 3=2×3+1=7,a 4=2×7+1=15,a 5=2×15+1=31,猜测a n =2n -1.►能力升级一、选择题11.在数列a 1,a 2,a 3,a 4,…,a n ,…的每相邻两项中插入4个数,构成一个新数列,则新数列的第36项( )A .不是原数列的项B .是原数列的第7项C .是原数列的第8项D .是原数列的第9项解析:在数列中插入四个数后,原数列中的k 项变为新数列中的5(k -1)+1项.依题意得,5(k -1)+1=36,解得k =8.故选C.答案:C12.数列1,-1,-1,1,1,-1,-1,1,…的一个通项公式可以是( )A .a n =2sin ⎝ ⎛⎭⎪⎫n π2+π4B .a n =2cos ⎝ ⎛⎭⎪⎫n π2+π4 C .a n =12sin ⎝ ⎛⎭⎪⎫n π2+1 D .a n =-1n +1+12解析:令n =1,2,3,检验可知,数列的通项为a n =2sin ⎝ ⎛⎭⎪⎫n π2+π4. 答案:A13.已知数列1,12,21,13,22,31,14,23,32,41,…,则56是此数列中的( ) A .第48项 B .第49项C .第50项D .第51项解析:将数列分为第1组1个,第2组2个,…,第n 组n 个:(1),⎝ ⎛⎭⎪⎫12,21,⎝ ⎛⎭⎪⎫13,22,31,…,⎝ ⎛⎭⎪⎫1n ,2n -1,…,n 1,第n 组中每个数分子分母的和为n +1,∴56为第10组中的第5个数,其项数为(1+2+3+…+9)+5=50. 答案:C二、填空题14.数列32,83,154,245,356,487,…的一个通项公式为________.解析:数列的分母具有明显规律,因而只要进一步观察分子,发现分母比分子的平方小1,故知数列的通项公式为a n =+2-1n +1=n 2+2n n +1(n∈N *). 答案:a n =n 2+2n n +1(n∈N *)15.求数列1,54,53,178,135,…的一个通项公式为________________________________________________________________________.解析:围绕分母来做文章,知道只要将奇数项的分子、分母同时扩大两倍,则可看出分母是2的倍数,故知通项a n =n 2+12n(n∈N *). 答案:a n =n 2+12n(n∈N *)三、解答题16.已知数列{a n }的通项公式为a n =3n -23n +1. (1)求证:0<a n <1.解析:(1)证明:∵a n =3n -23n +1=1-33n +1. 又∵n∈N *,∴3n+1>3,∴0<33n +1<1, ∴0<1-33n +1<1,即0<a n <1.(2)在区间⎝ ⎛⎭⎪⎫13,23内有无数列中的项?若有,有几项?若没有,说明理由.解析:(2)令13<a n <23,即13<1-33n +1<23. ∴13<33n +1<23, ∴92<3n +1<9, ∴76<n <83. ∵n∈N *,∴n=2,即在区间⎝ ⎛⎭⎪⎫13,23内有数列中的项,且只有1项,此项为第2项.。
(典型题)高中数学必修五第一章《数列》测试题(有答案解析)(1)
一、选择题1.已知数列{}n a 是等比数列,满足51184a a a =,数列{}n b 是等差数列,且88b a =,则79b b +等于( )A .24B .16C .8D .42.已知数列{}n a 的前n 项和是n S ,且21n n S a =-,若()0,2021n a ∈,则称项n a 为“和谐项”,则数列{}n a 的所有“和谐项”的和为( ) A .1022B .1023C .2046D .20473.已知数列{}n a 为等比数列,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则123n a a a a ⋅⋅⋅⋅⋅的最大值为( ) A .5B .512C .1024D .20484.在正项等比数列{}n a 中,若3788a a a =,2105a a +=,则公比q =( ) A .122B .122或1212⎛⎫ ⎪⎝⎭C .142D .142或1412⎛⎫ ⎪⎝⎭5.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51016.已知数列{}n a 的前n 项的和为n S ,且()23n n S a n n N *=-∈,则( ) A .{}n a 为等比数列 B .{}n a 为摆动数列 C .1329n n a +=⨯-D .6236n n S n =⨯--7.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019B .2020C .2021D .20228.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的底层共有灯( )A .64盏B .128盏C .192盏D .256盏9.已知数列{}n a 的通项公式为()*(1)1n a n N n n n n =∈+++,其前n 项和为n S ,则在数列1S ,2S …,2019S 中,有理数项的项数为( ) A .42B .43C .44D .4510.公元前四世纪,毕达哥拉斯学派对数和形的关系进行了研究.他们借助几何图形(或格点)来表示数,称为形数.形数是联系算术和几何的纽带.如图所示,数列1,6,15,28,45,…,从第二项起每一项都可以用六边形表示出来,故称它们为六边形数,那么该数列的第11项对应的六边形数为( )A .153B .190C .231D .27611.已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是( ) A .[40,25]--B .[40,0]-C .[25,0]-D .[25,0]-12.已知数列{}n a 满足123n n a a +-=,11a =,3n n b a =+,则10b =( ) A .92B .103C .2048D .1024二、填空题13.数列{}n a 的前n 项和为n S ,已知2(2)n a n n =+,则4S =___________.14.设数列{}n a 中12a =,若等比数列{}n b 满足1n n n a a b +=,且10101b =,则2020a =__. 15.已知递增等比数列{}n a 的前n 项和为n S ,22a =,37S =,数列(){}2log 1+n S 的前n 项和为n T ,则122020111T T T +++=________.16.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 17.在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设某种传染病的基本传染数03R =(注:对于01R >的传染病,要隔离感染者,以控制传染源,切断传播途径),那么由1个初始感染者经过六轮传染被感染(不含初始感染者)的总人数为______(注:初始感染者传染0R 个人为第一轮传染,这0R 个人每人再传染0R 个人为第二轮传染……)18.设无穷数列{a n }的前n 项和为S n ,下列有三个条件: ①m n m n a a a +⋅=; ②S n =a n +1+1,a 1≠0;③S n =2a n +1p(p 是与n 无关的参数).从中选出两个条件,能使数列{a n }为唯一确定的等比数列的条件是______.19.若数列}{n a2*3()n n n N =+∈,则n a =_______.20.记n S 为等差数列{}n a 的前n 项和,若22a =-,714S =,则10a =__________.三、解答题21.已知()23f x x x =-,数列{}n a 前n 项和为n S ,且()n S f n =.(1)求数列{}n a 的通项公式n a ; (2)若数列{}n b 满足43nn na b =⨯,数列{}n b 的前n 项和为n T ,且对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,求实数m 的取值范围. 22.在①119n n a a +-=-,②113n na a +=-③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,并解答.设n S 是数列{}n a 的前n 项和,且19a =,__________,求{}n a 的通项公式,并判断n S 是否存在最大值,若存在,求出最大值:若不存在,说明理由. 注:如果选择多个条件分别解答,按第一个解答计分23.在公差为d 的等差数列{}n a 中,已知110a =,且1a ,222a +,35a 成等比数列. (1)求数列{}n a 的通项公式; (2)若0d <,93n n na b -=,求数列{}n b 的前n 项和n S . 24.已知数列{}n a 的前n 项和为n S ,且n nS a 和2n a 的等差中项为1. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设41log n n b a +=,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 25.已知正项等比数列{}n a ,24a =, 1232a a a +=;数列{}n b 的前n 项和n S 满足n n S na =.(Ⅰ)求n a ,n b ;(Ⅱ)证明:312412233412n n n b b b b a a a a a a a a ++++++<. 26.已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n A ,最小值记为n B ,令nn nA bB =. (1)若2(1,2,3,)n a n n ==,写出1b ,2b ,3b 的值.(2)证明:1(1,2,3,)n n b b n +≥=.(3)若{}n b 是等比数列,证明:存在正整数0n ,当0n n 时,n a ,1n a +,2n a +是等比数列.【参考答案】***试卷处理标记,请不要删除一、选择题 1. C 解析:C 【分析】利用等比数列和等差数列的性质计算. 【详解】∵数列{}n a 是等比数列,∴2511884a a a a ==,又80a ,∴84a =,又{}n b 是等差数列,∴7988228b b b a +===. 故选:C . 【点睛】关键点点睛:本题考查等差数列与等比数列的性质,掌握等差数列与等比数列的性质是解题关键.对正整数,,,m n p l ,若m n p l +=+,{}n a 是等差数列,则m n p l a a a a +=+,若{}n a 是等比数列,则m n p l a a a a =,特别地若2m n p +=,{}n a 是等差数列,则2m n p a a a +=,若{}n a 是等比数列,则2m n p a a a =.2.D解析:D 【分析】由1(2)n n n a S S n -=-≥求出{}n a 的递推关系,再求出1a 后确定数列是等比数列,求出通项公式,根据新定义确定“和谐项”的项数及项,然后由等比数列前n 项和公式求解. 【详解】当2n ≥时,11121(221)2n n n n n n n a S S a a a a ---=--==---,∴12n n a a -=,又11121a S a ==-,11a =,∴{}n a 是等比数列,公比为2,首项为1, 所以12n na ,由122021n n a -=<得110n -≤,即11n ≤,∴所求和为1112204712S -==-.故选:D . 【点睛】关键点点睛:本题考查数列新定义,考查等比数列的通项公式与前n 项和公式,解题思路是由1(2)n n n a S S n -=-≥得出递推关系后确定数列是等比数列,从而求得通项公式.解题关键是利用新定义确定数列中“和谐项”的项数及项.3.C解析:C 【分析】用1a 和q 表示出2a 和3a 代入2312a a a ⋅=求得4a ,再根据3474422a a a a q +=+,求得q ,进而求得1a 到6a 的值,即得解. 【详解】2231112a a a q a q a ⋅=⋅=42a ∴=3474452224a a a a q +=+=⨯12q ∴=,41316a a q == 故1415116()2222n n n n a ---=⨯=⨯=,所以123456116,8,4,2,1,12a a a a a a ======<, 所以数列的前4或5项的积最大,且最大值为16842=1024⨯⨯⨯. 故选:C 【点睛】结论点睛:等比数列{}n a 中,如果11,01a q ><<,求123n a a a a ⋅⋅⋅⋅⋅的最大值,一般利用“1交界”法求解,即找到大于等于1的项,找到小于1的项,即得解.4.D解析:D 【分析】由等比数列的性质可得出关于2a 、10a 的方程组,进而可求得等比数列{}n a 的公比. 【详解】由3788a a a =得()326753111168a q a q a q a qa ⋅⋅===,即62a =.22106()4a a a ∴==,又2105a a +=,解得21014a a =⎧⎨=⎩或21041a a =⎧⎨=⎩,0q >,11181084242a q a ⎛⎫∴=== ⎪⎝⎭或1111884104211242a q a -⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的解题关键就是利用等比数列下标和的性质建立有关2a 、10a 的方程组,通过求出2a 、10a 的值,结合等比数列的基本量来进行求解.5.B解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.6.D解析:D 【分析】利用已知条件求出数列{}n a 的通项公式,再求出{}n a 的前n 项的和为n S ,即可判断四个选项的正误. 【详解】因为23n n S a n =-①,当1n =时,1123a a =-,解得:13a =, 当2n ≥时,()11231n n S a n --=--②,①-②得:1223n n n a a a -=--,即123n n a a -=+,所以()1323n n a a -+=+,所以{}3n a +是以6为首项,2为首项的等比数列,所以1362n n a -+=⨯,所以1623n n a -=⨯-,所以{}n a 不是等比数列,{}n a 为递增数列,故A B 、不正确,()11263623612n n n S n n ⨯-=⨯-=⨯---,故选项C 不正确,选项D 正确.故选:D 【点睛】本题主要考查了利用数列的递推公式求通项公式,考查了构造法,考查了分组求和,属于中档题.7.D解析:D 【分析】 根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】 ∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列. ∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.8.C解析:C 【分析】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列,利用等比数列的前n 项和公式可求得1a 的值,进而可求得塔的底层的灯的盏数7a . 【详解】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列, 由题意可知,一座7层塔所挂的灯的盏数为()71711212738112a S a -===-,解得13a =.因此,塔的底层的灯的盏数为6732192a =⨯=. 故选:C. 【点睛】本题考查等比数列及其前n 项和基本量的计算,考查推理能力与计算能力,属于中等题.9.B解析:B 【分析】本题先要对数列{}n a 的通项公式n a 运用分母有理化进行化简,然后求出前n 项和为n S 的表达式,再根据n S 的表达式的特点判断出那些项是有理数项,找出有理数项的下标的规律,再求出2019内属于有理数项的个数. 【详解】解:由题意,可知:n a ====. 12n n S a a a ∴=++⋯+1=1= 3S ∴,8S ,15S ⋯为有理项,又下标3,8,15,⋯的通项公式为21(2)n b n n =-,212019n ∴-,且2n ,解得:244n ,∴有理项的项数为44143-=.故选:B .【点睛】本题主要考查分母有理化的运用,根据算式判断有理数项及其下标的规律,属于中档题.10.C解析:C 【分析】根据题中所给图与对应的六边形数,记第n 个六边形数为n a ,找出规律,相邻两项差构成等差数列,累加求得22n a n n =-,将11n =代入求得结果.【详解】记第n 个六边形数为n a ,由题意知:11a =,215141a a -==+⨯,32142a a -=+⨯,43143a a -=+⨯,,114(1)n n a a n --=+-,累加得21(1)[543]59[14(1)]212n n n a a n n n -+--=++++-==--,即22n a n n =-,所以21121111231a =⨯-=,故选:C. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有利用累加法求数列的通项公式,属于中档题目.11.D解析:D 【分析】由题设得到5n a a ≥恒成立,参变分离后可得实数a 的取值范围. 【详解】由题设有5n a a ≥恒成立, 故21125555a an n n -+≥-+恒成立即()()()5565a n n n n---≥, 当6n ≥时,有()56a n n ≤-恒成立,故0a ≤, 当14n ≤≤时,有()56a n n ≥-恒成立,故25a ≥-, 当5n =时,a R ∈, 故250a -≤≤. 故选:D. 【点睛】本题考查数列的函数性质:最值问题,此类问题可利用函数的单调性来研究,也可以利用恒成立来研究,本题属于较难题.12.C解析:C 【分析】根据题意得到12n n b b +=,计算得到答案. 【详解】123n n a a +-=,()1323n n a a +∴+=+,即12n n b b +=, 14b =,910422048b ∴=⨯=.故选:C . 【点睛】本题考查了根据数列的递推式求通项公式,确定12n n b b +=是解题的关键.二、填空题13.【分析】先化简再进行相加求解即可【详解】由知故答案为:【点睛】思路点睛:当数列的通项公式中分母是乘积形式求前n 项和时可以考虑裂项相消法即将数列拆分成两项的差的形式再进行求和 解析:1715【分析】 先化简112n a n n =-+,再进行相加求解即可. 【详解】 由21(2)12n a n n n n ==-++知,41234S a a a a =+++11111111111132435462561715⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-=+--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故答案为:1715. 【点睛】思路点睛:当数列的通项公式中,分母是乘积形式,求前n 项和n S 时,可以考虑裂项相消法,即将数列拆分成两项的差的形式,再进行求和.14.