【精品】高中数学 3.2.2随机数的产生优秀学生寒假必做作业练习二 新人教A版必修3
人教A版高中数学必修三 第三章3.2.2 (整数值)随机数的产生 同步训练(II)卷
![人教A版高中数学必修三 第三章3.2.2 (整数值)随机数的产生 同步训练(II)卷](https://img.taocdn.com/s3/m/02e2cba4bb4cf7ec4bfed037.png)
人教A版高中数学必修三第三章3.2.2 (整数值)随机数的产生同步训练(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共7题;共14分)1. (2分)利用计算机在区间(0,1)上产生两个随机数a和b,则方程有实根的概率为()A .B .C .D . 12. (2分) (2018高一下·临沂期末) 已知某射击运动员,每次击中目标的概率都是 .现采用随机模拟的方法估计该运动员射击次至少击中次的概率:先由计算器算出到之间取整数值的随机数,指定,表示没有击中目标,,,,,,,,表示击中目标;因为射击次,故以每个随机数为一组,代表射击次的结果.经随机模拟产生了如下组随机数:据此估计,该射击运动员射击次至少击中次的概率为()A .B .C .D .3. (2分) (2018高二上·南宁期中) 从中任取个不同的数,则取出的个数之和为的概率是()A .B .C .D .4. (2分)现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0、1表示没有击中目标,2、3、4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4,次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 46980371 6233 2616 8045 6011 3661 9597 7424 7610 4281 根据以上数据估计该射击运动员射击4次至少击中3次的概率为()A . 0.85B . 0.8C . 0.75D . 0.75. (2分)射击比赛中,每人射击3次,至少击中2次才合格,已知某选手每次射击击中的概率为0.4,且各次射击是否击中相互独立,则该选手合格的概率为()A . 0.064B . 0.352C . .0544D . 0.166. (2分)若书架中放有中文书5本,英文书3本,日文书2本,则抽出一本书为外文书的概率为()A .B .C .D .7. (2分)一个三位数字的密码键,每位上的数字都在0到9这十个数字中任选,某人忘记后一个号码,那么此人开锁时,在对好前两位数码后,随意拨动最后一个数字恰好能开锁的概率为()A .B .C .D .二、填空题 (共4题;共4分)8. (1分)一个袋子中有红球5个,黑球4个,现从中任取5个球,则至少有1个红球的概率为________.9. (1分)(2020·新沂模拟) 在一个袋子中装有分别标注数字1,2,3,4,5的5个小球,这些小球除标注数字外完全相同,现从中随机取2个小球,则取出的小球标注的数字之和为3或6的概率是________.10. (1分) (2018高三上·凌源期末) 现在有2名喜爱综艺类节目的男生和3名不喜爱综艺类节目的男生,在5人中随机抽取2人进行深入调研,则这2人中恰有1人喜爱综艺类节目的概率为________.11. (1分)有一个正12面体,12个面上分别写有1~12这12个整数,投掷这个12面体一次,则向上一面的数字是2的倍数或3的倍数的概率为________.三、解答题 (共3题;共20分)12. (5分) (2018高二上·黑龙江期中) 某校书法兴趣组有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:一年级二年级三年级男同学A B C女同学X Y Z现从这6名同学中随机选出2人参加书法比赛每人被选到的可能性相同.用表中字母列举出所有可能的结果;设M为事件“选出的2人来自不同年级且性别相同”,求事件M发生的概率.13. (5分)一个学生在一次竞赛中要回答道题是这样产生的:从道物理题中随机抽取道;从道化学题中随机抽取道;从道生物题中随机抽取道.使用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为,化学题的编号为,生物题的编号为 .14. (10分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球和1个白球的甲箱与装有2个红球和2个白球的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖,求(1)用球的标号列出所有可能的摸出结果;(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由。
人教a版高中数学高一必修三3.2.2《(整数值)随机数(random_numbers)的产生》word版含解析
![人教a版高中数学高一必修三3.2.2《(整数值)随机数(random_numbers)的产生》word版含解析](https://img.taocdn.com/s3/m/ce047e1c87c24028915fc3ad.png)
课时训练19(整数值)随机数(random numbers)的产生一、用随机模拟法估计概率1.假定某运动员每次投掷飞镖正中靶心的概率为40%.现采用随机模拟的方法估计该运动员两次投掷飞镖恰有一次命中靶心的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中靶心,5,6,7,8,9,0表示未命中靶心;再以每两个随机数为一组,代表两次的结果.经随机模拟产生了20组随机数: 9328124585696834312573930275564887301135据此估计,该运动员两次投掷飞镖恰有一次正中靶心的概率为()A.0.50B.0.45C.0.40D.0.35答案:A解析:在这20组随机数.2.植树节期间,算5解:69801297473744561017949763.从1,2,3,4个.答案:1216解析:4.有六张纸牌,再取一张牌,(1)求甲胜且点数的和为6的事件发生的概率;(2)这种游戏规则公平吗?说明理由.解:(1)设“甲胜且点数的和为6”为事件A,甲的点数为x,乙的点数为y,则(x,y)表示一个基本事件,两人取牌的结果包括36个基本事件;A包含的基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),共5个,所以P(A)=.因此,编号之和为6且甲胜的概率为.(2)这种游戏公平.设“甲胜”为事件B,“乙胜”为事件C.甲胜即两个点数的和为偶数所包含基本事件为以下18个:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6).所以甲胜的概率为P(B)=,乙胜的概率为P(C)=.因为P(B)=P(C),所以这种游戏规则是公平的.三、古典概型与统计的综合5.某工厂生产A,B两种元件,其质量按测试指标Φ划分为:Φ≥7.5为正品,Φ<7.5为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:由于表格被污损,数据x,y看不清,统计员只记得x<y,且A,B两种元件的检测数据的平均数相等,标准差也相等.(1)求表格中x与y的值;(2)若从被检测的5件B种元件中任取2件,求取出的2件都为正品的概率.解:(1)∵(7+7+7.5+9+9.5)=8,(6+x+8.5+8.5+y),∴由得x+y=17, ①又s=,s B=∴②(2)件:(B1,B2记“2(B2,∴P((建议用时:30分钟)1.5A.答案:D解析:2.A.答案:A解析:5种,故所求概率为,应选A.3.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是()A. B. C. D.答案:D解析:由题意可知从5个球中任取3个球的所有情况有10种,所取的3个球至少有1个白球的情况有(10-1)种,根据古典概型概率公式得所求概率为-.4.在一袋子中有四个小球,分别写有“吉、祥、如、意”四个字,从中任取一个小球,取到“如”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有“吉、祥、如、意”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:1324123243142432312123133221244213322134据此估计,直到第二次就停止的概率为()A. B. C. D.答案:B解析:第二次摸到“如”停止,就是随机数中第二个数是3.在20组随机数中,第二个数字是3的共5组,所以直到第二次停止的概率为.5.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是()A. B. C. D.答案:D解析3个,所以6.6个班对答案解析,高1个班级为C(A1,2,C)共15个,7.2答案解析8.,0不平行答案解析的共有(1,2),(2,4),(3,6)3种情况,故P(平行)=.又不平行的对立事件为平行,则不平行的概率为1-.9.(2015四川高考,文17)一辆小客车上有5个座位,其座位号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5,他们按照座位号从小到大的顺序先后上车,乘客P1因身体原因没有坐自己的1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位;如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中任意选择座位.(1)若乘客P1坐到了3号座位,其他乘客按规则就坐,则此时共有4种坐法.下表给出了其中两种坐法.请填入余下两种坐法(将乘客就座的座位号填入表中空格处);(2)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P5坐到5号座位的概率.解:(1)余下两种坐法如下表所示:(2)若乘客P1坐到了2号座位,其他乘客按规则就坐,则所有可能的坐法可用下表表示为:于是,设“乘客P5答:乘客P5。
高二数学 人教A必修3同步练习:3.2.2 (整数值)随机数(random numbers)的产生 Word版含解析
![高二数学 人教A必修3同步练习:3.2.2 (整数值)随机数(random numbers)的产生 Word版含解析](https://img.taocdn.com/s3/m/837509111eb91a37f1115cb1.png)
