【数学】2017-2018年湖北省武汉市东湖高新区七年级上学期数学期中试卷和解析答案PDF

合集下载

2017-2018学年武汉市武昌区七年级上学期期中考试数学试卷及答案

2017-2018学年武汉市武昌区七年级上学期期中考试数学试卷及答案

10、下列说法中正确的是() .①若 m 满足 m m 0 ,则 m 0 ;②若 a b b a ,则 b a ;③若 | a || b | ,则 (a b) (a b) 是正数; ④若三个有理数 a,b,c 满足 A、1
|a| |b| |c| | abc | =1. 1 ,则 a b c abc
1 16、有理数 a,b 满足 ab 0 , a b 0 ,7a+2b+1=- b a ,则 2a b (a b) 的值为__________. 3
三、计算题(17 题每题 4 分,18 题每题 4 分,共 20 分) 17、计算: (1)4-(-5)+(-6) ;
8、已知 M 是 6 的相反数,N 比 M 的相反数小 2,则 M N 等于( A.4 B.8 C.-10
) .
D.2 ) .
9、如图,数轴 A、B 上两点分别对应实数 a 、 b ,则下列结论正确的是( A. a b 0 C.
1 1 0 a b
B. ab 0 D.
1 1 0 a b
20、某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.某天自A地出发到收工时所走路线(单 位:千米)为:+12,-5,+2,+4,-9,+14,-2,+12,+8,+5. (1)问收工时距A地多远? (2)若每千米路程耗油 0.15 升,问从 A 地出发到收工共耗油多少升?
21、若 (m 4) x2 m 7 4m 0 是关于 x 的一元一次方程,求 m2 2m 1 的值.
xP 10 4
∴当
14 17 t 时 3 2
点 P 在点 T 的左边,点 Q 在点 T 的右边

武汉市部分中学2018七年级上期中联考数学试卷及

武汉市部分中学2018七年级上期中联考数学试卷及

2018-2019 学年度第一学期期中考试七年级数学试卷及答案一、选择题(每题 3 分,共 36 分)1.-3 的相反数11A. 3B. -3C.D. -332.下表是我国几个城市某年一月份的均匀气温,此中均匀气温最低的城市是城市武广州哈均匀气温 (位:℃ )--A .B.武C.广州D.哈3.太阳的半径 696000 千米,用科学数法表示696000A . 69.6 ×104B . 6.96 ×105C . 6.96 ×10 6D. 0.696 ×1071) 2015 , 2 ,-(-1.2),32,此中正数的个数有4.已知 4个数中: (A . 4B . 3C .2D. 15.若 a =a, a必定是A. 非数B.数C.正数D.零6.以下各代数式中,属于同的是A.2x 2 y 与 2xy 2B.xy 与xyC.2x 与 2xyD.2x 2与 2 y27.若 a 数, a 和它相反数的差的是A . 2 a B. 0 C.2a D .a8.已知 a<0、b>0 且│ a∣ >│b∣,a、 b、 -a 、 -b 的大小关系是A.b>-a>a>-bB. -b>a>-a>bC. a>-b>-a>bD. -a>b>-b >a9.若 M和 N都是对于 x 的二次三式, M+N必定是A.二次三式 B .一次多式C.三式 D .次数不高于 2 的整式10.察以下对于 x 的式,研究其律: x, 3x2,5x3,7x4, 9x5, 11x6,⋯.依据上述律,第2018 个式是()2018201420182018A. 2018x .B.4029x .C. 4029x .D. 4031x.11.若 a+b+c=0,a b c abca b c 可能的的个数是abcA . 1B. 2C.3D. 412.算机利用的是二制数, 它共有两个数0,1,将一个十制数化二制, 只要把数写出若干 2 n数的和 , 挨次写出 1 或 0 即可 . 如19 (10) =16+2+1=1× 2 4 +0× 2 3 +0× 2 2+1× 2 1 +1=10011 ( 2)二制下的五位数, 十制2018 是二制下的A. 10 位数B. 11 位数C. 12 位数D.13位数二、填空题 ( 共 6 个小题 , 每题 3分, 共 18 分)13.最小的数是.14.将 3.1415 精准到千分位.15.假如数上的点 A 有理数 -2 ,那么与 A 点相距 4 个位度的点所的有理数___________.16.如,用灰、白两色正方形瓷地面,第n 个案中白色..瓷数_________.第 1 个图案第 2 个图案第 3 个图案17.已知当x=3,多式ax 3bx3的20,当x=-3,多式ax3bx 3 的.18.按必定律摆列的一列数: 21, 22, 23, 25, 28, 213,⋯,若 x、 y、 z 表示列数中的三个数,猜想x、y、 z 足的关系式是.三、计算题(共28 分)算以下各 ( 共 4个小 , 每 4 分 , 共 16 分 )19. 12-(-18)+ ( -7) -1520.42×(2)+( - 3 )( 0.25)3421.( 2)3(3)[(4) 22] (3) 2( 2)22.××()×先化 ,再求 ( 共 2个小 , 每 6 分 , 共 12 分 )23. 3a2b 5a b ,此中 a= -2,b=1;24. 1 x 2( x1y 2) ( 3 x 1y 2 ) ,此中 x= 2 ,y= 2 .2 3 23 9 3四、解答题(共 38 分)25. ( 本 分8 分 ) 某一出租 一天下午以 阳商 出 地在 西方向 运,向 正,向西 , 行 里程 ( 位: km )依先后序次 以下: +9、2、5、 -4 、12、 +8 、+3、 1、4、 +10.(1) 将最后一名乘客送到目的地,出租 离 阳商 出 点多 ? (2) 直接写出 出租 内行 程中,离 阳商 最 的距离.(3) 出租 按物价部 定, 行程不超 3km,按起步价 10 元收 ,若行程超 3km, 超 的部分,每千米加收 1.6 元, 司机 个下午的 是多少?26.( 本 分 8 分 ) 李 傅下 后,做起来小买卖,第一次 ,他以每件 a 元的价钱了 30 件甲种小商品,以每件 b 元的价钱 了 40 件乙种小商品,且 a < b .(1)若李 傅将甲种商品抬价 40%,乙种商品抬价 30%所有销售,他 利多少元?( 用含有 a,b 的式子表示 果)(2)若李 傅将两种商品都以a b元的价钱所有销售,他 次 是 是 本,2明原因?27. ( 本 分 8 分 ) 察下边三行数 :-2 , 4 , -8 , 16 , -32, 64 , ⋯;① 0, 6 , -6 , 18 , -30 , 66 ,⋯;②3, -3, 9, -15 , 33, -63, ⋯ . ③(1) 第①行数的第n 个数是;(2) 将第②行数中的每一个数分 减去第①行数中 地点的数,并找出 律,依据你得到的 ,直接写出第②行数的第n 个数是;同理直接写出第②行数的第n 个数是;(3) 取每行的第k 个数 , 三个数的和可否等于-509 ?假如能, 求出 k 的 ;假如不可以,明原因.28.( 此题满分 8 分) 在数轴上挨次有A,B,C 三点,此中点 A,C 表示的数分别为-2,5 ,且 BC=6AB.5-4-3-2-1012345610(1)在数轴上表示出 A,B,C 三点;(2)若甲、乙、丙三个动点分别从A、 B、C 三点同时出发,沿数轴负方向运动,它们的速1 1度分别是,,2 (单位长度/秒),当丙追上甲时,甲乙相距多少个单位长度?(3)在数轴上能否存在点P,使 P 到 A、B、C 的距离和等于10?若存在,求点P 对应的数;若不存在,请说明原因.29.( 此题满分 6 分 ) 任何一个整数 N,能够用一个的多项式来表示:N= a n a n 1a1a0a n 10n a n 1 10n 1a1 10 a0.比如: 325=3×102abc+2 10+5.已知是一个三位数.×(1)小明猜想:“abc与cba的差必定是9 的倍数。

2017-2018学年最新人教版七年级上册数学期中试卷有答案

2017-2018学年最新人教版七年级上册数学期中试卷有答案

2017-2018学年第一学期期中考试七年级数学试卷一.选择题(每小题3分,共30分)1.在-212 、+710 、-3、2、0、4、5、-1中,负数有 ( )A 、1个B 、2个C 、3个D 、4个2.下列说法不正确的是 ( ) A 、到原点距离相等且在原点两旁的两个点所表示的数一定互为相反数 B 、所有的有理数都有相反数 C 、正数和负数互为相反数D 、在一个有理数前添加“-”号就得到它的相反数3.如果ab<0且a>b ,那么一定有 ( ) A 、a>0,b>0B 、a>0,b<0C 、a<0,b>0D 、a<0,b<04.下列运算正确的是 ( ) A .6)2(3-=- B .10)1(10-=- C .91)31(3-=- D .422-=-5.“比a 的2倍大1的数”,列式表示是 ( ).A .2(a +1)B .2(a -1)C . 2a +1D . 2a -16.光年是天文学中的距离单位,1光年大约是9500 000 000 000㎞,这个数据用科学记数法表示是 ( )A.131095.0⨯ ㎞ B.12105.9⨯ ㎞ C.111095⨯ ㎞ D.1010950⨯ ㎞ 7.下列各组代数式中,是同类项的是 ( )A 、5x 2y 与错误!未找到引用源。

xyB 、﹣5x 2y 与错误!未找到引用源。

yx 2C 、5ax 2与错误!未找到引用源。

yx 2D 、83与x 38.下列说法正确的是 ( )A.x 的系数为0B.a 1是单项式 C.1是单项式 D.-4x 系数是49.下列计算正确的是 ( ) A.4x-9x+6x=-x B.xy-2xy=3xyC.x 3-x 2=x D.21a-21a=010.若x 的相反数是3,5y =,则x+y 的值为 ( ).A.-8B. 2C. 8或-2D.-8或2 二.填空题(每小题3分,共30分)11.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜间,温度可降至-183℃,则月球表面昼夜的温度差是 ℃。