【分析】由变形可得进而由累乘法可得结合等比数列的性质即可得解【详解】根据题意数列满足即则有而数列为等比数列则则又由则故答案为:2【点睛】本题考查了等比数列的性质以及应用考查了累乘法求数列通项的应用及解析:【分析】由1n n n a a b +=变形可得1n n n a b a +=,进而由累乘法可得202020192018201711a b b b b a =⋅⋅⋅⋅⋅,结合等比数列的性质即可得解. 【详解】根据题意,数列{}n b 满足1n n n a a b +=,即1n n na b a +=, 则有20202020201920182201920182017112019201820171a a a a ab b b b a a a a a ⎛⎫⎛⎫⎛⎫=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 而数列{}n b 为等比数列,则()2019201920182017110101b b b b b ⋅⋅⋅⋅⋅==,则202011a a =, 又由12a =,则20202a =. 故答案为:2. 【点睛】本题考查了等比数列的性质以及应用,考查了累乘法求数列通项的应用及运算求解能力,属于中档题.15.【分析】首先根据等比数列的性质得到从而得到利用等差数列的求和公式得到再利用裂项法求的值即可【详解】因为所以即解得或又因为数列为递增数列所以所以因为所以故故答案为:【点睛】本题主要考查等差等比数列的求解析:40402021【分析】首先根据等比数列的性质得到21nn S =-,从而得到()2log 1+=n S n ,利用等差数列的求和公式得到()12n n n T +=,再利用裂项法求122020111+++T T T 的值即可.【详解】因为22a =,37S =, 所以31232227S a a a q q=++=++=,即22520q q -+=, 解得12q =-或2q .又因为数列{}n a 为递增数列,所以2q.所以11a =,122112nn n S -==--.因为()22log 1log 2+==nn S n ,()1122…+=+++=n n n T n ,所以()1211211⎛⎫==- ⎪++⎝⎭n T n n n n . 故122020111111112122320202021⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦T T T 140402*********⎛⎫=-=⎪⎝⎭ 故答案为:40402021【点睛】本题主要考查等差、等比数列的求和公式,同时考查裂项法求和,属于中档题.16.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.17.1092【分析】由题意分析传染模型为一个等比数列可解【详解】由题意:所以第六轮的传染人数为所以前六轮被传染的人数为故答案为:1092【点睛】数学建模是高中数学六大核心素养之一在高中数学中应用题是常见解析:1092 【分析】由题意分析,传染模型为一个101,3a q R ===等比数列,可解. 【详解】由题意:101,3a q R ===所以1113n n n a a q --==第六轮的传染人数为7a所以前六轮被传染的人数为771131109213S a --=-=-.故答案为:1092 【点睛】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式: 求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型;18.①③【分析】选①②在①中令在②中令联立方程由方程无解推出矛盾;选①③在③中由通项与前项和之间的关系求出公比在①中令在③中用表示出联立方程求出确定数列;选②③由通项与前项和之间的关系即可作出判断【详解解析:①③ 【分析】选①②,在①中令1m n ==,在②中令1n =联立方程,由方程无解推出矛盾;选①③,在③中由通项与前n 项和之间的关系求出公比,在①中令1m n ==,在③中用12,a a 表示出12,S S 联立方程,求出1,a p 确定数列{}n a ;选②③,由通项与前n 项和之间的关系即可作出判断. 【详解】在①中,令1m n ==,得221a a =;在②中,11n n S a +=+,当2n ≥时, 11n n S a -=+,两式相减,得1n n n a a a +=-,即12n n a a +=;在③中,11112,2n n n n S a S a p p++=+=+,两式相减,得 1122n n n a a a ++=-,即 12n n a a +=,若选①②,则22112,1a a a a ⎧=⎨=+⎩即 2211111,10a a a a =--+=, 2(1)41130∆=--⨯⨯=-<,方程无解,故不能选①②作为条件;若选①③,则由12n n a a +=知,数列{}n a 的公比为2,由 221111221212a a a a p a a a p ⎧⎪=⎪⎪=+⎨⎪⎪+=+⎪⎩得1212a p =⎧⎪⎨=-⎪⎩,所以数列 {}n a 是首项为2,公比为2的等比数列; 若选②③作为条件,则无法确定首项,数列{}n a 不唯一,故不能选②③作为条件. 综上所述,能使数列{}n a 为唯一确定的等比数列的条件是①③. 故答案为:①③ 【点睛】思路点睛:本题考查利用递推关系求数列中的项,涉及等比数列的判定和通项公式,遇到和与项的递推关系时,一般有两种方法:(1)消去和,得到项的递推关系;(2)消去项,得到和的递推关系.19.【分析】有已知条件可得出时与题中的递推关系式相减即可得出且当时也成立【详解】数列是正项数列且所以即时两式相减得所以()当时适合上式所以【点睛】本题考差有递推关系式求数列的通项公式属于一般题 解析:()241n +【分析】有已知条件可得出116a =,2n ≥时()()2*131()n n n N =-+-∈,与题中的递推关系式相减即可得出()241n a n =+,且当1n =时也成立.【详解】数列}{n a2*3()n n n N =+∈4=,即116a =2n ≥()()2*131()n n n N =-+-∈22n =+, 所以()241n a n =+(2n ≥ )当1n =时,116a =适合上式,所以()241n a n =+ 【点睛】本题考差有递推关系式求数列的通项公式,属于一般题.20.14【分析】本题先求再求即可解题【详解】解:因为数列是等差数列所以解得所以故答案为:14【点睛】本题考查等差数列的基本量法是基础题解析:14 【分析】本题先求1a 、d ,再求10a 即可解题. 【详解】解:因为数列{}n a 是等差数列,22a =-,714S =所以217127(71)7142a a d S a d =+=-⎧⎪⎨⨯-=+=⎪⎩,解得142a d =-⎧⎨=⎩, 所以101914a a d =+= 故答案为:14 【点睛】本题考查等差数列的基本量法,是基础题.三、解答题21.(1)24n a n =-;(2)11,,1224⎛⎫⎛⎫+∞⋃-∞- ⎪ ⎪⎝⎭⎝⎭.【分析】(1)易知23n S n n =-,再利用通项与前n 项和关系11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求解.(2)易得2424323n n nn n b --==⨯⨯,1160b =-<,20b =,3n ≥时,0n b >,则n T 的最小值为16-,再根据对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,由()min 16mf x ⎡⎤->⎣⎦求解. 【详解】(1)因为()23f x x x =-,()n S f n =,所以23n S n n =-,当2n ≥时,()()21131n S n n -=---,124n n n a S S n -=-=-, 当1n =时,112a S ==-,也满足24n a n =-, 故24n a n =-.(2)因为24n a n =-,43nn na b =⨯, 所以2424323n n n n n b --==⨯⨯,1160b =-<,20b =, 当3n ≥时,0n b >,故12T T =为n T 的最小值,n T 的最小值为16-, 因为对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,所以()min 16mf x ⎡⎤->⎣⎦, 因为[]2,4x ∈,()2239324f x x x x ⎛⎫=-=-- ⎪⎝⎭,所以()[]2,4f x ∈-, 当0m >时,()min16mf x ⎡⎤->⎣⎦,即126m ->-,解得112m >; 当0m <时,()min16mf x ⎡⎤->⎣⎦,即146m ->,解得124m <-, 0m =时,106->,显然不成立. 故实数m 的取值范围为11,,1224⎛⎫⎛⎫+∞⋃-∞- ⎪ ⎪⎝⎭⎝⎭.【点睛】结论点睛:不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 . 22.答案见解析 【分析】选①:由等差数列通项公式得出通项n a 后,解0n a ≥,满足此不等式的最大的n 使得n S 最大,注意若n a 0=,则有两个值使得n S 最大,选②:由等比数列前n 项和公式得出n S ,由于公比是负数,因此按n 的奇偶性分类讨论求得n S 的最大值;选③:由累加法求得n a ,利用n a 的表达式是n 的二次函数形式,当15n ≥时,0n a >,确定n S 不存在最大值. 【详解】 选①因为119n n a a +-=-,19a =,所以{}n a 是首项为9,公差为19-的等差数列.所以()118291999n a n n ⎛⎫=+-⋅-=-+ ⎪⎝⎭.由182099n -+≥,得82n ≤,即820a ≥ 所以n S 存在最大值,且最大值为81S 或82S , 因为818180181936929S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,所以n S 的最大值为369. 选② 因为113n n a a +=-,19a =,所以{}n a 是首项为9,公比为13-的等比数列. 所以1311933n n n a --⎛⎫⎛⎫=⨯-=- ⎪⎪⎝⎭⎝⎭.1︒当n 为奇数时,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+, 因为271143n ⎛⎫+ ⎪⎝⎭随着n 的增大而减小,所以此时n S 的最大值为19S =; 2︒当n 为偶数的,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭+, 且2712719434n n S ⎛⎫=-<< ⎪⎝⎭, 综上,n S 存在最大值,且最大值为9. 选③因为18n n a a n +=+-,所以18n n a a n +-=-,所以217a a -=-,326a a -=-,…,19n n a a n --=-, 以上1n -个等式相加得()()21791171622n n n n n a a -+---+-==, 因为19a =,所以()2173422n n n a n -+=≥,又19a =也满足上式,所以217342n n n a -+=. 当15n ≥时,0n a >,故n S 不存在最大值. 【点睛】关键点点睛:本题考查数列前n 项和的最大值问题,一种方法是求出n S 的表达式,由函数的性质确定n S 的最大值,一种是利用数列项的性质,如数列是递减的数列,10a >,则满足0n a ≥的最大的n 使得n S 最大.23.(1) 11n a n =-+或46,n a n n N *=+∈;(2)51112423n nn S ⎛⎫=+-⨯ ⎪⎝⎭,n *∈N . 【分析】(1)由123,22,5a a a +成等比数列求得公差后可得通项公式n a ; (2)对23n b b b +++用错位相减法求和.【详解】解:(1)∵123,22,5a a a +成等比数列,∴()2231225a a a +=⋅,整理得2340d d --=,解得1d =-或4d =,当1d =-时,10(1)11n a n n =--=-+; 当4d =时,104(1)46n a n n =+-=+.所以11n a n =-+或46,n a n n N *=+∈.(2)设数列{}n a 前n 项和为n S , ∵0d <,∴1d =-,11n a n =-+23n nnb -=当1n =时,13n S =, 当2n ≥时,2341012233333n n n S -=++++⋅⋅⋅+ 令34122333n n T -=+++,则45111223333n n T +-=+++ 两式相减可得32345111112111122331333333313n n n n n n T -++⎛⎫- ⎪--⎝⎭=+++⋯+-=-- 整理可得11112423nn T ⎛⎫=+-⨯ ⎪⎝⎭, 则511,212423n nn S n ⎛⎫=+-⨯≥ ⎪⎝⎭ 且113S =满足上式,综上所述:51112423n n n S ⎛⎫=+-⨯ ⎪⎝⎭,n *∈N . 【点睛】本题考查求等差数列的通项公式,分组(并项)求和法,错位相减法.数列求和的常用方法:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组(并项)求和法;(5)倒序相加法.24.(Ⅰ)2nn a =;(Ⅱ)22n nT n =+. 【分析】(Ⅰ)利用等差中项的定义得出n S 与n a 的关系,然后由1(2)n n n a S S n -=-≥得出数列{}n a 的递推关系,求出1a 其为等比数列,从而得通项公式;(Ⅱ)用裂项相消法求和n T . 【详解】解:(Ⅰ)因为n n S a 和2n a 的等差中项为1,所以22n n nS a a +=,即22n n S a =-, 当2n 时,1122n n S a --=-.两式相减得1122n n n n S S a a ---=-,整理得12n n a a -=. 在22n n S a =-中,令1n =得12a =,所以,数列{}n a 是以2为首项,2为公比的等比数列,因此1222n nn a -=⨯=.(Ⅱ)411log 2n n n b a ++==. 则114114(1)(2)12+⎛⎫==- ⎪++++⎝⎭n n b b n n n n . 所以11111111244233412222n n T n n n n ⎛⎫⎛⎫=⨯-+-++-=⨯-= ⎪ ⎪++++⎝⎭⎝⎭. 【点睛】方法点睛:本题考查求等比数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法;(4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.25.(Ⅰ)2nn a =;()112n n b n -=+⋅;(Ⅱ)证明见解析.【分析】(1)由题设求出数列{}n a 的基本量,即可确定n a ;再由1n n n b S S -=-确定n b ; (2)用错位相减法整理不等式左侧即可证明. 【详解】(1)设正项等比数列{}n a 的公比为q ,由1232a a a +=,得22q q +=解得2q 或1q =-(舍)又242nn a a =⇒=由n n S na =,得12b =2n ≥时,()()11121212n n n n n n b S S n n n ---=-=⋅--⋅=+⋅则()112n n b n -=+⋅(2)()()11112212222n n n n n n n n b n a a +++++⎛⎫==+ ⎪⋅⎝⎭设31241223341n n n n b b b bT a a a a a a a a ++=++++则()2341111134522222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()341211111341222222n n n T n n ++⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+++++ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭两式相减得()2341211111131112222222n n n T n ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯-+ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭得()2111422n n T n +⎛⎫=-+⋅ ⎪⎝⎭得()112422n n T n +⎛⎫=-+⋅< ⎪⎝⎭【点睛】关键点睛:当数列{}n c 满足n n n c a b =,{}n a 为等差数列,{}n b 为等比数列时,数列{}n c 的前n 项求和可用错位相减法.26.(1)11b =,22b =,33b =;(2)证明见解析;(3)证明见解析 【分析】(1)由{}n a 是单调递增数列可得1n n a b a =即可求出; (2)设1n a k +=,讨论n k B ≤,n n B k A <<和n k A ≥可证明;(3)设{}n b 的公比为q ,且1q ≥,显然1q =时满足;1q >时,由{}n A 是递增数列,{}n B 是递减数列,且{}n B 不能无限减少可得.【详解】(1)2n a n =,可得{}n a 是单调递增数列,1,n n n a B A a ∴==,1111a b a ∴==,2212a b a ==,3313a b a ==, (2)设1n a k +=,n n n A b B =, 若n k B ≤,则+1n n n n nk A A b b B =≥=, 若n n B k A <<,则+1n n n n A b b B ==, 若n k A ≥,则+1n n n nn A k b b B B =≥=, 综上,1(1,2,3,)n n b b n +≥=; (3)设等比数列{}n b 的公比为q ,1111a b a ==,则1n n n n A b q B -==, 由(2)可得1n n b b +≥,则1q ≥,当1q =时,1n nA B =,即n n A B =,此时{}n a 为常数列,则存在01n =,当0n n ≥时,n a ,1n a +,2n a +是等比数列; 当1q >时,{}n A 是递增数列,{}n B 是递减数列,{}n a 是由正整数组成的无穷数列,则数列{}n a 必存在最小值,即存在正整数0n ,0n a 是数列{}n a 的最小值,则当0n n ≥时,0n n B a =, 此时01n n n n n n A a b q B a -===,即01n n n a a q -=, 故当0n n ≥时,n a ,1n a +,2n a +是等比数列;综上,存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +是等比数列. 【点睛】本题考查数列单调性的有关判断,解题的关键是正确理解数列的变化情况,清楚{}n b的变化特点.。
高一数学《必修五》数列测试题(含答案)
7 n 2 , 则 a5 =___________ . n 3 b5
14、数列 a n 的前 n项的和 Sn 3n n 1 ,则此数列的通项公式 a n=_
.