课时训练19(整数值)随机数(random numbers)的产生一、用随机模拟法估计概率1.假定某运动员每次投掷飞镖正中靶心的概率为40%.现采用随机模拟的方法估计该运动员两次投掷飞镖恰有一次命中靶心的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中靶心,5,6,7,8,9,0表示未命中靶心;再以每两个随机数为一组,代表两次的结果.经随机模拟产生了20组随机数:9328124585696834312573930275564887301135据此估计,该运动员两次投掷飞镖恰有一次正中靶心的概率为()A.0.50B.0.45C.0.40D.0.35答案:A解析:由题意知模拟两次投掷飞镖的结果,经随机模拟产生了20组随机数,在这20组随机数中表示两次投掷飞镖恰有一次命中的有:9328452573937548 35,共10组随机数.因此所求概率为1020=12,应选A.2.植树节期间,学校购进一批银杏树苗绿化校园.已知该树苗的成活率为0.9,高一(18)班栽种了5棵树苗,试计算5棵树苗中恰好能成活4棵的概率.解:利用计算器或计算机产生0到9之间取整数值的随机数,我们用0代表不成活,用1至9的数字代表成活,这样可以体现成活率是0.9.因为是种植5棵树苗,所以每5个随机数作为一组,可产生30组随机数.698016609777124229617423531516297472494557558652587413023224374454434433315271202178258555610174524144134922017036283005949765617334783166243034401117这就相当于做了30次试验,在这些数组中,如果恰有一个0,则表示恰有4棵树苗成活,共有9组这样的数,于是我们得到种植5棵这样的树苗恰有4棵成活的概率为9=30%.二、求有放回问题的概率3.从1,2,3,4四个数字中,任取两个组成数字不重复的两位数个;数字可以重复的两位数个.答案:1216解析:数字不重复的两位数有12,13,14,21,23,24,31,32,34,41,42,43,共12个.数字可以重复的两位数有11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44,共16个.4.有六张纸牌,上面分别写有1,2,3,4,5,6六个数字,甲、乙两人玩一种游戏:甲先取一张牌,记下点数,放回后乙再取一张牌,记下点数.如果两个点数的和为偶数就算甲胜,否则算乙胜. (1)求甲胜且点数的和为6的事件发生的概率; (2)这种游戏规则公平吗?说明理由.解:(1)设“甲胜且点数的和为6”为事件A ,甲的点数为x ,乙的点数为y ,则(x ,y )表示一个基本事件,两人取牌的结果包括36个基本事件;A 包含的基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),共5个,所以P (A )=5.因此,编号之和为6且甲胜的概率为5.(2)这种游戏公平.设“甲胜”为事件B ,“乙胜”为事件C.甲胜即两个点数的和为偶数所包含基本事件为以下18个:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6).所以甲胜的概率为P (B )=1836=12,乙胜的概率为P (C )=1836=12. 因为P (B )=P (C ),所以这种游戏规则是公平的.三、古典概型与统计的综合5.某工厂生产A ,B 两种元件,其质量按测试指标Φ划分为:Φ≥7.5为正品,Φ<7.5为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:由于表格被污损,数据x ,y 看不清,统计员只记得x<y ,且A ,B 两种元件的检测数据的平均数相等,标准差也相等.(1)求表格中x 与y 的值;(2)若从被检测的5件B 种元件中任取2件,求取出的2件都为正品的概率. 解:(1)∵x A =15(7+7+7.5+9+9.5)=8,x B =15(6+x+8.5+8.5+y ),∴由x A =x B 得x+y=17,①又s A =√1(1+1+0.25+1+2.25), s B =√15[4+(x -8)2+0.25+0.25+(y -8)2],∴由s A =s B 得(x-8)2+(y-8)2=1.②故由①②及x<y 解得x=8,y=9.(2)记被检测的5件B 种元件分别为B 1,B 2,B 3,B 4,B 5,其中B 2,B 3,B 4,B 5为正品, 从中任取2件,共有10个基本事件:(B 1,B 2),(B 1,B 3),(B 1,B 4),(B 1,B 5),(B 2,B 3),(B 2,B 4),(B 2,B 5),(B 3,B 4),(B 3,B 5),(B 4,B 5).记“2件都为正品”为事件C ,则事件C 包含6个基本事件: (B 2,B 3),(B 2,B 4),(B 2,B 5),(B 3,B 4),(B 3,B 5),(B 4,B 5),∴P (C )=610=35,即2件都为正品的概率为35.1.5人并排在一起照相,甲恰好坐在正中间的概率为( ) A.120 B.110C.25D.15答案:D解析:中间有5种不同的坐法,其中甲坐中间是一种坐法,所以甲坐中间的概率为15.2.从甲、乙、丙、丁四个同学中选两人作班长与副班长,其中甲、乙为男生,丙、丁是女生,则选举结果中至少有一名女生当选的概率是( ) A .56 B .16C .13D .23答案:A解析:可能的选举结果为:(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁),共6种,至少有一个是女生的有5种,故所求概率为56,应选A .3.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( ) A.110B.310C.35D.910答案:D解析:由题意可知从5个球中任取3个球的所有情况有10种,所取的3个球至少有1个白球的情况有(10-1)种,根据古典概型概率公式得所求概率为10-110=910. 4.在一袋子中有四个小球,分别写有“吉、祥、如、意”四个字,从中任取一个小球,取到“如”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有“吉、祥、如、意”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 21 23 13 32 21 24 42 13 32 21 34 据此估计,直到第二次就停止的概率为( ) A.15B.14C.13D.12答案:B解析:第二次摸到“如”停止,就是随机数中第二个数是3.在20组随机数中,第二个数字是3的共5组,所以直到第二次停止的概率为520=14.5.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是()A.45B.35C.25D.15答案:D解析:用(a,b)表示选取的结果,则所有可能的结果是(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共15个,其中b>a的有3个,所以b>a的概率为3=1.6.某中学高一有21个班、高二有14个班、高三有7个班,现采用分层抽样的方法从这些班中抽取6个班对学生进行视力检查,若从抽取的6个班中再随机抽取2个班做进一步的数据分析,则抽取的2个班均为高一的概率是.答案:15解析:高一、高二、高三班级数之比为21∶14∶7=3∶2∶1,根据分层抽样的性质可知所抽取的6个班中,高一、高二、高三班级个数分别为3,2,1,设高一3个班级分别为A1,A2,A3,高二2个班级为B1,B2,高三1个班级为C,随机抽取2个,基本事件为(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C),(A2,A3),(A2,B1),(A2,B2),(A2,C),(A3,B1),(A3,B2),(A3,C),(B1,B2),(B1,C),(B2,C)共15个,若抽取的2个班级均为高一,则包含(A1,A2),(A1,A3),(A2,A3)共3个基本事件,所以概率为15. 7.先后从分别标有数字1,2,3,4的4个大小、形状完全相同的球中,有放回地随机逐个抽取2个球,则抽到的2个球的标号之和不大于5的概率等于.答案:58解析:基本事件共有16个,其中抽到的2个球的标号之和不大于5的情况有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1),共10种,所以所求概率为1016=58.8.抛掷一枚骰子,当它每次落地时,向上一面的点数称为该次抛掷的点数,可随机出现1到6点中的任一个结果,连续抛掷两次,第一次抛掷的点数记为a,第二次抛掷的点数记为b,则直线ax+by=0与直线x+2y+1=0不平行的概率为.答案:1112解析:抛掷一枚骰子两次共出现36种不同的结果,若ax+by=0与x+2y+1=0平行,则需满足b=2a,即满足条件的共有(1,2),(2,4),(3,6)3种情况,故P(平行)=336=112.又不平行的对立事件为平行,则不平行的概率为1-112=1112.9.一辆小客车上有5个座位,其座位号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5,他们按照座位号从小到大的顺序先后上车,乘客P1因身体原因没有坐自己的1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位;如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中任意选择座位.(1)若乘客P1坐到了3号座位,其他乘客按规则就坐,则此时共有4种坐法.下表给出了其中两种坐法.请填入余下两种坐法(将乘客就座的座位号填入表中空格处);(2)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P5坐到5号座位的概率.解:(1)余下两种坐法如下表所示:(2)若乘客P1坐到了2号座位,其他乘客按规则就坐,则所有可能的坐法可用下表表示为:于是,所有可能的坐法共8种.设“乘客P5坐到5号座位”为事件A,则事件A中的基本事件的个数为4.所以P(A)=48=12.答:乘客P5坐到5号座位的概率是12.。
高中数学第三章概率3.2.2(整数值)随机数的产生练习(含解析)新人教A版必修3
![高中数学第三章概率3.2.2(整数值)随机数的产生练习(含解析)新人教A版必修3](https://img.taocdn.com/s3/m/3c8fb112b0717fd5370cdc20.png)
