2016中考统计概率综合专项练习
2016重庆中考22题统计和概率

2016中考复习-------(22题)统计与概率统计与概率结合【命题规律与趋势】分析近8年11套重庆真题发现,共考查9次(08~09年未考查),属于近6年必考点。
扇形+条形背景考查6次,折线+扇形背景考查4次,题型都为解答题。
第一问设问包括:(1)求样本容量(4次);(2)补全统计图(条形6次,折线4次);(3)求百分比(2次);(4)求数据代表(平均数3次,中位数、众数1次,极差1次),第二问均考查概率的计算。
预计2016年仍会在解答题题位考查统计与概率结合题,设题背景很有可能是折线+扇形,且补全折线统计图。
1、重庆一中将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x <6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图如图1和频数分布直方图(不完整)如图2.规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生共有__________人,其中成绩合格的有___________人;(2)这部分男生成绩的中位数落在_______组,扇形统计图中D组对应的圆心角是_____度;(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.2.暑假期间,一些同学将要到A,B,C,D四个地方参加夏令营活动,现从这些同学中随机调查了一部分同学.根据调查结果,绘制成了如下两幅统计图:(1)扇形A的圆心角的度数为°,若此次夏令营一共有320名学生参加,则前往C地的学生约有人,并将条形统计图补充完整;(2)若某姐弟两人中只能有一人参加夏令营,姐弟俩决定用一个游戏来确定参加者:在4张形状、大小完全相同的卡片上分别写上1,1,2,3四个整数,先让姐姐随机地抽取一张,再由弟弟从余下的三张卡片中随机地抽取一张.若抽取的两张卡片上的数字之和小于3则姐姐参加,否则弟弟参加.用列表法或树状图分析这种方法对姐弟俩是否公平?3.为了减少部分学生以零食代替午饭的行为,学校食堂最近增加了“过水鱼”“茄角之恋”“花纤骨”“七星豌豆”这四种新菜.以下分别用A、B、C、D表示。
陕西省2016年中考《概率》专题复习训练有答案

复习说明:概率作为中考必考内容之一,除2014年选择题中增加一道3分题外,每年的题型比较固定,均为一道解答题。
2015年以前是8分题,自2015年开始变为7分。
概率这部分习题需要学生细心列表计算。
在复习中将树状图与列表两种方法都能让学生熟练掌握,在第2问解答中争取不丢分。
中考概率专题复习1.(2015•广东省,第20题,7分)老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,图是小明同学所画的正确树状图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.【答案】解:(1)补全树状图如答图:(2)∵由(1)树状图可知,小明同学两次抽到卡片上的数字之积的情况有9种:1,2,3,2,4,6,3,6,9,数字之积是奇数的情况有4种:1,3,3,9,∵小明同学两次抽到卡片上的数字之积是奇数的概率是4 9 .【考点】画树状图法;概率.【分析】(1)根据题意补全树状图.(2)根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.2.(2015•安徽省,第19题,10分)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.考点:列表法与树状图法..分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次传球后,球恰在B手中的情况,再利用概率公式即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三次传球后,球恰在A手中的情况,再利用概率公式即可求得答案.解答:解:(1)画树状图得:∵共有4种等可能的结果,两次传球后,球恰在B手中的只有1种情况,∴两次传球后,球恰在B手中的概率为:;(2)画树状图得:∵共有8种等可能的结果,三次传球后,球恰在A 手中的有2种情况, ∴三次传球后,球恰在A 手中的概率为:=.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.3.(2015•甘肃兰州,第23题,6分)为了参加中考体育测试,甲,乙,丙三位同学进行足球传球训练。
中考数学复习之统计与概率综合训练题(含20大题)

中考数学复习之统计与概率综合训练题(含20大题)1.小丹有3张扑克牌,小林有2张扑克牌,扑克牌上的数字如图所示.两人用这些扑克牌做游戏,他们分别从自己的扑克牌中随机抽取一张,比较这两张扑克牌上的数字大小,数字大的一方获胜.请用画树状图(或列表)的方法,求小丹获胜的概率.2.某电视台为了解观众对“谍战”题材电视剧的喜爱情况,随机抽取某社区部分电视观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:请根据以上信息,解答下列问题:(1)在这次接受调查的女观众中,表示“不喜欢”的女观众所占的百分比是多少?(2)求这次调查的男观众人数,并补全条形统计图.(3)若该社区有男观众约1000人,估计该社区男观众喜欢看“谍战”题材电视剧的约有多少人?3.一所中学,为了让学生了解环保知识,增强的环保意识,特地举行了一次“护家乡”的环保知识竞赛,共有900名学生参加这次竞赛.为了解本次竞赛的情况,从中抽取了部分学生的成绩进行统计.分组频数频率50.5~60.540.0860.5~70.580.1670.5~80.5100.2080.5~90.5160.3290.5~100合计请根据上表和图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中,样本容量是;(4)全体参赛学生中,竞赛成绩的中位数落在哪个组内?(5)若成绩在90分以上(不含90分)可以获奖,在全校学生的试卷中任抽取一张,获奖的概率是多大?4.孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为A1级、A2级、A3级,其中A1级最好,A3级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱的看,也不告知该箱的质量等级.两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不比第一箱好,他就买第三箱.(1)三箱油桃出现的先后顺序共有哪几种不同的可能?(2)孙明与王军,谁买到A1级的可能性大?为什么?5.“时裳”服装店现有A、B、C三种品牌的衣服和D、E两种品牌的裤子,温馨家现要从服装店选购一种品牌的衣服和一种品牌的裤子.(1)写出所有选购方案(利用树状图或列表方法表示)(2)如果(1)中各种选购方案被选中的可能性相同,那么A品牌衣服被选中的概率是多少?6.校文学社在全校范围内随机抽取一部分读者对社刊中最感兴趣的文学栏目进行了投票.每人一张选票,每张选票只能投给一个栏目,经统计无弃权票,根据投票结果绘制的条形统计图如下:(1)这次参加投票的总人数为.(2)若全校有3000名读者,估计其中对“写作指导”最感兴趣的人数.(3)在全校3000名读者中,若对某个栏目最感兴趣的人数少于300人将会影响社刊的销售,这个栏目就需要被撤换.请通过计算判断,“新书上架”栏目是否需要被撤换.7.如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)计算点P在函数y=6x图象上的概率.8.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为名;抽样中考生分数的中位数所在等级是;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?9.小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?10.“学生坐校车上学”的安全问题越来越受到社会的关注,某校利用周末假期,随机抽查了本校若干名学生和部分家长对“初中生坐校车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是.11.“你记得父母的生日吗?”这是我校在九年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A.父母生日都记得;B.只记得母亲生日;C.只记得父亲生日;D.父母生日都不记得.在随机调查了(1)班和(2)班各50名学生后,根据相关数据绘出如图所示的统计图.(1)补全频数分布直方图;(2)据此推算,九年级共900名学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?12.某中学开展菜市场菜价调查活动,以锻炼同学们的生活能力.调查一共连续7天,每天调查3次,第一次8:00由各班的A小组调查,第二次13:00由B小组调查,第三次17:00由C小组调查.调查完后分析当天的菜价波动情况,七天调查结束后整理数据,就得出了菜价最便宜的某一时段.下面是同学们的一些调查情况,请你帮忙分析数据:第1天菜价调查情况(单位:元/千克)第2﹣5天平均菜价(单位:元/千克)(1)根据“第2﹣5天平均菜价”图来分析:哪种蔬果价格最便宜?(2)从第一天的调查情况来看,哪种蔬果的价格波动最小?请通过计算说明.(3)计算苹果、白菜、土豆在1﹣5天的平均菜价.(4)根据上面两个图来分析:在3﹣5天中的哪一天的哪一时段购买苹果最省钱?13.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?14.某班50名同学进行数学测验,将所得成绩(得分取整数,最低分为50分)进行整理后分成五组,并绘成统计图(如图).请结合统计图提供的信息,回答下列问题.(1)请将该统计图补充完整;(2)请你写出从图中获得的三个以上的信息;(3)老师随机抽取一份试卷来分析,抽取到哪一组学生试卷的可能性较大?15.2006年,某校三个年级的初中在校学生共有796名,学生的出生月份统计如下,根据图中数据回答下列问题:(1)出生人数超过60人的月份有哪些?(2)出生人数最多的是几月?(3)在这些学生中至少有两人生日在10月5日是不可能或可能,还是必然的?(4)如果你随机地遇到这些学生中的一位,那么这位学生生日在哪一个月概率最小?16.为了给某区初一新生订做校服,某服装加工厂随机选取部分新生,对其身高情况进行调查,图甲、图乙是由统计结果绘制成的不完整的统计图.根据图中信息解答下列问题:(1)一共调查了名学生;(2)在被调查的学生中,身高在1.55~1.65m的有人,在1.75m及以上的有人;(3)在被调查的学生中,身高在1.65~1.75m的学生占被调查人数的%,在1.75m 及以上的学生占被调查人数的%;(4)如果今年该区初一新生有3200人,请你估计身高在1.65~1.75m的学生有多少人.17.某开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数/名1423223每人月工资/元2100084002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有人;(2)该公司的工资极差是元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.18.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整;(2)在扇形统计图中,“步行”的人数所占的百分比是,“其他方式”所在扇形的圆心角度数是;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.19.有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x,3.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张、第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.20.初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体320名初二学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2小时.小丽与小杰整理各自样本数据,如下表所示.时间段(小时/周)小丽抽样人数小杰抽样人数0~16221~210102~31663~482(每组可含最低值,不含最高值)请根据上述信息,回答下列问题:(1)你认为哪位学生抽取的样本具有代表性?答:;估计该校全体初二学生平均每周上网时间为小时;(2)根据具有代表性的样本,把上图中的频数分布直方图补画完整;(3)在具有代表性的样本中,中位数所在的时间段是小时/周;(4)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体初二学生中有多少名同学应适当减少上网的时间?。
2016年中考数学模拟试题汇编专题16:概率(含答案)

