【精品】2020届高考数学(鲁京津琼)专用精练:第八章第4讲 直线、平面平行的判定及其性质含解析

合集下载

2023年新高考数学一轮复习8-4 直线、平面平行的判定及性质(知识点讲解)含详解

2023年新高考数学一轮复习8-4 直线、平面平行的判定及性质(知识点讲解)含详解

专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //nD .若m //α,m ⊂β,αβ=n ,则m //n例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是( ). (1)α、β都垂直于平面r ,那么α∥β. (2)α、β都平行于平面r ,那么α∥β. (3)α、β都垂直于直线l ,那么α∥β.(4)如果l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β,那么α∥β A .0B .1C .2D .3例3.(四川·高考真题(文))下列命题正确的是( ) A .若两条直线和同一个平面所成的角相等,则这两条直线平行 B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥ 【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件. (2)结合题意构造或绘制图形,结合图形作出判断. (3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等. 题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ; ③//EN 平面1ADB ; ④1//A M 平面1ADB , 错误的序号为___________.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A.B.C.D.例7.(2023·全国·高三专题练习)如图,AB是圆O的直径,点C是圆O上异于,A B的点,直线PC 平面ABC,,E F分别是PA,PC的中点.记平面BEF与平面ABC的交线为l,求证:直线l//平面PAC【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可.题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD 上.若EF∥平面AB1C,则线段EF的长度等于________.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD ­A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.证明:MN ∥平面C 1DE .例10.如图,在直四棱柱ABCD ­A 1B 1C 1D 1中,E 为线段AD 上的任意一点(不包括A ,D 两点),平面CEC 1∩平面BB 1D =FG .证明:FG ∥平面AA 1B 1B .【总结提升】 1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识. (2)利用线面平行性质必须先找出交线. 2.易错提醒(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用. 题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______.例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 12AB AA ==.(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【规律方法】 1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. (3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”. (5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //n D .若m //α,m ⊂β,αβ=n ,则m //n【答案】D 【解析】 【分析】举例说明判断A ,B ,C ;利用线面平行的性质判断D 作答. 【详解】如图,长方体1111ABCD A B C D -中,平面1111D C B A 视为平面α,对于A ,直线AB 视为m ,直线11A B 视为n ,满足m //α,m //n ,而n ⊂α,A 不正确;对于B,直线AB视为m,直线BC视为n,满足m//α,n//α,而m与n相交,B不正确;A D视为n,满足m//α,n⊂α,显然m与n是异面直线,C不正确;对于C,直线AB视为m,直线11对于D,由直线与平面平行的性质定理知,D正确.故选:D例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是().(1)α、β都垂直于平面r,那么α∥β.(2)α、β都平行于平面r,那么α∥β.(3)α、β都垂直于直线l,那么α∥β.(4)如果l、m是两条异面直线,且l∥α,m∥α,l∥β,m∥β,那么α∥βA.0B.1C.2D.3【答案】D【解析】【分析】由面面平行的判定定理及其相关结论分析可得结果.【详解】由面面平行的判定定理分析可知(1)错,(2),(3),(4)正确.故选:D例3.(四川·高考真题(文))下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【答案】C【解析】【详解】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥【答案】A【解析】【分析】利用线面,面面位置关系逐项分析即得.【详解】对于A ,如图,n ⊂α,n n βαβ⊂⇒⋂=,结合m α,m β,可知m n ∥,故A 正确;对于B ,如图,m ,n 可能异面,故B 错误;对于C ,如图,α,β可能相交,故C 错误;对于D ,如图,αβ,可能相交,故D 错误.故选:A .【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件.(2)结合题意构造或绘制图形,结合图形作出判断.(3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等.题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ;③//EN 平面1ADB ;④1//A M 平面1ADB ,错误的序号为___________.【答案】①②④【解析】【分析】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,证明出平面1//A CE 平面1AD B ,利用面面平行的性质结合假设法可判断①②③④的正误.【详解】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,在三棱柱111ABC A B C -中,因为11//BB CC 且11BB CC =,所以,四边形11BB C C 为平行四边形,则11//BC B C 且11BC B C =,D 、E 分别为BC 、11B C 的中点,则1//CD B E 且1CD B E =,故四边形1CDB E 为平行四边形,则1//CE B D ,CE ⊄平面1ADB ,1B D ⊂平面1ADB ,故//CE 平面1ADB ,同理可证四边形1BB ED 为平行四边形,则11////DE BB AA ,11DE BB AA ==,则四边形1AA ED 为平行四边形,所以,1//A E AD ,1A E ⊄平面1ADB ,AD ⊂平面1ADB ,则1//A E 平面1ADB ,1CE A E E =,故平面1//A CE 平面1AD B ,EN ⊂平面1A CE ,则//EN 平面1ADB ,③对;对于①,若//EF 平面1ADB ,EF EN E =,则平面//EFN 平面1ADB ,因为过点E 且与平面1ADB 平行的平面只有一个,矛盾,故①错,同理可知,②④均错.故答案为:①②④.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A .B .C .D .【答案】BCD【解析】【分析】利用线面平行判定定理逐项判断可得答案.【详解】对于选项A,OQ∥AB,OQ与平面MNQ是相交的位置关系,故AB和平面MNQ不平行,故A错误;对于选项B,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ,故B正确;对于选项C,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ:故C正确;对于选项D,由于AB∥CD∥NQ,结合线面平行判定定理可知AB∥平面MNQ:故D正确;故选:BCD例7.(2023·全国·高三专题练习)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,,E F 分别是PA ,PC 的中点.记平面BEF 与平面ABC 的交线为l ,求证:直线l //平面PAC【答案】证明见解析【解析】【分析】先通过//EF AC 可得出//EF 平面ABC ,再利用线面平行的性质即可证明.【详解】因为,E F 分别是,PA PC 的中点,所以//EF AC ,又因为AC ⊂平面ABC ,EF ⊄平面ABC ,所以//EF 平面ABC ,又EF ⊂平面BEF ,平面BEF 与平面ABC 的交线为l ,所以//EF l ,而l ⊄平面PAC ,EF ⊂平面PAC ,所以//l 平面P AC .【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可. 题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.【解析】【分析】根据直线与平面平行的性质定理可得//EF AC ,再根据E 为AD 的中点可得F 为CD 的中点,从而根据三角形的中位线可得.【详解】如图:因为//EF 平面1AB C ,EF ⊂平面DABC ,且平面1A C B 平面ABCD AC =,所以//EF AC ,又因为E 为AD 的中点,所以F 为CD 的中点, 所以12EF AC =,因为正方体的棱长为2.所以AC =所以EF =故答案为.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD ­A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M,N分别是BC,BB1,A1D的中点.证明:MN∥平面C1DE.【答案】见解析【解析】证明:连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1//=DC,可得B1C//=A1D,故ME//=ND,因此四边形MNDE为平行四边形,所以MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.例10.如图,在直四棱柱ABCD­A1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1∩平面BB1D=FG.证明:FG∥平面AA1B1B.【答案】见解析【解析】证明:在直四棱柱ABCD­A1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1∩平面BB1D=FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.而BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.【总结提升】1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识.(2)利用线面平行性质必须先找出交线.(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用.题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6【答案】C【解析】【分析】由面面平行的性质结合题意可确定点M 所在的平面,再由平面几何的性质即可确定BM 的值为最大值时的位置,即可求解【详解】如图所示,取G ,H 分别为棱11B C 和11D C 的中点,连接11,,,BG DH BD B D ,由题意易知1111,BF B D GH B D ∥∥,所以BF GH ∥;又易知AF BG ∥,故可以证明平面BGHD ∥平面AEF ;又BM ∥平面AEF ,由面面平行的性质可知M ∈平面BGHD ,所以由题意可知M 在等腰梯形BGHD 四条边上运动,过点H 作HQ BD ⊥,交BD 于点Q ,由题意可知BD GH DH BG DQ ====所以HQ BQ BD DQ =-=所以BH又BD BH ==,所以故当M 与D 点重合时,BM 的值为最大值,此时BM BD ==例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______. 【答案】52【解析】【分析】根据面面平行的性质,证得//CD AB ,结合CD PC AB PA =,即可求解. 【详解】由题意,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB , 根据面面平行的性质,可得//CD AB ,所以CD PC AB PA =, 因为2PC =,3CA =,1CD =,所以15522CD PA AB PC ⋅⨯===.故答案为:52. 例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF【答案】证明见解析【解析】【分析】根据1//DF EC ,可证明1//EC 平面BDF ;又//BF AE ,可得//AE 平面BDF .进而根据线面平行证明面面平行.【详解】证明:在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点, 所以11111,22DE DD C F CC ==. 因为11CC DD =,且11//CC DD ,所以1DE C F =,且1//DE C F ,所以四边形1DEC F 是平行四边形,所以1//DF EC 又DF ⊂平面BDF ,1EC ⊄平面BDF ,所以1//EC 平面BDF .同理,//BF AE ,又BF ⊂平面BDF ,AE ⊄平面BDF , 所以//AE 平面BDF .又1AE EC E ⋂=,1,AE EC ⊂平面1AEC ,所以平面1//AEC 平面BDF 例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 1AB AA =(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【答案】(1)证明见解析;(2)1.【解析】【详解】试题分析:(1)要证明1A C ⊥平面11BB D D ,只要证明1A C 垂直于平面11BB D D 内的两条相交直线即可,由已知可证出1A C ⊥BD ,取11B D 的中点为1E ,通过证明四边形11A OCE 为正方形可证1A C ⊥1E O .由线面垂直的判定定理问题得证;(2)由已知1A O 是三棱柱ABD ﹣A 1B 1D 1的高,由此能求出三棱柱ABD ﹣A 1B 1D 1的体积 试题解析:(Ⅰ)∵四棱柱ABCD ﹣A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB=AA 1=,由棱柱的性质可得BB 1和DD 1平行且相等,故四边形BB 1D 1D 为平行四边形,故有BD 和B 1D 1平行且相等.而BD 不在平面CB 1D 1内,而B 1D 1在平面CB 1D 1内,∴BD ∥平面CB 1D 1.同理可证,A 1BCD 1为平行四边形,A 1B ∥平面CB 1D 1.而BD 和A 1B 是平面A 1BD 内的两条相交直线,故有平面A 1BD ∥平面CD 1B 1 .(Ⅱ)由题意可得A 1O 为三棱柱ABD ﹣A 1B 1D 1的高.三角形A 1AO 中,由勾股定理可得A 1O===1,∴三棱柱ABD ﹣A 1B 1D 1的体积V=S △ABD •A 1O=•A 1O=×1=1.【规律方法】1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.。