15、数列 a n 中, a1 1, an
1 1 ,则 a4
.
an 1
16、设 Sn 是等差数列 an 的前 n 项和,且 S5 S6 S7 S8 ,则下列结论一定正确的有
3、已知 a
1 ,b
32
1 , 则 a,b 的等差中项为(
32
A)
A. 3
B. 2
1
C.
3
1
D.
2
4、已知等差数列 { a n} 的前 n 项和为 Sn,若 a4 18 a5 ,则 S8 等于( D )
A . 18
B. 36
C. 54
D . 72
5、设 a1,a 2 , a3, a 4成等比数列,其公比为 2,则 2a1 a 2 的值为( A ) 2 a3 a 4
(Ⅱ )若列数{ bn}满足
b1=1, bn+1=bn+ 2an ,求证:
bn
·bn+2
<
b
2 n+1
.
解析:(Ⅰ)由已知得 an+1=an+1
即 an+1-an=1 又 a1=1,所以数列{ an}是以 1 为首项,公差为 故 an=1+( n-1) ×1=n. (Ⅱ ) 由(Ⅰ)知: an=n 从而 bn+1-bn=2n. bn=(bn-bn-1)+( bn-1-bn-2)+ ···+( b2-b1)+b1
,
且
a1
a n , 解得 a1
高中数学苏教版必修5 第2章 数列 单元测试 含解析
(时间:120分钟;满分:160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填在题中横线上)1.数列的通项公式为a n =2n -1,则2 047是这个数列的第________项. 解析:由2n -1=2 047,∴2n =2 048,∴n =11.答案:112.首项为3的等比数列的第n 项是48,第2n -3项是192,则n =________.解析:设公比为q ,则⎩⎪⎨⎪⎧3q n -1=48,3q 2n -4=192⇒⎩⎪⎨⎪⎧q n -1=16,q 2n -4=64⇒q 2=4,得q =±2.由(±2)n-1=16,得n =5.答案:53.已知数列{a n }的前n 项和S n =n 2+2n ,则a n =________.解析:当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=2n +1.当n =1时,a 1=3符合,故a n =2n +1.答案:2n +14.各项不为零的等差数列{a n }中,2a 3-a 27+2a 11=0,则a 7的值为________. 解析:由等差数列的性质知:a 3+a 11=2a 7,∴2a 3-a 27+2a 11=4a 7-a 27=0,∴a 7=0或a 7=4,∵a n ≠0,∴a 7=4.答案:45.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于________.解析:设等差数列的公差为d ,则由a 4+a 6=-6得2a 5=-6,∴a 5=-3.又∵a 1=-11,∴-3=-11+4d ,∴d =2,∴S n =-11n +n (n -1)2×2=n 2-12n =(n -6)2-36, 故当n =6时S n 取最小值.答案:66.已知数列{a n }中,a n ≠0,若a 1=3,2a n +1-a n =0,则a 6=________.解析:∵2a n +1-a n =0,a n ≠0,∴a n +1a n =12, ∴数列{a n }是首项a 1=3,公比q =12的等比数列. ∴a n =a 1q n -1=3×(12)n -1, ∴a 6=3×(12)5=332. 答案:3327.在等比数列{a n }中,若a 1+a 2+…+a n =2n -1,则a 21+a 22+…+a 2n=________.解析:∵a 1=1,a 2=2,∴{a 2n }是以a 21=1,公比为4的等比数列.∴a 21+a 22+…+a 2n =a 21(1-q n )1-q =1-4n 1-4=13(4n -1). 答案:13(4n -1) 8.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=______.解析:∵a 1a 2a 3=5,a 7a 8a 9=10,且{a n }是各项均为正数的等比数列,∴a 2=35,a 8=310.∴a 8a 2=32,即q 6=32. ∴q 3=62.∴a 4a 5a 6=a 35=(a 2q 3)3=(35·62)3=5 2.答案:5 2 9.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=________.解析:设等比数列{a n }的公比为q.∵a 1,12a 3,2a 2成等差数列.∴a 3=a 1+2a 2, ∴a 1q 2=a 1+2a 1q ,∴q 2-2q -1=0,∴q =1± 2.∵各项都是正数,∴q >0,∴q =1+2, ∴a 9+a 10a 7+a 8=q 2=(1+2)2=3+2 2.。
(必考题)高中数学必修五第一章《数列》测试卷(有答案解析)(1)
一、选择题1.设首项为1的数列{}n a 的前n 项和为n S ,且113,2,23,21,n n n a n k k N a a n k k N *-*-⎧+=∈=⎨+=+∈⎩,若4042m S >,则正整数m 的最小值为( )A .14B .15C .16D .172.设等差数列{}n a 前n 项和为n S ,等差数列{}n b 前n 项和为n T ,若11n n S n T n -=+.则55a b =( ) A .23B .45C .32D .543.已知数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,若1234480k k k k a a a a +++++++=,则k =( )A .3B .4C .5D .64.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫⎪⎝⎭D .(1,)-+∞5.设数列{}n a 满足12a =,26a =,且()*2122n n n a a a n N ++-+=∈,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-),则222122018232019a a a ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=( )A .2018B .2019C .2020D .20216.已知数列{}n a 满足()1341n n a a n ++=≥,且19a =,其前n 项之和为n S ,则满足不等式16125n S n --<的最小整数n 是( ) A .5B .6C .7D .87.已知等差数列{}n a 的前n 和为n S ,若1239a a a ++=,636S =,则12(a = ) A .23B .24C .25D .268.已知等差数列{}n a 的前n 项和为n S ,55a =,836S =,则数列11{}n n a a +的前n 项和为( )A .11n + B .1n n + C .1n n- D .11n n -+ 9.已知递增的等差数列{}n a 的前n 项和为n S ,175a a ⋅=,266a a +=,对于n *∈N ,不等式1231111+++⋅⋅⋅+<nM S S S S 恒成立,则整数M 的最小值是( ) A .1B .2C .3D .410.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019B .2020C .2021D .202211.若a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,a ,b ,2-这三个数适当排序后可成等比数列,点(),2a b 在直线2100x y +-=上,则p q +的值等于( ) A .6B .7C .8D .912.已知数列{}n a 满足12a =,*11()12n na n N a +=-+∈,则2020a =( ) A .2B .13 C .12-D .3-二、填空题13.设S n 是数列{}n a 的前n 项和,且*1111,20,3n n n a a S S n N ++=+=∈,则1223910S S S S S S ++⋅⋅⋅⋅⋅+=___________.14.在平面直角坐标系xOy 中,点A 在y 轴正半轴上,点n P 在x 轴上,其横坐标为n x ,且{}n x 是首项为1、公比为2的等比数列,记*1,n n n P AP n N θ+∠=∈.若32arctan 9θ=,则点A 的坐标为________.15.设数列{}n a 的前n 项和为n S ,若1sin 12n n a n π+⎛⎫=+ ⎪⎝⎭,则2018S =______. 16.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 17.已知数列{}n a 的前n 项和是n S ,若111,n n a a a n +=+=,则1916S S -的值为________. 18.设无穷数列{a n }的前n 项和为S n ,下列有三个条件: ①m n m n a a a +⋅=; ②S n =a n +1+1,a 1≠0;③S n =2a n +1p(p 是与n 无关的参数). 从中选出两个条件,能使数列{a n }为唯一确定的等比数列的条件是______. 19.等差数列{}n a 的前n 项和为n S ,且4873a a a +-=_________. 20.若等差数列{}n a 中,10a <,n S 为前n 项和,713S S =,则当n S 最小时n =________. 三、解答题21.设数列{}n a 满足()121*4n n a n N a +=-∈-,其中11a =. (1)证明:112n a ⎧⎫-⎨⎬-⎩⎭是等比数列; (2)令32n n n a b a -=-,设数列(){}21-⋅n n b 的前n 项和为n S ,求使2021n S <成立的最大自然数n 的值.22.设数列{}n a ,{}n b 是公比不相等的两个等比数列,数列{}n c 满足*,n n n c a b n =+∈N .(1)若2,3nnn n a b ==,是否存在常数k ,使得数列{}1n n c kc +-为等比数列?若存在,求k 的值;若不存在,说明理由;(2)证明:{}n c 不是等比数列.23.已知数列{}n a 满足11a =,13(1)n n na n a +=+. (1)设nn a b n=,求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .24.已知递增等比数列{}n a 满足:12a =,416a = . (1)求数列{}n a 的通项公式;(2)若数列{}n b 为等差数列,且满足221b a =-,3358b a =,求数列{}n b 的通项公式及前10项的和;25.设数列{}n a 的前n 项和为n S ,______.从①数列{}n a 是公比为2的等比数列,2a ,3a ,44a -成等差数列;②22n n S a =-;③122n n S +=-.这三个条件中任选一个,补充在下面问题中,并作答.(1)求数列{}n a 的通项公式; (2)若21log nn na b a +=,求数列{}n b 的前n 项和n T .26.已知数列{}n a 的前n 项和为21n S n n =++.(1)求这个数列的通项公式; (2)设()11n n n b n a a *+=∈N ,证明:对n *∀∈N ,数列{}n b 的前n 项和524n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据已知递推关系求出数列{}n a 的奇数项加9成等比数列,偶数项加6成等比数列,然后求出2n S 后,检验141615,,S S S 可得. 【详解】当n 为奇数时,122232(3)329n n n n a a a a ---=+=++=+,所以292(9)n n a a -+=+,又1910a +=,所以1359,9,9,a a a +++成等比数列,公比为2,1219102n n a --+=⨯,即1211029n n a --=⨯-,当n 为偶数时,122323326n n n n a a a a ---=+=++=+,所以262(6)n n a a -+=+,又2134a a =+=,所以2469,9,9,a a a +++成等比数列,公比为2,126102n n a -+=⨯,即121026n n a -=⨯-,所以210(12)10(12)9620220151212n n n n S n n n --=-+-=⨯----,714202201572435S =⨯--⨯=,816202201584980S =⨯--⨯=, 7151415243510293706S S a =+=+⨯-=,所以满足4042m S >的正整数m 的最小值为16. 故选:C . 【点睛】关键点点睛:本题考查由数列的递推关系求数列的和.解题关键是分类讨论,确定数列的奇数项与偶数项分别满足的性质,然后结合起来求得数列的偶数项的和2n S ,再检验n 取具体数值的结论.2.B解析:B 【分析】本题首先可令9n =,得出9945S T =,然后通过等差数列的性质得出959S a =以及959T b =,代入9945S T =中,即可得出结果. 【详解】因为11n n S n T n -=+,所以99914915S T -==+, 因为n S 是等差数列{}n a 前n 项和,n T 是等差数列{}n b 前n 项和, 所以()1995992a a S a +==,()1995992b b T b +==, 则95959459S a T b ==,5545a b =, 故选:B. 【点睛】关键点点睛:本题考查等差数列的相关性质的应用,主要考查等差数列前n 项和公式以及等差中项的应用,若等差数列{}n a 前n 项和为n S ,则()12n n n a a S +=,当2m n k +=时,2m n k a a a +=,考查化归与转化思想,是中档题.3.B解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.4.D解析:D【分析】由2n n S a =-利用1112n n n S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321nλ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.5.B解析:B 【分析】由2122n n n a a a ++-+=,可得()2112n n n n a a a a +++---=,214a a -=.利用等差数列的通项公式、累加求和方法、取整函数即可得出. 【详解】2122n n n a a a ++-+=,()2112n n n n a a a a +++∴---=,214a a -=.{}1n n a a +∴-是等差数列,首项为4,公差为2. 142(1)22n n a a n n +∴-=+-=+.2n ∴≥时,()()()112211n n n n n a a a a a a a a ---=-+-+⋯⋯+-+(1)22(1)..2222(1)2n n n n n n +=+-+⋯+⨯+=⨯=+. 2(1)1n n n a n++∴=.∴当2n ≥时,2(1)11⎡⎤++⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦n n n a n . 222122018232019220172019a a a ⎡⎤⎡⎤⎡⎤∴+++=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 故选:B . 【点睛】本题考查了数列递推关系、等差数列的通项公式、累加求和方法、取整函数,考查了推理能力与计算能力,属于中档题.6.C解析:C 【分析】首先分析题目已知3a n+1+a n =4(n ∈N*)且a 1=9,其前n 项和为S n ,求满足不等式|S n ﹣n ﹣6|<1125的最小整数n .故可以考虑把等式3a n+1+a n =4变形得到111-13n n a a +-=-,然后根据数列b n =a n ﹣1为等比数列,求出S n 代入绝对值不等式求解即可得到答案. 【详解】对3a n+1+a n =4 变形得:3(a n+1﹣1)=﹣(a n ﹣1) 即:111-13n n a a +-=- 故可以分析得到数列b n =a n ﹣1为首项为8公比为13-的等比数列. 所以b n =a n ﹣1=8×11-3n -⎛⎫ ⎪⎝⎭a n =8×11-3n -⎛⎫ ⎪⎝⎭+1所以181********n nnS n n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+=-⨯-+ ⎪⎛⎫⎝⎭-- ⎪⎝⎭|S n ﹣n ﹣6|=n11-6-3125⎛⎫⨯< ⎪⎝⎭解得最小的正整数n=7 故选C . 【点睛】此题主要考查不等式的求解问题,其中涉及到可化为等比数列的数列的求和问题,属于不等式与数列的综合性问题,判断出数列a n ﹣1为等比数列是题目的关键,有一定的技巧性属于中档题目.7.A解析:A 【解析】等差数列{}n a 的前n 和为n S ,1239a a a ++=,636S =,11339656362a d a d +=⎧⎪∴⎨⨯+=⎪⎩,解得1a 1,d 2,12111223a =+⨯=,故选A.8.B解析:B 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵55a =,836S = ∴114582836a d a d +=⎧⎨+=⎩∴111a d =⎧⎨=⎩∴n a n =,则11111(1)1+==-++n n a a n n n n ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111111122334111nn n n n -+-+-+⋅⋅⋅+-=-=+++ 故选B.