武汉市东湖高新区2017-2018七上期末试卷有答案

武汉市东湖高新区2017-2018七上期末试卷有答案

第页 / 共7页 东湖高新区2017-2018学年度上学期七年级期末考试数学试卷一、选择题(共10小题,每小题3分,共30分) 1.3的相反数是( )A . -3B . 3C . 13D . 13-2.下列各组代数式中,是同类项的是( )A . 23p -与32pB . 2xy 与2abC . 32a b 与23a bD . 5mn -与10mn3.由冯小刚执导,严歌苓编剧的电影《芳华》于2017年12月15日在全国及北美地区上映,电影首周票房便超过294000000元,数294000000用科学技术法表示为( ) A . 90.29410⨯ B . 82.9410⨯ C . 729.410⨯ D . 629410⨯4.已知2x =是关于x 的一元一次方程20mx +=的解,则m 的值为( ) A . -1 B .0 C .1 D .25.新年联欢需要制作无盖正方体盒子盛放演员的道具,下底面要有节目标记“”N ,如图所示,按照下列所示图案裁剪纸板,能折叠成如图所示的无盖盒子的是( )6.下列等式变形正确的是( )A .由14x =,得14x =B .由a b =,得33a b =-- C . 由33x y -=-,得x y =- D . x y =,得x ya a=7.一条直线AB 上有一点O ,OM AB ⊥于O ,另有直角COD ∠在平角AOB ∠内左右摆动(O 点不动,OC 与OA OD 、与OB 不重合),在摆动时除直角外,保持相等的角有( )A . 1对B . 2对C .3对D .4对8.某淘宝店家为迎接“双十一”抢购活动,在甲批发市场以每件a 元的价格进了40件童装,又在乙批发市场以每件b 元()a b >的价格进了同样的60件童装,如果店家以每件2a b+元的价格卖出这款童装,卖完后,这家商店( )A .盈利了B .亏损了C .不赢不亏D .盈亏不能确定9.已知,a b 是有理数,||(0),||||ab ab ab a b a b =-≠+=-,用数轴上的点来表示,a b ,下列表示正确的是( )B A B.A.a D.C.10.一个纸环链,纸环链按红黄绿蓝紫的顺序重复排列,截取其中的一部分,剩下部分如图所示,则被截取部分纸环的个数可能是()A.2015B.2016C.2017D.2018二、填空题(共6小题,每小题3分,共18分)11.曾有微信用户提议应该补全朋友圈只有点赞的功能缺陷,增加“匿名点呸”功能,如果将点32个赞记作+32,那么点2个呸时,应记作_______.12.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是_______________________________.13.一副直角三角板按如图方式摆放,且1∠的度数比2∠的度数大54︒,则2∠=________.14.如图,已知线段AB,延长AB到C,使12BC AB=,D为AC的中点,3DC cm=,则BD的长为_________.15.某学校实行小班化教学,若每间教室安排20名学生,则缺少3间教室;若每间教室安排24名学生,则空出一间教室,那么这所学校共有_______间教室.16.如果,a b为常数,关于x的方程2124kx a x bk---=,不论k取何值时,它的解总是-1,则______.ba=第12题图第13题图第14题图三、解答题(共8小题,共72分)17.(本题共8分,每小题4分)计算:(1)4839'6731'︒+︒(2)23(2)5(2)4-⨯--÷18.(本题共8分,每小题4分)解方程:(1)5339x x-=+(2)371123x x-+-=19.(本题8分)整理一批数据,由一人做需要80h完成,现在计划先由一些人做2h,再增加5人做8h,完成这项工作的34,怎样安排参与整理数据的具体人数?第2页 / 共7页第3页 / 共7页20(本题8分)如图,已知四点A B C D 、、、; (1)画射线AD ;(不需要写作图过程) (2)求作点P ,使PA PB PC PD +++的最小值;(不需要写作图过程) (3)在(2)的条件下,若2,6, 1.5,ABP ADP BCP S S S ∆∆∆===则_____;DCP S ∆=21.(本题8分)如图①,将笔记本活页一角折过去,使角的顶点A 落在'A 处,BC 为折痕;(1)图①中,若130∠=︒,则'A BD ∠=_________;(2)如果在图②中改变1∠的大小,则'BA 的位置也随之改变,又将活页的另一边斜折过去,使BD 边与'BA 重合,折痕为BE ,那么CBE ∠的度数是否会发生变化呢?请说明理由;22.(本题10分)请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别多少元?(2)甲、乙两家商场同时售出同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动; 甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n (10n >,且n 为整数)个水杯,请问选择哪家商场购买更省钱,并说明理由(必须在同一家购买)23.(本题10分)将一副三角板中的两块直角三角尺的直角顶点C 按照如图方式叠放在一起(其中,A D BC第4页 / 共7页60,30,45A D E B ∠=︒∠=︒∠=∠=︒)(1)若45DCE ∠=︒,则ACB ∠的度数为________;若140ACB ∠=︒,则DCE ∠的度数为____________; (2)由(1)猜想ACB ∠与DCE ∠的数量关系,并说明理由;(3)当180ACE ∠<︒且点E 在直线AC 的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出ACE ∠角度所有可能的值(不必说明理由);若不存在,请说明理由.备用图24.(本题12分)已知150AOB ∠=︒,OC 为AOB ∠内部的一条射线,60BOC ∠=︒.(1)如图1,若OE 平分AOB ∠,OD 为BOC ∠内部的一条射线,12COD BOD ∠=∠,求DOE ∠的度数;(2)如图2,若射线OE 绕着点O 点从OA 开始以15度/秒的速度顺时针旋转至OB 结束,OF 绕着O 点从OB 开始以5度/秒的速度逆时针旋转至OA 结束,运动时间为t 秒,当EOC FOC ∠=∠时,求t 的值;(3)若射线OM 绕着O 点从OA 开始以15度/秒的速度逆时针旋转至OB 结束,在旋转过程中,ON 平分AOM ∠,试问2BON BOM ∠-∠在某段时间内是否为定值,若不是,请说明理由;若是,请补全图形,求出这个定值并写出t 所在的时间段;(本题中的角均为大于0°且小于180°的角).图1 图2 图3ACA (E )CDEABB (F )BA A武汉东湖高新区2017-2018学年度上学期七年级期末考试参考答案一、选择题(题号12345678910答案A D B A C B B A C D二、填空题(11.-212.两点确定一条直线13.18°14.115.2116.1三、解答题(共8题,共72分)17.解:(1)原式=116°10′…4分;(2)原式=4×5-(-8)÷4…6分=20-(-2)…7分=22…8分18.解:(1)移项:5x-3x=9+3…2分(2)去分母:3(3x-7)-2(1+x)=6…5分合并同类项:2x=12…3分去括号:9x-21-2-2x=6…6分系数化为1:x=6…4分移项:9x-2x=6+21+2合并同类项:7x=29…7分系数化为1:297x=…8分19.解:设先计划安排x人整理数据…2分依题意得:11328(5)80804x x⨯⋅+⨯⋅+=…5分解得:x=2…7分答:应先计划安排2人整理数据…8分20.解:P(1)画射线AD…2分(2)连接AC、BD,交点即为P点…5分(3)4.5…8分21.(1)120°…4分(2)由翻折性质:∠ABC=∠A′BC,∠A′BE=∠DBE…5分因为∠ABC+∠A′BC+∠A′BE+∠DBE=180°…6分所以2∠A′BC+2∠A′BE=180°…7分所以∠A′BC+∠A′BE=90°所以∠CBE=90°,值不变…8分22.解:(1)设一个水瓶的价格为x元,则一个水杯的价格为(48-x)元…1分依题意:3x+4(48-x)=152…3分解得:x=40…4分答:一个水瓶为40元,一个水杯为8元…5分(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n乙商场所需费用为5×40+(n-5×2)×8=120+8n…6分若160+6.4n-(120+8n)=40-1.6n,则n=25…7分讨论:当10<n<25时:40-1.6n为正数,乙商场更省钱;…8分当n=25时:40-1.6n为0,甲、乙商场一样;…9分当n>25时:40-1.6n为负数,甲商场更省钱;…10分第5页 / 共7页23.解:(1)135°、40°…2分(2)∠ACB=180°-∠DCE解:依题意:∠ACD=∠ECB=90°所以∠ACE=90°-∠DCE…3分因为∠ACB=∠ACE+∠ECB…4分所以∠ACB=180°-∠DCE…5分1分)1分2分3分①当0≤t≤10时∠EOC=9015t-o o,∠FOC=605t-o o…3分因为∠EOC=∠FOC所以9015t-o o=605t-o o所以9015t-o o605t=-o o或9015t-o o(605)t=--o o…5分所以t=3,t=7.5②当10<t时,∠EOC=60°所以当t=24时,∠EOC=∠FOC=60°6分所以t=3,t=7.5或t=24.7分(3)分三种情况讨论:①当0≤t≤2时,∠BOM=150°+15°t,∠BON=150°+152t o 所以2∠BON-∠BOM=300°-150°=150°为定值…9分②当2<t<4时,∠BOM=210°-15°t,∠BON=150°+152t o所以2∠BON-∠BOM=300°+15°t-210°+15°t=90°+30°t不为定值…11分③当4≤t≤12时,∠BOM=210°-15°t,∠BON=210°-152t o所以2∠BON-∠BOM=420°-15°t-210°+15°t=210°为定值④当12<t≤14时,∠BOM=210°-15°t,∠BON=152t o-30°,所以2∠BON-∠BOM=15°t-60°-210°+15°t=30°t-270°不为定值…12分综上所述:当0≤t≤2或4≤t≤12时,2∠BON-∠BOM为定值;第6页 / 共7页第7页 / 共7页。

东湖高新区2017-2018年七年级上学期期中考试数学调研检测卷

东湖高新区2017-2018年七年级上学期期中考试数学调研检测卷

东湖高新区2017-2018学年度上学期期中考试七年级数学试卷七年级数学试卷一 . 选择题(共10小题,每小题3分,共30分)1.如果水位升高5m 时水位变化记作+5m ,水位不升不降时水位变化记作0m ,那么水位下降3m 时水位变化记作( )A . +3mB . -3mC . 3mD . -13m 2.把(+5)﹣(+3)+(﹣2)﹣(﹣7)写成省略括号的形式是( )A .﹣5+3﹣2+7B .5﹣3﹣2﹣7C .5+3﹣2﹣7D . 5﹣3﹣2+73.超市里一袋食盐的净含量是 g ,表示这袋食盐的重量范围在495g ~ 505g 之间,如果某种药品的保存温度为 ℃,那么下列温度符合保存要求的是( )A .+2 ℃B .﹣2 ℃C .21 ℃D .17 ℃4.下列各组单项式中,是同类项的是( )A . 与B .与 C . 与 D . 与5.十九大报告指出:十八大以来的五年,我国国内生产总值从2012年的540000亿元增长到2016年的800000亿元.这里的800000亿元用科学计数法表示为( )A . 元B . 元C . 元D . 元6.下列说法中,正确的是( )A . 是单项式B . 不是单项式C . 的系数为D . 的次数为7.下列各组等式中,正确的是( )A .B .C .D .8.若 是关于x 的方程 的解,则a 的值为( )A .B .C .D .9.下列各组等式变形中,不一定成立的是( )A .如果 ,那么B .如果 ,那么C .如果 ,那么D .如果 ,那么10.下列说法中,正确的个数是( )①两个三次多项式的和一定是三次多项式;②如果 且 ,那么 ;③若 是大于 的负数,则 ;④如果xyz 0,那么 的值为7或-1.A .1个B .2个C .3个D .4个二 . 填空题(共6小题,每小题3分,共18分)11. 的相反数是_____,绝对值是_____,倒数是_____.12.买一个篮球需要x 元,买一个排球需要y 元,买一个足球需要z 元,买3个篮球、5个排球、2个足球一共需要_______________元.13. 某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,设购买了甲种奖品x 件,依题意列方程得_______________.14.如果方程 是关于x 的一元一次方程,则a 的值为_______________.15.如果 、 、 ,那么 、、 、 的大小关系是_____________________(请用“ ”连接).16.观察下列等式:, , ,以上三个等式两边分别相加得: ,通过观察,用你发现的规律计算_____ . 三 . 解答题(共9小题,共72分)17.计算(共2小题,每小题4分,共8分)(1) (2)18.计算(共2小题,每小题4分,共8分)(1) (课本第75页第3题)(2)(课本第75页第4题) .19. (课本第26页第9题)(本题8分)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:(1)这8筐白菜中最接近标准重量的这筐白菜重__________千克;(2)这8筐白菜一共多少千克?-2.5-2-21-0.52-31.520. (课本第69页例9)(本题8分)先化简,再求值.求,其中21.(本题8分)数轴上A、B、C三点对应的数分别是、、,若,为最大的负整数,且.(1)请在数轴上标出A、B、C三点的大致位置;(2)化简.22.(本题10分)有一张边长为厘米的大的正方形纸片,在它的四个角上各减去一个边长为厘米的小正方形,折成一个无盖的长方体(如图).(第22题图)(1)当厘米时,请用含的式子表示这个无盖长方体的体积;(2)在(1)的条件下,当厘米时求无盖长方体的体积;(3)当厘米时,要将这张正方形纸片折成一个无盖的正方体,求此时正方体的体积.23. (课本第24页探究)(本题10分)通过学习绝对值,我们知道的几何意义是数轴上表示数在数轴上的对应点与原点的距离. 如:表示5在数轴上的对应点到原点的距离.,即表示在数轴上对5、0在数轴上对应的两点之间的距离.类似的,,即表示5、3应的两点之间的距离. 一般地,点A、B在数轴上分别表示数、,那么A、B之间的距离可表示为.请根据绝对值的几何意义并结合数轴解答下列问题:(1)数轴上表示2和4的两点之间的距离是__________;数轴上P、Q两点的距离为3,点P表示的数是4,则点Q表示的数是___________.(2)点A、B、C在数轴上分别表示数、、,那么A到点B、点C的距离之和表示为_______________(用含绝对值的式子表示);满足的的值为_________.(3)试求的最小值.24.(本题12分)已知多项式的次数为,常数项为,、分别对应着数轴上2的A、B两点.(1)____,____,并在数轴上画出A、B两点;(2)若点P从点A出发,以每秒3个单位长度单位的速度向轴正半轴运动,求运动时间为多少时,点P到点A的距离是点P到点B的距离的2倍;(3)数轴上还有一点C的坐标为30,若点P和点Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动,P点到达C点后,再立刻以同样的速度返回,运动到终点A.求点P和点Q运动多少秒时,P、Q两点之间的距离为4,并求出此时点Q对应的数.。