2020版高考数学(鲁京津琼)新增分大一轮讲义:第八章8.3直线、平面平行的判定与性质Word版含解析

2020版高考数学(鲁京津琼)新增分大一轮讲义:第八章8.3直线、平面平行的判定与性质Word版含解析

§8.3直线、平面平行的判定与性质最新考纲 1.以立体几何的定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行的有关性质与判定.2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.1.线面平行的判定定理和性质定理2.面面平行的判定定理和性质定理1.一条直线与一个平面平行,那么它与平面内的所有直线都平行吗?提示不都平行.该平面内的直线有两类,一类与该直线平行,一类与该直线异面.2.一个平面内的两条相交直线与另一个平面内的两条相交直线分别对应平行,那么这两个平面平行吗?提示平行.可以转化为“一个平面内的两条相交直线与另一个平面平行”,这就是面面平行的判定定理.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(×)(2)平行于同一条直线的两个平面平行.(×)(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)(5)若直线a与平面α内无数条直线平行,则a∥α.(×)(6)若α∥β,直线a∥α,则a∥β.(×)题组二教材改编2.平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α答案 D解析若α∩β=l,a∥l,a⊄α,a⊄β,则a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.故选D. 3.如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.答案平行解析连接BD,设BD∩AC=O,连接EO,在△BDD1中,E为DD1的中点,O为BD的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE,所以BD1∥平面ACE.题组三易错自纠4.(2019·荆州模拟)对于空间中的两条直线m,n和一个平面α,下列命题中的真命题是() A.若m∥α,n∥α,则m∥nB.若m∥α,n⊂α,则m∥nC.若m∥α,n⊥α,则m∥nD.若m⊥α,n⊥α,则m∥n答案 D解析对A,直线m,n可能平行、异面或相交,故A错误;对B,直线m与n可能平行,也可能异面,故B错误;对C,m与n垂直而非平行,故C错误;对D,垂直于同一平面的两直线平行,故D正确.5.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中() A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线答案 A解析当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.6.设α,β,γ为三个不同的平面,a,b为直线,给出下列条件:①a⊂α,b⊂β,a∥β,b∥α;②α∥γ,β∥γ;③α⊥γ,β⊥γ;④a⊥α,b⊥β,a∥b.其中能推出α∥β的条件是______.(填上所有正确的序号)答案②④解析 在条件①或条件③中,α∥β或α与β相交; 由α∥γ,β∥γ⇒α∥β,条件②满足;在④中,a ⊥α,a ∥b ⇒b ⊥α,又b ⊥β,从而α∥β,④满足.题型一 直线与平面平行的判定与性质 命题点1 直线与平面平行的判定例1如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB ⊥平面BEC ,BE ⊥EC ,AB =BE =EC =2,G ,F 分别是线段BE ,DC 的中点.求证:GF ∥平面ADE .证明 方法一 如图,取AE 的中点H ,连接HG ,HD ,又G 是BE 的中点, 所以GH ∥AB ,且GH =12AB .又F 是CD 的中点, 所以DF =12CD .由四边形ABCD 是矩形得 AB ∥CD ,AB =CD , 所以GH ∥DF ,且GH =DF ,从而四边形HGFD是平行四边形,所以GF∥DH.又DH⊂平面ADE,GF⊄平面ADE,所以GF∥平面ADE.方法二如图,取AB的中点M,连接MG,MF.又G是BE的中点,可知GM∥AE.又AE⊂平面ADE,GM⊄平面ADE,所以GM∥平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点得MF∥AD.又AD⊂平面ADE,MF⊄平面ADE.所以MF∥平面ADE.又因为GM∩MF=M,GM⊂平面GMF,MF⊂平面GMF,所以平面GMF∥平面ADE.因为GF⊂平面GMF,所以GF∥平面ADE.命题点2直线与平面平行的性质例2(2019·东三省四市教研联合体模拟)在如图所示的几何体中,四边形ABCD是正方形,P A⊥平面ABCD,E,F分别是线段AD,PB的中点,P A=AB=1.(1)证明:EF ∥平面PDC ; (2)求点F 到平面PDC 的距离.(1)证明 取PC 的中点M ,连接DM ,MF ,∵M ,F 分别是PC ,PB 的中点, ∴MF ∥CB ,MF =12CB ,∵E 为DA 的中点,四边形ABCD 为正方形, ∴DE ∥CB ,DE =12CB ,∴MF ∥DE ,MF =DE ,∴四边形DEFM 为平行四边形, ∴EF ∥DM ,∵EF ⊄平面PDC ,DM ⊂平面PDC , ∴EF ∥平面PDC .(2)解 ∵EF ∥平面PDC ,∴点F 到平面PDC 的距离等于点E 到平面PDC 的距离. ∵P A ⊥平面ABCD ,∴P A ⊥DA ,在Rt △P AD 中,P A =AD =1,∴DP =2, ∵P A ⊥平面ABCD ,∴P A ⊥CB ,∵CB ⊥AB ,P A ∩AB =A ,P A ,AB ⊂平面P AB , ∴CB ⊥平面P AB , ∴CB ⊥PB ,则PC =3, ∴PD 2+DC 2=PC 2,∴△PDC 为直角三角形,其中PD ⊥CD , ∴S △PDC =12×1×2=22,连接EP ,EC ,易知V E -PDC =V C -PDE ,设E 到平面PDC 的距离为h ,∵CD ⊥AD ,CD ⊥P A ,AD ∩P A =A ,AD ,P A ⊂平面P AD , ∴CD ⊥平面P AD ,则13×h ×22=13×1×12×12×1, ∴h =24,∴F 到平面PDC 的距离为24. 思维升华判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α). (3)利用面面平行的性质(α∥β,a ⊂α⇒a ∥β). (4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).跟踪训练1(2018·崇左联考)如图,在四棱锥P -ABCD 中,平面P AC ⊥平面ABCD ,且P A ⊥AC ,P A =AD =2,四边形ABCD 满足BC ∥AD ,AB ⊥AD ,AB =BC =1.点E ,F 分别为侧棱PB ,PC 上的点,且PE PB =PFPC=λ(λ≠0).(1)求证:EF ∥平面P AD ;(2)当λ=12时,求点D 到平面AFB 的距离.(1)证明 ∵PE PB =PFPC =λ(λ≠0),∴EF ∥BC .∵BC ∥AD ,∴EF ∥AD .又EF ⊄平面P AD ,AD ⊂平面P AD , ∴EF ∥平面P AD . (2)解 ∵λ=12,∴F 是PC 的中点,在Rt △P AC 中,P A =2,AC =2, ∴PC =P A 2+AC 2=6,∴PF =12PC =62.∵平面P AC ⊥平面ABCD ,且平面P AC ∩平面ABCD =AC ,P A ⊥AC ,P A ⊂平面P AC , ∴P A ⊥平面ABCD ,∴P A ⊥BC . 又AB ⊥AD ,BC ∥AD ,∴BC ⊥AB , 又P A ∩AB =A ,P A ,AB ⊂平面P AB , ∴BC ⊥平面P AB ,∴BC ⊥PB ,∴在Rt △PBC 中,BF =12PC =62.连接BD ,DF ,设点D 到平面AFB 的距离为d ,在等腰三角形BAF 中,BF =AF =62,AB =1, ∴S △ABF =54, 又S △ABD =1,点F 到平面ABD 的距离为1, ∴由V F -ABD =V D -AFB ,得13×1×1=13×d ×54,解得d =455,即点D 到平面AFB 的距离为455.题型二 平面与平面平行的判定与性质例3如图所示,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1∥AB且A1B1=AB,∴A1G∥EB,A1G=EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.又∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,A1E,EF⊂平面EF A1,∴平面EF A1∥平面BCHG.引申探究1.在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“D1,D 分别为B1C1,BC的中点”,求证:平面A1BD1∥平面AC1D.证明如图所示,连接A1C,AC1,交于点M,∵四边形A 1ACC 1是平行四边形, ∴M 是A 1C 的中点,连接MD , ∵D 为BC 的中点, ∴A 1B ∥DM .∵A 1B ⊂平面A 1BD 1,DM ⊄平面A 1BD 1, ∴DM ∥平面A 1BD 1,又由三棱柱的性质知,D 1C 1∥BD 且D 1C 1=BD , ∴四边形BDC 1D 1为平行四边形, ∴DC 1∥BD 1.又DC 1⊄平面A 1BD 1,BD 1⊂平面A 1BD 1, ∴DC 1∥平面A 1BD 1,又DC 1∩DM =D ,DC 1,DM ⊂平面AC 1D , 因此平面A 1BD 1∥平面AC 1D .2.在本例中,若将条件“E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点”变为“点D ,D 1分别是AC ,A 1C 1上的点,且平面BC 1D ∥平面AB 1D 1”,试求ADDC 的值.解 连接A 1B ,AB 1,交于点O ,连接OD 1.由平面BC 1D ∥平面AB 1D 1,且平面A 1BC 1∩平面BC 1D =BC 1,平面A 1BC 1∩平面AB 1D 1=D 1O , 所以BC 1∥D 1O ,则A 1D 1D 1C 1=A 1OOB=1.同理,AD1∥C1D,又AD∥C1D1,所以四边形ADC1D1是平行四边形,所以AD=D1C1,又AC=A1C1,所以A1D1D1C1=DCAD,所以DCAD=1,即ADDC=1.思维升华证明面面平行的方法(1)面面平行的定义.(2)面面平行的判定定理.(3)垂直于同一条直线的两个平面平行.(4)两个平面同时平行于第三个平面,那么这两个平面平行.(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.跟踪训练2(2018·合肥质检)如图,在多面体ABCDEF中,四边形ABCD是正方形,BF⊥平面ABCD,DE⊥平面ABCD,BF=DE,M为棱AE的中点.(1)求证:平面BDM∥平面EFC;(2)若AB=1,BF=2,求三棱锥A-CEF的体积.(1)证明如图,设AC与BD交于点N,则N为AC的中点,连接MN,又M为棱AE的中点,∴MN∥EC.∵MN⊄平面EFC,EC⊂平面EFC,∴MN∥平面EFC.∵BF⊥平面ABCD,DE⊥平面ABCD,且BF=DE,∴BF∥DE且BF=DE,∴四边形BDEF为平行四边形,∴BD∥EF.∵BD⊄平面EFC,EF⊂平面EFC,∴BD∥平面EFC.又MN∩BD=N,MN,BD⊂平面BDM,∴平面BDM∥平面EFC.(2)解连接EN,FN.在正方形ABCD中,AC⊥BD,又BF⊥平面ABCD,∴BF⊥AC.又BF∩BD=B,BF,BD⊂平面BDEF,∴AC⊥平面BDEF,又N是AC的中点,∴V三棱锥A-NEF=V三棱锥C-NEF,∴V三棱锥A-CEF=2V三棱锥A-NEF=2×13×AN×S△NEF=2×13×22×12×2×2=23,∴三棱锥A-CEF的体积为2 3.题型三平行关系的综合应用例4如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.。