高中数学第三章概率3.2.2(整数值)随机数的产生练习(含解析)新人教A 版必修3知识点一 随机数产生的方法1.下列不能产生随机数的是( )A .抛掷骰子试验B .抛硬币C .利用计算器D .正方体的六个面上分别写有1,2,2,3,4,5,抛掷该正方体 答案 D解析 D 项中,出现2的概率为13,出现1,3,4,5的概率均是16,故不能产生随机数. 2.试用随机数把a ,b ,c ,d ,e 五位同学排成一排.解 用计算器的随机函数RANDI(1,5)或计算机的RANDBETWEEN(1,5)产生5个不同的1到5之间的取整数值的随机数,即依次为a ,b ,c ,d ,e 五位同学的座位号.知识点二 随机模拟法估计概率3.一份测试题包括6道选择题,每题只有一个选项是正确的.如果一个学生对每一道题都随机猜一个答案,用随机模拟方法估计该学生至少答对3道题的概率.解 我们通过设计模拟试验的方法来解决问题.利用计算机或计算器可以产生0到3之间取整数值的随机数.我们用0表示猜的选项正确,1,2,3表示猜的选项错误,这样可以体现猜对的概率是25%.因为共猜6道题,所以每6个随机数作为一组.例如,产生25组随机数:330130 302220 133020 022011 313121222330 231022 001003 213322 030032100211 022210 231330 321202 031210232111 210010 212020 230331 112000102330 200313 303321 012033 321230就相当于做了25次试验,在每组数中,如果恰有3个或3个以上的数是0,则表示至少答对3道题,它们分别是001003,030032,210010,112000,共有4组数,由此可得该同学6道选择题至少答对3道的概率近似为425=0.16.易错点 用随机模拟估计概率4.通过模拟试验产生了20组随机数:6830 3013 7055 7430 7740 4422 7884 2604 3346 0952 6807 9706 5774 5725 6576 5929 9768 6071 9138 6754如果恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标,问四次射击中恰有三次击中目标的概率约为________.易错分析 错误的根本原因是由于审题不清,或因击中目标数多查或漏查而出现错误,导致计算结果不正确.正解 0.25 因为表示三次击中目标分别是:3013,2604,5725,6576,6754,共5个数.随机数总共20个,所以所求的概率近似为520=0.25.一、选择题1.某校某高一学生在“体音美2+1+1项目”中学习游泳,他每次游泳测试达标的概率都为0.6.现采用随机模拟的方法估计该同学三次测试恰有两次达标的概率:先由计算器产生0到9之间的整数随机数,指定1,2,3,4表示未达标,5,6,7,8,9,0表示达标;再以每三个随机数为一组,代表三次测试的结果,经随机模拟产生了如下20组随机数:917 966 891 925 271 932 872 458 569 683 431 257 393 027 556 488 730 113 507 989据此估计,该同学三次测试恰有两次达标的概率为( )A .0.50B .0.40C .0.43D .0.48答案 A解析 显然基本事件的总数为20,再从这20组随机数中统计出符合条件的个数,进而可求出所求事件的频率,据此便可估计出所求事件的概率.在这20个数据中符合条件的有917,891,925,872,458,683,257,027,488,730,共10个,所以所求事件的概率为1020=0.50,故选A .2.甲、乙两人一起去故宫,他们约定,各自独立地从1号到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( )369366答案 D解析甲、乙最后一小时他们所在的景点共有6×6=36种情况,甲、乙最后一小时他们同在一个景点共有6种情况.由古典概型的概率公式知最后一小时他们同在一个景点的概率是P=636=16.3.袋中有2个黑球,3个白球,除颜色外小球完全相同,从中有放回地取出一球,连取三次,观察球的颜色.用计算机产生0到9的数字进行模拟试验,用0,1,2,3代表黑球,4,5,6,7,8,9代表白球,在下列随机数中表示结果为二白一黑的组数为( ) 160 288 905 467 589 239 079 146 351A.3 B.4 C.5 D.6答案 B解析二白一黑的组为288,905,079,146,共四组.4.池州九华山是著名的旅游胜地.天气预报8月1日后连续四天,每天下雨的概率为0.6.现用随机模拟的方法估计四天中恰有三天下雨的概率:在0~9十个整数值中,假定0,1,2,3,4,5表示当天下雨,6,7,8,9表示当天不下雨.在随机数表中从某位置按从左到右的顺序读取如下20组四位随机数:9533 9522 0018 7472 0018 3879 5869 32817890 2692 8280 8425 3990 8460 7980 24365987 3882 0753 8935据此估计四天中恰有三天下雨的概率为( )A.310 B.25C.720D.920答案 B解析在20组四位随机数中,0~5的整数恰出现3次的四位数有8组,故四天中恰有三天下雨的概率的估计值为820=25.5.袋子中有四个小球,分别写有“春、夏、秋、冬”四个字,从中任取一个小球,取到“秋”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有“春、夏、秋、冬”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 2123 13 32 21 24 42 13 32 21 34据此估计,直到第二次就停止的概率为( )5432答案 B解析 在20组随机模拟数中,表示第二次就停止的有13,43,23,13,13,共5组.故模拟概率为520=14. 二、填空题6.假定某运动员每次投掷飞镖正中靶心的概率为40%,现采用随机模拟的方法估计该运动员两次投掷飞镖恰有一次命中靶心的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中靶心,5,6,7,8,9,0表示未命中靶心;再以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:93 28 12 45 85 69 68 34 31 2573 93 02 75 56 48 87 30 11 35据此估计,该运动员两次掷镖恰有一次正中靶心的概率为________.答案 0.5解析 20组随机数中表示恰有一次中靶心的有93,28,45,25,73,93,02,48,30,35共10种,故所求概率P =1020=0.5. 7.一个小组有6位同学,选1位小组长,用随机模拟方法估计甲被选中的概率,给出下列步骤:①统计甲的编号出现的个数m ;②将6名同学编号1,2,3,4,5,6;③利用计算机或计算器产生1到6之间的整数随机数,统计个数为n ;④则甲被选中的概率近似为m n.其正确步骤顺序为________(写出序号).答案 ②③①④解析 正确步骤顺序为②③①④.8.在利用整数随机数进行随机模拟试验中,整数a 到整数b 之间的每个整数出现的可能性为________.答案 1b -a +1 解析 [a ,b ]中共有(b -a +1)个整数,每个整数出现的可能性相等,所以每个整数出现的可能性是1b -a +1. 三、解答题9.一个口袋中有大小相等的5个白球和3个黑球,从中有放回地取出一球,共取两次,试用随机模拟的方法求取出的球都是白球的概率.解 利用计算器或计算机产生1到8之间的取整数值的随机数,用1,2,3,4,5表示白球,6,7,8表示黑球,每两个一组,统计产生随机数的总组数N 及两个数字都小于6的组数N 1,则频率N 1N 即为两次取球都为白球的概率的近似值.10.某射击运动员每次击中目标的概率都是80%.若该运动员连续射击10次,用随机模拟方法估计其恰好有5次击中目标的概率.解 步骤:(1)用1,2,3,4,5,6,7,8表示击中目标,用9,0表示未击中目标,这样可以体现击中的概率为80%;(2)利用计算机或计算器产生0到9之间的整数随机数,每10个作为一组,统计组数n ;(3)统计这n 组数中恰有5个数在1,2,3,4,5,6,7,8中的组数m ;(4)则连续射击10次恰有5次击中目标的概率的近似值是m n.。
人教A版高中数学必修三第三章3.2.2(整数值)随机数的产生同步训练A卷
![人教A版高中数学必修三第三章3.2.2(整数值)随机数的产生同步训练A卷](https://img.taocdn.com/s3/m/14df5b93b4daa58da1114abd.png)
人教A版高中数学必修三第三章3.2.2 (整数值)随机数的产生同步训练A卷姓名:________ 班级:________ 成绩:________一、单选题 (共7题;共14分)1. (2分)在Excel中产生[0,1]区间上均匀随机数的函数为“rand()”,在用计算机模拟估计函数y=sinx的图象、直线x=和x轴在区间[0,]上部分围成的图形面积时,随机点(a1 , b1)与该区域内的点(a,b)的坐标变换公式为()A . a=a1+, b=b1B . a=2(a1﹣0.5),b=2(b1﹣0.5)C . a[0,1],b∈[0,1]D . a=,b=b12. (2分)已知a∈{﹣2,0,1,3},b∈{1,2},则曲线ax2+by2=1为椭圆的概率是()A .B .C .D .3. (2分) (2018·鞍山模拟) 从3名男生,2名女生中选3人参加某活动,则男生甲和女生乙不同时参加该活动,且既有男生又有女生参加活动的概率为()A .B .C .D .4. (2分)如图,三行三列的方阵中有九个数(i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是()A .B .C .D .5. (2分)一个三位数字的密码键,每位上的数字都在0到9这十个数字中任选,某人忘记后一个号码,那么此人开锁时,在对好前两位数码后,随意拨动最后一个数字恰好能开锁的概率为()A .B .C .D .6. (2分)(2019·全国Ⅱ卷文) 生物实验室有5只兔子,其中只有3只测量过某项指标。