2018-2019学年湖北省武汉市东湖高新区七年级(上)期中数学试卷-普通用卷

2018-2019学年湖北省武汉市东湖高新区七年级(上)期中数学试卷-普通用卷

2018-2019学年湖北省武汉市东湖高新区七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.温度由−4℃上升7℃是()A. 3℃B. −3℃C. 11℃D. −11℃2.若规定向东走为正,即向东走8m记为+8m,那么−6米表示()A. 向东走6米B. 向南走6米C. 向西走6米D. 向北走6米3.某年,一些国家的服务出口额比上年的增长率如表:上述四国中哪国增长率最低?()A. 美国B. 德国C. 英国D. 中国4.中国是世界第二大经济体,世界第一贸易大国,中国的国土面积约为9600000km2,这里9600000用科学记数法表示为()A. 9.6×105B. 9.6×106C. 9.6×107D. 0.96×1075.下列说法错误的是()A. −32x2y的系数是−32B. 数字0也是单项式C. 23πxy的系数是23D. −πx是一次单项式6.x=5是下列哪个方程的解()A. x+5=0B. 3x−2=12+xC. x−15x=6 D. 1700+150x=24507.已知8.622=73.96,若x2=0.7396,则x的值()A. 86.2B. 0.862C. ±0.862D. ±86.28.甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支,设买了甲种铅笔x支,则下列方程错误的是()A. 0.3x+0.6(20−x)=9B. 9−0.3x0.6=20−xC. 0.3×20+(0.6−0.3)(20−x)=9D. 9−0.6(20−x)0.6=x9.若a+b+c=0,则|a|a +|b|b+|c|c+|abc|abc可能的值的个数是()A. 1B. 2C. 3D. 410.如果0<a+b<1,且|a|=−a.下列说法中,正确的个数是()①1a+b>1②如果ax=ay,那么x=y③a2<b2④(b−a)2>1A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.−27的相反数是______,绝对值是______,倒数是______.12.若(m−2)x|m|−1=5是一元一次方程,则m的值为______.13.若单项式3a2b x与−4a y b3是同类项,则x+y=______.14.若x+2y=3.则代数式3(x+2y)2−2x−4y+3的值是______.15.点A,点B在数轴上分别表示6.5,x,点B在点A的左边,且点A,点B之间有9个整数.则x的取值范围为______.16.a是不为1的有理数,我们把11−a 称为a的差倒数.如:2的差倒数是11−2=−1,−1的差倒数是11−(−1)=12.已知a1=−13,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2018=______.三、计算题(本大题共3小题,共24.0分)17.计算(1)(910−115)×30(2)(−2)3+(−3)×[(−4)2+2]−(−3)2÷(−2)18. 利用等式的性质解方程:(1)3x +1=4 (2)−13x −5=419. 先化简,再求值:A =3a 2b −ab 2,B =ab 2+3a 2b ,其中a =12,b =13.求5A −B 的值.四、解答题(本大题共5小题,共48.0分)20. 10袋小麦称后记录如表(单位:kg),要求每袋小麦的重量控制在(90±1.5)kg.即每袋小麦的重量不高于91.5kg ,不低于88.5kg(1)这10袋小麦中,不符号要求的有______袋;(2)将符合要求的小麦以90kg 为标准,超出部分记为正,不足的记为负数; (3)求符合要求的小麦一共多少千克?21.已知数a,b,c在数轴上的位置如图所示(1)化简|a+b|−|a−b|+|a+c|(2)若|b−a−2|+(a−1)2=0.|c+l|=b,求a,b,c的值.22.已知一块A型纸板可以制成1个C型正方形纸板和2个D型长方形纸板,一块B型纸板可以制成2个C型正方形纸板和1个D型长方形纸板.现有A,B两种纸板共20块,设A型纸板有x块(x为正整数).(1)求总共可以制成多少个C型正方形纸板(用含有x的式子表示)(2)出售一个C型正方形纸板可以获利10元,出售1个D型长方形纸板可以获利12元.若将所制成的C型,D型纸板全部售出可以获利650元,求x的值.23.(1)请用两种不同的方法列代数式表示图1的面积方法1______,方法2______;(2)若a+b=7,ab=15,根据(1)的结论求a2+b2的值;(3)如图2,将边长为x和x+2的长方形,分成边长为x的正方形和两个宽为1的小长方形,并将这三个图形拼成图3,这时只需要补一个边长为1的正方形便可以构成一个大正方形.①若一个长方形的面积是216,且长比宽大6,求这个长方形的宽.②把一个长为m,宽为n的长方形(m>n)按上述操作,拼成一个在一角去掉一个小正方形的大正方形,则去掉的小正方形的边长为______.24.数轴上m,n,q所对应的点分别为点M,点N,点Q,若点Q到点M的距离表示为QM,点N到点Q的距离表示为NQ,我们有QM=q−m,NQ=n−q(1)点A,点B,点C在数轴上分别对应的数为−4,6,c.且BC=CA.直接写出c的值______.(2)在(1)的条件下,两只电子蚂蚁甲,乙分别从A,C两点出发向右运动,甲的速度为4个单位每秒,乙的速度为l个单位每秒.求经过几秒,点B与两只蚂蚁的距离和等于7.(3)在(1)(2)的条件下,电子蚂蚁乙运动到点B后立即以原速返回,到达自己的出发点后停止运动,电子蚂蚁甲运动至点B后也以原速返回,到达自己的出发点后又折返向点B运动,当电子蚂蚁乙停止运动时,电子蚂蚊甲随之停止运动.求运动时间为多少时,两只蚂蚁相遇.答案和解析1.【答案】A【解析】解:温度由−4℃上升7℃是−4+7=3℃,故选:A.根据题意列出算式,再利用加法法则计算可得.本题主要考查有理数的加法,解题的关键是熟练掌握有理数的加法法则.2.【答案】C【解析】解:如果规定向东为正,那么−6米表示:向西走6米.故选:C.首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.本题主要考查了正数和负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,比较简单.3.【答案】C【解析】解:因为−5.3%<−3.4%<−0.9%<2.8%,故选:C.比较各国国增长率得出结论即可.本题考查了有理数大小的比较.会比较有理数的大小是解决本题的关键.4.【答案】B【解析】解:将9600000用科学记数法表示为9.6×106.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】C【解析】解:A、单项式−32x2y的系数是−32,故本选项错误;B、数字0是单项式,故本选项错误;C、单项式23πxy的系数是23π,故本选项正确;D、单项式−πx是一次单项式,故本选项错误;故选:C.根据单项式的有关定义逐个进行判断即可.本题考查了对单项式有关定义的应用,能熟记单项式的有关定义是解此题的关键.6.【答案】D【解析】解:A.解方程x+5=0得:x=−5,A项错误,B.解方程3x−2=12+x得:x=7,B项错误,C.解方程x−15x=6得:x=152,C项错误,D.解方程1700+150x=2450得:x=5,D项正确,故选:D.依次解各个选项中的方程,找出解为x=5的选项即可.本题考查了一元一次方程的解,正确掌握解一元一次方程是解题的关键.7.【答案】C【解析】解:∵8.622=73.96,x2=0.7396,∴x2=0.8622,则x=±0.862.故选C.根据两式结果相差2位小数点,利用乘方的意义即可求出x的值.此题考查了有理数的乘方,以及平方根的定义,熟练掌握乘方的意义是解本题的关键.8.【答案】D【解析】解:设买了甲种铅笔x支,则买了乙种铅笔(20−x)支,根据题意得:0.3x+0.6(20−x)=9;9−0.3x0.6=20−x;0.3×20+(0.6−0.3)(20−x)=9;9−0.6(20−x)=x.0.3故选:D.设买了甲种铅笔x支,则买了乙种铅笔(20−x)支,由总价=单价×数量可得出A选项中方程,由(总价−购买甲种铅笔所花费用)÷甲种铅笔的单价=购买甲种铅笔的数量可得出B选项中方程,由0.3×购买铅笔总数量+(乙种铅笔比甲种铅笔高出的单价)×乙种铅笔购买数量=总费用可得出选项C中方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.【答案】A【解析】【分析】本题考查了绝对值,解决本题的关键是确定a,b,c的正负.根据a+b+c=0,所以a,b,c三个数中可能有2个负1个正或1个负2个正,分别化简,即可解答.【解答】解:∵a+b+c=0,且a,b,c不能为0,∴a,b,c三个数中可能有2个负1个正或1个负2个正,(1)当a,b,c中有两个大于零,一个小于零时,原式=1+1−1−1=0;(2)当a,b,c中有两个小于零,一个大于零时,原式=−1−1+1+1=0.故选A.10.【答案】B【解析】解:∵0<a+b<1,>1,①1a+b不等式两边同时乘以a+b,不等号方向不变,即1>a+b,即①正确,∵|a|=−a,∴a≤0,如果ax=ay,若a=0,则有可能x≠y,即②不正确,∵0<a +b <1,a ≤0, ∴b >0, ③若a 2<b 2,则a 2−b 2=(a +b)(a −b)<0,(符合题意), 即③正确, ④(b −a)2>1,则(b −a −1)(b −a +1)>0,b −a +1>0,而b −a −1有可能小于0, 即④不正确, 即正确的是:①③, 故选:B .根据等式的性质和绝对值的定义,依次分析①②③④,找出正确的个数即可. 本题考查了等式的性质和绝对值,正确掌握等式的性质和绝对值的定义是解题的关键.11.【答案】27 27 −72【解析】解:−(−27)=27,|−27|=27,−127=−72,故答案是:27;27;−72.根据相反数,绝对值和倒数的定义进行解答.考查了倒数,相反数以及绝对值,考查了学生对概念的记忆,属于基础题.12.【答案】−2【解析】解:∵(m −2)x |m|−1=5是一元一次方程, ∴|m|−1=1,且m −2≠0. 解得,m =−2. 故答案是:−2.根据一元一次方程的定义得到|m|−1=1,注意m −2≠0.本题考查了一元一次方程的定义.一元一次方程的未知数的指数为1,一次项系数不等于零.13.【答案】5【解析】解:依题意得:y=2,x=3,所以x+y=3+2=5.故答案是:5.根据相同字母的指数相同可列出方程,解出即可.此题主要考查了同类项,关键是掌握同类项定义:所含字母相同,并且相同字母的指数也相同的项叫同类项.14.【答案】24【解析】解:原式=3(x+2y)2−2(x+2y)+3,将x+2y=3代入上式得原式=3×32−2×3+3=24.故答案为:24.将原式整理,得到关于(x+2y)的整式,再将x+2y整体代入即可.本题考查了代数式求值,利用整体思想是解题的关键.15.【答案】−3<x≤−2【解析】解:∵点A,点B在数轴上分别表示6.5,x,点B在点A的左边,且点A,点B 之间有9个整数,∴x的取值范围为−3<x≤−2.故答案为:−3<x≤−2.根据两点间的距离公式和整数的定义可求x的取值范围.考查了数轴,关键是熟练掌握两点间的距离公式和整数的定义.16.【答案】34【解析】解:根据题意得:a1=−1,3a2=3,4a3=4;a4=−1;3则三个数是一个周期,则2018÷3=672…2,故答案为:34先依次计算出a2、a3、a4、a5,即可发现每3个数为一个循环,然后用2018除以3,即可得出答案.此题主要考查了数字的变化类,考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4,找出数字变化的规律.17.【答案】解:(1)原式=30×910−30×115=27−2=25;(2)原式=−8+(−3)×(16+2)−9÷(−2)=−8+(−3)×18+9 2=−8−54+41 2=−5712.【解析】(1)先运用乘法分配律展开,再依次计算乘法和减法即可得;(2)根据有理数的混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.18.【答案】解:(1)方程移项合并得:3x=3,解得:x=1;(2)去分母得:−x−15=12,移项合并得:−x=27,解得:x=−27.【解析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,以及等式的性质,熟练掌握运算法则是解本题的关键.19.【答案】解:原式=5(3a2b−ab2)−(ab2+3a2b)=15a2b−5ab2−ab2−3a2b=12a2b−6ab2,原式=12×14×13−6×12×19=1−13=23,【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 20.【答案】2【解析】解:(1)这10袋小麦中,不符号要求的有2袋;故答案为:2;(2)将符合要求的小麦以90kg 为标准,超出部分记为正,不足的记为负如下, −1,−1,−1,−0.2,−0.2,+0.6,+1,+1;(3)符合要求的小麦一共有:89×3+89.8×2+90.6+91×2=719.2千克.(1)根据每袋小麦的重量不高于91.5kg ,不低于88.5kg ,即可得到结论(2)根据符合要求的小麦以90kg 为标准,超出部分记为正,不足的记为负即可得到结论;(3)根据题意列式计算即可.本题考查了正数和负数,利用有理数的加法运算是解题关键.21.【答案】解:(1)观察数轴,可知:c <0<a <b ,且|c|>|a|,∴a +b >0,a −b <0,a +c <0,∴原式=a +b +(a −b)−(a +c)=a −c .(2)∵|b −a −2|+(a −1)2=0,|c +l|=b ,∴{b −a −2=0a −1=0c +1=−b,解得:{a =1b =3c =−4.【解析】(1)观察数轴,可得出c <0<a <b ,且|c|>|a|,进而可得出a +b >0,a −b <0,a +c <0,再利用绝对值的定义即可求将|a +b|−|a −b|+|a +c|进行化简,此题得解;(2)由偶次方及绝对值的非负性,即可得出关于a ,b ,c 的三元一次方程组,解之即可得出结论.本题考查了数轴、绝对值及偶次方的非负性以及解方程组,解题的关键是:(1)观察数轴,根据各点的位置关系找出a+b>0,a−b<0,a+c<0;(2)利用偶次方及绝对值的非负性,找出方程组.22.【答案】解:(1)设A型纸板有x块(x为正整数),则B型纸板有(20−x)块(x为正整数),则x+2(20−x)=40−x.∴总共可以制成(40−x)个C型正方形纸板;(2)根据题意,得10(40−x)+12(2x+20−x)=650.化简得:400−10x+240+12x=650解得:x=5∴x的值为5.【解析】(1)设A型纸板有x块(x为正整数),则B型纸板有(20−x)块(x为正整数).根据“一块A型纸板可以制成1个C型正方形纸板和2个D型长方形纸板,一块B型纸板可以制成2个C型正方形纸板和1个D型长方形纸板”列出代数式;(2)根据C、D型纸板的单个利润和售出的数量列方程解答.本题考查了一元一次方程在实际问题中的应用,理清题中的数量关系,正确列出方程,是解题的关键.23.【答案】(a+b)2a2+2ab+b2m−n2【解析】解:(1)方法1,图1可看作是边长为(a+b)的正方形面积,即(a+b)2方法2,图1可看作是边长分别为a和b的2个正方形面积加上2个长为a宽为b 的矩形面积,即a2+2ab+b2故答案为:(a+b)2;a2+2ab+b2(2)∵a+b=7∴(a+b)2=49,即a2+2ab+b2=49又∵ab=15∴a2+b2=49−2ab=19故答案为:19(3)①设宽为x,由题意可得:(x +3)2=216+32因为x >0,解得x =12.故答案为:12②由题可知:去掉小正方形的边长是原长方形长与宽差的一半故答案为:m−n 2(1)图1可看作是边长为(a +b)的正方形面积,也可看作边长分别为a 和b 的2个正方形面积加上2个长为a 宽为b 的矩形面积.(2)考查完全平方公式的构成.(3)由图2到图3可知,若记原长方形的长为m ,宽为n ,则拼成的大正方形的边长为(n +m−n 2),右下角小正方形边长为m−n 2.本题考查了完全平方公式的应用,熟记完全平方公式的结构特点并理解其几何背景是解题的关键24.【答案】1【解析】解:(1)∵BC =CA ,∴6−c =c −(−4),∴c =1,故答案为:1;(2)①当两只电子蚂蚁甲,乙在点B 的左侧时,有AB −4t +BC −t =7,即10−4t +5−t =7,解得,t =85;②当甲,乙在点B 的异侧时,有4t −AB +BC −t =7,即4t −10+5−t =7,解得,t =4;③当甲,乙在点B 的右侧时,有4t −AB +t −BC =7,即4t −10+t −5=7,解得,t =225. 故经过85秒或4秒或225秒,点B 与两只蚂蚁的距离和等于7;(3)①根据题意知,当第一次相遇时,有4t −t =AC ,即4t −t =5,解得,t =53;②根据题意知,当第二次相遇,有4t +t =AB +BC ,即4t +t =10+5,解得,t =3;③根据题意知,当第三次相遇时,有4t +t =3AB +BC ,即4t +t =30+5,解得,t =7;④根据题意知,当第四次相遇时,有4t −t =3AB −BC ,即4t −t =30−5,解得,t =253.故当运动时间为53秒或3秒或7秒或253秒时,两只蚂蚁相遇.(1)根据BC =CA 建立方程求出其解;(2)根据点B 与两只蚂蚁的距离和等于7建立方程.分三种情况进行讨论:①两只电子蚂蚁甲,乙在点B 的左侧;②甲,乙在点B 的异侧;③甲,乙在点B 的右侧;(3)第一次相遇点是甲追上乙的地方,第二次相遇点是甲返回的过程中与乙相遇的地方,第三次相遇是乙在返回的过程中与甲第二次从A 到B 时相遇的地方,第四次相遇点是乙在返回的过程中与甲第二次返回相遇的地方.本题是数形结合的题,主要考查了数轴的性质,两点距离公式,一元一次方程的应用,列代数式,行程问题中的相遇问题与追及问题,关键是抓住相遇问题与追及问题的等量关系,第(3)小题很复杂,要理清相遇的四种情况,大家容易漏解.。

