山东省济南市历城区2013届中考数学一模试题_新人教版

合集下载

2013年济南市中考数学模拟题(1—5)及答案

2013年济南市中考数学模拟题(1—5)及答案

2013年中考山东济南卷模拟试题一、选择题:本大题共12个小题.每小题4分;共48分. 1.计算:29= ( )A.-1 B.-3 C.3 D.52.我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每年排放的污水减少了167000吨.将167000用科学记数法表示为 ( )A .316710⨯B .416.710⨯C .51.6710⨯D .60.16710⨯3.已知,如图,AD 与BC 相交于点O ,AB ∥CD ,如果∠B =20°,∠D=400,那么∠BOD 为( )A. 40°B. 50°C. 60°D. 70° 4.已知2243a b x y x y x y -+=-,则a +b 的值为( ).A. 1B. 2C. 3D. 4 5.因式分解()219x --的结果是( )A. ()()24x x +-B. ()()81x x ++C. ()()24x x -+D. ()()108x x -+6.如图,DE 是ABC △的中位线,则ADE △与ABC △的面积之比是( )A .1:1B .1:2C .1:3D .1:4 7.在下列命题中,正确的是( )A .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .有一组邻边相等的平行四边形是菱形D .对角线互相垂直平分的四边形是正方形8.如图,是由一些相同的小正方体搭成的几何体的三视图,搭成这个几 何体的小正方体的个数有( )A. 2个B. 3个C. 4个D. 6个9.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是( )A.掷一枚正六面体的骰子,出现1点的概率B .从一个装有2个白球和1个红球的袋子中任取一球,取 到红球的概率C .抛一枚硬币,出现正面的概率D .任意写一个整数,它能被2整除的概率10.若二次函数222y ax bx a =++-(a b ,为常数)的图象如下,则a 的值为( )A .2- B .2- C .1 D 211.如图,AB 是⊙O 的直径,AB =4,AC 是弦,AC =23AOC 为( )(第10题) y O A x BACE D A DOACBOACDO12.甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰。

山东省济南市历城区2013届中考化学一模试卷

山东省济南市历城区2013届中考化学一模试卷

山东省济南市历城区2013届中考化学一模试卷可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Cl 35.5 Ca 40 Fe 56 Cu 64 第Ⅰ卷(单项选择题 共22分)一、选择题(本大题包括11个小题,每个小题只有一个最佳答案。

每小题2分,共22分) 1.下列过程中,只发生物理变化的是A .食醋除水垢B .浓盐酸挥发C .葡萄酿酒D .湿法炼铜2.今年春天,济南长期出现雾霾天气,空气质量不容乐观。

下列做法中,不利..于.环境保护的是 A .植树造林,增加绿地面积 B .大量燃放烟花爆竹 C .生活垃圾分类处理 D .秸秆还田,严禁焚烧 3.下列做法对人体健康不利..的是 A .青少年多吃油炸类食品,补充热量 B .多食水果和蔬菜,补充维生素 C .向食品包装袋中充入氮气防腐 D .食用碘盐可防治碘缺乏病 4.下列对实验结果的分析中,错误的是A .点燃氢气时发生爆炸,可能因为没有检验氢气的纯度B .稀释浓硫酸时,出现液滴大量飞溅,可能是把水向酸中倾倒的原因C .你做过的“纸船烧水”实验主要是为了探究燃烧条件中的“物质必须具有可燃性”D .100mL 酒精和100mL 水混合后体积小于200mL ,是因为分子之间存在间隔 5.根据粒子结构示意图给出的信息,下列说法正确的是A .①和②表示的微粒属于同种元素B .③表示的微粒属于阴离子C .②表示的元素在化合物中常显-1价D .③表示的微粒原子质量为17g6. 以下是某化学反应的微观示意图( 、 分别表示不同元素的原子),下列对图示反应的理解中,正确的是A .反应物和生成物中共含有三种元素B .参加反应的物质分子个数之比为1:1C .该反应属于化合反应 D.反应物和生成物中只有一种单质 7.要使右图装置中的小气球鼓起来,则使用的固体和液体可以是①石灰石和稀盐酸 ②镁和稀硫酸 ③固体氢氧化钠和水 ④生石灰和水 ⑤NH 4NO 3和水 A .①②④ B .①②⑤ C .②③④D .①②③④8.A 、B 两种物质的溶解度曲线如图所示。

2013年中考数学模拟试卷(带答案)

2013年中考数学模拟试卷(带答案)

2013年中考数学模拟试卷(带答案)2013年济南市中考数学模拟试题三一、选择题:本大题共12个小题.每小题4分;共48分.1.的绝对值是()A.B.C.D.2.如图,,点在的延长线上,若,则的度数为()A.B.C.D.3.点关于原点对称的点的坐标是()A.B.C.D.4.同时抛掷两枚均匀的硬币,则两枚硬币正面都向上的概率是()A.B.C.D.15.不等式组的解集用数轴表示为()6.若分式的值为,则的值为(A)A.B.C.D.或7.与如图所示的三视图对应的几何体是()8.如图,与的边分别相交于两点,且.若,则AC等于().A.1B.C.D.29.如图,矩形OABC的边OA在x轴上,O与原点重合,OA=1,OC =2,点D的坐标为(2,0),则直线BD的函数表达式为()A.B.C.D.10.如图,已知AD是△ABC的外接圆的直径,AD=13cm,,则AC的长等于()A.5cmB.6cmC.10cmD.12cm11.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1B.2C.3D.412.已知二次函数的图象如图所示,有下列5个结论:①;②;③;④;⑤,(的实数)其中正确的结论有()A.2个B.3个C.4个D.5二、填空题:本大题共5个小题.每小题3分;共15分.13.分解因式:2x2-18=.14.已知反比例函数的图象在第二、四象限,则取值范围是__________. 15.用扇形统计图反映地球上陆地与海洋所占的比例时,“陆地”部分对应的圆心角是.宇宙中一块陨石落在地球上,落在陆地的概率是_________16.若,则下列函数①,②,③,④中,的值随的值增大而增大的函数是_______________(填上序号即可)17.如图,已知,点在边上,四边形是矩形.请你只用无刻度的直尺在图中画出的平分线(请保留画图痕迹).三、解答题:7个小题,57分.18.(本小题满分7分)(1)化简(2)解方程:.19.(7分)(1)如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12米处,测得∠BAC=300,求BC的长。

2013年山东省济南市中考数学一模试卷

2013年山东省济南市中考数学一模试卷

2013年山东省济南市中考数学一模试卷一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-2012的倒数是()A.2012 B.-2012 C.12012D.-120122.如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70°B.100°C.110°D.120°★☆☆☆☆3.某汽车参展商为参加第8届中国(长春)国际汽车博览会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为()A.10.5×104B.1.05×105C.1.05×106D.0.105×1064.估计20的算术平方根的大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间★☆☆☆☆5.下列计算正确的是()A.a3•a2=a6B.a5+a5=a10C.(-3a3)2=6a2D.(a3)2•a=a76.若三角形的两边分别是2和6,则第三边的长可能是()A.3 B.4 C.5 D.87.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.78.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为()A.1:4 B.1:2 C.2:1 D.1:2★★☆☆☆9.化简14(-4x+8)-3(4-5x),可得下列哪一个结果()A.-16x-10 B.-16x-4 C.56x-40 D.14x-1010.不等式组2x-1>14-2x≤0的解在数轴上表示为()A.B.C.D.11.如图,△ABC中,AB=AC=6,BC=8,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是()A.7+ 5 B.10C.4+25D.12★★☆☆☆12.某单位向一所希望小学赠送1080件文具,现用A ,B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个.设B 型包装箱每个可以装x 件文具,根据题意列方程式为( ) A . 1080 x = 1080 x-15 +12 B . 1080 x = 1080 x-15 -12 C . 1080 x = 1080 x+15 -12 D . 1080 x = 1080 x+15 +1213.现定义运算“★”,对于任意实数a 、b ,都有a ★b=a 2-3a+b ,如:3★5=32-3×3+5,若x ★2=6,则实数x的值是( ) A .-4或-1 B .4或-1C .4或-2D .-4或214.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角形 B .四边形MBON 和四边形MODN 都是菱形 C .四边形AMON 和四边形ABCD 都是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形 ★☆☆☆☆15.如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数为()A.5n B.5n-1 C.6n-1 D.2n2+1二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)ab0(第16题)16.实数a,b在数轴上对应点的位置如图所示,则|a||b|(填“>”“<”或“=”).17.分解因式:9a-a3=.★☆☆☆☆18.不等式3x+2≥5的解集是.★★★★☆19.将两个形状相同的三角板放置在一张矩形纸片上,按图示画线得到四边形ABCD,则四边形ABCD的形状是.20.如图,△ABD与△AEC都是等边三角形,AB≠AC.下列结论中,正确的是.①BE=CD;②∠BOD=60°;③∠BDO=∠CEO.21.如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=4,则图中阴影部分的面积为.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.完成下列各题:(1)化简:2xx2-4-1x-2(2)计算:(12336.23.完成下列各题:(1)如图1,四边形ABCD中,AB∥CD,∠B=∠D,BC=6,AB=3,求四边形ABCD的周长.(2)已知:如图2,在△ABC中,D为边BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC.求证:AB=AC.24.完成下列各题:(1)解方程:3x-3=5x+1(2)解方程组:x+y=3 ①5x-3(x+3)=1 ②.25.为了参加2011年威海国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.26.在某市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方来.(1)求运往D、E两地的数量各是多少立方米?(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米.C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地.且C地运往E地不超过12立方米.则A、C两地运往D、E两地有哪几种方案?27.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG=2,求EB的长.28.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式;(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为顶点的三角形与△ABC是否相似,请说明理由.。