2020版高考数学新增分大一轮新高考鲁京津琼专用讲义第八章高考专题冲破四

2020版高考数学新增分大一轮新高考鲁京津琼专用讲义第八章高考专题冲破四

高考专题冲破四 高考中的立体几何问题题型一 平行、垂直关系的证明例1 如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 别离是A 1C 1,BC 的中点.(1)求证:平面ABE ⊥平面B 1BCC 1; (2)求证:C 1F ∥平面ABE ; (3)求三棱锥E -ABC 的体积.(1)证明 在三棱柱ABC -A 1B 1C 1中,BB 1⊥底面ABC . 因为AB ⊂平面ABC , 因此BB 1⊥AB .又因为AB ⊥BC ,BC ∩BB 1=B , 因此AB ⊥平面B 1BCC 1. 又AB ⊂平面ABE ,因此平面ABE ⊥平面B 1BCC 1.(2)证明 方式一 如图1,取AB 中点G ,连接EG ,FG . 因为E ,F 别离是A 1C 1,BC 的中点, 因此FG ∥AC ,且FG =12AC .因为AC ∥A 1C 1,且AC =A 1C 1, 因此FG ∥EC 1,且FG =EC 1, 因此四边形FGEC 1为平行四边形, 因此C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 因此C 1F ∥平面ABE .方式二 如图2,取AC 的中点H ,连接C 1H ,FH . 因为H ,F 别离是AC ,BC 的中点,因此HF ∥AB , 又因为E ,H 别离是A 1C 1,AC 的中点, 因此EC 1∥AH ,且EC 1=AH , 因此四边形EAHC 1为平行四边形, 因此C 1H ∥AE ,又C 1H ∩HF =H ,AE ∩AB =A , 因此平面ABE ∥平面C 1HF , 又C 1F ⊂平面C 1HF , 因此C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC , 因此AB =AC 2-BC 2= 3.因此三棱锥E -ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.思维升华 (1)平行问题的转化利用线线平行、线面平行、面面平行的彼此转化解决平行关系的判定问题时,一样遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而应用性质定理时,其顺序正好相反.在实际的解题进程中,判定定理和性质定理一样要彼此结合,灵活运用. (2)垂直问题的转化在空间垂直关系中,线面垂直是核心,已知线面垂直,既可为证明线线垂直提供依据,又可为利用判定定理证明面面垂直作好铺垫.应用面面垂直的性质定理时,一样需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,从而把面面垂直问题转化为线面垂直问题,进而可转化为线线垂直问题.跟踪训练1 如图,在底面是矩形的四棱锥P —ABCD 中,P A ⊥底面ABCD ,点E ,F 别离是PC ,PD 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ; (2)求证:平面P AD ⊥平面PDC .证明 (1)以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,成立如下图的空间直角坐标系Axyz ,那么A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1).∵点E ,F 别离是PC ,PD 的中点, ∴E ⎝⎛⎭⎫12,1,12,F ⎝⎛⎭⎫0,1,12, EF →=⎝⎛⎭⎫-12,0,0,AB →=(1,0,0). ∵EF →=-12AB →,∴EF →∥AB →,即EF ∥AB ,又AB ⊂平面P AB ,EF ⊄平面P AB , ∴EF ∥平面P AB . (2)由(1)可知,AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0), ∵AP →·DC →=(0,0,1)·(1,0,0)=0, AD →·DC →=(0,2,0)·(1,0,0)=0, ∴AP →⊥DC →,AD →⊥DC →, 即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,AP ,AD ⊂平面P AD , ∴DC ⊥平面P AD . ∵DC ⊂平面PDC , ∴平面P AD ⊥平面PDC . 题型二 立体几何中的计算问题 命题点1 求线面角例2 (2018·浙江)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.方式一 (1)证明 由AB =2,AA 1=4,BB 1=2,AA 1⊥AB ,BB 1⊥AB ,得AB 1=A 1B 1=22,因此A 1B 21+AB 21=AA 21,故AB 1⊥A 1B 1.由BC =2,BB 1=2,CC 1=1,BB 1⊥BC ,CC 1⊥BC , 得B 1C 1= 5.由AB =BC =2,∠ABC =120°,得AC =2 3. 由CC 1⊥AC ,得AC 1=13,因此AB 21+B 1C 21=AC 21,故AB 1⊥B 1C 1.又因为A 1B 1∩B 1C 1=B 1,A 1B 1,B 1C 1⊂平面A 1B 1C 1, 因此AB 1⊥平面A 1B 1C 1.(2)解 如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D , 连接AD .由AB 1⊥平面A 1B 1C 1, 得平面A 1B 1C 1⊥平面ABB 1.由C 1D ⊥A 1B 1,平面A 1B 1C 1∩平面ABB 1=A 1B 1,C 1D ⊂平面A 1B 1C 1,得C 1D ⊥平面ABB 1. 因此∠C 1AD 即为AC 1与平面ABB 1所成的角. 由B 1C 1=5,A 1B 1=22,A 1C 1=21, 得cos ∠C 1A 1B 1=427,sin ∠C 1A 1B 1=77, 因此C 1D =3,故sin ∠C 1AD =C 1D AC 1=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913. 方式二 (1)证明 如图,以AC 的中点O 为原点,别离以射线OB ,OC 为x ,y轴的正半轴,成立空间直角坐标系Oxyz .由题意知各点坐标如下:A (0,-3,0),B (1,0,0),A 1(0,-3,4),B 1(1,0,2),C 1(0,3,1). 因此AB 1→=(1,3,2),A 1B 1→=(1,3,-2),A 1C 1→=(0,23,-3). 由AB 1→·A 1B 1→=0,得AB 1⊥A 1B 1. 由AB 1→·A 1C 1→=0,得AB 1⊥A 1C 1.又A 1B 1∩A 1C 1=A 1,A 1B 1,A 1C 1⊂平面A 1B 1C 1, 因此AB 1⊥平面A 1B 1C 1.(2)解 设直线AC 1与平面ABB 1所成的角为θ. 由(1)可知AC 1→=(0,23,1),AB →=(1,3,0),BB 1→=(0,0,2). 设平面ABB 1的一个法向量为n =(x ,y ,z ). 由⎩⎪⎨⎪⎧n ·AB →=0,n ·BB 1→=0,得⎩⎪⎨⎪⎧x +3y =0,2z =0,可取n =(-3,1,0).因此sin θ=|cos 〈AC 1→,n 〉|=|AC 1→·n ||AC 1→||n |=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913. 思维升华 (1)利用向量求直线与平面所成的角有两个思路:①别离求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);②通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角确实是斜线和平面所成的角.(2)假设直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,那么θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l ·n ||l ||n |.跟踪训练2 (2018·福州质检)在直三棱柱ABC -A 1B 1C 1中,△ABC 为正三角形,点D 在棱BC 上,且CD =3BD ,点E ,F 别离为棱AB ,BB 1的中点.(1)证明:A 1C ∥平面DEF ;(2)若A 1C ⊥EF ,求直线A 1C 1与平面DEF 所成的角的正弦值. 解 (1)如图,连接AB 1,A 1B 交于点H , 设A 1B 交EF 于点K ,连接DK ,因为四边形ABB 1A 1为矩形, 因此H 为线段A 1B 的中点.因为点E ,F 别离为棱AB ,BB 1的中点, 因此点K 为线段BH 的中点, 因此A 1K =3BK .又CD =3BD ,因此A 1C ∥DK . 又A 1C ⊄平面DEF ,DK ⊂平面DEF , 因此A 1C ∥平面DEF .(2)连接CE ,EH ,由(1)知,EH ∥AA 1, 因为AA 1⊥平面ABC , 因此EH ⊥平面ABC .因为△ABC 为正三角形,且点E 为棱AB 的中点, 因此CE ⊥AB .故以点E 为坐标原点,别离以EA →,EH →,EC →的方向为x 轴、y 轴、z 轴的正方向成立如下图的空间直角坐标系Exyz . 设AB =4,AA 1=t (t >0),则E (0,0,0),A 1(2,t,0),A (2,0,0),C (0,0,23), F ⎝⎛⎭⎫-2,t 2,0,D ⎝⎛⎭⎫-32,0,32, 因此A 1C →=(-2,-t ,23),EF →=⎝⎛⎭⎫-2,t 2,0. 因为A 1C ⊥EF ,因此A 1C →·EF →=0, 因此(-2)×(-2)-t ×t2+23×0=0,因此t =22,因此EF →=(-2,2,0),ED →=⎝⎛⎭⎫-32,0,32.设平面DEF 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧EF →·n =0,ED →·n =0,因此⎩⎪⎨⎪⎧-2x +2y =0,-32x +32z =0.取x =1,那么n =(1,2,3). 又A 1C 1→=AC →=(-2,0,23), 设直线A 1C 1与平面DEF 所成的角为θ,则sin θ=|cos 〈n ,A 1C 1→〉|=|n ·A 1C 1→||n ||A 1C 1→|=46×4=66,因此直线A 1C 1与平面DEF 所成的角的正弦值为66. 命题点2 求二面角例3如图,在四棱锥A -BCDE 中,平面BCDE ⊥平面ABC ,BE ⊥EC ,BC =2,AB =4,∠ABC =60°.(1)求证:BE ⊥平面ACE ;(2)假设直线CE 与平面ABC 所成的角为45°,求二面角E -AB -C 的余弦值. (1)证明 在△ACB 中,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ·BC =12,解得AC =23,因此AC 2+BC 2=AB 2,因此AC ⊥BC .又因为平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,AC ⊂平面ABC , 因此AC ⊥平面BCDE .又BE ⊂平面BCDE ,因此AC ⊥BE .又BE ⊥EC ,AC ,CE ⊂平面ACE ,且AC ∩CE =C , 因此BE ⊥平面ACE .(2)解 方式一 因为直线CE 与平面ABC 所成的角为45°,平面BCDE ⊥平面ABC , 平面BCDE ∩平面ABC =BC ,因此∠BCE =45°,因此△EBC 为等腰直角三角形.取BC 的中点F ,连接EF ,过点F 作FG ⊥AB 于点G ,连接EG ,则∠EGF 为二面角E -AB -C 的平面角. 易患EF =BF =1,FG =32. 在Rt △EFG 中,由勾股定理,得EG =EF 2+FG 2=72, 因此cos ∠EGF =FG EG =217,因此二面角E -AB -C 的余弦值为217.方式二因为直线CE与平面ABC所成的角为45°,平面BCDE⊥平面ABC,平面BCDE∩平面ABC =BC ,因此∠BCE =45°,因此△EBC 为等腰直角三角形.记BC 的中点为O ,连接OE ,那么OE ⊥平面ABC ,以O 为坐标原点,别离以OB ,OE 所在直线为x 轴、z 轴,成立如下图的空间直角坐标系,则A (-1,23,0),B (1,0,0),E (0,0,1),因此BA →=(-2,23,0),BE →=(-1,0,1).设平面ABE 的法向量m =(x ,y ,z ),则⎩⎪⎨⎪⎧ BA →·m =0,BE →·m =0,即⎩⎪⎨⎪⎧-2x +23y =0,-x +z =0, 令x =3,那么m =(3,1,3)为平面ABE 的一个法向量.易知平面ABC 的一个法向量为OE →=(0,0,1),因此cos 〈m ,OE →〉=m ·OE →|m |·|OE →|=37=217, 易知二面角E -AB -C 为锐角,因此二面角E -AB -C 的余弦值为217. 思维升华 (1)求二面角最经常使用的方式确实是别离求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角取得二面角的大小,但要注意结合实际图形判定所求角是锐角仍是钝角.(2)利用向量法求二面角的大小的关键是确信平面的法向量,求法向量的方式要紧有两种:①求平面的垂线的方向向量;②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解.跟踪训练3 如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,AC ∩BD =O ,A 1O ⊥底面ABCD ,AB =2,AA 1=3.(1)证明:平面A 1CO ⊥平面BB 1D 1D ;(2)若∠BAD =60°,求二面角B -OB 1-C 的余弦值.(1)证明 ∵A 1O ⊥平面ABCD ,BD ⊂平面ABCD ,∴A 1O ⊥BD .∵四边形ABCD 是菱形,∴CO ⊥BD .∵A 1O ∩CO =O ,A 1O ,CO ⊂平面A 1CO ,∴BD ⊥平面A 1CO .∵BD ⊂平面BB 1D 1D ,∴平面A 1CO ⊥平面BB 1D 1D .(2)解 ∵A 1O ⊥平面ABCD ,CO ⊥BD ,∴OB ,OC ,OA 1两两垂直,以O 为坐标原点,OB →,OC →,OA 1→的方向为x ,y ,z 轴的正方向成立如下图的空间直角坐标系.∵AB =2,AA 1=3,∠BAD =60°,∴OB =OD =1,OA =OC =3,OA 1=AA 21-OA 2= 6.则O (0,0,0),B (1,0,0),C (0,3,0),A (0,-3,0),A 1(0,0,6),∴OB →=(1,0,0),BB 1→=AA 1→=(0,3,6),OB 1→=OB →+BB 1→=(1,3,6).设平面OBB 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ OB →·n =0,OB 1→·n =0,即⎩⎪⎨⎪⎧x =0,x +3y +6z =0. 令y =2,得n =(0,2,-1),是平面OBB 1的一个法向量.同理可求得平面OCB1的一个法向量m=(6,0,-1),∴cos 〈n ,m 〉=n ·m |n |·|m |=13×7=2121. 由图可知二面角B -OB 1-C 是锐二面角,∴二面角B -OB 1-C 的余弦值为2121. 题型三 立体几何中的探讨性问题例4 如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AD ∥BC ,AD ⊥CD ,且AD =CD =22,BC =42,P A =2.(1)求证:AB ⊥PC ;(2)在线段PD 上,是不是存在一点M ,使得二面角M -AC -D 的大小为45°,若是存在,求BM 与平面MAC 所成角的正弦值,若是不存在,请说明理由.(1)证明 如图,由已知得四边形ABCD 是直角梯形,由AD =CD =22,BC =42,可得△ABC 是等腰直角三角形,即AB ⊥AC ,因为P A ⊥平面ABCD ,因此P A ⊥AB ,又P A ∩AC =A ,P A ,AC ⊂平面P AC ,因此AB ⊥平面P AC ,因此AB ⊥PC .(2)解 方式一 (几何法)过点M 作MN ⊥AD 交AD 于点N ,那么MN ∥P A ,因为P A ⊥平面ABCD ,因此MN ⊥平面ABCD .过点M 作MG ⊥AC 交AC 于点G ,连接NG ,则∠MGN 是二面角M -AC -D 的平面角.