概率一.选择题1.(2016·新疆乌鲁木齐九十八中·一模)某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看恰为一男一女的情况占总情况的多少即可.【解答】解:√∴共有20种等可能的结果,P(一男一女)=.故选B.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.2、(2016苏州二模)在数轴上表示5 的两点以及它们之间的所有整数点中,任意取一点P则点P表示的数大于3的概率是( )A. 14B.29C.15D.211答案:D3、(2016青岛一模)为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条B.380条C.400条D.420条【考点】用样本估计总体.【分析】首先求出有记号的5条鱼在100条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【解答】解:∵×100%=5%,∴20÷5%=400(条).故选C4、(2016泰安一模)某中学为迎接建党九十周年,举行了“童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.那么九年級同学获得前两名的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式即可求出该事件的概率.【解答】解:画树状图得:∴一共有12种等可能的结果,九年級同学获得前两名的有2种情况,∴九年級同学获得前两名的概率是=.故选D.5.(2016·天津北辰区·一摸)甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,,2;乙袋中装有3个完全相同的小球,分别标有数字2-,1-,0;从甲袋中随机抽取一个小球,再从乙袋中随机抽取一个小球,两球数字之和为的概率是().(A)19(B)29(C)16(D)13答案:B6.(2016·天津五区县·一模)一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是( )A .B .C .D .(本题原题如此) 【考点】列表法与树状图法.【分析】先列举出同时掷两枚质地均匀的硬币一次所有四种等可能的结果,然后根据概率的概念即可得到两枚硬币都是正面朝上的概率.【解答】解:同时掷两枚质地均匀的硬币一次, 共有正正、反反、正反、反正四种等可能的结果, 两枚硬币都是正面朝上的占一种, 所以两枚硬币都是正面朝上的概率=. 故选D .【点评】本题考查了用列表法与树状图法求概率的方法:先利用列表法与树状图法表示所有等可能的结果n ,然后找出某事件出现的结果数m ,最后计算P=.7.(2016·浙江镇江·模拟)已知实数0<a ,则下列事件中是必然事件的是( ▲ ) A .03<+a B .03<-a C .03>a D .03>a 答案:B8.(2016·四川峨眉 ·二模) 下列事件中不是..必然事件的是 )(A 对顶角相等 )(B 同位角相等)(C 三角形的内角和等于180° )(D 等边三角形是轴对称图形 答案:C9. (2016·广东东莞·联考)给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为( ) A . B . C . D . 【考点】概率公式.【分析】根据题意,打电话的顺序是任意的,打电话给甲乙丙三人的概率都相等均为. 【解答】解:∵打电话的顺序是任意的,打电话给甲乙丙三人的概率都相等, ∴第一个打电话给甲的概率为. 故选:B .【点评】此题主要考查了概率公式,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.10. (2016·广东深圳·一模)下列说法正确的是( ) A .“明天降雨的概率是80%”表示明天有80%的时间都在降雨 B .“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上 C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D .“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近 【考点】概率的意义.【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A 、“明天下雨的概率为80%”指的是明天下雨的可能性是80%,错误; B 、这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,错误;C 、这是一个随机事件,买这种彩票,中奖或者不中奖都有可能,但事先无法预料,错误.D 、正确 故选D .【点评】正确理解概率的含义是解决本题的关键.11. (2016·广东河源·一模)不透明的袋子里装有2个红球和1个白球,这些球除了颜色外其他都相同.从中任意摸出一个,放回摇匀,再从中摸出一个,则两次摸到球的颜色相同的概率是( )A.94 B.95 C.21 D.32答案:B12. (2016·广东深圳·联考)如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是A.B.C.D.答案:A13.(2016·江苏常熟·一模)下列说法中错误的是()A.某种彩票的中奖率为1%,买100张彩票一定有1张中奖B.从装有10个红球的袋子中,摸出1个白球是不可能事件C.为了解一批日光灯的使用寿命,可采用抽样调查的方式D.掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是【考点】概率的意义;全面调查与抽样调查;随机事件;概率公式.【分析】根据概率的意义对A进行判断;根据随即事件和必然事件对B进行判断;根据全面调查和抽样调查对C进行判断;根据概率公式对D进行判断.【解答】解:A:某种彩票的中奖率为1%,是中奖的频率接近1%,所以买100张彩票可能中奖,也可能没中奖,所以A选项的说法错误;B、从装有10个红球的袋子中,摸出的应该都是红球,则摸出1个白球是不可能事件,所以B选项的说法正确;C、为了解一批日光灯的使用寿命,可采用抽样调查的方式,而不应采用普查的方式,所以C选项的说法正确;D、掷一枚普通的正六面体骰子,共有6种等可能的结果,则出现向上一面点数是2的概率是,所以D选项的说法正确.故选A.【点评】本题考查了概率的意义:概率是对随机事件发生的可能性的度量.表示一个事件发生的可能性大小的数,叫做该事件的概率.也考查了全面调查和抽样调查、随即事件以及概率公式.14.(2016·江苏省南京市钟爱中学·九年级下学期期初考试)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A.B.C.D.答案:A15.、(2016·山东枣庄·模拟)从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为()A. B. C. D.【考点】列表法与树状图法;三角形三边关系.【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【解答】解:从四条线段中任意选取三条,所有的可能有:1,3,5;1,3,7;1,5,7;3,5,7共4种,其中构成三角形的有3,5,7共1种,则P(构成三角形)=.故选C.【点评】此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.16.(2016·上海浦东·模拟)如果从1、2、3这三个数字中任意选取两个数字组成一个两位数,那么这个两位数是素数的概率等于( A )(A)12;(B)13;(C)14;(D)16.二.填空题1.(2016·郑州·二模)一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,-1,-2,-3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为____.答案:3 82.(2016·天津市和平区·一模)在一个不透明的布袋中有2个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到黄球的概率是,则n=8.【考点】概率公式.【分析】根据黄球的概率公式可得方程=,解方程即可求解.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中黄球n个,根据古典型概率公式知:P(黄球)==,解得n=8.故答案为:8.【点评】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3.(2016·天津市南开区·一模)一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.【解答】解:如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,所有两次摸出的小球标号的和等于4的概率=.故答案为:.【点评】本题考查了列表法或树状图法:利用列表法或树状图法展示所有等可能的结果数n,再找出某事件所占有的结果数m,然后利用概率的概念求得这个事件的概率=.4.(2016·浙江镇江·模拟)如果从九年级(1)、(2)、(3)班中随机抽取一个班与九年级(4)班进行一场拔河比赛,那么恰好抽到九年级(1)班的概率是▲ .1答案:35、(2016·浙江丽水·模拟) “nice to meet you(很高兴见到你)”,在这段句子的所有英文字母中,字母e出现的概率是.3答案:136.(2016·重庆巴蜀·一模)从﹣,﹣1,0,1这四个数中,任取一个数作为m的值,恰好使得关于x,y的二元一次方程组有整数解,且使以x为自变量的一次函数y=(m+1)x+3m﹣3的图象不经过第二象限,则取到满足条件的m值的概率为.【分析】首先由题意可求得满足条件的m值,然后直接利用概率公式求解即可求得答案.【解答】解:∵关于x,y的二元一次方程组有整数解,∴,∴m的值为:﹣1,0,1;∵一次函数y=(m+1)x+3m﹣3的图象不经过第二象限,∴,解得:﹣1<m≤1,∴m的值为:0,1;综上满足条件的m值为:0,1;∴取到满足条件的m值的概率为:=.故答案为:.7.(2016·重庆铜梁巴川·一模)从﹣3,﹣2,﹣1,0,1,2,3这七个数中随机抽取一个数记为a,则a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为.【分析】首先解不等式组,即可求得a的取值范围,解一元二次方程x2﹣3x+2=0,可求得a的值,然后直接利用概率公式求解即可求得答案.【解答】解:,由①得:x>﹣2,由②得:x>﹣,∵a的值是不等式组的解,∴a=0,1,2,3,∵x2﹣3x+2=0,∴(x﹣1)(x﹣2)=0,解得:x1=1,x2=2,∵a不是方程x2﹣3x+2=0的实数解,∴a=0或3;∴a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为:.故答案为:.8.(2016·河南洛阳·一模)袋中装有大小相同的2个红球和2个绿球,先从袋中摸出1个球后放回,混合均匀后再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是.1答案:29.(2016·江苏常熟·一模)一个口袋中装有2个红球、3个绿球、5个黄球,每个球除颜色外其它都相同,搅均匀后随机从中摸出一个球是绿球的概率是.【考点】概率公式.【专题】压轴题.【分析】首先算出求的总个数,再让绿球的个数除以球的总数即为所求的概率.【解答】解:球的总数为:2+3+5=10,∵绿球的球的个数为3,∴随机地从中摸出一个球是绿球的概率是.故答案为:.【点评】本题主要考查了概率公式:P(A)=,n表示该试验中所有可能出现的基本结果的总数目.m表示事件A可能出现结果数.10.(2016·江苏丹阳市丹北片·一模)在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是13,则黄球的个数为个.答案:24;11.(2016·江苏省南京市钟爱中学·九年级下学期期初考试)有5张卡片,上面分别画有:圆、正方形、等边三角形、正五边形、线段,将卡片画面朝下随意放在桌上,任取一张,那么取到卡片对应图形是中心对称图形的概率是.答案:12.(2016·上海市闸北区·中考数学质量检测4月卷)袋子里有4个黑球,m个白球,它们除颜色外都相同.经过大量实验,从中任取一个球恰好是黑球的概率是12,则m的值是▲ .答案:4;13. (2016·河南三门峡·一模)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是答案:51314. .(2016·上海闵行区·二模)布袋中有大小、质地完全相同的4个小球,每个小球上分别标有数字1、2、3、4,如果从布袋中随机抽取两个小球,那么这两个小球上的数字之和为偶数的概率是.【考点】列表法与树状图法.【分析】根据题意画出树状图,进而利用概率公式求出答案.【解答】解:由题意可得:,故一共有12种可能,这两个小球上的数字之和为偶数的有4种,故这两个小球上的数字之和为偶数的概率是:=.故答案为:.【点评】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.三.解答题1.(2016·云南省曲靖市罗平县·二模)有甲、一两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和﹣2;乙袋中有三个完全相同的小球,分别标有数字﹣1、0和2.小丽从甲袋中随机取出一个小球,记下标有的数字为x,再从乙袋中随机取出一个小球,记录下小球上的数字为y,且设点P的坐标(x,y).(1)请用列表或树状图表示出点P可能出现的所有坐标;(2)求点P(x,y)在反比例函数y=图象上概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得点P(x,y)在反比例函数y=图象上的情况,然后直接利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则点P可能出现的所有坐标:(1,﹣1),(1,0),(1,2),(﹣2,﹣1),(﹣2,0),(﹣2,2);(2)∵点P (x ,y )在反比例函数y=图象上的有(1,2),(﹣2,﹣1), ∴点P (x ,y )在反比例函数y=图象上的概率为:62 =31. 【点评】此题考查了列表法或树状图法求概率以及反比例函数图象上点的坐标特征.用到的知识点为:概率=所求情况数与总情况数之比.2.(2016·云南省·一模)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由. 【考点】游戏公平性;列表法与树状图法. 【专题】应用题;创新题型.【分析】(1)用列表法将所有等可能的结果一一列举出来即可; (2)求得两人获胜的概率,若相等则公平,否则不公平. 【解答】解:(1)根据题意列表得:(2)由列表得:共16种情况,其中奇数有8种,偶数有8种,∴和为偶数和和为奇数的概率均为, ∴这个游戏公平.【点评】本题考查了游戏公平性及列表与列树形图的知识,难度不大,是经常出现的一个知识点.3.(2016·云南省·二模)课间小明和小亮玩“剪刀、石头、布”游戏.游戏规则是:双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,石头胜剪刀,剪刀胜布,布胜石头,若双方出现相同手势,则算打平.若小亮和小明两人只比赛一局.(4)请用树状图或列表法列出游戏的所有可能结果. (5)求出双方打平的概率.(6)游戏公平吗?如果不公平,你认为对谁有利? 【考点】游戏公平性;列表法与树状图法. 【分析】(4)采用树状图法或者列表法解答即可; (5)列举出所有情况,看所求的情况占总情况的多少即可. (6)求出概率比较公平性即可.【解答】解:(4)所有可能结果列表如下:总共有9中等可能结果.(5)双方打平的情况有3种,P (双方打平)=(6)游戏对双方公平小明胜的情况有3种,小亮胜的情况有3种 P (小明胜)=P (小亮胜)=∵P (小明胜)=P (小亮胜) ∴游戏对双方公平.【点评】此题考查游戏的公平性,列表法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.4、(2016青岛一模)有五张卡片,卡片上分别写有A 、B 、B 、C 、C ,这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,请你利用树状图会列表的方法,求两次摸到卡片字母相同的概率;若从中随机摸出一张,记下字母后不放回,洗匀后再从中摸出一张,则两次摸到卡片字母相同的概率又是多少?【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到卡片字母相同的情况,再利用概率公式即可求得答案;注意此实验室是放回实验;首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到卡片字母相同的情况,再利用概率公式即可求得答案;注意此实验室是不放回实验.【解答】解:画树状图得:∵共有25种等可能的结果,两次摸到卡片字母相同的有9种等可能的结果,∴两次摸到卡片字母相同的概率为:;画树状图得:∵共有25种等可能的结果,两次摸到卡片字母相同的有4种等可能的结果,∴两次摸到卡片字母相同的概率为:.5、(2016枣庄41中一模)把2张形状、大小相同但画面不同的风景图片全部从中间剪断,然后将四张形状相同的小图片混合在一起.现从这四张图片中随机的一次抽出2张.(1)请用列表或画树状图的方法表示出上述实验所有可能结果.(2)求这2张图片恰好组成一张完整风景图概率.【考点】列表法与树状图法.【专题】计算题.【分析】(1)用A、a表示一张风景图片被剪成的两半,用B、b表示另一张风景图片被剪成的两半,然后利用树状图展示所有可能的结果数;(2)找出2张图片恰好组成一张完整风景图的结果数,然后根据概率公式求解.【解答】解:(1)用A 、a 表示一张风景图片被剪成的两半,用B 、b 表示另一张风景图片被剪成的两半,画树状图为:(2)共有12种等可能的结果数,其中2张图片恰好组成一张完整风景图的结果数为4, 所以2张图片恰好组成一张完整风景图的概率==.6.(2016·天津南开区·二模)在一副扑克牌中,拿出红桃2,红桃3,红桃4,红桃5四张牌,洗匀后,小明从中随机摸出一张,记下牌面上的数字为x ,然后放回并洗匀,再由小华随机摸出一张,记下牌面上的数字为y ,组成一对数(x ,y ).(1)用列表法或树形图表示出(x ,y )的所用可能出现的结果;(2)求小明、小华各摸一次扑克牌所确定的一对数是方程x+y=5的解的概率. 考点:概率及计算 答案:见解析试题解析:(1)出现的情况如下:一共有16种.(2)数对(2,3),(3,2)是方程x+y=5的解,所以P (和等于5)==.7.(2016·浙江金华东区·4月诊断检测)小明有一个呈等腰直角三角形的积木盒,现在积木盒中只剩下如图1所示的九个空格,图2是可供选择的A 、B 、C 、D 四块积木.图-1CD图-2图-3(1)小明选择把积木A 和B 放入图-3,要求积木A 和B 的九个小圆恰好能分别与图18-3中的九个小圆重合,请在图18-3中画出他放入方式的示意图(温馨提醒:积木A 和B 的连接小圆的小线段还是要画上哦!);(2)现从A 、B 、C 、D 四块积木中任选两块,求恰好能全部不重叠放入的概率. 答案:(1)略(3分);(2)31(3分); 8.(2016·绍兴市浣纱初中等六校·5月联考模拟) 为进一步推广“阳光体育”大课间活动,某中学对已开设的A 实心球,B 立定跳远,C 跑步,D 跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.解:(1)根据题意得: 15÷10%=150(名),1-10%-20%-30%=40%,150×40%=60.……4分(3)用A 表示女生,B 表示男生,画图如下:共有20种情况,同性别学生的情况是8种,则刚好抽到同性别学生的概率是分9. (2016·浙江镇江·模拟) (本小题满分6分)甲、乙两人做游戏,规则如下:每人手中各持分别标有“1”、“2”、“3”的三张纸牌,甲、乙背靠背同时从各自的纸牌中随机抽取一张,规定纸牌数字大的获胜,数字相同时不分胜负.请你用树状图或列表法求甲获胜的概率。
2016年中考数学试题分项版解析(第03期)专题07 统计与概率

专题07 统计与概率一、选择题1.(2016四川省乐山市第3题)某班开展1分钟仰卧起坐比赛活动,5名同学的成绩如下(单位:个):37、38、40、40、42.这组数据的众数是()A.37 B.38 C.40 D.42【答案】C.【解析】试题分析:由题意得,40出现的次数最多,众数为40.故选C.考点:众数.2.(2016广东省茂名市第4题)下列事件中,是必然事件的是()A.两条线段可以组成一个三角形B.400人中有两个人的生日在同一天C.早上的太阳从西方升起D.打开电视机,它正在放动画片【答案】B【解析】考点:随机事件3.(2016广东省梅州市第2题)若一组数据3,x,4,5,6的众数是3,则这组数据的中位数为( )A.3 B.4 C.5 D.6【答案】B【解析】试题分析:因为众数为3,所以,x=3,原数据为:3,3,4,5,6,所以,中位数为4考点:(1)、众数的计算;(2)、中位数的计算4.(2016广东省深圳市第7题)数学老师将全班分成7个小组开展小组合作学习,采用随机抽签法确定一个小组进行展示活动。
则第3小组被抽到的概率是( ) A.71 B. 31 C. 211 D. 101【答案】A 【解析】试题分析:根据题意可得:共7个小组,第3小组是1个小组,所以,概率为71考点:概率的求法5.(2016广东省深圳市第8题)下列命题正确是( ) A.一组对边平行,另一组对边相等的四边形是平行四边形 B.两边及一角对应相等的两个三角形全等 C.16的平方根是4D.一组数据2,0,1,6,6的中位数和众数分别是2和6 【答案】D 【解析】考点:(1)、命题的真假;(2)、平行四边形、三角形的判定;(3)、平方根、中位数、众数的概念 6.(2016广西省贺州市第5题)从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( )A .B .C .D . 【答案】D 【解析】试题分析:由标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况,直接利用概率公式求解即可求得答案.∵标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况,∴随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是:. 考点:(1)、概率公式;(2)、绝对值7.(2016贵州省毕节市第5题)为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是()A.52和54B.52C.53D.54【答案】【解析】试题分析:众数是指一组数据中出现次数最多的数字,数据52和54都出现2次,其它只出现一次,所以,众数为52和54。
初中数学统计与概率专题训练50题(含参考答案)