山东省济南市2013年中考数学模拟试题一

山东省济南市2013年中考数学模拟试题一

2013年某某中考数学模拟试题一一、选择题:本大题共12个小题.每小题4分;共48分. 1.3-的倒数是( )A .13-B .13C .3-D .32.2007年我市初中毕业生约为万人,把万用科学记数表示且保留两个有效数字为( )A.44.010⨯B.43.910⨯C.43910⨯D.4.0万3.将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行.那么,在形 成的这个图中与α∠互余的角共有( ) A.4个B.3个C.2个D.1个4.计算:101|5|20072-⎛⎫-+- ⎪⎝⎭的结果是()A . 5B .6C .7D .85.在平面直角坐标系中,若点()2P x x -,在第二象限,则x 的取值X 围为( )A.0x >B.2x <C.02x <<D.2x >6.如图是一个风筝的图案,它是轴对称图形,量得∠B =30°,则∠E 的大小为( )A. 30° B . 35° C . 40° D . 45°7.三角形两边长分别为3和6,第三边是方程2680x x -+=的解,则此三角形的周长是( ) A. 11 B. 13 C. 11或13 D. 不能确定 8.在下面的四个几何体中,它们各自的左视图与主视图不一样的是( )A. B. C. D.AB CF(第06题图)ED α9.奥组委从4月15日起分三个阶段向境内公众销售门票,开幕式门票分为五个档次,票价分别为人民币5000元、3000元、1500元、800元和200元.某网点第一周内开幕式门票的销售情况见统计图,那么第一周售出的门票票价..的众数是( ) A .1500元 B .11XC .5XD .200元10.已知方程组42ax by ax by -=⎧⎨+=⎩,的解为21x y =⎧⎨=⎩,,则23a b -的值为( )A.4 B.6 C.6-D.4-11.抛物线c bx x y ++-=2的部分图象如图所示,若0>y ,则x 的取值X围是( ) A.14<<-x B. 13<<-x C. 4-<x 或1>x D.3-<x 或1>x12.如图,在ABC △中,10AB =,8AC =,6BC =,经过点C 且与边AB 相切的动圆与CA ,CB 分别相交于点P ,Q ,则线段PQ 长度的最小值 是( ) A .4.75B .4.8C .5D .42二、填空题:本大题共5个小题.每小题3分;共15分.把答案填在题中横线上.13.分解因式:2233ax ay -=.14.袋中装有除颜色外其余都相同的红球和黄球共25个,小明通过多次模拟实验后,发现摸到的红球、(第12题)ABCQPy–1 13Ox(第11题图)2 4 6 810 1202 511 5 6 5000 3000 1500 800 200 档(元)第一周开幕式门票销售情况统计图 数量(X )第8题黄球的概率分别是25和35,则袋中黄球有个. 15.若分式11x x +-的值为零,则x 的值为.16.如图,已知△ABC 中,∠A =40°,剪去∠A 后成四边形,则∠1+∠2=__________. 17.如图,已知双曲线xky =(x >0)经过矩形OABC 边AB 的中点F ,交 BC 于点E ,且四边形OEBF 的面积为2,则k =______________.三、解答题: 7个小题,57分.解答应写出文字说明、演算步骤. 18.(本小题满分7分) (1)解方程121x x =-(2)解不等式组:212(1)1x x x -⎧⎨+-⎩≤≥,.19.(本小题满分7分)如图,在ABCD 中,E 为BC 边上一点,且AB AE =.(1)求证:ABC EAD △≌△.(2)若AE 平分DAB ∠,25EAC =∠,求AED ∠的度数.20.(本小题满分8分)亲爱的同学,下面我们来做一个猜颜色的游戏:一个不透明的小盒中,装有A 、B 、C 三X 除颜色以外完全相同的卡片,卡片A 两面均为红,卡片B 两面均为绿,卡片C 一面为红,一面为绿.(1)从小盒中任意抽出一X 卡片放到桌面上,朝上一面恰好是绿色,请你猜猜,抽出哪X 卡片AB CE OFx y(第17题图)ABC的概率为0?(2)若要你猜(1)中抽出的卡片朝下一面是什么颜色,猜哪种颜色正确率可能高一些?请你列出表格,用概率的知识予以说明.21.(本小题满分8分)某县在实施“村村通”工程中,决定在A 、B 两村之间修筑一条公路,甲、乙两个工程队分别从A 、B 两村同时相向开始修筑.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.下图是甲、乙两个工程队所修道路的长度y (米)与修筑时间x 天)之间的函数图象,请根据图象所提供的信息,求该公路的总长度.22.(本小题满分9分)如图,在ABC △中,AB AC =,以AB 为直径的圆O 交BC 于点D ,交AC 于点E ,过点D 作DF AC ⊥,垂足为F . (1)求证:DF 为O 的切线;(2)若过A 点且与BC 平行的直线交BE 的延长线于G 点,连结CG .当ABC △是等边三角形时,求AGC ∠的度数.AGF E BO(第23题)D 第21题图y (米)x (天840360168412023.如图,所示的直角坐标系中,若ABC △是等腰直角三角形,82AB AC ==,D 为斜边BC 的中点.点P 由点A 出发沿线段AB 作匀速运动,P '是P 关于AD 的对称点;点Q 由点D 出发沿射线DC 方向作匀速运动,且满足四边形QDPP '是平行四边形.设平行四边形QDPP '的面积为y ,DQ x =. (1)求出y 关于x 的函数解析式;(5分)(2)求当y 取最大值时,过点P A P ',,的二次函数解析式;(4分)(3)能否在(2)中所求的二次函数图象上找一点E 使EPP '△的面积为20,若存在,求出E 点坐标;若不存在,说明理由.(4分)24.(本小题满分9分)如图,四边形OABC 是一X 放在平面直角坐标系中的矩形纸片,点A 在x 轴上,点C 在y 轴上,将边BC 折叠,使点B 落在边OA 的点D 处.已知折叠55CE =3tan 4EDA ∠=. (1)判断OCD △与ADE △是否相似?请说明理由;23题xy APB DF P ' Q C yCB(2)求直线CE 与x 轴交点P 的坐标;(3)是否存在过点D 的直线l ,使直线l 、直线CE 与x 轴所围成的三角形和直线l 、直线CE 与y 轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.2013年某某市中考数学模拟试题参考答案 一、选择题:1. A2. B3. C4. B5. C6. A7. B8. D9. A 10. B 11. B 12. B 二、填空题:13. 3a (x +y )(x -y ) 14. 15 15. -1 16. 220° 17. 2 三、解答题:18.(1)解:去分母,得2(1)x x =- 去括号,得22x x =- 整理,得2x -=-2x =.经检验:2x =是原方程的根. ∴原方程的根是2x =. (2)解:由①,得1x ≤,由②,得32x -≥. 所以原不等式组的解集为312x -≤≤. 19.(1)证明四边形ABCD 为平行四边形,∴AD BC AD BC =∥,. ∴DAE AEB =∠∠.AB AE =∴AEB B =∠∠∴B DAE =∠∠.∴ABC EAD △≌△.(2)DAE BAE DAE AEB ==∠∠,∠∠,∴BAE AEB B ==∠∠∠.∴ABE △为等边三角形.∴60BAE =∠.25EAC =∠∴85BAC =∠ABC EAD △≌△,∴85AED BAC ==∠∠.20.解:(1)依题意可知:抽出卡片A 的概率为0;(2)由(1)知,一定不会抽出卡片A ,只会抽出卡片B 或C ,且抽出的卡片朝上的一面是绿色,那么可列下表:可见朝下一面的颜色有绿、绿、红三种可能,即:P (绿)=32,P (红)=31,所以猜绿色正确率可能高一些.21.解:设y 乙=kx (0≤x ≤12),∵840=12,∴k =70.∴y 乙=70x .当x =8时,y 乙=560.设y 甲=mx +n (4≤x ≤16),∴4360,8560.m n m n +=⎧⎨+=⎩∴50,160.m n =⎧⎨=⎩∴y 甲=50x +160.当x =16时,y 甲=50×16+160=960.∴840+960=1800米.故该公路全长为1800米. 22.(1)证明:连结AD OD ,AB 是⊙O 的直径 AD BC ∴⊥ABC △是等腰三角形 BD DC ∴=又AO BO =OD AC ∴∥ DF AC ⊥ OF OD ∴⊥ DF OD ∴⊥DF ∴是⊙O 的切线朝上 B (绿 1) B (绿 2) C (绿) 朝下 B (绿 2) B (绿 1) C (红)第21题图960560乙甲y (米)x (天8403601684120AGFE BO(第22题)(2)AB 是⊙O 的直径BG AC ∴⊥ABC △是等边三角形 BG ∴是AC 的垂直平分线 GA GC ∴=又AG BC ∥,60ACB ∠=60CAG ACB ∴∠=∠=ACG ∴△是等边三角形60AGC ∴∠=23.解:(1)∵△ABC 是等腰直角三角形,AB=AC=28,∴AD=BD=CD=8∵四边形QDPP ′是平行四边形,且DQ =x ,∴PP ′=DQ =x ,且PP ′∥DQ 。

