2019高考数学考点突破——直线与圆:直线与圆、圆与圆的位置关系

合集下载

高中数学高考板块2 核心考点突破拿高分 专题5 第1讲 直线与圆(小题)

高中数学高考板块2 核心考点突破拿高分 专题5 第1讲 直线与圆(小题)

(2)已知直线l经过直线l1:x+y=2与l2:2x-y=1的交点,且直线l的斜率为-
2 3

则直线l的方程是
A.-3x+2y+1=0
√C.2x+3y-5=0
B.3x-2y+1=0 D.2x-3y+1=0
解析 解方程组2x+x-y=y=21,, 得yx==11,,
所以两直线的交点为(1,1). 因为直线 l 的斜率为-23, 所以直线 l 的方程为 y-1=-23(x-1),即 2x+3y-5=0.
(2)(2019·河北省级示范性高中联合体联考)已知A,B分别是双曲线C: xm2-y22 =1的 左、右顶点,P(3,4)为C上一点,则△PAB的外接圆的标准方程为_x_2_+__(_y-__3_)_2_=__1_0_.
解析 ∵P(3,4)为 C 上一点,m9 -126=1, 解得 m=1,则 B(1,0),∴kPB=42=2, PB 的中垂线方程为 y=-12(x-2)+2, 令x=0,则y=3, 设外接圆圆心为M(0,t),
△FPM为等边三角形⇒△FPM外接圆圆心与重心重合,
∴外接圆圆心坐标为-2
3-2 3
3+0,3-13+1,即-4
3
3,1,
外接圆半径为 r=
பைடு நூலகம்
-4
3
3+2
32+1+12=4
3
3,
同理可得当 x=2
3时,圆心坐标为4
3
3,1,半径为4
3
3,
∴外接圆方程为x±4
3
32+(y-1)2=136.
跟踪演练2 (1)(2019·黄冈调研)已知圆x2+y2+2k2x+2y+4k=0关于y=x对称,则
的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的

第四节 直线与圆、圆与圆的位置关系(二)

第四节 直线与圆、圆与圆的位置关系(二)
[例2] 如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+ 60=0及其上一点A(2,4).
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
解:圆M的标准方程为(x-6)2+(y-7)2=25, 所以圆心M(6,7),半径为5. (1)由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切、与圆M外切, 所以0<y0<7,于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1. 因此,圆N的标准方程为(x-6)2+(y-1)2=1.
化简得:
x02
+
y02
-
4 3
x0+
4 3
y0-
20 3
=0
配方得
x0
2 2 3
+(y0+
2 3
)2=
68 9
.
所以存在定点 M( 2 ,- 2 )使得 Q 到 M 的距离为定值,且该定值为 2 17 .
33
3
考点三 利用圆系的方程解题
[例3] 已知圆C1:x2+y2+2x+2y-8=0与圆C2:x2+y2-2x+10y-24=0相交于A,B两点, (1)求公共弦AB所在的直线方程;
解析:若两圆外切,则C与(-1,2)的距离为4,在一个圆上;若两圆内切,则C与 (-1,2)的距离为2,在一个圆上. 故选A.
4.若直线y=mx+1与圆C:x2+y2+2x+2y=0相交于A,B两点,且AC⊥BC,则m等于( A )
(A) 3 4
(B)-1
(C)- 1 (D) 3

直线与圆、圆与圆的位置关系—知识讲解(基础)

直线与圆、圆与圆的位置关系—知识讲解(基础)

直线与圆、圆与圆的位置关系—知识讲解(基础)【学习目标】1.理解并掌握直线与圆、圆与圆的各种位置关系;2.理解切线的判定定理、性质定理和切线长定理,了解三角形的内切圆和三角形的内心的概念,并熟练掌握以上内容解决一些实际问题;3.了解两个圆相离(外离、内含),两个圆相切(外切、内切),两圆相交,圆心距等概念.理解两圆的位置关系与d、r1、r2数量关系的等价条件并灵活应用它们解题.【要点梳理】要点一、直线和圆的位置关系1.直线和圆的三种位置关系:(1) 相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.(2) 相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.(3) 相离:直线和圆没有公共点时,叫做直线和圆相离.2.直线与圆的位置关系的判定和性质.直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢?由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.如果⊙O的半径为r,圆心O到直线的距离为d,那么要点诠释:这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.要点二、切线的判定定理、性质定理和切线长定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可. 2.切线的性质定理:圆的切线垂直于过切点的半径.3.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 4.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释:切线长定理包含两个结论:线段相等和角相等.5.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.6.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).要点三、圆和圆的位置关系1.圆与圆的五种位置关系的定义两圆外离:两个圆没有公共点,且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.两圆外切:两个圆有唯一公共点,并且除了这个公共点外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.两圆相交:两个圆有两个公共点时,叫做这两圆相交.两圆内切:两个圆有唯一公共点,并且除了这个公共点外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.两圆内含:两个圆没有公共点,且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.2.两圆的位置与两圆的半径、圆心距间的数量关系:设⊙O1的半径为r1,⊙O2半径为r2,两圆心O1O2的距离为d,则:两圆外离d>r1+r2两圆外切d=r1+r2两圆相交r1-r2<d<r1+r2 (r1≥r2)两圆内切d=r1-r2 (r1>r2)两圆内含d<r1-r2 (r1>r2)要点诠释:(1) 圆与圆的位置关系,既考虑它们公共点的个数,又注意到位置的不同,若以两圆的公共点个数分类,又可以分为:相离(含外离、内含)、相切(含内切、外切)、相交;(2) 内切、外切统称为相切,唯一的公共点叫作切点;(3) 具有内切或内含关系的两个圆的半径不可能相等,否则两圆重合.【典型例题】类型一、直线与圆的位置关系【高清ID号: 356966 关联的位置名称(播放点名称):经典例题1-2】1.(优质试题•盐城)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC 于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.【答案与解析】(1)解;∵∠DBA=50°,∴∠DOA=2∠DBA=100°,(2)证明:连接OE.在△EAO与△EDO中,,∴△EAO≌△EDO,∴∠EDO=∠EAO,∵∠BAC=90°,∴∠EDO=90°,∴DE与⊙O相切.【总结升华】本题考查了切线的判定,连接OE构造全等三角形是解题的关键.举一反三:【高清ID号: 356966 关联的位置名称(播放点名称):经典例题1-2】【变式】如图,P点是∠AOB的平分线OC上一点,PE⊥OA于E,以P为圆心,PE为半径作⊙P .求证:⊙P与OB相切.【答案】作PF⊥OB于F,则可证明△OEP≌△OFP,所以PF=PE,即F在圆P上,故⊙P与OB相切.2.(优质试题•黄石)如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.【思路点拨】(1)根据圆周角定理求得∠ADB=90°,然后解直角三角形即可求得BD,进而求得BC即可;(2)要证明直线DE是⊙O的切线只要证明∠EDO=90°即可.【答案与解析】证明:(1)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵∠ABC=30°,AB=4,∴BD=2,∵D是BC的中点,∴BC=2BD=4;(2)证明:连接OD.∵D是BC的中点,O是AB的中点,∴DO是△ABC的中位线,∴OD∥AC,则∠EDO=∠CED又∵DE⊥AC,∴∠CED=90°,∠EDO=∠CED=90°∴DE是⊙O的切线.【总结升华】此题主要考查了切线的判定以及含30°角的直角三角形的性质.解题时要注意连接过切点的半径是圆中的常见辅助线.类型二、圆与圆的位置关系3.(1)已知两圆的半径分别为3cm,5cm,且其圆心距为7cm,则这两圆的位置关系是( )A.外切 B.内切 C.相交 D.相离(2)已知⊙O1与⊙O2相切,⊙O1的半径为3cm,⊙O2的半径为2cm,则O1O2的长是( )A.1cm B.5cm C.1cm或5cm D.0.5cm或2.5cm【答案】(1)C ;(2)C.【解析】(1)由于圆心距d=7cm,R+r=5+3=8(cm),R-r=5-3=2(cm).∴ R-r<d<R+r,故这两圆的位置关系是相交.(2)两圆相切包括外切和内切,当⊙O1与⊙O2外切时,d=O1O2=R+r=3+2=5(cm);当⊙O1与⊙O2内切时,d=O1O2=R-r=3-2=1(cm).【总结升华】由数量确定位置或由位置确定数量的依据是:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r;④两圆内切⇔d=R-r;⑤两圆内含⇔d<R-r.4.已知:如图,⊙O1与⊙O2外切于A点,直线l与⊙O1、⊙O2分别切于B,C点,若⊙O1的半径r1=2cm,⊙O2的半径r2=3cm.求BC的长.【思路点拨】首先连接O1B,O2C,O1O2,过点O1作O1D⊥O2C于D,由直线l与⊙O1、⊙O2分别切于B,C 点,可得四边形O1BCD是矩形,即可知CD=O1B=r1=2cm,BC=O1D,然后在Rt△O2DO1中,利用勾股定理即可求得O1D的长,即可得BC的长.【答案与解析】【总结升华】此题考查了相切两圆的性质、切线的性质、矩形的判定与性质以及勾股定理.此题难度适中,解题的关键是准确作出辅助线,掌握相切两圆的性质.举一反三:【变式】如图所示,在△ABC中,AB=BC=2,以AB为直径的⊙O与BC相切于点B,则AC等于( )A..【答案】因为以AB为直径的⊙O与BC相切于点B,所以∠ABC=90°,在Rt△ABC中,AC=C.。