若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A .B .C .D .7. (2分) (2017高二下·桂林期末) 已知小王定点投篮命中的概率是,若他连续投篮3次,则恰有1次投中的概率是()A .B .C .D .二、填空题 (共4题;共4分)8. (1分)一鱼缸盛有a升水,内有b条鱼苗,用一个水杯从鱼缸中取出c(c<a)升水,用随机模拟的方法判断这杯水中大约含有________条鱼苗.9. (1分) (2018高一下·唐山期末) 鞋柜内散放着两双不同的鞋,随手取出两只,恰是同一双的概率是________.10. (1分) (2018高二上·黑龙江期中) 从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为单位::492 496 494 495 498 497 501 502 504 496497 503 506 508 507 492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在之间的概率约为________.11. (1分) (2018高一下·苏州期末) 袋中装有5个大小相同的球,其中3个黑球,2个白球,从中一次摸出2个球,则摸出1个黑球和1个白球的概率等于________.三、解答题 (共3题;共20分)12. (5分) (2017高一下·河北期末) 已知一个科研小组有4位男组员和2位女组员,其中一位男组员和一位女组员不会英语,其他组员都会英语,现在要用抽签的方法从中选出两名组员组成一个科研攻关小组.(Ⅰ)求组成攻关小组的成员是同性的概率;(Ⅱ)求组成攻关小组的成员中有会英语的概率;(Ⅲ)求组成攻关小组的成员中有会英语并且是异性的概率.13. (5分)出一份道题的数学试卷,试卷内的道题是这样产生的:从含有道选择题的题库中随机抽道;从道填空题的题库中随机抽道;从道解答题的题库中随机抽道.使用合适的方法确定这套试卷的序号(选择题编号为,填空题编号为,解答题编号为 ).14. (10分)某公司为了了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频率分布表.A地区用户满意度评分的频率分布直方图B地区用户满意度评分的频率分布表满意度评分分组[50,60)[50,60)[50,60)[50,60)[50,60)频数2814106(1)(I)在答题卡上作出B地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)B地区用户满意度评分的频率分布直方图(2)(II)根据用户满意度评分,将用户的满意度评分分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计那个地区的用户的满意度等级为不满意的概率大,说明理由.参考答案一、单选题 (共7题;共14分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、二、填空题 (共4题;共4分)8-1、9-1、10-1、11-1、三、解答题 (共3题;共20分)12-1、13-1、14-1、14-2、。
高中数学人教A版必修3作业322(整数值)随机数(randomnumbers)的产生
![高中数学人教A版必修3作业322(整数值)随机数(randomnumbers)的产生](https://img.taocdn.com/s3/m/412fd16def06eff9aef8941ea76e58fafbb04512.png)
课时提升作业十九(整数值)随机数(random numbers)的产生(25分钟60分)一、选择题(每小题5分,共25分)1.用计算机随机模拟掷骰子的试验,估计出现2点的概率,则下列步骤中不正确的是( )A.用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间的取整数值的随机数x,如果x=2,我们认为出现2点B.我们通常用计数器n记录做了多少次掷骰子试验,用计数器m记录其中有多少次出现2点,置n=0,m=0C.出现2点,则m的值加1,即m=m+1;否则m的值保持不变D.程序结束,出现2点的频率作为概率的近似值【解析】选A.计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生的是1到7之间的整数(包括1,7),共7个整数.2.(2018·成都高一检测)某中学高一有21个班、高二有14个班、高三有7个班,现采用分层抽样的方法从这些班中抽取6个班对学生进行视力检查,若从抽取的6个班中再随机抽取2个班作进一步的数据分析,则抽取的2个班均为高一的概率是( )A. B. C. D.【解析】选A.先按分层抽样抽取,比例为21∶14∶7=3∶2∶1,所以高一年级抽3个班,高二年级抽2个班,高三年级抽1个班,分别记为1,2,3,4,5,6,再从中抽取2个班,基本事件一共有15种,其中全部为高一年级的是(1,2),(1,3),(2,3)共3种,所以概率为=.3.一个小组有6名同学,选1名小组长,用随机模拟法估计甲被选中的概率,下面步骤错误的是( )①把6名同学编号为1~6;②利用计算器或计算机产生1到6之间的整数随机数;③统计总试验次数N及甲的编号出现的个数N1;④计算频率f n(A)=,即为甲被选中的概率的近似值;⑤一定等于.A.①B.②③C.⑤D.④【解析】选C.概率是频率的稳定值,频率是概率的近似值,频率不一定等于概率,不一定等于.4.(2018·天津高考)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )A. B. C. D.【解析】=.5.已知某射击运动员,每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器得出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数: 5727 0293 7140 9857 0347 4373 86369647 1417 4698 0371 6233 2616 80456011 3661 9597 7424 6710 4281据此估计,该射击运动员射击4次至少击中3次的概率为( ) 【解析】选D.由题意知模拟射击4次的结果,经随机模拟产生了20组随机数,在20组随机数中表示射击4次至少击中3次的有: 5727 0293 9857 0347 4373 86369647 4698 6233 2616 8045 36619597 7424 4281共15组随机数,所以所求概率为=0.75.二、填空题(每小题5分,共15分)6.在利用整数随机数进行随机模拟试验中,a到b之间的每个整数出现的可能性是.【解析】[a,b]中共有ba+1个整数,每个整数出现的可能性相等,所以每个整数出现的可能性是.答案:.【解析】共有6种发车顺序:①上、中、下;②上、下、中;③中、上、下;④中、下、上;⑤下、中、上;⑥下、上、中(其中画横线的表示袁先生所乘的车),所以他乘坐上等车的概率为=.答案:8.抛掷两枚均匀的正方体骰子,用随机模拟方法估计朝上面的点数的和是6的倍数的概率时,用1,2,3,4,5,6分别表示朝上面的点数是1,2,3,4,5,6.用计算器或计算机分别产生1到6的两组整数随机数各60个,每组第i个数组成一组,共组成60组数,其中有一组是16,这组数表示的结果是否满足朝上面的点数的和是6的倍数: .(填“是”或“否”)【解析】16表示第一枚骰子向上的点数是1,第二枚骰子向上的点数是6,则朝上面的点数的和是1+6=7,不表示和是6的倍数.答案:否三、解答题(每小题10分,共20分)9.同时抛掷两枚均匀的正方体骰子,用随机模拟方法计算上面都是1点的概率.【解题指南】抛掷两枚均匀的正方体骰子相当于产生两个1到6的整数随机数.【解析】步骤:(1)利用计算器或计算机产生1到6的整数随机数,然后以两个一组分组,每组第1个数表示第一枚骰子向上的点数.第2个数表示另一枚骰子向上的点数.两个随机数作为一组共组成n组数.(2)统计这n组数中两个整数随机数字都是1的组数m.(3)则抛掷两枚骰子上面都是1点的概率估计为.10.某种心脏手术成功率为0.6,现准备进行3例这样的手术,试用随机模拟的方法求:(1)恰好成功一例的概率.(2)恰好成功两例的概率.【解析】利用计算机(或计算器)产生0至9之间的取整数的随机数,用0,1,2,3表示不成功,4,5,6,7,8,9表示成功,因为成功率为0.6,3例这样的手术.所以每3个随机数为一组,不妨产生100组.(1)计算在这100组中出现0,1,2,3恰有2个的组数N1,则恰好成功一例的概率的近似值为.(2)统计出这100组中,0,1,2,3恰好出现一个的组数N2,则恰好有两例成功的概率的近似值为.(20分钟40分)一、选择题(每小题5分,共10分)1.某班准备到郊外野营,为此向商店订了帐篷,如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的,只要帐篷如期运到,他们就不会淋雨,则下列说法正确的是( )【解析】选D.用A,B分别表示下雨和不下雨,用a,b表示帐篷运到和运不到,则所有可能情形为(A,a),(A,b),(B,a),(B,b),则当(A,b)发生时就会被雨淋到,所以淋雨的概率为P=.2.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出两个小球,则取出的小球标注的数字之和为3或6的概率是( )A. B. C. D.【解析】选A.随机取出两个小球有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4), (2,5),(3,4),(3,5),(4,5),共10种情况,和为3只有1种情况(1,2),和为6可以是(1,5),(2,4),共2种情况.所以P=.二、填空题(每小题5分,共10分)3.(2018·南京一模)从长度为2,3,5,6的四条线段中任选三条,能构成三角形的概率为.【解析】从长度为2,3,5,6的四条线段中任选三条,共有2,3,5;2,3,6;2,5,6;3,5,6,共4种情况,能构成三角形的有2,5,6;3,5,6,两种情况,所以P(任取三条,能构成三角形)==.答案:4.甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计乙获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数.034 743 738 636 964 736 614 698 637 162332 616 804 560 111 410 959 774 246 762428 114 572 042 533 237 322 707 360 751据此估计乙获胜的概率为.【解析】产生30组随机数就相当于做了30次试验.如果6,7,8,9中恰有2个或3个数出现,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959, 774,762,707,共11个.所以采用三局两胜制,乙获胜的概率约为.答案:三、解答题(每小题10分,共20分)5.一个学生在一次竞赛中要回答的8道题是这样产生的:从15道物理题中随机抽取3道;从20道化学题中随机抽取3道;从12道生物题中随机抽取2道.使用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为1~15,化学题的编号为16~35,生物题的编号为36~47).【解析】利用计算器的随机函数RANDI(1,15)产生3个不同的1~15之间的整数随机数(如果有一个重复,则重新产生一个);再利用计算器的随机函数RANDI(16,35)产生3个不同的16~35之间的整数随机数(如果有一个重复,则重新产生一个);再用计算器的随机函数RANDI(36,47)产生2个不同的36~47之间的整数随机数(如果有一个重复,则重新产生一个),这样就得到8道题的序号.6.一份测试题包括6道选择题,每题只有一个选项是正确的.如果一个学生对每一道题都随机猜一个答案,用随机模拟方法估计该学生至少答对3道题的概率.【解析】我们通过设计模拟试验的方法来解决问题.利用计算机或计算器可以产生0到3之间取整数值的随机数.我们用0表示猜的选项正确,1,2,3表示猜的选项错误,这样可以体现猜对的概率是25%.因为共猜6道题,所以每6个随机数作为一组.例如,产生25组随机数: 330130 302220 133020 022011 313121222330 231022 001003 213322 030032100211 022210 231330 321202 031210232111 210010 212020 230331 112000102330 200313 303321 012033 321230就相当于做了25次试验,在每组数中,如果恰有3个或3个以上的数是0,则表示至少答对3道题,它们分别是001003,030032,210010,112000,即共有4组数,我们得到该同学6道选择题至少答对3道题的概率近似为=0.16.。