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k =; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++ ()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.9.C解析:C 【分析】先求出等差数列的1a 和d ,由等差数列前n 项和公式得n S ,把1nS 拆成两项的差,用裂项相消法求得和12111nS S S +++,在n 变化时,求得M 的范围,得出结论. 【详解】∵{}n a 是等差数列,∴17266a a a a +=+=,由171765a a a a +=⎧⎨=⎩解得1715a a =⎧⎨=⎩或1751a a =⎧⎨=⎩,又{}n a 是递增数列,∴1715a a =⎧⎨=⎩,715127163a a d --===-, 1(1)(1)(2)233n n n n n n n S na d n --+=+=+=, 121113331324(2)n S S S n n +++=+++⨯⨯+3111111112324112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦31119311122124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭94<, 由不等式1231111+++⋅⋅⋅+<n M S S S S 恒成立,得94M ≥,∴最小的整数3M =. 故选:C . 【点睛】本题考查不等式恒成立问题,考查等差数列的性质,等差数列的通项公式和前n 项和公式,裂项相消法求和,本题属于中档题.10.D解析:D 【分析】根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】 ∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列. ∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.11.D解析:D 【分析】由零点定义得,a b p ab q +==得0,0a b >>,因此2-只能是等比数列的中间项,从而得4ab =,由点(),2a b 在直线2100x y +-=上,得5a b +=,这样可得,p q 值.从而得出结论. 【详解】∵a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,∴,a b p ab q +==,∴0,0a b >>,而a ,b ,2-这三个数适当排序后可成等比数列,只能是2-是,a b 的等比中项,即4ab =,点(),2a b 在直线2100x y +-=上,则22100a b +-=,得5a b +=, 由45ab a b =⎧⎨+=⎩,∴5,4p q ==,9p q +=.故选:D . 【点睛】本题考查函数零点的概念,考查等比数列的定义,考查韦达定理,关键是由题意分析出0,0a b >>.12.D解析:D 【分析】先利用题中所给的首项,以及递推公式,将首项代入,从而判断出数列{}n a 是周期数列,进而求得结果. 【详解】由已知得12a =,2211123a =-=+,32111213a =-=-+, 4213112a =-=--,521213a =-=-, 可以判断出数列{}n a 是以4为周期的数列,故2020505443a a a ⨯===-, 故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点利用递推公式判断数列的周期性,从而求解数列的某项,属于中档题.二、填空题13.【分析】由代入化简求得再结合求和方法计算可得结果【详解】因为所以所以所以又所以数列是以为首项为公差的等差数列所以所以所以所以故答案为:【点晴】由代入化简求得数列是等差数列是解题的关键解析:17【分析】由11n n n a S S ++=-代入化简求得n S ,再结合求和方法计算可得结果. 【详解】因为1120n n n a S S +++= 所以1120n n n n S S S S ++-+= 所以112n n n n S S S S ++-= 所以1112n nS S +-=又11113S a == 所以数列1n S ⎧⎫⎨⎬⎩⎭是以3为首项,2为公差的等差数列, 所以()131221nn n S =+-⨯=+ 所以121n S n =+ 所以111111212322123n n S S n n n n +⎛⎫=⋅=- ⎪++++⎝⎭所以12239101111111111123557192123217S S S S S S ⎛⎫⎛⎫++⋅⋅⋅⋅⋅⋅+=-+-+⋅⋅⋅+-=-=⎪ ⎪⎝⎭⎝⎭ 故答案为:17【点晴】由11n n n a S S ++=-代入化简求得数列1n S ⎧⎫⎨⎬⎩⎭是等差数列是解题的关键. 14.或【分析】设点的坐标利用两角差正切公式求列式解得结果【详解】设因为所以或故答案为:或【点睛】本题考查两角差正切公式等比数列考查综合分析求解能力属中档题解析:(0,2)或(0,16) 【分析】设点A 的坐标,利用两角差正切公式求3tan θ,列式解得结果. 【详解】设(0,),0A a a >,因为233443343,124,128P AP AP OAP O x x θ=-=⨯==⨯=∠∠=∠所以238442284t 21an 39a a a a a a aθ-===∴=++⋅或16 故答案为:(0,2)或(0,16)【点睛】本题考查两角差正切公式、等比数列,考查综合分析求解能力,属中档题.15.【分析】分别计算出进而得出再由可得出的值【详解】由题意可得故答案为:【点睛】本题考查数列求和找出数列的规律是解答的关键考查计算能力属于中等题 解析:1008【分析】分别计算出43k a -、42k a -、41k a -、()4k a k N *∈,进而得出43424146k k k k a a a a ---+++=,再由201845042=⨯+可得出2018S 的值.【详解】由题意可得()434243sin 112k k a k π--⎛⎫=-+= ⎪⎝⎭,()424142sin 1342k k a k k π--⎛⎫=-+=- ⎪⎝⎭,()()4141sin 211k a k k π-=-+=,4414sin 1412k k a k k π+⎛⎫=+=+ ⎪⎝⎭,()()43424141341416k k k k a a a a k k ---∴+++=+-+++=,201845042=⨯+,201820172018450534505265046504S a a a a ⨯-⨯-∴=⨯++=⨯++()30241345051008=++-⨯=.故答案为:1008. 【点睛】本题考查数列求和,找出数列的规律是解答的关键,考查计算能力,属于中等题.16.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.17.27【分析】由得相减后得数列的奇数项与偶数项分别成等差数列由此可得通项从而求得结论【详解】∵∴相减得又所以数列的奇数项与偶数项分别成等差数列公差为1故答案为:27【点睛】易错点睛:本题考查等差数列的解析:27 【分析】由1n n a a n ++=得121n n a a n +++=+相减后得数列的奇数项与偶数项分别成等差数列,由此可得通项,从而求得结论. 【详解】∵1n n a a n ++=,∴121n n a a n +++=+,相减得21n na a +-=,又1121,1a a a =+=,20a =,211a a -=-,所以数列{}n a 的奇数项与偶数项分别成等差数列,公差为1,21n a n -=,21n a n =-,1916171819981027S S a a a -=++=++=.故答案为:27. 【点睛】易错点睛:本题考查等差数列的通项公式,解题时由已知等式中n 改写为1n +,两相减后得21n n a a +-=,这里再计算21a a -,如果2211()22n na a a a +--==,则可说明{}n a 是等差数列,象本题只能说明奇数项与偶数项分别成等差数列.不能混淆,误以为{}n a 是等差数列.这是易错的地方.18.①③【分析】选①②在①中令在②中令联立方程由方程无解推出矛盾;选①③在③中由通项与前项和之间的关系求出公比在①中令在③中用表示出联立方程求出确定数列;选②③由通项与前项和之间的关系即可作出判断【详解解析:①③ 【分析】选①②,在①中令1m n ==,在②中令1n =联立方程,由方程无解推出矛盾;选①③,在③中由通项与前n 项和之间的关系求出公比,在①中令1m n ==,在③中用12,a a 表示出12,S S 联立方程,求出1,a p 确定数列{}n a ;选②③,由通项与前n 项和之间的关系即可作出判断. 【详解】在①中,令1m n ==,得221a a =;在②中,11n n S a +=+,当2n ≥时, 11n n S a -=+,两式相减,得1n n n a a a +=-,即12n n a a +=;在③中,11112,2n n n n S a S a p p++=+=+,两式相减,得 1122n n n a a a ++=-,即 12n n a a +=,若选①②,则22112,1a a a a ⎧=⎨=+⎩即 2211111,10a a a a =--+=, 2(1)41130∆=--⨯⨯=-<,方程无解,故不能选①②作为条件;若选①③,则由12n n a a +=知,数列{}n a 的公比为2,由 221111221212a a a a p a a a p ⎧⎪=⎪⎪=+⎨⎪⎪+=+⎪⎩得1212a p =⎧⎪⎨=-⎪⎩,所以数列 {}n a 是首项为2,公比为2的等比数列; 若选②③作为条件,则无法确定首项,数列{}n a 不唯一,故不能选②③作为条件. 综上所述,能使数列{}n a 为唯一确定的等比数列的条件是①③. 故答案为:①③ 【点睛】思路点睛:本题考查利用递推关系求数列中的项,涉及等比数列的判定和通项公式,遇到和与项的递推关系时,一般有两种方法:(1)消去和,得到项的递推关系;(2)消去项,得到和的递推关系.19.【分析】首先设出等差数列的首项和公差根据其通项公式得到再根据其求和公式得到从而得到结果【详解】设等差数列的首项为公差为则有因为所以故答案为:【点睛】思路点睛:该题考查的是有关等差数列的问题解题思路如 解析:13313S 【分析】首先设出等差数列的首项和公差,根据其通项公式,得到487733a a a a +-=,再根据其求和公式,得到13713S a =,从而得到结果. 【详解】设等差数列的首项为1a ,公差为d ,则有48711117333(7)(6)318=3a a a a d a d a d a d a +-=+++-+=+, 因为11313713()132a a S a +==,所以487133313a a a S +-=, 故答案为:13313S . 【点睛】思路点睛:该题考查的是有关等差数列的问题,解题思路如下:(1)首先设出等差数列的首项和公差;(2)利用等差数列的通项公式,得到项之间的关系,整理得出487733a a a a +-=; (3)利用等差数列的求和公式,求得13713S a =; (4)比较式子,求得结果.20.10【分析】根据条件确定中项的符号变化规律即可确定最小时对应项数【详解】单调递增因此即最小故答案为:10【点睛】本题考查等差数列性质等差数列前项和性质考查基本分析求解能力属中档题解析:10 【分析】根据条件确定{}n a 中项的符号变化规律,即可确定n S 最小时对应项数. 【详解】7138910111213101103()0S S a a a a a a a a =∴+++++=∴+= 17130,a S S <=∴{}n a 单调递增,因此10110,0a a <>即10n =,n S 最小 故答案为:10 【点睛】本题考查等差数列性质、等差数列前n 项和性质,考查基本分析求解能力,属中档题.三、解答题21.(1)证明见解析;(2)最大自然数6n =. 【分析】(1)根据题中条件,可得1112n a +--的表达式,根据等比数列的定义,即可得证;(2)由(1)可得1122n n a -=-,则可得2n n b =,根据错位相减求和法,可求得n S 的表达式,根据n S 的单调性,代入数值,分析即可得答案. 【详解】解:(1)∵()1621*44n n n n a a n N a a +-=-=∈--, ∴()()1116323346312311122162262822224n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a +++----⎛⎫----+--======- ⎪-----+----⎝⎭--即11122112n n a a +--=--, ∴112n a ⎧⎫-⎨⎬-⎩⎭是首项为113132212a a --==--,公比为2的等比数列. (2)由(1)知,1122n n a -=-, 即321112222n n n n n n n a a b a a a ---==-==---, ∴()()21212-⋅=-⋅nn n b n ,()123123252212n n S n =⋅+⋅+⋅++-⋅,① ()23412123252212n n S n +=⋅+⋅+⋅++-⋅,②①减②得()()()112311421222222122221212n nn n n S n n +++--=⋅++++--⋅=+⋅--⋅-()13226n n +=-⋅-.∴()12326n n S n +=-⋅+.∴()()()21112122322210++++-=-⋅--⋅=+>n n n n n S S n n n ,∴n S .单调递增.∵7692611582021S =⨯+=<,87112628222021S =⨯+=>.故使2021n S <成立的最大自然数6n =. 【点睛】解题的关键是根据所给形式,进行配凑和整理,根据等比数列定义,即可得证,求和常用的方法有:①公式法,②倒序相加法,③裂项相消法,④错位相减法等,需熟练掌握. 22.(1)存在,2k =或3k =;(2)证明见解析. 【分析】(1)若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N ,将23nnn c =+代入上式,整理得1(2)(3)2306n n k k --⋅⋅=化简即可得出答案;(2)证{}n c 不是等比数列只需证2213c c c ≠⋅,验证其不成立即可.【详解】解:(1)由题意知,若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N , 将23nnn c =+代入上式,得()()()211221111232323232323n n n n n n n n n n n n k k k ++++++--⎡⎤⎡⎤⎡⎤+-+=+-+⋅+-+⎣⎦⎣⎦⎣⎦, 即21111(2)2(3)3(2)2(3)3(2)2(3)3n n n n n n k k k k k k ++--⎡⎤⎡⎤⎡⎤-+-=-+-⋅-+-⎣⎦⎣⎦⎣⎦,整理得1(2)(3)2306n nk k --⋅⋅=,解得2k =或3k =.(2)设数列{}n a ,{}n b 的公比分别为,,p q p q ≠且,0p q ≠,11,0a b ≠, 则1111n n n c a pb q --=+,为证{}n c 不是等比数列,只需证2213c c c ≠⋅, 事实上()22222221111112c a p b q a p a b pq b q =+=++,()()()222222221311111111c c a b a p b q a p a b p q b q ⋅=+⋅+=+++,由于p q ≠,故222p q pq +>,又11,0a b ≠,从而2213c c c ≠⋅,所以{}n c 不是等比数列. 【点睛】方法点睛:等差、等比数列的证明经常利用定义法和等比中项法,通项公式法和前n 项和公式法经常在选择题、填空题中用来判断数列是否为等差、等比数列不能用来证明.23.(1)证明见解析;(2)(21)3144n n n S -=+.【分析】(1)将13(1)n n na n a +=+变形为131n n a an n+=+,得到{}n b 为等比数列,(2)由(1)得到{}n a 的通项公式,用错位相减法求得n S 【详解】(1)由11a =,13(1)n n na n a +=+,可得131n na a n n+=+, 因为nn a b n=则13n n b b +=,11b =,可得{}n b 是首项为1,公比为3的等比数列, (2)由(1)13n n b -=,由13n na n-=,可得13n n a n -=⋅, 01211323333n n S n -=⋅+⋅+⋅++⋅,12331323333n n S n =⋅+⋅+⋅++⋅,上面两式相减可得:0121233333n n n S n --=++++-⋅13313n n n -=-⋅-, 则(21)3144n n n S -=+.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4) 裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.24.(1)2nn a =;(2)21n b n =-,数列{}n b 前10项的和10100S =.【分析】(1)利用等比数列的通项公式,结合已知12a =,416a =,可以求出公比,这样就可以求出数列{}n a 的通项公式;(2)由数列{}n a 的通项公式,可以求出21a -和 358a 的值,这样也就求出2b 和 3b 的值,这样可以求出等差数列{}n b 的公差,进而可以求出通项公式,利用前n 项和公式求出数列{}n b 前10项的和.