山东省济南市历城区2013届九年级中考一模数学试题

山东省济南市历城区2013届九年级中考一模数学试题

第11题图第12题图第10题图九年级数学试题(一)一、选择题(共15小题,每小题3分,满分45分) 1.-2的相反数是( )A. 2B. 2-C.12 D. 12- 2.如图,直线AB 、CD 相交于点E ,DF//AB .若100AEC ∠=︒, 则D ∠等于( )A .70°B .80°C .90°D .100°3.我国是世界上严重缺水的国家之一,目前我国年可利用的淡水资源总量为27 500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27 500这个数用科学记数法表示为( )A. 427510⨯.B. 52.7510⨯ C. 42.810⨯D. 327.510⨯4.下列事件为不可能事件的是( ). A. 某射击运动员射击一次,命中靶心 B. 掷一次骰子,向上的一面是5点C. 找到一个三角形,其内角和为360°D. 经过城市某一有交通信号灯的路口,遇到红灯 5.下列计算正确的是( )A.532a a a =+B. 236a a a =÷ C. 13422=-x xD. ()363282y x yx -=-6.如图,下列四个几何体中主视图与其它三个不同的几何体是( ).7.化简())24(332y x y x ---结果为( )A .y x 310--B .y x 310+-C .y x 910-D .y x 910+ 8.已知|x |=3,|y |=7,且 xy <0,则x y +的值等于 ( )A .10B. 4C. 4-D. 4或4-9. 如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,矩形ABCD 内的一个动点P 落在阴影部分的概率是( ) A .51B.41 C.31D.103 10. 如图,等边三角形OAB 的顶点O 在坐标原点,顶点A 在x 轴上,OA=2,将等边三角形OAB 绕原点顺时针旋转105°至OA′B′的位置,则点B′的坐标为( )A .B .(C .(D .C A EB FD第2题第9题图A B C DOMEFBCADG第15题图11.已知一次函数bkxy+=的图象,如图所示,当0<x时,y的取值范围是()A. 0>y B. 0<y C. 02<<-y D. 2-<y12.如图,AB是⊙O的直径,AC、BC是⊙O的弦,PC是⊙O的切线,切点为C,∠ACP =55°,∠BAC那么等于()A.35°B.45°C.55°D.65°13. 已知二次函数2y ax bx c=++的图象如图所示,那么一次函数y bx c=+和反比例函数ayx=在同一平面直角坐标系中的图象大致是()14. 如图,等边△ABC的边长为4,M为BC上一动点(M不与B、C重合),若EB=1,∠EMF=60°,点E在AB边上,点F在AC边上.设BM=x,CF=y,则当点M从点B运动到点C时,y关于x的函数图象是()A B C D15. 如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.下列结论:①AE=CG,②AE⊥CG,③DM∥GE,④OM=OD,⑤∠DME=45°。

【解析版】山东省济南市市中区2013年中考数学一模试卷

【解析版】山东省济南市市中区2013年中考数学一模试卷

2013年山东省济南市市中区中考数学一模试卷参考答案与试题解析一、选择题(本大题共15个小题.每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)2.(3分)(2013•济宁三模)据萧山区旅游局统计,2012年春节约有359525人来萧旅游,将这个旅游人数4.(3分)(2009•台州)如图,由几个小正方体组成的立体图形的左视图是()B.5.(3分)(2013•市中区一模)已知α为锐角,sin(α﹣20°)=,则α=()=7.(3分)(2013•老河口市模拟)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,则∠2的余角的度数是()8.(3分)(2013•济宁三模)若式子有意义,则x的取值范围为()9.(3分)(2006•聊城)已知,且﹣1<x﹣y<0,则k的取值范围为()<﹣.<k<1解得<的取值范围为11.(3分)(2013•德城区二模)二次函数y1=ax2﹣x+1的图象与y2=﹣2x2图象的形状,开口方向相同,只(﹣,﹣)(﹣,,),﹣)又∵﹣,,∴顶点坐标为(﹣,)12.(3分)(2012•庆阳)如图,点A、B、C、D、E、F为圆O的六等分点,动点P从圆心O出发,沿O ﹣C﹣D﹣O的路线作匀速运动.设运动时间为x秒,∠APF的度数为y度,则下列图象中表示y与x之间函数关系最恰当的是()B.上、在在13.(3分)(2012•山西)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()B.CO=BD=4cmBC==×AE=14.(3分)(2013•济宁三模)如图,P1是反比例函数y=在第一象限图象上的一点,点A1的坐标为(2,0).若△P1OA1与△P2A1A2均为等边三角形,则A2点的坐标为()2﹣y=×,,,得k=y=a,,,得(a=±.∴,=215.(3分)(2012•鄂州)在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D 的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2012个正方形的面积为()B.(=AB=AD=BC=,==B=B=(=,×===(())(二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上)16.(3分)(2012•六盘水)分解因式:2x2+4x+2=2(x+1)2.17.(3分)(2012•六盘水)当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为cm.AB=(AD=AB=cm故答案为:.18.(3分)(2013•济宁三模)化简的结果是m+1.)÷()÷••19.(3分)(2013•市中区一模)在一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球,记下颜色后,再放回暗箱,通过大量的重复试验后发现,摸到红球的频率稳定在25%.那么估计a大约有12个.解:由题意可得,×20.(3分)(2013•济宁三模)如图,在矩形ABCD中,AB=3,AD=4,P是AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF=.=5=,=﹣﹣﹣(=﹣﹣﹣(=,=21.(3分)(2006•黄冈)将边长为8cm的正方形ABCD的四边沿直线l向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A所经过的路线的长是16π+8πcm.=4=4=4+8三、解答题(本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤)22.(7分)(2013•市中区一模)(1)计算:(2)解方程:×﹣23.(7分)(2013•济宁三模)(1)一个人由山底爬到山顶,需先爬45°的山坡200m,再爬30°的山坡300m,求山的高度(结果可保留根号).(2)如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等.证明:××=100100,24.(8分)(2011•广安)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?25.(8分)(2011•烟台)“五•一”假期,某公司组织部分员工分别到A、B、C、D四地旅游,公司按定额购买了前往各地的车票.下图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:(1)若去D地的车票占全部车票的10%,请求出D地车票的数量,并补全统计图;(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小胡抽到去A地的概率是多少?(3)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?=∴小王掷得数字比小李掷得数字小的概率为=则小王掷得数字不小于小李掷得数字的概率为=26.(9分)(2013•济宁三模)如图,反比例函数(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=.(1)求k的值;(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数(x>0)的图象恰好经过DC的中点E,求直线AE的函数表达式;(3)若直线AE与x轴交于点M、与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论并说明理由.AOB=,∴,,在双曲线上,∴点),则,解得,∴直线理由:在表达式y=),AN=…EC=EM=27.(9分)(2012•乐山)如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD=时,求线段BG的长.AM=AB=,然后利用AD=DE=AE=AN=FN=AE=1=4FCN=.=tan.AM=AB=.﹣,BM=...CG=BG=28.(9分)(2013•济宁三模)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A (1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.)=,即=)=,即=)=,即=)或(。