初中数学统计与概率专题训练50题含答案一、单选题1.已知五个数a b c d e 、、、、满足a b c d e <<<<,则下列四组数据中方差最大的一组是( ) A .a b c 、、B .b c d 、、C .c d e 、、D .a e 、c 、2.下列事件中是必然事件的是( ) A .某射击运动员射击一次,命中靶心 B .抛掷一枚硬币,落地后正面朝上 C .三角形内角和是360°D .当x 是实数时,x 2≥03.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.01”.下列说法正确的是( )A .抽101次也可能没有抽到一等奖B .抽100次奖必有一次抽到一等奖C .抽一次也可能抽到一等奖D .抽了99次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖4.一个不透明的袋子中只装有4个黄球,它们除颜色外完全相同,从中随机摸出一个球.下列说法正确的是( )A .摸到红球的概率是14B .摸到红球是不可能事件C .摸到红球是随机事件D .摸到红球是必然事件5.小明同学在某学期德智体美劳的各项评价得分依次为10分、9分、8分、9分、9分,则小明同学五项评价的平均得分为( ) A .7分B .8分C .9分D .10分6.下列说法中,正确的是( ) A .雨后见彩虹是随机事件B .为了检查飞机飞行前的各项设备,应选择抽样调查C .将一枚硬币抛掷20次,一定有10次正面朝上D .气象局调查了甲、乙两个城市近5年的降水量,它们的平均降水量都是800毫米,方差分别是s 2甲=3.4,s 2乙=4.3,则这两个城市年降水量最稳定的是乙城市 7.下列事件为必然事件的是( ) A .打开电视,正在播放广告 B .抛掷一枚硬币,正面向上C.挪一枚质地均匀的般子,向上一面的点数为7D.实心铁块放入水中会下沉8中,随意抽取一张纸片,上面写着最简二次根式的概率是()A.16B.13C.23D.129.某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是()A.19,20,14B.19,20,20C.18.4,20,20D.18.4,25,20 10.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则0a<是不可能事件;16④的平方根是4±4=±;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.其中正确的个数有()A.1个B.2个C.3个D.4个11.经过某十字路口的行人,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两人经过该路口,则恰有一人直行,另一人左拐的概率为()A.19B.29C.13D.2312.下列调查中,调查方式选择正确的是()A.为了了解一批灯泡的使用寿命,选择抽样调查B.为了了解某公园全年的游客流量,选择全面调查C.为了了解某1000枚炮弹的杀伤半径,选择全面调查D.为了了解一批袋装食品是否有防腐剂,选择全面调查13.下列事件是必然事件的是()A.若a是实数,则|a|≥0B.抛一枚硬币,正面朝上C.明天会下雨D.打开电视,正在播放新闻14.下列事件中,是随机事件的是()A.等边三角形都相似B.等腰直角三角形都相似C.矩形都相似D.正方形都相似15.在某市2021年青少年航空航天模型锦标赛中,各年龄组的参赛人数情况如下表所示:若小明所在年龄组的参赛人数占全体参赛人数的38%,则小明所在的年龄组是()A.13岁B.14岁C.15岁D.16岁16.在某市举办的垂钓比赛上,6名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,6,10,8,10.则这组数据的中位数是()A.8B.7C.6D.1017.在某市举行的“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下表:则在这次活动中,该班同学捐款金额的众数是()A.20元B.30元C.35元D.100元18.如果一组数据a1,a2,a3…,a n方差是9,那么一组新数据a1+1,a2+1,a3+1…,a n+1的方差是()A.3B.9C.10D.8119.我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:则关于这10户家庭的月用水量,下列说法错误的是()A.方差是4B.极差是2C.平均数是9D.众数是920.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁二、填空题21.某校要了解某班的数学教学质量,对该班的8名学生进行抽样测验,所得成绩如下:70,82,98,60,91,54,78,85,这个问题中的总体是______,个体是______,样本容量是______.22.专家提醒:目前我国从事脑力劳动的人群中,“三高”(高血压,高血脂,高血糖)现象必须引起重视,这个结论是通过___________(填“抽样调查”或“普查”)得到的.23.为了了解某市4万多名初中毕业生的中考数学成绩,任意抽取1000名学生的中考数学成绩进行统计分析,这个问题中,样本容量是______.24.夏季已到,气温渐高.要反映我市某一周每天的最高气温的变化趋势,根据你所学知识宜采用______________统计图.25.如果数据x1,x2,x3的平均数是5,那么数据x1+2,x2+2,x3+2的平均数为____.26.某十字路口有一个交通信号灯,红灯亮60秒,绿灯亮35秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为____________.27.一组数据2,4,x,﹣1的平均数为3,则x的值是___.28.在某项考核中,最终考核成绩(百分制)由研究性学习成绩与卷面成绩组成,其中研究性学习成绩占60%,卷面成绩占40%,小明的这两项成绩依次是90分和85分,则小明的最终考核成绩是___________分.29.一组数据a,b,c,d,e的方差是7,则a+2、b+2、c+2、d+2、e+2的方差是___.30.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向黄色区域的概率是__.31.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,卷面成绩占60%,小明的这两项成绩(百分制)依次是90分,85分,则小明这学期的数学成绩是_________.32.有两个盒子,第一个盒子中装有3 个红球和4 个白球,第二个盒子中装有4 个红球和3 个白球,这些球除颜色外都相同,分别从中摸出1 个球,从第______个盒子中摸到白球的可能性大.33.为了了解某市初中生的视力情况,有关部门进行了抽样调查,数据如下表:若该市共有初中生15万人,则全市视力不良的初中生约有__________万人.34.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x(单位:千克)及方差s2(单位:千克2)如表所示:明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是__.35.右图是各年龄段人群收视某电视剧情况的条形统计图(统计时年龄只取整数).若某村观看此电视剧的观众人数为1400人,则其中50岁以上(含50岁)的观众约有__________人.36.在全国初中数学竞赛中,都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组~第四组的人数分别为10,5,7,6,第五组的频率是0.2,则第六组的频率是________.37.一组数据:2,1,2,5,3,2的众数是___.38.某地区有一条长100千米,宽0.5千米的防护林.有关部门为统计该防护林的树林量,从中选出5块防护林(每块长1千米,宽0.5千米)进行统计,每块防护林的树木数量如下(单位:棵):65 100,63 200,64 600,64 700,67 400.那么根据以上的数据估算这一防护林总共约有_____棵树.39.下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_____.40.某地连续统计了10天日最高气温,并绘制成如图所示的扇形统计图.计算这10天日最高气温的平均值为_____℃.三、解答题41.为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分,某外贸公司要出口一批规格为65g的鸡蛋,现有两个厂家提供货源,它们的价格相同,鸡蛋的品质相近,质检员分别从两厂的产品中抽样调查了20只鸡蛋,并将它们按质量(单位:克)分成四组(:6770A x ≤<,B :6457x ≤<,C :6164x ≤<,D :58661≤<,它们的质量(单位:g )如下:整理数据:甲厂:66,64,64,66,63,66,66,67,68,64,66,60,66,66,63,60,67,69,68,61;乙厂:65,66,67,67,68,67,66,61,64,65,69,61,62,64,63,64,60,69,65,67.甲厂鸡蛋质量频数统计表分析上述数据,得到下表:请你根据图表中的信息完成下列问题: (1)a =______;b =______;c =______;(2)如果只考虑出口鸡蛋规格,请结合表中的某个统计量,为外贸公司选购鸡蛋提供参考建议;(3)某外贸公司从甲厂采购了18000只鸡蛋,并将质量(单位:g)在6167≤<的鸡蛋x加工成优等品进行盒装售卖,已知一盒有18颗鸡蛋,每颗鸡蛋进价为0.6元,若将优等品鸡蛋全部售出,试求一盒优等品鸡蛋定价多少才能使该外贸公司这一批优等品鸡蛋的利润达到6630元?42.阅读材料,回答问题.材料:题1:假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部孵化成功后,求3只雏鸟中恰有2只雄鸟的概率,我们可以用“袋中摸球”的试验来模拟题1:在口袋中放两种不同颜色的小球,红球表示雌鸟,黄球表示雄鸟,3只雏鸟孵化小鸟.相当于从三个这样的口装中各随机换出一球.恰好有2个黄球.题2:一天晚上,小伟帮助妈妈清洗两套只有颜色不同的有盖茶杯.突然停电了.小伟只好把杯盖和茶杯随机地搭配在一起:求颜色搭配正确的概率.(1)设计一个“袋中模球”的试验模拟题2,请筒要说明你的方案;(2)请直接写出题2的概率的结果.43.为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛,初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:(1)请你填写下表:(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些)③如果在每个年级分别选出3人参加决赛,你认为哪个年级的实力更强一些?并说明理由.44.为贯彻落实省教育厅提出的“三生教育”.在母亲节来临之际,某校团委组织了以“珍爱生命,学会生存,感恩父母”为主题的教育活动,在学校随机调查了50名同学平均每周在家做家务的时间,统计并制作了如下的频数分布表和扇形统计图:根据上述信息回答下列问题:(1)a= ,b= .(2)在扇形统计图中,B组所占圆心角的度数为.(3)全校共有2000名学生,估计该校平均每周做家务时间不少于4小时的学生约有多少人.45.图℃、图℃反映是东方百货商场今年15~月份的商品销售额统计情况.来自商场财~月份的销售总额一共是370万元,观察图℃和图℃,解答下务部的报告表明,商场15面问题:(1)将图℃补充完整;(2)商场服装部5月份的销售额是多少万元?(3)李强观察图℃后认为,5月份服装部的销售额比4月份减少了.你同意他的看法吗?为什么?46.某公司为了了解员工每人所创年利润情况,公司从各部门抽取部分员工对每年所创年利润情况进行统计,并绘制如图所示的统计图.(1)求抽取员工总人数,并将图补充完整;(2)每人所创年利润的众数是________,每人所创年利润的中位数是________,平均数是________;(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?47.重庆演艺集团决定今年3月中旬在八中开展“高雅艺术进学校”的宣传活动,活动有A、唱歌,B、舞蹈,C、绘画,D、演讲四项宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在某年级学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:请结合统计图表,回答下列问题:a______,并将条形统计图补充完整;(1)本次抽查的学生共______人,(2)如果该年级学生有1000人,请估计该年级喜欢“唱歌”宣传方式的学生约有多少人?A B C D四项宣传方式中随机抽取两项进行展示,(3)学校采用抽签方式让每班在,,,请用树状图或列表法求某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率.48.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图.(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下;A 级成绩为优秀,B 级成绩为良好,C 级成绩为合格,D 级成绩为不合格)其中B 级成绩(单位:分)为:75,75,76,77,78,78,79,79,79,80,80,81,81,82,82,83,83,84,86,87,87,88,89 请你结合图中所给信息解答下列问题: (1)请把条形统计图补充完整;(2)样本中D 级的学生人数占全班学生人数的百分比是______; (3)扇形统计图中A 级所在的扇形的圆心角度数是______; (4)九年级(1)班学生的体育测试成绩的中位数是______;(5)若该校九年级有500名学生,请你用此样本估计体育测试中达到良好及良好以上的学生人数约为多少人?49. “PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,它造成的雾霾天气对人体健康的危害甚至要比沙尘暴更大.环境检测中心在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测,某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:15m<3030m<4545m<6060m<7575m<9090m<105根据图表中提供的信息解答下列问题:(1)统计表中的a= ,b= ,c= ;(2)在扇形统计图中,A类所对应的圆心角是度;(3)我国PM2.5安全值的标准采用世卫组织(WHO)设定的最宽限值:日平均浓度小于75微克/立方米.请你估计当日环保监测中心在检测100个城市中,PM2.5日平均浓度值符合安全值的城市约有多少个?参考答案:1.D【分析】根据方差的性质判断即可.【详解】解:五个数a b c d e 、、、、满足a b c d e <<<<,由方差是反映一组数据的波动大小的一个量,方差越大、数据越不稳定可知,a c e ,,方差最大, 故选:D .【点睛】本题考查方差的性质.掌握方差越大、数据越不稳定是解答本题的关键. 2.D【分析】根据必然事件的概念的定义,即可求解.【详解】解:A 、某射击运动员射击一次,命中靶心,是随机事件,故本选项不符合题意;B 、抛掷一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;C 、三角形内角和是360°,是不可能事件,故本选项不符合题意;D 、当x 是实数时,x 2≥0,是必然事件,故本选项符合题意; 故选:D.【点睛】本题考查的是对必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键. 3.C【分析】根据概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现进行解答即可.【详解】解:根据概率的意义可得“抽到一等奖的概率为为0.01”就是说抽100次可能抽到一等奖,也可能没有抽到一等奖,抽一次也可能抽到一等奖, 故选:C .【点睛】本题考查了概率的意义,理解概率的实际意义是本题的关键 4.B【分析】根据概率公式和必然事件、随机事件及不可能事件逐一判断即可得. 【详解】解:A .摸到红球的概率是0,此选项错误; B .摸到红球是不可能事件,此选项正确,C 、D 选项错误;【点睛】此题考查了概率的定义:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 5.C【分析】根据平均数的计算方法,五项总分除以5可得结果. 【详解】解:小明同学五项评价的平均得分为: 10989995++++=(分)故选:C .【点睛】本土题考查了求平均数;理解平均数的意义正确计算是解题的关键. 6.A【分析】根据必然事件、不可能事件、随机事件的概念,以及全面调查和抽样调查的区别,方差稳定性,判断即可.【详解】A .雨后见彩虹是随机事件,故本选项正确,符合题意B .为了检查飞机飞行前的各项设备,应选择全面调查,故本选项错误,不符合题意C .将一枚硬币抛掷20次,不一定有10次正面朝上,故本选项错误,不符合题意D .气象局调查了甲、乙两个城市近5年的降水量,它们的平均降水量都是800毫米,方差分别是s 2甲=3.4,s 2乙=4.3,则这两个城市年降水量最稳定的是甲城市,故本选项错误,不符合题意 故选A【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,全面调查和抽样调查的区别,方差稳定性.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小越稳定. 7.D【分析】根据必然事件的定义:在一定条件下,一定会发生的事件,进行逐一判断即可. 【详解】解:A 、打开电视,可以正在播放广告,也可以不在播放广告,不是必然事件,不符合题意;B 、抛掷一枚硬币,正面可以向上,反面也可以向上,不是必然事件,不符合题意;C 、挪一枚质地均匀的般子,向上一面的点数为7,这是不可能发生的,不是必然事件,不D、实心铁块放入水中会下沉,这是一定会发生的,是必然事件,符合题意;故选D.【点睛】本题主要考查必然事件,熟知必然事件的定义是解题的关键.8.B【分析】根据最简二次根式的定义先找出图片中的最简二次根式的个数,再根据概率公式进行计算,即可得出结论.【详解】解:==符合最简二次根式的定义,所以,随意抽取一张纸片,上面写着最简二次根式的概率是21 63 =,故选:B.【点睛】此题考查了概率的计算,掌握最简二次根式的定义是准确求出概率的关键.9.C【详解】解:由扇形统计图给出的数据可得销售20台的人数是:20×40%=8人,销售30台的人数是:20×15%=3人,销售12台的人数是:20×20%=4人,销售14台的人数是:20×25%=5人,所以这20位销售人员本月销售量的平均数是208+303+124+14520⨯⨯⨯⨯=18.4台;把这些数从小到大排列,最中间的数是第10、11个数的平均数,所以中位数是20;销售20台的人数最多,所以这组数据的众数是20.故选:C.【点睛】本题考查平均数;中位数;众数.10.B【详解】分析:根据无理数,平方根,众数,中位数,平均数的概念一一判断即可.详解:①“明天降雨的概率是50%”表示明天有50%的可能会下雨,故错误.②无理数无限不循环小数,故错误.③若a为实数,则0a<是不可能事件;正确.16④的平方根是4±,用式子表示是4=±;故错误.⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.正确.正确的有2个.故选B.点睛:考查无理数,平方根,众数,中位数,平均数的概念,熟记概念是解题的关键. 11.B【分析】画树状图展示所有9种等可能的结果数,找出恰有一人直行,另一人左拐的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中恰有一人直行,另一人左拐的结果数为2,所以恰有一人直行,另一人左拐的概率=29.故选B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法表示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.12.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,但所费人力、物力和时间较少分析解答即可.【详解】A.℃调查一批灯泡的使用寿命具有破坏性,℃选择抽样调查,正确;B.℃调查某公园全年的游客流量工作量大,℃选择抽样调查,故不正确;C.℃调查某1000枚炮弹的杀伤半径具有破坏性,℃选择抽样调查,故不正确;D.℃调查一批袋装食品是否有防腐剂具有破坏性,℃选择抽样调查,故不正确;故选A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.A【详解】试题分析:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.A、地球绕着太阳转是必然事件,故A符合题意;B、抛一枚硬币,正面朝上是随机事件,故B不符合题意;C、明天会下雨是随机事件,故C不符合题意;D、打开电视,正在播放新闻是随机事件,故D不符合题意.考点:随机事件14.C【分析】根据随机事件,必然事件的定义一一判断即可.【详解】等边三角形,等腰直角三角形,正方形都相似,是必然事件,矩形相似是随机事件,故选:C.【点睛】本题考查相似多边形的性质,随机事件,必然事件等知识,解题的关键是掌握随机事件的定义,属于中考常考题型.15.B【分析】根据各年龄组的参赛人数情况表,算出总人数,再算出14岁年龄组人数所占的百分比,即可得到答案.【详解】解:根据各年龄组的参赛人数情况表可知:总参赛人数为:5+19+12+14=50,19÷50=38%,则小明所在的年龄组是14岁.故选:B.【点睛】本题考查了频数与频率,解决本题的关键是掌握频数与频率的关系,理清频数分布表的数据.16.B【分析】根据中位数的定义先把这组数据从小到大重新排列,找出最中间的数即可.【详解】把这数从小到大排列为:4,5,6,8,10,10,最中间的数是6,8则这组数据的中位数是6+8=72;故选B.【点睛】此题考查了中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.17.A【分析】直接根据众数的概念求解可得.【详解】在这次活动中,该班同学捐款金额的众数是20元,故选:A.【点睛】本题主要考查众数,解题的关键是掌握一组数据中出现次数最多的数据叫做众数.18.B【详解】解:设一组数据a1,a2,a3…,an平均数为a,℃一组新数据a1+1,a2+1,a3+1…,an+1的平均数为a+1,℃一组数据a1,a2,a3…,an方差是9,℃1n[(a1-a)2+(a2-a)2+(a3-a)2+…(an-a)2)]=9,℃1n[(a1+1-a-1)2+(a2+1-a-1)2+(a3+1-a-1)2+…(an+1-a-1)2)]=1n[(a1-a)2+(a2-a)2+(a3-a)2+…(an-a)2)]=9故选B.19.A【详解】分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],分别进行计算可得答案.详解:极差:10-8=2,平均数:(8×2+9×6+10×2)÷10=9,众数为9,方差:S2=110[(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4,故选A.点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法.20.D【详解】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】℃==x x x x >乙丁甲丙,℃从乙和丁中选择一人参加比赛,℃22S S >乙丁,℃选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键. 21. 该班全体同学的数学成绩 该班每个学生的数学成绩; 8【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:某校要了解某班的数学教学质量,对该班的8名学生进行抽样测验,在这个问题中,总体是该班全体同学的数学成绩;个体是该班每个学生的数学成绩;样本是该班的8名学生的数学成绩,样本容量是8.故答案为:该班全体同学的数学成绩,该班每个学生的数学成绩,8.【点睛】本题考查总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位. 22.抽样调查【详解】由于普查得到的调查结果比较准确,但所费人力物力和时间较多,而抽样调查得到的调查结果比较近似,在这个调查中,个体数量多,范围广,工作量大,不宜采用普查,只能采用抽样调查. 23.1000【分析】根据样本容量的定义(样本中个体的数目称为样本容量)即可得. 【详解】解:这个问题中,样本容量是1000, 故答案为:1000.【点睛】本题考查了样本容量,熟记样本容量的定义是解题关键,样本容量只是一个数字,不带单位.。
初中数学统计与概率专题训练50题含参考答案