若∠MGN =45°,那么NG =MN ,又AN =2NG =2MN ,因此MN =1,因此MN =12P A ,MN ∥P A , 因此M 是PD 的中点.在三棱锥M -ABC 中,可得V M -ABC =13S △ABC ·MN , 设点B 到平面MAC 的距离是h ,则V B -MAC =13S △MAC ·h , 因此S △ABC ·MN =S △MAC ·h ,解得h =2 2.在Rt △BMN 中,可得BM =3 3.设BM 与平面MAC 所成的角为θ,则sin θ=h BM =269. 方式二 (向量法)以A 为坐标原点,以过点A 平行于CD 的直线为x 轴,AD ,AP 所在直线别离为y 轴、z 轴,成立如下图的空间直角坐标系,则 A (0,0,0),C (22,22,0),D (0,22,0),P (0,0,2),B (22,-22,0),PD →=(0,22,-2),AC →=(22,22,0).易知当点M 与P 点或D 点重合时不知足题意,设PM →=t PD →(0<t <1),那么点M 的坐标为(0,22t ,2-2t ),因此AM →=(0,22t ,2-2t ). 设平面MAC 的法向量为n =(x ,y ,z ),那么⎩⎪⎨⎪⎧ n ·AC →=0,n ·AM →=0,得⎩⎪⎨⎪⎧22x +22y =0,22ty +(2-2t )z =0, 那么可取n =⎝⎛⎭⎪⎫1,-1,2t 1-t . 又m =(0,0,1)是平面ACD 的一个法向量,因此|cos 〈m ,n 〉|=|m ·n ||m ||n |=cos 45°=22, 解得t =12,即点M 是线段PD 的中点. 现在平面MAC 的一个法向量可取n 0=(1,-1,2),BM →=(-22,32,1).设BM 与平面MAC 所成的角为θ,则sin θ=|cos 〈n 0,BM →〉|=269. 思维升华 (1)关于线面关系中的存在性问题,第一假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻觅假设知足的条件,假设知足那么确信假设,假设得出矛盾的结论那么否定假设.(2)平面图形的翻折问题,关键是弄清翻折前后图形中线面位置关系和气宇关系的转变情况.一样地,翻折后还在同一个平面上的性质不发生转变,不在同一个平面上的性质发生转变. 跟踪训练4 (2018·中原名校联考)如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,AB =AC =2,AD =22,PB =2,PB ⊥AC .(1)求证:平面P AB ⊥平面P AC ;(2)若∠PBA =45°,试判定棱P A 上是不是存在与点P ,A 不重合的点E ,使得直线CE 与平面PBC 所成角的正弦值为69?假设存在,求出AE AP的值;假设不存在,请说明理由.(1)证明因为四边形ABCD是平行四边形,AD=22,因此BC =AD =22,又AB =AC =2,因此AB 2+AC 2=BC 2,因此AC ⊥AB ,又PB ⊥AC ,AB ∩PB =B ,AB ,PB ⊂平面P AB ,因此AC ⊥平面P AB .又因为AC ⊂平面P AC ,因此平面P AB ⊥平面P AC .(2)解 由(1)知AC ⊥AB ,AC ⊥平面P AB ,别离以AB ,AC 所在直线为x 轴,y 轴, 平面P AB 内过点A 且与直线AB 垂直的直线为z 轴,成立空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (0,2,0),AC →=(0,2,0),BC → =(-2,2,0),由∠PBA =45°,PB =2,可得P (1,0,1),因此AP →=(1,0,1),BP →=(-1,0,1),假设棱P A 上存在点E ,使得直线CE 与平面PBC 所成角的正弦值为69, 设AE AP =λ(0<λ<1), 则AE →=λAP →=(λ,0,λ),CE →=AE →-AC →=(λ,-2,λ),设平面PBC 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·BC →=0,n ·BP →=0,即⎩⎪⎨⎪⎧-2x +2y =0,-x +z =0, 令z =1,可得x =y =1,因此平面PBC的一个法向量n=(1,1,1),设直线CE 与平面PBC 所成的角为θ,那么sin θ= |cos 〈n ,CE →〉| =|λ-2+λ|3·λ2+(-2)2+λ2=|2λ-2|3·2λ2+4=69, 解得λ=12或λ=74(舍). 因此在棱P A 上存在点E ,且AE AP =12, 使得直线CE 与平面PBC 所成角的正弦值为69.1.在四棱锥P -ABCD 中,底面ABCD 为菱形,∠BAD =60°,P A =PD .(1)证明:BC ⊥PB ;(2)若P A ⊥PD ,PB =AB ,求二面角A -PB -C 的余弦值.(1)证明 取AD 中点为E ,连接PE ,BE ,BD ,∵P A =PD ,∴PE ⊥AD ,∵底面ABCD 为菱形,且∠BAD =60°,∴△ABD 为等边三角形,∴BE ⊥AD ,∵PE ∩BE =E ,PE ,BE ⊂平面PBE ,∴AD ⊥平面PBE ,又PB ⊂平面PBE ,∴AD⊥PB,∵AD ∥BC ,∴BC ⊥PB .(2)解 设AB =2,∴AD =PB =2,BE =3,∵P A ⊥PD ,E 为AD 中点, ∴PE =1,∵PE 2+BE 2=PB 2,∴PE ⊥BE .以E 为坐标原点,别离以EA ,EB ,EP 所在直线为x ,y ,z 轴成立如下图的空间直角坐标系,则A (1,0,0),B (0,3,0),P (0,0,1),C (-2,3,0),∴AB →=(-1,3,0),AP →=(-1,0,1),BP →=(0,-3,1),BC →=(-2,0,0).设平面P AB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·AB →=0,n ·AP →=0,即⎩⎪⎨⎪⎧-x +3y =0,-x +z =0, 令y =3,那么n =(3,3,3).同理可得平面PBC 的一个法向量m =(0,3,3).cos 〈m ,n 〉=m ·n |m ||n |=277. 设二面角A -PB -C 的平面角为θ,由图易知θ为钝角,则cos θ=-cos 〈m ,n 〉=-277. ∴二面角A -PB -C 的余弦值为-277. 2.(2018·大连模拟)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 和△AA 1C 均是边长为2的等边三角形,点O 为AC 中点,平面AA 1C 1C ⊥平面ABC .(1)证明:A1O⊥平面ABC;(2)求直线AB 与平面A 1BC 1所成角的正弦值.(1)证明 ∵AA 1=A 1C ,且O 为AC 的中点,∴A 1O ⊥AC ,又∵平面AA 1C 1C ⊥平面ABC ,平面AA 1C 1C ∩平面ABC =AC ,A 1O ⊂平面AA 1C 1C , ∴A 1O ⊥平面ABC .(2)解 如图,以O 为原点,OB ,OC ,OA 1所在直线别离为x 轴、y 轴、z 轴成立空间直角坐标系.由已知可得O (0,0,0),A (0,-1,0),B (3,0,0),A 1(0,0,3),C 1(0,2,3), ∴AB →=(3,1,0),A 1B →=(3,0,-3),A 1C 1→=(0,2,0),设平面A 1BC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·A 1C 1→=0,n ·A 1B →=0,即⎩⎪⎨⎪⎧2y =0,3x -3z =0, ∴平面A 1BC 1的一个法向量为n =(1,0,1),设直线AB 与平面A 1BC 1所成的角为α,则sin α=|cos 〈AB →,n 〉|,又∵cos 〈AB →,n 〉=AB →·n |AB →||n |=322=64, ∴AB 与平面A 1BC 1所成角的正弦值为64. 3.(2018·成都诊断)如图1,在边长为5的菱形ABCD 中,AC =6,现沿对角线AC 把△ADC 翻折到△APC 的位置取得四面体P -ABC ,如图2所示.已知PB =4 2.(1)求证:平面P AC⊥平面ABC;(2)若Q 是线段AP 上的点,且AQ →=13AP →,求二面角Q -BC -A 的余弦值. (1)证明 取AC 的中点O ,连接PO ,BO 取得△PBO .∵四边形ABCD 是菱形,∴P A =PC ,PO ⊥AC .∵DC =5,AC =6,∴OC =3,PO =OB =4,∵PB =42,∴PO 2+OB 2=PB 2,∴PO ⊥OB .∵OB ∩AC =O ,OB ,AC ⊂平面ABC ,∴PO ⊥平面ABC .∵PO ⊂平面P AC ,∴平面P AC ⊥平面ABC .(2)解 ∵AB =BC ,∴BO ⊥AC .易知OB ,OC ,OP 两两垂直.以O 为坐标原点,OB ,OC ,OP 所在直线别离为x 轴、y 轴、z 轴成立如下图的空间直角坐标系Oxyz .则B (4,0,0),C (0,3,0),P (0,0,4),A (0,-3,0).设点Q (x ,y ,z ).由AQ →=13AP →,得Q ⎝⎛⎭⎫0,-2,43. ∴BC →=(-4,3,0),BQ →=⎝⎛⎭⎫-4,-2,43. 设n 1=(x 1,y 1,z 1)为平面BCQ 的法向量.由⎩⎪⎨⎪⎧ n 1·BC →=0,n 1·BQ →=0,得⎩⎪⎨⎪⎧-4x 1+3y 1=0,-4x 1-2y 1+43z 1=0, 解得⎩⎨⎧ x 1=34y 1,y 1=415z 1,取z 1=15,那么n 1=(3,4,15).取平面ABC的一个法向量n2=(0,0,1).∵cos〈n1,n2〉=n1·n2|n1||n2|=1532+42+152=31010,由图可知二面角Q-BC-A为锐角,∴二面角Q -BC -A 的余弦值为31010. 4.(2019·南昌模拟)如图,多面体ABCDEF 中,ABCD 为正方形,AB =2,AE =3,DE =5,二面角E -AD -C 的余弦值为55,且EF ∥BD .(1)证明:平面ABCD ⊥平面EDC ;(2)求平面AEF 与平面EDC 所成锐二面角的余弦值.(1)证明 ∵AB =AD =2,AE =3,DE =5,∴AD 2+DE 2=AE 2,∴AD ⊥DE ,又正方形ABCD 中,AD ⊥DC ,且DE ∩DC =D ,DE ,DC ⊂平面EDC ,∴AD ⊥平面EDC ,又∵AD ⊂平面ABCD ,∴平面ABCD ⊥平面EDC .(2)解 由(1)知,∠EDC 是二面角E -AD -C 的平面角,作OE ⊥CD 于O ,那么OD =DE ·cos ∠EDC =1,OE =2,又∵平面ABCD ⊥平面EDC ,平面ABCD ∩平面EDC =CD ,OE ⊂平面EDC ,∴OE ⊥平面ABCD .取AB 中点M ,连接OM ,那么OM ⊥CD ,如图,以O 为原点,别离以OM ,OC ,OE 所在直线为x 轴、y 轴、z 轴,成立空间直角坐标系,则A (2,-1,0),B (2,1,0),D(0,-1,0),E(0,0,2),∴AE →=(-2,1,2),BD →=(-2,-2,0),又EF ∥BD ,知EF 的一个方向向量为(2,2,0),设平面AEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AE →=-2x +y +2z =0,n ·DB →=2x +2y =0,取x =-2,得n =(-2,2,-3),又平面EDC 的一个法向量为m =(1,0,0),∴cos 〈n ,m 〉=n ·m |n |·|m |=-21717, 设平面AEF 与平面EDC 所成的锐二面角为θ,则cos θ=|cos 〈n ,m 〉|=21717.5.等边三角形ABC 的边长为3,点D ,E 别离是边AB ,AC 上的点,且知足AD DB =CE EA =12,如图1.将△ADE 沿DE 折起到△A 1DE 的位置,使二面角A 1—DE —B 为直二面角,连接A 1B ,A 1C ,如图2.(1)求证:A 1D ⊥平面BCED ;(2)在线段BC 上是不是存在点P ,使直线P A 1与平面A 1BD 所成的角为60°?假设存在,求出PB 的长;假设不存在,请说明理由.(1)证明 因为等边三角形ABC 的边长为3,且AD DB =CE EA =12,因此AD =1,AE =2. 在△ADE 中,∠DAE =60°,由余弦定理得DE =12+22-2×1×2×cos 60°= 3.从而AD2+DE2=AE2,因此AD⊥DE.折起后有A 1D ⊥DE ,因为二面角A 1—DE —B 是直二面角,因此平面A 1DE ⊥平面BCED ,又平面A 1DE ∩平面BCED =DE ,A 1D ⊥DE ,A 1D ⊂平面A 1DE ,因此A 1D ⊥平面BCED .(2)解 存在.理由:由(1)可知ED ⊥DB ,A 1D ⊥平面BCED .以D 为坐标原点,别离以DB ,DE ,DA 1所在直线为x 轴、y 轴、z 轴,成立如下图的空间直角坐标系Dxyz .设PB =2a (0≤2a ≤3),作PH ⊥BD 于点H ,连接A 1H ,A 1P ,则BH =a ,PH =3a ,DH =2-a . 因此A 1(0,0,1),P (2-a ,3a ,0),E (0,3,0).因此P A 1→=(a -2,-3a ,1).因为ED ⊥平面A 1BD ,因此平面A 1BD 的一个法向量为DE →=(0,3,0).要使直线P A 1与平面A 1BD 所成的角为60°,则sin 60°=|P A 1→·DE →||P A 1→||DE →|=3a 4a 2-4a +5×3=32, 解得a =54.现在2a =52,知足0≤2a ≤3,符合题意. 因此在线段BC 上存在点P ,使直线P A 1与平面A 1BD 所成的角为60°,现在PB =52.6.如图,在四棱锥E -ABCD 中,底面ABCD 是圆内接四边形,CB =CD =CE =1,AB =AD =AE=3,EC⊥BD.(1)求证:平面BED⊥平面ABCD;(2)假设点P在侧面ABE内运动,且DP∥平面BEC,求直线DP与平面ABE所成角的正弦值的最大值.(1)证明如图,连接AC,交BD于点O,连接EO,∵AD=AB,CD=CB,AC=AC,∴△ADC≌△ABC,易患△ADO≌△ABO,∴∠AOD=∠AOB=90°,∴AC⊥BD.又EC⊥BD,EC∩AC=C,EC,AC⊂平面AEC,∴BD⊥平面AEC,又OE⊂平面AEC,∴OE⊥BD.又底面ABCD是圆内接四边形,∴∠ADC=∠ABC=90°,在Rt△ADC中,由AD=3,CD=1,可得AC=2,AO=32,∴∠AEC=90°,AEAC=AOAE=32,易患△AEO∽△ACE,∴∠AOE=∠AEC=90°,即EO ⊥AC .又AC ,BD ⊂平面ABCD ,AC ∩BD =O ,∴EO ⊥平面ABCD ,又EO ⊂平面BED ,∴平面BED ⊥平面ABCD .(2)解 如图,取AE 的中点M ,AB 的中点N ,连接MN ,ND ,DM ,则MN ∥BE ,由(1)知,∠DAC =∠BAC =30°,即∠DAB =60°,∴△ABD 为正三角形,∴DN ⊥AB ,又BC ⊥AB ,DN ,CB ⊂平面ABCD ,∴DN ∥CB ,又MN ∩DN =N ,BE ∩BC =B ,MN ,DN ⊂平面DMN ,BE ,BC ⊂平面EBC ,∴平面DMN ∥平面EBC ,∴点P 在线段MN 上.以O 为坐标原点,OA ,OB ,OE 所在直线别离为x 轴、y 轴、z 轴,成立空间直角坐标系,则A ⎝⎛⎭⎫32,0,0,B ⎝⎛⎭⎫0,32,0,E ⎝⎛⎭⎫0,0,32, M ⎝⎛⎭⎫34,0,34,D ⎝⎛⎭⎫0,-32,0,N ⎝⎛⎭⎫34,34,0, ∴AB →=⎝⎛⎭⎫-32,32,0,AE →=⎝⎛⎭⎫-32,0,32, DM →=⎝⎛⎭⎫34,32,34,MN →=⎝⎛⎭⎫0,34,-34, 设平面ABE 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ AB →·n =0,AE →·n =0,即⎩⎪⎨⎪⎧ -3x +y =0,-3x +z =0,令x =1,那么n =(1,3,3),设MP →=λMN →(0≤λ≤1),可得DP →=DM →+MP →=⎝⎛⎭⎫34,32+34λ,34-34λ, 设直线DP 与平面ABE 所成的角为θ,则sin θ=|cos 〈n ,DP →〉|=|n ·DP →||n |·|DP →|=1242×λ2+λ+4, ∵0≤λ≤1,∴当λ=0时,sin θ取得最大值427. 故直线DP 与平面ABE 所成角的正弦值的最大值为427.。