2017-2018学年最新人教版七年级数学(上册)期中测试卷及答案

2017-2018学年最新人教版七年级数学(上册)期中测试卷及答案

2017-2018学年七年级(上)期中数学试卷一、选择题:(每小题只有一个答案是正确的,每小题2分,本大题有10小题共20分)1.- 3的倒数是()A . - 3 B. 3 C.-丄D. y2 •下列运算有错误的是()A . 8-(- 2)=10B . - 5+(-土)=10C . (- 5)+ (+3)=- 8D . - 1 X(-丄)=JL=33. 预计下届世博会将吸引约69 000 000人次参观.将69 000 000用科学记数法表示正确的是()A . 0.69X 108B . 6.9X 106C . 6.9X 107D . 69X 1064. 有理数a、b在数轴上的表示如图所示,那么()- •---------- «---- • --------- »b0 aA . - b> aB . - a v bC . b > aD . | a| > | b|5. 下面计算正确的是( )A . 3x2- X2=3B . 3a2+2a3=5a5C . 3+X=3XD . - 0.25ab丄ba=06. 下列式子:X2+2, - + 4, 越7,坐,-5X , 0中,整式的个数是( )3 7 CA . 6B . 5C . 4D . 37. 若原产量为n吨,增产30%后的产量为( )A . 30%n 吨B . (1 - 30%) n 吨C . (1+30%) n 吨D. (n+30%)吨&下列去括号错误的是( )A . 2X2-(X - 3y) =2X2- x+3y丄 2 2 J. 2 2B . — X + ( 3y - 2xy) =〔x - 3y +2xyC . a2+ (- a+1) =a2- a+1D. -( b - 2a)- (- a2+b2) = - b+2a+a2- b29.下列说法错误的是( )A . 2X2- 3xy - 1是二次三项式B . - X+1不是单项式2? 2C.—亍兀耳y的系数是-乓口D . - 22xab2的次数是610 .已知多项式X2+3X=3,可求得另一个多项式3X2+9X - 4的值为( )A . 3B . 4C . 5D . 6二、填空题:(本大题共8小题,每小题2分,共16分)11 .如果把收入30元记作+30元,那么支出20元可记作12•-丄的相反数是一;倒数是一13.比较大小:- 9 - 13 (填'”或号)14•用四舍五入法将1.893 5取近似数并精确到0.001,得到的值是__________ .15. _______________________________________________ 若单项式-3a m b3与4a2b n是同类项,贝V m+n= _________________________________________ •16•若a与b互为相反数,c与d互为倒数,则(a+b) 3- 3(cd) 2015= _____________ .17.已知|a+1|=0, b2=4,贝U a+b= ______ .18•用火柴棒按如图所示的方式摆图形,按照这样的规律继续摆下去,第n个图形需要三•解答题:(本大题共64分)19•在数轴上表示下列各数:0,- 4,专■,- 2, | - 5| , -(- 1),并用号连接.-5 -4 -3-2-10 1 2 3 4 5?20・耐心算一算(同学们,请你注意解题格式,一定要写出解题步骤哦!(1)- 20+ (- 14)-( - 18)- 13(3)- 24-〒X [5-( - 3) 2] •21.化简:(1)12x - 20x+10x(2) 2 (2a- 3b)- 3 (2b- 3a)(3)- 5m2n+2 - 2mn+6m2n+3mn - 3.22•某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月工作人数不一定相等,实际每月生产量与计划量相比情况如表(增加为正,减少为负)月份一二三四五六增减(辆) +3 - 2 - 1 +4 +2 - 5①生产量最多的一月比生产量最少的一月多生产多少辆?②半年内总产量是多少?比计划增加了还是减少了,增加或减少多少?23. 先化简,再求值:- 5ab+2[3ab-( 4ab2+丄ab) ] - 5ab2,其中(a+2) 2+| b -f-1 =0 .24. 已知A=2x 2- 9x - 11, B=3x2- 6x+4.求(1) A - B ;(2)±A+2B.25•某市有甲、乙两种出租车,他们的服务质量相同•甲的计价方式为:当行驶路程不超过3千米时收费10元,每超过1千米则另外收费1.2元(不足1千米按1千米收费);乙的计价方式为:当行驶路程不超过3千米时收费8元,每超过1千米则另外收费 1.8 元(不足1千米按1千米收费).某人到该市出差,需要乘坐的路程为x 千米.(1)用代数式表示此人分别乘坐甲、乙出租车各所需要的费用;(2)假设此人乘坐的路程为13 千米多一点,请问他乘坐哪种车较合算?26.求1+2+22+23+・・+22°15的值,可令S=1+2+22+23+・・+22°15,则2S=2+22+23+24+・・+22°16,因此2S- S=22016- 1.仿照以上推理,计算出1+5+52+53+--+52015的值.2分,本大题有10小题共20分)2016-2017学年七年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题只有一个答案是正确的,每小题1 •- 3的倒数是()A • - 3B • 3 C.—丄D •寺【考点】倒数.【分析】根据倒数的定义可得-3的倒数是-丿-•3【解答】解:-3的倒数是-寺•故选:C •2 •下列运算有错误的是()A • 8 -( - 2)=10B • - 5+(-丄)=10C • (- 5)+ (+3)= - 8D . - 1 X(-丄)=JL =3【考点】有理数的混合运算•【分析】原式各项计算得到结果,即可做出判断•【解答】解:A、原式=8+2=10,正确;B、原式=-5X(- 2)=10,正确;C、原式=-5+3= - 2,错误;D、原式=丄,正确•故选C3•预计下届世博会将吸引约69 000 000人次参观•将69 000 000用科学记数法表示正确的是()A • 0.69X 108B • 6.9X 106C • 6.9x 107D . 69X 106【考点】科学记数法一表示较大的数•【分析】科学记数法的表示形式为a x 10n的形式,其中1 w|a v 10, n为整数•确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同. 当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n是负数.【解答】解:将69 000 000用科学记数法表示为: 6.9X 107•故选:C •4•有理数a、b在数轴上的表示如图所示,那么()- • ---------- «--- •--------- ►b0 aA • - b> aB • - a v bC . b> a D. | a| >| b|【考点】数轴.【分析】根据图中所给数轴,判断a、b之间的关系,分析所给选项是否正确.【解答】解:由图可知,b v O v a且|b| > | a| ,所以,—b> a, —a>b,A、- b> a,故本选项正确;B、正确表示应为:-a> b,故本选项错误;C、正确表示应为:b v a,故本选项错误;D、正确表示应为:| a| v | b|,故本选项错误.故选A .5. 下面计算正确的是()A . 3x2—X2=3B. 3a2+2a3=5a5C. 3+X=3X D . —0.25ab丄ba=O【考点】整式的加减.【分析】先判断是否为同类项,若是同类项则按合并同类项的法则合并.【解答】解:A、3X2—X2=2X2M 3,故A错误;B、3a2与2a3不可相加,故B错误;C、3与X不可相加,故C错误;1 “ &D、-0.25ab+—ba=0,故D 正确.故选:D.6. 下列式子:X2+2, - + 4, 越7,坐,-5X , 0中,整式的个数是()3 7 CA . 6 B. 5 C. 4 D. 3【考点】整式.【分析】根据整式的定义分析判断各个式子,从而得到正确选项.2【解答】解:式子X2+2,二—,-5X, 0,符合整式的定义,都是整式;-+4,二-这两个式子的分母中都含有字母,不是整式.a c故整式共有4个.故选:C.7. 若原产量为n吨,增产30%后的产量为()A . 30%n 吨B . (1 —30%)n 吨C. (1 +30%)n 吨D. (n+30%)吨【考点】代数式.【分析】根据增产量=原产量x(1+增长率)作答.【解答】解:原产量为n吨,增产30%后的产量为(1+30%)n吨,故选C.&下列去括号错误的是( )2 2A . 2X—( X—3y) =2X—x+3y--x 2 - 3y 2+2xyC. a 2+ (- a+1) =a 2- a+1D. -( b - 2a )- (- a 2+b 2) =- b+2a+a 2- b 2 【考点】去括号与添括号.【分析】利用去括号法则:如果括号外的因数是正数, 的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反, 进而判断得出即可.【解答】 解:A 、2x 2-( x - 3y ) =2x 2- x+3y ,正确,不合题意; 丄x 2+ (3y 2 - 2xy )」-x 2+3y 2 - 2xy ,故原式错误,符合题意; a 2+ (- a+1) =a 2- a+1,正确,不合题意;-(b - 2a )- (- a 2+b 2) =- b+2a+a 2- b 2,正确,不合题意; 故选:B . 9.下列说法错误的是( )A . 2x 2- 3xy - 1是二次三项式B . - x+1不是单项式 C.—寻兀K /的系数是 J 二rD .- 22xab 2的次数是6【考点】多项式;单项式.【分析】根据单项式和多项式的概念及性质判断各个选项即可. 