人教A版高中数学必修三 第三章3.2.2 (整数值)随机数的产生 同步训练(I)卷
![人教A版高中数学必修三 第三章3.2.2 (整数值)随机数的产生 同步训练(I)卷](https://img.taocdn.com/s3/m/de5730e884868762caaed58a.png)
人教A版高中数学必修三第三章3.2.2 (整数值)随机数的产生同步训练(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共7题;共14分)1. (2分)用随机模拟方法,近似计算由曲线y=x2及直线y=1所围成部分的面积S.利用计算机产生N组数,每组数由区间[0,1]上的两个均匀随机数a1=RAND,b=RAND组成,然后对a1进行变换a=2(a1﹣0.5),由此得到N 个点(xi , yi)(i=1,2,…,N).再数出其中满足xi2≤yi≤1(i=1,2,…,N)的点数N1 ,那么由随机模拟方法可得到的近似值为()A .B .C .D .2. (2分)下列是古典概型的是()A . 任意抛掷两枚骰子,所得点数之和作为基本事件B . 求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件时C . 从甲地到乙地共n条路线,求某人正好选中最短路线的概率D . 抛掷一枚均匀硬币首次出现正面为止3. (2分)某农科院在3×3的9块试验田中选出3块种植某品种水稻进行试验,则每行每列都有一块试验田种植水稻的概率为()A .B .C .D .4. (2分) (2017高二下·桂林期末) 已知小王定点投篮命中的概率是,若他连续投篮3次,则恰有1次投中的概率是()A .B .C .D .5. (2分) (2019高二上·田阳月考) 从1,2,3,4,5中任取2个不同的数,设事件为取到的两个数之和为偶数,则()A .B .C .D .6. (2分)将一枚质地均匀的骰子抛掷两次,落地时朝上的点数之和为6的概率为()A .B .C .D .7. (2分)一个不透明的口袋中装有形状相同的红球、黄球和蓝球,若摸出一球为红球的概率为,黄球的概率为,袋中红球有4个,则袋中蓝球的个数为().A . 5个B . 11个C . 4个D . 9个二、填空题 (共4题;共4分)8. (1分) (2020高二上·黄陵期末) 下列事件:①物体在重力作用下会自由下落;②方程有两个不相等的实数根;③下周日会下雨;④某寻呼台每天某一时段内收到传呼的次数少于次.其中随机事件的个数为________.9. (1分)(2020·南京模拟) 学校准备从甲、乙、丙三位学生中随机选两位学生参加问卷调查,则甲被选中的概率为________.10. (1分) (2018高二上·张家口月考) 书架上有2本不同的语文书,1本数学书,从中任意取出2本,取出的书恰好都是语文书的概率为________.11. (1分) (2018高二上·沧州期中) 甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.三、解答题 (共3题;共25分)12. (10分) (2018高一下·新乡期末) 盒子里放有外形相同且编号为1,2,3,4,5的五个小球,其中1号与2号是黑球,3号、4号与5号是红球,从中有放回地每次取出1个球,共取两次.(1)求取到的2个球中恰好有1个是黑球的概率;(2)求取到的2个球中至少有1个是红球的概率.13. (5分)出一份道题的数学试卷,试卷内的道题是这样产生的:从含有道选择题的题库中随机抽道;从道填空题的题库中随机抽道;从道解答题的题库中随机抽道.使用合适的方法确定这套试卷的序号(选择题编号为,填空题编号为,解答题编号为 ).14. (10分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球和1个白球的甲箱与装有2个红球和2个白球的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖,求(1)用球的标号列出所有可能的摸出结果;(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由。
高中数学人教A版必修3作业322(整数值)随机数(randomnumbers)的产生_
![高中数学人教A版必修3作业322(整数值)随机数(randomnumbers)的产生_](https://img.taocdn.com/s3/m/92300966ec630b1c59eef8c75fbfc77da3699777.png)
课时检测区·基础达标1.某银行储蓄卡上的密码是一个6位数号码,每位上的数字可以在0~9这10个数字中选取.某人未记住密码的最后一位数字,如果随意按密码的最后一位数字,则正好按对密码的概率是( )A. B. C. D.【解析】选D.只考虑最后一位数字即可,从0到9这10个数字中随机选一个作为密码的最后一位数字有10种可能,选对只有1种可能,故按对密码的概率是.2.把[0,1]内的均匀随机数实施变换y=8x2可以得到区间的均匀随机数( )A.[6,8]B.[2,6]C.[0,2]D.[6,10] 【解析】选B.由题意,x=0,y=2,x=1,y=6,所以所求区间为[2,6],故选B.3.抛掷一枚均匀的正方体骰子两次,用随机模拟方法估计朝上面的点数和为7的概率,共进行了两次试验,第一次产生了60组随机数,第二次产生了200组随机数,那么这两次估计的结果相比较,第次准确.【解析】用随机模拟方法估计概率时,产生的随机数越多,估计的结果越准确,所以第二次比第一次准确.答案:二4.在用随机(整数)模拟求“有4个男生和5个女生,从中取4个,求选出2个男生2个女生”的概率时,可让计算机产生1~9的“4678”,则它代表的含义是.【解析】1~4代表男生,5~9代表女生,4678表示一男三女.答案:选出的4个人中,只有1个男生5.某篮球爱好者做投篮练习,假设其每次投篮命中的概率是60%,那么在连续三次投篮中,三次都投中的概率是多少?【解析】通过设计模拟试验的方法来解决问题,利用计算机或计算器可以产生0到9之间的取整数值的随机数.我们用1,2,3,4,5,6表示投中,用7,8,9,0表示未投中,这样可以体现投中的概率是60%.因为是投篮三次,所以每三个随机数作为一组.例如:产生20组随机数:812 932 569 683 271989 730 537 925 834907 113 966 191 432256 393 027 556 755这就相当于做了20次试验,在这组数中,如果3个数均在1,2,3,4,5,6中,则表示三次都投中,它们分别是113,432,256,556,即共有4组数,我们得到了三次投篮都投中的概率近似为=20%.。
高中数学 3.2.2随机数的产生优秀学生寒假必做作业练习一 新人教A版必修3
![高中数学 3.2.2随机数的产生优秀学生寒假必做作业练习一 新人教A版必修3](https://img.taocdn.com/s3/m/a35b4cd4580216fc710afdcc.png)
3.2.2随机数的产生练习一一、选择题1、用函数型计算器能产生的均匀随机数,其按键的顺序为()A、SHIFT RNDB、SHIFT RANC、SHIFT RAN#D、STO RAN#2、在一个边长为3cm的正方形内部化一个边长为2cm的正方形,向大正方形内随机投点,则所投的点落入小正方形内的概率是A、23B、49C、29D、193、在线段[0,3]上任取一点,则此点坐标大于1的概率是()A、34B、23C、12D、134、取一根长度为3m的绳子,拉直后在任意位置剪断,,那么剪的两段的长度都不小于1m 的概率是()A 2/3B 1/3C 1/4 D不能确定二、填空题5、用计算机来模拟所设计的试验,并通过这个试验的结果来确定一些量的方法称为________。
6、在1L高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10ML,则含有麦锈病的种子的概率是_______________________。
7、若某高校高一年级2班有25名男生和若干名女生,先从该班中随机地抽选一名学生。
已知从该班抽选出一名男生的概率是59,则该班女生的人数是_________________。
8、在一万平方千米的海域中有40平方千米的大陆架储藏着石油,假如在海域中任意一点钻探,那么钻到石油层的概率是。
9、在1000mL的水中有一条蚊子幼虫,现从中随意取出10mL水样放到显微镜下观察,则发现蚊子幼虫的概率是。
10、向面积为∆∆11001250110059222)4()2(a a π4π4π38记录其中有多S2 用函数的随机数S3 0-0、5之;否则m 的值保持不变。
S4 表示随机试验次数的记录器n 加1,即n=n1。
如果还需要继续试验,则返回步骤S2 继续执行;否则,程序结束。
程序结束后,正面朝上发生的频率m/n 作为概率的近似值。
高中数学课时20第三章概率3.2.2(整数值)随机数的产生作业aa高一数学
![高中数学课时20第三章概率3.2.2(整数值)随机数的产生作业aa高一数学](https://img.taocdn.com/s3/m/dc9de9382cc58bd63086bdf7.png)
(蓝,绿),(蓝,紫),(绿,紫)共 10 种取法,取出的 2 支彩笔中
含有红色彩笔的有(红,黄),(红,蓝),(红,绿),(红,紫)共 4
种12/取9/202法1 .因此所求概率为140=25.