济南2013 初三数学中考模拟试题及参考答案评分标准

济南2013  初三数学中考模拟试题及参考答案评分标准

BCD A第12题图第13题图第14题图2012年学业水平阶段性调研测试(2012.5)数 学 试 题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为45分;第Ⅱ卷共6页,满分为75分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共45分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. 如图,在数轴上点A 表示A. -2B. 2C. ±2D. 0 2. 用科学记数法表示数0.031,其结果是A. 3.1×102B. 3.1×210-C. 0.31×110-D. 31×103 3. 下面的图形中,既是轴对称图形又是中心对称图形的是4. 下列说法中,正确的是A. 为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B. 在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C. 某同学连续10次抛掷质量均匀的硬币,3次正面向上,因此正面向上的概率是30%D. “2013年10月十艺节将在济南举行,这期间的每一天都是晴天”是必然事件 5. 平面直角坐标系中,与点(2,-3)关于原点中心对称的点是A.(-3,2)B.(3,-2)C.(-2,3)D.(2,3)6. 将如图所示的箭头缩小到原来的217. 下列运算正确的是A .(1)1x x --+=+BC .2|2=D .222()a b a b -=- 8. 下列分式是最简分式的 A .ba a 232 B . 22ba b a ++ C .aa a 32- D .222ba ab a --9. 当实数x y =4x +1中y 的取值范围是 A. y ≥-7 B. y ≥9 C. y >9 D. y ≤9 10. 如果等腰三角形两边长是6和3,那么它的周长是 A. 9 B. 12 C. 15或12 D. 15 11. 抛物线y =ax 2+bx -3过点(2,4),则代数式8a +4b +1的值为A. -2B. 2C. 15D. -1512. 在一次女子 800米跑测试中,同时起跑的小莹和小梅所跑的路程S (米)与所用时间t (秒)之间的函数图象分别为线段OA 和折线OBCD ,下列说法正确的是A .小莹的速度随时间的增大而增大B .小梅的平均速度比小莹的平均速度大C .在起跑后180秒时,两人相遇D .在起跑后50秒时,小梅在小莹的前面13. 如图所示,在矩形ABCD 中,AB BC =2,对角线AC 、BD 相交于点O ,过点O 作OE垂直AC 交AD 于点E ,则AE 的长是 A.B. C. 1 D.3214. 如图,E 、F 、G 、H 分别是BD 、BC 、AC 、AD 的中点,且AB =CD .下列结论:①EG ⊥FH ;②四边形EFGH 是矩形;③HF 平分∠EHG ;④EG =12( BC -AD );⑤四边形EFGH 是菱形.其中正确的个数是 A. 1B. 2C. 3D. 415. 如图,⊙O 1的半径为1,正方形ABCD 的边长为6,点O 2为正方形ABCD 的中心,O 1O 2垂直AB 于P 点,O 1O 2=8.若将⊙O 1绕点P 按顺时针方向旋转360°,在旋转过程中,⊙O 1与正方形ABCD 的边只有一个公共点的情况一共出现( )A BD第6题图 第15题图O A PBC第23题图2第23题图1 A. 3次 B. 5次C. 6次D. 7次第Ⅱ卷(非选择题 共75分)注意事项:1.第Ⅱ卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔在试卷上作答. 2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.)16. 请你在横线上写一个负无理数_______ . 17. 方程210x x +-=的解为____________________.18. 在一次爱心捐款中,某班有40名学生拿出自己的零花钱,有捐5元、10元、20元、50 元的.如图所示反映了不同捐款的人数比例,那么这个班的学生平均每人捐款________元.19. 有3人携带会议材料乘坐电梯,这3人的体重共210kg ,毎梱材料重19kg .电梯最大负荷为1050kg ,则该电梯在此3人乘坐的情况下最多还能搭载_______捆材枓. 20. 在一次夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,先沿正东方向走了200米到达B 地,再沿北偏东30°方向走,恰能到达目的地C (如图),由此可知,B 、C 两地相距_______米.21. 如图,在梯形ABCD 中,AD ∥BC ,AD =6,BC =16,E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t = 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.三、解答题(本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤.)22.(1)(本小题满分3分) 分解因式:227183m m -+.22.(2) (本小题满分4分) 一次函数的图象经过(-1,0)、(2,3)两点,求其函数解析式.23.(1) (本小题满分3分)某路段改造工程中,需沿AC 方向开山修路(如图1所示),为了加快施工进度,要在小山的另一边同时施工.从AC 上的一点B 取∠ABD =140°,BD =1000米,∠D =50°.为了使开挖点E 在直线AC 上,那么DE 的距离应该是多少米?(供选用的三角函数值:sin50°≈0.7660,cos50°≈0.6428,tan50°≈1.192)23.(2) (本小题满分4分)如图,PA 、PB 是⊙O 的切线,AC 是⊙O 的直径,∠P=50°. 求∠BOC 的度数.24. (本小题满分8分)第20题图第18题图第21题图第26题图顺时针第16届亚运会将在中国广州举行,小李预定了两种价格的亚运会门票,其中甲种门票共花费280元,乙种门票共花费300元,甲种门票比乙种门票多2张,乙种门票价格是甲种门票价格的1.5倍,求甲种门票的价格?25. (本小题满分8分)一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.求棋子走到哪一点的可能性最大并求出棋子走到该点的概率.26. (本小题满分9分)如图,二次函数y= -x2+ax+b的图象与x轴交于A(-21,0)、B(2,0)两点,且与y轴交于点C.(1) 求该拋物线的解析式,并判断△ABC的形状;(2) 在x轴上方的拋物线上有一点D,且以A、C、D、B四点为顶点的四边形是等腰梯形,请直接写出D点的坐标;(3) 在拋物线上存在点P,使得以A、C、B、P四点为顶点的四边形是直角梯形,求出P点的坐标.27. (本小题满分9分)数学试题第3页(共6页)第27题图如图,点B的坐标是(4,4),作BA⊥x轴于点A,作BC⊥y轴于点C,反比例函数kyx(k>0)的图象经过BC的中点E,与AB交于点F,分别连接OE、CF,OE与CF交于点M,连接AM.⑴求反比例函数的函数解析式及点F的坐标;⑵你认为线段OE与CF有何位置关系?请说明你的理由.⑶求证:AM=AO.28. (本小题满分9分)在□ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.2012年学业水平阶段性调研测试数学试题参考答案与评分标准16. 正确即可得分);17. 18. 16;19. 44;20. 200;21. 2或143三、解答题22.解:(1) 227183m m-+=23(961)m m-+·························································1分=23(31)m- ·····················································································3分(2)设一次函数解析式为y kx b=+, ························································1分则23k bk b-+=⎧⎨+=⎩,··················································································2分解得11kb=⎧⎨=⎩, ·····················································································3分∴一次函数解析式为1y x=+. ································································4分23. 解:(1)∵∠ABD=140°,∠D=50°,∴∠E=∠ABD-∠D=140°-50°=90°, ················································1分∴DEBD=cos∠D,即1000DE=0.6428, ······················································2分解得DE=642.8米. ···········································································3分(2) ∵P A、PB是⊙O的切线,∴∠OAP=∠OBP=90°, ·······································································1分∵∠P=50°,∴∠AOB=360°-90°-90°-50°·············································2分=130°, ····························································································3分又∵AC是⊙O的直径,∴∠BOC=180°-130°=50°. ·································································4分24.解:设甲种门票的价格为x元,·························································1分根据题意,得28030021.5x x-=,·······························································5分解得x=40.·······················································································6分经检验,x=40是原方程的解,且符合题意,·············································7分答:甲种门票的价格为40元. ······························································8分25.解:列表得····································· 6分共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占2种,摸出的两个小球标号之和是6的占1种;所以棋子走到E点的可能性最大,························································· 7分棋子走到E点的概率=3193=. ······························································ 8分26.解:(1) 根据题意,将A(-12,0),B(2,0)代入y= -x2+ax+b中得1142420a ba b⎧--+=⎪⎨⎪-++=⎩,解得321ab⎧=⎪⎨⎪=⎩,∴该拋物线的解析式为y= -x2+32x+1, ··················································· 1分∴点C的坐标为(0,1),······································································ 2分∵AC BC,AB=OA+OB=12+2=52,∴AC2+BC2=54+5=254=AB2,∴△ABC是直角三角形. ······································································· 3分(2)D(32,1). ······················································································ 4分(3)可求得直线BC的解析式为y= -21x+1,直线AC的解析式为y=2x+1, ······· 5分①若以BC为底边,则BC//AP,设直线AP的解析式为y= -21x+b,把点A(-21,0)代入直线AP的解析式,求得b= -41,∴直线AP的解析式为y= -21x-41, ······················································ 6分∵点P既在拋物线上,又在直线AP上,∴点P的纵坐标相等,即-x2+23x+1= -21x-41,解得x1=25,x2= -21(舍去)。