备战2019年高考数学大一轮复习热点聚焦与扩展专题46直线与圆圆与圆的位置关系

备战2019年高考数学大一轮复习热点聚焦与扩展专题46直线与圆圆与圆的位置关系

专题46 直线与圆、圆与圆的位置关系【热点聚焦与扩展】高考对圆的方程的考查,一般是以小题的形式出现,也有与向量、圆锥曲线等相结合的问题.纵观近几年的高考试题,主要考查以下几个方面:一是考查圆的方程,要求利用待定系数法求出圆的方程,并结合圆的几何性质解决相关问题;二是考查直线与圆的位置关系,高考要求能熟练地解决圆的切线问题,弦长问题是高考热点,其中利用由圆心距、半径与半弦长构成的直角三角形,是求弦长问题的关键.三是判断圆与圆的位置关系,确定公共弦所在的直线方程.近几年多与圆锥曲线问题综合考查.本专题通过例题说明关于直线与圆、圆与圆的位置关系问题的解法与技巧. 1、定义:在平面上到定点的距离等于定长的点的轨迹是圆2、圆的标准方程:设圆心的坐标(),C a b ,半径为r ,则圆的标准方程为:()()222x a y b r -+-=3、圆的一般方程:圆方程为220x y Dx Ey F ++++= (1)22,x y 的系数相同 (2)方程中无xy 项(3)对于,,D E F 的取值要求:2240D E F +->4、直线与圆位置关系的判定:相切,相交,相离,位置关系的判定有两种方式:(1)几何性质:通过判断圆心到直线距离与半径的大小得到直线与圆位置关系,设圆的半径为r ,圆心到直线的距离为d ,则: ① 当r d >时,直线与圆相交 ② 当r d =时,直线与圆相切 ③ 当r d <时,直线与圆相离(2)代数性质:可通过判断直线与圆的交点个数得到直线与圆位置关系,即联立直线与圆的方程,再判断解的个数.设直线:0Ax By C ++=,圆:220x y Dx Ey F ++++=,则:22Ax By C x y Dx Ey F ++=⎧⎨++++=⎩消去y 可得关于x 的一元二次方程,考虑其判别式的符号 ① 0∆>,方程组有两组解,所以直线与圆相交 ② 0∆=,方程组有一组解,所以直线与圆相切③ 0∆<,方程组无解,所以直线与圆相离 5、直线与圆相交:弦长计算公式:2222AB AM r d ==- 6、直线与圆相切:(1)如何求得切线方程:主要依据两条性质:一是切点与圆心的连线与切线垂直;二是圆心到切线的距离等于半径(2)圆上点的切线结论:① 圆222x y r +=上点()00,P x y 处的切线方程为200x x y y r +=② 圆()()222x a y b r -+-=上点()00,P x y 处的切线方程为()()()()200x a x a y b y b r --+--=(3)过圆外一点的切线方程(两条切线):可采取上例方法二的做法,先设出直线方程,再利用圆心到切线距离等于半径求得斜率,从而得到方程.(要注意判断斜率不存在的直线是否为切线) 7、与圆相关的最值问题(1)已知圆C 及圆外一定点P ,设圆C 的半径为r 则圆上点到P 点距离的最小值为PM PC r =-,最大值为PN PC r =+(即连结PC 并延长,M 为PC 与圆的交点,N 为PC 延长线与圆的交点.MCNP(2)已知圆C 及圆内一定点P ,则过P 点的所有弦中最长的为直径,最短的为与该直径垂直的弦MN .CPAB(3)已知圆C 和圆外的一条直线l ,则圆上点到直线距离的最小值为C l PM d r -=-,距离的最大值为C l PN d r -=+(过圆心C 作l 的垂线,垂足为P ,CP 与圆C 交于M ,其反向延长线交圆C 于NlMCN(4)已知圆C 和圆外的一条直线l ,则过直线l 上的点作圆的切线,切线长的最小值为PM .lCPM8、圆与圆的位置关系:外离,外切,相交,内切,内含(1)可通过圆心距离与半径的关系判定:设圆12,O O 的半径为12,r r ,12OO d = ① 12d r r >+⇒12,O O 外离 ② 12d r r =+⇒12,O O 外切③ 1212r r d r r -<<+⇒12,O O 相交④ 12d r r =-⇒12,O O 内切 ⑤ 12d r r <-⇒12,O O 内含(2)可通过联立圆的方程组,从而由方程组解的个数判定两圆位置关系.但只能判断交点的个数.例如方程组的解只有一组时,只能说明两圆有一个公共点,但是外切还是内切无法直接判定【经典例题】例1.【2016高考山东】已知圆M :2220(0)x y ay a 截直线0x y 所得线段的长度是2M与圆N :22(1)1x y (-1)的位置关系是( )(A )内切(B )相交(C )外切(D )相离 【答案】B 【解析】 试题分析:由2220x y ay +-=(0a >)得()222x y a a +-=(0a >),所以圆M 的圆心为()0,a ,半径为1r a =,因为圆M 截直线0x y +=所得线段的长度是22,所以222222211a ⎛⎫=- ⎪ ⎪+⎝⎭,解得2a =,圆N 的圆心为()1,1,半径为21r =,所以()()2201212MN =-+-=,123r r +=,121r r -=,因为1212r r r r -<MN <+,所以圆M 与圆N 相交,故选B .例2.【2018届湖北省华师一附中调研】已知圆C : ()()2224x a y -+-=(0a >)及直线l : 30x y -+=,当直线l 被C 截得的弦长为23时,则a = ( ) A. 2 B. 22- C. 21- D. 21+ 【答案】C【解析】由题意,得()2213411a ⎛⎫++= ⎪+⎝⎭,解得21a =±-,又因为0a >,所以21a =-;故选C.例3.【2018届黑龙江省海林市朝鲜中学高考综合卷(一)】已知两点(),0A a , (),0B a -(0a >),若曲线2223230x y x y +--+=上存在点P ,使得90APB ∠=︒,则正实数a 的取值范围为( )A. (]0,3B. []1,3C. []2,3D. []1,2 【答案】B例4.已知直线()():21440l m x m y m ++-+-=上总存在点M ,使得过M 点作的圆C :222430x y x y ++-+=的两条切线互相垂直,则实数m 的取值范围是( )A. 1m ≤或2m ≥B. 28m ≤≤C. 210m -≤≤D. 2m ≤-或8m ≥ 【答案】C【解析】如图,设切点分别为A,B.连接AC,BC,MC,由90AMB MAC MBC∠=∠=∠=︒及MA MB=知,四边形MACB为正方形,故222MC=+=,若直线l上总存在点M使得过点M的两条切线互相垂直,只需圆心()12-,到直线l的距离()()2222244221m m mdm m--+-+-=≤++-,即28200m m--≤,∴210m-≤≤,故选C.例5.过点()2,1作圆()()22124x y-+-=的弦,其中最短的弦长为 .【答案】22.yxOPBADC点睛:数形结合思想的应用,是解析几何的重要特征,解题过程中要通过分析题目的条件和结论,灵活的加以转化.例6.【2016高考新课标3】已知直线l:330mx y m++=与圆2212x y+=交于,A B两点,过,A B分别做l的垂线与x轴交于,C D两点,若23AB=||CD=__________________.【答案】4【解析】因为||23AB =,且圆的半径为23,所以圆心(0,0)到直线330mx y m ++-=的距离为22||()32AB R -=,则由2|33|31m m -=+,解得3m =-,代入直线l 的方程,得323y x =+,所以直线l 的倾斜角为30︒,由平面几何知识知在梯形ABDC 中,||||4cos30AB CD ==︒.例7.已知圆221:2610C x y x y ++-+=,圆222:42110C x y x y +-+-=,求两圆的公共弦所在的直线方程及公共弦长. 【答案】3460x y -+=,245. 【解析】将两圆方程相减得相交弦的方程为:3460x y -+=.将221:2610C x y x y ++-+=配方得: 22(1)(3)9x y ++-=,圆心到公共弦的距离为2231269534d --+==+.所以弦长为29122429()2555-=⨯=. 例8. 求过点()3,1M 的圆22(1)(2)4C x y :-+-=的切线方程 【答案】x 3=,3450x y --=.点睛:求过某点的圆的切线问题时,应首先确定点与圆的位置关系,再求直线方程.若点在圆上(即为切点),则过该点的切线只有一条;若点在圆外,则过该点的切线有两条,此时应注意斜率不存在的切线. 例9. 已知点(2,0)P 及圆C :226440x y x y +-++=. ①若直线l 过点P 且与圆心C 的距离为1,求直线l 的方程;②设过点P 的直线1l 与圆C 交于M 、N 两点,当4MN =时,求以线段MN 为直径的圆Q 的方程; ③设直线10ax y -+=与圆C 交于A ,B 两点,是否存在实数a ,使得过点(2,0)P 的直线2l 垂直平分弦AB ?若存在,求出实数a 的值;若不存在,请说明理由.【答案】①3460x y +-=或2x =;②22(2)4x y -+=;③不存在实数a ,使得过点(2, 0)P 的直线2l 垂直平分弦AB .【解析】①设直线l 的斜率为k (k 存在), 则方程为0(2)y k x -=-. 即02=--k y kx 又圆C 的圆心为(3,2)-,半径3r =, 由232211k k k +-=+, 解得34k =-.所以直线方程为3(2)4y x =--, 即 3460x y +-=. 当l 的斜率不存在时,l 的方程为2x =,经验证2x =也满足条件 ②由于5CP =,而弦心距22()52MN d r =-=, 所以d =5CP =.即20a ->,解得0a <. 则实数a 的取值范围是(,0)-∞.设符合条件的实数a 存在,由于2l 垂直平分弦AB ,故圆心(3, 2)C -必在2l 上. 所以2l 的斜率2PC k =-,而1AB PC k a k ==-,所以12a =. 由于1(, 0)2∉-∞,故不存在实数a ,使得过点(2, 0)P 的直线2l 垂直平分弦AB . 例10. 已知半径为2,圆心在直线2y x =-+上的圆C.(Ⅰ)当圆C 经过点A (2,2)且与y 轴相切时,求圆C 的方程;(Ⅱ)已知E(1,1),F(1,-3),若圆C 上存在点Q ,使2232QF QE -=,求圆心的横坐标a 的取值范围. 【答案】(Ⅰ)22(2)4x y -+=;(Ⅱ)31a -≤≤【解析】试题分析:(Ⅰ)因为原心在直线2y x =-+上故可设原心为(),2a a -+,则可根据圆心和圆上的点的距离为半径列出方程。

高中数学复习:直线与圆、圆与圆的位置关系

高中数学复习:直线与圆、圆与圆的位置关系
d=|r1-r2| (r1≠r2)
0≤d<|r1-r2| (r1≠r2)
教材研读 栏目索引
代数法:联立两圆方程 组成方程组的解的情况 ⑩ 无解
一组实数解 两组不同的实数解
一组实数解
无解
教材研读 栏目索引
知识拓展 1.两相交圆的公共弦所在直线的方程 设圆C1:x2+y2+D1x+E1y+F1=0①,圆C2:x2+y2+D2x+E2y+F2=0②,若两圆相交, 则有一条公共弦,由①-②,得(D1-D2)x+(E1-E2)y+F1-F2=0③. 方程③表示圆C1与C2的公共弦所在直线的方程. 说明 当两圆相交时,两圆方程相减,所得的方程即两圆公共弦所在的 直线方程.这一结论的前提是两圆相交,如果不确定两圆是否相交,那么 两圆方程相减得到的方程不一定是两圆的公共弦所在直线的方程.
教材研读 栏目索引
(4)过圆O:x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y=r2. ( √ ) (5)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别是A、B, 则O、P、A、B四点共圆且直线AB的方程是x0x+y0y=r2. ( √ ) (6)若直线与圆组成的方程组有解,则直线与圆相交或相切. ( √ )
解法二:因为圆心(0,1)到直线l的距离d=
|m|
m2 1 <1<
5 ,故直线l与圆相交,
选A.
解法三:直线l:mx-y+1-m=0过定点(1,1),因为点(1,1)在圆C:x2+(y-1)2=5的
答案 (1) × (2)× (3)× (4)√ (5)√ (6)√

高考数学直线与圆归纳总结

高考数学直线与圆归纳总结

高考数学直线与圆归纳总结直线与圆是高中数学中重要的几何概念。

在高考数学中,直线与圆的相关知识点常常出现,并且在解决几何问题时扮演着重要的角色。

下面将对高考数学中涉及直线与圆的知识进行归纳总结。

一、直线与圆的位置关系1. 直线和圆可能有三种位置关系:相离、相切和相交。

a. 如果直线和圆没有交点,则称直线和圆相离。

b. 如果直线与圆有且仅有一个交点,则称直线与圆相切。

c. 如果直线与圆有两个交点,则称直线与圆相交。

2. 判断直线与圆的位置关系的方法:a. 判断直线与圆相离:计算直线到圆心的距离是否大于圆的半径。

b. 判断直线与圆相切:计算直线到圆心的距离等于圆的半径。

c. 判断直线与圆相交:计算直线到圆心的距离小于圆的半径。

二、直线与圆的方程1. 直线的一般方程:Ax + By + C = 0。

直线的一般方程表示直线上的所有点 (x, y),满足方程左侧等式。

2. 圆的标准方程:(x - a)^2 + (y - b)^2 = r^2。

圆的标准方程表示平面上距离圆心 (a, b) 距离为半径 r 的点 (x, y)。

3. 直线与圆的方程应用:a. 直线与圆的相交问题可以通过联立直线和圆的方程求解。

b. 直线与圆的相切问题可以通过判断直线方程是否与圆方程有且仅有一个交点来确定。

三、直线与圆的性质1. 切线与半径的关系:切线与半径的夹角是直角,即切线垂直于半径。

2. 切线的性质:a. 切点:切线与圆的交点称为切点。

b. 切线长度:切点到圆心的距离等于半径的长度。

c. 外切线:若直线与圆内切于一点,则这条直线称为外切线。

d. 内切线:若直线切圆于两个相交点,则这条直线称为内切线。

3. 弦的性质:弦是圆上的两个点之间的线段。

弦的性质有:a. 弦长:弦长等于圆心到弦的距离的两倍。

b. 直径:直径是通过圆心的弦。

直径等于半径的两倍。

四、圆的位置关系1. 同心圆:具有共同圆心的多个圆称为同心圆。

2. 内切圆与外接圆:如果一个圆与另一个圆有且仅有一个切点,则这两个圆称为内切圆与外接圆。

高考一轮复习直线与圆、圆与圆的位置关系

高考一轮复习直线与圆、圆与圆的位置关系
(2)若圆O2与圆O1交于A、B两点,且|AB|=2 ,求 2
圆O2的方程.
2 例4 已知以点C(t, )(t∈R,t≠0)为圆心的圆与x轴 t
交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值; (2)设直线2x+y-4=0与圆C交于点M、N,若|OM|=|ON| 求圆C的方程; (3)在(2)的条件下,设P、Q分别是直线l:x+y+2=0和圆 C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.
直线与圆、圆与圆 的位置关系
一、直线与圆的位置关系
1.常用研究方法 ①判别式法;
②考查圆心到直线的距离与半径的大小关系.
2.直线Ax+By+C=0与圆(x-a) +(y-b) =r 的位置关系有 | Aa Bb C | 三种: 若d 2 2 A B
2 2 2
则d____r⇔相切⇔Δ____0; = =
d____r⇔相交⇔Δ____0; < < < d____r⇔相离⇔Δ____0; >
3.直线和圆相切
(1)过圆上一点的圆的切线方程:圆(x-a) +(y-b) =r 的以P( x0,y0)为切点的切线方程是______________________. (x0-a)(x-a)+(y0-b)(y-b)=r (2)一般地,圆x +y +Dx+Ey+F=0的以点P(x0,y0)为切点的
例2 已知点P(0,5)及圆C:x +y 3 +4x-12y+24=0. (1)若直线l过点P且被圆C截得的线段长为4 ,
求l的方程;
(2)求过P点的圆C的弦的中点的轨迹方程.