2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练第八章第3讲 空间点、直线、平面之间的位置关系 Wo

2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练第八章第3讲 空间点、直线、平面之间的位置关系 Wo

第讲空间点、直线、平面之间的位置关系一、选择题.(·湖北卷),表示空间中的两条直线,若:,是异面直线;:,不相交,则( )是的充分条件,但不是的必要条件是的必要条件,但不是的充分条件是的充分必要条件既不是的充分条件,也不是的必要条件解析直线,是异面直线,一定有与不相交,因此是的充分条件;若与不相交,那么与可能平行,也可能是异面直线,所以不是的必要条件.故选.答案.(·郑州联考)已知直线和平面α,β,α∩β=,⊄α,⊄β,且在α,β内的射影分别为直线和,则直线和的位置关系是( ).相交或平行 .相交或异面.平行或异面 .相交、平行或异面解析依题意,直线和的位置关系可能是相交、平行或异面,选.答案.给出下列说法:①梯形的四个顶点共面;②三条平行直线共面;③有三个公共点的两个平面重合;④三条直线两两相交,可以确定个或个平面.其中正确的序号是( ).①.①④.②③.③④解析显然命题①正确.由于三棱柱的三条平行棱不共面,②错.命题③中,两个平面重合或相交,③错.三条直线两两相交,可确定个或个平面,则命题④正确.答案.(·济南模拟),,是两两不同的三条直线,下面四个命题中,真命题是( ).若直线,异面,,异面,则,异面.若直线,相交,,相交,则,相交.若∥,则,与所成的角相等.若⊥,⊥,则∥解析若直线,异面,,异面,则,相交、平行或异面;若,相交,,相交,则,相交、平行或异面;若⊥,⊥,则,相交、平行或异面;由异面直线所成的角的定义知正确.故选.答案.已知正方体-中,,分别为,的中点,那么异面直线与所成角的余弦值为( )解析连接,则∥,∴∠为异面直线与所成的角.设正方体棱长为,则=,=,=,∴∠==.答案二、填空题.如图,在正方体-中,,分别为棱,的中点,有以下四个结论:①直线与是相交直线;②直线与是平行直线;③直线与是异面直线;④直线与所成的角为°.其中正确的结论为(填序号).解析,,三点共面,且在平面中,但∉平面,∉,因此直线与是异面直线,同理与也是异面直线,①②错;,,三点共面,且在平面中,但∉平面,∉,因此直线与是异面直线,③正确;连接,因为∥,所以直线与所成的角就是与所成的角,且角为°.答案③④.如图,正方体的底面与正四面体的底面在同一平面α上,且∥,则直线与正方体的六个面所在的平面相交的平面个数为.。

高中数学第八章立体几何初步 直线与直线平行 直线与平面平行课后提能训练新人教A版必修第二册

高中数学第八章立体几何初步 直线与直线平行 直线与平面平行课后提能训练新人教A版必修第二册

第八章 8.5 8.5.1 8.5.2A级——基础过关练1.若两个三角形不在同一平面内,它们的边两两对应平行,那么这两个三角形( ) A.全等B.不可能全等C.仅有一个角相等D.全等或相似【答案】D【解析】由等角定理知,这两个三角形的三个角分别对应相等.2.(多选)下列命题中,错误的有( )A.如果一个角的两边与另一个角的两边分别平行,那么这两个角相等B.如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等C.如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补D.如果两条直线同时平行于第三条直线,那么这两条直线互相平行【答案】AC【解析】这两个角相等或互补,选项A错误;由等角定理知选项B正确;在空间中,这样的两个角大小关系不确定,选项C错误;由基本事实4知选项D正确.3.如图,已知S为四边形ABCD外一点,G,H分别为SB,BD上的点,若GH∥平面SCD,则( )A.GH∥SA B.GH∥SDC.GH∥SC D.以上均有可能【答案】B【解析】因为GH∥平面SCD,GH⊂平面SBD,平面SBD∩平面SCD=SD,所以GH∥SD,显然GH与SA,SC均不平行.故选B.4.直线a∥平面α,α内有n条直线交于一点,则这n条直线中与直线a平行的直线有( )A.0条B.1条C.0条或1条D.无数条【答案】C【解析】过直线a与n条直线的交点作平面β,设平面β与α交于直线b,则a∥b.若所给n条直线中有1条是与b重合的,则此直线与直线a平行,若没有与b重合的,则与直线a 平行的直线有0条.5.梯形ABCD中,AB∥CD,AB⊂平面α,CD⊄平面α,则直线CD与平面α的位置关系是________.【答案】平行【解析】因为AB∥CD,AB⊂平面α,CD⊄平面α,由线面平行的判定定理可得CD∥α.6.给出下列四个命题,其中正确命题的序号是________.①在空间,若两条直线不相交,则它们一定平行;②平行于同一条直线的两条直线平行;③一条直线和两条平行直线的一条相交,那么它也和另一条相交;④空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.【答案】②④【解析】①错,可以异面;②正确,基本事实4;③错误,和另一条可以异面;④正确,由平行直线的传递性可知.7.如图,在正方体ABCD-A1B1C1D1中,BD和B1D1分别是正方形ABCD和A1B1C1D1的对角线.(1)∠DBC的两边与________的两边分别平行且方向相同;(2)∠DBC的两边与________的两边分别平行且方向相反.【答案】(1)∠D1B1C1(2)∠B1D1A1【解析】(1)因为B1D1∥BD,B1C1∥BC且方向相同,所以∠DBC的两边与∠D1B1C1的两边分别平行且方向相同.(2)B1D1∥BD,D1A1∥BC且方向相反,所以∠DBC的两边与∠B1D1A1的两边分别平行且方向相反.8.如图,已知在棱长为a的正方体ABCD-A1B1C1D1中,M,N分别是棱CD,AD的中点.求证:(1)四边形MNA1C1是梯形;(2)∠DNM=∠D1A1C1.证明:(1)如图,连接AC.因为在△ACD中,M,N分别是CD,AD的中点,所以MN是△ACD的中位线.所以MN ∥AC ,MN =12AC .由正方体的性质得AC ∥A 1C 1,AC =A 1C 1.所以MN ∥A 1C 1,且MN =12A 1C 1,即MN ≠A 1C 1.所以四边形MNA 1C 1是梯形. (2)由(1)可知MN ∥A 1C 1.又因为ND ∥A 1D 1,所以∠DNM 与∠D 1A 1C 1相等或互补. 而∠DNM 与∠D 1A 1C 1均为锐角, 所以∠DNM =∠D 1A 1C 1.9.如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱BC ,C 1D 1的中点,求证:EF ∥平面BDD 1B 1.证明:如图,取D 1B 1的中点O ,连接OF ,OB .因为OF 綉12B 1C 1,BE 綉12B 1C 1,所以OF 綉BE .所以四边形OFEB 是平行四边形. 所以EF ∥BO .因为EF ⊄平面BDD 1B 1,BO ⊂平面BDD 1B 1,所以EF ∥平面BDD 1B 1.B 级——能力提升练10.如图所示,在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,EH ∥FG ,则EH 与BD 的位置关系是( )A .平行B .相交C .异面D .不确定【答案】A【解析】因为EH ∥FG ,FG ⊂平面BCD ,EH ⊄平面BCD ,所以EH ∥平面BCD .因为EH ⊂平面ABD ,平面ABD ∩平面BCD =BD ,所以EH ∥BD .11.(2021年武汉模拟)对于直线m ,n 和平面α,下面命题中的真命题是( ) A .如果m ⊂α,n ⊄α,m ,n 是异面直线,那么n ∥α B .如果m ⊂α,n 与α相交,那么m ,n 是异面直线 C .如果m ⊂α,n ∥α,m ,n 共面,那么m ∥n D .如果m ∥α,n ∥α,m ,n 共面,那么m ∥n 【答案】C【解析】对于A,如果m ⊂α,n ⊄α,m ,n 是异面直线,则n ∥α或n 与α相交,故A 错误;对于B,如果m ⊂α,n 与α相交,则m ,n 相交或是异面直线,故B 错误;对于C,如果m ⊂α,n ∥α,m ,n 共面,由线面平行的性质定理,可得m ∥n ,故C 正确;对于D,如果m ∥α,n ∥α,m ,n 共面,则m ∥n 或m ,n 相交,故D 错误.12.如图,四棱锥S -ABCD 的所有的棱长都等于2,E 是SA 的中点,过C ,D ,E 三点的平面与SB 交于点F ,则四边形DEFC 的周长为( )A .2+ 3B .3+ 3C .3+2 3D .2+2 3【答案】C【解析】由AB =BC =CD =DA =2,得AB ∥CD ,即AB ∥平面DCFE ,∵平面SAB ∩平面DCFE =EF ,∴AB ∥EF .∵E 是SA 的中点,∴EF =1,DE =CF = 3.∴四边形DEFC 的周长为3+2 3.13.(多选)如图所示,在四面体ABCD 中,M ,N ,P ,Q ,E 分别是AB ,BC ,CD ,AD ,AC 的中点,则下列说法正确的是( )A .M ,N ,P ,Q 四点共面B .∠QME =∠CBDC .△BCD ∽△MEQ D .四边形MNPQ 为矩形【答案】ABC【解析】由条件易得MQ ∥BD ,ME ∥BC ,QE ∥CD ,NP ∥BD ,所以MQ ∥NP .对于A,由MQ ∥NP ,得M ,N ,P ,Q 四点共面,故A 正确;对于B,根据等角定理,得∠QME =∠DBC ,故B 正确;对于C,由等角定理知∠QME =∠DBC ,∠MEQ =∠BCD ,则△BCD ∽△MEQ ,故C 正确;对于D,没有充分理由推证四边形MNPQ 为矩形,故D 不正确.14.(2021年安庆期末)如图,P 为□ABCD 所在平面外一点,E 为AD 的中点,F 为PC 上一点,当PA ∥平面EBF 时,PFFC=________.【答案】12【解析】连接AC 交BE 于G ,连接FG ,因为PA ∥平面EBF ,PA ⊂平面PAC ,平面PAC ∩平面BEF =FG ,所以PA ∥FG ,所以PF FC =AG GC .又因为AD ∥BC ,E 为AD 的中点,所以AG GC =AE BC =12,所以PFFC=12.15.(2021年哈尔滨月考)如图所示,ABCD -A 1B 1C 1D 1是棱长为a 的正方体,M ,N 分别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q在CD 上,则PQ =________.【答案】223a【解析】∵MN ∥平面AC ,平面PMN ∩平面AC =PQ ,∴MN ∥PQ .∵MN ∥A 1C 1∥AC ,∴PQ ∥AC .∵AP =a 3,∴DP =DQ =2a 3.∴PQ =2×2a 3=223a .16.在如图所示的几何体中,四边形ABCD 为平行四边形,∠ACB =90°,EF ∥AB ,FG ∥BC ,EG ∥AC ,AB =2EF ,M 是线段AD 的中点,求证:GM ∥平面ABFE .证明:因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以△ABC ∽△EFG ,∠EGF =90°. 由于AB =2EF ,因此BC =2FG .如图,连接AF .由于FG ∥BC ,FG =12BC ,在□ABCD 中,M 是线段AD 的中点,则AM ∥BC ,且AM =12BC .因此FG ∥AM 且FG =AM .所以四边形AFGM 为平行四边形. 因此GM ∥FA .又FA ⊂平面ABFE ,GM ⊄平面ABFE , 所以GM ∥平面ABFE .C 级——探索创新练17.如图,在四面体PABC 中,PC ⊥AB ,PA ⊥BC ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点.(1)求证:DE ∥平面BCP ; (2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体PABC 六条棱的中点的距离相等?说明理由. (1)证明:∵D ,E 分别为AP ,AC 的中点,∴DE ∥PC . ∵DE ⊄平面BCP ,PC ⊂平面BCP , ∴DE ∥平面BCP .(2)解:∵D ,E ,F ,G 分别为AP ,AC ,BC ,PB 的中点, ∴DE ∥PC ∥FG ,DG ∥AB ∥EF . ∴四边形DEFG 为平行四边形.∵PC ⊥AB ,∴DE ⊥DG ,∴四边形DEFG 为矩形.(3)解:存在点Q 满足条件,理由如下:连接DF ,EG ,设Q 为EG 的中点,由(2)知DF ∩EG =Q ,且QD =QE =QF =QG =12EG .分别取PC ,AB 的中点M ,N ,连接ME ,EN ,NG ,MG ,MN ,与(2)同理,可证四边形MENG 为矩形,其对角线交点为EG 的中点Q ,且QM =QN =12EG ,∴Q 为满足条件的点.。