山东省济南市历下区2013年中考一模数学试题及答案

山东省济南市历下区2013年中考一模数学试题及答案

历下区2013年第一次模拟考试数学试题第Ⅰ卷(选择题 共45分)一、选择题(本大题共15个小题,每题3分,共45分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.气温2℃比气温-18℃高( )A .16℃B .20℃C .-16℃D .-20℃ 2.若x 与y 互为相反数,则x +y 的值为( )A .0B .1C .-1D .1± 3.在平面直角坐标系中,点M (-3,2)关于原点对称的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.如图所示,该几何体的主视图应为( )5.下列各运算中,计算正确的是( )A .632a a a ÷= B .235(2)6x x = C .0(5)0-= D=6.已知⊙1O 的半径是5cm ,⊙2O 的半径是3 cm,21O O =8 cm,则⊙1O 和⊙2O 的位置关系是( )A .外离B .外切C .内切D .相交 7.不等式组312840x x ->⎧⎨-≤的解集在数轴上表示为( )8.化简2124aa a÷--的结果是() A .2a a + B .2a a + C .2a a - D . 2a a-9.以下问题,不适合用全面调查的是( )A .了解全班同学每周体育锻炼的时间B .鞋厂检查生产的鞋底能承受的弯折次数C .学校招聘教师,对应聘人员面试D .黄河中学调查全校753名学生的身高 10.一组数据为:2,2,3,4,5,5,5,6,则下列说法正确的是( ) A .这组数据的众数是2 B .这组数据的平均数是3 C .这组数据的极差是4 D .这组数据的中位数是5第4题图A B C D1 0 2A . 1 0 2B . 12C .1 02D .第20题图第12题图l 1 1第13题图l 2211.对于一次函数y =-x +4,下列结论错误的是( )A . 函数值随自变量的增大而减小B .点(4-a, a )在该函数的图象上C .函数的图象与直线y =x +2垂直D .函数的图象与坐标轴围城的三角形的周长是4+12.如图,在⊙O 中,弦AB ∥CD ,若︒=∠40ABC ,则=∠BOD ( )A. ︒20 B. ︒40 C. ︒50 D. ︒80 13.已知:直线l 1∥l 2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于( )A .30°B .35°C .40°D .45° 14.如图,在矩形ABCD 中,3=AB ,BC=1. 现将矩形ABCD 绕 点C 顺时针旋转90°得到矩形A B CD ''',则AD 边扫过的 面积(阴影部分)为( )A . 21π B. 31π C.41π D. 51π15.如图,直线 4y x =- 交x 轴、y 轴于A 、B 两点,P 是反比例函数2(0)y x x=>图象上位于直线下方的一点,过点P作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F ,则AF ·BE =( ) A.2 B.4 C. 6 D. 第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6个小题,每题3分,共18分,把答案填在题中的横线上) 16.据报道,截止2013年1月济南市机动车拥有量约1400000辆.将数1400000用科学记数法表示为____ ___. 17.分解因式:2x x +=____ ___.18.当x _________时,x -2在实数范围内有意义.19.某公司前年缴税400万元,今年缴税484万元,该公司缴税的年平均增长率为 .A BCD O第23(1)题图第21题图第23(2)题图20.小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小 正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是____ .21.如图,在平面直角坐标系中有一边长为1的正方形OABC ,边 OA 、OC 分别在x 轴、y 轴上,如果以对角线OB 为边作第二个正方形OBB 1C 1,再以对角线OB 1为边作第三个正方形OB 1B 2C 2,照此规律作下去,则正方形OB 2012B 2013C 2013的对称中心的坐标为____ ___.三、解答题:(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤) 22.(本小题满分7分)(142--cos30° (2)解方程:xx x -=+--2312323.(本小题满分7分)(1)如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于O ,AC =BD .求证:△OAB 是等腰三角形.(2)某路口设立了交通路况显示牌(如图).已知立杆AB 高度是3m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°.求路况显示牌BC 的高度.24.(本小题满分8分)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少25.(本小题满分8分)有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积.(1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?26.(本小题满分9分)在菱形ABCD 中,∠ABC=60°,E 是对角线AC 上一点,F 是线段BC 延长线上一点,且CF =AE ,连接BE 、EF .(1)若E 是线段AC 的中点,如图,求证:BE=EF ;(2)若E 是线段AC 或AC 延长线上的任意一点,其它条件不变,如图2、图3,线段BE与EF 有怎样的数量关系,直接写出你的猜想;并选择一种情况给予证明.27.(本小题满分9分)如图,设直线l 2:y = -2x +8与x 轴相交于点N ,与直线l 1相交于点E (1,a ),双曲线y=x k (x >0)经过点E ,且与直线l 1相交于另一点F (9,32) . (1)求双曲线解析式及直线l 1的解析式;(2) 点P 在直线l 1上,过点F 向y 轴作垂线,垂足为点B ,交直线l 2于点H ,过点P 向x 轴作垂线,垂足为点D ,与FB 交于点C . ①请直接写出当线段PH 与线段PN 的差最大时点P 的坐标;②当以P 、B 、C 三点为顶点的三角形与 △AMO 相似时,求点P 的坐标.第27题图第26题图28.(本小题满分9分)已知:如图,抛物线)0(22≠+-=a c ax ax y 与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 的坐标为(4,0). (1)求该抛物线的解析式;(2)点Q 、E 同时从B 点出发,点E 以每秒1个单位的速度沿线段BC 向点C 运动,点Q 以每秒2个单位的速度沿线段BA 向点A 运动,当其中一点到达终点时另一点也停止运动,连接CQ 、EQ ,求△CQE 的最大面积;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为 (2,0),问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请简明说明理由.历下区2013年第一次模拟考试数学试题参考答案22、(1) 解:原式4……………………………………………2分=4………………………………………………3分(2)解:方程两边同乘以()2-x ,得:()323-=-+-x x …………………1分∴ x=1…………………………………………………………2分 经检验,x =1是原方程的解.………………………………………3分所以,原方程的解为1x = ······················ 4分23、(1)证明:(1)∵AC ⊥BC ,BD ⊥AD ∴ ∠D =∠C =90︒ ………… (1分)在Rt △ACB 和 Rt △BDA 中,AB = BA ,AC =BD , ∴ △ACB ≌ △BDA (HL )………(2分)∴∠C AB =∠D BA ∴△OAB 是等腰三角形. ……… (3分) (2)解:∵在Rt △ADB 中,∠BDA =45°,AB =3 ∴DA =3 …………1分在Rt △ADC 中,∠CDA =60°∴tan60°=CAAD …………2分∴CA =…………………………………………3分 ∴BC=CA -BA =(3) 米 ………………………4分24解:设甲种商品应购进x 件,乙种商品应购进y 件. …………1分根据题意,得 1605101100.x y x y +=⎧⎨+=⎩ …………5分解得:10060.x y =⎧⎨=⎩………………………………7分答:甲种商品购进100件,乙种商品购进60件. …………8分25、解:(1)列表如下:………………………………………………………(3分)总结果有12种,其中积为6的有2种,…………4分∴P (积为6)=21126=.……………(5分) (2)游戏不公平,…………………6分.因为积为偶数的有8种情况,而积为奇数的有4种情况.……………8分 26.证明:(1)∵四边形ABCD 为菱形,∴AB=BC ,…………1分 又∵∠ABC=60°,∴△ABC 是等边三角形,…………2分 ∵E 是线段AC 的中点,∴∠CBE=21∠ABC=30°,AE=CE ,∵AE=CF ,∴CE=CF ,∴∠F=∠CEF ,…………3分 ∵∠F+∠CEF=∠ACB=60°,∴∠F=30°,∴∠CBE=∠F ,∴BE=EF ;…………4分 (2)图2:BE=EF .图3:BE=EF .…………5分图2证明如下:过点E 作EG ∥BC ,交AB 于点G ,∵四边形ABCD 为菱形,∴AB=BC ,又∵∠ABC=60°,∴△ABC 是等边三角形,∴AB=AC ,∠ACB=60°,又∵EG ∥BC ,∴∠AGE=∠ABC=60°……6分又∵∠BAC=60°,∴△AGE 是等边三角形,∴AG=AE ,…………7分 ∴BG=CE ,又∵CF=AE ,∴GE=CF ,…………8分又∵∠BGE=∠ECF=120°,∴△BGE ≌△ECF (SAS ),∴BE=EF ;……9分. 图3证明与图2类似,请酌情赋分。