第十二页,共二十四页。
8.某班准备到郊外野营,为此向商店订了帐篷,如果下雨 与不下雨是等可能的,能否准时收到帐篷也是等可能的,只要帐
12/9/2021
第十一页,共二十四页。
7.有 5 支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、
绿、紫.从这 5 支彩笔中任取 2 支不同颜色的彩笔,则取出的 2
支彩笔中含有红色彩笔的概率为( C )
4
3
A.5
B.5
2
1
C.5
D.5
解析:从 5 支彩笔中任取 2 支不同颜色的彩笔有(红,黄),
12/9/2021
第十三页,共二十四页。
9.在利用整数随机数进行1随机模拟试验中,a 到 b 之间的每 个整数出现的可能性是____b_-__a_+__1___.
解析:[a,b]中共有 b-a+1 个整数,每个整数出现的可能 性相等,所以每个整数出现的可能性是b-1a+1.
12/9/2021
第十四页,共二十四页。
课时作业(zuòyè)20 (整数值)随机数的产生
12/9/2021
第一页,共二十四页。
——基础巩固类——
1.用随机模拟方法估计概率时,其准确程度决定于( B )
A.产生的随机数的大小 B.产生的随机数的个数 C.随机数对应的结果 D.产生随机数的方法
解析:用随机模拟方法估计概率时,其准确程度决定于产 生的随机数的个数.故选 B.
解析:用随机模拟方法估计概率时,产生的随机数越多, 估计的结果越准确.故选 B.
高中数学第三章概率3.2.2整数值随机数randomnumbers的产生课时提升作业2新人教A版
![高中数学第三章概率3.2.2整数值随机数randomnumbers的产生课时提升作业2新人教A版](https://img.taocdn.com/s3/m/9cff9555e2bd960590c67789.png)
(整数值)随机数(randomnumbers)的产生(25分钟60分)一、选择题(每小题5分,共25分)1.下列不能产生随机数的是( )A.抛掷骰子试验B.抛硬币C.计算器D.正方体的六个面上分别写有1,2,2,3,4,5,抛掷该正方体【解析】选D.D项中,出现2的概率为,出现1,3,4,5的概率均是,则D项不能产生随机数.2.(2015·泰安高一检测)关于随机数的说法正确的是( )A.随机数就是随便取的一些数字B.随机数是用计算机或计算器随便按键产生的数C.用计算器或计算机产生的随机数为伪随机数D.不能用伪随机数估计概率【解析】选C.随机数是用来模拟试验结果的数字,是在等可能的条件下产生的,不是随便取的,可用计算机或计算器依照一定的算法产生,由此产生的随机数具有周期性,称为伪随机数,但周期较长,可用来近似地估计概率值.故A,B,D错误,C正确.3.抛掷一枚硬币5次,若正面向上用随机数0表示,反面向上用随机数1表示,下面表示5次抛掷恰有3次正面向上的是( )A.1 0 0 1 1B.1 1 0 0 1C.0 0 1 1 0D.1 0 1 1 1【解析】选C.0代表正面向上,恰有3次正面向上,应是由3个0 2个1组成的结果.4.王先生的微信密码是由0,1,2,3,4,5,6,7,8,9中的数字组成的六位数(数字可重复),由于长时间未登录,忘记了密码的最后一个数字,如果王先生登录微信时密码的最后一个数字随意选取,那么恰好能登录的概率是( )A. B. C. D.【解析】选D.只考虑最后一位数字即可,从0至9这10个数字中随机选择一个作为密码的最后一位数字有10种可能,选对只有一种可能,所以选对的概率是.5.用计算机随机模拟掷骰子的试验,估计出现2点的概率,则下列步骤中不正确的是( )A.用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间的取整数值的随机数x,如果x=2,我们认为出现2点B.我们通常用n记录做了多少次掷骰子试验,用m记录其中有多少次出现2点,置n=0,m=0C.出现2点,则m的值加1,即m=m+1;否则m的值保持不变D.程序结束.出现2点的频率作为概率的近似值【解析】选A.计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生的是1到7之间的整数(包括1,7),共7个整数.二、填空题(每小题5分,共15分)6.某汽车站每天均有3辆开往省城的分上、中、下等级的客车.某天王先生准备在该汽车站乘车去省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆,那么他乘上上等车的概率为.【解析】共有6种发车顺序:①上、中、下;②上、下、中;③中、上、下;④中、下、上;⑤下、中、上;⑥下、上、中(其中画线的表示王先生所乘的车),所以他乘上上等车的概率为=.答案:7.(2015·北京高一检测)抛掷两枚均匀的正方体骰子,用随机模拟方法估计朝上面的点数的和是6的倍数的概率时,用1,2,3,4,5,6分别表示朝上面的点数是1,2,3,4,5,6.用计算器或计算机分别产生1到6的两组整数随机数各60个,每组第i个数组成一组,共组成60组数,其中有一组是16,这组数表示的结果是否满足朝上面的点数的和是6的倍数:.(填“是”或“否”)【解析】16表示第1枚骰子向上的点数是1,第二枚骰子向上的点数是6,则朝上面的点数的和是1+6=7,不表示和是6的倍数.答案:否8.在用随机(整数)模拟求“有4个男生和5个女生,从中取4个,求选出2个男生2个女生”的概率时,可让计算机产生1~9的随机整数,并用1~4代表男生,用5~9代表女生.因为是选出4个,所以每4个随机数作为一组.若得到的一组随机数为“4678”,则它代表的含义是.【解析】1~4代表男生,用5~9代表女生,4678表示一男三女.答案:选出的4个人中,只有1个男生三、解答题(每小题10分,共20分)9.出一份22道题的数学试卷,试卷内的22道题是这样产生的:从含有100道选择题的题库中随机抽12道;从100道填空题的题库中随机抽4道;从200道解答题的题库中随机抽6道.使用合适的方法确定这套试卷的序号(选择题编号为1~100,填空题编号为101~200,解答题编号为201~400). 【解析】用计算器的随机函数RANDI(1,100)或计算机的随机函数RANDBETWEEN(1,100)产生12个不同的1到100之间的整数随机数(若有重复,重新产生一个);再用计算器的随机函数RANDI(101,200)或计算机的随机函数RANDBETWEEN(101,200)产生4个不同的101到200之间的整数随机数;再用计算器的随机函数RANDI(201,400)或计算机的随机函数RANDBETWEEN(201,400)产生6个不同的201到400之间的整数随机数,就得到该套试题的22道题.【补偿训练】试用随机数把a,b,c,d,e五位同学排成一列.【解析】要把五位同学排成一列,就要确定这五位同学所在的位置.可以赋给每位同学一个座号,让他们按照座号排成一列即可.(1)用计算器的随机函数RANDI(1,5)或计算机的随机函数RANDBETWEEN(1,5)产生5个不同的1到5之间的取整数值的随机数,即依次为a,b,c,d,e五名同学的座号.(2)按照座号由小到大的顺序排成一列即为一种排法.10.某种心脏手术,成功率为0.6,现准备进行3例此种手术,试估计:(1)恰好成功1例的概率.(2)恰好成功2例的概率.【解析】利用计算器或计算机产生0到9之间取整数值的随机数,我们用0,1,2,3代表手术不成功,用4,5,6,7,8,9代表手术成功,这样可以体现成功的概率为0.6.因为做3例手术,所以每3个随机数作为一组.例如产生907,966,191,925,…,730,113,537,989共100组随机数.(1)若出现0,1,2,3中2个数的数组个数为N1,则恰好成功1例的概率近似为.(2)若出现0,1,2,3中1个数的数组个数为N2,则恰好成功2例的概率近似为.【拓展延伸】随机模拟方法估计概率的步骤1.建立概率模型.2.进行模拟试验(可用计算器或计算机进行).3.统计试验结果.(20分钟40分)一、选择题(每小题5分,共10分)1.(2015·汕头高一检测)已知某运动员每次投篮命中的概率为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271932 812 458 569 683431 257 393 027 556488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率约为( )A.0.35B.0.25C.0.20D.0.15【解析】选B.该随机数中,表示三次投篮,两次命中的有:191,271,932,812,393,共5组,故所求概率约为==0.25.2.从分别写有A,B,C,D,E的5张卡片中任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率为( )A. B.C. D.【解题指南】运用随机模拟试验或古典概型求解.【解析】选B.用计算器产生1到5之间的随机整数,用1~5分别代表A~E 5个字母.利用随机模拟试验产生N组随机数,每2个数一组,从中数出两个数按从小到大的顺序相邻的随机数个数N1,可得≈.【一题多解】本题还可用以下方法求解:从A,B,C,D,E的5张卡片中任取2张,基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE 共10种结果,其中2张卡片上字母恰好按字母顺序相邻的有AB,BC,CD,DE共4种结果,所以P==.二、填空题(每小题5分,共10分)3.从{1,2,3,4,5,6}中随机选一个数a,从{1,2,3}中随机选一个数b,则a<b的概率等于. 【解析】从{1,2,3,4,5,6}中随机选一个数a,从{1,2,3}中随机选一个数b,共有6×3=18种选法.若b=3,则a=1或2;若b=2,则a=1,共有三种情况.故所求概率为:=.答案:4.在利用整数随机数进行随机模拟试验中,整数a到整数b之间的每个整数出现的可能性是.【解析】[a,b]中共有b-a+1个整数,每个整数出现的可能性相等,所以每个整数出现的可能性是.答案:三、解答题(每小题10分,共20分)5.(2015·西宁高一检测)一个学生在一次竞赛中要回答8道题是这样产生的:从15道物理题中随机抽取3道;从20道化学题中随机抽取3道;从12道生物题中随机抽取2道.使用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为1~15,化学题的编号为16~35,生物题的编号为(36~47).【解析】利用计算器的随机函数RANDI(1,15)产生3个不同的1~15之间的整数随机数(如果有一个重复,则重新产生一个);再利用计算器的随机函数RANDI(16,35)产生3个不同的16~35之间的整数随机数(如果有一个重复,则重新产生一个);再用计算器的随机函数RANDI(36,47)产生2个不同的36~47之间的整数随机数(如果有一个重复,则重新产生一个),这样就得到8道题的序号.6.一个体育代表队共有21名水平相当的运动员.现从中任意抽取11人参加某场比赛,其中运动员甲必须参加,写出利用随机模拟抽取的过程.【解题探究】计算机产生整数型随机数的过程.编号→产生随机数→抽取运动员【解析】要求甲必须参加比赛,实际上就是从剩余的20名运动员中抽取10人.(1)把除甲外的20名运动员编号.(2)用计算器的随机函数RANDI(1,20),或计算机的随机函数RANDEBTWEEN(1,20)产生10个1到20之间的整数随机数(若有一个重复,则重新产生一个).(3)以上号码对应的10名运动员,就是要参赛的对象.。