【详解】(1)设等比数列的公比为q ,由已知12a =,34121616q a a q =⇒⋅=⇒=,所以112n n n a q a -=⋅=,即数列{}n a 的通项公式为2n n a =;(2)由(1)知2nn a =,所以2221213b a =-=-=,333552588b a ==⨯=, 设等差数列{}n b 的公差为d ,则322d b b -==,12121n d b b n b =-=∴=-, 设数列{}n b 前10项的和为10S ,则11010910910101210022S d b ⨯⨯=+⋅=⨯+⨯=, 所以数列{}n b 的通项公式21n b n =-,数列{}n b 前10项的和10100S =. 【点睛】方法点睛:数列求和的常用方法:(1)公式法:即直接用等差、等比数列的求和公式求和.(2)错位相减法:若{}n a 是等差数列,{}n b 是等比数列,求1122n n a b a b a b ++⋅⋅⋅. (3)裂项相消法:把数列的通项拆成两项之差,相消剩下首尾的若干项.常见的裂顶有()11111n n n n =-++,()1111222n n n n ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭等.(4)分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和. (5)倒序相加法.25.(1)条件性选择见解析,2n n a =;(2)332n nn T +=-. 【分析】(1)选①:由题意可得32442a a a =+-,再利用等比数列的公比为2可求1a ,进而可求数列{}n a 的通项公式;选②:22n n S a =-,令1n =可求1a ,当2n ≥时,可得1122n n S a --=-,与已知条件两式相减可求得()122n n a a n -=≥,进而可求数列{}n a 的通项公式;选③:122n n S +=-,当1n =时,112S a ==,当2n ≥时,122n n S -=-,与已知条件两式相减可求得2nn a =,检验12a =也满足,进而可求数列{}n a 的通项公式;(2)由(1)知2nn a =,则221log 1log 2122n n n n n n a n b a +++===,利用乘公比错位相减即可求和. 【详解】(1)选①:因为2a ,3a ,44a -成等差数列, 所以32442a a a =+-,又因为数列{}n a 的公比为2,所以2311122242a a a ⨯=+⨯-,即1118284a a a =+-,解得12a =, 所以1222n n n a -=⨯=.选②:因为22n n S a =-,当1n =时,1122S a =-,解得12a =. 当2n ≥时,1122n n S a --=-,所以()()111222222n n n n n n n a S S a a a a ---=-=---=-. 即()122n n a a n -=≥.所以数列{}n a 是首项为2,公比为2的等比数列. 故1222n n n a -=⨯=.选③:因为122n n S +=-,所以当1n =时,112S a ==,当2n ≥时,122nn S -=-,所以()()1122222n n nn n n a S S +-=-=---=,当1n =时,1122a ==依然成立.所以2nn a =. (2)由(1)知2nn a =,则221log 1log 2122n n n n n n a n b a +++===, 所以2323412222n n n T +=++++, ① 231123122222n n n n n T ++=++++, ② ①-②得23111111122222n n n n T ++⎛⎫=++++- ⎪⎝⎭ 212111111111111121222211111222221122n n n n n n n n n -+++++⎛⎫-- ⎪+++⎝⎭=+-=+-=+---- 13322n n ++=-. 所以332n nn T +=-. 所以数列{}n b 的前n 项和332n n n T +=-. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解. 26.(1)*3,(1)2,(2,)n n a n n n N =⎧=⎨≥∈⎩;(2)证明见解析. 【分析】(1)利用*1,(1),(2,)n n nn S n a S S n n N -=⎧=⎨-≥∈⎩求解即可;(2)利用n a 求n b ,当1n =时,1151224b =≤显然成立,当2n ≥时,利用列项相消法求和判断即可. 【详解】解:(1)当1n =时,111113a S ==++=;当2n ≥时,1n n n a S S -=-22(1)[(1)(1)1]n n n n =++--+-+2n =,所以*3,(1)2,(2,)n n a n n n N =⎧=⎨≥∈⎩; (2)由(1)易知*1,(1)121(2,),4(1)n n b n n N n n ⎧⎪=⎪=⎨≥∈⎪+⎪⎩ 当1n =时,1151224b =≤显然成立. 当2n ≥时,1111()4(1)41n b n n n n ==-++, 123n n T b b b b =+++ 11111111[()()()]12423341n n =+-+-++-+ 1111()12421n =+-+ 515244(1)24n =-<+; 故结论成立.【点睛】关键点睛:本题考查数列求通项公式,利用数列求和证明不等式.利用列项相消法求和是解决本题的关键.。
第2章数列测试题含详细答案(苏教版必修5).doc
南京市高一数学5(必修)第二章:数列一、选择题1.在数列55,34,21,,8,5,3,2,1,1x 中,x 等于( )A .11B .12C .13D .142.等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项 的和9S 等于( )A .66B .99C .144D .297 3.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( )A .81B .120C .168D .1924.12+与12-,两数的等比中项是( )A .1B .1-C .1±D .21 5.已知一等比数列的前三项依次为33,22,++x x x , 那么2113-是此数列的第( )项 A .2 B .4 C .6 D .8 6.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为( )A .513B .512C .510D .8225 二、填空题1.等差数列{}n a 中, ,33,952==a a 则{}n a 的公差为______________。
2.数列{n a }是等差数列,47a =,则7s =_________3.两个等差数列{}{},,n n b a ,327......2121++=++++++n n b b b a a a n n 则55b a =___________. 4.在等比数列{}n a 中, 若,75,393==a a 则10a =___________.5.在等比数列{}n a 中, 若101,a a 是方程06232=--x x 的两根,则47a a ⋅=___________.6.计算3log 33...3n=___________.三、解答题1. 成等差数列的四个数的和为26,第二数与第三数之积为40,求这四个数。
2. 在等差数列{}n a 中, ,1.3,3.0125==a a 求2221201918a a a a a ++++的值。
苏教版高一数学必修5数列的概念及函数特征测试题及答案
数列的概念及函数特征测试题A 组一.填空题(本大题共8小题,每小题5分,共40分) 1.数列1,1,1,1,1--,的通项公式的是 。
1. 1(1)n n a +=- 或{11n n a n =-,为奇数,为偶数。
提示:写成两种形式都对,a n 不能省掉。
2. ,52,21,32,1的一个通项公式是 。
2. 2;1n a n =+提示:若把12换成24,同时首项1换成22,规律就明显了。
其一个通项应该为:2;1n a n =+3.在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表. 观察表中数据的特点,用适当的数填入表中空白( )内.年龄(岁)30 35 40 45 50 55 60 65收缩压(水银柱 毫米) 110 115 120 125 130 135 ( )145 舒张压(水银柱 毫米) 70 73 75 78 80 83 ( )883.140,85。
提示:观察上表规律,收缩压每次增加5,舒张压相应增加3或2,且是间隔出现的,故应填140,85。
4.已知数列{}n a ,1()(2)n a n N n n +=∈+,那么1120是这个数列的第 项.4.10.提示:令1(2)n a n n =+=1120,即n 2+2n-120=0,解得n=10.5.已知数列{a n }的图像是函数1y x=图像上,当x 取正整数时的点列,则其通项公式为 。
5. a n =1n .提示:数列{a n }对应的点列为(n,a n ),即有a n =1n。
6.已知数列{}n a ,22103n a n n =-+,它的最小项是 。
6.2或3项。
提示:22103n a n n =-+=2(n-52)2-192.故当n=2或3时,a n 最小。
7. 已知数列{}n a 满足12a =-,1221n n na a a +=+-,则4a = .7. 25-。
提示:222212a ⨯-=++()=23,322326213a ⨯=+=-,12622165n a +⨯=+=--。
(好题)高中数学必修五第一章《数列》检测卷(包含答案解析)(2)
一、选择题1.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( )A .20192020B .20202021C .20212022D .101010112.已知数列{}n a 的前n 项和为n S ,且0n a >,n *∈N ,若数列{}n a 和{}n S 都是等差数列,则下列说法不正确的是( ) A .{}n n a S +是等差数列 B .{}n n a S ⋅是等差数列 C .{}2na 是等比数列D .{}2nS 是等比数列3.已知数列{}n a 为等比数列,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则123n a a a a ⋅⋅⋅⋅⋅的最大值为( ) A .5B .512C .1024D .20484.两个公比均不为1的等比数列{}{},n n a b ,其前.n 项的乘积....分别为,n n A B ,若552a b =,则99A B =( ) A .512B .32C .8D .25.在等比数列{n a }中,13a =,424a =,则345a a a ++的值为( ) A .33B .72C .84D .1896.记数列{}n a 前n 项和为n S ,若1,n a ,n S 成等差数列,且数列()()11211n n n a a a +++⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和n T 对任意的*n N ∈都有210n T λ-+≥恒成立,则λ的取值范围为( ) A .1,6⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .5,6D .(],1-∞7.数列{}n a 的通项公式是*1()(1)n a n n n =∈+N ,若前n 项的和为1011,则项数为( ). A .12B .11C .10D .98.公元1202年意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…,即121a a ==,12n n n a a a --=+(*3,n n ≥∈N ).此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用.若记212n n n n b a a a ++=-(*n ∈N ),数列{}n b 的前n 项和为n S ,则2020S =( ) A .0B .1C .2019D .20209.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的底层共有灯( ) A .64盏B .128盏C .192盏D .256盏10.设{}n a 为等差数列,122a =,n S 为其前n 项和,若1013S S =,则公差d =( ) A .-2B .-1C .1D .211.已知数列{}n a 中,11a =,又()1,1n a a +=,()21,1n b a =+,若//a b ,则4a =( ) A .7B .9C .15D .1712.记等差数列{}n a 的前n 项和为n S .若64a =,19114S =,则15S =( ) A .45B .75C .90D .95二、填空题13.在数列{}n a 中,11a =,0n a ≠,曲线3y x =在点()3,n n a a 处的切线经过点()1,0n a +,下列四个结论:①223a =;②313a =;③416527ii a==∑;④数列{}n a 是等比数列;其中所有正确结论的编号是______.14.已知等差数列{}n a 的前n 项和为n S ,1a 为整数,213a =-,8n S S ≥,则数列{}n a 的通项公式为n a =________.15.数列{}n a 中,已知22a =,21n n n a a a ++=+,若834a =,则数列{}n a 的前6项和为______.16.已知函数()f x 在()1,∞-+上单调,且函数()2y f x =-的图象关于1x =对称,若数列{}n a 是公差不为0的等差数列,且()()5051f a f a =,则1100a a +等于________. 17.数列{}n a 满足113a =,且()1123n n n n a a n a a ++-=+,则数列{}n a 的前10项和为__________.18.设无穷数列{a n }的前n 项和为S n ,下列有三个条件: ①m n m n a a a +⋅=; ②S n =a n +1+1,a 1≠0;③S n =2a n +1p(p 是与n 无关的参数).从中选出两个条件,能使数列{a n }为唯一确定的等比数列的条件是______.19.若数列}{n a2*3()n n n N =+∈,则n a =_______.20.已知数列{}n a 中,11a =,()11*22,2n n n a a n N n a --=≥+∈,若1211145ma a a +++=,则m =________. 三、解答题21.设数列{}n a 满足()*122222nn a a a n n +++=∈N . (1)求数列{}n a 的通项公式; (2)求数列21n n a ⎧⎫-⎨⎬⎩⎭的前n 项和n T . 22.已知各项均为正数的数列{}n a 的前n 项和为n S ,且满足222n n n S a a =+-.(1)求数列{}n a 的通项公式; (2)若232n nn a a b --=,求数列{}n b 的前n 项和n T . 23.已知正项等比数列{}n a 的前n 项和为653,2,40n S a S S ==+. (1)求数列{}n a 的通项公式;(2)令2log 4n n b a =+,记数列{}n b 的前n 项和为n T ,求n T 的最大值. 24.设数列{}n a 的前n 项和为n S ,______.从①数列{}n a 是公比为2的等比数列,2a ,3a ,44a -成等差数列;②22n n S a =-;③122n n S +=-.这三个条件中任选一个,补充在下面问题中,并作答.(1)求数列{}n a 的通项公式; (2)若21log nn na b a +=,求数列{}n b 的前n 项和n T . 25.已知数列{}n a ,11a =,121n n a a +=+. (1)求证数列{}1n a +是等比数列;(2)令()2log 1n nb a =+,求数列21n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 26.已知数列满足递推关系,且10a =,121n n a a -=+. (1)求证:数列{}1n a +为等比数列; (2)设()1n n b n a =+,求数列{}n b 的项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】 数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=. 故选:C 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.2.D解析:D 【分析】由题意,判断出数列{}n a 是公差为0的等差数列,然后分别利用等差数列的定义与等比数列的定义判断每个选项即可. 【详解】因为数列{}n a 和{}n S 都是等差数列,1n n n a S S -=-,所以可判断n a 为定值,所以数列{}n a 是公差为0的等差数列,即10n n a a --=.对A ,()()1111----++-=-+-=n n n n n n n n n a S a S S S a a a ,所以数列{}n n a S +是等差数列;对B ,1121----=⋅⋅⋅⋅-=n n n n n n n n n a S a S a S a S a ,所以数列{}n n a S ⋅是等差数列;对C ,222211-==n n n n a a a a ,所以数列{}2n a 是等比数列;对D ,设n a a =,则222,==n n S na S n a ,则221222222(1)(1)-==--n n n a n n a n S S ,所以数列{}2n S 不是等比数列. 