2013济南中考数学模拟试题9

2013济南中考数学模拟试题9

A第8题图2013学业水平考试模拟考试数 学 试 题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.考试时间120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用2B 铅笔涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的地方.3.选择题选出答案后,用2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效.4.数学考试不允许使用计算器,考试结束后,应将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果+10%表示“增加10%”,那么“减少8%”可以记作 A .-18% B .-8% C .+2% D .+8%2.如图,右面几何体的俯视图是3.在2008年北京奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为84.610⨯帕的钢材,那么84.610⨯的原数为A .4 600 000B .46 000 000C .460 000 000D .4 600 000 000 4.下列说法或运算正确的是A .1.0×102有3个有效数字B .222()a b a b -=-C .235a a a +=D .a 10÷a 4= a 65.已知反比例函数y =2x,则下列点中在这个反比例函数图象的上的是A.(-2,1)B.(1,-2)C.(-2,-2)D.(1,2) 6.下列说法错误的是A 2B 是分数CD . 是无理数 7.在10到99这些连续正整数中任意选一个数,其中每个数被选出的机会相等,求选出的数其十位数字与个位数字的和为9的概率A. 908B. 909C. 898D. 899 8.如图,在△ABC 中,∠C =90°.若BD ∥AE ,∠DBC =20°,则∠CAE的度数是A .40°B .60°C .70°D .80°A. B. C.D. 第2题图A 1B 1C 12A 3B 2B 3C 2C 3 第14题图ABCDOEF第12题图9. 已知两圆的半径分别为R 和r (R >r ),圆心距为d .如图所示,若数轴上的点A 表示R -r ,点B 表示R +r ,当两圆外离时,表示圆心距d 的点D 所在的位置是A .在点B 右侧 B .与点B 重合C .在点A 和点B 之间D .在点A 左侧10.已知21x y =⎧⎨=⎩是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则2m n -的算术平方根为A .4 B. 2 C . 2 D .±211.如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是 A . -3,2 B. -3,-2 C. 3,2 D. 3,-212.如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD 于点O ,AE ⊥BC ,DF ⊥BC ,垂足分别为E 、F ,AD =4,BC =8,则AE +EF 等于A .9B .10C .11D .1213.已知抛物线2y ax bx c =++(a <0)过A (2-,0)、O (0,0)、B (3-,1y )、C (3,2y )四点,则1y 与2y 的大小关系是A .1y >2yB .1y 2y =C .1y <2yD .不能确定14.如图,小红作出了边长为1的第1个正△A 1B 1C 1,算出了正△A 1B 1C 1的面积,然后分别取△A 1B 1C 1三边的中点A 2,B 2,C 2,作出了第2个正△A 2B 2C 2,算出了正△A 2B 2C 2的面积,用同样的方法,作出了第3个正△A 3B 3C 3,算出了正△A 3B 3C 3的面积……,由此可得,第8个正△A 8B 8C 8的面积是 A 71()2B 81()2C 71()4 D 81()415.在一次自行车越野赛中,甲乙两名选手行驶的路程y (千米)随时间x (分)变化的图象(全程)如图所示,根据图象判定下列结论不正确...的是 A .甲先到达终点 B .前30分钟,甲在乙的前面 C.第48分钟时,两人第一次相遇D .这次比赛的全程是28千米第9题图第15题图第20题图第21题图A PEDCB第Ⅱ卷(非选择题 共75分)二、填空题:本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.16.分解因式:229121m n -=____________________________.17.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是_______.18.如图所示,一个宽为2 cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ),那么该光盘的直径是 cm..19.如图,1∠的正切值等于. 20.已知函数y 1=x 2与函数y 2=-12x +3的图象大致如图,若y 1<y 2,则自变量x 的取值范围是_______________21.已知:如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE .过点A 作AE 的垂线交ED 于点P .若1AE AP ==, PB =.下列结论:①△APD ≌△AEB ;②点B 到直线AE ;③EB ED ⊥;④1APD APB S S +=+V V 4ABCD S =+正方形其中正确的结论是__________________.(将正确结论的序号填在横线上.)第18题图第22题图 AB C D FE 第23题图 三、解答题:本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤.22. (本小题满分7分)⑴解不等式组122 3x x x +⎧⎪-⎨+⎪⎩>0 ≤⑵如图,将直角边长为6的等腰Rt △AOC 放在如图所示的平面直角坐标系中,点O 为坐标原点,点C 、A 分别在x 、y 轴的正半轴上,一条抛物线经过点A 、C 及点B (–3,0).求该抛物线的解析式.23. (本小题满分7分)⑴解方程:33122x x x-+=--⑵如图,分别过点C 、B 作△ABC 的BC 边上的中线AD 及其延长线的垂线,垂足分别为E 、F .求证:BF =CE .24. (本小题满分8分)为了增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:⑴在这次调查中共调查了多少名学生?⑵求户外活动时间为1.5小时的人数,并补充频数分布直方图; ⑶求表示户外活动时间 1小时的扇形圆心角的度数;⑷本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少.25. (本小题满分8分)某商场为缓解“停车难”问题,拟建造地下停车库,如图所示是该地下停车库坡道入口的设计示意图,其中, AB ⊥BD ,∠BAD =18°,C 在BD 上,BC =0.5m .根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD 的长就是所限制的高度,而小亮认为应该以CE 的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(结果精确到0.1m )参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32,sin72°≈0.95,cos72°≈0.31.第25题图26. (本小题满分9分)为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.⑴分别求出y1、y2与x之间的函数关系式;⑵若市政府投资140万元,最多能购买多少个太阳能路灯?图2AD OBC 21 MN图1AD BMN1 2图3AD OBC21MNO 第27题图27. (本小题满分9分)在图1至图3中,直线MN 与线段AB 相交于点O ,∠1 = ∠2 = 45°. ⑴如图1,若AO = OB ,请写出AO 与BD 的数量关系和位置关系; ⑵将图1中的MN 绕点O 顺时针旋转得到图2,其中AO = OB . 求证:AC = BD ,AC ⊥ BD ;⑶将图2中的OB 拉长为AO 的k 倍得到图3,求ACBD的值.28. (本小题满分9分)如图,在直角梯形ABCD 中,AD ∥BC ,90B ∠=︒,AD = 6,BC = 8,33=AB ,点M 是BC 的中点.点P 从点M 出发沿MB 以每秒1个单位长的速度向点B 匀速运动,到达点B 后立刻以原速度沿BM 返回;点Q 从点M 出发以每秒1个单位长的速度在射线MC 上匀速运动.在点P ,Q 的运动过程中,以PQ 为边作等边三角形EPQ ,使它与梯形ABCD 在射线BC 的同侧.点P ,Q 同时出发,当点P 返回到点M 时停止运动,点Q 也随之停止. 设点P ,Q 运动的时间是t 秒(t >0).⑴设PQ 的长为y ,在点P 从点M 向点B 运动的过程中,写出y 与t 之间的函数关系式(不必写t 的取值范围).⑵当BP = 1时,求△EPQ 与梯形ABCD 重叠部分的面积.⑶随着时间t 的变化,线段AD 会有一部分被△EPQ 覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接..写出t 的取值范围;若不能,请说明理由.2013年学业水平考试模拟考试 数学试题参考答案与评分标准二、填空题16. (311)(311)m n m n +- 17. 2100 18. 10 19.1320.2x <-或32x > 21. ①③⑤三、解答题22.解:⑴ 解不等式①得1x >-, ··························································· 1分P Q第28题图(备用图)解不等式②得x ≤2, ···························································· 2分 ∴不等式组的解集为-1<x ≤2. ·············································· 3分⑵由题意知:A (0,6),C (6,0), ······················································ 5分 设经过点A 、B 、C 的抛物线解析式为y =ax 2+bx +c ,则:60930366c a b c a b c =⎧⎪=-+⎨⎪=++⎩··········································································· 6分解得:1316a b c ⎧=-⎪⎪=⎨⎪=⎪⎩∴该抛物线的解析式为2163y x x =-++. ·················································· 7分23.⑴解:33122x x x -+=--, 33122x x x --=---,33122x x x -+=---,12xx =--,········································································· 1分 x =1,·················································································· 2分 经检验,x =1是原方程的根. ·································································· 3分 ⑵∵CE ⊥AF ,FB ⊥AF , ∴∠DEC =∠DFB =90°, ································································ 4分 又∵AD 为BC 边上的中线,∴BD =CD , 且∠EDC =∠FDB (对顶角相等) ·································· 5分 ∴△BFD ≌△CDE (AAS ), ································································· 6分 ∴BF =CE . ······················································································· 7分 24.解:(1)调查人数=10÷20%=50(人); ·············································· 1分 (2)户外活动时间为1.5小时的人数=50⨯24%=12(人);·························· 2分 补全频数分布直方图; ······································································· 3分 (3)表示户外活动时间1小时的扇形圆心角的度数=2050⨯360 o =144 o ; ········ 4分 (4)户外活动的平均时间=100.520112 1.5821.1850⨯+⨯+⨯+⨯=(小时). ····· 5分 ∵1.18>1 ,∴平均活动时间符合上级要求; ························································ 6分 户外活动时间的众数和中位数均为1. ···················································· 8分 25.解:小亮说的对. ············································································· 1分 在△ABD 中,∠ABD =90°,∠BAD =18°,BA =10,∴tan∠BAD=BDBA··············································································2分∴BD=10×tan 18° ·············································································3分∴CD=BD―BC=10×tan 18°―0.5…………………………………………………4分在△ABD中,∠CDE=90°―∠BAD=72 ··············································5分∵CE⊥ED∴sin∠CDE=CECD……………………………………………………………………6分∴CE=CD×sin∠CDE ·········································································7分=sin72 ×(10×tan 18 ―0.5)≈2.6(m)答:CE为2.6m………………………………………………………………………8分25. 解:(1)由题意可知,当x≤100时,购买一个需5000元,故15000y x=; ···································1分当x≥100时,因为购买个数每增加一个,其价格减少10元,但售价不得低于3500元/个,所以x≤5000350010-+100=250,····························································2分即100≤x≤250时,购买一个需5000-10(x-100)元,故y1=6000x-10x2; ····3分当x>250时,购买一个需3500元,故13500y x =;································4分2500080%4000y x x=⨯=. ·····························································5分(2) 当0<x≤100时,y1=5000x≤500000<1400000;································6分当100<x≤250时,y1=6000x-10x2=-10(x-300)2+900000<1400000; ·······7分所以,由35001400000x=,得400x=;·············································8分由40001400000x=,得350x=.故选择甲商家,最多能购买400个路灯. ················································9分27. 解:(1)AO = BD,AO⊥BD; ·······················································2分⑵证明:如图4,过点B作BE∥CA交DO于E, ·····································3分∴∠ACO = ∠BEO.又∵AO = OB,∠AOC = ∠BOE,∴△AOC ≌ △BOE . ∴AC = BE . 又∵∠1 = 45°,∴∠ACO = ∠BEO = 135°. ∴∠DEB = 45°. ∵∠2 = 45°,∴BE = BD ,∠EBD = 90°.∴AC = BD . ···················································································· 4分 延长AC 交DB 的延长线于F , ∵BE ∥AC , ∴∠AFD = 90°,∴AC ⊥BD . ······················································································ 5分 ⑶如图5,过点B 作BE ∥CA 交DO 于E , ·············································· 6分 ∴∠BEO = ∠ACO . 又∵∠BOE = ∠AOC ,∴△BOE ∽ △AOC . ····································7分 ∴AOBOAC BE =. ··············································8分 又∵OB = kAO ,由(2)的方法易得 BE = BD , ∴k ACBD=. ····················································································· 9分 28.解:(1)y = 2t ; ············································································· 1分 (2)当BP = 1时,有两种情形:①如图1,若点P 从点M 向点B 运动, ·················································· 2分 有 MB = BC 21= 4,MP = MQ = 3,∴PQ = 6. 连接EM ,∵△EPQ 是等边三角形,A D OB C2 1 MNE FA OBC1 D 2M NE图2∴EM ⊥PQ .∴33=EM .∵AB = 33,∴点E 在AD 上. ···························································· 3分 ∴△EPQ 与梯形ABCD 重叠部分就是△EPQ ,其面积为39. ··················· 4分 ②若点P 从点B 向点M 运动, ······························································ 5分 由题意得 5=t .PQ = BM + M Q -BP = 8,PC = 7.设PE 与AD 交于点F ,QE 与AD 或AD 的延长线交于点G ,过点P 作PH ⊥AD 于点H ,则HP = 33,AH = 1.在Rt △HPF 中,∠HPF = 30°,∴HF = 3,PF = 6. ∴FG = FE = 2. 又∵FD = 2,∴点G 与点D 重合, ·········································································· 6分 如图2.此时△EPQ 与梯形ABCD 的重叠部分就是梯形FPCG ,其面积为3227.······································································································· 7分 (3)能. ··························································································· 8分 4≤t ≤5. ···························································································· 9分图1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学试题(一)一、选择题(共15小题,每小题3分,满分45分) 1.-2的相反数是( )A. 2B. 2-C.12 D. 12- 2.如图,直线AB 、CD 相交于点E ,DF//AB .若100AEC ∠=︒, 则D ∠等于( )A .70°B .80°C .90°D .100°3.我国是世界上严重缺水的国家之一,目前我国年可利用的淡水资源总量为27 500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27 500这个数用科学记数法表示为( ) A. 427510⨯. B. 52.7510⨯C. 42.810⨯D. 327.510⨯4.下列事件为不可能事件的是( ). A. 某射击运动员射击一次,命中靶心 B. 掷一次骰子,向上的一面是5点C. 找到一个三角形,其内角和为360°D. 经过城市某一有交通信号灯的路口,遇到红灯 5.下列计算正确的是( )A.532a a a =+B. 236a a a =÷ C. 13422=-x xD. ()363282y x yx -=-6.如图,下列四个几何体中主视图与其它三个不同的几何体是( ).7.化简())24(332y x y x ---结果为( )A .y x 310--B .y x 310+-C .y x 910-D .y x 910+ 8.已知|x |=3,|y |=7,且 xy <0,则x y +的值等于 ( )A .10B. 4C. 4-D. 4或4-9. 如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,矩形ABCD 内的一个动点P 落在阴影部分的概率是( ) A .51B.41 C.31D.103 10. 如图,等边三角形OAB 的顶点O 在坐标原点,顶点A 在x 轴上,OA=2,将等边三角形OAB 绕原点顺时针旋转105°至OA′B′的位置,则点B′的坐标为( )A .,B .()C .(D ., C A E BFD第2题第9题图A B C DOMEFBCADG第15题图11.已知一次函数bkxy+=的图象,如图所示,当0<x时,y的取值范围是()A. 0>y B. 0<y C. 02<<-y D. 2-<y12.如图,AB是⊙O的直径,AC、BC是⊙O的弦,PC是⊙O的切线,切点为C,∠ACP =55°,∠BAC那么等于()A.35°B.45°C.55°D.65°13. 已知二次函数2y ax bx c=++的图象如图所示,那么一次函数y bx c=+和反比例函数ayx=在同一平面直角坐标系中的图象大致是()14. 如图,等边△ABC的边长为4,M为BC上一动点(M不与B、C重合),若EB=1,∠EMF=60°,点E在AB边上,点F在AC边上.设BM=x,CF=y,则当点M从点B运动到点C时,y关于x的函数图象是()A B C D15. 如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.下列结论:①AE=CG,②AE⊥CG,③DM∥GE,④OM=OD,⑤∠DME=45°。