(新课标)2020年高考数学一轮总复习第八章平面解析几何8_1直线的倾斜角与斜率、直线的方程课件文新人教A版

(新课标)2020年高考数学一轮总复习第八章平面解析几何8_1直线的倾斜角与斜率、直线的方程课件文新人教A版


a b
<0,又倾斜角的取值范围为[0,π),故直线PQ的倾斜
角的取值范围为π2,π.
(2)当 a=-1 时,直线 l 的倾斜角为 90°,符合要求;当 a≠-1 时,直线 l 的斜率 为-a+a 1, 则有-a+a 1>1 或-a+a 1<0,解得-1<a<-12或 a<-1 或 a>0.综上可知,实数 a 的 取值范围是-∞,-12∪(0,+∞).
考点三|两条直线的位置关系 (方法突破)
【例3】 (1)“a=0”是“直线l1:(a+1)x+a2y-3=0与直线l2:2x+ay-2a-1
=0平行”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
(2)直线l过点(-1,2)且与直线2x-3y+4=0垂直,则l的方程是( )
名师点拨 判断两直线平行或垂直的两个策略 (1)设A2B2C2≠0,两直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0平行的充要条 件为AA12=BB12≠CC12.更一般地,两直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0平行 的充要条件为A1B2-A2B1=0,A1C2-A2C1≠0. (2)利用两直线的斜率判定两直线的平行、垂直关系时,注意斜率不存在的情况不 能忽略.
ax+by=1 (a≠0,b≠0)
一般式
Ax+By+C=0 (A2+B2≠0)
不含直线x=x1(x1=x2) 和直线y=y1(y1=y2)
不含垂直于坐标轴和 过原点的直线 平面直角坐标系内的 直线都适用
5.线段的中点坐标公式
若点P1,P2的坐标分别为(x1,y1),(x2,y2),线段P1,P2的中点M的坐标为(x,