故选:D 【点睛】解答本题的关键在于判断出数列{}n a 是公差为0的等差数列,然后结合等差数列的定义,等比数列的定义列式判断是否为等差或者等比数列.3.C解析:C 【分析】用1a 和q 表示出2a 和3a 代入2312a a a ⋅=求得4a ,再根据3474422a a a a q +=+,求得q ,进而求得1a 到6a 的值,即得解. 【详解】2231112a a a q a q a ⋅=⋅=42a ∴=3474452224a a a a q +=+=⨯12q ∴=,41316a a q ==故1415116()2222n n n n a ---=⨯=⨯=,所以123456116,8,4,2,1,12a a a a a a ======<, 所以数列的前4或5项的积最大,且最大值为16842=1024⨯⨯⨯. 故选:C 【点睛】结论点睛:等比数列{}n a 中,如果11,01a q ><<,求123n a a a a ⋅⋅⋅⋅⋅的最大值,一般利用“1交界”法求解,即找到大于等于1的项,找到小于1的项,即得解.4.A解析:A 【分析】直接利用等比数列的性质化简99A B ,再代入552a b =即得解. 【详解】由题得99912919285599129192855()()()2512()()()A a aa a a a a a a Bb b b b b b b b b ⋅⋅⋅=====⋅⋅⋅. 故答案为A. 【点睛】(1)本题主要考查等比数列的性质,意在考查学生对该知识的掌握水平和分析推理能力.(2) 等比数列{}n a 中,如果m n p q +=+,则m n p q a a a a =,特殊地,2m p q =+时,则2·m p q a a a =,m a 是p q a a 、的等比中项. 5.C解析:C 【分析】根据341a a q =,可求出q ,再根据等比数列通项公式求出35,a a 即可.【详解】因为341a a q =,即3243q =,所以2q,所以22313212a a q ==⨯=,44513248a a q ==⨯=,所以34512244884a a a ++=++=. 故选:C 【点睛】本题主要考查等比数列的通项公式的应用,属于基础题.6.C解析:C 【分析】直接利用递推关系式的应用求出数列的通项公式,进一步利用裂项相消法的应用和分离参数法及函数的恒成立问题的应用求出参数的取值范围. 【详解】数列{}n a 前n 项和为n S ,若1,n a ,n S 成等差数列, 所以21n n a S =+①, 当1n =时,11a =.当2n ≥时,1121n n a S --=+②,①﹣②得122n n n a a a --=,整理得12nn a a -=(常数), 所以数列{}n a 是以1为首项,2为公比的等比数列. 所以12n na .所以()()()()111122111121212121n n n n n n n n a a a +++++==-------,则1111111111337212121n n n n T ++=-+-++-=----. 由于对任意的*n N ∈都有210n T λ-+≥恒成立, 所以12n T λ+≥恒成立. 即()min 12n T λ+≥,当1n =时,()1min 5113n T T +=+=, 所以523λ≥,解得56λ≥, 所以5,6λ⎛⎤∈-∞ ⎥⎝⎦.故选:C 【点睛】本题主要考查了由递推关系式求数列的通项公式,考查了裂项求和以及恒成立问题,属于中档题.7.C解析:C 【解析】分析:由已知,111(1)1n a n n n n ==-++,利用裂项相消法求和后,令其等于1011,得到n 所满足的等量关系式,求得结果.详解:111(1)1n a n n n n ==-++ ()n *∈N ,数列{}n a 的前n 项和11111(1)()()2231n S n n =-+-+⋯+-+ 1111n n n =-=++,当1011n S =时,解得10n =,故选C. 点睛:该题考查的是有关数列的问题,在解题的过程中,需要对数列的通项公式进行分析,选择相应的求和方法--------错位相减法,之后根据题的条件,建立关于n 的等量关系式,从而求得结果.8.A解析:A 【分析】由1n nb b +用递推式可得到值为-1,{}n b 是等比数列,再求前2020项和. 【详解】 由题意可知()2221121213221212n n n n n n n n n n n n n n n a a a a b a a a b a a a a a a ++++++++++++-+-===--()222211212212121n n n n n n n n n n n n n a a a a a a a a a a a a a ++++++++++---==---, 又212131b a a a =-=-,因此()1nn b =-,故()()()20201111110S =-++-+++-+=,故选:A. 【点睛】本题考查了通过递推数列揭示数列存在的规律即等比数列,还考查了数列求和,属于中档题.9.C解析:C 【分析】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列,利用等比数列的前n 项和公式可求得1a 的值,进而可求得塔的底层的灯的盏数7a . 【详解】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列, 由题意可知,一座7层塔所挂的灯的盏数为()71711212738112a S a -===-,解得13a =.因此,塔的底层的灯的盏数为6732192a =⨯=. 故选:C. 【点睛】本题考查等比数列及其前n 项和基本量的计算,考查推理能力与计算能力,属于中等题.10.A解析:A 【分析】由题意结合等差数列的性质和前n 项和的定义求解公差即可. 【详解】由题意可得:12111213131030a a a a S S =++=-=,则120a =,等差数列的公差121022212111a a d --===--. 本题选择A 选项. 【点睛】本题主要考查数列的前n 项和与通项公式的关系,等差数列公差的计算等知识,意在考查学生的转化能力和计算求解能力.11.C解析:C 【分析】利用向量平行的坐标运算公式得出121n n a a +=+,可得出1121n n a a ++=+,所以数列{}1n a +是以2为首项,公比为2的等比数列,然后求解4a . 【详解】因为//a b ,所以121n n a a +=+,则()112221n nn a a a ++=+=+,即1121n na a ++=+, 又11a =,所以112a +=,所以数列{}1n a +是以2为首项,公比为2的等比数列, 所以441216a +==,得415a =. 故选:C. 【点睛】本题考查向量的平行,考查数列的通项公式求解及应用,难度一般. 一般地,若{}n a 满足()10,1,0n n a pa q p p q +=+≠≠≠,则只需构造()1n n a x p a x ++=+,其中1q x p =-,然后转化为等比数列求通项.12.B解析:B 【分析】结合题意根据等差数列的通项公式和前n 项和公式列方程115419199114a d a d +=⎧⎨+⨯=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩,再利用前n 项和公式即可求得答案. 【详解】解:根据题意64a =,19114S =,结合等差数列的通项公式和前n 项和公式得:115419199114a d a d +=⎧⎨+⨯=⎩,即:115496a d a d +=⎧⎨+=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩, 所以()1511515131451051515157752222S a d -+=+=⨯+⨯⨯==. 故选:B. 【点睛】本题考查利用等差数列的通项公式和前n 项和公式求等差数列的基本量,考查数学运算能力,是基础题.二、填空题13.①③④【分析】先利用导数求得曲线在点处的切线方程由此求得与的递推关系式进而证得数列是等比数列由此判断出四个结论中正确的结论编号【详解】∵∴曲线在点处的切线方程为则∵∴则是首项为1公比为的等比数列从而解析:①③④ 【分析】先利用导数求得曲线3y x =在点()3,n n a a 处的切线方程,由此求得1n a +与n a 的递推关系式,进而证得数列{}n a 是等比数列,由此判断出四个结论中正确的结论编号. 【详解】∵2'3y x =,∴曲线3y x =在点()3,n n a a 处的切线方程为()323n n n y a a x a -=-,则()3213n n n n a a a a +-=-.∵0n a ≠,∴123n n a a +=, 则{}n a 是首项为1,公比为23的等比数列, 从而223a =,349a =,4412165322713i i a =⎛⎫- ⎪⎝⎭==-∑. 故所有正确结论的编号是①③④. 故答案为:①③④ 【点睛】本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前n 项和公式,属于基础题.14.【分析】设等差数列的公差为由等差数列的性质及前n 项和公式可得再由二次函数的图象与性质可得求得后再由等差数列的通项公式即可得解【详解】设等差数列的公差为则为整数所以由结合二次函数的图象与性质可得解得所 解析:217n -【分析】设等差数列{}n a 的公差为d ,由等差数列的性质及前n 项和公式可得231322n n d d S n ⎛⎫+ ⎝-⎪⎭=,再由二次函数的图象与性质可得313151722222d d ⎛⎫-+ ⎪⎝⎭≤-≤⨯,求得d 后再由等差数列的通项公式即可得解. 【详解】设等差数列{}n a 的公差为d ,则1213a a d d =-=--,d 为整数, 所以()()()2131313112222n d S d n n n n d a n d d n n n --=+⎛⎫--++ ⎪⎝=⎭=-, 由8n S S ≥,结合二次函数的图象与性质可得0d >,313151722222d d ⎛⎫-+ ⎪⎝⎭≤-≤⨯, 解得131376d ≤≤, 所以2d =,所以1215a a d =-=-,所以()()111521217n a a n d n n =+-=-+-=-. 故答案为:217n -. 【点睛】本题考查了等差数列通项公式及前n 项和公式的应用,考查了利用二次函数的图象与性质解决等差数列前n 项和最值的问题,属于中档题.15.32【分析】利用数列的递推公式推导出由此能求出数列的前6项和【详解】∵数列中∴解得∴数列的前6项和为:故答案为:32【点睛】本题主要考查数列的前6项和的求法考查递推公式递推思想等基础知识考查运算求解解析:32 【分析】利用数列的递推公式推导出11a =,由此能求出数列{}n a 的前6项和. 【详解】∵数列{}n a 中,22a =,21n n n a a a ++=+,834a =, ∴32112a a a a =+=+,43211224a a a a a =+=++=+,543162a a a a =+=+,6541103a a a a =+=+, 7651165a a a a =+=+,876126834a a a a =+=+=,解得11a =,∴数列{}n a 的前6项和为:()()()()61111112246210324832S a a a a a a =+++++++++=+=,故答案为:32. 【点睛】本题主要考查数列的前6项和的求法,考查递推公式、递推思想等基础知识,考查运算求解能力,属于中档题.16.【分析】根据的图象的对称性利用平移变换的知识得到的图象的对称性结合函数的单调性根据得到的值最后利用等差数列的性质求得所求答案【详解】由函数的图象关于对称则函数的图象关于对称又在上单调且所以因为数列是 解析:2-【分析】根据()2y f x =-的图象的对称性,利用平移变换的知识得到()f x 的图象的对称性,结合函数的单调性,根据()()5051f a f a =得到5051a a +的值,最后利用等差数列的性质求得所求答案. 【详解】由函数()2y f x =-的图象关于1x =对称,则函数()f x 的图象关于1x =-对称, 又()f x 在()1,∞-+上单调,且()()5051f a f a =,所以5051a a 2+=-,因为数列{}n a 是公差不为0的等差数列,所以11005051a a 2a a +=+=-, 故答案为:2-. 【点睛】本题考查函数的对称性和单调性,等差数列的性质,涉及函数的图象的平移变换,属中档题,小综合题,难度一般.17.【分析】将已知等式变形为利用累加法可求得数列的通项公式可求得的表达式进而利用裂项求和法可求得数列的前项和【详解】已知数列满足且所以因此数列的前项和为故答案为:【点睛】方法点睛:数列求和的常用方法:( 解析:175264【分析】 将已知等式变形为11123n nn a a +-=+,利用累加法可求得数列1n a ⎧⎫⎨⎬⎩⎭的通项公式,可求得n a 的表达式,进而利用裂项求和法可求得数列{}n a 的前10项和.【详解】已知数列{}n a 满足113a =,且()1123n n n n a a n a a ++-=+,1111123n n n n n n a a n a a a a +++-∴-==+, 所以,()1213211111111135721n nn n a a a a a a a a -⎛⎫⎛⎫⎛⎫=+-+-++-=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()32122n n n n ++==+,()1111222n a n n n n ⎛⎫∴==- ⎪++⎝⎭,因此,数列{}n a 的前10项和为101111111112324351012S ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦11111751221112264⎛⎫=+--= ⎪⎝⎭.故答案为:175264. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.18.①③【分析】选①②在①中令在②中令联立方程由方程无解推出矛盾;选①③在③中由通项与前项和之间的关系求出公比在①中令在③中用表示出联立方程求出确定数列;选②③由通项与前项和之间的关系即可作出判断【详解解析:①③ 【分析】选①②,在①中令1m n ==,在②中令1n =联立方程,由方程无解推出矛盾;选①③,在③中由通项与前n 项和之间的关系求出公比,在①中令1m n ==,在③中用12,a a 表示出12,S S 联立方程,求出1,a p 确定数列{}n a ;选②③,由通项与前n 项和之间的关系即可作出判断. 【详解】在①中,令1m n ==,得221a a =;在②中,11n n S a +=+,当2n ≥时, 11n n S a -=+,两式相减,得1n n n a a a +=-,即12n n a a +=;在③中,11112,2n n n n S a S a p p++=+=+,两式相减,得 1122n n n a a a ++=-,即 12n n a a +=,若选①②,则22112,1a a a a ⎧=⎨=+⎩即 2211111,10a a a a =--+=, 2(1)41130∆=--⨯⨯=-<,方程无解,故不能选①②作为条件;若选①③,则由12n n a a +=知,数列{}n a 的公比为2,由 221111221212a a a a p a a a p ⎧⎪=⎪⎪=+⎨⎪⎪+=+⎪⎩得 1212a p =⎧⎪⎨=-⎪⎩,所以数列 {}n a 是首项为2,公比为2的等比数列; 若选②③作为条件,则无法确定首项,数列{}n a 不唯一,故不能选②③作为条件. 综上所述,能使数列{}n a 为唯一确定的等比数列的条件是①③. 故答案为:①③ 【点睛】思路点睛:本题考查利用递推关系求数列中的项,涉及等比数列的判定和通项公式,遇到和与项的递推关系时,一般有两种方法:(1)消去和,得到项的递推关系;(2)消去项,得到和的递推关系.19.【分析】有已知条件可得出时与题中的递推关系式相减即可得出且当时也成立【详解】数列是正项数列且所以即时两式相减得所以()当时适合上式所以【点睛】本题考差有递推关系式求数列的通项公式属于一般题 解析:()241n +【分析】有已知条件可得出116a =,2n ≥时()()2*131()n n n N =-+-∈,与题中的递推关系式相减即可得出()241n a n =+,且当1n =时也成立.【详解】数列}{n a2*3()n n n N =+∈4=,即116a =2n ≥()()2*131()n n n N =-+-∈22n =+, 所以()241n a n =+(2n ≥ )当1n =时,116a =适合上式,所以()241n a n =+ 【点睛】本题考差有递推关系式求数列的通项公式,属于一般题.20.12【分析】先取倒数得成等差数列再根据等差数列求和公式列式求得结果【详解】所以为以为首项为公差的等差数列故答案为:12【点睛】本题考查等差数列定义以及求和公式考查基本分析求解能力属基础题解析:12 【分析】 先取倒数得1n a ⎧⎫⎨⎬⎩⎭成等差数列,再根据等差数列求和公式列式求得结果. 【详解】()111*121111112,+222n n n n n n n N a a n n a a a a a ----=∴=∴∈≥-=+所以1n a ⎧⎫⎨⎬⎩⎭为以111a 为首项,12为公差的等差数列,1211111(1)4522m m m m a a a ∴+++=+-⋅= 2312150012m m m m ∴+-⨯=>∴=故答案为:12 【点睛】本题考查等差数列定义以及求和公式,考查基本分析求解能力,属基础题.三、解答题21.(1)2nn a =;(2)2332n nn T +=-. 