正确结论的个数为()A.2个 B.3个 C.4个 D.5个第Ⅱ卷非选择题(75分)二、填空题(共6小题,每小题3分,满分18分)16.分解因式:2mx2-2m= .17.若关x的方程220x x m-+=有一根为3,则m=_____18.商店某天销售了14件衬衫,其领口尺寸统计如下表:则这14件衬衫领口尺寸的众数是________cm,平均数是________cm.19.分式方程xx 321=-的解是 . 20.如图,在□ABCD 中,BD 为对角线,E 、F 分别是AD ,BD 的中点,连接EF .若EF =3,则CD 的长为21. 如图,已知菱形ABCD 的对角线AC=2,∠BAD=60°,BD 边上有2013个不同的点122013,,,p p p ⋯,过(1,2,i p i =⋯,2013)作i i PE AB ⊥于i E ,i i PF AD ⊥于i F ,则111122222013201320132013PE PF PE PFP E P F++++⋯++的值为_______________.三、解答题(共7小题,共57分,解答应写出文字说明,证明过程或演算步骤) 22.(1)计算:024cos 45((1)π++-(2)先化简,再求值:2221212211a a a a a a a -+∙÷+-+-,其中a 为整数且32a -<<.23.(1)如图,ABCD 是正方形,G 是BC 上(除端点外)的任意一点,DE⊥AG 于点E ,BF⊥AG 于点F .求证:AE=BF(2)如图,□ABCD 中,BCD ∠的平分线CE 交边AD 于E ,ABC ∠的平分线BG 交CE 于F ,交AD 于G .若AB=3,BC=5,求EG 的长。