高考文数直线与圆知识点

高考文数直线与圆知识点

高考文数直线与圆知识点在高考数学的考试中,直线与圆是非常重要的几何知识点。

掌握直线与圆的相关性质和计算方法,对于解题有着重要的指导意义。

本文将介绍一些高考中常见的直线与圆知识点,希望能帮助同学们更好地理解和学习。

1. 直线与圆的位置关系直线与圆的位置关系有三种:直线与圆相交、直线与圆相切和直线与圆相离。

当直线与圆相交时,可能会有两个交点或者一个交点。

这要根据直线与圆的位置关系来判断。

如果直线穿过圆的两个交点,则称为直线与圆相交于两点;如果直线与圆只有一个交点,则称为直线与圆相切。

当直线与圆相离时,直线与圆之间没有任何交点。

2. 直线与圆的性质(1)切线性质:过圆外一点,可作无数条与圆相切的直线,这些相切直线上的切点和该点到圆心的线段相等。

当直线与圆相切时,该直线被称为切线。

切线与圆相切于一个点,且切点到圆心的距离与切点到该点的距离相等。

(2)切线定理:切线所构成的角与该切点与圆心连线所构成的角相等。

当直线与圆相切时,切线与该切点与圆心连线所构成的角相等。

(3)幅度定理:圆心角的幅度是其所对应扇形的幅度的两倍。

圆心角是以圆心为顶点的角,其幅度定义为其所对应扇形的幅度的两倍。

(4)正切定理:切线与半径的正切相等。

当直线与圆相切时,该切线与切点处的半径的正切相等。

3. 直线与圆的计算方法(1)直线方程的计算方法:已知直线上的两个点,可以求出直线的方程。

设直线上两点的坐标分别为(x1, y1)和(x2, y2),则直线的方程可以表示为(y - y1)/(y2 - y1) = (x - x1)/(x2 - x1)。

(2)圆的方程的计算方法:已知圆心和半径,可以求出圆的方程。

设圆的圆心坐标为(h, k),半径为r,则圆的方程可以表示为(x - h)² + (y - k)² = r²。

通过计算直线方程和圆的方程,可以解决很多与直线与圆有关的几何问题。

4. 直线与圆的应用在实际生活和工作中,直线与圆的知识点也有很多应用。

直线与圆的位置关系知识点总结

直线与圆的位置关系知识点总结

直线与圆的位置关系知识点总结在平面几何中,直线与圆的位置关系是一个重要且基础的知识点。

理解和掌握它们之间的关系,对于解决许多几何问题具有关键作用。

接下来,咱们就详细聊聊直线与圆的位置关系。

一、直线与圆的位置关系的定义直线与圆有三种位置关系:相交、相切、相离。

当直线与圆有两个公共点时,我们称直线与圆相交。

想象一下,就好像直线穿过了圆,与圆有两个交点。

当直线与圆只有一个公共点时,称直线与圆相切。

这时候,直线就像是轻轻触碰了一下圆,只有那一个瞬间的接触点。

当直线与圆没有公共点时,就是直线与圆相离。

直线和圆仿佛处在两个完全不同的世界,没有任何交集。

二、判断直线与圆位置关系的方法1、几何法通过比较圆心到直线的距离 d 与圆的半径 r 的大小来判断。

若 d < r,则直线与圆相交。

比如,圆的半径是 5,圆心到某条直线的距离是 3,因为 3 < 5,所以直线与圆相交。

若 d = r,则直线与圆相切。

比如半径为 6 的圆,圆心到某直线距离恰好为 6,那这条直线就与圆相切。

若 d > r,则直线与圆相离。

比如圆半径 4,圆心到某直线距离 7,因为 7 > 4,所以直线与圆相离。

2、代数法将直线方程与圆的方程联立,消去其中一个变量(比如 y),得到一个关于另一个变量(比如 x)的一元二次方程。

通过判断这个一元二次方程的根的判别式Δ 的值来确定位置关系。

若Δ > 0,则直线与圆相交,意味着有两个不同的交点。

若Δ = 0,则直线与圆相切,只有一个交点。

若Δ < 0,则直线与圆相离,没有交点。

三、直线与圆相交1、弦长公式当直线与圆相交时,所形成的线段称为弦。

弦长的计算可以通过勾股定理来推导。

设直线方程为 Ax + By + C = 0,圆的方程为(x a)²+(y b)²= r²,直线与圆的交点为 P(x₁, y₁),Q(x₂, y₂)。

首先求出圆心(a, b) 到直线的距离 d =|Aa + Bb + C| /√(A²+ B²) 。

第8章 第4讲 直线与圆、圆与圆的位置关系

第8章 第4讲 直线与圆、圆与圆的位置关系
第八章
解析几何
第四讲 直线与圆、圆与圆的位置关系
知识梳理·双基自测 考点突破·互动探究 名师讲坛·素养提升
知识梳理·双基自测
高考一轮总复习 • 数学
返回导航
知识点一 直线与圆的位置关系 设直线l:Ax+By+C=0(A2+B2≠0), 圆:(x-a)2+(y-b)2=r2(r>0), d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的 一元二次方程的判别式为Δ.
过点 P 的直线的距离最大,所求的弦长最短,根据弦长公式最小值为
2 9-|CP|2=2 9-8=2,故选 B.
第八章 解析几何
考点突破·互动探究
ቤተ መጻሕፍቲ ባይዱ
高考一轮总复习 • 数学
返回导航
考点一
直线与圆的位置关系——自主练透
例1 (1)(2022·重庆巴蜀中学月考)直线l:mx+(m+1)y-5m-3=
0(m∈R)与圆O1:x2-6x+y2-8y+16=0的位置关系是
A.相交
B.相切
( A)
C.相离
D.与m有关
(2)(2021·广东广州综合测试)若直线kx-y+1=0与圆x2+y2+2x-4y
+1=0有公共点,则实数k的取值范围是
( D)
A.[-3,+∞)
B.(-∞,-3]
C.(0,+∞)
D.(-∞,+∞)
第八章 解析几何
高考一轮总复习 • 数学
返回导航
(3)(2022·四川资阳、遂宁等七市联考)圆 x2+y2+2x-2y-2=0 上到
第八章 解析几何
高考一轮总复习 • 数学
返回导航
判断直线与圆的位置关系的常见方法 (1)几何法:利用d与r的关系. (2)代数法:联立方程之后利用Δ判断. (3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直 线与圆相交. (4)判断圆上到定直线的距离为定值的点的个数问题的关键是比较定 值、圆心到直线的距离、半径的大小.

高考数学考点突破——解析几何:直线与圆、圆与圆的位置关系

高考数学考点突破——解析几何:直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系【考点梳理】1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系:d<r⇔相交;d=r⇔相切;d>r⇔相离.(2)代数法:联立直线l与圆C的方程,消去y(或x),得一元二次方程,计算判别式Δ=b2-4ac,Δ>0⇔相交,Δ=0⇔相切,Δ<0⇔相离.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).考点一、直线与圆的位置关系【例1】(1)直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是()A.相交B.相切C.相离D.不确定(2)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为__________.[答案] (1)A(2)x+2y-5=0[解析] (1)法一:∵圆心(0,1)到直线l的距离d=|m|m2+1<1< 5.故直线l与圆相交.法二:直线l:mx-y+1-m=0过定点(1,1),∵点(1,1)在圆C:x2+(y-1)2=5的内部,∴直线l与圆C相交.(2)∵以原点O为圆心的圆过点P(1,2),∴圆的方程为x2+y2=5.∵k OP=2,∴切线的斜率k=-1 2.由点斜式可得切线方程为y-2=-12(x-1),即x+2y-5=0.【类题通法】1.(1)利用圆心到直线的距离可判断直线与圆的位置关系,也可利用直线的方程与圆的方程联立后得到的一元二次方程的判别式来判断直线与圆的位置关系;(2)注意灵活运用圆的几何性质,联系圆的几何特征,数形结合,简化运算.如“切线与过切点的半径垂直”等.2.与弦长有关的问题常用几何法,即利用弦心距、半径和弦长的一半构成直角三角形进行求解.【对点训练】1. 过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为()A.2x+y-5=0 B.2x+y-7=0C.x-2y-5=0 D.x-2y-7=02. 已知直线l:x-3y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,则|CD|=__________.[答案] 1. B2. 4[解析] 1. 依题意知,点(3,1)在圆(x-1)2+y2=r2上,且为切点.∴圆心(1,0)与切点(3,1)连线的斜率为1 2.因此切线的斜率k=-2.故圆的切线方程为y-1=-2(x-3),即2x+y-7=0.2. 由圆x2+y2=12知圆心O(0,0),半径r=23.∴圆心(0,0)到直线x-3y+6=0的距离d=61+3=3,|AB|=212-32=2 3.过C作CE⊥BD于E.如图所示,则|CE|=|AB|=2 3. ∵直线l的方程为x-3y+6=0,∴k AB=33,则∠BPD=30°,从而∠BDP=60°.∴|CD|=|CE|sin 60°=|AB|sin 60°=2332=4.考点二、圆与圆的位置关系【例2】已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是22,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是()A.内切B.相交C.外切D.相离[答案] B[解析] 法一:由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0得两交点为(0,0),(-a ,a ). ∵圆M 截直线所得线段长度为22, ∴a 2+(-a )2=2 2.又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0,即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2. 又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1,∴|MN |=(0-1)2+(2-1)2= 2.∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3,∴两圆相交.法二:∵x 2+y 2-2ay =0(a >0)⇔x 2+(y -a )2=a 2(a >0),∴M (0,a ),r 1=a .∵圆M 截直线x +y =0所得线段的长度为22,∴圆心M 到直线x +y =0的距离d =a 2=a 2-2,解得a =2.∴圆M 的方程为x 2+y 2-4y =0,即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2. 又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1,∴|MN |=(0-1)2+(2-1)2= 2.∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3,∴两圆相交.【类题通法】1.圆与圆的位置关系取决于圆心距与两个半径的和与差的大小关系.2.若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到.3.若两圆相交,则两圆的连心线垂直平分公共弦.【对点训练】3.若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是__________.[答案] 4[解析] 由题意⊙O 1与⊙O 在A 处的切线互相垂直,则两切线分别过另一圆的圆心,∴O 1A ⊥OA .又∵|OA |=5,|O 1A |=25,∴|OO 1|=5.又A ,B 关于OO 1对称,∴AB 为Rt △OAO 1斜边上高的2倍.又∵12·OA ·O 1A =12OO 1·AC ,得AC =2.∴AB =4.考点三、直线与圆的综合问题【例3】 如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程.[解析] 圆M 的标准方程为(x -6)2+(y -7)2=25,所以圆心M (6,7),半径为5.(1)由圆心N 在直线x =6上,可设N (6,y 0).因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1.因此,圆N 的标准方程为(x -6)2+(y -1)2=1.(2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m ,即2x -y +m =0,则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5.因为BC =OA =22+42=25, 而MC 2=d 2+⎝ ⎛⎭⎪⎫BC 22,所以25=(m+5)25+5,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.【类题通法】1.(1)设出圆N的圆心N(6,y0),由条件圆M与圆N外切,求得圆心与半径,从而确定圆的标准方程.(2)依据平行直线,设出直线l的方程,根据点到直线的距离公式及勾股定理求解.2.求弦长常用的方法:①弦长公式;②半弦长、半径、弦心距构成直角三角形,利用勾股定理求解(几何法).【对点训练】4.在直角坐标系xOy中,以坐标原点O为圆心的圆与直线:x-3y=4相切.(1)求圆O的方程;(2)若圆O上有两点M,N关于直线x+2y=0对称,且|MN|=23,求直线MN 的方程.[解析] (1)依题意,圆O的半径r等于原点O到直线x-3y=4的距离,则r=41+3=2.所以圆O的方程为x2+y2=4.(2)由题意,可设直线MN的方程为2x-y+m=0.则圆心O到直线MN的距离d=|m| 5.由垂径分弦定理,得m25+(3)2=22,即m=±5.所以直线MN的方程为2x-y+5=0或2x-y-5=0.。