【解答】 解:A 、2x 2- 3xy - 1是二次三项式,故本选项不符合题意; B 、- x+1不是单项式,故本选项不符合题意; 9 ? 7c 、一亍兀xy 的系数是-宁■飞,故本选项不符合题意; D 、 - 22xab 2的次数是4故本选项符合题意. 故选D . 10.已知多项式x 2+3x=3,可求得另一个多项式 3x 2+9x - 4的值为( )A . 3B . 4C . 5D . 6【考点】代数式求值.【分析】 先把3x 2+9x - 4变形为3 (x 2+3x )- 4,然后把x 2+3x=3整体代入计算即可. 【解答】解:I x 2+3x=3,3x 2+9x - 4=3 (x 2+3x ) - 4=3 X 3 - 4=9 - 4=5 . 故选:C .二、填空题:(本大题共8小题,每小题2分,共16分) 11 .如果把收入 30元记作+30元,那么支出20元可记作 -20元 .【考点】 正数和负数.【分析】答题时首先知道正负数的含义, 在用正负数表示向指定方向变化的量时, 通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数. 【解答】解:由收入为正数,则支出为负数,故收入 30元记作+30元,那么支出20元可记作-20元.x 2+ ( 3y 2- 2xy )=去括号后原括号内各项的符号与原来 B 、 C 、【解答】解:-5丄的相反数是罕倒数是一13•比较大小:-9 > - 13 (填、”或号) 【考点】有理数大小比较.【分析】有理数大小比较的法则: ①正数都大于0;②负数都小于0;③正数大于一切负 数;④两个负数,绝对值大的其值反而小,据此判断即可. 【解答】解:根据有理数比较大小的方法,可得 -9 >- 13. 故答案为:〉.14•用四舍五入法将 1.893 5取近似数并精确到 0.001,得到的值是 1.894 .【考点】 近似数和有效数字.【分析】 精确到哪一位,即对下一位的数字进行四舍五入.【解答】 解:用四舍五入法将 1.893 5取近似数并精确到 0.001,得到的值是1.894 . 故答案为:1.894.15. 若单项式-3a m b 3与4a 2b n 是同类项,贝V m+n= 5 .【考点】同类项.【分析】根据同类项的定义解答.【解答】 解:•••单项式-3a m b 3与4a 2b n 是同类项, m=2 , n=3 , m+n=2+3=5. 故答案为5.16. 若a 与b 互为相反数,c 与d 互为倒数,则(a+b ) 3- 3 (cd ) 2015= - 3 . 【考点】代数式求值.【分析】 根据a 与b 互为相反数,c 与d 互为倒数,可以得到: a+b=0, cd=1 .代入求值即可求解.【解答】 解:••• a 与b 互为相反数,c 与d 互为倒数, .a+b=0, cd=1.•••( a+b ) 3 - 3 (cd ) 2015=0 - 3 x 仁-3.故答案是:-3.17. 已知 |a+1|=0, b 2=4,贝U a+b= 1 或- 3 .【考点】绝对值.1112.- 5丄的相反数是2 -【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数, 可得一个数的相反数;根据乘积为1的两个数互为倒数,可得一个数的倒数.一;倒数是II —'【分析】根据绝对值和平方根,即可解答.【解答】解:••• | a+1|=0, b 2=4, a= — 1, b= ± 2, a+b=—1+2=1 或 a+b= — 1 — 2=— 3, 1 或—3.18.用火柴棒按如图所示的方式摆图形, 按照这样的规律继续摆下去,第n 个图形需要 5n+1【分析】仔细观察发现每增加一个正六边形其火柴根数增加 5根,将此规律用代数式表示出来即可.【解答】解:由图可知: 图形标号(1 )的火柴棒根数为 6; 图形标号(2 )的火柴棒根数为11; 图形标号(3)的火柴棒根数为16;由该搭建方式可得出规律:图形标号每增加 1,火柴棒的个数增加 5,所以可以得出规律:搭第 n 个图形需要火柴根数为: 6+5 ( n — 1) =5n+1,故答案为:5n+1.三•解答题:(本大题共64分) 19.在数轴上表示下列各数: 0,- 4,「二,-2, | — 5| , — (— 1),并用号连接.-5 -4 -3 -2-16 1 1 3 4 5?【考点】 有理数大小比较;数轴;绝对值.【分析】根据数轴是表示数的一条直线, 可把数在数轴上表示出来, 根据数轴上的点表示的 数右边的总比左边的大,可得答案.【解答】解:20. 耐心算一算(同学们,请你注意解题格式, (1) — 20+ (— 14) — (— 18)— 13 (2) - 4雜寻匚乂(- 30) (3) - 24-卜[5-( - 3) 2].—4v — 2<0V — (— 1) <定要写出解题步骤哦!根火柴棒(用含n 的代数式表示)【考点】 有理数的混合运算.【分析】(1)首先对式子进行化简,然后正、负数分别相加,然后把所得结果相加即可;(2)首先计算乘法、除法,然后进行加减即可; (3) 首先计算乘方,然后计算括号里面的式子,最后进行加减即可.【解答】 解:(1)原式=-20 - 14+18 - 13= - 20 - 14- 13+18=- 47+18= - 29;(3)原式=-16-^^X( 5 - 9) = - 16- 21. 化简: (1) 12x - 20x+10x (2) 2 (2a- 3b )- 3 (2b - 3a ) (3) - 5m 2n+2 - 2mn+6m 2n+3mn - 3. 【考点】整式的加减. 【分析】(1)先去括号,然后合并同类项; (2 )先去括号,然后合并同类项; (3 )直接合并同类项即可. 【解答】 解:(1)原式=(12 -20+10) x=2x ; (2) 原式=4a — 6b — 6b+9a =12a - 12b ; (3) 原式=(-5+6) m 2n+ (- 2+3) mn - 3+2 2 =m n+mn — 1. 22. 某汽车厂计划半年内每月生产汽车 20辆,由于另有任务,每月工作人数不一定相等, 实际每月生产量与计划量相比情况如表(增加为正,减少为负) 月份 一二 三 四 五 六 增减(辆) +3 - 2 - 1 +4 +2 - 5 ① 生产量最多的一月比生产量最少的一月多生产多少辆? ② 半年内总产量是多少?比计划增加了还是减少了,增加或减少多少? 【考点】 正数和负数. 【分析】①利用表中的最大数减去最小的数即可; ② 半年内的计划总产量是 20X 6=120辆,然后求得六个月中的增减的总和即可判断. 【解答】 解:①生产量最多的一月比生产量最少的一月多生产 4 -( - 5) =9 (辆); ② 总产量是:20 X 6+ (3 - 2 - 1+4+2 - 5) =121 (辆), 3 - 2 - 1+4+2 - 5=1 (辆). 答:半年内总产量是 121辆,比计划增加了 1辆. 23. 先化简,再求值:- 5ab+2[3ab -( 4ab 2+丄 ab ) ] - 5ab 2,其中(a+2) 2+| b -f _ | =0 . 【考点】整式的加减一化简求值;非负数的性质:绝对值;非负数的性质:偶次方. 【分析】原式去括号合并得到最简结果, 利用非负数的性质求出 a 与b 的值,代入计算即可(2)原式=-4X -^ —X 30= - 6 - 20=- 26; 3(—4) = - 16+2= - 14.求出值.【解答】解:•••(a+2)2+|b-二|=0,“a= - 2, r则原式=-5ab+6ab- 8ab2- ab- 5ab2= - 13ab2亠二2 •2 224. 已知A=2x - 9x - 11, B=3x - 6x+4.求(1) A - B ;(2)」-A+2B.【考点】整式的加减.【分析】(1)根据A=2x 2- 9x - 11, B=3x2- 6x+4,可以求得 A - B的值;(2)根据A=2x2- 9x - 11, B=3x2- 6x+4,可以求得|".|A+2B的值.【解答】解:(1)T A=2x 2- 9x - 11, B=3x 2- 6x+4,••• A - B=2x2- 9x - 11 - 3x2+6x - 4=-x2- 3x - 15;(2 )T A=2x 2- 9x- 11, B=3x 2- 6x+4,1 十•二 +=二(2x2- 9x - 11) +2 (3x2- 6x+4)=x2- 4.5x - 5.5+6x2- 12x+8=7x2- 16.5x+2.5.25•某市有甲、乙两种出租车,他们的服务质量相同•甲的计价方式为:当行驶路程不超过3千米时收费10元,每超过1千米则另外收费1.2元(不足1千米按1千米收费);乙的计价方式为:当行驶路程不超过3千米时收费8元,每超过1千米则另外收费1.8元(不足1 千米按1千米收费)•某人到该市出差,需要乘坐的路程为x千米.(1 )用代数式表示此人分别乘坐甲、乙出租车各所需要的费用;(2)假设此人乘坐的路程为13千米多一点,请问他乘坐哪种车较合算?【考点】列代数式;代数式求值.【分析】(1)分0v x w 3和x >3两种情况分别写出对应的代数式;(2)分别求得x=13时,各自的费用,然后进行比较即可.【解答】解:(1)甲:①当O v x w 3时10元;②当x > 3 时10+1.2 ( x - 3)乙:①当O v x w 3时8元②当x > 3 时8+1.8 ( x - 3)(2)当乘坐的路程为13千米多一点,即x =14时甲的费用23.2元,乙的费用27.8元,应乘甲种车.26.求1+2+22+23+・・+22°15的值,可令S=1+2+22+23+・・+22°15,则2S=2+22+23+24+・・+22°16,因此2S- S=22016- 1.仿照以上推理,计算出1+5+52+53+-+52015的值.【考点】规律型:数字的变化类.【分析】仔细阅读题目中示例,找出其中规律,求解本题.【解答】解:令S=1+5+52+53+-+52015,贝廿5S=5+52+53+54+ - +52016,••• 5S - S=52016- 1,2016 年9 月15 日。