初中数学统计与概率专题训练50题含参考答案一、单选题1.统计得到的一组数据有80个.其中最大值为141,最小值为50,取组距为10,可以分()A.10组B.9组C.8组D.7组2.下列说法正确的是()A.方差越大,数据的波动越大B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.掷一枚硬币,正面一定朝上3.到了劳动课时,刚好是小明和小聪两位同学值日,教室里有两样劳动工具:扫把和拖把,小明与小聪用“剪刀,石头,布”的游戏方法决定谁胜了就让谁使用扫把,则小明出“剪刀”后,能胜出的概率是()A.12B.13C.16D.194.小思去延庆世界园艺博览会游览,如果从永宁瞻胜、万芳华台、丝路花雨、九州花境四个景点中随机选择一个进行参观,那么他选择的景点恰为丝路花雨的概率为()A.12B.14C.18D.1165.2022年深圳市有11.2万名学生参加中考,为了了解这些考生的数学成绩,从中抽取200名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这11.2万名考生的数学成绩是总体;①每个考生是个体;①200名考生是总体的一个样本;①样本容量是200,其中说法正确的有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.“打开电视,正在播放新闻联播”是必然事件B.对某批次手机防水功能的调查适合用全面调查(普查)方式C.某种彩票的中奖率是8%是指买8张必有一张中奖D.对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式7.如下电路图中,任意关闭a、b、c三个开关中的两个,灯泡发亮的概率为().A.310B.13C.16D.238.下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次可投中6次C.抽样调查选取样本时,所选样本可按自己的喜好选取D.检测某城市的空气质量,采用抽样调查法9.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.9B.12C.15D.1810.下列调查中,适宜采用全面调查的是()A.对某班学生制作校服前的身高调查B.对某品牌灯管寿命的调查C.对浙江省居民去年阅读量的调查D.对现代大学生零用钱使用情况的调查11.钉钉打卡已经成为一种工作方式,老师利用钉钉调查了全班学生平均每天的阅读时间,统计结果如下表,在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1.5B.1,1.5C.1,2D.1,112.从1~9这九个自然数中任取一个,是2的倍数或是3的倍数的概率是()A.19B.29C.23D.4913.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.手可摘星辰D.大漠孤烟直14.2021年7月24日,宁波小将杨倩取得了东京奥运会气步枪首枚金牌,使得射击运动在各校盛行起来.某班有甲、乙、丙、丁四名学生进行了射击测试,每人10次射击成绩的平均数⎺x(单位:环)及方差s2(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择()A.甲B.乙C.丙D.丁15.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把3个球放入两个抽屉中,有一个抽屉中至少有2个球是必然事件C.任意打开九年级下册数学教科书﹐正好是97页是确定事件D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同).如果从中任取两个球.不一定可以取到红球16.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是()A.13B.14C.15D.1617.如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是()A.2B.4C.8D.1618.某班抽取6名同学参加体能测试,成绩如下:75,95,85,80,90,85. 下列表述不正确的是().A.众数是85B.中位数是85C.平均数是85D.方差是15 19.对于数据:1,7,5,5,3,4,3.下列说法中错误的是()A.这组数据的平均数是4B.这组数据的众数是5和3C.这组数据的中位数是4D.这组数据的方差是2220.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率二、填空题21.一组数据2,6,5,2,4,则这组数据的平均数是__________.22.数据1,2,2,5,8的众数是_____.23.某校开展为“希望小学”捐书活动,以下是5名同学捐书的册数:2,3,5,7,2,则这组数据的中位数是_____.24.一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别.从袋中随机摸取一个小球,它是黄球的概率______.25.已知样本1,3,9,a,b的众数是9,平均数是6,则中位数为__.26.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_____.27.某校在七年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生成绩达90分以上,据此估计该校七年级640名学生中这次模拟考试成绩达90分以上的约有____名学生.28.数据3,4,5,6,7的平均数是___________.29.某校为了举办“迎国庆”的活动,调查了本校所有学生,调查的结果被整理成如图所示的扇形统计图.如果全校学生人数是1200人,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有________人.30.下表列出了某地农作物生长季节每月的降雨量(单位:mm):其中有______个月的降雨量比这6个月平均降雨量大.31.有一组数据:3,a,4,8,9,它们的平均数是6,则a是_______.32.从2,3,4,6中任意选两个数,记作a和b,且a≠b,那么点(a,b)在函数8=图象上的概率是_______.yx33.若a、b、c的方差为3,则23b+、23a+、23c+的方差为________.34.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是_________.35.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是_________.36.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是___________.37.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为_______.38.数字2018、2019 、2020 、2021 、2022的方差是__________;39.一组数据:9、12、10、9、11、9、10,则它的方差是_____.40.某校七年级开展“阳光体育”活动,对爱好乒乓球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.若爱好羽毛球的人数是爱好足球的人数的4倍,若爱好篮球的人数是14人,则爱好羽毛球的人数为________.三、解答题41.射箭时,新手成绩通常不太稳定,小明和小华练习射箭,第一局12支箭射完后,两人的成绩如图所示,请根据图中信息估计小明和小华谁是新手,并说明你这样估计的理由.42.某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm),请你用所学过的有关统计的知识回答下列问题:(1)分别求甲、乙两段台阶路的高度平均数;(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在总高度及台阶数不变的情况下,请你提出合理的整修建议.43.某校在八年级开展环保知识问卷调查活动,问卷一共10道题,八年级(三)班的问卷得分情况统计图如下图所示:a______________;(1)扇形统计图中,(2)根据以上统计图中的信息,①问卷得分的极差是_____________分;①问卷得分的众数是____________分;①问卷得分的中位数是______________分;(3)请你求出该班同学的平均分.44.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?45.“垃圾分类,从我做起”,垃圾一般可分为:可回收垃圾、厨余垃圾、有害垃圾、其它垃圾.现小明提了一袋垃圾,小聪提了两袋垃圾准备投放.(1)直接写出小明所提的垃圾恰好是“厨余垃圾”的概率;(2)求小聪所提的两袋垃圾不同类的概率.46.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是(精确到0.1),并说明理由.(2)估算袋中白球的个数.47.为了调查A、B两个区的初三学生体育测试成绩,从两个区各随机抽取了1000名学生的成绩(满分:40分,个人成绩四舍五入向上取整数)A区抽样学生体育测试成绩的平均分、中位数、众数如下:B区抽样学生体育测试成绩的分布如下:请根据以上信息回答下列问题(1)m=;(2)在两区抽样的学生中,体育测试成绩为37分的学生,在(填“A”或“B”)区被抽样学生中排名更靠前,理由是;(3)如果B区有10000名学生参加此次体育测试,估计成绩不低于34分的人数.48.为庆祝建校60周年,某校组织七年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校七年级学生进行抽样调查,根据所得数据绘制出如下计图表:根据图表提供的信息,回答下列问题:(1)这次抽样调查,一共抽取学生 人;(2)扇形统计图中,扇形E 的圆心角度数是 ; (3)请补全频率分布直方图;(4)已知该校七年级共有学生360人,请估计身高在160170x <的学生约有多少人?49.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环): 小华:7,8,7,8,9,9; 小亮:5,8,7,8,10,10. (1)填写下表:(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么? (3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差 .(填“变大”、“变小”、“不变”)50.(2011湖北鄂州,17,6分)为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图. ①甲、乙两种品牌食用油各被抽取了多少瓶用于检测?①在该超市购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?参考答案:1.A【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为141,最小值为50,它们的差是141-50=91,已知组距为10,那么由于91÷10=9.1,故可以分成10组.故选:A.【点睛】本题考查的是组数的计算,根据组数的定义来解即可.2.A【详解】A、方差越大,数据的波动越大,正确;B、某种彩票中奖概率为1%,是指买100张彩票可能有1张中奖,错误;C、旅客上飞机前的安检应采用全面调查,错误;D、掷一枚硬币,正面不一定朝上,错误,故选A.3.B【详解】画树状图为:共有3种等可能的结果数,其中小明出“剪刀”后,能胜出的结果数为1,所以小明出“剪刀”后,能胜出的概率=13.故选B.4.B【分析】根据概率公式直接解答即可.【详解】①共有四个景点,分别是永宁瞻胜、万芳华台、丝路花雨、九州花境,①他选择的景点恰为丝路花雨的概率为14;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.5.C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:由题意可知,这11.2万名考生的数学成绩是总体;每一名考生的数学成绩是个体;抽取的200名考生的数学成绩是总体的一个样本;样本容量为200;故①是正确的;①错误;①错误;①是正确的.故选:C.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.D【分析】根据必然事件、随机事件、概率的意义,以及全面调查与抽样调查的定义判断即可.【详解】解:A、“打开电视,正在播放新闻联播”是随机事件,不符合题意;B、对某批次手机放水功能的调查适合用抽样调查方式,不符合题意;C、某种彩票的中奖率是8%是指买8张可能一张中奖,不符合题意;D、对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式,符合题意.故选:D.【点睛】本题主要考查了概率的意义,掌握全面调查与抽样调查、随机事件的定义是解本题的关键.7.D【分析】用概率公式即可求解.【详解】由图可知,使得灯泡亮的组合有ab,ac这两种,总的可能情况有ab、ac、bc这3种情况,则让灯泡亮的概率为:2÷3=23,故选:D.【点睛】本题考查了用概率公式求解概率的知识,关键是要找全所有的可能情况和使灯泡亮的情况.8.D【详解】试题解析:A、“任意画一个三角形,其内角和为360°”是不可能事件,故A错误;B、已知某篮球运动员投篮投中的概率为0.6,则他投十次可能投中6次,故B错误;C、抽样调查选取样本时,所选样本要具有广泛性、代表性,故C错误;D、检测某城市的空气质量,采用抽样调查法,故D正确;故选D.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.9.B【详解】由频率的定义知,320%3a=+,解得a=12.10.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A.对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B.对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C.对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D.对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意.故选:A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.B【分析】根据表格中的数据可知全班人数共有30人,从而可以求得全班学生平均每天阅读时间的中位数和众数,本题得以解决;【详解】班级学生=8+9+10+3=30(人),阅读量1.5h的人有10个,人数最多,①众数是1.5h.阅读量从小到大排列为0.5h的有8个,1h的有9个,1.5h的人有10个,2h的有3个,所以中间的是第15、16个数分别是1h、1h,①中位数=1+1=12h.故选:B.【点睛】本题主要考查了中位数和众数的求解,准确计算是解题的关键.12.C【分析】从1到9这9个自然数中任取一个有9种可能的结果,其中是2的倍数或是3的倍数的有2,3,4,6,8,9共计6个.【详解】解:从1到9这9个自然数中任取一个有9种可能的结果,是2的倍数或是3的倍数的有6个结果,因而概率是23.故选:C.【点睛】用到的知识点为:概率 所求情况数与总情况数之比.正确写出是2的倍数或是3的倍数的数有哪些是本题解决的关键.13.C【分析】根据必然事件、随机事件、不可能事件的意义结合具体问题情境进行判断即可.【详解】解:A.“黄河入海流”是必然事件,因此选项A 不符合题意;B.“锄禾日当午”是随机事件,因此选项B不符合题意;C.“手可摘星辰”是不可能事件,因此选项C 符合题意;D.“大漠孤烟直”是随机事件,因此选项D不符合题意;故选:C.【点睛】本题考查了必然事件、随机事件、不可能事件,理解必然事件、随机事件、不可能事件的意义是正确判断的前提.14.A【分析】观察表格中的数据,甲、丙、丁的平均数相等且大于乙的平均数,从方差来看,甲的方差最小,根据方差的意义,方差小的发挥稳定,据此即可求解.【详解】解:甲、丙、丁的平均数相等且大于乙的平均数,甲的方差最小,①要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择甲.故选A.【点睛】本题考查了平均数,方差,掌握方差的意义是解题的关键.15.C【分析】随机事件是在随机试验中,可能出现也可能不出现,其发生概率在0%至100%之间,必然事件是一定会发生的事件,其发生概率是100%,确定事件是必然事件和不可能事件的统称,不可能事件发生的概率是0,据此逐项分析解题即可.【详解】A.抛一枚硬币,硬币落地时正面朝上是随机事件,故A.不符合题意;B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,故B.不符合题意;C.任意打开九年级数学教科书,正好是97页是随机事件,故C.符合题意;D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同),从中任取2个球,不一定取到红球是随机事件,故D.不符合题意故选:C【点睛】本题考查随机事件、必然事件、确定事件等知识,是基础考点,难度较易,掌握相关知识是解题关键.16.A【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 .故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.A【详解】解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为x ,新数据是在原来每个数上加上100得到,则新平均数变为x +100,则每个数都加了100,原来的方差s 12= 1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,现在的方差s 22=1n[(x 1+100﹣x ﹣100)2+(x 2+100﹣x ﹣100)2+…+(x n +100﹣x ﹣100)2]=1 n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,方差不变.故选A .【点睛】方差的计算公式:s 2=1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2] 18.D【详解】分析:本题考查统计的有关知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.利用平均数和方差的定义可分别求出.详解:这组数据中85出现了2次,出现的次数最多,所以这组数据的众数位85; 由平均数公式求得这组数据的平均数位85,将这组数据按从大到校的顺序排列,第3,4个数是85,故中位数为85. 方差()()()()()()222222217585958585858085908585856S ⎡⎤=-+-+-+-+-+-⎣⎦, 125.3= 所以选项D 错误.故选D.点睛:考查中位数,算术平均数,众数,方差,掌握它们的概念是解题的关键.19.D【详解】由平均数公式可得这组数据的平均数为4;在这组数据中5和3都出现了2次,其他数据均出现了1次,所以众数是5和3; 将这组数据从小到大排列为:1、3、3、4、5、5、7,可得其中位数是4;其方差S 2=1n[(x 1-x¯)2+(x 2-x¯)2+…+(x n -x¯)2]=227,所以D 错误.故选D . 20.B【详解】试题分析:根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,不符合题意;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是,符合题意;C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为,不符合题意;D、抛一枚硬币,出现反面的概率为,不符合题意,故选B.考点:利用频率估计概率.21.19 5【分析】直接根据算术平均数的定义进行求解.【详解】这组数据的平均数265241955++++==,故答案为:195.【点睛】本题考查算术平均数,熟练掌握算术平均数的计算公式是解题的关键.22.2【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中2是出现次数最多的,故众数是2.故答案为:2.【点睛】本题为统计题,考查了众数的定义,是基础题型.23.3【分析】根据中位数的定义解答即可.【详解】解:①2,2,3,5,7在中间位置的是3,①这组数据的中位数是3.故答案为3.【点睛】本题考查中位数的概念,将数据按照从小到大排列,在最中间位置的数或最中间的两个数的平均数就是中位数.24.25##0.4【分析】直接利用概率公式求解即可求得答案.【详解】解:①一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别,①从中随机摸出一个小球,恰好是黄球的概率为:4412 645==+.故答案为:25.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.25.8【分析】先根据众数的定义判断出a,b中至少有一个是9,再用平均数求出a+b=17,即可得出结论.【详解】解:①样本1,3,9,a,b的众数是9,①a,b中至少有一个是9,①样本1,3,9,a,b的平均数为6,①(1+3+9+a+b)÷5=6,①a+b=17,①a,b中一个是9,另一个是8,①这组数为1,3,9,8,9,即1,3,8,9,9,①这组数据的中位数是8.故答案为:8.【点睛】本题考查了众数、平均数和中位数的知识,解答本题的关键是能根据众数的定义得出a,b中至少有一个是9.26.112【分析】根据众数的出现次数最多的特点从数据中即可得到答案.【详解】解:在这组数据中出现次数最多的是112,所以这组数据的众数为112,故答案为:112.【点睛】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.27.160【详解】分析:先求出随机抽取的40名学生中成绩达到90分以上的所占的百分比,再乘以640,即可得出答案.详解:①随机抽取40名学生的数学成绩进行分析,有10名学生的成绩达90分以上,①七年级640名学生中这次模拟考数学成绩达90分以上的约有640×1040=160(名);故答案为160.点睛:此题主要考查了用样本估计总体,求出样本中符合条件的百分比是解题关键,比较简单.28.5【分析】根据平均数的的计算公式列出算式,进行计算即可.【详解】解:这组数据的平均数=(3+4+5+6+7)÷5=5,故答案是:5.【点睛】主要考查了平均数,用到的知识点是平均数的计算公式,熟记算术平均数公式是解题的关键.29.300【分析】根据扇形统计图中的数据和题目中的数据,可以计算出这所学校赞成举办演讲比赛的学生人数.【详解】解:由统计图可得,这所学校赞成举办演讲比赛的学生有:1200(140%35%)120025%300⨯--=⨯=(人),故答案为:300.【点睛】本题考查扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.30.3【分析】首先运用求平均数的公式得出这六个月平均每月的降雨量,然后进行比较即可.【详解】解:平均每月的降雨量=(20+55+82+135+116+90)÷6=83.3mm,所以有三个月的降雨量比这六个月平均降雨量大.故答案为3.【点睛】本题主要考查的是样本平均数的求法.熟记公式是解决本题的关键.31.6【详解】【分析】根据平均数的定义进行求解即可得.【详解】由题意得:38495a++++=6,解得:a=6,故答案为6.。
初中数学统计与概率专题训练50题含参考答案