高二数学点与圆、直线与圆以及圆与圆的位置关系知识精讲

高二数学点与圆、直线与圆以及圆与圆的位置关系知识精讲

高二数学点与圆、直线与圆以及圆与圆的位置关系【本讲主要内容】点与圆、直线与圆以及圆与圆的位置关系【知识掌握】 【知识点精析】1. 点与圆的位置关系设圆C ∶(x -a )2+(y -b )2=r 2,点M (x 0,y 0)到圆心的距离为d ,则有: (1)d >r 点M 在圆外; (2)d =r 点M 在圆上; (3)d <r 点M 在圆内。

2. 直线与圆的位置关系设圆C ∶(x -a )2+(y -b )2=r 2,直线l 的方程为Ax +By +C =0,圆心(a ,b )到直线l 的距离为d ,⎩⎨⎧=++=-+-0C By Ax r )b y ()a x (222消去y 得x 的一元二次方程判别式为△,则有: (1)d <r 直线与圆相交; (2)d =r 直线与圆相切; (3)d>r 直线与圆相离,即几何特征; 或(1)△>0直线与圆相交; (2)△=0直线与圆相切; (3)△<0直线与圆相离,即代数特征。

3. 圆与圆的位置关系 设圆C 1:(x -a )2+(y -b )2=r 2和圆C 2:(x -m )2+(y -n )2=k 2(k≥r ),且设两圆圆心距为d ,则有: (1)d =k +r 两圆外切; (2)d =k -r 两圆内切; (3)d >k +r 两圆外离; (4)d <k -r 两圆内含; (5)k -r <d <k +r 两圆相交。

4. 其他(1)过圆上一点的切线方程:①圆x 2+y 2=r 2,圆上一点为(x 0,y 0),则此点的切线方程为x 0x +y 0y =r 2 ②圆(x -a )2+(y -b )2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2(2)相交两圆的公共弦所在直线方程:设圆C 1∶x 2+y 2+D 1x +E 1y +F 1=0和圆C 2∶x 2+y 2+D 2x +E 2y +F 2=0,若两圆相交,则过两圆交点的直线方程为(D 1-D 2)x +(E 1-E 2)y +(F 1-F 2)=0。

高三直线与圆的知识点

高三直线与圆的知识点

高三直线与圆的知识点直线与圆是高中数学中一个重要的几何学知识点。

本文将对高三学生在学习直线与圆相关内容时需要掌握的知识点进行详细介绍。

一、直线与圆的基本概念在几何学中,直线与圆是最基本的图形。

直线是无限延伸的、宽度可以忽略不计的一维图形,用两个端点确定;圆是平面上一组与一个给定点的距离相等的点的集合,该给定点称为圆心。

二、直线与圆的位置关系1. 直线与圆的位置关系有三种情况:(1)直线与圆相交:直线与圆相交于两个不同的点。

(2)直线与圆相切:直线与圆相切于圆上的一个点。

(3)直线与圆相离:直线与圆没有公共的点。

2. 判断直线与圆的位置关系的方法:(1)利用勾股定理:设圆的圆心为O,直线上任意一点为A,则直线上的点到圆心的距离等于圆的半径r,即OA²=r²。

(2)利用判别式:设圆的圆心为O(x0,y0),半径为r,直线的方程为Ax+By+C=0,则直线与圆的位置关系可以用判别式D=|Ax0+By0+C|²-(A²+B²)(x0²+y0²-r²)来判断。

当D>0时,直线与圆相交;当D=0时,直线与圆相切;当D<0时,直线与圆相离。

三、直线与圆的性质1. 直线的性质:(1)直线的斜率:直线的斜率定义为直线上任意两点的纵坐标之差除以横坐标之差。

(2)直线的截距:过直线上任意一点的垂直线与坐标轴的交点称为直线的截距。

直线的截距有x截距和y截距两种形式。

2. 圆的性质:(1)圆的周长:圆的周长等于半径乘以2π。

(2)圆的面积:圆的面积等于半径平方乘以π。

四、直线与圆的问题求解在学习直线与圆的知识时,常常需要解决与其相关的问题。

下面介绍几类常见的问题及求解方法:1. 直线与圆的交点问题:(1)已知直线与圆的方程,求交点坐标。

(2)已知直线与圆的位置关系,求直线方程或圆方程。

2. 直线与圆的切线问题:(1)已知直线与圆的位置关系为相切,求切点坐标及切线方程。

高考数学考点归纳之 直线与圆、圆与圆的位置关系

高考数学考点归纳之  直线与圆、圆与圆的位置关系

高考数学考点归纳之 直线与圆、圆与圆的位置关系一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>0 2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.(2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+⎝⎛⎭⎫12l 2. 考点一 直线与圆的位置关系考法(一) 直线与圆的位置关系的判断[典例] 直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交B .相切C .相离D .不确定[解析] 法一:由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5, 消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0, 因为Δ=16m 2+20>0, 所以直线l 与圆相交.法二:由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交. 法三:直线l :mx -y +1-m =0过定点(1,1),因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆相交.[答案] A[解题技法] 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. [提醒] 上述方法中最常用的是几何法. 考法(二) 直线与圆相切的问题[典例] (1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( ) A .3x +4y -4=0 B .4x -3y +4=0 C .x =2或4x -3y +4=0 D .y =4或3x +4y -4=0(2)(2019·成都摸底)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.[解析] (1)当斜率不存在时,x =2与圆相切;当斜率存在时,设切线方程为y -4=k (x -2),即kx -y +4-2k =0,则|k -1+4-2k |k 2+1=1,解得k =43,则切线方程为4x -3y +4=0,故切线方程为x =2或4x -3y +4=0.(2)圆C :x 2+y 2-2x -4y +1=0的圆心为C (1,2),半径为2.因为圆上存在两点关于直线l :x +my +1=0对称,所以直线l :x +my +1=0过点(1,2),所以1+2m +1=0,解得m =-1,所以|MC |2=13,|MP |=13-4=3.[答案] (1)C (2)3 考法(三) 弦长问题[典例] (1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( )A.12 B .1 C.22D.2(2)(2019·海口一中模拟)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( )A .4πB .2πC .9πD .22π[解析] (1)因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b 2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于1-⎝⎛⎭⎫222=22,所以弦长为 2. (2)易知圆C :x 2+y 2-2ay -2=0的圆心为(0,a ),半径为a 2+2.圆心(0,a )到直线y =x +2a 的距离d =|a |2,由直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,|AB |=23,可得a 22+3=a 2+2,解得a 2=2,故圆C 的半径为2,所以圆C 的面积为4π,故选A.[答案] (1)D (2)A[题组训练]1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎝⎛⎭⎫22,22的切线方程是________. 解析:因为M ⎝⎛⎭⎫22,22是圆x 2+y 2=1上的点,所以圆的切线的斜率为-1,则设切线方程为x +y +a =0,所以22+22+a =0,得a =-2,故切线方程为x +y -2=0. 答案:x +y -2=02.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.解析:由题知,圆x 2+y 2-2x -3=0可写成(x -1)2+y 2=4,圆心(1,0)到直线kx -y +2=0的距离d >2,即|k +2|k 2+1>2,解得0<k <43.答案:⎝⎛⎭⎫0,43 3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.解析:因为点A ,B 关于直线l :x +y =0对称,所以直线y =kx +1的斜率k =1,即y =x +1.又圆心⎝⎛⎭⎫-1,m2在直线l :x +y =0上,所以m =2,则圆心的坐标为(-1,1),半径r =2,所以圆心到直线y =x +1的距离d =22,所以|AB |=2r 2-d 2= 6. 答案:6考点二 圆与圆的位置关系[典例] (2016·山东高考)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[解析] 法一:由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0,得两交点为(0,0),(-a ,a ). ∵圆M 截直线所得线段长度为22, ∴a 2+(-a )2=2 2.又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0, 即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2.又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1, ∴|MN |=(0-1)2+(2-1)2= 2. ∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3, ∴两圆相交.法二:由题知圆M :x 2+(y -a )2=a 2(a >0),圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2.圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,两圆半径之和为3,故两圆相交.[答案] B [变透练清]1.(2019·太原模拟)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-11解析:选C 圆C 1的圆心为C 1(0,0),半径r 1=1,因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆C 2的圆心为C 2(3,4),半径r 2=25-m (m <25).从而|C 1C 2|=32+42=5.由两圆外切得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9,故选C.2.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.解析:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2-4y =0,(x -1)2+(y -1)2=1,两式相减得,2x -2y -1=0,因为N (1,1),r =1,则点N 到直线2x -2y -1=0的距离d =|-1|22=24,故公共弦长为21-⎝⎛⎭⎫242=142.答案:142[解题技法]几何法判断圆与圆的位置关系的3步骤(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.[课时跟踪检测]A 级1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3D .±3解析:选B 圆的方程可化为(x +1)2+(y -2)2=5,因为直线与圆相切,所以有|a |5=5,即a =±5.故选B.2.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( )A .1条B .2条C .3条D .4条解析:选A 两圆分别化为标准形式为C 1:(x -3)2+(y +2)2=1,C 2:(x -7)2+(y -1)2=36,则两圆圆心距|C 1C 2|=(7-3)2+[1-(-2)]2=5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.3.(2019·南宁、梧州联考)直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( )A.π6或5π6 B .-π3或π3C .-π6或π6D.π6解析:选A 由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d =22-(3)2=1.即d =|2k |1+k 2=1,所以k =±33,由k =tan α,得α=π6或5π6.故选A.4.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0D .x -2y -7=0解析:选B 由题意知点(3,1)在圆上,代入圆的方程可得r 2=5,圆的方程为(x -1)2+y 2=5,则过点(3,1)的切线方程为(x -1)·(3-1)+y (1-0)=5,即2x +y -7=0.故选B.5.(2019·重庆一中模拟)若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( )A .±1B .±24 C .± 2D .±32解析:选B 由题知圆的圆心坐标为(-1,3),半径为2,由于圆上有且仅有三个点到直线的距离为1,故圆心(-1,3)到直线x +ay +1=0的距离为1,即|-1+3a +1|1+a 2=1,解得a =±24. 6.(2018·嘉定二模)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34B .y =-12C .y =-32D .y =-14解析:选B 圆(x -1)2+y 2=1的圆心为C (1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.故选B.7.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.解析:易知圆心(2,-1),半径r =2,故圆心到直线的距离d =|2+2×(-1)-3|12+22=355,弦长为2r 2-d 2=2555. 答案:25558.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 解析:因为圆(x -1)2+y 2=25的圆心为(1,0),所以直线AB 的斜率等于-11-02-1=-1,由点斜式得直线AB 的方程为y -1=-(x -2),即x +y -3=0.答案:x +y -3=09.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________. 解析:因为P (-3,1)关于x 轴的对称点的坐标为P ′(-3,-1), 所以直线P ′Q 的方程为y =-1-3-a (x -a ),即x -(3+a )y -a =0, 圆心(0,0)到直线的距离d =|-a |1+(3+a )2=1,所以a =-53.答案:-5310.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.解析:把圆C 1、圆C 2的方程都化成标准形式,得(x -4)2+(y -2)2=9,(x +2)2+(y +1)2=4.圆C 1的圆心坐标是(4,2),半径长是3; 圆C 2的圆心坐标是(-2,-1),半径是2.圆心距d =(4+2)2+(2+1)2=35>5.故圆C 1与圆C 2相离, 所以|P Q |的最小值是35-5.答案:35-511.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长. 解:(1)证明:圆C 1的圆心C 1(1,3),半径r 1=11, 圆C 2的圆心C 2(5,6),半径r 2=4,两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4, |r 1-r 2|=4-11,∴|r 1-r 2|<d <r 1+r 2,∴圆C 1和圆C 2相交. (2)圆C 1和圆C 2的方程相减,得4x +3y -23=0, ∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 解:(1)设圆心的坐标为C (a ,-2a ), 则(a -2)2+(-2a +1)2=|a -2a -1|2.化简,得a 2-2a +1=0,解得a =1.∴C (1,-2),半径r =|AC |=(1-2)2+(-2+1)2= 2. ∴圆C 的方程为(x -1)2+(y +2)2=2.(2)①当直线l 的斜率不存在时,直线l 的方程为x =0,此时直线l 被圆C 截得的弦长为2,满足条件.②当直线l 的斜率存在时,设直线l 的方程为y =kx , 由题意得|k +2|1+k 2=1,解得k =-34,∴直线l 的方程为y =-34x ,即3x +4y =0.综上所述,直线l 的方程为x =0或3x +4y =0.B 级1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( )A. 2B.3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则有x 20+y 20=1,且切线方程为x 0x +y 0y =1.分别令y =0,x =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |=⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2,当且仅当x 0=y 0时,等号成立.2.(2018·江苏高考)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________.解析:因为AB ―→·CD ―→=0,所以AB ⊥CD ,又点C 为AB 的中点,所以∠BAD =π4,设直线l 的倾斜角为θ,直线AB 的斜率为k ,则tan θ=2,k =tan ⎝⎛⎭⎫θ+π4=-3.又B (5,0),所以 直线AB 的方程为y =-3(x -5),又A 为直线l :y =2x 上在第一象限内的点,联立直线AB 与直线l 的方程,得⎩⎪⎨⎪⎧ y =-3(x -5),y =2x ,解得⎩⎪⎨⎪⎧x =3,y =6,所以点A 的横坐标为3. 答案:33.(2018·安顺摸底)已知圆C :x 2+(y -a )2=4,点A (1,0). (1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.解:(1)过点A 的切线存在,即点A 在圆外或圆上, ∴1+a 2≥4,∴a ≥3或a ≤- 3.(2)设MN 与AC 交于点D ,O 为坐标原点. ∵|MN |=455,∴|DM |=255.又|MC |=2,∴|CD |=4-2025=45, ∴cos ∠MCA =452=25,|AC |=|MC |cos ∠MCA =225=5,∴|OC|=2,|AM|=1,∴MN是以点A为圆心,1为半径的圆A与圆C的公共弦,圆A的方程为(x-1)2+y2=1,圆C的方程为x2+(y-2)2=4或x2+(y+2)2=4,∴MN所在直线的方程为(x-1)2+y2-1-x2-(y-2)2+4=0,即x-2y=0或(x-1)2+y2-1-x2-(y+2)2+4=0,即x+2y=0,因此MN所在直线的方程为x-2y=0或x+2y=0.。