湖北省武汉市 七年级(上)期中数学试卷

湖北省武汉市 七年级(上)期中数学试卷

6. 一条河的水流速度是 1.8km/h,某条船在静水中的速度是 akm/h,则该船在这条河中
逆流行驶的速度是( )
A. (a+1.8)km/h B. (a−1.8)km/h C. (a+3.6)km/h D. (a−3.6)km/h
7. 一种商品每件成本 a 元,原来按成本增加 22%定出价格,由于库存积压减价,按照
原价的 85%出售,则现售价是( )
A. 85%(a+22%)元

B. 15%(1+22%)a 元
C. (a+22%+85%)元
D. 85%(1+22%)a 元
8. 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有 2 个
五角星,第②个图形一共有 8 个五角星,第③个图形一共有 18 个五角星,…,则
七年级(上)期中数学试卷
题号 得分




总分
一、选择题(本大题共 10 小题,共 30.0 分)
1. -2018 的相反数是( )
A. 2018
B. −2018
C. 12018
D. −12018
2. 12 的倒数是( )
A. −12
B. 2
C. −2
D. 12
3. 武汉某天冬季的最高气温 9℃,最低气温-3℃,这一天武汉最高气温比最低气温高
21. (1)一个两位正整数,a 表示十位上的数字,b 表示个位上的数字(a≠b,ab≠0), 则这个两位数用多项式表示为______(含 a、b 的式子);若把十位、个位上的数 字互换位置得到一个新两位数,则这两个两位数的和一定能被______整除,这两个 两位数的差一定能被______整除 (2)一个三位正整数 F,各个数位上的数字互不相同且都不为 0.若从它的百位、 十位、个位上的数字中任意选择两个数字组成 6 个不同的两位数.若这 6 个两位数 的和等于这个三位数本身,则称这样的三位数 F 为“友好数”,例如:132 是“友好数” 一个三位正整数 P,各个数位上的数字互不相同且都不为 0,若它的十位数字等于 百位数字与个位数字的和,则称这样的三位数 P 为“和平数” ①直接判断 123 是不是“友好数”? ②直接写出共有______个“和平数” ③通过列方程的方法求出既是“和平数”又是“友好数”的数.

湖北省七年级上学期数学期中考试试卷

湖北省七年级上学期数学期中考试试卷

湖北省七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题2分,共24分) (共12题;共24分)1. (2分)数a、b在数轴上的位置如图所示,给出下列式子:①a+b,②a−b,③ab,④(b−a)2 ,其中结果为正的式子的个数有()A . 1个B . 2个C . 3个D . 4个2. (2分) (2020七上·西湖月考) 已知和是同类项,则的值是().A . 5B . -5C . 1D . -13. (2分)(2017·深圳模拟) 据统计2017年5月深圳文博会期间,总参观人数达到了6 660 000人次,将6 660 000用科学记数法表示应为A . 666×104B . 6.66×105C . 6.66×106D . 6.66×1074. (2分) (2016八上·南宁期中) 在① ② ;③;④ 中正确的个数是()A . 1个B . 2个C . 3个D . 4个5. (2分)当a2=b2时,下列等式中成立的是()A . a=bB .C . a3=b3D .6. (2分) (2019八下·襄城月考) 梯形ABCD中,AD// BC ,AB=3,BC=4,CD=2, AD=1,则梯形的面积为()A .B .C .D .7. (2分)(2020·雅安) 在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表:投中次数578910人数23311则这10人投中次数的平均数和中位数分别是()A .B .C .D .8. (2分) (2021八上·云阳期末) 按如图所示的运算程序,当输入,时,输出的结果为()A . 1B . 2C . 3D . 99. (2分) (2019七上·肥东期中) 由四舍五入法得到的近似数是精确到()A . 百分位B . 百位C . 十位D . 个位10. (2分)已知|x+1|+(x﹣y+3)2=0,那么(x+y)2的值是()A . 0B . 1C . 4D . 911. (2分) (2020七下·温州期中) 如图1,把一个长为2m,宽为2n(m>n)的长方形两次对折后展开,再用剪刀沿图中折痕剪开,把它分成四块完全相同的小长方形,最后按图2那样拼成一个正方形,则中间空白部分的面积是()A . 2mB . (m+n)²C . (m-n)2D . m²-n²12. (2分) (2019七下·大名期中) 下列关系式中,正确是()A .B .C .D .二、填空题(每题4分,共24分) (共6题;共24分)13. (4分) (2019七上·川汇期中)(1)在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来.,,,,.(2)把看成一个整体,对式子进行化简.14. (4分)已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于________.15. (4分)下列各数:、、π、﹣、、0.101001…中是无理数的有________16. (4分) (2018七上·延边期末) 若整式xn﹣2﹣5x+2是关于x的三次三项式,那么n=________.17. (4分) (2019七上·平遥期中) 阅读下列材料并完成任务:点在数轴上分别表示有理数;两点之间的距离表示为.当两点中有一点在原点时,不妨设点在原点,如图1所示,;当两点都不在原点时,分三种情况,情况一:如图2所示,点都在原点的右侧,;情况二:如图3所示,点都在原点左侧,;情况三:如图4所示,点在原点的两边,;综上所述,若点在数轴上分别表示有理数,则数轴上两点之间的距离为.(1)任务一:数轴上表示2和5的两点之间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示3和-1的两点之间的距离是________.(2)任务二:点在数轴上分别表示有理数,那么到的距离与到的距离之和可表示为________(用含绝对值的式子表示).如果,那么为________.(3)任务三:当取最小值时, =________, =________.18. (4分) (2020七上·无锡期中) 观察下列顺序排列的等式:9×0+1 = 1,9×1+2 = 11,9×2+3=21,9×3+4=31,9×4+5=41,……,猜想:第n个等式(n为正整数)用n表示,可表示成________.三、解答题(第19题12分,第20~23题各6分,第24~2 (共7题;共52分)19. (12分) (2020七上·吴兴期中) 计算(1) -(2)20. (6分) (2018七上·南昌期中) 化简:(1) 2(x2y﹣3x)﹣3(x2y﹣2x﹣1)(2) 4x2﹣[7x2﹣3(x2﹣x)]21. (6分)将下列各数用“<”连接起来:﹣32 , |﹣3|,﹣(+3),0,π.22. (6分) (2020八上·辽阳期中) 若,求的平方根23. (6分) (2020八下·兴县期中) 为了打赢湖北保卫战、武汉保卫战,4万多名医护人员逆行出征,约4万名建设者从八方赶来,并肩奋战,抢建火神山和雷神山医院.他们日夜鏖战,与病毒竞速,创造了10天左右时间建成两座传染病医院的“中国速度”!他们不畏风险,同困难斗争,充分展现团结起来打硬仗的“中国力量”,在建设过程中,有一位木工遇到了这样一道数学题:有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为和的正方形木板.(1)求剩余木料的面积?(2)如果木工想从剩余的木料中截出长为,宽为的长方形木条,最多能截出________块这样的木条.24. (8.0分) (2018七上·无锡期中) “囧”像一个人脸郁闷的神情.如图,边长为a的正方形纸片,剪去两个一样的小直角三角形(阴影部分)和一个长方形(阴影部分)得到一个“囧”字图案,设剪去的两个小直角三角形的两直角边长分别为x、y,剪去的小长方形长和宽也分别为x,y.(1)用含a、x、y的式子表示“囧”的面积;(2)当a=12,x=7,y=4时,求该图形面积的值.25. (8分) (2019七上·柘城月考) 已知有理数在数轴上的位置如图所示,所对应的点分别为.(1)填空:之间的距离为________;之间的距离为________;之间的距离为________;(2)化简: .四、附加题(第26,27题各5分,共10分) (共2题;共10分)26. (5分) (2017八上·钦州期末) 若|m﹣4|与n2﹣8n+16互为相反数,把多项式a2+4b2﹣mab﹣n因式分解.27. (5分) (2018七上·长春期末) 在直角三角形ABC中,若AB=16cm,AC=12cm,BC=20cm.点P从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,如果点P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,请用含t的代数式表示,①当点Q在AC上时,CQ=________;②当点Q在AB上时,AQ=________;③当点P在AB上时,BP=________;④当点P在BC上时,BP=________.(2)如图2,若点P在线段AB上运动,点Q在线段CA上运动,当QA=AP时,试求出t的值.(3)如图3,当P点到达C点时,P、Q两点都停止运动,当AQ=BP时,试求出t的值.参考答案一、选择题(每小题2分,共24分) (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题(每题4分,共24分) (共6题;共24分)答案:13-1、答案:13-2、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、答案:17-2、答案:17-3、考点:解析:答案:18-1、考点:解析:三、解答题(第19题12分,第20~23题各6分,第24~2 (共7题;共52分)答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:四、附加题(第26,27题各5分,共10分) (共2题;共10分)答案:26-1、考点:解析:答案:27-1、答案:27-2、答案:27-3、考点:解析:。