2020年高考数学一轮复习考点与题型总结:第八章 立体几何含答案

2020年高考数学一轮复习考点与题型总结:第八章 立体几何含答案

第八章 立体几何第一节 空间几何体的结构特征、三视图和直观图一、基础知识1.简单几何体(1)多面体的结构特征①特殊的四棱柱 四棱柱――――→底面为平行四边形平行六面体――――→侧棱垂直于底面直平行六面体――→底面为矩形长方体――――→底面边长相等正四棱柱――――→侧棱与底面边长相等正方体 上述四棱柱有以下集合关系:{正方体}{正四棱柱}{长方体}{直平行六面体}{平行六面体}{四棱柱}.②多面体的关系:棱柱――→一个底面退化为一个点棱锥――→平行于底面的平面截得棱台(2)旋转体的结构特征▲球的截面的性质(1)球的任何截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d 与球的半径R 及截面的半径r 的关系为r =R 2-d 2. 2.直观图(1)画法:常用斜二测画法. (2)规则:①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.3.三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.二、常用结论1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)底面与水平面平行放置的圆锥的正视图和侧视图为全等的等腰三角形. (3)底面与水平面平行放置的圆台的正视图和侧视图为全等的等腰梯形. (4)底面与水平面平行放置的圆柱的正视图和侧视图为全等的矩形. 2.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x 轴和z 轴平行的线段的长度不改变,相对位置不改变.考点一 空间几何体的结构特征[典例] 下列结论正确的是( )A .侧面都是等腰三角形的三棱锥是正三棱锥B .六条棱长均相等的四面体是正四面体C .有两个侧面是矩形的棱柱是直棱柱D .用一个平面去截圆锥,底面与截面之间的部分叫圆台[解析] 底面是等边三角形,且各侧面三角形全等,这样的三棱锥才是正三棱锥,所以A 错;斜四棱柱也有可能两个侧面是矩形,所以C 错;截面平行于底面时,底面与截面之间的部分才叫圆台,所以D 错.[答案] B [题组训练]1.下列结论中错误的是( )A .由五个面围成的多面体只能是三棱柱B .正棱台的对角面一定是等腰梯形C .圆柱侧面上的直线段都是圆柱的母线D .各个面都是正方形的四棱柱一定是正方体解析:选A 由五个面围成的多面体也可以是四棱锥,所以A 选项错误.B 、C 、D 说法均正确. 2.下列命题正确的是( )A .两个面平行,其余各面都是梯形的多面体是棱台B .两个面平行且相似,其余各面都是梯形的多面体是棱台C .直角梯形以一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台D .用平面截圆柱得到的截面只能是圆和矩形解析:选C 如图所示,可排除A 、B 选项.只要有截面与圆柱的母线平行或垂直,截得的截面才为矩形或圆,否则为椭圆或椭圆的一部分.考点二 空间几何体的直观图[典例] 已知等腰梯形ABCD ,CD =1,AD =CB =2,AB =3,以AB 所在直线为x轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.[解析] 法一:如图,取AB 的中点O 为坐标原点,建立平面直角坐标系,y 轴交DC 于点E ,O ,E 在斜二测画法中的对应点为O ′,E ′,过E ′作E ′F ′⊥x ′轴,垂足为F ′,因为OE =(2)2-12=1, 所以O ′E ′=12,E ′F ′=24.所以直观图A ′B ′C ′D ′的面积为S ′=12×(1+3)×24=22.法二:由题中数据得等腰梯形ABCD 的面积S =12×(1+3)×1=2.由S 直观图=24S 原图形的关系,得S 直观图=24×2=22. [答案] 22[题组训练]1.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:选A 由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y 轴上的对角线长为2 2.故选A.2.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________. 解析:如图,图①、图②分别表示△ABC 的实际图形和直观图. 从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32,C ′D ′=O ′C ′sin 45°=32×22=64.所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64.答案:64考点三 空间几何体的三视图考法(一) 由几何体识别三视图[典例] (2019·长沙模拟)如图是一个正方体,A ,B ,C 为三个顶点,D 是棱的中点,则三棱锥A -BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)( )[解析] 正视图和俯视图中棱AD 和BD 均看不见,故为虚线,易知选A. [答案] A考法(二) 由三视图判断几何体特征[典例] (1)(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .2 5C .3D .2(2)(2019·武汉调研)已知某四棱锥的三视图如图所示,则该四棱锥的四个侧面中最小的面积为________.[解析] (1)先画出圆柱的直观图,根据题图的三视图可知点M ,N 的位置如图①所示.圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图②所示,连接MN ,则图中MN 即为M 到N 的最短路径.ON =14×16=4,OM =2,∴MN =OM 2+ON 2=22+42=2 5.(2)由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA 1D 1-BB 1C 1和一个三棱锥C -BC 1D 后剩下的几何体,即如图所示的四棱锥D -ABC 1D 1,其中侧面ADD 1的面积最小,其值为12.[答案](1)B(2)12考法(三)由三视图中的部分视图确定剩余视图[典例](2018·唐山五校联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为()[解析]由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A,故选A.[答案] A[题组训练]1.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体,其中DD1=1,AB=BC=AA1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是()解析:选C根据该几何体的直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除B、D;而在三视图中看不见的棱用虚线表示,故排除A.故选C.2.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12C.14 D.16解析:选B由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12,故选B.[课时跟踪检测]1.对于用“斜二测画法”画平面图形的直观图,下列说法正确的是( ) A .等腰三角形的直观图仍为等腰三角形 B .梯形的直观图可能不是梯形 C .正方形的直观图为平行四边形 D .正三角形的直观图一定为等腰三角形解析:选C 根据“斜二测画法”的定义可得正方形的直观图为平行四边形. 2.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( ) A .球 B .三棱锥 C .正方体D .圆柱解析:选D 球、正方体的三视图的形状都相同,大小都相等,首先排除选项A 和C.对于三棱锥,考虑特殊情况,如三棱锥C -OAB ,当三条棱OA ,OB ,OC 两两垂直,且OA =OB =OC 时,正视图方向为AO 方向,其三视图的形状都相同,大小都相等,故排除选项B.选项D ,不论圆柱如何放置,其三视图的形状都不可能完全相同.3.(2019·福州模拟)一水平放置的平面图形,用斜二测画法画出它的直观图如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为( )A .2 3B .2 2C .4 3D .8 2解析:选D 由斜二测画法可知,原平面图形是一个平行四边形,且平行四边形的一组对边长为2,在斜二测画法画出的直观图中,∠B ′O ′A ′=45°且O ′B ′=22,那么在原图形中,∠BOA =90°且OB =4 2.因此,原平面图形的面积为2×42=82,故选D.4.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A .0B .1C .2D .3解析:选B ①错误,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.5.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )解析:选D 由三视图知该几何体的上半部分是一个三棱柱,下半部分是一个四棱柱.故选D. 6.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A .8B .7C .6D .5解析:选C 画出直观图可知,共需要6块.7.(2018·南宁二中、柳州高中联考)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )解析:选C 若俯视图为选项C 中的图形,则该几何体为正方体截去一部分后的四棱锥P -ABCD ,如图所示,该四棱锥的体积V =13×(2×2)×2=83,符合题意.若俯视图为其他选项中的图形,则根据三视图易判断对应的几何体不存在,故选C.8.如图,在底面边长为1,高为2的正四棱柱ABCD -A 1B 1C 1D 1(底面ABCD 是正方形,侧棱AA 1⊥底面ABCD )中,点P 是正方形A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与俯视图的面积之和的最小值为( )A.32 B .1 C .2D.54解析:选A 由题图易知,三棱锥P -BCD 的正视图面积为12×1×2=1.当顶点P 的投影在△BCD 内部或其边上时,俯视图的面积最小,为S △BCD =12×1×1=12.所以三棱锥P -BCD 的正视图与俯视图的面积之和的最小值为1+12=32.故选A.9.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点. 其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④10.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C . 在Rt △ABC 中,AC =12(cm),BC =8-3=5 (cm). ∴AB =122+52=13(cm). 答案:1311.已知某几何体的三视图如图所示,正视图和侧视图都是矩形,俯视图是正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何体的形状给出下列命题:①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③两个面都是等腰直角三角形的四面体.其中正确命题的序号是________.解析:由三视图可知,该几何体是正四棱柱,作出其直观图为如图所示的四棱柱ABCD -A 1B 1C 1D 1,当选择的4个点是B 1,B ,C ,C 1时,可知①正确;当选择的4个点是B ,A ,B 1,C 时,可知②正确;易知③不正确.答案:①②12.如图,三棱锥A -BCD 中,AB ⊥平面BCD ,BC ⊥CD ,若AB =BC =CD =2,则该三棱锥的侧视图(投影线平行于BD )的面积为________.解析:因为AB ⊥平面BCD ,投影线平行于BD ,所以三棱锥A -BCD 的侧视图是一个以△BCD 的BD 边上的高为底,棱锥的高为高的三角形,因为BC ⊥CD ,AB =BC =CD =2, 所以△BCD 中BD 边上的高为2,故该三棱锥的侧视图的面积S =12×2×2= 2.答案: 2第二节空间几何体的表面积与体积一、基础知识1.圆柱、圆锥、圆台的侧面展开图及侧面积公式①几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和.②圆台、圆柱、圆锥的转化当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:2.空间几何体的表面积与体积公式二、常用结论几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=3a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R=2a.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.(3)正四面体的外接球与内切球的半径之比为3∶1. 考点一 空间几何体的表面积[典例] (1)(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π(2)(2019·沈阳质检)某四棱锥的三视图如图所示,则该四棱锥的侧面积是( )A .4+4 2B .42+2C .8+4 2D.83[解析] (1)设圆柱的轴截面的边长为x , 则x 2=8,得x =22,∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×2 2 =12π.故选B.(2)由三视图可知该几何体是一个四棱锥,记为四棱锥P -ABCD ,如图所示,其中P A ⊥底面ABCD ,四边形ABCD 是正方形,且P A =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×⎝⎛⎭⎫12×2×2+12×2×22=4+42,故选A. [答案] (1)B (2)A [题组训练]1.(2019·武汉部分学校调研)一个几何体的三视图如图所示,则它的表面积为( )A .28B .24+2 5C .20+4 5D .20+2 5解析:选B 如图,三视图所对应的几何体是长、宽、高分别为2,2,3的长方体去掉一个三棱柱后的棱柱ABIE -DCMH ,则该几何体的表面积S =(2×2)×5+⎝⎛⎭⎫12×1×2×2+2×1+2×5=24+2 5.故选B.2.(2018·郑州第二次质量预测)某几何体的三视图如图所示,则该几何体的表面积是( )A .20+2πB .24+(2-1)πC .24+(2-2)πD .20+(2+1)π解析:选B 由三视图知,该几何体是由一个棱长为2的正方体挖去一个底面半径为1、高为1的圆锥后所剩余的部分,所以该几何体的表面积S =6×22-π×12+π×1×2=24+(2-1)π,故选B.考点二 空间几何体的体积[典例] (1)(2019·开封高三定位考试)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .4πB .2π C.4π3D .π(2)(2018·天津高考)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,则四棱锥A 1-BB 1D 1D 的体积为________.[解析](1)直接法由题意知该几何体的直观图如图所示,该几何体为圆柱的一部分,设底面扇形的圆心角为α,由tan α=31=3,得α=π3,故底面面积为12×π3×22=2π3,则该几何体的体积为2π3×3=2π. (2)法一:直接法连接A 1C 1交B 1D 1于点E ,则A 1E ⊥B 1D 1,A 1E ⊥BB 1,则A 1E ⊥平面BB 1D 1D ,所以A 1E 为四棱锥A 1-BB 1D 1D 的高,且A 1E =22, 矩形BB 1D 1D 的长和宽分别为2,1, 故V A 1-BB 1D 1D =13×(1×2)×22=13. 法二:割补法连接BD 1,则四棱锥A 1-BB 1D 1D 分成两个三棱锥B -A 1DD 1与B -A 1B 1D 1,所以V A 1-BB 1D 1D=V B -A 1DD 1+V B -A 1B 1D 1=13×12×1×1×1+13×12×1×1×1=13. [答案] (1)B (2)13[题组训练]1.(等体积法)如图所示,已知三棱柱ABC -A1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为( )A.312 B.34 C.612D.64解析:选A 三棱锥B 1-ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312.2.(割补法)某几何体的三视图如图所示,则这个几何体的体积是( )A .13B .14解析:选C 所求几何体可看作是将长方体截去两个三棱柱得到的几何体,在长方体中还原该几何体,如图中ABCD -A ′B ′C ′D ′所示,长方体的长、宽、高分别为4,2,3,两个三棱柱的高为2,底面是两直角边长分别为3和1.5的直角三角形,故该几何体的体积V =4×2×3-2×12×3×32×2=15,故选C.3.(直接法)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π.考点三 与球有关的切、接问题考法(一) 球与柱体的切、接问题[典例] (2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.[解析] 设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.[答案] 32考法(二) 球与锥体的切、接问题[典例] (2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .123B .18 3[解析] 由等边△ABC 的面积为93,可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.[答案] B[题组训练]1.(2018·福建第一学期高三期末考试)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4π B.163πC.323π D .16π解析:选D 如图,由题意知圆柱的中心O 为这个球的球心, 于是,球的半径r =OB =OA 2+AB 2= 12+(3)2=2. 故这个球的表面积S =4πr 2=16π.故选D.2.三棱锥P -ABC 中,AB =BC =15,AC =6,PC ⊥平面ABC ,PC =2,则该三棱锥的外接球表面积为________.解析:由题可知,△ABC 中AC 边上的高为15-32=6,球心O 在底面ABC 的投影即为△ABC 的外心D ,设DA =DB =DC =x ,所以x 2=32+(6-x )2,解得x =564,所以R 2=x 2+⎝⎛⎭⎫PC 22=758+1=838(其中R 为三棱锥外接球的半径),所以外接球的表面积S =4πR 2=832π. 答案:832π[课时跟踪检测]1.(2019·深圳摸底)过半径为2的球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的体积的比值为( )A.932B.916C.38D.316解析:选A 由题意知所得截面为圆,设该圆的半径为r ,则22=12+r 2,所以r 2=3,所以所得截面的面积与球的体积的比值为π×343π×23=932,故选A.2.如图是某一几何体的三视图,则这个几何体的体积为( )A .4B .8C .16D .20解析:选B 由三视图知,此几何体是一个三棱锥,底面为一边长为6,高为2的三角形,三棱锥的高为4,所以体积为V =13×12×6×2×4=8.故选B.3.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π×r 2×5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛). 4.(2018·贵阳摸底考试)某实心几何体是用棱长为1 cm 的正方体无缝粘合而成的,其三视图如图所示,则该几何体的体积为( )A .35 cm 3B .40 cm 3C .70 cm 3D .75 cm 3解析:选A 结合题中三视图可得,该几何体是个组合体,该组合体从下到上依次为长、宽、高分别为5 cm,5 cm,1 cm 的长方体,长、宽、高分别为3 cm,3 cm,1 cm 的长方体,棱长为1 cm 的正方体,故该组合体的体积V =5×5×1+3×3×1+1×1×1=35(cm 3).故选A.5.(2019·安徽知名示范高中联考)某几何体的三视图如图所示,则该几何体的体积为( )A .1 B.12 C.13D.14解析:选C 法一:该几何体的直观图为四棱锥S -ABCD ,如图,SD ⊥平面ABCD ,且SD =1,四边形ABCD 是平行四边形,且AB =DC =1,连接BD ,由题意知BD ⊥DC ,BD ⊥AB ,且BD =1,所以S 四边形ABCD =1,所以V S -ABCD =13S 四边形ABCD·SD =13,故选C. 法二:由三视图易知该几何体为锥体,所以V =13Sh ,其中S 指的是锥体的底面积,即俯视图中四边形的面积,易知S =1,h 指的是锥体的高,从正视图和侧视图易知h =1,所以V =13Sh =13,故选C.6.(2019·重庆调研)某简单组合体的三视图如图所示,则该组合体的体积为( )A.83π3+833B.43π3+833C.43π3+433D.83π3+433解析:选B 由三视图知,该组合体是由一个半圆锥与一个三棱锥组合而成的,其中圆锥的底面半径为2、高为42-22=23,三棱锥的底面是斜边为4、高为2的等腰直角三角形,三棱锥的高为23,所以该组合体的体积V =12×13π×22×23+13×12×4×2×23=43π3+833,故选B.7.(2019·湖北八校联考)已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为( )A .16+12πB .32+12πC .24+12πD .32+20π解析:选A 由三视图知,该几何体是一个正四棱柱与半球的组合体,且正四棱柱的高为2,底面对角线长为4,球的半径为2,所以该正四棱柱的底面正方形的边长为22,该几何体的表面积S =12×4π×22+π×22+22×2×4=12π+16,故选A.8.(2019·福州质检)已知正三棱柱ABC -A 1B 1C 1中,底面积为334,一个侧面的周长为63,则正三棱柱ABC -A 1B 1C 1外接球的表面积为( )A .4πB .8πC .16πD .32π解析:选C 如图所示,设底面边长为a ,则底面面积为34a 2=334,所以a = 3.又一个侧面的周长为63,所以AA 1=2 3.设E ,D 分别为上、下底面的中心,连接DE ,设DE 的中点为O ,则点O 即为正三棱柱ABC -A 1B 1C 1的外接球的球心,连接OA 1,A 1E ,则OE =3,A 1E =3×32×23=1.在直角三角形OEA 1中,OA 1=12+(3)2=2,即外接球的半径R =2,所以外接球的表面积S =4πR 2=16π,故选C.9.(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析:由正方体的表面积为18,得正方体的棱长为 3. 设该正方体外接球的半径为R ,则2R =3,R =32,所以这个球的体积为43πR 3=4π3×278=9π2.答案:9π210.某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析:由题意知该四棱柱为直四棱柱,其高为1,底面为上底长为1,下底长为2,高为1的等腰梯形,所以该四棱柱的体积为V =(1+2)×12×1=32. 答案:3211.一个圆锥的表面积为π,它的侧面展开图是圆心角为2π3的扇形,则该圆锥的高为________.解析:设圆锥底面半径是r ,母线长为l ,所以πr 2+πrl =π,即r 2+rl =1,根据圆心角公式2π3=2πrl ,即l=3r ,所以解得r =12,l =32,那么高h =l 2-r 2= 2.答案: 212.(2017·全国卷Ⅰ)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.解析:如图,连接AO ,OB ,∵SC 为球O 的直径, ∴点O 为SC 的中点, ∵SA =AC ,SB =BC , ∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC , ∴AO ⊥平面SCB , 设球O 的半径为R , 则OA =OB =R ,SC =2R . ∴V S -ABC =V A -SBC=13×S △SBC ×AO =13×⎝⎛⎭⎫12×SC ×OB ×AO , 即9=13×⎝⎛⎭⎫12×2R ×R ×R ,解得 R =3, ∴球O 的表面积S =4πR 2=4π×32=36π. 答案:36π13.如图是一个以A 1B 1C 1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=2,∠A 1B 1C 1=90°,AA 1=4,BB 1=3,CC 1=2,求:(1)该几何体的体积; (2)截面ABC 的面积.解:(1)过C 作平行于A 1B 1C 1的截面A 2B 2C ,交AA 1,BB 1分别于点A 2,B 2.由直三棱柱性质及∠A 1B 1C 1=90°可知B 2C ⊥平面ABB 2A 2,则该几何体的体积V =VA 1B 1C 1-A 2B 2C +VC -ABB 2A 2=12×2×2×2+13×12×(1+2)×2×2=6. (2)在△ABC 中,AB =22+(4-3)2=5, BC =22+(3-2)2=5, AC =(22)2+(4-2)2=2 3.则S △ABC =12×23×(5)2-(3)2= 6.14.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积63,求该三棱锥E -ACD 的侧面积.解:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,AC ⊂平面ABCD , 所以BE ⊥AC .因为BD ∩BE =B ,BD ⊂平面BED ,BE ⊂平面BED , 所以AC ⊥平面BED . 又AC ⊂平面AEC , 所以平面AEC ⊥平面BED .(2)设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x 2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x . 由BE ⊥平面ABCD ,知△EBG 为直角三角形, 可得BE =22x . 由已知得,三棱锥E -ACD 的体积 V 三棱锥E -ACD=13·12AC ·GD ·BE =624x 3=63, 故x =2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5. 故三棱锥E-ACD的侧面积为3+2 5.第三节 空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. (2)公理2:过不在一条直线上的三点, 有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 2.空间中两直线的位置关系 (1)空间中两直线的位置关系⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线, 经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的 锐角(或直角)叫做异面直线a 与b 所成 的角(或夹角). ②范围:⎝⎛⎦⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l 和平面α相交、直线l 和平面α平行统称为直线l 在平面α外,记作l ⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用[典例]如图所示,在正方体ABCD-AB1C1D1中,E,F分别是AB和AA1的中点.求1证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD,A1B.1∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.[变透练清]1.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()。