2019高考数学考点突破——直线与圆:直线与圆、圆与圆的位置关系

2019高考数学考点突破——直线与圆:直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系【考点梳理】1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系:d<r⇔相交;d=r⇔相切;d>r⇔相离.(2)代数法:联立直线l与圆C的方程,消去y(或x),得一元二次方程,计算判别式Δ=b2-4ac,Δ>0⇔相交,Δ=0⇔相切,Δ<0⇔相离.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).【考点突破】考点一、直线与圆的位置关系【例1】(1)直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是() A.相交B.相切C.相离D.不确定(2)圆x2+y2=1与直线y=kx+2没有公共点的充要条件是________.[答案](1) A(2) -3<k< 3[解析](1)法一:∵圆心(0,1)到直线l的距离d=|m|<1< 5.m2+1故直线l与圆相交.法二:直线l:mx-y+1-m=0过定点(1,1),∵点(1,1)在圆C:x2+(y-1)2=5的内部,∴直线l与圆C相交.(2)法一将直线方程代入圆方程,得(k2+1)x2+4kx+3=0,直线与圆没有公共点的充要条件是Δ=16k2-12(k2+1)<0,解得-3<k< 3.法二圆心(0,0)到直线y=kx+2的距离d=2k2+1,直线与圆没有公共点的充要条件是d>1,即2k2+1>1,解得-3<k< 3.【类题通法】判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.【对点训练】1.圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是()A.相切B.相交但直线不过圆心C.相交过圆心D.相离[答案] B[解析]由题意知圆心(1,-2)到直线2x+y-5=0的距离d=|2×1-2-5|22+12=5 <6且2×1+(-2)-5≠0,所以直线与圆相交但不过圆心.2.已知直线y=mx与圆x2+y2-4x+2=0相切,则m值为()A.±3B.±33C.±32D.±1[答案] D[解析]将y=mx代入x2+y2-4x+2=0,得(1+m2)x2-4x+2=0,因为直线与圆相切,所以Δ=(-4)2-4(1+m2)×2=8(1-m2)=0,解得m=±1.考点二、圆的切线、弦长问题【例2】设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=23,则圆C的面积为________.[答案]4π[解析]圆C:x2+y2-2ay-2=0,即C:x2+(y-a)2=a2+2,圆心为C(0,a),C到直线y=x+2a的距离为d=|0-a+2a|2=|a|2.又由|AB|=23,得⎝⎛⎭⎪⎫2322+⎝⎛⎭⎪⎫|a|22=a2+2,解得a2=2,所以圆的面积为π(a2+2)=4π.【类题通法】弦长的两种求法(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长.(2)几何方法:若弦心距为d,圆的半径长为r,则弦长l=2r2-d2.【对点训练】过点(3,1)作圆(x-2)2+(y-2)2=4的弦,其中最短弦的长为________.[答案] 22[解析]设P(3,1),圆心C(2,2),则|PC|=2,半径r=2,由题意知最短的弦过P(3,1)且与PC垂直,所以最短弦长为222-(2)2=2 2.【例3】过点P(2,4)引圆(x-1)2+(y-1)2=1的切线,则切线方程为________.[答案]x=2或4x-3y+4=0[解析]当直线的斜率不存在时,直线方程为x=2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y-4=k(x-2),即kx-y+4-2k=0,∵直线与圆相切,∴圆心到直线的距离等于半径,即d=|k-1+4-2k|k2+(-1)2=|3-k|k2+1=1,解得k=43,∴所求切线方程为43x-y+4-2×43=0,即4x-3y+4=0.综上,切线方程为x=2或4x-3y+4=0.【类题通法】圆的切线方程的两种求法(1)代数法:设切线方程为y-y0=k(x-x0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0进而求得k.(2)几何法:设切线方程为y-y0=k(x-x0),利用点到直线的距离公式表示出圆心到切线的距离d,然后令d=r,进而求出k.【对点训练】过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为() A.2x+y-5=0 B.2x+y-7=0C.x-2y-5=0 D.x-2y-7=0[答案] B[解析]∵过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,∴点(3,1)在圆(x-1)2+y2=r2上,∵圆心与切点连线的斜率k=1-03-1=12,∴切线的斜率为-2,则圆的切线方程为y-1=-2(x-3),即2x+y-7=0.考点三、圆与圆的位置关系【例4】已知两圆x2+y2-2x-6y-1=0,x2+y2-10x-12y+m=0.(1)m取何值时两圆外切?(2)m取何值时两圆内切?(3)当m=45时,求两圆的公共弦所在直线的方程和公共弦的长.[解析]因为两圆的标准方程分别为(x-1)2+(y-3)2=11,(x-5)2+(y-6)2=61-m,所以两圆的圆心分别为(1,3),(5,6),半径分别为11,61-m,(1)当两圆外切时,由(5-1)2+(6-3)2=11+61-m ,得m =25+1011.(2)当两圆内切时,因为定圆半径11小于两圆圆心之间的距离5, 所以61-m -11=5,解得m =25-1011.(3)由(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0,得两圆的公共弦所在直线的方程为4x +3y -23=0.故两圆的公共弦的长为2(11)2-⎝ ⎛⎭⎪⎫|4+3×3-23|42+322=27. 【类题通法】1.判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到.【对点训练】1.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离[答案] B[解析] 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+12=17.∵3-2<d <3+2,∴两圆相交.2.圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________.[答案] 2 2[解析] 由⎩⎨⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以,所求弦长为2 2.。

2019高考数学考点突破——直线与圆:两条直线的位置关系

2019高考数学考点突破——直线与圆:两条直线的位置关系

两条直线的位置关系【考点梳理】1.两条直线平行与垂直的判定 (1)两条直线平行①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.3.距离d =x 2-x 12+y 2-y 12考点一、两条直线的平行与垂直【例1】已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1)当l 1∥l 2时,求a 的值; (2)当l 1⊥l 2时,求a 的值.[解析] (1)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线方程可化为l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由l 1∥l 2可得⎩⎪⎨⎪⎧-a 2=11-a ,-3≠-(a +1),解得a =-1.综上可知,a =-1. 法二 由l 1∥l 2知⎩⎪⎨⎪⎧A 1B 2-A 2B 1=0,A 1C 2-A 2C 1≠0,即⎩⎪⎨⎪⎧a (a -1)-1×2=0,a (a 2-1)-1×6≠0⇒⎩⎪⎨⎪⎧a 2-a -2=0,a (a 2-1)≠6⇒a =-1. (2)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不符合;当a ≠1时,l 1:y =-a 2x -3,l 2:y =11-ax -(a +1),由l 1⊥l 2,得⎝ ⎛⎭⎪⎫-a 2·11-a =-1⇒a =23.法二 ∵l 1⊥l 2,∴A 1A 2+B 1B 2=0, 即a +2(a -1)=0,得a =23.【类题通法】1.判定直线间的位置关系,要注意直线方程中字母参数取值的影响,不仅要考虑到斜率存在的一般情况,还要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.2.在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论,可避免讨论.另外当A 2B 2C 2≠0时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答选择、填空题时,有时比较方便. 【对点训练】1.直线l 1:mx -y -2=0与直线l 2:(2-m )x -y +1=0互相平行,则实数m 的值为( ) A .-1 B .0 C .1D .2[答案] C[解析] ∵直线l 1:mx -y -2=0与直线l 2:(2-m )x -y +1=0互相平行,∴⎩⎪⎨⎪⎧-m +-m =0,m +-m,解得m =1.故选C.2.已知直线l 1:ax +2y +6=0,l 2:x +(a -1)y +a 2-1=0,若l 1⊥l 2,则a =________. [答案] 23[解析] 因为直线l 1:ax +2y +6=0与l 2:x +(a -1)y +a 2-1=0垂直,所以a ·1+2·(a -1)=0,解得a =23.考点二、两直线的交点与距离问题【例2】(1)已知直线y =kx +2k +1与直线y =12-x +2的交点位于第一象限,则实数k 的取值范围是________.(2)直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.[答案] (1) ⎝ ⎛⎭⎪⎫-16,12 (2) x +3y -5=0或x =-1 [解析] (1)法一 联立方程⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k 2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴交点坐标为⎝⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.又∵交点位于第一象限,∴⎩⎪⎨⎪⎧2-4k 2k +1>0,6k +12k +1>0,解得-16<k <12.法二 如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点), ∴动直线的斜率k 需满足k PA <k <k PB . ∵k PA =-16,k PB =12.∴-16<k <12.(2)法一 当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0. 由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,∴k =-13,∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意. 法二 当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4), ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1. 【类题通法】1.求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程;也可利用过交点的直线系方程,再求参数.2.利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等. 【对点训练】1.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] B[解析] 由⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k 得⎩⎪⎨⎪⎧x =kk -1,y =2k -1k -1.又∵0<k <12,∴x =k k -1<0,y =2k -1k -1>0,故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第二象限.2.已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为__________.[答案] -13或-79[解析] 由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79.考点三、对称问题【例3】已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程.[解析] (1)设A ′(x ,y ),再由已知⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,∴A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上.设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得M ′⎝ ⎛⎭⎪⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线方程为9x -46y +102=0. (3)法一 在l :2x -3y +1=0上任取两点, 如M (1,1),N (4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0. 法二 设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ), ∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0. 【类题通法】1.解决点关于直线对称问题要把握两点,点M 与点N 关于直线l 对称,则线段MN 的中点在直线l 上,直线l 与直线MN 垂直.2.如果直线或点关于点成中心对称问题,则只需运用中点公式就可解决问题.3.若直线l 1,l 2关于直线l 对称,则有如下性质:(1)若直线l 1与l 2相交,则交点在直线l 上;(2)若点B 在直线l 1上,则其关于直线l 的对称点B ′在直线l 2上.【对点训练】1.点(2,1)关于直线x -y +1=0的对称点为________. [答案] (0,3)[解析] 设对称点为(x 0,y 0),则⎩⎪⎨⎪⎧y 0-1x 0-2=-1,x 0+22-y 0+12+1=0,解得⎩⎪⎨⎪⎧x 0=0,y 0=3,故所求对称点为(0,3).2.直线x -2y +1=0关于直线x +y -2=0对称的直线方程是( ) A .x +2y -1=0 B .2x -y -1=0 C .2x +y -3=0 D .x +2y -3=0[答案] B[解析] 由题意得直线x -2y +1=0与直线x +y -2=0的交点坐标为(1,1). 在直线x -2y +1=0上取点A (-1,0),设A 点关于直线x +y -2=0的对称点为B (m ,n ),则⎩⎪⎨⎪⎧n -0m +1-=-1,m -12+n 2-2=0,解得⎩⎪⎨⎪⎧m =2,n =3.故所求直线的方程为y -13-1=x -12-1,即2x -y -1=0.3.平面直角坐标系中直线y =2x +1关于点(1,1)对称的直线方程是( ) A .y =2x -1 B .y =-2x +1 C .y =-2x +3 D .y =2x -3[答案] D[解析] 在直线y =2x +1上任取两个点A (0,1),B (1,3),则点A 关于点(1,1)对称的点为M (2,1),点B 关于点(1,1)对称的点为N (1,-1).由两点式求出对称直线MN 的方程为y +11+1=x -12-1,即y =2x -3.。