武昌七校联考2017-2018学年度上学期期中考试七年级数学参考答案及评分标准

武昌七校联考2017-2018学年度上学期期中考试七年级数学参考答案及评分标准

2017-2018学年度第一学期部分学校七年级期中联合测试数学参考答案二、填空题 (每小题3分,共18分)11. 0 ;0和正数(或非负数) 12. 63=x (开放性试题,符合要求的答案都对) 13. 12或0 14. -43 15. 2014,2017 16. 0三、计算题(17题每题4分,18题每题4分,共20分) 17、(1) 4-(-5)+(-6)=4+5-6 ………………………… 2′ =-3 ………………………… 4′(2) (413-312)×(-2)-223÷12=65×(-2)-38×2 ………………… 2′=-35-316=-7 ………………………… 4′(3)()[]232315.011--⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⨯--=)(926111-⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-- ………… 2′ =-761⨯ =-67……………………………………………………… 4′18、 (1) x 2+9=x 5+2移项,得 9252-=-x x …………………… 2′ 合并同类项 73-=-x 系数化为1,得 37=x ……………………………… 4′(2)y y y 5.8655.216-=--移项,得 565.85.216+=+-y y y …………………… 2′ 合并同类项 1122=y系数化为1,得 5.0=y ……………………………… 4′四、解答题(19题6分,20题、21题每题8分,22题、23题每题10分,24题12分,共52分)19、原式=222399884y x xy y x xy x xy y -+---+=--.…………………………………………………………… 4′当x=3,y=13时 ,原式= 211423349163333-⨯-⨯=--=…………………………………………………… 6′ 20、解:﹙1﹚12+﹙-5﹚+2+4+(-9)+14+(-2)+12+8+5 =41(千米)∴ 收工时距A地41千米的地方。

2017-2018年七年级上册数学期中试卷及答案

2017-2018年七年级上册数学期中试卷及答案

2017~2018学年第一学期考试七年级数学试卷一、选择题(每小题3分,共30分)1在代数式222515,1,32,,,1x x x x x x π+--+++中,整式有( ) A 、3个 B 、4个 C 、5个 D 、6个2、我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为( )A 、5.4 ×102人B 、0.54×104 人C 、5.4 ×106人D 、5.4×107人 3、一潜水艇所在的海拔高度是-60米,一条海豚在潜水艇上方20米,则海豚所在的高度是海拔( )A 、-60米B 、-80米C 、-40米D 、40米 4、原产量n 吨,增产30%之后的产量应为( )A 、(1-30%)n 吨B 、(1+30%)n 吨C 、(n+30%)吨D 、30%n 吨 5、下列说法正确的是( )①0是绝对值最小的有理数 ②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小 A 、①② B 、①③ C 、①②③ D 、①②③④ 6、如果10<<a ,那么aa a 1,,2之间的大小关系是A 、a a a 12<<B 、 a a a 12<<C 、 21a a a <<D 、 a a a<<21 7、下列说法正确的是( ) A 、0.5ab 是二次单项式B 、1x 和2x 是同类项C 、259abc -的系数是5- D 、()23a b+是一次单项式8、已知:A 和B 都在同一条数轴上,点A 表示2-,又知点B 和点A 相距5个单位长度,则点B 表示的数一定是( )A 、 3B 、-7C 、 7或-3D 、-7或39、一个多项式与x 2-2x +1的和是3x -2,则这个多项式为( ) A 、x 2-5x +3 B 、-x 2+x -1 C 、-x 2+5x -3 D 、x 2-5x -1310、观察下列算式:31=3,32=9, 33=27,34=81,35=243,36=729,…,通过观察,用你所发现的规律确定32016的个位数字是( )A 、3B 、9C 、7D 、1 二、填空题(每题3分,共15分)11、单项式225xy π-的系数是____________。

2017-2018学年人教七年级(上)期中数学试卷含答案解析(Word版)

2017-2018学年人教七年级(上)期中数学试卷含答案解析(Word版)

2017-2018学年期中质量检测 七年级数学试题 详细解析完成时间:120分钟 满分:150分姓名 成绩一、选择题(本大题10小题,每小题4分,共40分。

每小题给1、有理数2-的倒数是( ) A. -2 B. 2 C. 21 D. 21- 【答案】A【解析】根据倒数的意义乘积为1的两个数互为倒数,用1除以21-可得.有理数21-的倒数是: 1÷(21-)=-2.故选A 2、计算:-2+5的结果是( )A. -7B. -3C. 3D. 7 【答案】C【解析】根据有理数的加法运算法则进行计算即可求解. -2+5=5-2=3. 故选C . 3、2016年9月15日22时04分12秒,“天宫二号空间实验室”在酒泉卫星发射中心发射成功,它的飞行高度距离地球350千米,350千米用科学记数法表示应为( ) A. 3.5×102 B. 3.5×105 C. 0.35×104 D. 350×103 【答案】B【解析】将350千米化为350000米,用科学记数法表示为:3.5×105,所以选项B 是正确的。

4、下列各组数中,结果相等的是( )A. -22与(-2)2B. 323与(32)3 C. -(-2)与-|-2| D. -12017与(-1)2017【答案】D【解析】A 、-22=-4,(-2)2=4,所以选项结果不相等,B 、323=38,(32)3=278 ,所以选项结果不相等,C 、-(-2)=2,-|-2|=-2,所以选项结果不相等,D 、-12017=-1与(-1)2017=-1,所以选项结果相等,故选D .5、下列各数中:722,-|-2|,0,π ,-(34-) ,∙∙23.0,正有理数个数有( )个.A. 2B. 3C. 4D. 5 【答案】B【解析】根据正数和有理数的定义即可解答.正有理数包括正整数、正分数,所以,722,-|-2|,0,π ,-(34-) ,∙∙23.0中,正有理数有:722,-(34-) ,∙∙23.0共3个.因此,本题正确答案为B. 6、下列计算正确的是( )A. 2a +3b=5abB. -2(a -b) =-2a +bC. -3a +2a=-aD. a 3-a 2=a 【答案】C【解析】A 、 2a 与3b 不是同类项,不能合并。

东湖高新区2018-2019学年上学期期中考试七年级数学试题

东湖高新区2018-2019学年上学期期中考试七年级数学试题

东湖高新区2018~2019学年度第一学期期中考试七年级数学试卷一、选择题(共10小题,每小题3分,共30分) 1.温度由-4℃上升7℃是( ) A .3℃B .3℃C .11℃D .-11℃ 2.若规定向东走为正,即向东走8 m 记为+8 m ,那么-6米表示( ) A .向东走6米B .向南走6米C .向西走6米D .向北走6米 3.某年,一些国家的服务出口额比上年的增长率如下:美国 德国 英国 中国 -3.4%-0.9% -5.3% 2.8%上述四国中哪国增长率最低( )A .美国B .德国C .英国D .中国4.中国是世界第二大经济体,世界第一贸易大国,中国的国土面积约为9600000 km 2,这里9600000用科学记数法表示为( ) A .9.6×105B .9.6×106C .9.6×107D .0.96×1075.下列说法错误的是( ) A .y x 223-的系数是23- B .数字0也是单项式 C .xy π32的系数是32D .a 2h 的次数是36.x =5是下列哪个方程的解( ) A .x +5=0B .3x -2=12+xC .651=-x xD .1700+150x =24507.已知8.622=73.96,若x 2=0.7396,则x 的值为( ) A .86.2B .0.862C .±0.862D .±86.28.甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支.设买了甲种铅笔x 支,则下列方程错误的是( ) A .0.3x +0.6(20-x )=9B .x x-=-206.03.09 C .0.3×20+(0.6-0.3)(20-x )=9D .x x =--6.0)20(6.099.若a +b +c =0,则abcabc c c b b a a ||||||||+++可能的值个数是( ) A .1B .2C .3D .410.如果0<a +b <1,且|a |=-a ,下列说法中,正确的个数是( ) ①11>+ba ;② 如果ax =ay ,那么x =y ;③ a 2<b 2;④ (b -a )2>1 A .1个B .2个C .3个D .4个二、填空题(本大题共6个小题,每小题3分,共18分) 11.72-的相反数是_________,绝对值是_________,倒数是_________ 12.若(m -2)x |m |-1=5是一元一次方程,则m 的值为___________ 13.若单项式3a 2b x 与-4a y b 3是同类项,则x +y =___________ 14.若x +2y =3,则代数式3(x +2y )2-2x -4y +3的值是___________15.点A 、B 在数轴上分别表示6.5、x ,点B 在点A 的左边,且点A 、B 之间有9个整数,则x 的取值范围为___________16.定义:a 是不为1的有理数,我们把a-11称为a 的差倒数,如:2的差倒数是1211-=-,-1的差倒数是21)1(11=--.已知a 1=31-,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,……,依次类推,则a 2018=___________ 三、解答题(共8题,共72分) 17.(本题8分)计算:(1) 30)151109(⨯- (2) (-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2)18.(本题8分)解方程:(1) 3x +1=4(2) 4531=--x19.(本题8分)先化简,再求值: A =3a 2b -ab 2,B =ab 2+3a 2b ,其中3121==b a ,,求5A -B 的值20.(本题8分)10袋小麦称后记录如下表(单位:kg),要求每袋小麦的重量控制在(90±1.5)kg,即每袋小麦的重量不高于91.5 kg,不低于88.5 kg(1) 这10袋小麦种,不符合要求的有袋(2) 将符合要求的小麦以90 kg为标准,超出部分记为正,不足的记为负数(3) 求符合要求的小麦一共多少千克?21.(本题8分)已知数a、b、c在数轴上的位置如图所示(1) 化简:|a+b|-|a-b|+|a+c|(2) 若|b-a-2|+(a-1)2=0,|c+1|=b,求a、b、c的值22.(本题10分)已知一块A型纸板可以制成1个C型正方形纸板和2个D型长方形纸板,一块B型纸板可以制成2个C型正方形纸板和1个D型长方形纸板,现有A、B两种纸板共20块,设A型纸板有x块(x为正整数)(1) 求总共可以制成多少个C型正方形纸板(用含有x的式子表示)(2) 出售一个C型正方形纸板可以获利10元,出售1个D型长方形纸板可以获利12元.若将所制成的C型、D型纸板全部售出可以获利650元,求x的值23.(本题10分)(1) 请用两种不同的方法列代数式表示图1的面积(2) 若a+b=7,ab=15,根据(1)的结论求a2+b2的值(3) 如图2,将边长为x和x+2的长方形,分成边长为x的正方形和两个宽为1的小正方形,并将这三个图形拼成图3,这时只需要补一个边长为1的正方形便可以构成一个大正方形①若一个长方形的面积是216,且长比宽大6,求这个长方形的宽②把一个长为m、宽为n的长方形(m>n)按上述操作,拼成一个在一角去掉一个小正方形的大正方形,则去掉的小正方形的边长为____________24.(本题12分)数轴上m、n、q所对应的点分别为点M、N、Q,若点Q到点M的距离表示为QM,点N到点Q的距离表示为NQ,有QM=q-m,NQ=n-q(1) 点A、B、C在数轴上分别对应的数为-4、6、c,且BC=CA,直接写出c的值(2) 在(1)的条件下,两只电子蚂蚁甲乙分别从AC两点出发向右运动,甲的速度为4个单位每秒,乙的速度为1个单位每秒,求经过几秒,点B与两只蚂蚁的距离和等于7(3) 在(1)(2)的条件下,电子蚂蚁乙运动到点B后立即以原速返回,到达自己的出发点后停止运动,电子蚂蚁甲运动至点B后也以原速返回,到达自己的额出发点后又折返向点B运动,当电子蚂蚁乙停止运动时,电子蚂蚁甲随之停止运动,求运动的时间为多少时,两只蚂蚁相遇。