初中数学统计与概率专题训练50题含答案一、单选题1.玉林市连续5天的最高气温(单位:℃)分别是:31,26,32,26,29,这组数据的众数是()A.31B.26C.32D.292.在一次体育测试中,小芳所在小组8个人的成绩分别是:46,47,48,48,49,49,49,50.则这8个人体育成绩的中位数是()A.47B.48C.48.5D.493.数据-1,0,1,2,-2的中位数是()A.-1B.0C.1D.24.下列调查中,适宜采用普查的是()A.了解重庆市空气质量情况B.了解长江水流的污染情况C.了解重庆市居民的环保意识D.了解全班同学每周体育锻炼的时间5.如图是某微信群抢红包的结果,六个群成员抢到的金额分别为0.07,1.42,2.40,0.30,1.57,0.90,这些红包金额的中位数是()A.2.40B.0.30C.1.35D.1.166.一组数据5,7,8,10,12,12,44的众数和中位数分别是()A.44和10B.12和10C.10和12D.12和11 7.某校运动会4100m拉力赛中,甲乙两名同学都是第一棒,参赛同学随机从四个赛道中抽取赛道,则甲乙两名同学恰好抽中相邻赛道的概率为()A.116B.14C.12D.388.下列判定正确的是()A是最简二次根式B .方程210x += 不是一元二次方程C .已知甲、乙两组数据的平均数分别是=80x 甲,=90x 乙,方差分别是2=10S 甲,2=5S 乙,则甲组数据的波动较小D 2x 的值为5 9.下列事件中最适合使用普查方式收集数据的是( ) A .了解某品牌LED 灯的使用寿命 B .了解全市每年使用塑料袋的个数 C .了解某远程弹道导弹的飞行距离D .了解八年级(1)班学生的近视情况10.已知一组数据2,6,5,2,4,则这组数据的中位数是( ) A .2B .4C .5D .611.一组数据4,5,7,7,8,6的中位数和众数分别是( ) A .7,7B .7,6.5C .6.5,7D .5.5,712.同时抛掷两枚均匀的硬币,出现两个正面朝上的概率是( )A .15B .14C .13D .1213.某面粉厂准备确定面粉包装袋的规格,市场调查员小李随机选择三家超市进行调查,收集三家超市一周的面粉销售情况,并整理数据、做出如图所示的统计图,则该面粉厂应选择面粉包装袋的规格为( )A .2kg/包B .3kg/包C .4kg/包D .5kg/包14.下列说法正确的是( ) A .不可能事件发生的概率为1 B .随机事件发生的概率为13C .概率很小的事件不可能发生D .掷一枚质地均匀的硬币,正面朝上的概率为1215.下表是苏州10个市(区)今年某日最低气温(℃)的统计结果:则该日最低气温(℃)的中位数是( )A .15.5 B .14.5 C .15D .1616.2015年12月18日易车网报道,作为中国重要的汽车生产基地,重庆到2017年的汽车产量将会突破400万辆,某汽车厂将2015年9月~12月的汽车产量绘制成如图所示的条形统计图,则产量最低的月份的产量頕2015年9月~12月汽车总产量的( )A .19%B .20%C .23%D .28%17.已知一组数据﹣16,π ,123,,则无理数出现的频率是( )A .20%B .40%C .60%D .80%18.期末考试中出现了如下图所示的一道题,小明同学从中任选了两个选项(每一个选项被选中的机会均等),请问小明答对的概率是( )A .16B .12C .14D .11219.某中学数学兴趣小组12名成员的年龄情况如下表:则这个小组成员年龄的平均数、中位数和众数分别是( )A .15,16,14 B .13,15,13C .13,14,14D .14,14,1320.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,则两次摸出的卡片的数字之和等于4的概率( ) A .34B .12C .14D .1二、填空题21.一个样本的数据有1,2,3,3,3,5,5,8,8,9,9那么它的中位数是__________.22.某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是_____.23.一个样本数据为1、7、2、5,那么这个样本的极差为_____.24.为了了解某县七年级8800名学生的视力情况,从中抽查了500名学生的视力情况进行统计分析,这个问题中的样本容量是______________.25.已知一组数据5,8,10,x ,7,9的众数是9,那么这组数据的方差是______. 26.小丽每周每天的睡眠时间如下(单位:h )8,9,7,9,7,8,8,则小丽该周每天的睡眠时间为_____h .27.已知第一组数据:12,14,16,18的方差为21s ;第二组数据:2022,2021,2020,2019的方差为22s ,则21s ,22s 的大小关系是21s ______22s (填“>”,“=”或“<”).28.在一个不透明的袋子里装有红球和白球共30个,这些球除颜色外其余都相同.小明通过多次试验发现,摸出白球的频率稳定在0.3左右,则袋子里可能有 _____个红球.29.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表:如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.甲的平均成绩__,乙的平均成绩__,公司将录取__. 30.已知数据1x , 2x ,, n x 的方差是 0.1 ,则 142x - , 242x - ,, 42n x - 的方差为________.31.体育测试前,甲、乙两名男同学进行跳远训练,两人在相同条件下每人跳10次,统计得两人的平均成绩均为2.43米,方差分别为20.03s =甲,20.1s =乙,则成绩比较稳定的是__________(填“甲”或“乙”).32.已知在一样本中,50个数据分别落在5个小组中,第1,2,3,4组数据的个数分别为3,7,13,17,那么第5小组的频率是______33.有一组数据:2,4,4,x ,5,5,6,其众数为4,则这组数据的平均数是________.34.如图,以正方形ABCD 的对角线交点O 为圆心画圆.直线EF 经过圆心O ,且EF℃BC .小明向ʘO 中投掷一个飞镖,则飞镖落在阴影部分的概率为_______.35.记“太阳从东方升起”为事件A ,则P (A )=_____.36.和睦社区一次歌唱比赛共500名选手参加,比赛分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表中的信息,可得比赛分数在80~90分数段的选手有________名.37.某班10位同学将平时积攒的零花钱捐献给贫困地区的失学儿童,每人捐款金额(单位:元)依次为5,6,10,8,12,6,9,7,6,8.这10名同学平均捐款_______元,捐款金额的中位数是______元,众数是______元38.若从1-,0,1三个数中随机选取一个数记为k ,再从2-,0,2个数中随机选取一个数记为b ,则k ,b 的取值使得y kx b =+是一次函数且它的图象不过第二象限的概率是___________.39.有一组数据:(),,,,a b c d e a b c d e <<<<.将这组数据改变为2,,,,2a b c d e -+.设这组数据改变前后的方差分别是2212,s s ,则21s 与22s 的大小关系是______________.三、解答题40.某农科所在相同条件下做某作物种子发芽率的试验,结果如下表所示:一般地,1000kg 种子中大约有多少是不能发芽的?41.如图所示,转盘被等分成六个扇形,并在上面一次写上数字1、2、3、4、5、6;若自由转动转盘,当它停止转动时,求: (1)指针指向4的概率; (2)指针指向数字是奇数的概率; (3)指针指向数字不小于5的概率.42.为践行习总书记提出的“绿水青山就是金山银山”生态环境保护重要思想,让绿水青山成为梅州人民幸福的靠山.我市某中学举办了“生态文明知识竞赛",赛后整理参赛学生成绩,将学生成绩分为,,,A B C D 四个等级,并绘制成图1的条形统计图和图2扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)求参加比赛的学生共有多少名?并补全图1的条形统计图;(2)在图2扇形统计图中,m 的值为______________,表示“D 等级”的扇形的圆心角为__________度;(3)学校决定从本次竞赛获得A 等级的学生中,选出2名去参加全市知识竞赛,已知A 等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.43.为庆祝中国共产党建党100周年,某学校组织全校学生参加青少年党史知识竞赛,老师从全校学生中随机抽取了男、女同学各40名,并将数据进行整理分析,得到了如下信息:℃女生成绩形统计图和男生成绩频数分布直方图如图所示(数据分组为A 组:70x <,B 组:7080x ≤<,C 组:8090x ≤<,D 组:90100x ≤≤)℃女生C 组中全部15名学生的成绩为:86,87,81,83,89,84,85,87,86,89,82,88,89.85.89.℃两组数据的相关统计数据如下表(单位:分)(1)扇形统计图中A组学生对应的圆心角α的度数为______度,认真分析以上数据信息后填空:中位数b=______,众数c=______.(2)通过以上的数据分析你认为______(填“女生”或“男生”)知识竞赛成绩更好,并说明理由.(3)若成绩在90分(包含90分)以上为优秀,请你估计我校2400名学生此次知识竞赛中优秀的人数.44.某学校开展了主题为“我帮父母做家务”的实践活动,倡导学生心怀感恩、孝敬父母,在家多帮父母做家务.校学生会在七、八、九三个年级随机抽取了部分学生,就“平均每天帮父母做家务所用时长”进行了调查,过程如下:【收集数据】做家务所用时长t(分钟)级别:A:010t≥;t≤<;E:40 t≤<;B:1020t≤<;D:3040t≤<;C:2030通过调查得到的一组数据:D C C A D A B A D BB E D D E D BC C EE C B D E E D D E DB BC CD CE D D AB D DCD DE D C E【整理数据】抽样调查50名学生帮父母做家务所用时长人数统计表【描述数据】(1)补全条形统计图;(2)图2是根据该校初中各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,若该校七年级共有400名学生,请你估计全校学生中帮父母做家务所用时长不低于半小时(包含半小时)人数约为多少?(3)根据本次实践活动主题,假如你是学生会中的一员,请你给全校同学发出一条倡议.45.在一个不透明的口袋里装有颜色不同的黄、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复..下表是活动中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近______;(精确到0.1)(2)试估算口袋中白种颜色的球有多少只?(3)请你设计一个增(减)袋中白球或黄球球个数的方案,使得从袋中摸出一个球,这只球是黄球的概率大于是白球的概率.46.2014年阜宁县中小学积极开展体艺“2+1”活动,某校学生会准备调查八年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数:(1)确定调查方式时,甲同学说:“我到八年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到八年级每个班随机调查一定数量的同学”.请你指出哪位同学的调查方式最合理;(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:℃填空;a= ,b= , c= ,℃在扇形统计图中器乐类所对应扇形的圆心角的度数是;℃若该校八年级有学生560人,请你估计大约有多少学生参加武术类校本课程. 47.为了解九年级学生“居家学习”的自主学习能力,某校随机抽取该年级部分学生,对他们的自主学习能力进行了测评统计,(其中自主学习能力指数级别“1”级,代表自主学习能力很强;“2”级,代表自主学习能力较强;“3”级,代表自主学习能力一般;“4”级,代表自主学习能力较弱)请结合图中相关数据回答问题.(1)本次抽查的学生人数______人,并将条形统计图补充完整.(2)本次抽查学生“居家学习”自主学习能力指数级别的众数为______,中位数为______级.(3)根据上述统计结果,估计该校九年级850名学生自主学习能力较强及以上的学生有多少名?48.某中学利用班会课对全校学生进行了一次防疫知识测试活动,现从初二、初三两个年级各随机抽取了15名学生的测试成绩,得分用x表示(采取百分制,x为整数),共分成4组:A:60≤x<70,B:70≤x<80,C:80≤x<90,D:90≤x≤100,对得分进行整理分析,给出了下面部分信息:初二的测试成绩在C组中的数据为:80,86,88.初三的测试成绩:76,83,100,88,81,100,82,71,95,90,100,93,89,86,86.(1)a=,b=;(2)通过以上数据分析,你认为哪个年级学生对防疫知识的掌握更好?请写出一条理由;(3)若初二、初三共有3000名学生,请估计此次测试成绩达到90分及以上的学生约有多少人?49.一名战士射击10次,每次命中的环数如下:8,6,7,8,9,10,6,5,4,7,计算这组数据的平均数和方差.参考答案:1.B【分析】根据众数的定义求解即可.【详解】解:26出现了2次,出现的次数最多,故这组数据的众数是26,故选:B.【点睛】本题主要考查众数的定义,熟练地掌握众数的定义是解决问题的关键,题目较简单.2.C【详解】中位数是将数据按照从小到大的顺序排列,其中间的一个数或中间两个数的平均数就是这组数的中位数.本题的8个数据已经按照从小到大的顺序排列了,其中间的两个数是48和49,它们的平均数是48.5.因此中位数是48.5.故选C.3.B【分析】根据中位数的定义求解即可.【详解】解:数据-2,1,0,1,2的中位数是0.故选:B.【点睛】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.了解重庆市的空气质量情况,适合采用抽样调查,故此选项错误;B.了解长江水流的污染情况,适合采用抽样调查,故此选项错误;C.了解重庆市居民的环保意识,人数众多,适合采用抽样调查,故此选项错误;D.了解全班同学每周体育锻炼的时间,范围小,适宜普查,正确;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.D【分析】根据中位数的定义求解即可.【详解】解:将6个数据按从小到大的顺序排列如下,0.07,0.30,0.90,1.42,1.57,2.40,最中间两个数为0.90,1.42,℃中位数为0901421162...+=,故选:D.【点睛】本题主要考查的是中位数的定义,注意找中位数的时候一定要先排好顺序,如果数据有奇数个则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.B【分析】根据众数和中位数的定义进行求解即可得.【详解】解:这一组数据中12出现了两次,是出现次数最多的,故众数是12,这组数据一共7个数,从小到大排列后第4个数据是中位数,观察可知中位数是10,故选:B.【点睛】本题考查了中位数和众数,熟练掌握“众数是指一组数据中出现次数最多的数”、“中位数是指将一组数据从小到大排列后,处于中间的数(如果是奇数个数据,则是最中间的那个,如果有偶数个数据,则是中间两个的平均数)”是解题的关键.7.C【分析】根据题意,画出树状图,然后根据概率公式计算即可.【详解】解:画树状图如下由图可知:共有12种等可能的结果,其中甲乙两名同学恰好抽中相邻赛道的结果共有6种℃甲乙两名同学恰好抽中相邻赛道的概率为6÷12=12故选C.【点睛】此题考查的是求概率问题,掌握画树状图和概率公式是解决此题的关键.8.D【分析】根据最简二次根式、一元二次方程、方差和二次根式有意义的条件判断即可.【详解】A. ;B. 方程210x+=是一元二次方程;C. 乙组方差小,所以乙组数据的波动较小;D. 由题意可得:2x-5≥0,5-2x≥0,解得:55x22≤≤,所以5x2=,则原式=5.故选D.【点睛】本题考查了最简二次根式、一元二次方程的定义、方差和二次根式有意义的条件,其中最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.9.D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据以上逐项分析可知.【详解】A. 了解某品牌LED灯的使用寿命,调查具有破坏性,适合抽样调查,故A不符合题意;B. 了解全市每年使用塑料袋的个数,调查范围广,费时费力,适合抽样调查,故B不符合题意;C. 了解某远程弹道导弹的飞行距离,,调查具有破坏性,适合抽样调查,故C不符合题意;D. 了解八年级(1)班学生的近视情况,人员不多,适合普查,故D符合题意.故选D.【点睛】本题考查的是全面调查与抽样调查,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.理解全面调查与抽样调查的适用范围是解题的关键.10.B【分析】将一组数据从小到大排列,处于最中间的数字就是中位数,本题有5个数字,则排在第三个的就是中位数.【详解】把数据从小到大排列为:2,2,4,5,6,中间的数是4,℃中位数是4,故选:B.【点睛】本题考查中位数的定义,将一组数据按从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数是中位数,如果数据的个数是偶数,则处于中间两个数据的平均数是中位数.11.C【分析】根据中位数与众数的概念和求解方法进行求解即可.【详解】将数据从小到大排列:4、5、6、7、7、8,所以中位数为672=6.5,众数是7,故选C.【点睛】本题考查了中位数和众数,熟练掌握相关定义以及求解方法是解题的关键.℃给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.℃给定一组数据,出现次数最多的那个数,称为这组数据的众数.12.B【分析】把所有可能出现的情况列举出来,将需要的结果数出来,代入概率公式计算即可.【详解】同时抛掷两枚均匀的硬币,正面朝上记为“正”,背面朝上记为“背”,则可能出现的情况有(正,背),(正,正),(背,正),(背,背)共4种情况,其中出现两个正面朝上的情况有(正,正)共1种,故出现两个正面朝上的概率为14.故选B.【点睛】本题考查了列举法求概率,熟悉列举法的步骤是解决本题的关键.13.A【分析】最合适的包装即顾客购买最多的包装,而顾客购买最多的包装质量即这组数据的众数,取所得范围的组中值即可.【详解】解:由图知这组数据的众数为1.5kg~2.5kg,取其组中值2kg,故选:A.【点睛】本题主要考查频数(率)分布直方图,解题的关键是根据最合适的包装即顾客购买最多的包装,并根据频数分布直方图得出具体的数据及众数的概念.14.D【详解】A. 不可能事件发生的概率为0,故错误;B. 随机事件发生的概率介于0和1之间,不一定是13,故错误;C. 概率很小的事件不是不可能发生,而是发生的机会较小,故错误;D. 抛一枚质地均匀的硬币,正面朝上和反面朝上的可能性相等,都是12,故正确.故选D.15.A【分析】根据中位数的概念求解即可.【详解】把这组数据按照从小到大的顺序排列14,14,15,15,15,16,16,16,16,17,位于中间位置的两个数的平均数为(15+16) 2=15.5,故中位数为15.5.故选A.【点睛】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.16.B【详解】如图可知,产量最低的月份为2015年12月份,产量为1500辆,2015年9月~12月汽车总产量为:2100+ 1700 + 2200 + 1500=7500辆,1500÷7500=20%,故选B.17.B【分析】由于开方开不尽的数、无限不循环小数是无理数,根据频率、频数的关系即可判断选择项.【详解】在题目所给的5个数据中,π,2个,所以无理数出现的频率是25=40%,故选:B.【点睛】本题主要考查了无理数的定义及频率、频数灵活运用,其中频率、频数的关系为:频率等于频数与数据总和之比.18.A【分析】画树状图,共有12个等可能的结果,选择C、D和D、C的结果有2个,再由概率公式求解即可.【详解】解:画树状图如图:共有12个等可能的结果,小明答对的情况只有C 、D 和D 、C 这两种情况,℃小明答对的概率是21126= , 故选:A .【点睛】本题考查了列表法、树状图法求概率,画出树状图得出所有可能出现的结果情况是正确解答的关键.19.D 【详解】试题分析:根据平均数的意义,可知其平均数为:121+134+143+15?2+16?2=1412⨯⨯⨯;根据中位数的概念,从小到大排列,然后取中间的一个或两个的平均数,可知其中位数为14,而众数是出现次数最多的数,因此众数是13. 故选D20.C【分析】列表得出所有等可能的情况数,找出两次摸出的卡片的数字之和等于4的情况,即可求出所求的概率.【详解】列表得:所有等可能的情况有8种,其中两次摸出的卡片的数字之和等于4的情况有2种,则P =28=14, 故选C .【点睛】此题考查了列表法或树状图法求事件的概率,用到的知识点为:概率=所求情况数与总情况数之比.21.5【分析】根据中位数的定义回答即可.【详解】解:数据1,2,3,3,3,5,5,8,8,9,9中,中位数为5,故答案为:5.【点睛】本题考查了中位数的定义,解题的关键是学会根据定义找出一组数据的中位数.22.1 6【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与出场顺序恰好是甲、乙、丙的情况,再利用概率公式求解即可求得答案.【详解】解:画出树状图得:℃共有6种等可能的结果,其中出场顺序恰好是甲、乙、丙的只有1种结果,℃出场顺序恰好是甲、乙、丙的概率为16,故答案为:16.【点睛】本题考查了树状图法求概率问题,关键是根据题意正确画出树状图进而求解. 23.6【分析】根据极差是指一组数据中最大数据与最小数据的差可得答案.【详解】解:这个样本的极差为7﹣1=6,故答案为:6.【点睛】本题主要考查了极差,关键是掌握极差=最大值−最小值.24.500【分析】根据样本容量的定义可得答案,样本容量:一个样本包括的个体数量叫做样本容量.【详解】解:为了了解某县七年级8800名学生的视力情况,从中抽查了500名学生的视力情况进行统计分析,这个问题中的样本容量是500.故答案为:500.【点睛】此题主要考查了样本容量,关键是注意样本容量只是个数字,没有单位.25.83##223【分析】先根据众数求出x ,再求这组数据的平均数,最后求出方差即可.【详解】解:℃一组数据5,8,10,x ,7,9的众数是9,℃9x =,则这组数据为:5,8,10,9,7,9, 平均数是1(5810979)86+++++=, 这组数据的方差是()()()()()()22222218588810898789863⎡⎤-+-+-+-+-+-=⎣⎦, 故答案为:83【点睛】此题考查了众数、平均数和方差,熟练掌握方差的求法是解题的关键. 26.8【分析】利用平均数的定义列式求解即可. 【详解】解:小丽每周的睡眠时间为897978887++++++= 故答案为:8.【点睛】本题考查求平均数,掌握平均数的定义是解题的关键.27.>【分析】利用方差代表的意义判断即可.【详解】解:由题意可知:℃第一组数据是间隔为2的偶数,第二组数据是间隔为1的数,℃第一组数据波动比较大,℃2212s s >,故答案为:>.【点睛】本题考查方差的意义,关键是理解方差代表的意义:方差代表一组数据在其平均数附近的波动情况,波动越大,方差越大.28.21【分析】根据大量反复试验下频率的稳定值即为概率,即可用球的总数乘以白球的频率,可求得白球数量,从而得到红球的熟练.【详解】解:℃小明通过多次试验发现,摸出白球的频率稳定在0.3左右,℃白球的个数=30×0.3=9个,℃红球的个数=30-9=21个,故答案为:21.【点睛】本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.29.87分86分甲【分析】根据题意先算出甲、乙两位候选人的加权平均数,再进行比较,即可得出答案.【详解】解:甲的平均成绩为:(85×6+90×4)÷10=87(分),乙的平均成绩为:(90×6+80×4)÷10=86(分),因为甲的平均分数最高,所以甲将被录取.故答案为:87分,86分,甲.【点睛】本题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.30.1.6【详解】0.1×42=1.6.【点睛】当把一组数据每个数都加上或减去同一个数时,方差不变;当把一组数据每个数都乘以或除以同一个数时,方差变为这个数的平方倍.31.甲【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】℃甲的方差为0.03,乙的方差为0.1,0.03<0.1,℃成绩较为稳定的是甲.故答案为甲.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.32.0.2【分析】总数减去其它四组的数据就是第5组的频数,再除以50可得频率.。
陕西省中考数学历年(2016-2022年)真题分类汇编专题12统计与概率及答案