2019年高考数学总复习 第57讲 直线与圆、圆与圆的位置关系

2019年高考数学总复习  第57讲 直线与圆、圆与圆的位置关系

第57讲 直线与圆、圆与圆的位置关系1.圆x 2+y 2=1与直线y =kx +2没有公共点的充要条件是(C) A .k ∈(-2,2)B .k ∈(-∞,-2)∪(2,+∞)C .k ∈(-3,3)D .k ∈(-∞,-3)∪(3,+∞) 因为直线方程的一般式为kx -y +2=0,由d =2k 2+1>1,得k ∈(-3,3).2.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为(B)A. 5 2 B .10 2 C. 15 2 D .20 2最长弦为圆的直径210,最短弦为垂直于过(0,1)点和圆心的直径的弦,圆心(1,3)与点(0,1)的距离为1+4=5,所以最短弦长为210-5=2 5.所以四边形ABCD 的面积为12×210×5×2=10 2.3.(2015·重庆卷)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=(C)A .2B .4 2C .6D .210由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,所以圆心C (2,1)在直线x +ay -1=0上,所以2+a -1=0,所以a =-1,所以A (-4,-1).所以|AC |2=36+4=40.又r =2,所以|AB |2=40-4=36,所以|AB |=6.4.(2016·山东卷)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是(B)A .内切B .相交C .外切D .相离(方法一)由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0,得两交点为(0,0),(-a ,a ).因为圆M 截直线所得线段的长度为22,所以a 2+-a 2=2 2.又a >0,所以a =2.所以圆M 的方程为x 2+y 2-4y =0,即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2.又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1,所以|MN |=0-12+2-12= 2.因为r 1-r 2=1,r 1+r 2=3,1<|MN |<3,所以两圆相交.(方法二)因为x 2+y 2-2ay =0(a >0)⇔x 2+(y -a )2=a 2(a >0), 所以M (0,a ),r 1=a .依题意,有a2=a 2-2,解得a =2.以下同方法一.5.将圆x 2+y 2=1沿x 轴正向平移1个单位后得到圆C ,则圆C 的方程是 (x -1)2+y2=1 ,若过点(3,0)的直线l 和圆C 相切,则直线l 的斜率为 ±33. 将圆x 2+y 2=1沿x 轴正向平移1个单位,将方程中x 换为x -1,得到圆C 的方程为(x -1)2+y 2=1,设直线l 的方程为y =k (x -3),由d =|k -3k |k 2+1=1得k =±33.6.(2016·新课标卷Ⅲ)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |= 4 .如图所示,因为直线AB 的方程为x -3y +6=0,所以k AB =33,所以∠BPD =30°,从而∠BDP =60°.在Rt △BOD 中,因为|OB |=23,所以|OD |=2. 取AB 的中点H ,连接OH ,则OH ⊥AB , 所以OH 为直角梯形ABDC 的中位线,所以|OC |=|OD |,所以|CD |=2|OD |=2×2=4.7.(2017·新课标卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由.(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.(1)不能出现AC ⊥BC 的情况.理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2.又点C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:BC 的中点坐标为(x 22,12),可得BC 的中垂线方程为y -12=x 2(x -x 22).由(1)可得x 1+x 2=-m ,所以AB 的中垂线方程为x =-m2.联立⎩⎪⎨⎪⎧x =-m 2,y -12=x 2x -x 22,又x 22+mx 2-2=0,可得⎩⎪⎨⎪⎧x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为(-m2,-12),半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-m22=3, 即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.8.直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M 、N 两点,若|MN |≥23,则k 的取值范围是(B)A .[-34,0]B .[-33,33]C .[-3,3]D .[-23,0]因为圆心(2,3)到直线y =kx +3的距离d =|2k |k 2+1,所以|MN |=24-d 2=24-4k2k 2+1≥23,解得3k 2≤1,即k ∈[-33,33]. 9.若两圆C 1:x 2+y 2=1,C 2:(x +4)2+(y -a )2=25相切,则实数a = ±25或0 .当两圆外切时,C 1C 2=a 2+16=5+1, 所以a =±25;当两圆内切时,C 1C 2=a 2+16=5-1,所以a =0. 所以a =±25或0.10.在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围.(1)由题意知,圆心C 是直线y =2x -4和y =x -1的交点,解得C (3,2), 于是切线的斜率必存在.设过A (0,3)的圆C 的切线的方程为y =kx +3.由题意,得|3k +1|k 2+1=1,解得k =0或k =-34.故所求切线的方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,则C (a,2(a -2)),所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为|MA |=2|MO |,所以x 2+y -32=2x 2+y 2.化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4.所以点M 在以D (0,-1)为圆心,半径为2的圆上. 由题意知,点M (x ,y )在圆C 上, 所以圆C 与圆D 有公共点,则|2-1|≤|CD |≤|2+1|,即1≤a 2+2a -32≤3,解得0≤a ≤125.所以圆心C 的横坐标a 的取值范围为[0,125].。