湖北省武汉市东湖高新区度七上学期期中数学试卷(PDF)

湖北省武汉市东湖高新区度七上学期期中数学试卷(PDF)
要练说,先练胆。说话胆小是幼儿语言发展的障碍。不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。总之,说话时外部表现不自然。我抓住练胆这个关键,面向全体,偏向差生。一是和幼儿建立和谐的语言交流关系。每当和幼儿讲话时,我总是笑脸相迎,声音亲切,谈。二是注重培养幼儿敢于当众说话的习惯。或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会用眼神。对说得好的幼儿,即使是某一方面,我都抓住教育,提出表扬,并要其他幼儿模仿。长期坚持,不断训练,幼儿说话胆量也在不断提高。

【精品】2017-2018学年湖北省武汉市东湖高新区七年级(上)期末数学试卷

【精品】2017-2018学年湖北省武汉市东湖高新区七年级(上)期末数学试卷

( 3)当∠ ACE< 180°且点 E 在直线 AC 的上方时,这两块三角尺是否存在一组边互相
平行?若存在,请直接写出∠ ACE 角度所有可能的值(不必说明理由) ,若不存在,请说
明理由.
第 4 页(共 20 页)
24.( 12 分)已知∠ AOB = 150°, OC 为∠ AOB 内部的一条射线,∠ BOC= 60°. ( 1)如图 1,若 OE 平分∠ AOB, OD 为∠ BOC 内部的一条射线,∠ COD = ∠ BOD ,

第 1 页(共 20 页)
A .1 对
B.2 对
C. 3 对
D.4 对
8.( 3 分)某淘宝店家为迎接“双十一”抢购活动,在甲批发市场以每件
a 元的价格进了 40
件童装,又在乙批发市场以每件 b 元( a> b)的价格进了同样的 60 件童装.如果店家以
每件
元的价格卖出这款童装,卖完后,这家商店(
同字母的指数是否相同.
3.( 3 分)由冯小刚执导,严歌苓编剧的电影《芳华》于
2017 年 12 月 15 日在全国及北美
地区上映,电影首周票房便超过 29400000 元,数 29400000 用科学记数法表为(

9
A .0.294× 10
7
B .2.94× 10
7
C. 29.4×10
6
D. 294× 10
∴∠ DOM =∠ AOC,共有 2 对.
故选: B. 【点评】 本题考查了余角的性质:同角的余角相等,正确理解性质是关键.
8.( 3 分)某淘宝店家为迎接“双十一”抢购活动,在甲批发市场以每件
a 元的价格进了 40
件童装,又在乙批发市场以每件 b 元( a> b)的价格进了同样的 60 件童装.如果店家以
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.(10 分)有一张边长为 a 厘米的大的正方形纸片,在它的四个角上各减去一 个边长为 x 厘米的小正方形,折成一个无盖的长方体(如图). (1)当 a=9 厘米时,请用含 x 的式子表示这个无盖长方体的体积. (2)在(1)的条件下,当 x=3 厘米时求无盖长方体的体积; (3)当 a=12 厘米时,要将这张正方形纸片折成一个无盖的正方体,求此时正方 体的体积.
(2)(﹣2)3÷ ×(﹣ )2+(1﹣32)
18.(8 分)化简: (1)7ab﹣3a2b2+7+8ab2+3a2b2﹣3﹣7ab; (2)(4x2y﹣5xy2)﹣2(3x2y﹣4xy2) 19.(8 分)有 8 筐白菜,以每筐 25 千克为标准,超过的千克数记作正数,不足 的千克数记作负数,称后的纪录如下:
两种奖品共 20 件,其中甲种奖品每件 40 元,乙种奖品每件 30 元,如果购买甲、
乙两种奖品共花费了 650 元,设购买了甲种奖品 x 件,依题意列方程得

14.(3 分)如果方程 ax|a﹣1|+3=4 是关于 x 的一元一次方程,则 a 的值为

15.(3 分)如果 a>0,b<0,a+b<0,那么 a,b,﹣b,﹣a 大小关系是
回答下列问题:(1)这Fra bibliotek8 筐白菜中最接近标准重量的这筐白菜重
千克;
(2)这 8 筐白菜一共重多少千克?
20.(8 分)先化简,再求值:
求 x﹣2[x﹣(2x+ y2)]+(﹣ x+ y2),其中(2x+4)2+|4﹣6y|=0.
21.(8 分)数轴上 A、B、C 三点对应的数分别是 a、b、c,若 ab<0,c 为最大 的负整数,c>a 且|b|>|a|. (1)请在数轴上标出 A,B,C 三点的大致位置; (2)化简|a﹣b|+|b﹣a+c|﹣|b﹣c|.
2017-2018 学年湖北省武汉市东湖高新区七年级(上)期中数学 试卷
一、选择题(共 10 小题,每小题 3 分,共 30 分) 1.(3 分)如果水位升高 5m 时水位记作+5m,水位不升不降时水位记作 0m,那 么水位下降 3m 时水位变化记作( ) A.+3m B.﹣3m C.±3m D.﹣ m 2.(3 分)把(+5)﹣(+3)+(﹣2)﹣(﹣7)写成省略括号的形式是( ) A.﹣5+3+7﹣2 B.5﹣3﹣2﹣7 C.5﹣3﹣2+7 D.5+3﹣2﹣7 3.(3 分)超市里一袋食盐的净含量是(500±5)g,表示这袋食盐的重量范围 在 495g~505g 之间,如果某种药品的保存温度为(20±2)℃,那么下列温度符 合保存要求的是( ) A.+2℃ B.﹣2℃ C.21℃ D.17℃ 4.(3 分)下列各组单项式中,是同类项的是( ) A. xyz 与 xy B. 与 2x C.﹣0.5x2y3 与 3x3y2 D.6m2n 与﹣2nm2 5.(3 分)十九大报告指出:十八大以来的五年,我国国内生产总值从 2012 年 的 540000 亿元增长到 2016 年的 800000 亿元,这里的 800000 亿元用科学记数 法表示为( ) A.8×105 元 B.0.8×1014 元 C.8×1013 元 D.80×1012 元 6.(3 分)下列说法中,正确的是( ) A. 的单项式 B.﹣5 不是单项式 C.﹣πx2 的系数为﹣1 D.﹣πx2 的次数为 2 7.(3 分)下列各组等式中,正确的是( ) A.﹣22=(﹣2)2 B.﹣23=(﹣2)3 C.22=﹣(﹣2)2 D.( )2=
=
10.(3 分)下列说法中,正确的个数是( ) ①两个三次多项式的和一定是三次多项式; ②如果 a+b+c=0 且|a|>|b|>|c|,那么 ac<0; ③若 b 是大于﹣1 的负数,则 b3>b2>b; ④如果 xyz>0,那么 + + + + + +
A.1 个 B.2 个 C.3 个 D.4 个
的值为 7 或﹣1.
二、填空题(共 6 小题,每小题 3 分,共 18 分)
11.(3 分)﹣2 的相反数是
,绝对值是
,倒数是

12.(3 分)买一个篮球需要 x 元,买一个排球需要 y 元,买一个足球需要 z 元,
买 3 个篮球、5 个排球、2 个足球一共需要
元.
13.(3 分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙
般地,点 A、B 在数轴上分别表示数 a、b,那么 A、B 之间的距离可表示为 AB=|a
﹣b|.
请根据绝对值的几何意义并结合数轴解答下列问题:
(1)数轴上表示 2 和 4 的两点之间的距离是
;数轴上 P、Q 两点的距离
为 3,点 P 表示的数是 4,则点 Q 表示的数是

(2)点 A、B、C 在数轴上分别表示数 x、﹣1、2,那么 A 到点 B、点 C 的距离

16.(3 分)观察下列等式: =1﹣ , = ﹣ , = ﹣ ,以上三
个等式两边分别相加得: + + =1﹣ + ﹣ + ﹣ =1﹣ = ,通
过观察,用你发现的规律计算 + + +…+
第 2 页(共 23 页)
=

三、解答题(共 8 小题,共 72 分) 17.(8 分)(1)( + ﹣ )×12
之和可表示为
(用含绝对值的式子表示);若 A 到点 B、点 C 的距离之和
有最小值,则 x 的取值范围是
第 3 页(共 23 页)
23.(10 分)通过学习绝对值,我们知道|a|的几何意义是数轴上表示数 a 在数
轴上的对应点与原点的距离,如:|5|表示 5 在数轴上的对应点到原点的距
离.|5|=|5﹣0|,即|5﹣0|表示 5、0 在数轴上对应的两点之间的距离,类似的,
|5+3|=|5﹣(﹣3)|,即|5+3|表示 5、﹣3 在数轴上对应的两点之间的距离;一
第 1 页(共 23 页)
8.(3 分)若 是关于 x 的方程 5x﹣m=0 的解,则 m 的值为( ) A.3 B. C.﹣3 D. 9.(3 分)下列各组等式变形中,不一定成立的是( ) A.如果 x=y,那么 = B.如果 x=y,那么 a+bx=a+by C.如果 = ,那么 x=y
D.如果 x=y,那么
相关文档
最新文档