陕西省中考数学历年(2016-2022年)真题分类汇编专题12 统计与概率一、填空题1.已知一组数据:3,5,x,7,9的平均数为6,则x=.二、综合题2.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500ml)、红茶(500ml)和可乐(600ml),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.3.某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.4.有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg,6kg,7kg,7kg,8kg.现将这五个纸箱随机摆放.(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是;(2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg的概率.5.从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为;(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的面数字恰好相同的概率.6.今年9月,第十四届全国运动会将在陕西省举行本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:根据以上信息,回答下列问题:(1)这60天的日平均气温的中位数为,众数为;(2)求这60天的日平均气温的平均数;(3)若日平均气温在18℃~21℃的范围内(包含18℃和21℃)为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.7.王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是,众数是.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?8.小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.9.现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球。
教育最新K12全效学习2016版中考数学 易错提分练三 统计与概率练习(含解析)

统计与概率一、选择题1.(重庆中考)下列调查中,最适宜采用全面调查方式(普查)的是 (C) A .对重庆市中学生每天学习所用时间的调查 B .对全国中学生心理健康现状的调查C .对某班学生进行6月5日“世界环境日”知晓情况的调查D .对重庆市初中学生课外阅读量的调查【易错分析】 对全面调查与抽样调查概念理解不透.普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似. 2.(邹平期末)某校学生来自甲乙丙三个地区,其人数比为2∶7∶3,如图Y3-1的扇形图表示上述分布情况.如果来自甲地区的有180人,则下列说法错误的是 (B) A .该校学生的总数是1 080人 B .扇形甲的圆心角是36° C .该校来自乙地区的有630人D .扇形丙的圆心角是90°【易错分析】 对扇形统计图所表示的百分比不理解.A.该校学生的总数是180÷22+7+3=1 080(人),正确;B.扇形甲的圆心角是360°×212=60°,故本选项错误;C.该校来自乙地区的人数是:1 080×712=630(人),正确;D.扇形丙的圆心角是360°×312=90°,正确.3.(宜宾中考)今年4月,全国山地越野车大赛在我市某区举行,其中8名选手某项得分如下表:则这8 (C) A .85,85 B .87,85 C .85,86 D .85,87【易错分析】 众数和中位数的概念混淆,众数就是一组数据中出现次数最多的数,中位数就是将一组数据按从小到大或从大到小的顺序排列后处在最中间的数(奇数个数)或中间两数的平均数(偶数个数).注意:众数是出现次数最多的数字,不是次数,如本题中是85,不是3.4.(德州中考)经过某十字路口的汽车,可能直行,也可能左转或者右转.如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是 (C) A.47B.49C.29D.19【易错分析】 不善于列表或树形图,从而求出的可能性不正确.5.(毕节中考)小颖将一枚质地均匀的硬币连续掷了三次,你认为三次都是正面朝上的概率是 (D) A.12B.13C.14D.18【易错分析】 对这一事件“连续掷了三次”理解不到位,不善于列表或树形图求所有可能 图Y3-1的结果数. 6.(抚顺模拟)一个不透明的口袋里装有红、黑、绿三种颜色的乒乓球(除颜色外其余都相同),其中红球有2个,黑球有1个,绿球有3个,第一次任意摸出一个球(不放回),第二次再摸出一个球,则两次摸到的都是红球的概率为(D) A.118B.19C.215D.115【易错分析】 列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.注意放回与不放回的区别.列表如下:所有等可能的情况有30种,其中两次都是红球的情况有2种,则P =230=115.二、填空题7.(黄浦区二模)某校八年级共四个班,各班寒假外出旅游的学生人数如图Y3-2所示,那么三班外出旅游学生人数占全年级外出旅游学生人数的百分比为__40%__.图Y3-2 【易错分析】 不会看条形统计图所表示的意义.三班外出旅游学生人数占全年级外出旅游学生人数的百分比为2012+8+20+10×100%=40%.8.在-1,0,13,1,2,3中任取一个数,取到无理数的概率是__13__.【易错分析】 找无理数出错.有6种等可能的结果,其中无理数有:2,3共2种情况,则可利用概率公式求解.9.(上海中考)已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:那么“科技创新社团”成员年龄的中位数是__14__岁. 【易错分析】 利用表中数据计算中位数易错.10.(嘉定区二模)某班40名学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图Y3-3所示,根据图中所提供的信息,你认为这次捐款活动中40个捐款额的中位数是__15__元.【易错分析】 不会看折线统计图,把中位数与众数混淆.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.∵捐款的总人数为40,第20个与第21个数据都是15元, ∴中位数是15元.11.(河北模拟)已知一组数据1,3,a ,6,6的平均数为4,则这组数据的方差为__3.6__. 【易错分析】 不会对平均数、方差公式进行变形运用, ∵数据1,3,a ,6,6的平均数为4, ∴(1+3+a +6+6)÷5=4,∴a =4,∴这组数据的方差15[(1-4)2+(3-4)2+(4-4)2+(6-4)2+(6-4)2]=3.6.12.(娄底中考)五张分别写有-1,2,0,-4,5的卡片(除数字不同以外,其余都相同),现从中任意取出一张卡片,则该卡片上的数字是负数的概率是__25__.【易错分析】 对概率的计算公式理解不透,应用模糊. 三、解答题13.(漳州中考)在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率; (2)这个游戏公平吗?请说明理由.【易错分析】 (1)不会用树状图或列表求概率; (2)判断游戏是否公平的原则不明确. 解:(1)根据题意画图如答图,第13题答图∵从表中可以看出所有可能结果共有12种,其中数字之和小于9的有4种, ∴P (小明获胜)=412=13;(2)∵P (小明获胜)=13,∴P (小东获胜)=1-13=23,∴这个游戏不公平.14.(图Y3-3(1)求这5(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=个人成绩-平均成绩标准差;(说明:标准差为方差的算术平方根)从标准分看,标准分大的考试成绩更好,请问A 同学在本次考试中,数学与英语哪个学科考得更好?【易错分析】 (1)对平均数、方差的概念及计算公式掌握不牢;(2)计算错误. 解:(1)数学成绩的平均分为:71+72+69+68+705=70;英语成绩的方差为:15[(88-85)2+(82-85)2+(94-85)2+(85-85)2+(76-85)2]=36;(2)A 同学数学标准分为:71-702=22.A 同学英语标准分为:88-856=12, 因为22>12,所以A 同学在本次考试中,数学考得更好. 15.(舟山中考)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量作为样本进行统计,绘制了如图Y3-4所示的条形统计图和扇形统计图.(部分信息未给出)图Y3-4请你根据图中提供的信息,解答下列问题; (1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角的度数; (3)请估计该市这一年(365天)达到优和良的总天数.【易错分析】 读不懂统计图,不能从不同的统计图中得到必要的信息.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 解:(1)32÷64%=50(天);(2)轻微污染天数是5天,图略;表示优的扇形的圆心角的度数是850×360°=57.6°;(3)8+3250×365=292(天).16.(襄阳中考)“端午节”吃粽子是我国流传了上千年的习俗.某班学生在“端午节”前组织了一次综合实践活动,购买了一些材料制作爱心粽,每人从自己制作的粽子中随机选取两个献给自己的父母,其余的全部送给敬老院的老人们.统计全班学生制作粽子的个数,将制作粽子数量相同的学生分为一组,全班学生可分为A ,B ,C ,D 四个组,各组每人制作的粽子个数分别为4,5,6,7.根据图Y3-5的不完整的统计图解答下列问题:图Y3-5(1)请补全上面两个统计图(不写过程);(2)该班学生制作粽子个数的平均数是__6__;(3)若制作的粽子有红枣馅(记为M )和蛋黄馅(记为N )两种,该班小明同学制作这两种粽子各两个混放在一起,请用列表或画树状图的方法求小明献给父母的粽子馅料不同的概率. 【易错分析】 (1)读不懂统计图,不能从不同的统计图中得到必要的信息.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(2)不能列表或树状图求概率;(3)不善于把统计与概率综合运用. 解:(1)如答图;第16题答图(3)根据题意列表,由表格可知,共有128种,∴P (馅料不同)=812=23.。
2016年中考数学 微测试系列专题13 统计与概率(含解析)

专题13 统计与概率学校:___________姓名:___________班级:___________1.【黑龙江绥化2015年中考数学试卷】从长度分别为1、3、5、7的四条线段中任选三条作边 ,能构成三角形的概率为( ) A. 21 B. 31 C. 41 D.51 【答案】C 【解析】考点:简单事件的概率.2.【黑龙江大庆2015年中考数学试卷】某射击小组有20人,教练根据他们某次射击的数据绘制如图所示的统计图,则这组数据的众数和中位数分别是( )A .7,7B .8,7.5C .7,7.5D .8,6【答案】C .【解析】试题分析:在这一组数据中7是出现次数最多的,故众数是7;排序后处于中间位置的那个数是7,8,那么由中位数的定义可知,这组数据的中位数是(7+8)÷2=7.5;故选C .考点:1.众数;2.条形统计图;3.中位数.3.【2015届河北省保定市定州市中考三模】下列说法中错误的是( )A .掷一枚均匀的骰子,骰子停止转动后6点朝上是必然事件B .了解一批电视机的使用寿命,适合用抽样调查的方式C.若a为实数,则|a|<0是不可能事件D.甲、乙两人各进行10次射击,两人射击成绩的方差分别为S甲2=2,S乙2=4,则甲的射击成绩更稳定【答案】A.【解析】考点:1.随机事件;2.全面调查与抽样调查;3.方差.4.【2015届浙江省杭州市西湖区中考一模】下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是().A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定【答案】B.【解析】试题分析:根据方差的意义可作出判断.通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定.故选:B.考点:1.方差;2.条形统计图.5.【黑龙江牡丹江2015年中考数学试题】一组数据1,4,6,x 的中位数和平均数相等,则x 的值是 .【答案】﹣1或3或9.【解析】考点:1.中位数;2.算术平均数.6.【湖北襄阳2015年中考数学试题】若一组数据1,2,x ,4的众数是1,则这组数据的方差为 .【答案】32. 【解析】试题分析:因为一组数据1,2,x ,4的众数是1,所以x =1.于是这组数据为1,1,2,4.该组数据的平均数为:14[1+1+2+4]=2. 方差2S =22221[(12)(12)(22)(42)]4-+-+-+-=32. 故答案为:32. 考点:1.方差;2.众数.7.【2015届山西省吕梁市孝义市中考一模】甲、乙两种水稻品种经过连续5年试验种植,每年的单位面积产量的折线图如图所示,经过计算,甲的单位面积平均产量甲=10,乙的单位面积平均产量乙=10,则根据图表估计,两种水稻品种产量比较稳定的是 .【答案】乙【解析】考点:1.方差;2.折线统计图.8.【2015届浙江省嘉兴市海宁市中考模拟】一个不透明的布袋里装有4个只有颜色不同的球,其中3个白球,1个红球.从中摸出1个球,记下颜色后放回搅匀,再摸出1个球.则两次都摸出红球的概率是.【答案】.【解析】试题分析:首先根据题意画出树状图,可知共有16种等可能的结果,两次都摸出红球的只有1种情况,∴两次都摸出红球的概率是:.故答案为:.考点:列表法与树状图法.9.【辽宁抚顺2015年中考数学试题】电视节目“奔跑吧兄弟”播出后深受中小学生的喜爱,小刚想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的“兄弟”),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有人.(2)将两幅统计图补充完整.(3)若小刚所在学校有2000名学生,请根据图中信息,估计全校喜欢“Angelababy”的人数.(4)若从3名喜欢“李晨”的学生和2名喜欢“Angelababy”的学生中随机抽取两人参加文体活动,则两人都是喜欢“李晨”的学生的概率是.【答案】(1)200;(2)作图见试题解析;(3)600;(4)3 10.【解析】补全统计图,如图所示:(3)根据题意得:2000×30%=600(人),则全校喜欢“Angelababy”的人数为600人;考点:1.列表法与树状图法;2.用样本估计总体;3.扇形统计图;4.条形统计图.10.【2015届广东省湛江市中考二模】我市某中学为备战省运会,在校运动队的学生中进行了全能选手的选拔,并将参加选拔学生的综合成绩分成四组,绘成了如下尚不完整的统计图表.组别成绩组中值频数第一组90≤x<100 95 4第二组80≤x<90 85 m第三组70≤x<80 75 n第四组60≤x<70 65 21根据图表信息,回答下列问题:(1)参加活动选拔的学生共有人;表中m= ,n= ;(2)若将各组的组中值视为该组的平均值,请你估算参加选拔学生的平均成绩;(3)将第一组中的4名学生记为A、B、C、D,由于这4名学生的体育综合水平相差不大,现决定随机挑选其中两名学生代表学校参赛,试通过画树形图或列表的方法求恰好选中A和B的概率.【答案】(1)50,10,15;(2)74.4.(3)16.【解析】(2)95485107515652174.450x⨯+⨯+⨯+⨯==;(3)将第一组中的4名学生记为A、B、C、D,现随机挑选其中两名学生代表学校参赛,所有可能的结果如下表:A B C DA (B,A)(C,A)(D,A)B (A,B)(C,B)(D,B)C (A,C)(B,C)(D,C)D (A,D)(B,D)(C,D)由上表可知,总共有12种结果,且每种结果出现的可能性相同.恰好选中A和B的结果有2种,其概率为=21 126=.考点:1.频数(率)分布表;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法.。
专题07 统计与概率(第05期)-2016年中考数学试题分项版解析汇编(解析版)