高中数学 第三章 概率 3.2.2(整数值)随机数(random numbers)的产生课时提升作业
![高中数学 第三章 概率 3.2.2(整数值)随机数(random numbers)的产生课时提升作业](https://img.taocdn.com/s3/m/2f7e6e5e8762caaedc33d4ca.png)
高中数学第三章概率3.2.2(整数值)随机数(random numbers)的产生课时提升作业1 新人教A版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章概率3.2.2(整数值)随机数(random numbers)的产生课时提升作业1 新人教A版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章概率3.2.2(整数值)随机数(random numbers)的产生课时提升作业1 新人教A版必修3的全部内容。
(整数值)随机数(random numbers)的产生一、选择题(每小题3分,共18分)1.下列不能产生随机数的是( )A.抛掷骰子试验B。
抛硬币C.计算器D。
正方体的六个面上分别写有1,2,2,3,4,5,抛掷该正方体【解析】选D。
D项中,出现2的概率为,出现1,3,4,5的概率均是,则D项不能产生随机数.2.小明同学的QQ密码是由0,1,2,3,4,5,6,7,8,9这10个数字中的6个数字组成的六位数,由于长时间未登录QQ,小明忘记了密码的最后一个数字,如果小明登录QQ时密码的最后一个数字随意选取,则恰好能登录的概率是()A.B。
C。
D.【解析】选D。
只考虑最后一位数字即可,从0至9这10个数字中随机选择一个作为密码的最后一位数字有10种可能,选对只有一种可能,所以选对的概率是。
3。
一个小组有6位同学,在其中选1位做小组长,用随机模拟法估计甲被选中的概率,给出下列步骤:①统计甲的编号出现的个数m;②将六名学生编号1,2,3,4,5,6;③利用计算器或计算机产生1到6之间的整数随机数,统计其个数n;④则甲被选中的概率估计是。
吉林省吉林市第一中学校高中数学 3.2.2随机数的产生练习 新人教A版必修3
![吉林省吉林市第一中学校高中数学 3.2.2随机数的产生练习 新人教A版必修3](https://img.taocdn.com/s3/m/fcba37e9ff00bed5b8f31d51.png)
吉林省吉林市第一中学校高中数学 3.2.2随机数的产生练习 新人教A 版必修3一、选择题1.从长度为1,3,5,7,9五条线段中任取三条能构成三角形的概率是( )A 、21B 、103C 、51D 、522.从{}5,4,3,2,1中随机选取一个数为a ,从{}3,2,1中随机选取一个数为b ,则a b >的概率是 ( )A 、54B 、52C 、51D 、533.袋中有白球5只,黑球6只,连续取出3只球,则顺序为“黑白黑”的概率为( )A 、111B 、332C 、334D 、3354.将4名队员随机分入3个队中,对于每个队来说,所分进的队员数k 满足0≤k≤4,假设各种方法是等可能的,则第一个队恰有3个队员分入的概率是( )A 、8116B 、8121C 、818D 、81245.下列说法不正确的是( )A 不可能事件的概率是0,必然事件的概率是1B 某人射击10次,击中靶心8次,则他击中靶心的概率是8.0C “直线)1(+=x k y 过点)0,1(-”是必然事件D 先后抛掷两枚大小一样的硬币,两枚都出现反面的概率是316.将骰子抛2次,其中向上的数之和是5的概率是( )A 、91B 、41C 、361D 、9二、填空题7.接连三次掷一硬币,正反面轮流出现的概率等于8.有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1、2和3,现任取出3面,它们的颜色和号码均不相同的概率是9.从分别写有A 、B 、C 、D 、E 的5张卡片中任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率是 。
10.甲队4321,,,a a a a 四人与乙队4321,,,b b b b 抽签进行4场乒乓球单打对抗赛,抽到i a 对i b (i =1,2,3,4)对打的概率为三、解答题11.在第1,3,5,8路公共汽车都要停靠的一个站(假定这个站只能停靠一辆汽车),有1位乘客等候第1路或第3路汽车、假定当时各路汽车首先到站的可能性相等,求首先到站正好是这位乘客所要乘的汽车的概率、12.任意投掷两枚骰子,计算:(1)出现点数相同的概率;(2)出现点数和为奇数的概率。
高中数学人教版必修3 3.2.2(整数值)随机数的产生 作业(系列二)
![高中数学人教版必修3 3.2.2(整数值)随机数的产生 作业(系列二)](https://img.taocdn.com/s3/m/e0f19d9ad1f34693daef3e4a.png)
第三章 3.2 3.2.2基础巩固一、选择题1.关于随机数的说法正确的是( ) A .随机数就是随便取的一些数字B .随机数是用计算机或计算器随便按键产生的数C .用计算器或计算机产生的随机数为伪随机数D .不能用伪随机数估计概率 [答案] C2.用计算机随机模拟掷骰子的试验,估计出现2点的概率,下列步骤中不正确的是 ( )A .用计算器的随机函数RANDI(1,6)或计算机的随机函数RANDBETWEEN(1,6)产生6个不同的1到6之间的取整数值的随机数x ,如果x =2,我们认为出现2点B .我们通常用计数器n 记录做了多少次掷骰子试验,用计数器m 记录其中有多少次出现2点,置n =0,m =0C .出现2点,则m 的值加1,即m =m +1;否则m 的值保持不变D .程序结束.出现2点的频率作为概率的近似值 [答案] A3.袋中有2个黑球,3个白球,除颜色外小球完全相同,从中有放回地取出一球,连取三次,观察球的颜色.用计算机产生0到9的数字进行模拟试验,用0,1,2,3代表黑球.4,5,6,7,8,9代表白球.在下列随机数中表示结果为二白一黑的组数为( )160 288 905 467 589 239 079 146 351 A .3 B .4 C .5 D .6[答案] B4.某班准备到郊外野营,为此向商店订了帐篷,如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的,只要帐篷如期运到,他们就不会淋雨,则下列说法正确的是( )A .一定不会淋雨B .淋雨机会为34C .淋雨机会为12D .淋雨机会为14[答案] D[解析] 用A 、B 分别表示下雨和不下雨,用a 、b 表示帐篷运到和运不到,则所有可能情形为(A ,a ),(A ,b ),(B ,a ),(B ,b ),则当(A ,b )发生时就会被雨淋到,∴淋雨的概率为P =14.5.袋子中有四个小球,分别写有“神”、“十”、“飞”、“天”四个字,有放回地从中任取一个小球,取到“飞”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1、2、3、4表示取出小球上分别写有“神”、“十”、“飞”、“天”四个字,以每两个随机数为一组,代表两次的结果.经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 21 23 13 32 21 24 42 13 32 21 34 据此估计,直到第二次就停止概率为( ) A.15 B.14 C.13 D.12[答案] B[解析] 由随机模拟产生的随机数可知,直到第二次停止的有13、43、23、13、13共5个基本事件,故所求的概率为P =520=14.6.袋中有4个小球,除颜色外完全相同,其中有2个黄球,2个绿球.从中任取两球.取出的球为一黄一绿的概率为( )A.14B.12C.34D.13[答案] B[解析] 取球结果共有:黄黄,黄绿,绿黄,绿绿四种,所以一黄一绿有两种,故所求概率为12.二、填空题7.利用骰子等随机装置产生的随机数________伪随机数,利用计算机产生的随机数________伪随机数(填“是”或“不是”).[答案] 不是 是8.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m 的概率为________.[答案] 0.2[解析] 由5根竹竿一次随机抽取2根竹竿的种数为4+3+2+1=10,它们的长度恰好相差0.3 m 的是2.5和2.8、2.6和2.9两种,则它们的长度恰好相差0.3 m 的概率为P =210=0.2.三、解答题9.掷三枚骰子,利用Excel 软件进行随机模拟,试验20次,计算出现点数之和是9的概率.