2019年高考数学(理)考点一遍过 考点37 直线与圆的位置关系含解析

2019年高考数学(理)考点一遍过 考点37 直线与圆的位置关系含解析

(1)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系. (2)能用直线和圆的方程解决一些简单的问题.(3)初步了解用代数方法处理几何问题的思想.一、直线与圆的三种位置关系(1)直线与圆相离,没有公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相交,有两个公共点.二、直线与圆的位置关系的判断方法三、圆与圆的位置关系四、圆与圆位置关系的判断圆与圆的位置关系的判断方法有两种:(1)几何法:由两圆的圆心距d 与半径长R ,r 的关系来判断(如下图,其中R r >).(2)代数法:设圆C 1:x 2+y 2+D 1x +E 1y +F 1=0 ①,圆C 2:x 2+y 2+D 2x +E 2y +F 2=0 ②,联立①②,如果该方程组没有实数解,那么两圆相离; 如果该方程组有两组相同的实数解,那么两圆相切; 如果该方程组有两组不同的实数解,那么两圆相交. 五、两圆相交时公共弦所在直线的方程设圆C 1:x 2+y 2+D 1x +E 1y +F 1=0 ①,圆C 2:x 2+y 2+D 2x +E 2y +F 2=0 ②,若两圆相交,则有一条公共弦,由①-②,得(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0 ③. 方程③表示圆C 1与圆C 2的公共弦所在直线的方程.考向一 直线与圆的位置关系判断直线与圆的位置关系时,通常用几何法,其步骤是:(1)明确圆心C 的坐标(a ,b )和半径长r ,将直线方程化为一般式; (2)利用点到直线的距离公式求出圆心到直线的距离d ; (3)比较d 与r 的大小,写出结论.典例1 若直线l :()10y kx k =+<与圆C :()()22212x y ++-=相切,则直线l 与圆D :()2223x y -+=的位置关系是 A .相交 B .相切 C .相离D .不确定【答案】A【名师点睛】本题考查了直线与圆的位置关系及点到直线的距离,属于中档题.判定直线与圆的位置关系可以联立方程,利用方程组的解的个数判断位置关系,也可以转化为判断圆心到直线的距离与半径的大小关系来确定直线与圆位置关系.求解本题时,直线与圆相切转化为圆心到直线的距离等于半径,求出斜率k ,再根据圆D 的圆心到直线的距离,判断其与直线的关系.1.已知半圆()22(1)(2)42x y y -+-=≥与直线()15y k x =-+有两个不同交点,则实数k 的取值范围是A .5⎛ ⎝⎭B .33,22⎡⎤-⎢⎥⎣⎦C .32⎡⎤⎢⎥⎣⎦D .3553,,22⎡⎛⎤-⎢⎥ ⎣⎭⎝⎦ 考向二 圆与圆的位置关系判断圆与圆的位置关系时,一般用几何法,其步骤是: (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求1212||r r r r +,-; (3)比较1212,,||d r r r r +-的大小,写出结论.典例2 圆O 1: 2220x y x +-=和圆222: 40O x y y +-=的位置关系是A .相离B .相交C .外切D .内切【答案】B2.圆心为()2,0的圆C 与圆224640x y x y ++-+=相外切,则C 的方程为A .22420x y x +++= B .22420x y x +-+= C .2240x y x ++=D .2240x y x +-=考向三 圆的弦长问题1.涉及直线被圆截得的弦长问题,一般有两种求解方法:一是利用半径长r 、弦心距d 、弦长l 的一半构成直角三角形,结合勾股定理222()2ld r +=求解; 二是若斜率为k 的直线l 与圆C 交于1122,,()()A x y B x y ,两点,则212||1|AB k x x =+-. 2.求两圆公共弦长一般有两种方法:一是联立两圆的方程求出交点坐标,再利用两点间的距离公式求解; 二是求出两圆公共弦所在直线的方程,转化为直线被圆截得的弦长问题.典例3 已知直线y =kx+3与圆226450x y x y +--+=相交于M ,N 两点,若|MN|=2,则k 的值是A .1B .1或-1C .2-或12D 或12【答案】C3.在圆22420x y x y +-+=内,过点()1,0M 的最短弦的弦长为A B .5CD .3考向四 圆的切线问题1.求过圆上的一点00(,)x y 的切线方程:先求切点与圆心连线的斜率k ,若k 不存在,则由图形可写出切线方程为0y y =;若0k =,则由图形可写出切线方程为0x x =;若k 存在且k ≠0,则由垂直关系知切线的斜率为1k-,由点斜式方程可求切线方程. 2.求过圆外一点00(,)x y 的圆的切线方程: (1)几何方法当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即000kx y y kx -+-=.由圆心到直线的距离等于半径长,即可得出切线方程. (2)代数方法当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即00y kx kx y =-+,代入圆的方程,得到一个关于x 的一元二次方程,由0∆=,求得k ,切线方程即可求出.3.在求过一定点的圆的切线方程时,应首先判断定点与圆的位置关系,若点在圆上,则该点为切点,切线只有一条;若点在圆外,切线有两条;若点在圆内,则切线不存在.典例4 已知点1,2P ,点M (3,1),圆C :(x -1)2+(y -2)2=4.(1)求过点P 的圆C 的切线方程;(2)求过点M 的圆C 的切线方程,并求出切线长.【答案】(1)10x y -+-=;(2)过点M 的圆C 的切线方程为x -3=0或3x -4y -5=0,切线长为1.则圆心C 到切线的距离d 221r k ==+,解得k =34,所以切线方程为y -1=34(x -3),即3x -4y -5=0. 综上可得,过点M 的圆C 的切线方程为x -3=0或3x -4y -5=0.因为|MC 5=所以过点M 的圆C 22||1MC r -=.4.设P 为直线3430x y ++=上的动点,过点P 作圆222210C x y x y +--+=:的两条切线,切点分别为,A B ,则四边形(PACB C 为圆心)的面积的最小值为A .1 BCD .31.直线340x y -=被圆()()22122x y -+-=截得的弦长为 A .4B .3C .D .22.已知直线l 过点()2,0-且倾斜角为α,若l 与圆()22320x y -+=相切,则3πsin 2=2α⎛⎫-⎪⎝⎭A .35 B .35-C .45D .45-3.已知圆221:1O x y +=与圆()()222:3416O x x -++=,则圆1O 与圆2O 的位置关系为A .相交B .内切C .外切D .相离4.如果实数,满足等式22(2)3x y -+=,那么的最大值是 A . B . C .D .5.已知双曲线()222210,0x y a b a b -=>>2,则其渐近线与圆()22214x a y a -+=的位置关系是A .相交B .相切C .相离D .不确定6.已知圆22:4C x y +=,直线:l y x b =+.当实数[]0,6b ∈时,圆C 上恰有2个点到直线l 的距离为1的概率为A B C .12D .137.已知两点(),0A a ,(),0B a -(0a >),若曲线2223230x y x y +--+=上存在点P ,使得90APB ∠=︒,则正实数a 的取值范围为 A .(]0,3 B .[]1,3 C .[]2,3D .[]1,28.动圆M 与圆()221:11C x y ++=外切,与圆()222:125C x y -+=内切,则动圆圆心M 的轨迹方程是A .22189x y +=B .22198x y += C .2219x y +=D .2219y x += 9.已知直线10ax y +-=与圆()()22:11C x y a -++=相交于A ,B ,且ABC △为等腰直角三角形,则实数a 的值为 A .17或1- B .1-C .1或1-D .110.点P 是直线30x y +-=上的动点,由点P 向圆22:4O x y +=作切线,则切线长的最小值为A .B 322CD .1211.已知动直线l 与圆22:4O x y +=相交于,A B 两点,且满足2AB =,点C 为直线l 上的一点,且满足5CB CA =,若M 是线段AB 的中点,则OC OM ⋅的值为A .3B .3C .2D .3-12.已知圆2221:C x y r +=,圆()()2222:C x a y b r -+-=(0)r >交于不同的()11,A x y ,()22,B x y 两点,给出下列结论:①()()12120a x x b y y -+-=;②221122ax by a b +=+;③12x x a +=,12y y b +=. 其中正确结论的个数是 A .0 B .1 C .2D .313.圆2224200x y x y +-+-=截直线5120x y c -+=所得的弦长为8,则c 的值是________. 14.设圆22450x y x +--=的弦AB 的中点为()3,1P ,则直线AB 的方程是________.15.若圆221:5O x y +=与圆()222:20O x m y ++=相交于,A B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是________.16.已知动圆C 与直线20x y ++=相切于点()0,2A -,圆C 被x 轴所截得的弦长为2,则满足条件的所有圆C 的半径之积是________.17.在平面直角坐标系xOy 中,已知圆C 的方程为224x y +=,点()2,3M -.(1)求过点M 且与圆C 相切的直线方程;(2)过点M 任作一条直线与圆C 交于A ,B 两点,圆C 与x 轴正半轴的交点为P ,求证:直线PA 与PB 的斜率之和为定值.18.已知圆C 经过原点()0,0O 且与直线28y x =-相切于点()4,0P .(1)求圆C 的方程;(2)在圆C 上是否存在两点,M N 关于直线1y kx =-对称,且以线段MN 为直径的圆经过原点?若存在,写出直线MN 的方程;若不存在,请说明理由.19.已知点)2,2(P ,圆C :0822=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O为坐标原点.(1)求M 的轨迹方程;(2)当||||OP OM =时,求直线l 的方程及POM △的面积.20.已知圆221:60C x y x ++=关于直线1:21l y x =+对称的圆为C .(1)求圆C 的方程;(2)过点()1,0-作直线l 与圆C 交于,A B 两点,O 是坐标原点,是否存在这样的直线l ,使得在平行四边形OASB 中||||OS OA OB =-?若存在,求出所有满足条件的直线l 的方程;若不存在,请说明理由.1.(2018北京理)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 A .1 B .2 C .3D .42.(2018新课标Ⅲ理)直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP△面积的取值范围是 A .[]26,B .[]48,C .32⎤⎦D .2232⎡⎣3.(2016新课标II 理)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= A .43-B .34-CD .24.(2018江苏)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________.5.(2018天津理)已知圆2220x y x +-=的圆心为C,直线1,232⎧=-+⎪⎪⎨⎪=-⎪⎩x y t (t 为参数)与该圆相交于A ,B 两点,则ABC △的面积为 .6.(2017江苏)在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆22:50O x y +=上,若20,PA PB ⋅≤则点P 的横坐标的取值范围是 .7.(2016新课标II 理)已知直线l :330mx y m ++=与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D 两点,若23AB =||CD =__________.8.(2017新课标III 理)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点()4,2P -,求直线l 与圆M 的方程.9.(2016江苏)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆22:M x y +-1214600x y -+=及其上一点(2,4)A .(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程;(3)设点(,0)T t 满足:存在圆M 上的两点P 和Q ,使得TA TP TQ +=,求实数t 的取值范围.1.【答案】D变式拓展【名师点睛】处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.求解本题时,绘制半圆的图形和直线,考查临界条件,确定k的取值范围即可.2.【答案】D【名师点睛】此题主要考查解析几何中圆的标准方程,两圆的位置关系,以及两点间的距离公式的应用等有关方面的知识与技能,属于中低档题型,也是常考考点.判断两圆的位置关系,有两种方法,一是代数法,联立两圆方程,消去其中一未知数,通过对所得方程的根决断,从而可得两圆关系;一是几何法,通计算两圆圆心距与两圆半径和或差进行比较,从而可得两圆位置关系.3.【答案】D【解析】圆22420x y x y +-+=,化简为:()()222+15,x y -+=点()1,0M 在圆的内部,记圆心为O 点,则最短弦长是过点M 和OM 垂直的弦,OM故答案为D.【名师点睛】这个题目考查的是圆的性质和应用,一般和圆有关的问题很多情况下可利用数形结合来解决;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及圆的弦长或者切线长时,经常用到垂径定理.求解本题时,先将圆的方程化为标准式,找到圆心和半径,过点()1,0M 的最短弦长是过点M 和OM 垂直的弦,再根据垂径定理得到结果. 4.【答案】C【解析】∵圆的方程为222210x y x y +--+=,∴圆心C (1,1)、半径r 为1.根据题意,若四边形面积最小,则当圆心与点P 的距离最小时,即距离为圆心到直线的距离时,切线长PA ,PB 最小.∵圆心到直线的距离为d =2,∴|PA |=|PB 223d r -=,∴1232PACB S PA r =⨯=四边形故选C .【名师点睛】本题主要考查直线与圆的位置关系,主要涉及了构造四边形及其面积的求法,同时还考查了转化思想,属于中档题.求解本题时,由圆的方程为求得圆心C (1,1)、半径r 为1,由“若四边形面积最小,则圆心与点P 的距离最小时,即距离为圆心到直线的距离时,切线长PA ,PB 最小”,最后将四边形转化为两个直角三角形面积求解.1.【答案】D故选D .【名师点睛】本题考查直线与圆的位置关系的应用,考查点到直线距离公式的应用,是基础题.一般直线和圆的题很多情况下是利用数形结合来解决的;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者考点冲关圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及圆的弦长或者切线长时,经常用到垂径定理.求解本题时,利用点到直线的距离公式求出圆心到直线的距离,再由垂径定理可得直线3x ﹣4y =0被圆(x ﹣1)2+(y ﹣2)2=2截得的弦长.2.【答案】A【解析】设直线():tan 2l y x α=+, 因为l 与圆()22320x y -+=220,tan 21tan αα=∴=±+,因此2222223πcos sin 1tan 143sin 2=cos2,2cos sin 1tan 145αααααααα---⎛⎫--=-=-=-= ⎪+++⎝⎭故选A. 3.【答案】C【解析】圆1O 的圆心为()0,0,半径为1r =,圆2O 的圆心为()3,4-,半径为4R =, ∴两圆的圆心距9165d =+=,∴d R r =+,∴两圆外切,故选C . 4.【答案】D【解析】过原点作圆22(2)3x y -+=的切线,切线斜率,故选.【名师点睛】与圆上点(),x y 有关代数式的最值的常见类型及解法.①形如型的最值问题,可转化为过点(),a b 和点(),x y 的直线的斜率的最值问题; ②形如型的最值问题,可转化为动直线的截距的最值问题;③形如22(())x a y b -+-型的最值问题,可转化为动点到定点(),a b 的距离平方的最值问题. 5.【答案】C6.【答案】A【解析】如图,圆C 的圆心坐标为O (0,0),半径为2,直线l 为:x ﹣y +b =0.3=,即b =32l 的距离为1, 1=,即b 2时,圆上恰有3个点到直线l 的距离为1. ∴当b 232,2个点到直线l 的距离为1,故概率为322263-=. 故选A .【名师点睛】解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.求解本题时,由已知求出圆心坐标与半径,再由点到直线的距离公式分别求出满足圆上有一点和三点到直线l 的距离为1的b 值,由测度比为长度比得答案. 7.【答案】B8.【答案】B【解析】设动圆M 半径为r ,则121212|1,|5||||+||6||,MC r MC r MC MC C C ===>+-∴,因此动圆圆心M 的轨迹是以12,C C B. 【名师点睛】求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: ①直接法:直接根据题目提供的条件列出方程.②定义法:根据圆、直线等定义列方程. ③几何法:利用圆的几何性质列方程.④代入法:找到要求点与已知点的关系,代入已知点满足的关系式等. 9.【答案】C【解析】由题意可得ABC △是等腰直角三角形,∴圆心C (1,﹣a )到直线10ax y +-=的距离等于r ·sin45°=2221a +=22,∴a =±1.