【分析】 (1)当2n ≥时,112211222n n a a a n --+++=-与已知条件两式相减可得2nna =,再令1n =,计算1a 即可求解;(2)由(1)得2nn a =,所以22211n n n n a --=,再利用乘公比错位相见即可求和.【详解】(1)数列{}n a 满足122222n n a a a n +++= 当2n ≥时,112211222n n a a a n --+++=- 两式作差有12n na =,所以2nna = 当1n =时,12a =,上式也成立所以2nn a =(2)22211n n n n a --= 则211113(21)222nn T n ⎛⎫⎛⎫=⨯+⨯++-⨯ ⎪ ⎪⎝⎭⎝⎭,231111113(21)2222n n T n +⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()()2311111111111111131421221221231222222222212nn n n n n T n n n ++-+⎛⎫- ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=⨯+++⋯+--⨯=+⨯--=-+⨯⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦-所以2332n nn T +=-. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.22.(1)1n a n =+;(2)12n n n T -=. 【分析】(1)根据222n n n S a a =+-可得211122n n n S a a +++=+-,两式作差证明{}n a 为等差数列,由此求解出{}n a 的通项公式; (2)先根据232n nn a a b --=求解出{}n b 的通项公式,然后采用错位相减法进行求和,由此求解出n T . 【详解】(1)因为222n n n S a a =+-,所以211122n n n S a a +++=+-, 所以两式作差有:221112n n n n n a a a a a +++=+--,所以()()221111n n n n n n n n a a a a a a a a +++++=-=+-,且0n a >,所以10n n a a ++>,所以11n n a a +-=,所以{}n a 是公差为1的等差数列,且21111222S a a a ==+-,所以12a =或11a =-(舍),所以()2111n a n n =+⋅-=+; (2)因为232n n n a a b --=,所以122n n nb --=, 所以01211012...2222n n n T ---=++++,所以12311012 (22222)n n n T --=++++, 两式作差可得:012311111112+ (2)222222n n n n T ------=++++-, 所以11111222221212n nn n T --⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭-⎝⎭=---,所以11112221222n n n n n n T ---⎛⎫-⎛⎫=---= ⎪ ⎪ ⎪⎝⎭⎝⎭. 【点睛】思路点睛:满足等差乘以等比形式的数列{}n a 的前n 项和n S 的求解步骤(错位相减法):(1)先根据数列的通项公式写出数列n S 的一般形式:123...nn S a a a a =++++;(2)将(1)中的关于n S 等式的左右两边同时乘以等比数列的公比()1q ≠;(3)用(1)中等式减去(2)中等式,注意用(1)中等式的第一项减去(2)中等式的第2项,依次类推,得到结果;(4)利用等比数列的前n 项和公式以及相关计算求解出n S .23.(1)1322nn a -=;(2)最大值为64.【分析】(1)已知条件用1a 和公比q 表示后解得1,a q ,得通项公式;(2)由(1)求得n b ,由0n b ≥求得n T 最大时的n 值,再计算出最大的n T . 【详解】解:(1)设数列{}n a 的公比为(0)q q >,由62a =,有512a q =①,又由5340S S =+,有4540a a +=,得341140a q a q +=②,①÷②有21120q q =+,解得14q =或15q =-(舍去), 由14q =,可求得1112a =,有111113211224n n n n a a q ---⎛⎫==⨯= ⎪⎝⎭,故数列{}n a 的通项公式为1322nn a -=; (2)1322log 24172nn b n -=+=-, 若0n b ,可得172n ,可得当18n 且*n ∈N 时0n b >;当9n 且*n ∈N 时0n b <, 故8T 最大,又由115b =,可得887158(2)642T ⨯=⨯+⨯-=, 故n T 的最大值为64. 【点睛】思路点睛:本题考查求等比数列通项公式,求等差数列前n 项和最大值,求等差数列前n 项和的最大值方法:数列{}n b 是等差数列,前n 项和为n T , (1)求出前n 项和n T 的表达式,利用二次函数的性质求得最大值;(2)解不等式0n b ≥,不等式的解集中最大的整数n 就是使得n T 最大的n 值,由此可计算出最大的n T (注意n b =0时,1n n T T -=).24.(1)条件性选择见解析,2nn a =;(2)332n nn T +=-. 【分析】(1)选①:由题意可得32442a a a =+-,再利用等比数列的公比为2可求1a ,进而可求数列{}n a 的通项公式;选②:22n n S a =-,令1n =可求1a ,当2n ≥时,可得1122n n S a --=-,与已知条件两式相减可求得()122n n a a n -=≥,进而可求数列{}n a 的通项公式;选③:122n n S +=-,当1n =时,112S a ==,当2n ≥时,122nn S -=-,与已知条件两式相减可求得2nn a =,检验12a =也满足,进而可求数列{}n a 的通项公式;(2)由(1)知2nn a =,则221log 1log 2122n n n nn n a n b a +++===,利用乘公比错位相减即可求和. 【详解】(1)选①:因为2a ,3a ,44a -成等差数列,所以32442a a a =+-,又因为数列{}n a 的公比为2,所以2311122242a a a ⨯=+⨯-,即1118284a a a =+-,解得12a =,所以1222n nn a -=⨯=.选②:因为22n n S a =-,当1n =时,1122S a =-,解得12a =. 当2n ≥时,1122n n S a --=-,所以()()111222222n n n n n n n a S S a a a a ---=-=---=-. 即()122n n a a n -=≥.所以数列{}n a 是首项为2,公比为2的等比数列.故1222n nn a -=⨯=.选③:因为122n n S +=-,所以当1n =时,112S a ==,当2n ≥时,122nn S -=-,所以()()1122222n n n n n n a S S +-=-=---=,当1n =时,1122a ==依然成立.所以2nn a =.(2)由(1)知2nn a =,则221log 1log 2122n n n nn n a n b a +++===, 所以2323412222n n n T +=++++, ① 231123122222n n n n n T ++=++++, ② ①-②得23111111122222n nn n T ++⎛⎫=++++-⎪⎝⎭ 212111111111111121222211111222221122n n n n n n n n n -+++++⎛⎫-- ⎪+++⎝⎭=+-=+-=+----13322n n ++=-. 所以332n nn T +=-. 所以数列{}n b 的前n 项和332n n n T +=-.【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.25.(1)证明见解析;(2)()()235412n n nT n n +=++【分析】(1)利用等比数列的定义变形为()1121n n a a ++=+,证明数列{}1n a +是等比数列;(2)首先求数列{}n b 的通项公式,再利用裂项相消法求和. 【详解】 (1)121n n a a +=+,()1121n n a a +∴+=+,即1121n n a a ++=+,且112a +=, 所以数列{}1n a +是公比为2的等比数列;(2)由(1)可知11222n nn a -+=⋅=, 所以2log 2nn b n ==,()211111222n n b b n n n n +⎛⎫==- ⎪++⎝⎭, 则11111111111...232435112n T n n n n ⎛⎫=-+-+-++-+- ⎪-++⎝⎭111112212n n ⎛⎫=+-- ⎪++⎝⎭()()235412n n n n +=++ 【点睛】关键点点睛:本题第二问考查裂项相消法求和,这样的形式不是连续相消,如果前面剩下两个正数项,那么最后一定剩下两个负数项.26.(1)证明见解析;(2)()12+1nn T n =-⋅. 【分析】(1)由121n n a a -=+及等比数列定义得到11121n n a a +-++=即可证明; (2)由(1)知112n n a -+=,所以12n n b n -=⋅,用错位相减法求数列{}n b 的项和n T .【详解】解:(1)由121n n a a -=+,即()1121n n a a -+=+, 所以11121n n a a +-++=, 所以数列{}1n a +是以1为首项,2为公比的等比数列.(2)由(1)知112n n a -+=,所以()112n n n b a n -=+=⋅.所以01211222322n n T n -=⨯+⨯+⨯++⋅,① 则12321222322n n T n =⨯+⨯+⨯++⋅,②由①②得0121121212122n n n T n --=⨯+⨯+⨯++⨯-⋅ ()12212112nn n n n -=-⋅=---, 所以()121nn T n =-⋅+. 【点睛】方法点睛:根据递推关系求通项公式的三个常见方法:(1)对于递推关系式可转化为1()n n a a f n +=+的数列,通常采用累加法(逐差相加法)求其通项公式;(2)对于递推关系式可转化为1()n na f n a +=的数列,并且容易求数列()f n 前n 项的积时,采用累乘法求数列{}n a 的通项公式;(3)对于递推关系式形如1(0,1,0)n n a pa q p q +=+≠≠的数列,采用构造法求数列的通项.。
(数学试卷高一)第2章数列测试题含详细答案(苏教版必修5)
南京市高一数学5 (必修)第二章:数列一、选择题1 •在数列1,123,5,8, x,21,34,55 中,x 等于()A. 11 B . 12C. 13 D . 142.等差数列{a.}中,a1 a4 a? 39, a3 a6 a g 27,则数列{a.}前9项的和S g等于()A. 66B. 99C. 144D. 297数列a n 中,a2 9,a5 243,则a n 的前4项和为()3.等比iA. 81 B .120C. 168 D .1924. 2 1与2 1,两数的等比中项是()A . 1B . 1C 1D .-25. 已知一等比数列的前三项依次为x,2x 2,3x 3 ,1那么13丄是此数列的第()项2A. 2 B . 4 C . 6 D . 86. 在公比为整数的等比数列a n中,如果a1 a4 18,a2 a3 12,那么该数列的前8项之和为()A . 513B . 512r 225C. 510 D8二、填空题1 .等差数列a n中,a2 9,a5 33,则的公差为2.数列是等差数列,a4 7,则S7{a n}3.两个等差数列a n , b n ,aia2... an乩二,则竺= _______________ .b 1 b 2 ... b nn 3b 54 •在等比数列 a n 中,若a 33,a 975,则a® = __________ .5 •在等比数列a n 中,若a i , a io 是方程3x 2 2x6 0的两根,则a 4 a7 -三、解答题1 •成等差数列的四个数的和为26,第二数与第三数之积为40,求这四个数3•求和:(a 1) (a 2 2) ... (a n n ),(a 0)4 •设等比数列a n 前n 项和为S n ,若S 3 S 6 2S 9,求数列的公比q参考答案(数学5必修)第二章[基础训练A 组] 、选择题2.B 印 a 4 a ? 39, a 3 a 6 a 9 27,3 a 4 39,3a 627, a 4 13,a 6 92 •在等差数列a n 中,a 50.3,a i2 3.1,求 a i8 a i9a 20 a 2i a 22 的值。
苏教版高中数学必修五17第二章数列答案.docx
高中数学学习材料马鸣风萧萧*整理制作第二章 数列答案第1课时 数列的概念及其通项公式1.(1)21,81(2)6465,89 2.53.(1)n a n n )1(-=(2)n a n 2=(3)2n a n = (4)111+-=n n a n 4. 解:(1) n a =2n +1; (2) n a =)12)(12(2+-n n n ; (3) n a =2)1(1n-+; (4) 将数列变形为1+0, 2+1, 3+0, 4+1, 5+0, 6+1, 7+0, 8+1, ……,∴n a =n +2)1(1n-+; (5) 将数列变形为1×2, -2×3, 3×4, -4×5, 5×6,……,∴ n a =(-1)1+n n(n +1)5.(1)440,80208==a a(2)323是这个数列的第17项6.(1)21-=a 72-=a 103-=a 114-=a 105-=a(2)当4=n 时,取最小的值11-第2课时 数列的概念及其通项公式1.C2. 25-3.∵13a =,121n n a a +=+, ∴27a =,315a =,431a =,563a =, ∴121n n a +=-4.解:(1) 1a =0, 2a =1, 3a =4,4a =9, 5a =16,∴ n a =(n -1)2;(2) 1a =1,2a =32,3a =4221=, 4a =52, 5a =6231=, ∴ n a =12+n ; 5.(1)n n a 2=(2)3n a n =(3)2)1(2a b b a a nn --++=(4)n a n =(5))110(31)1(!--=+n n n a 6.设n a kn b =+,则31021k b k b +=⎧⎨+=⎩,解得21k b =⎧⎨=⎩,∴21()n a n n N *=+∈,∴20054011a =, 又∵2a ,4a ,6a ,8a ,即为5,9,13,17,…,∴41n b n =+第3课时 等差数列的概念和通项公式1.C2.A3.D4. C5.23n -6.87.10 8.39.由题意知27n a n =-,由2752n -=,得29.5n N *=∉,∴52不是该数列中的项.又由2727n k -=+解得7n k N *=+∈,∴27k +是数列{}n a 中的第7k +项.10. (1)445,2171==d a (2) 179=a第4课时 等差数列的概念和通项公式1. D2.B3. A4. 245. 26. 3:17.218. 解:∵ {a n }是等差数列∴ 1a +6a =4a +3a =9⇒3a =9-4a =9-7=2∴ d=4a -3a =7-2=5∴ 9a =4a +(9-4)d=7+5*5=32∴ 3a =2, 9a =329.解:当n ≥2时, (取数列{}n a 中的任意相邻两项1-n a 与n a (n ≥2))])1([)(1q n p q pn a a n n +--+=--p q p pn q pn =+--+=)(为常数∴{n a }是等差数列,首项q p a +=1,公差为p.10.∵(1)2f =,2()1(1)2f n f n ++=,∴1(1)()2f n f n +-=,∴{}()f n 是以2为首项,12为公差的等差数列,∴13()22f n n =+,∴(101)52f =. 第5课时 等差数列的概念和通项公式1.B2.C3.B4.D5.B6. 3:4:57. 1,5,11-或11,5,1-或6,5,16-或16,5,6-8.共40项;9.中间三个齿轮的齿数为16,20,2410.(1)每一行与每一列都成等差数列 (2)100,10020200a =第6课时等差数列的前n 项和(1)1. C2. D3. A4.B5.6(1)84(1,)n n n n N *=⎧⎨->∈⎩ 6.07.68. 8769.∵40.8a =,11 2.2a =,∴由1147a a d =+得0.2d =,∴51114010.2a a d =+= ∴5152805130293029303010.20.239322a a a a d ⨯⨯+++=+=⨯+⨯=. 10.0,121,1,n n a n n n N *=⎧=⎨->∈⎩ 第7课时等差数列的前n 项和(2)1. D 2. B 3. A 4. 401003-5. 66.247.16508.-1109. 147 10. ①∵121126767713113712()6()002130()1302S a a a a a a a S a a a ⎧=+=+>⎪+>⎧⎪⇔⎨⎨<⎩⎪=+=<⎪⎩,∴111211060212a d a d a d +>⎧⎪+<⎨⎪+=⎩ 解得,2437d -<<-,②由67700a a a +>⎧⎨<⎩6700a a >⎧⇒⎨<⎩, 又∵2437d -<<-∴{}n a 是递减数列, ∴1212,,,S S S 中6S 最大. 第8课时等差数列的前n 项和(3)1. A2.C3.A4.C5. B6. 113, -227. 208.209.