[解析] 操作步骤:(1)打开Excel 软件,在表格中选择一格比如A1,在菜单下的“=”后键入“=RANDBETWEEN(1,6)”,按Enter 键, 则在此格中的数是随机产生的1~6中的数.(2)选定A1这个格,按Ctrl +C 快捷键,然后选定要随机产生1~6的格,如A1至T3,按Ctrl +V 快捷键,则在A1至T3的数均为随机产生的1~6的数.(3)对产生随机数的各列求和,填入A4至T4中. (4)统计和为9的个数S ;最后,计算频率S/20.10.同时抛掷两枚均匀的正方体骰子,用随机模拟方法计算上面都是1点的概率. [分析] 抛掷两枚均匀的正方体骰子相当于产生两个1到6的随机数,因而我们可以产生整数随机数.然后以两个一组分组,每组第1个数表示第一枚骰子的点数,第2个数表示第二枚骰子的点数.[解析] 步骤:(1)利用计算器或计算机产生1到6的整数随机数,然后以两个一组分组,每组第1个数表示第一枚骰子向上的点数.第2个数表示另一枚骰子向上的点数.两个随机数作为一组共组成n 组数;(2)统计这n 组数中两个整数随机数字都是1的组数m ; (3)则抛掷两枚骰子上面都是1点的概率估计为mn.能力提升一、选择题1.下列说法错误的是( )A .用计算机或掷硬币的方法都可以产生随机数B .用计算机产生的随机数有规律可循,不具有随机性C .用计算机产生随机数,可起到降低成本,缩短时间的作用D .可以用随机模拟的方法估计概率 [答案] B2.从分别写有A ,B ,C ,D ,E 的5张卡片中任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率为( )A.15B.25C.310D.710[答案] B[解析] 可看作分成两次抽取,第一次任取一张有5种方法,第二次从剩下的4张中再任取一张有4种方法,因为(B ,C)与(C ,B)是一样的,故试验的所有基本事件总数为10,两字母恰好是按字母顺序相邻的有(A ,B),(B ,C),(C ,D),(D ,E)4种,故两字母恰好是按字母顺序相邻的概率P =410=25.3.已知某运动员每次投篮命中的概率低于40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率,先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中,再以每三个随机数为一组代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 889 据此估计,该运动员三次投篮恰有两次命中的概率为( ) A .0.35 B .0.25 C .0. 20 D .0.15 [答案] B[解析] 在20个数据中,有5个表示三次投篮恰有两次命中,故所求概率P =520=0.25.4.(2015·陕西西安期末)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为x ,y ,则log 2x y =1的概率为( )A.16B.536C.112D.12 [答案] C[解析] 由log 2x y =1,得2x =y ,其中x ,y ∈{1,2,3,4,5,6},所以⎩⎨⎧ x =1,y =2,或⎩⎨⎧x =2,y =4,或⎩⎨⎧x =3,y =6,满足log 2x y ,所以P =336=112,故选C.二、填空题5.从13张扑克牌中随机抽取一张,用随机模拟法估计这张牌是7的概率为N 1N ,则估计这张牌不是7的概率是________.[答案] 1-N 1N6.在利用整数随机数进行随机模拟试验中,整数a 到整数b 之间的每个整数出现的可能性是________.[答案]1b -a +1[解析] [a ,b ]中共有b -a +1个整数,每个整数出现的可能性相等,所以每个整数出现的可能性是1b -a +1.三、解答题7.甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,试用随机模拟的方法求乙获胜的概率.[解析] 利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数(可借助教材103页的随机数表).034 743 738 636 964 736 614 698 637 162 332 616 804 560 111 410 959 774 246 762 428 114 572 042 533 237 322 707 360 751就相当于做了30次试验.如果6,7,8,9中恰有2个或3个数出现,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707.共11个.所以采用三局两胜制,乙获胜的概率约为1130≈0.367.8.(2015·河南新乡调研)为了加强中学生实践、创新和团队建设能力的培养,促进教育教学改革,市教育局举办了全市中学生创新知识竞赛.某中学举行了选拔赛,共有150名学生参加,为了了解成绩情况,从中抽取50名学生的成绩(得分均为整数,满分为100分)进行统计,清你根据尚未完成的频率分布表,解答下列问题:(1)完成频率分布表(直接写出结果),并作出频率分布直方图;(2)若成绩在90.5分以上的学生获一等奖,试估计全校获一等奖的人数,现在从全校所有获一等奖的同学中随机抽取2名同学代表学校参加竞赛,某班共有2名同学荣获一等奖,求该班同学恰有1人参加竞赛的概率.[解析] (1)(2)获一等奖的概率约为0.04,所以获一等奖的人数估计为150×0.04=6(人). 记这6人为A 1,A 2,B ,C ,D ,E ,其中,A 1,A 2为该班获一等奖的同学.从全校所有获一等奖的同学中随机抽取2名同学代表学校参加竞赛共有15种情况,如下:(A 1,A 2),(A 1,B ),(A 1,C ),(A 1,D ),(A 1,E ),(A 2,B ),(A 2,C ),(A 2,D ),(A 2,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ).该班同学中恰有1人参加竞赛共有8种情况,如下:(A 1,B ),(A 1,C ),(A 1,D ),(A 1,E ),(A 2,B ),(A 2,C ),(A 2,D ),(A 2,E ). 所以该班同学中恰有1人参加竞赛的概率P =815.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2.2随机数的产生练习二
一、选择题
1、下列事件:1)方程2220
x x
-+=有两个不相等的实数根;2)在标准大气压下,温度低于00C,并融化;3)某传呼台每天的某一时段内受到传呼的次数不超过10次;4)物体在重力作用下会自由下落。
()随机事件的个数是
A、1个
B、2个
C、3个
D、4个
2、把红、黑、白、蓝4张纸牌随机地发给甲、乙、丙、丁四人,每人分的一张,事件“甲分得红牌”与“乙分得红牌”是()
A、对立事件
B、不可能事件
C、互斥但不对立事件
D、以上大案都不对
3、一副扑克牌有54张,去掉大王和小王,在剩下的52张牌中随意抽出一张牌,试分析下列现象:1)一张红心J;2)一张Q;3)一张“梅花”。
那一现象更容易发生()
A、一张红心J
B、一张Q
C、一张“梅花”
D、都有可能
4、手表实际上是一个转盘,一天24 小时,分针指到那个数字上概率最大()
A、12
B、6
C、1
D、12个数字概率相等
5、关于随机数字的说法1)计算器只能产生(0,1)之间的随机数;2)我们通过rand( )*(b-a)+a,可以得到(a,b)之间的随机数;3)计算器能产生指定两个正数值之间的取整数值的随机数。
以上正确说法有()
A、0个
B、1个
C、2个
D、3个
6、1升水中有2只微生物,任取0.1升化验,则有微生物的概率是 ( )
A、0.1
B、0.2
C、0.3 D 0.4、
7、某人手表停了,当他打开电视机,想利用电视机上的整点显示时间校正他的手表,则他等不超过一刻的概率为()
A、1
6
B、
1
5
C、
1
4
D、
1
3
二、填空题
8、在边长为2的正方形中撒一大把豆子,落在正方形内切圆中的豆子数与落在正方形中的豆子数之比近似地为___________________。
9、在半径为R的圆内画平行弦,如果这些弦与垂直于弦的直径交点在该直径上的位置是等可能的,则任意画的弦的长度大于R的概率为______________(包留三位有效数字)。
10、地球上的山地、水的面积和陆地面积的比约为3:6:1,那么太空的一块陨石恰好落在陆地上的概率是__________________。
11、一个路口的红绿灯的时间如下,红灯28秒,黄灯2秒,绿灯30秒,你赶到路口恰好能通过的概率为_____________________。
12、中考、高考是随机编排考场是利用计算机能________________________。
三、解答题
13在地下画一个能容四枚硬币的方框,取一枚硬币,距离方框30cm高处瞄准方框投下,求硬币落在框内的概率。
14、甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头停泊,他们在一个昼夜内到达的时刻是等可能的。
如果甲船停泊的时间是1小时,乙船停泊的时间是2小时,求他们中任意一艘不需要等候码头空出的概率。
15、用Scilab中的函数rand()如何产生下面范围内的数?
(1)0-1内的随机数;
(2)2-10内的随机数;
(3)-8-2内的随机数;
(4)-6-6内的随机数;
(5)-10-10内的随机数;
(6)a-b内的随机数。
答案:
一、选择题
1、A;
2、C;
3、C;
4、D;
5、C;
6、B;
7、C
二、填空题
8、
4
π
9、0.866
10、
1 10
11、1 2
12、能产生随机数
三、解答题
13、1 4
14、解:设甲乙两艘船到达码头的时间分别x和y,则所有基本事件:024,024
x y
≤≤≤≤。
而不需要等候码头空出所含基本事件:1,2
y x x y
-≥-≥。
画出图形,可得概率为0.879。
15、解:(1)rand();
(2)rand()*8+2
(3)rand()*10-8;
(4)rand()*12-6;
(5)rand()*12-10;
(6)rand()*(b-a)+a.。