故选C .【名师点睛】这个题目考查的是直线和圆的位置关系,一般直线和圆的题在很多情况下是利用数形结合来解决的,联立方程利用代数方法求解的时候较少;还有就是在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值.由题意可得ABC △是等腰直角三角形,可得圆心C (1,﹣a )到直线10ax y +-=的距离等于r ·sin45°,再利用点到直线的距离公式求得a 的值. 10.【答案】C【名师点睛】本题考查直线与圆的位置关系,涉及的知识有:圆的标准方程,点到直线的距离公式,以及勾股定理,熟练掌握公式及定理是解本题的关键.由圆的标准方程,找出圆心坐标和圆的半径,要使切线长最小,则必须使点P 到圆的距离最小,求出圆心到直线30x y +-=的距离,利用切线的性质及勾股定理求出切线长的最小值即可. 11.【答案】A【解析】动直线l 与圆O :224x y +=相交于A ,B 两点,且满足2AB =,则OAB △为等边三角形,于是可设动直线l 3(2)y x =+()2,0B -, (3A -,∵M 是线段AB 的中点,∴(),C x y ,∵5CB CA =,∴()()52,12x y x y ---=--,13C⎛-⎝⎭,∴1(OC OM⋅=-A.12.【答案】D【名师点睛】当两圆相交时,公共弦的方程可由两个圆的方程相减得到,而且在解决圆的有关问题时,注意合理利用圆的几何性质简化计算.解本题时,根据两个圆的标准方程得到公共弦的方程为22220ax by a b+--=,,A B两点均在该直线上,故其坐标满足上式.而AB的中点为直线AB与直线12C C的交点,利用直线方程构成的方程组可以得到交点的坐标,从而得到③也是正确的.13.【答案】1068-或【解析】∵弦长为8,圆的半径为5,∴弦心距为3,∵圆心坐标为()1,2-,∴()51122313c⨯-⨯-+=,解得c 为1068-或【名师点睛】涉及圆中弦长问题, 一般利用垂径定理进行解决,具体就是利用半径的平方等于圆心到直线距离平方与弦长一半平方的和;直线与圆位置关系,一般利用圆心到直线距离与半径大小关系进行判断 14.【答案】40x y +-=【解析】22450x y x +--=,所以圆心为()2,0C,15.【答案】4【解析】由题知1(0,0)O 与2(,0)O m -:,5m <<再根据题意可得212520255O A AO m m ⊥∴=+=∴=±,,,∴利用52552AB ⋅=, 解得4AB =.16.【答案】1017.【答案】(1)2x =或512260x y ++=;(2)见解析.【解析】(1)当直线l 的斜率不存在时,显然直线2x =与圆相切, 当直线l 的斜率存在时,设切线方程为()32y k x +=-, 圆心到直线的距离等于半径,2=,解得512k =-, ∴切线方程为:512260x y ++=,故所求直线方程为2x =或512260x y ++=.(2)依题意可得当直线AB 的斜率存在且不为0时,设直线AB :()32y k x +=-,代入2240x y +-=,【名师点睛】求定值问题常见的方法: ①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 18.【答案】(1)()()22215x y -+-=;(2)见解析.【解析】(1)法一:由已知,得圆心在经过点()4,0P 且与28y x =-垂直的直线122y x =-+上,它又在线段OP 的中垂线2x =上,所以求得圆心()2,1C 所以圆C 的方程为()()22215x y -+-=.法二:设圆C 的方程为()()22200x x y y r -+-=,可得()22200002002200,1,422845x y r yx x y x y r r ⎧⎪+=⎪⎪⎪=-⎨-⎪⎪⎛⎫--⎪-+== ⎪⎪⎝⎭⎩,解得002,1,5.x y r ⎧=⎪=⎨⎪=⎩,【名师点睛】本题主要考查了圆锥曲线的综合应用问题,其中解答中涉及圆的标准方程及其简单的几何性质的应用,直线与圆的位置关系的应用,向量的坐标运算等知识点的考查,着重考查了学生分析问题和解答问题的能力,本题的解答中把直线的方程和椭圆方程联立,转化为方程的根与系数的关系、韦达定理的应用是解答问题的关键19.【答案】(1)22(1)(3)2x y -+-=;(2)l 的方程为1833y x =-+; POM △的面积为165. 【解析】(1)圆C 的方程可化为22(4)16x y +-=,所以圆心为(0,4)C ,半径为4, 设(,)M x y ,则(,4)CM x y =-,(2,2)MP x y =--, 由题设知0CM MP ⋅=,故(2)(4)(2)0x x y y -+--=,即22(1)(3)2x y -+-=. 由于点P 在圆C 的内部,所以点M 的轨迹方程是22(1)(3)2x y -+-=.20.【答案】(1)()()22129x y -++=;(2)存在直线1x =-和1y x =+.【解析】(1)圆1C 化为标准为()2239x y ++=,设圆1C 的圆心()13,0C -关于直线1:21l y x =+的对称点为(),C a b ,则111CC l k k =-, 且1CC 的中点3,22a b M -⎛⎫⎪⎝⎭在直线1:21l y x =+上, ,解得12a b =⎧⎨=-⎩,所以圆C 的方程为()()22129x y -++=.(2)由OS OA OB BA =-=,所以平行四边形OASB 为矩形,所以OA OB ⊥.要使OA OB ⊥,必须使·0OAOB=,即:12120x x y y +=. ①当直线l 的斜率不存在时,可得直线l 的方程为1x =-,与圆()()22:129C x y -++=交于两点()2A - ()1,2B -.因为()())()·11220OAOB =--+=,所以OA OB ⊥,所以当直线l 的斜率不存在时,直线:1l x =-满足条件.【名师点睛】在处理平面解析几何时,往往先设出直线方程,但要注意直线的斜率是否存在,如本题中当斜率不存在时也符合题意.1.【答案】C 【解析】22cos sin 1θθ+=∴,P 为单位圆上一点,而直线20x my --=过点A (2,0),所以d 的最大值为OA +1=2+1=3,故选C.【名师点睛】与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化. 2.【答案】A 【解析】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,()()2,0,0,2A B ∴--,则AB =直通高考点P 在圆22(2)2x y -+=上,∴圆心为(2,0),则圆心到直线的距离1d ==故点P 到直线20x y ++=的距离2d的范围为,则[]2212,62ABP S AB d ==∈△. 故答案为A.【名师点睛】本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.先求出A ,B 两点坐标得到AB ,再计算圆心到直线的距离,得到点P 到直线距离的范围,由面积公式计算即可.3.【答案】A【解析】圆的方程可化为22(1)(4)4x y -+-=,所以圆心坐标为(1,4),由点到直线的距离公式得:1d ==,解得43a =-,故选A .4.【答案】3【名师点睛】以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法. 5.【答案】12【解析】由题意可得圆的标准方程为:()2211x y -+=, 直线的直角坐标方程为:()31y x -=-+,即20x y +-=,则圆心到直线的距离:2d ==,所以2AB ==1122ABC S ==△. 【名师点睛】处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.由题意首先求得圆心到直线的距离,然后结合弦长公式求得弦长,最后求解三角形的面积即可. 6.【答案】[52,1]-【名师点睛】对于线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求横坐标或纵坐标、直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等,最后结合图形确定目标函数的最值或取值范围. 7.【答案】4【解析】因为||23AB =,且圆的半径为3,所以圆心(0,0)到直线330mx y m ++=的距离为3=2331m =+,解得33m =-,代入直线l 的方程,得33y x =+,所以直线l 的倾斜角为30︒,由平面几何知识知在梯形ABDC 中,||||4cos30AB CD ==︒.8.【答案】(1)证明略;(2)直线l 的方程为20x y --=,圆M 的方程为()()223110x y -+-=.或直线l 的方程为240x y +-=,圆M 的方程为2291854216x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭ 【解析】(1)设()()1122,,,A x y B x y ,:2l x my =+. 由22,2x my y x=+⎧⎨=⎩ 可得2240y my --=,则124y y =-. 又221212,22y y x x ==,故()2121244y y x x ==.【名师点睛】直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;在解决直线与抛物线的位置关系时,要特别注意直线与抛物线的对称轴平行的特殊情况.中点弦问题,可以利用“点差法”,但不要忘记验证0∆>或说明中点在曲线内部.9.【答案】(1)()()22611x y -+-=;(2)直线l 的方程为2x -y +5=0或2x -y -15=0;(3)2221,2221⎡-+⎣.【解析】圆M 的标准方程为()()226725x y -+-=,所以圆心M (6,7),半径为5. (1)由圆心在直线x =6上,可设()06,N y . 因为圆N 与x 轴相切,与圆M 外切,所以007y <<,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆、圆与圆的位置关系
【考点梳理】
1.判断直线与圆的位置关系常用的两种方法
(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系:d<r⇔相交;d=r⇔相切;
d>r⇔相离.
(2)代数法:联立直线l与圆C的方程,消去y(或x),得一元二次方程,计算判别式Δ=b2-4ac,Δ>0⇔相交,Δ=0⇔相切,Δ<0⇔相离.
2.圆与圆的位置关系
设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),
圆O2:(x-a2)2+(y-b2)2=r22(r2>0).
【考点突破】
考点一、直线与圆的位置关系
【例1】(1)直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是( )
A.相交B.相切
C.相离D.不确定
(2)圆x2+y2=1与直线y=kx+2没有公共点的充要条件是________.
[答案] (1) A (2) -3<k< 3
[解析] (1)法一:∵圆心(0,1)到直线l的距离d=|m|
m2+1
<1< 5.
故直线l与圆相交.
法二:直线l:mx-y+1-m=0过定点(1,1),∵点(1,1)在圆C:x2+(y-1)2=5的内部,
∴直线l 与圆C 相交.
(2)法一 将直线方程代入圆方程,得(k 2
+1)x 2
+4kx +3=0,直线与圆没有公共点的充要条件是Δ=16k 2
-12(k 2
+1)<0,解得-3<k < 3.
法二 圆心(0,0)到直线y =kx +2的距离d =
2
k 2+1
,直线与圆没有公共点的充要条件是
d >1,即
2
k 2+1
>1,解得-3<k < 3.
【类题通法】
判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.
(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题. 【对点训练】
1.圆(x -1)2
+(y +2)2
=6与直线2x +y -5=0的位置关系是( ) A .相切
B .相交但直线不过圆心
C .相交过圆心
D .相离
[答案] B
[解析] 由题意知圆心(1,-2)到直线2x +y -5=0的距离d =|2×1-2-5|
22+12
=5<6且2×1+(-2)-5≠0,所以直线与圆相交但不过圆心.
2.已知直线y =mx 与圆x 2
+y 2
-4x +2=0相切,则m 值为( ) A .±3 B .±33 C .±3
2
D .±1 [答案] D
[解析] 将y =mx 代入x 2
+y 2
-4x +2=0,得(1+m 2
)x 2
-4x +2=0,因为直线与圆相切,所以Δ=(-4)2
-4(1+m 2
)×2=8(1-m 2
)=0,解得m =±1.
考点二、圆的切线、弦长问题
【例2】设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.
[答案] 4π
[解析] 圆C :x 2
+y 2
-2ay -2=0,即C :x 2
+(y -a )2
=a 2
+2,圆心为C (0,a ),C 到直线y =x +2a 的距离为d =|0-a +2a |2=|a |2.又由|AB |=23,得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|a |22=a 2+2,解得a
2
=2,所以圆的面积为π(a 2
+2)=4π. 【类题通法】 弦长的两种求法
(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长.
(2)几何方法:若弦心距为d ,圆的半径长为r ,则弦长l =2r 2
-d 2
. 【对点训练】
过点(3,1)作圆(x -2)2
+(y -2)2
=4的弦,其中最短弦的长为________. [答案] 2 2
[解析] 设P (3,1),圆心C (2,2),则|PC |=2,半径r =2,由题意知最短的弦过P (3,1)且与PC 垂直,所以最短弦长为222
-(2)2
=2 2.
【例3】过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为________. [答案] x =2或4x -3y +4=0
[解析] 当直线的斜率不存在时,直线方程为x =2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;
当直线的斜率存在时,设直线方程为y -4=k (x -2),即kx -y +4-2k =0, ∵直线与圆相切,∴圆心到直线的距离等于半径, 即d =|k -1+4-2k |k 2+(-1)2=|3-k |k 2+1
=1,解得k =4
3,
∴所求切线方程为43x -y +4-2×4
3=0,即4x -3y +4=0.
综上,切线方程为x =2或4x -3y +4=0. 【类题通法】
圆的切线方程的两种求法
(1)代数法:设切线方程为y -y 0=k (x -x 0),与圆的方程组成方程组,消元后得到一个一
元二次方程,然后令判别式Δ=0进而求得k .
(2)几何法:设切线方程为y -y 0=k (x -x 0),利用点到直线的距离公式表示出圆心到切线的距离d ,然后令d =r ,进而求出k . 【对点训练】
过点(3,1)作圆(x -1)2
+y 2
=r 2
的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0 D .x -2y -7=0
[答案] B
[解析] ∵过点(3,1)作圆(x -1)2
+y 2
=r 2
的切线有且只有一条,∴点(3,1)在圆(x -1)
2
+y 2=r 2
上,∵圆心与切点连线的斜率k =1-03-1=12,∴切线的斜率为-2,则圆的切线方程为y
-1=-2(x -3),即2x +y -7=0.
考点三、圆与圆的位置关系
【例4】已知两圆x 2
+y 2
-2x -6y -1=0,x 2
+y 2
-10x -12y +m =0. (1)m 取何值时两圆外切? (2)m 取何值时两圆内切?
(3)当m =45时,求两圆的公共弦所在直线的方程和公共弦的长.
[解析] 因为两圆的标准方程分别为(x -1)2
+(y -3)2
=11,(x -5)2
+(y -6)2
=61-m ,所以两圆的圆心分别为(1,3),(5,6),半径分别为11,61-m ,
(1)当两圆外切时,由(5-1)2
+(6-3)2=11+61-m ,得m =25+1011. (2)当两圆内切时,因为定圆半径11小于两圆圆心之间的距离5, 所以61-m -11=5,解得m =25-1011.
(3)由(x 2
+y 2
-2x -6y -1)-(x 2
+y 2-10x -12y +45)=0,得两圆的公共弦所在直线的方程为4x +3y -23=0.
故两圆的公共弦的长为2(11)2
-⎝ ⎛⎭
⎪⎫|4+3×3-23|42+32
2
=27. 【类题通法】
1.判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,
一般不采用代数法.
2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x 2
,y 2
项得到. 【对点训练】
1.圆(x +2)2
+y 2
=4与圆(x -2)2
+(y -1)2
=9的位置关系为( ) A .内切 B .相交 C .外切 D .相离 [答案] B
[解析] 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42
+12
=17.∵3-2<d <3+2,∴两圆相交.
2.圆x 2
+y 2
-4=0与圆x 2
+y 2
-4x +4y -12=0的公共弦长为________. [答案] 2 2
[解析] 由⎩⎪⎨⎪⎧x 2
+y 2
-4=0,x 2+y 2
-4x +4y -12=0,
得x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为
22
= 2.由勾股定理得弦长的一半为4-2=2,所以,所求弦长为2 2.。

相关文档
最新文档