A E F G24. 某中学组织全校4 000名学生进行了民族团结知识竞赛.为了解本次知识竞赛的成绩分布情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如图6的频数分布表和频数分布直方图(不完整).请根据以上提供的信息,解答下列问题: (1)补全频数分布表; (2)补全频数分布直方图;(3)上述学生成绩的中位数落在哪一组范围内?(4)学校将对成绩在90.5~100.5分之间的学生进行奖励,请估计全校4 000名学生中约有多少名获奖?25. 庆华中学为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元.购买2个足球和5个篮球共需500元. (1)购买一个足球、一个篮球各需多少元?(2)根据庆华中学的实际情况,需从该体育用品商店一次性购买足球和篮球共100个.要求购买足球和篮球的总费用不超过6000元,这所中学最多可以购买多少个篮球?图6 /分26.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数kyx(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=12.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y 轴正半轴交于点H、G,求线段OG的长.(2)当点E是AB的中点时,求线段DF的长度;(3)请计算射线EF经过点C时,AE的长度.28.在直角坐标系xoy中,已知点P是反比例函数)>0(32xxy 图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.(1)如图1,⊙P运动到与x轴相切时,设切点为K,试判断四边形OKPA的形状,并说明理由.(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:①求出点A,B,C的坐标.Q②在过A ,B ,C 三点的抛物线上是否存在点M ,使△MBP 的面积是菱形ABCP 面积的21.若存在,请直接写出所有满足条件的M 点的坐标,若不存在,试说明理由.A P 2y K O 图1九年级数学参考答案1-15:ABACD D BDBA DACAC 16、2m(x+1)(x-1) 17、-3 18、39;40 19、3 20、6 21、201322、(1)2(3分) (2)(4分)a -1a +2²a 2+2a a 2-2a +1÷1a 2-1 =a -1a +2²a a +2a -1÷1a +1a -1 =a -1a +2²a a +2a -12²(a +1)(a -1) =a (a +1)∵ a ≠±1、-2时分式有意义, 又 -3<a <2且a 为整数, ∴ a =0.∴ 当a =0时,原式=0³(0+1)=0 23、(1)证明:∵ABCD 是正方形,∴AB =DA 、AB ⊥AD 。

∵BF ⊥AG 、DE ⊥AG ,∴∠AFB =∠AED=90° 又∵∠BAF+∠DAE=90°,∠BAF+∠ABF=90°, ∴∠ABF=∠DAE ∴△ABF ≌△DAE ∴AE =BF(2)解:∵BG 平分∠ABC ∴∠ABG=∠CBG ∵□ABCD ∴AD ∥BC∴∠AGB=∠CBG ∴∠ABG=∠AGB ∴AG=AB=3同理:DE=DC=3 ∴EG=AG+DE-AD=1 24、(1)(3)80.5~90.5;(4)估计全校4 000名学生中获奖的约有4000³0.37=1480人. 25、【答案】解:设一个足球、一个篮球分别为x 、y 元,根据题意得⎩⎨⎧=+=+5005231023y x y x ,解得⎩⎨⎧==8050y x , ∴一个足球50元、一个篮球80元;(2)设买篮球m 个,则买足球(100-m )个,根据题意得 80m+50(100-m )≤6000,解得x ≤1333, ∵m 为整数,∴m 最大取33 ∴最多可以买33个篮球26解:(1)∵点E (4,n )在边AB 上, ∴OA =4, 在Rt △AOB 中,∵tan ∠BOA =, ∴AB =OA ³tan ∠BOA =4³=2;(2)根据(1),可得点B 的坐标为(4,2), ∵点D 为OB 的中点, ∴点D (2,1) ∴=1, 解得k =2,∴反比例函数解析式为y =,又∵点E (4,n )在反比例函数图象上, ∴=n , 解得n =;(3)如图,设点F (a ,2),∵反比例函数的图象与矩形的边BC 交于点F , ∴=2,∴CF=1,连接FG,设OG=t,则OG=FG=t,CG=2﹣t,在Rt△CGF中,GF2=CF2+CG2,即t2=(2﹣t)2+12,解得t=,∴OG=t=.(.第三问若改为:求折痕.....)............学生讲一讲..........GH..长,如何求解?一定要给27、解:(1)DF=7(2)解:如图1,过E点作EG⊥DF,∵E是AB的中点,∴DG=3,∴EG=AD=,∴∠DEG=60°,∵∠DEF=120°,∴t a n60°=,解得GF=3,∴DF=6;(3)如图2所示:过点B作BH⊥DC,,过点C作CM⊥AB交AB延长线于点M,则BH=AD=,∵∠ABC=120°,AB∥CD,∴∠BCH=60°,∴CH===1,BC===2,设AE=x,则BE=6-x,在Rt△ADE中,DE===,在Rt△EF M中,EF===,∵AB ∥CD ,∴∠EFD =∠BEC ,∵∠DEF =∠B =120°,∴△EDF ∽△BCE , ∴=,即=,解得x =2或5.∴AE=2或5.28、【答案】解:(1)∵⊙P 分别与两坐标轴相切,∴ PA ⊥OA ,PK ⊥OK .∴∠PAO =∠OKP =90°.又∵∠AOK =90°,∴ ∠PAO =∠OKP =∠AOK =90°.∴四边形OKPA 是矩形.又∵OA =OK ,∴四边形OKPA 是正方形.……………………2分(2)①连接PB ,设点P 的横坐标为x ,则其纵坐标为x 32.过点P 作PG ⊥BC 于G . ∵四边形ABCP 为菱形,∴BC =PA =PB =PC .∴△PBC 为等边三角形.在Rt△PBG 中,∠PBG =60°,PB =PA =x , PG =x 32. sin∠PBG =PB PGxx =.解之得:x =±2(负值舍去).∴ PGPA =B C=2.易知四边形OGPA 是矩形,PA =OG =2,BG =CG =1,∴OB =OG -BG =1,OC =OG +GC =3.∴ A (0),B (1,0) C (3,0).……………………5分设二次函数解析式为:y =ax 2+bx +c .据题意得:0930a b c a b c c ⎧++=⎪++=⎨⎪=⎩ O A P 2y =B C 图2GM解之得:a, b=, c∴二次函数关系式为:233y x x =-+.……………………7分②解法一:设直线BP 的解析式为:y =ux +v ,据题意得:2u v uv +=⎧⎪⎨+=⎪⎩ 解之得:uv=-∴直线BP的解析式为:y =-.过点A 作直线AM ∥PB ,则可得直线AM的解析式为:y =解方程组:2y y x x ⎧=+⎪⎨=⎪⎩得:110x y =⎧⎪⎨=⎪⎩;227x y =⎧⎪⎨=⎪⎩ 过点C 作直线CM ∥PB ,则可设直线CM的解析式为:y t =+.∴0=t .∴t =-∴直线CM的解析式为:y =-.解方程组:2y y x x ⎧=-⎪⎨=⎪⎩得:1130x y =⎧⎨=⎩ ;224x y =⎧⎪⎨=⎪⎩. 综上可知,满足条件的M 的坐标有四个,分别为:(0,(3,0),(4,(7,. 解法二:∵12PAB PBC PABC S S S ∆∆== ,∴A (0),C (3,0)显然满足条件.延长AP 交抛物线于点M ,由抛物线与圆的轴对称性可知,PM =PA .又∵AM∥BC,∴12PBM PBA PABCS S S∆∆==.∴点M.又点M的横坐标为AM=PA+PM=2+2=4.∴点M(4点(7,综上可知,满足条件的M的坐标有四个,分别为:(0,(3,0),(4,(7,.解法三:延长AP交抛物线于点M,由抛物线与圆的轴对称性可知,PM=PA.又∵AM∥BC,∴12PBM PBA PABCS S S∆∆==.∴点M.即2x x-+=.解得:10x=(舍),24x=.∴点M的坐标为(4.点(7,综上可知,满足条件的M的坐标有四个,分别为:(0,(3,0),(4,(7,.。

相关文档
最新文档