一、选择题1.(2016贵州遵义第6题)已知一组数据:60,30,40,50,70,这组数据的平均数和中位数分别是()A.60,50B.50,60C.50,50D.60,60【答案】C.考点:中位数;算术平均数.2.(2016四川甘孜州第6题)某学校足球兴趣小组的五名同学在一次射门训练中,射进球门的次数分别为:6,7,7,8,9.这组数据的众数为()A.6B.7C.8D.9【答案】B.【解析】试题分析:依题意得,7出现了二次,次数最多,所以这组数据的众数是7.故选B.考点:众数.3.(2016贵州铜仁第5题)今年,我市全面启动“精准扶贫”工作,某校为了了解九年级贫困生人数,对该校九年级6个班进行摸排,得到各班贫困生人数分别为12,12,14,10,18,16,这组数据的众数和中位数分别是()A.12和10B.12和13C.12和12D.12和14【答案】B.【解析】试题分析:∵12出现的次数最多,∴众数为12.将这组数据按照从小到大的顺序排列:10、12、12、14、16、18.中位数=(12+14)÷2=13.故选B.考点:众数;中位数.4.(2016浙江台州第5题)质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是()A.点数都是偶数B.点数的和为奇数C.点数的和小于13D.点数的和小于2【答案】C.【解析】试题分析:画树状图为:考点:列表法与树状图法;可能性的大小.5.(2016湖南株洲第3题)甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()A.甲B.乙C.丙D.丁【答案】C.【解析】试题分析:∵ =x x 甲丙=9.7,22S S 甲乙,∴选择丙.故选C . 考点:方差.6.(2016福建莆田第3题)一组数据3,3,4,6,8,9的中位数是( ) A .4 B .5 C .5.5 D .6 【答案】B . 【解析】试题分析:数据3,3,4,6,8,9的中位数是:(4+6)÷2=5,故选B . 考点:中位数;统计与概率.7.(2016广西河池第7题)要调查河池市中学生了解禁毒知识的情况,下列调查方式最适合的是( ) A .在某中学抽取200名女生 B .在某中学抽取200名男生C .在某中学抽取200名学生D .在河池市中学生中随机抽取200名学生 【答案】D .考点:全面调查与抽样调查.8.(2016贵州贵阳第4题)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( ) A .110 B .15 C .310 D .25【答案】C . 【解析】试题分析:∵共有200辆车,其中帕萨特60辆,∴随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率=60200=310.故选C . 考点:概率公式.9.(2016贵州贵阳第6题)2016年6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分D.方差【答案】A.考点:统计量的选择.10.(2016福建泉州第5题)一组数据:2,5,4,3,2的中位数是()A.4 B.3.2 C.3 D.2【答案】C.【解析】试题分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,将数据由小到大排列2,2,3,4,5,所以中位数是3,故选C.考点:中位数.11.(2016青海第17题)在“我的阅读生活”校园演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中一名学生想知道自己能否进入前6名,除了要了解自己的成绩外,还要了解这11名学生成绩的()A.众数 B.方差 C.平均数D.中位数【答案】D.【解析】试题分析:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,故应知道中位数的多少.故选D.考点:统计量的选择.12.(2016辽宁葫芦岛第5题)九年级两名男同学在体育课上各练习10次立定跳远,平均成绩均为2.20米,要判断哪一名同学的成绩比较稳定,通常需要比较这两名同学立定跳远成绩的()A.方差 B.众数 C.平均数D.中位数【答案】A.【解析】试题分析:方差是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.由于方差能反映数据的稳定性,需要比较这2名学生立定跳远成绩的方差.故选A.考点:统计量的选择.13.(2016辽宁葫芦岛第7题)在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为13,则袋中白球的个数为()A.2 B.3 C.4 D.12【答案】B.【解析】试题分析:设袋中白球的个数为x个,然后根据概率公式,可得454x++=13,解得:x=3.经检验:x=3是原分式方程的解.所以袋中白球的个数为3个.故选B.考点:概率公式.14.(2016内蒙古呼伦贝尔市、兴安盟第3题)下列调查适合做抽样调查的是()A.对某小区的卫生死角进行调查B.审核书稿中的错别字C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查【答案】D.考点:全面调查与抽样调查.15.(2016内蒙古呼伦贝尔市、兴安盟第8题)从一组数据中取出a个x1,b个x2,c个x3,组成一个样本,那么这个样本的平均数是()A.1233x x x++B.123ax ax axa b c++++ C.1233ax ax ax++D.3a b c++【答案】B.【解析】试题分析:由题意知,a 个x 1的和为ax 1,b 个x 2的和为bx 2,c 个x 3的和为cx 3,数据总共有a+b+c 个,所以这个样本的平均数=123ax ax ax a b c++++,故选B .考点:算术平均数.16.(2016辽宁葫芦岛第13题)某广告公司全体员工年薪的具体情况如表:则该公司全体员工年薪的中位数是 万元. 【答案】8.考点:中位数.17.(2016辽宁葫芦岛第14题)如图,一只蚂蚁在正方形ABCD 区域内爬行,点O 是对角线的交点,∠MON=90°,OM ,ON 分别交线段AB ,BC 于M ,N 两点,则蚂蚁停留在阴影区域的概率为 .【答案】14.【解析】试题分析:∵四边形ABCD 为正方形,点O 是对角线的交点, ∴∠MBO=∠NCO=45°,OB=OC ,∠BOC=90°, ∵∠MON=90°,∴∠MOB+∠BON=90°,∠BON+∠NOC=90°, ∴∠MOB=∠NOC .在△MOB 和△NOC 中,有MOB NOCOB OCMBO NCO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△MOB ≌△NOC (ASA ).同理可得:△AOM ≌△BON . ∴S 阴影=S △BOC =14S 正方形ABCD .∴蚂蚁停留在阴影区域的概率P=ABCDS S 阴影正方形=14.考点:几何概率.18.(2016内蒙古通辽第12题)有一组数据:2,x ,4,6,7,已知这组数据的众数是6,那么这组数据的方差是 . 【答案】3.2. 【解析】试题分析:一组数据:2,x ,4,6,7的众数是6,∴x =6,∴x =(2+5+4+6+7)÷5=5,∴2222221[(25)(65)(45)(65)(75)]5S =-+-+-+-+-=3.2,故答案为:3.2.考点:方差;众数.19.(2016辽宁营口第7题)为了解某市参加中考的25000名学生的身高情况,抽查了其中1200名学生的身高进行统计分析.下面叙述正确的是( )A .25000名学生是总体B .1200名学生的身高是总体的一个样本C .每名学生是总体的一个个体D .以上调查是全面调查 【答案】B .考点:总体、个体、样本、样本容量.20.(2016江苏盐城第5题)下列调查中,最适宜采用普查方式的是( ) A .对我国初中学生视力状况的调查 B .对量子科学通信卫星上某种零部件的调查 C .对一批节能灯管使用寿命的调查 D .对“最强大脑”节目收视率的调查【答案】B.【解析】试题分析:A.对我国初中学生视力状况的调查,人数太多,调查的工作量大,适合抽样调查,故此选项错误;B.对量子科学通信卫星上某种零部件的调查,关系到量子科学通信卫星的运行安全,必须全面调查,故此选项正确;C.对一批节能灯管使用寿命的调查具有破坏性,适合抽样调查,故此选项错误;D.对“最强大脑”节目收视率的调查,人数较多,不便测量,应当采用抽样调查,故本选项错误;故选B.考点:全面调查与抽样调查.21.(2016福建南平第4题)下列事件是必然事件的是()A.某种彩票中奖率是1%,则买这种彩票100张一定会中奖B.一组数据1,2,4,5的平均数是4C.三角形的内角和等于180°D.若a是实数,则|a|>0【答案】C.考点:随机事件.22.(2016重庆A卷第4题)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查【答案】B.【解析】试题分析:A.对重庆市辖区内长江流域水质情况的调查,应采用抽样调查;B.对乘坐飞机的旅客是否携带违禁物品的调查,应采用全面调查;C.对一个社区每天丢弃塑料袋数量的调查,应采用抽样调查;D.对重庆电视台“天天630”栏目收视率的调查,应采用抽样调查.故选B.考点:全面调查与抽样调查.23.(2016福建南平第5题)2016年欧洲杯足球赛中,某国家足球队首发上场的11名队员身高如表:则这11名队员身高的众数和中位数分别是()(单位:cm)A.180,182B.180,180C.182,182D.3,2【答案】B.考点:众数;中位数.24.(2016四川南充第4题)某校共有40名初中生参加足球兴趣小组,他们的年龄统计情况如图所示,则这40名学生年龄的中位数是()A.12岁B.13岁C.14岁D.15岁【答案】C.【解析】试题分析:40个数据最中间的两个数为第20个数和第21个数,而第20个数和第21个数都是14(岁),所以这40名学生年龄的中位数是14岁.故选C.考点:中位数;条形统计图;数形结合.25.(2016内蒙古巴彦淖尔第6题)某校举行“中国梦•我的梦”演讲比赛,需要在初三年级选取一名主持人,共有12名同学报名参加,其中初三(1)班有2名,初三(2)班有4名,初三(3)班有6名,现从这12名同学中随机选取一名主持人,则选中的这名同学恰好是初三(1)班同学的概率是()A.112B.13C.12D.16【答案】D.考点:概率公式.二、填空题1.(2016四川甘孜州第12题)抛掷一枚质地均匀的硬币,落地后正面朝上的概率是.【答案】12.【解析】试题分析:抛掷一枚质地均匀的硬币,等可能的情况有:正面朝上,反面朝上,则P(正面朝上)=12,故答案为:12.考点:概率公式.2.(2016四川甘孜州第22题)在一个不透明的袋子中装有除颜色外其余均相同的7个小球,其中红球2个,黑球5个,若再放入m个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于45,则m的值为.【答案】3.【解析】试题分析:根据题意得:57mm++=45,解得:m=3.故答案为:3.考点:概率公式.3.(2016贵州铜仁第17题)为全面推进“新两基”(基本普及15年教育及县城内义务教育基本均衡)工作,某县对辖区内的80所中小学上半年工作情况进行了专项督导考核,成绩分别记为A,B,C,D四等,绘制了扇形统计图(如图),则该县被考核的学校中得A等成绩的有所.【答案】56.【解析】试题分析:80×(1﹣25%﹣3%﹣2%)=56(所);故答案为:56.考点:扇形统计图.4.(2016浙江台州第14题)不透明袋子中有1个红球、2个黄球,这些球除颜色外无其他差别,从袋子中随机摸出1个球后放回,再随机摸出1个球,两次摸出的球都是黄球的概率是.【答案】49.考点:列表法与树状图法.5.(2016湖南株洲第13题)从1,2,3…99,100个整数中,任取一个数,这个数大于60的概率是.【答案】0.4.【解析】试题分析:从1,2,3…99,100个整数中,任取一个数,这个数大于60的概率=40100=0.4.故答案为:0.4.考点:概率公式.6.(2016福建莆田第14题)在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为人.【答案】480.考点:频数(率)分布直方图;用样本估计总体;扇形统计图.7.(2016广西河池第15题)同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是.【答案】14.【解析】试题分析:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=14.故答案为:14.考点:列表法与树状图法.8.(2016贵州贵阳第12题)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为.【答案】15.【解析】试题分析:因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,所以估计抽到绘有孙悟空这个人物卡片的概率为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为:15.考点:利用频率估计概率.9.(2016青海第9题)已知一个围棋盒子中装有7颗围棋子,其中3颗白棋子,4颗黑棋子,若往盒子中再放入x颗白棋子和y颗黑棋子,从盒子中随机取出一颗白棋子的概率为14,则y与x之间的关系式是.【答案】y=3x+5.【解析】试题分析:根据从盒子中随机取出一颗白棋子的概率为14可得3174xx y+=++,化简,得y=3x+5.考点:概率公式.10.(2016内蒙古通辽第15题)有背面完全相同的9张卡片,正面分别写有1﹣9这九个数字,将它们洗匀后背面朝上放置,任意抽出一张,记卡片上的数字为a,则数字a使不等式组132xx a+⎧≥⎪⎨⎪<⎩有解的概率为.【答案】49.考点:概率公式;不等式的解集;含待定字母的不等式(组).11.(2016辽宁营口第13题)已知一组数据:18,17,13,15,17,16,14,17,则这组数据的中位数与众数分别是.【答案】16.5、17.【解析】试题分析:∵17出现的次数最多,∴众数为17.将这组数据按照从小到大的顺序排列:13、14、15、16、17、17、17、18.众数=(16+17)÷2=16.5.故答案为:16.5、17.考点:众数;中位数.12.(2016黑龙江绥化第12题)在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【答案】14.【解析】试题分析:画树状图如下:∴P(两次摸到同一个小球)=416=14.故答案为:14.考点:列表法与树状图法;概率公式.13.(2016江苏盐城第11题)如图,转盘中6个小扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针指向红色区域的概率为.【答案】13.考点:几何概率.14.(2016福建南平第11题)甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是2 S 甲=0.2,2S乙=0.5,则设两人中成绩更稳定的是(填“甲”或“乙”)【答案】甲.【解析】试题分析:∵2S 甲=0.2,2S 乙=0.5,则2S 甲<2S 乙,可见较稳定的是甲.故答案为:甲. 考点:方差;算术平均数.15.(2016重庆A 卷第16题)从数﹣2,12-,0,4中任取一个数记为m ,再从余下的三个数中,任取一个数记为n ,若k =mn ,则正比例函数y =kx 的图象经过第三、第一象限的概率是 . 【答案】16.考点:概率公式;正比例函数的图象.16.(2016内蒙古巴彦淖尔第14题)两组数据3,a ,2b ,5与a ,6,b 的平均数都是8,若将这两组数据合并为一组数据,则这组新数据的众数为_____________,中位数为_____________. 【答案】12,6. 【解析】试题分析:∵两组数据:3,a ,2b ,5与a ,6,b 的平均数都是8,∴23235246a b a b +=--⎧⎨+=-⎩,解得:126a b =⎧⎨=⎩,若将这两组数据合并一组数据,按从小到大的顺序排列为3,5,6,6,12,12,12,一共7个数,第四个数是6,所以这组数据的中位数是6,12出现了3次,最多,为众数.故答案为:12,6. 考点:众数;算术平均数;中位数.17.(2016四川南充第13题)计算22,24,26,28,30这组数据的方差是 . 【答案】8. 【解析】试题分析:22,24,26,28,30的平均数是(22+24+26+28+30)÷5=26;2S =15[(22﹣26)2+(24﹣26)2+(26﹣26)2+(28﹣26)2+(30﹣26)2]=8,故答案为:8.考点:方差.三、解答题1.(2016贵州遵义第22题)2016年5月9日﹣11日,贵州省第十一届旅游产业发展大会在准一市茅台镇举行,大会推出五条遵义精品旅游线路:A红色经典,B醉美丹霞,C生态茶海,D民族风情,E避暑休闲.某校摄影小社团在“祖国好、家乡美”主题宣传周里,随机抽取部分学生举行“最爱旅游路线”投票活动,参与者每人选出一条心中最爱的旅游路线,社团对投票进行了统计,并绘制出如下不完整的条形统计图和扇形统计图,请解决下列问题.(1)本次参与投票的总人数是人.(2)请补全条形统计图.(3)扇形统计图中,线路D部分的圆心角是度.(4)全校2400名学生中,请你估计,选择“生态茶海”路线的人数约为多少?【答案】(1)120;(2)答案见解析;(3)54;(4)600.(2)B类人数=120﹣24﹣30﹣18﹣12=36(人),补全条形统计图为:(3)扇形统计图中,线路D部分的圆心角=360°×18120=54°,故答案为:54;(4)2400×30120=600,所以估计,选择“生态茶海”路线的人数约为600人.考点:条形统计图;用样本估计总体;扇形统计图.2.(2016贵州遵义第23题)如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是.【答案】(1)23;(2)①13;②29.②不可能出现中心对称图形,所以概率为0.试题解析:(1)若乙固定在E处,移动甲后黑色方块构成的拼图一共有3种可能,其中有两种情形是轴对称图形,所以若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是23.故答案为:23.(2)①由树状图可知,黑色方块所构拼图是轴对称图形的概率=39=13.②黑色方块所构拼图中是中心对称图形有两种情形,①甲在B处,乙在F处,②甲在C处,乙在E处,所以黑色方块所构拼图是中心对称图形的概率是29.故答案为:29.考点:列表法与树状图法;轴对称图形;中心对称图形;概率公式.3.(2016四川甘孜州第17题)某学校在落实国家“营养餐”工程中,选用了A,B,C,D种不同类型的套餐.实行一段时间后,学校决定在全校范围内随机抽取部分学生对“你喜欢的套餐类型(必选且只选一种)”进行问卷调查,将调查情况整理后,绘制成如图所示的两个统计图.请你根据以上信息解答下列问题:(1)在这次调查中,一共抽取了名学生;(2)请补全条形统计图;(3)如果全校有1200名学生,请你估计其中喜欢D套餐的学生的人数.【答案】(1)100;(2)作图见解析;(3)120.【解析】试题分析:(1)根据喜爱A种套餐的人数和百分比求解即可;(2)依据总人数等于各部分的和可求得喜爱C套餐的人数;(3)先求得喜欢D套餐人数所占的百分比,然后用总人数乘百分比即可.试题解析:(1)40÷40%=100人,这次调查中一共抽取了100人.故答案为:100.(2)100﹣40﹣20﹣10=30人.补全条形统计图如图所示:(3)10÷100=10%,1200×10%=120人.全校喜欢D套餐的学生的人数大约为120人.考点:条形统计图;用样本估计总体;扇形统计图.4.(2016贵州铜仁第21题)在四个完全相同的小球上分别标上1,2,3,4四个数字,然后装入一个不透明的口袋里搅匀,小明同学随机摸取一个小球记下标号,然后放回,再随机摸取一个小球,记下标号.(1)请你用画树状图或列表的方法分别表示小明同学摸球的所有可能出现的结果.(2)按照小明同学的摸球方法,把第一次取出的小球的数字作为点M的横坐标,把第二次取出的小球的数字作为点M的纵坐标,试求出点M(x,y)落在直线y=x上的概率是多少?【答案】(1)答案见解析;(2)14.试题解析:(1)列表得:画树状图得:则小明共有16种等可能的结果;(2)由(1)中的表格知,共有16个结果,每种结果出现的可能性都相同,其中满足条件的点有(1,1),(2,2),(3,3),(4,4)落在直线y=x上;∴点P(x,y)落在直线y=x上的概率是416=14.考点:列表法与树状图法;一次函数图象上点的坐标特征.5.(2016浙江台州第22题)为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示.(1)求所抽取的学生人数;(2)若视力达到4.8及以上为达标,估计活动前该校学生的视力达标率;(3)请选择适当的统计量,从两个不同的角度分析活动前后相关数据,并评价视力保健活动的效果.【答案】(1)40;(2)37.5%;(3)①视力4.2≤x<4.4之间活动前有6人,活动后只有3人,人数明显减少.②活动前合格率37.5%,活动后合格率55%,视力保健活动的效果比较好.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;统计量的选择.6.(2016湖南株洲第21题)某社区从2011年开始,组织全民健身活动,结合社区条件,开展了广场舞、太极拳、羽毛球和跑步四个活动项目,现将参加项目活动总人数进行统计,并绘制成每年参加总人数折线统计图和2015年各活动项目参与人数的扇形统计图,请你根据统计图解答下列题(1)2015年比2011年增加人;(2)请根据扇形统计图求出2015年参与跑步项目的人数;(3)组织者预计2016年参与人员人数将比2015年的人数增加15%,名各活动项目参与人数的百分比与2016年相同,请根据以上统计结果,估计2016年参加太极拳的人数.【答案】(1)990;(2)880;(3)184.【解析】试题分析:(1)用2015年的人数﹣2011年的人数即可;(2)用2015年总人数×参与跑步项目的人数所占的百分数即可;(3)2015年总人数×(1+15%)×参加太极拳的人数所占的百分数即可.试题解析:(1)1600﹣610=(人);故答案为:990人;(2)1600×55%=880(人);答:2015年参与跑步项目的人数为880人;(3)1600×(1+15%)×(1﹣55%﹣30%﹣5%)=184(人);答:估计2016年参加太极拳的人数为184人.考点:折线统计图;用样本估计总体;扇形统计图.7.(2016广西来宾第21题)甲、乙两名射击运动员在某次训练中各射击10发子弹,成绩如表:且x乙=8,2S乙=1.8,根据上述信息完成下列问题:(1)将甲运动员的折线统计图补充完整;(2)乙运动员射击训练成绩的众数是,中位数是.(3)求甲运动员射击成绩的平均数和方差,并判断甲、乙两人本次射击成绩的稳定性.【答案】(1)作图见解析;(2)7,7.5;(3)甲本次射击成绩的稳定性好.6,7,7,7,7,8,9,9,10,10,故乙运动员射击训练成绩的众数是7,中位数是:(7+8)÷2=7.5,故答案为:7,7.5; (3)由表格可得,x 甲=(8+9+7+9+8+6+7+8+10+8)÷10=8,2S 甲=22222222221[(88)(98)(78)(98)(88)(68)(78)(88)(108)(88)]10-+-+-+-+-+-+-+-+-+-=1.2,∵1.5<1.8,∴甲本次射击成绩的稳定性好,即甲运动员射击成绩的平均数是8,方差是1.2,甲本次射击成绩的稳定性好.考点:折线统计图;中位数;众数;方差;统计与概率.8.(2016福建莆田第21题)在一次数学文化课题活动中,把一副数学文化创意扑克牌中的4张扑克牌(如图所示)洗匀后正面向下放在桌面上,从中随机抽取2张牌,请你用列表或画树状图的方法,求抽取的2张牌的数字之和为偶数的概率.【答案】13.试题解析:列表如下:所有等可能的情况数有12种,抽取2张牌的数字之和为偶数的有4种,则P=412=13.考点:列表法与树状图法;概率及其应用.9.(2016广西河池第23题)某校八年级学胜在学习《数据的分析》后,进行了检测,现将该校八(1)班学生的成绩统计如下表,并绘制成条形统计图(不完整).(1)补全条形统计图;(2)该班学生成绩的平均数为86.85分,写出该班学生成绩的中位数和众数;(3)该校八年级共有学生500名,估计有多少学生的成绩在96分以上(含96分)?(4)小明的成绩为88分,他的成绩如何,为什么?【答案】(1)作图见解析;(2)中位数为90分,众数为90分;(3)138;(4)他的成绩中游偏下,因为全班的中位数为90分.试题解析:(1)如图:(2)共有40个数据,第20个数和第21个数都为90,所以该班学生成绩的中位数为90分,90出现的次数最多,所以众数为90分;(3)500×1140≈138,所以估计有138名学生的成绩在96分以上(含96分);(4)小明的成绩为88分,他的成绩中游偏下,因为全班的中位数为90分.考点:条形统计图;用样本估计总体;加权平均数;中位数;众数;数形结合.11.(2016贵州贵阳第17题)(10分)教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.【答案】(1)0;(2)16.(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图为:共有12种等可能的结果数,其中恰好关掉第一排与第三排灯的结果数为2,所以恰好关掉第一排与第三排灯的概率=212=16.。
2016中考统计概率综合专项练习