前18、19项和相等且最大;n A 最大值略10. (1)第100行是199个数的和,这些数的和是10000(2)第n行的值2n第9课时 等比数列的概念和通项公式1.A2.D3. A4. C5.B6.152-± 7.102.510⨯ 8. 证明略 9. 9,6,4,2或25,-10,4,1810. 证明略 第10课时 等比数列的概念和通项公式1.D2.B3. A4. C5.46.152+ 7.5 8.①②③9. 平均每年至多只能减少8公顷10.(1)A1B1=a 5,A2B2=a 35, A3B3=a 955 (2) An Bn=a n 1)35(5-⋅ 第11课时 等比数列的概念和通项公式1. C2. B3. C4. C5.46.81,4096--或 7.3,(1)2,(2)n n n =⎧⎨⎩… 8. 20%9.∵在等比数列{}n a 中, 12a a +,34a a +,56a a +也成等比数列,∵12324a a +=,3436a a +=∴5636364324a a ⨯+== 10. 解:(1)a n +1 = S n +1 –S n221)2(81)2(81+-+=+n n a a , ∴8 a n +1 =221)2()2(+-++n n a a ,∴0)2()2(221=+--+n n a a ,∴(a n +1 + a n )(a n +1 – a n – 4)=0,∵a n ∈N *,∴a n +1 + a n ≠0,∴a n +1 – a n – 4=0,即a n +1 – a n = 4,∴数列{a n }是等差数列.(2)由a n +1 – a n = 4,由题知B n +1 = 5B n – 4 B n –1B n +1 – B n = 4(B n – B n –1)b n +1 = 4b n (n ≥2)又已知b 1 = 1,b 2 = 4.故{b n }是首项为1,公比为4的等比数列.a n =4n –1 (n ∈N +)第12课时 等比数列的前n 项和(1)1.B2.C3.D4.C5.B6.D7.3411288.21()12n n -+9.27 10.150,2⎛⎫+ ⎪ ⎪⎝⎭11. 由211128n n a a a a -==,又166n a a +=得, 1,n a a 是方程2661280x x -+=的两根,解这个方程得,1264n a a =⎧⎨=⎩或1642n a a =⎧⎨=⎩,由11n n a a q S q -=-得26q n =⎧⎨=⎩或126q n ⎧=⎪⎨⎪=⎩. 12.∵等比数列中k S ,2k k S S -,32k k S S -,……仍成等比数列,∴4S ,84S S -,128S S -,……也成等比数列,而17181920a a a a +++则是这个等比数列中的第5项,由42S =,86S =得844S S -=∴这个等比数列即是:2,4,8,16,32,……,∴1718192032a a a a +++=. 第13课时 等比数列的前n 项和(2)1.A2.B3.C4.A5.C6. 35 7. 8 8.解: ∵211211n n n n n a n =++⋅⋅⋅++++= )111(82122+-=+⋅=n n n n b n∴数列{bn}的前n 项和:)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n =)111(8+-n = 18+n n9.解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n a a a S n n 将其每一项拆开再重新组合得 )23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(n n +(分组求和) 当1≠a 时,2)13(1111n n aa S n n -+--= =2)13(11n n a a a n -+--- 10.解:设n n n n a n -+=++=111,则 11321211+++⋅⋅⋅++++=n n S n )1()23()12(n n -++⋅⋅⋅+-+-=11-+n第14课时 等比数列的前n 项和(3)1.D2.D3.C4.C5. A6. 31123n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 7. 20468. 12(1)q +9.【解】∵ ⎩⎨⎧=+=+1854510811d a d a , 解得1a =5, d =3, ∴ n a =3n +2, n b =n a 2=3×n 2+2,n S =(3×2+2)+ (3×22+2)+ (3×32+2)+……+(3×n 2+2)=3·12)12(2--n +2n =7·n 2-6.(分组求和法) 10. 甲方案的总利润68.161≈S 万元乙方案的总利润56.162≈S 万元甲方案优第15课时 数列复习课练习(1)(1)C (2)A (3)B (4)D (5)D (6)-1(7)120 (8)54 (9)92(10)31n n --(11)① ,不能一次性还清贷款;②617.4万元(1231[1()]23n n a =-;1311(21)()443n n S n -=-+. 第16课时 数列复习课练习(2)(1)D .(2)C. (3)C. (4)B.(5)A.(6)C.(7)D.(8)3000.(9)10,11,12. (10)25.(11)提示:利用等差中项的概念.(12)提示:设()f x kx b =+求得()21f x x =-,(1)(2)(3)(4)(5)25f f f f f ++++=.第2章数列数列单元测试1、B2、 B3、 C4、 A5、 120°6、 10,37、 11,178、 12,18 3249、13,10(略)11、解:由⎩⎨⎧=++=,28,44322a a a a 得⎩⎨⎧=+=.24)1(,4211q q a q a 由0>n a 解出⎩⎨⎧==.2,21q a 所以833==+q a a nn . 12、(1)a n =-2m=10;(2)⎪⎩⎪⎨⎧≥+-≤≤+-=6n 40n 9n 5n 1n 9n S 22n ;(3)m=7 13、A 14、B 15、D 16、C 17、B 18、123n +- 19、12-n 20、5421、2 22、(3)63110f =++=;观察图4,不难发现第n 堆最底层(第一层)的乒乓球数123n a n =++++ (1)2n n +=,第n 堆的乒乓球总数相当于n 堆乒乓球的底层数之和,即123()n f n a a a a =++++222211(1)(1)(2)(123)2226n n n n n n +++=+++++⋅= 23、解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3.又10S n -1=a n -12+5a n -1+6(n ≥2),②由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2).当a 1=3时,a 3=13,a 15=73. a 1, a 3,a 15不成等比数列∴a 1≠3;当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3.24、(I )证明:2132,n n n a a a ++=-21112*2112(),1,3,2().n n n n n n n n a a a a a a a a n N a a ++++++∴-=-==-∴=∈-{}1n n a a +∴-是以21a a -2=为首项,2为公比的等比数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列的概念及函数特征测试题A 组一.填空题(本大题共8小题,每小题5分,共40分) 1.数列1,1,1,1,1--,的通项公式的是 。
1. 1(1)n n a +=- 或{11n n a n =-,为奇数,为偶数。
提示:写成两种形式都对,a n 不能省掉。
2. ,52,21,32,1的一个通项公式是 。
2. 2;1n a n =+提示:若把12换成24,同时首项1换成22,规律就明显了。
其一个通项应该为:2;1n a n =+3.在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表. 观察表中数据的特点,用适当的数填入表中空白( )内.年龄(岁)30 35 40 45 50 55 60 65收缩压(水银柱 毫米) 110 115 120 125 130 135 ( )145 舒张压(水银柱 毫米) 70 73 75 78 80 83 ( )883.140,85。
提示:观察上表规律,收缩压每次增加5,舒张压相应增加3或2,且是间隔出现的,故应填140,85。
4.已知数列{}n a ,1()(2)n a n N n n +=∈+,那么1120是这个数列的第 项.4.10.提示:令1(2)n a n n =+=1120,即n 2+2n-120=0,解得n=10.5.已知数列{a n }的图像是函数1y x=图像上,当x 取正整数时的点列,则其通项公式为 。
5. a n =1n .提示:数列{a n }对应的点列为(n,a n ),即有a n =1n。
6.已知数列{}n a ,22103n a n n =-+,它的最小项是 。
6.2或3项。
提示:22103n a n n =-+=2(n-52)2-192.故当n=2或3时,a n 最小。
7. 已知数列{}n a 满足12a =-,1221n n na a a +=+-,则4a = .7. 25-。
提示:222212a ⨯-=++()=23,322326213a ⨯=+=-,12622165n a +⨯=+=--。
8.如图,图(1)、(2)、(3)、(4)分别包含1个、5个、13个、25个第二十九届北京奥运会吉祥物“福娃迎迎”,按同样的方式构造图形,设第n 个图形包含()f n 个“福娃迎迎”,则(1)()f n f n +-= .(答案用n 的解析式表示)8.n ×22.提示:f(2)-f(1)=4=1×4, f(3)-f(2)=8=2×4, f(4)-f(3)=3×4,……,猜想(1)()f n f n +-=4n.二.解答题(本大题共4小题,共54分)9.已知{}n a 满足13a =,121n n a a +=+,试写出该数列的前5项,并用观察法写出这个数列的一个通项公式.9. 解 ∵13a =,121n n a a +=+,∴27a =,315a =,431a =,563a =,注意到:3=22-1,7=23-1,15=24-1,31=25-1,∴猜得121n n a +=-。
10.已知数列{}n a 中,13a =,1021a =,通项n a 是项数n 的一次函数, ①求{}n a 的通项公式,并求2005a ; ②若{}n b 是由2468,,,,,a a a a 组成,试归纳{}n b 的一个通项公式.10.解:设n a kn b =+,则31021k b k b +=⎧⎨+=⎩,解得21k b =⎧⎨=⎩,∴21()n a n n N *=+∈,∴20054011a =.又∵2a ,4a ,6a ,8a ,即为5,9,13,17,…,∴41n b n =+.11.如果一个数列从第2项开始,每一项与它的前一项的和等于同一个常数,那么这个数列就叫做等和数列。
已知等和数列{}n a 的第一项为2,公和为7,求这个数列的通项公式a n 。
11.解:∵{}n a 是等和数列,公和为7,a 1=2,∴a 2=5,a 3=2,a 4=5,……, 一般地,a 2n-1=2,a 2n =5,n ∈N *.∴通项公式a n =25n n ⎧⎨⎩,为正奇数,,为正偶数。
12. 已知不等式11n ++12n ++13n ++ (12)>a 对于一切大于1的自然数n 都成立,求实数a 的取值范围。
解 令f (n )=11n ++12n ++13n ++……+12n, 则f (n+1)-f (n )=121n ++122n +-11n +=121n +-122n +>0.∴ f (n+1)>f (n ), ∴ f (n )是递增数列,∴ [f (n )]min = f (2)=712。
∴a<712. 备选题:1. 若数列的前5项为6,66,666,6666,66666,……,写出它的一 个通项公式是 。
1.23×(10n -1)。
提示:注意到66n …6=69×99n …9,故66n…6=23×(10n-1)。
2.设数列2,5,22,11,,则25是这个数列的第 项。
2.7.提示:由题设知2,5,8,11,,的通项为3n 1-,25=20371=⨯-。
3.已知数列{}n a ,11a =,112nn na a a +=+(*n N ∈),写出这个数列的前4项,并根据规律,写出这个数列的一个通项公式. 3.解:∵11a =,112n n n a a a +=+,∴a 2=111213=+⨯.同理求得a 3=15,a 4=17.从而猜想a n =121n -. B 组一.填空题(本大题共6小题,每小题5分,共30分) 1. 数列 ,17164,1093,542,211的一个通项公式是 。
1.22.1n n a n n =++提示:观察和对应项数的关系,不难发现 111122=+,22442222,5521=+=++22993333,101031=+=++…,一般地,22.1n n a n n =++2. 数列,54,43,32,21--的一个通项公式是 。
2. 1)1(1+⋅-=+n n a n n 。
提示: 这类题应解决两个问题,一是符号,可考虑(-1)n 或(-1)n+1调节,二是分式,分子是n ,分母n+1。
故1)1(1+⋅-=+n n a n n .3.将正偶数按下表排成5列:第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8 第2行 16 14 12 10第3行 18 20 22 24 …… …… 28 26 则2006在第 行,第 列。
3.第251行,第4列.提示:由题意知每列4个数,1003=4×250+3,故2006在第251行。
又由奇数行的特点知应该是第4列。
4.已知{a n }是递增数列,且对任意n ∈N +,都有a n =n 2+λn 恒成立,则实数λ的取值范围是 。
4.3-+∞(,)。
提示:常见的错解:a n 是一个特殊的 二次函数,要保证在n 取自然数时单调递增,只须-2λ≤1, 即λ≥-2。
本题错误的原因在于机械地套用了函数的性质, 忽略了数列的离散性的特点。
正解 如图,只要-2λ<32,即λ>-3时就适合题意。
5.观察下列不等式:112>,111123++>,111312372++++>,111122315++++>,1115123312++++>,,由此猜想第n 个不等式为 ▲ .5. 111123212n n ++++>-。
提示:本题是归纳推理问题,注意到3=22-1,7=23-1,15=24-1,1=22,2=42,故猜想:111123212n n ++++>-。
点评:归纳推理的关键是找到式子变化的共同点和不同点。
6.若数列{a n }满足a n+1=,76,)121(12)210(21=⎪⎪⎩⎪⎪⎨⎧<≤-<≤a a a a a n n n n若则a 20的值是 6.75.提示:1234366553621212777777a a a a a =⇒=⋅-=⇒=⋅-=⇒==。
∴数列{}n a 是周期为3的数列,∴20182257a a a +===.二.解答题(本大题共2小题,共36分)8642-2y510x0127.已知数列{a n }中,a n =()*15.6nn N n ∈-,求数列{a n }的最大项. 解:考察函数15.6115.615.6x y x x ==+--,因为直线15.6x =为函数图象的渐近线,且函数在(),15.6-∞上单调递减,在()15.6,+∞上单调递减,所以当15.6n >且n 最接近15.6且*n N ∈时,n a 最大,故16a 最大,即第16项最大.8.设向量a =(2,x ),b =(12,-+x n x )(n N +∈),函数=y a ·b 在[0,1]上的最小值与最大值的和为na ,又数列{nb }满足:1109)109()109(2)1(21121++++=+++-+--- n n n n b b b n nb .(1)求证:1+=n a n ;(2)求n b 的表达式;(3)n n n b a c ⋅-=,试问数列{n c }中,是否存在正整数k ,使得对于任意的正整数n ,都有n c ≤k c 成立?证明你的结论.解 (1)证明:=y a ·b =2)4(2-++x n x ,因为对称轴24+-=n x , 所以在[0,1]上为增函数,∴1)3()2(+=++-=n n a n 。
(2)解:由1109)109()109(2)1(21121++++=+++-+--- n n n n b b b n nb 得1109)109()109()2()1(32121++++=++-+---- n n n b b n b n 两式相减得n n n n S b b b b ==++++--1121)109( ,当1=n 时,111==S b 当n ≥2时,21)109(109---=-=n n n n S S b 即⎪⎩⎪⎨⎧≥=-=-21)109(10112n n b n n(3)解:由(1)与(2)得=⋅-=n n n b a c ⎪⎩⎪⎨⎧≥=+--21)109(10122n n n n设存在正整数k ,使得对于任意的正整数n ,都有n c ≤k c 成立,当2,1=n 时,121201023c c c c >⇒>=-当n ≥2时,1008)109(21nc c n n n -⋅=--+, 所以当8<n 时,n n c c >+1, 当8=n 时,n n c c =+1, 当8>n 时,n n c c <+1所以存在正整数9=k ,使得对于任意的正整数n ,都有n c ≤k c 成立. 备选题: 1. 数列19199199919999,,,,10100100010000…的通项公式是 。