九年级数学中考统计与概率综合专项练习复习目标:1.能熟练计算一组数据的平均数、中位数、众数、方差、频数、频率、百分率,并能运用这些数据进行分析应用计算;2.能准确根据条形统计图、扇形统计图、直方图上的信息解决简单的实际问题;3.会求随机事件的概率,会用列表法和画树状图法列举所有可能发生的结果,并能准确确定某件随机事件的结果数。
复习重点:利用统计图中的信息解决问题,会用列表法或画树状图法求概率;复习难点:准确读取统计图中的信息,正确列举试验所有结果。
复习过程:一、基础知识梳理1.统计初步知识:2.统计图:3.概率公式:4.求概率的一般步骤:二、例题精析例1:为了了解2012年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机抽查了部分参赛同学的成绩,整理并制作图表如下:请根据以上图表中提供的信息,解答下列问题:(1)本次调查的样本容量为;(2)在表中:m= ,n= ;(3)补全频数分布直方图;(4)参加比赛的小聪说,他的比赛成绩是所有抽查同学成绩的中位数,据此推断他的成绩落在分数段内;(5)如果比赛成绩80分以上(含80分)为优秀,那么你估计该竞赛项目的优秀率大约是.例2.在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y.(1)计算由x、y确定的点(x,y)在函数y=-x+5的图象上的概率.(2)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6则小明胜,若x、y满足xy<6则小红胜,这个游戏公平吗?说明理由.若不公平,请写出公平的游戏规则.例 3.某校八年级为了解学生课堂发言情分数段频数频率60≤x<70 30 0.170≤x<80 90 n80≤x<90 m 0.490≤x≤100 60 0.2况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)求出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;(3)已知A组发言的学生中恰有1位男生,E组发言的学生中恰有1位女生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.三、练习1.有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字l和2.B布袋中有三个完全相同的小球,分别标有数字-1,-2和-3.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x-3上的概率.2.有四张完全一样的空白纸片,在每张纸片的一个面上分别写上1、2、3、4.某同学把这四张纸片写有字的一面朝下,先洗匀随机抽出一张,放回洗匀后,再随机抽出一张.求抽出的两张纸片上的数字之积小于6的概率.(请用树状图或列表法求解)3.(2013长沙)“宜居长沙”是我们的共同愿景,空气质量倍受人们的关注.我市某空气质量检测站点检测了该区域每天的空气质量情况,统计了2013年1月份至4月份若干天的空气质量情况,并绘制了如下两幅不完整的统计图,请根据图中信息,解答下列问题:(1)统计图共统计了天空气质量情况.(2)请将条形统计图补充完整,并计算空气质量为“优”所在扇形圆心角度数.(3)从小源所在班级的40名同学中,随机选取一名同学去该空气质量监测点参观,则恰好选到小源的概率是多少?4.我县实施新课程改革后,学生的自主学习、合作交流能力有很大提高,胡老师为了了解班级学生自主学习、合作交流的具体情况,对某班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A :特别好;B :好;C :一般;D :较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,胡老师一共调查了 名同学,其中女生共有 名; (2)将上面的条形统计图补充完整;(3)为了共同进步,胡老师想从被调查的A 类和D 类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.5.(2014长沙)某数学兴趣小组在全校范围内随机抽取了50同学进行“舌尖上的长沙——我最喜欢的小吃”调查活动,将调查问卷整理后绘成如图所示的不完整条形统计图.请根据所给信息解答以下问题: (1)请补全条形统计图;(2)若全校有2000名学生,请估计全校同学中最喜欢“臭豆腐”的同学有多少人;(3)在一个不透明的口袋中有四个完全 相同的小球,把他们分别标号为四种小 吃的序号A,B,C,D ,随机摸出一个小球 然后放回,再随机摸出一个小球,请用 列表或画树形图的方法,求两次都摸到调查问卷在下面四中长沙小吃中,你最喜欢的是( ) (单选) A.臭豆腐 B.口味虾小吃类别口味虾人数 臭豆腐10 15 525 20 14215唆螺糖油粑粑“A ”的概率;6.(2015长沙)中华文明,源远流长:中华汉字,寓意深广。
2016年中考数学 微测试系列专题13 统计与概率(含解析)

专题13 统计与概率学校:___________姓名:___________班级:___________一、选择题:(共4个小题)1.【2015宜宾】今年4月,全国山地越野车大赛在我市某区举行,其中8名选手某项得分如表:则这8名选手得分的众数、中位数分别是( )A.85、85 B.87、85 C.85、86 D.85、87 【答案】C . 【解析】【考点定位】1.众数;2.中位数.2.【2015内江】有一组数据如下:3,a ,4,6,7,它们的平均数是5,那么这组数据的方差是( )D.2 【答案】D. 【解析】试题分析:∵3,a ,4,6,7,它们的平均数是5,∴(3467)55a ++++÷=,∴a =5, ∴2S =222221[(53)(55)(54)(56)(57)]25-+-+-+-+-=.故选D. 【考点定位】1.方差;2.算术平均数.3.【2015绵阳】要估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞了50条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞出100条鱼,发现只有两条鱼是刚才做了记号的鱼.假设鱼在鱼塘内均匀分布,那么估计这个鱼塘的鱼数约为( ) A.5000条 B.2500条 C.1750条 D.1250条【答案】B. 【解析】试题分析:由题意可得:50÷2100=2500(条).故选B. 【考点定位】用样本估计总体.4.【2015自贡】如图,随机闭合开关1S 、2S 、3S 中的两个,则灯泡发光的概率是( ) A .43 B .32 C .31 D .21【答案】B . 【解析】试题分析:列表如下:共有6种情况,必须闭合开关S 3灯泡才亮,即能让灯泡发光的概率是46=23.故选B . 【考点定位】1.列表法与树状图法;2.图表型. 二、填空题:(共4个小题)5.【2015成都】为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是________小时.【答案】1.【解析】【考点定位】中位数.6.【2015乐山】九年级1班9名学生参加学校的植树活动,活动结束后,统计每人植树的情况,植了2棵树的有5人,植了4棵树的有3人,植了5棵树的有1人,那么平均每人植树棵.【答案】3.【解析】试题分析:平均每人植树254351531⨯+⨯+⨯++=3棵,故答案为:3.【考点定位】加权平均数.7.【2015资阳】某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有人.【答案】240.【解析】试题分析:根据题意得:1200×107101419+++=240(人),故答案为:240.【考点定位】用样本估计总体.8.【2015重庆市】从﹣3,﹣2,﹣1,0,4这五个数中随机抽取一个数记为a,a的值既是不等式组2343111xx+<⎧⎨->-⎩的解,又在函数2122yx x=+的自变量取值范围内的概率是.【答案】25.【解析】【考点定位】1.概率公式;2.解一元一次不等式组;3.函数自变量的取值范围;4.综合题.三、解答题:(共2个小题)9.【2015甘孜州】某校学生会决定从三名学生会干事中选拔一名干事,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率(没有弃权,每位同学只能推荐1人)如扇形统计图所示,每得一票记1分.(1)分别计算三人民主评议的得分;(2)根据实际需要,学校将笔试、面试、民主评议三项得分按4:3:3的比例确定个人成绩,三人中谁的得分最高?【答案】(1)甲50,乙80,丙70;(2)丙.【解析】【考点定位】1.加权平均数;2.统计表;3.扇形统计图;4.算术平均数.10.【2015巴中】“中国梦”关系每个人的幸福生活,为展现巴中人追梦的风采,我市某中学举行“中国梦•我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学的成绩分为A,B ,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出2名去参加市中学生演讲比赛,已知A等级中男生有1名,请用“列表”或“画树状图”的方法求出所选2名学生中恰好是一名男生和一名女生的概率.【答案】(1)20,72,40;(2)作图见试题解析;(3)23.【解析】(2)故等级B的人数为20﹣(3+8+4)=5(人),补全统计图,如图所示;(2)列表如下:所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P(恰好是一名男生和一名女生)=46=23.【考点定位】1.列表法与树状图法;2.扇形统计图;3.条形统计图.。
历年中考统计与概率题专题练习

历年中考统计与概率题专题练习1.某中学九年级3班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题: 1求a 的值;2用列举法求以下事件的概率:从上网时间在6~10小时的5名学生中随机选取2人,其中至少..有1人的上网时间在8~10小时;2.广州市努力改善空气质量,近年来空气质量明显好转;根据广州市环境保护局公布的2006-2010这五年各年的全年空气质量优良的天数;绘制拆线图如图7,根据图中的信息回答:1、这五年的全年空气质量优良的天数的中位数是 .极差是 .2、这五年的全年空气质量优良的天数与它前一年相比较,增加最多的是 年;填写年份3、求这五年的全年空气质量优良的天数的平均数;3.甲已两个袋中均装有三张除所标的数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为317、、--,乙袋中的三张卡片上所标的数值分别为,、、612-先从甲袋中随机取出一张卡片,用x 表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y 表示取出的卡片上标的数值;把x 、y 分别作为点A 的横坐标与纵坐标;1用适当的方法写出点A x 、y 的所有情况; 2求点A 落在第三象限的概率;4.在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当m ≥10时为A 级,当5≤m <10时为B 级,当0≤m <5时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 1求样本数据中为A 级的频率;2试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数;3从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.5.某校初三1班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求a,b的值;Array(2)若将各自选项的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;3在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取2名学生进行推铅球测试,求所抽取的两名学生中至.多.有一名女生的概率.6.4件同型号的产品中,有1件不合格品和3件合格品.1从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;2从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;3在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验.通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学中考统计与概率综合专项练习
复习目标:1.能熟练计算一组数据的平均数、中位数、众数、方差、频数、频率、百分率,并能运用这些数据进行分析应用计算;
2.能准确根据条形统计图、扇形统计图、直方图上的信息解决简单的实际问题;
3.会求随机事件的概率,会用列表法和画树状图法列举所有可能发生的结果,并能准确确定某件随机事件的结果数。
复习重点:利用统计图中的信息解决问题,会用列表法或画树状图法求概率; 复习难点:准确读取统计图中的信息,正确列举试验所有结果。
复习过程:
一、基础知识梳理 1.统计初步知识: 2.统计图: 3.概率公式:
4.求概率的一般步骤: 二、例题精析
例
1:为了了解2012年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机抽查了部分参赛同学的成绩,整理并制作图表如下:
请根据以上图表中提供的信息,
解答下列问题:(1)本次调查的样本容量为 ; (2)在表中:m= ,n= ; (3)补全频数分布直方图;
(4)参加比赛的小聪说,他的比赛成绩是所有抽查同学成绩的中位数,据此推断他的成绩落在分数段内;
(5)如果比赛成绩80分以上(含80分)为优秀,那么你估计该竞赛项目的优秀率大约是. 例2.在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x ,小红在剩下的3个小球中随机取出一个小球,记下数字为y .
(1)计算由x 、y 确定的点(x ,y )在函数y=-x+5的图象上的概率.
(2)小明和小红约定做一个游戏,其规则为:若x 、y 满足xy >6则小明胜,若x 、y 满足xy <6则小红胜,这个游戏公平吗?说明理由.若不公平,请写出公平的游戏规则.
例3.某校八年级为了解学生课
分数段 频数 频率 60≤x <70 30 0.1 70≤x <80 90 n 80≤x <90
m
0.4
90≤x ≤100 60 0.2
堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:
(1)求出样本容量,并补全直方图;
(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;
(3)已知A组发言的学生中恰有1位男生,E组发言的学生中恰有1位女生,现从A组与E 组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.
三、练习
1.有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字l和2.B布袋中有三个完全相同的小球,分别标有数字-1,-2和-3.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在直线y=x-3上的概率.
2.有四张完全一样的空白纸片,在每张纸片的一个面上分别写上1、2、3、4.某同学把这四张纸片写有字的一面朝下,先洗匀随机抽出一张,放回洗匀后,再随机抽出一张.求抽出的两张纸片上的数字之积小于6的概率.(请用树状图或列表法求解)
3.(2013长沙)“宜居长沙”是我们的共同愿景,空气质量倍受人们的关注.我市某空气质量检测站点检测了该区域每天的空气质量情况,统计了2013年1月份至4月份若干天的空气质量情况,并绘制了如下两幅不完整的统计图,
请根据图中信息,解答下列问题:
(1)统计图共统计了天空气质量情况.
(2)请将条形统计图补充完整,并计算空气质量为
“优”所在扇形圆心角度数.
(3)从小源所在班级的40名同学中,随机选取一
名同学去该空气质量监测点参观,则恰好选到小源的概率是多少?
4.我县实施新课程改革后,学生的自主学习、合作交流能力有很大提高,胡老师为了了解班级学生自主学习、合作交流的具体情况,对某班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A :特别好;B :好;C :一般;D :较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)本次调查中,胡老师一共调查了 名同学,其中女生共有 名; (2)将上面的条形统计图补充完整;
(3)为了共同进步,胡老师想从被调查的A 类和D 类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
5.(2014长沙)某数学兴趣小组在全校范围内随机抽取了50同学进行“舌尖上的长沙——我最喜欢的小吃”调查活动,将调查问卷整理后绘成如图所示的不完整条形统计图.请根据所给信息解答以下问题:
(1)请补全条形统计图;
(2)若全校有2000名学生,请估计全校同学中最喜欢“臭豆腐”的同学有多少人;
(3)在一个不透明的口袋中有四个完全 相同的小球,把他们分别标号为四种小 吃的序号A,B,C,D ,随机摸出一个小球
然后放回,再随机摸出一个小球,请用
列表或画树形图的方法,求两次都摸到 “A ”的概率;
6.(2015长沙)中华文明,源远流长:中
华汉字,寓意深广。
为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分。
为了更好地了解本次大赛的成绩分布情况,随机抽取了200名学生的成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表: 请根据所给的信息,解答下列问题: (1)a= ,b= ;
(2)请补全频数分布直方图;
(3)这次比赛成绩的中位数会落在分数段;
(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等的大约有多少人?
调查问卷
在下面四中长沙小吃中,你最喜欢的是( ) (单选) A.臭豆腐 B.口味虾 C.唆螺 D.糖油粑粑
小吃类别 口味虾 人数 臭豆腐 10
15 5 25
20 14 21 5 唆螺 糖油粑粑
7.端午节”吃粽子是我国流传了上千年的习俗.某班学生在“端午节”前组织了一次综合实践课,购买了一些材料制作爱心粽,每人从自己制作的粽子中随机选取两个献给自己的父母,其余的全部送给敬老院的老人们.统计全班学生制作粽子的个数,将制作粽子数量相同的学生分为一组,全班学生可分为A ,B ,C ,D 四个组,各
组每人制作的粽子个数分别为4,5,6,7.根据下面不完整的统计图解答下列问题:
(1)请补全上面两个统计图;(不写过程) (2)该班学生制作粽子个数的平均数是;
(3)若制作的粽子有红枣馅(记为M )和蛋黄馅(记为N )两种,该班小明同学制作两种粽子各两个混放在一起,请用列表或画树形图的方法求小明选取馅料不同粽子的概率.
第7题
D C B A 组别16
14
12
10
864
2
0人数
%
40%10%15%
各组人数占总人数的百分比
D
C B A。