2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练:第8讲 曲线与方程

2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练:第8讲 曲线与方程

第8讲 曲线与方程一、选择题1.方程(2x +3y -1)(x -3-1)=0表示的曲线是( ) A.两条直线 B.两条射线C.两条线段D.一条直线和一条射线解析 原方程可化为⎩⎪⎨⎪⎧2x +3y -1=0,x -3≥0或x -3-1=0,即2x +3y -1=0(x ≥3)或x =4,故原方程表示的曲线是一条直线和一条射线. 答案 D2.(2017·衡水模拟)若方程x 2+y 2a =1(a 是常数),则下列结论正确的是( )A.任意实数a 方程表示椭圆B.存在实数a 方程表示椭圆C.任意实数a 方程表示双曲线D.存在实数a 方程表示抛物线解析 当a >0且a ≠1时,方程表示椭圆,故选B. 答案 B3.(2017·长春模拟)设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为( ) A.4x 221-4y 225=1 B.4x 221+4y 225=1 C.4x 225-4y 221=1D.4x 225+4y 221=1解析 ∵M 为AQ 的垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹是以定点C ,A 为焦点的椭圆.∴a =52,∴c =1,则b 2=a 2-c 2=214,∴M 的轨迹方程为4x 225+4y 221=1.答案 D4.设点A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线,且|P A |=1,则点P 的轨迹方程是( ) A.y 2=2x B.(x -1)2+y 2=4 C.y 2=-2xD.(x -1)2+y 2=2解析 如图,设P (x ,y ),圆心为M (1,0),连接MA ,则MA ⊥P A ,且|MA |=1, 又∵|P A |=1, ∴|PM |=|MA |2+|P A |2=2,即|PM |2=2,∴(x -1)2+y 2=2. 答案 D5.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( ) A.直线 B.椭圆 C.圆D.双曲线解析 设C (x ,y ),因为OC →=λ1OA →+λ2OB →, 所以(x ,y )=λ1(3,1)+λ2(-1,3),即⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,解得⎩⎨⎧λ1= y +3x 10,λ2=3y -x 10,又λ1+λ2=1,所以y +3x 10+3y -x10=1,即x +2y =5 , 所以点C 的轨迹为直线,故选A. 答案 A 二、填空题6.已知两定点A (-2,0),B (1,0),如果动点P 满足|P A |=2|PB |,则点P 的轨迹所包围的图形的面积为__________. 解析 设P (x ,y ),由|P A |=2|PB |, 得(x +2)2+y 2=2(x -1)2+y 2,∴3x 2+3y 2-12x =0,即x 2+y 2-4x =0. ∴P 的轨迹为以(2,0)为圆心,半径为2的圆. 即轨迹所包围的面积等于4π. 答案 4π7.已知点A (1,0),直线l :y =2x -4,点R 是直线l 上的一点,若RA →=AP →,则点P 的轨迹方程为________.解析设P (x ,y ),R (x 1,y 1),由RA →=AP →知,点A 是线段RP 的中点,∴⎩⎨⎧x +x 12=1,y +y12=0,即⎩⎪⎨⎪⎧x 1=2-x ,y 1=-y .∵点R (x 1,y 1)在直线y =2x -4上, ∴y 1=2x 1-4,∴-y =2(2-x )-4,即y =2x . 答案 y =2x8.在△ABC 中,|BC→|=4,△ABC 的内切圆切BC 于D 点,且|BD →|-|CD →|=22,则顶点A 的轨迹方程为________.解析 以BC 的中点为原点,中垂线为y 轴建立如图所示的坐标系,E ,F 分别为两个切点.则|BE |=|BD |,|CD |=|CF |, |AE |=|AF |.∴|AB |-|AC |=22<|BC |=4,∴点A 的轨迹为以B ,C 的焦点的双曲线的右支(y ≠0)且a =2,c =2,∴b =2, ∴轨迹方程为x 22-y 22=1(x >2). 答案 x 22-y 22=1(x >2) 三、解答题9.如图所示,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左、右顶点.求直线AA 1与直线A 2B 交点M 的轨迹方程.解 由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0), 由曲线的对称性及A (x 0,y 0),得B (x 0,-y 0), 设点M 的坐标为(x ,y ), 直线AA 1的方程为y =y 0x 0+3(x +3).① 直线A 2B 的方程为y =-y 0x 0-3(x -3).② 由①②得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 上,故y 20=1-x 209.④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).10.(2017·广州模拟)已知点C (1,0),点A ,B 是⊙O :x 2+y 2=9上任意两个不同的点,且满足AC→·BC →=0,设P 为弦AB 的中点. (1)求点P 的轨迹T 的方程;(2)试探究在轨迹T 上是否存在这样的点:它到直线x =-1的距离恰好等于到点C 的距离?若存在,求出这样的点的坐标;若不存在,说明理由.解 (1)连接CP ,OP ,由AC →·BC →=0,知AC ⊥BC ,∴|CP |=|AP |=|BP |=12|AB |, 由垂径定理知|OP |2+|AP |2=|OA |2, 即|OP |2+|CP |2=9,设点P (x ,y ),有(x 2+y 2)+[(x -1)2+y 2]=9, 化简,得x 2-x +y 2=4.(2)存在.根据抛物线的定义,到直线x =-1的距离等于到点C (1,0)的距离的点都在抛物线y 2=2px (p >0)上,其中p2=1. ∴p =2,故抛物线方程为y 2=4x ,由方程组⎩⎨⎧y 2=4x ,x 2-x +y 2=4得x 2+3x -4=0, 解得x 1=1,x 2=-4,由x ≥0, 故取x =1,此时y =±2.故满足条件的点存在,其坐标为(1,-2)和(1,2).11.已知△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是( ) A.x 29-y 216=1B.x 216-y 29=1 C.x 29-y 216=1(x >3)D.x 216-y 29=1(x >4)解析 如图,|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |,所以|CA |-|CB |=8-2=6<10=|AB |,根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支(y ≠0),方程为x 29-y 216=1(x >3). 答案 C12.已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足|MN→|·|MP →|+MN →·NP →=0,则动点P (x ,y )的轨迹方程为( ) A.y 2=8x B.y 2=-8x C.y 2=4xD.y 2=-4x解析 MN→=(4,0),MP →=(x +2,y ),NP →=(x -2,y ).∴|MN →|=4,|MP →|=(x +2)2+y 2,MN→·NP →=4(x -2).根据已知条件得4(x +2)2+y 2=4(2-x ).整理得y 2=-8x .∴点P 的轨迹方程为y 2=-8x . 答案 B13.如图,P 是椭圆x 2a 2+y 2b 2=1上的任意一点,F 1,F 2是它的两个焦点,O 为坐标原点,且OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是________. 解析 由于OQ →=PF 1→+PF 2→, 又PF 1→+PF 2→=PM →=2PO →=-2OP →, 设Q (x ,y ),则OP→=-12OQ →=⎝ ⎛⎭⎪⎫-x 2,-y 2,即P 点坐标为⎝ ⎛⎭⎪⎫-x 2,-y 2,又P 在椭圆上,则有⎝ ⎛⎭⎪⎫-x 22a 2+⎝ ⎛⎭⎪⎫-y 22b 2=1,即x 24a 2+y 24b 2=1. 答案 x 24a 2+y 24b 2=114.(2016·全国Ⅲ卷)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点. (1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 解 由题设F ⎝ ⎛⎭⎪⎫12,0,设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 22,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝ ⎛⎭⎪⎫-12,b ,R ⎝ ⎛⎭⎪⎫-12,a +b 2.记过A,B两点的直线为l,则l的方程为2x-(a+b)y+ab=0.(1)证明由于F在线段AB上,故1+ab=0.记AR的斜率为k1,FQ的斜率为k2,则k1=a-b1+a2=a-ba2-ab=1a=-aba=-b=k2.所以AR∥FQ.(2)设过AB的直线为l,设l与x轴的交点为D(x1,0),则S△ABF =12|b-a||FD|=12|b-a|⎪⎪⎪⎪⎪⎪x1-12,S△PQF=|a-b|2.由题设可得|b-a|⎪⎪⎪⎪⎪⎪x1-12=|a-b|2,所以x1=1,x1=0(舍去).设满足条件的AB的中点为E(x,y).当AB与x轴不垂直时,由k AB=k DE可得2a+b=yx-1(x≠1).而a+b2=y,所以y2=x-1(x≠1).当AB与x轴垂直时,E与D重合. 所以,所求轨迹方程为y2=x-1.。

【精选】2020届高考数学(鲁京津琼)专用精练:阶段自测卷(四)含解析

【精选】2020届高考数学(鲁京津琼)专用精练:阶段自测卷(四)含解析

阶段自测卷(四)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.(2019·衡水中学考试)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 10=100,则a 7的值为( )A .11B .12C .13D .14 答案 C解析 由S 10=100及公差为2,得10a 1+10×(10-1)2×2=100,所以a 1=1.所以a n =2n -1,故a 7=13.故选C.2.(2019·四川诊断)若等差数列{a n }的公差d ≠0且a 1,a 3,a 7成等比数列,则a 2a 1等于( )A.32B.23C.12 D .2 答案 A解析 设等差数列的首项为a 1,公差为d , 则a 3=a 1+2d ,a 7=a 1+6d . 因为a 1,a 3,a 7成等比数列, 所以(a 1+2d )2=a 1(a 1+6d ),解得a 1=2d .所以a 2a 1=2d +d 2d =32.故选A.3.(2019·四省联考)已知等差数列{a n }的前n 项和为S n ,若S 6=30,S 10=10,则S 16等于( ) A .-160 B .-80 C .20 D .40 答案 B解析 由于数列为等差数列,故⎩⎪⎨⎪⎧6a 1+15d =30,10a 1+45d =10,解得a 1=10,d =-2,故S 16=16a 1+120d =16×10+120×(-2)=-80,故选B. 4.记等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于( )A .-3B .5C .-31D .33答案 D解析 由题意知公比q ≠1,S 6S 3=a 1(1-q 6)1-q a 1(1-q 3)1-q=1+q 3=9, ∴q =2,S 10S 5=a 1(1-q 10)1-q a 1(1-q 5)1-q=1+q 5=1+25=33. 5.(2019·湖南五市十校联考)已知数列{a n }满足2a n =a n -1+a n +1(n ≥2),a 2+a 4+a 6=12,a 1+a 3+a 5=9,则a 1+a 6等于( ) A .6 B .7 C .8 D .9 答案 B解析 由数列{a n }满足2a n =a n -1+a n +1(n ≥2)得数列{a n }为等差数列,所以a 2+a 4+a 6=3a 4=12,即a 4=4,同理a 1+a 3+a 5=3a 3=9,即a 3=3,所以a 1+a 6=a 3+a 4=7.6.(2019·新乡模拟)为了参加冬季运动会的5 000 m 长跑比赛,某同学给自己制定了7天的训练计划:第1天跑5 000 m ,以后每天比前1天多跑200 m ,则这个同学7天一共将跑( ) A .39 200 m B .39 300 m C .39 400 m D .39 500 m 答案 A解析 依题意可知,这个同学第1天,第2天,…跑的路程依次成首项为5 000,公差为200的等差数列,则这个同学7天一共将跑5 000×7+7×62×200=39 200 (m).故选A.7.等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m 等于( ) A .38 B .20 C .10 D .9 答案 C解析 因为{a n }是等差数列,所以a m -1+a m +1=2a m ,由a m -1+a m +1-a 2m =0,得2a m -a 2m =0,由S 2m -1=38知a m ≠0,所以a m =2, 又S 2m -1=38,即(2m -1)(a 1+a 2m -1)2=38,即(2m -1)×2=38,解得m =10,故选C.8.(2019·青岛调研)已知各项均不相等的等比数列{a n },若3a 2,2a 3,a 4成等差数列,设S n 为数列{a n }的前n 项和,则S 3a 3等于( )A.139B.79 C .3 D .1 答案 A解析 设等比数列{a n }的公比为q , ∵3a 2,2a 3,a 4成等差数列, ∴2×2a 3=3a 2+a 4,∴4a 2q =3a 2+a 2q 2,化为q 2-4q +3=0, 解得q =1或3.又数列的各项均不相等,∴q ≠1,当q =3时,S 3a 3=a 1(33-1)3-1a 1×9=139.故选A.9.(2019·广东六校联考)将正奇数数列1,3,5,7,9,…依次按两项、三项分组,得到分组序列如下: (1,3),(5,7,9),(11,13),(15,17,19),…,称(1,3)为第1组,(5,7,9)为第2组,依此类推,则原数列中的2 019位于分组序列中的( ) A .第404组 B .第405组 C .第808组 D .第809组答案 A解析 正奇数数列1,3,5,7,9,…的通项公式为a n =2n -1, 则2 019为第1 010个奇数,因为按两项、三项分组,故按5个一组分组是有202组,故原数列中的2 019位于分组序列中的第404组,故选A.10.(2019·新疆昌吉教育共同体月考)在数列{a n }中,a 1=2,其前n 项和为S n .若点⎝ ⎛⎭⎪⎫S n n ,S n +1n +1在直线y =2x -1上,则a 9等于( ) A .1 290 B .1 280 C .1 281 D .1 821 答案 C解析 由已知可得S n +1n +1-1=2⎝⎛⎭⎫S n n -1,又S 11-1=a 1-1=1, 所以数列⎩⎨⎧⎭⎬⎫S n n -1是首项为1,公比为2的等比数列,所以S nn -1=2n -1,得S n =n (1+2n -1),当n ≥2时,a n =S n -S n -1=(n +1)2n -2+1, 故 a 9=10×128+1=1 281.11.(2019·长沙长郡中学调研)已知数列{a n }的前n 项和为S n ,且S n =n 2+4n ,若首项为13的数列{b n }满足1b n +1-1b n =a n ,则数列{b n }的前10项和为( )A.175264B.3988C.173264D.181264 答案 A解析 由S n =n 2+4n ,可得a n =2n +3,根据1b n +1-1b n =a n =2n +3,结合题设条件,应用累加法可求得1b n =n 2+2n ,所以b n =1n 2+2n =1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2,所以数列{b n }的前n 项和为T n =12⎝ ⎛⎭⎪⎫1-13+12-14+…+1n -1n +2 =12⎝ ⎛⎭⎪⎫32-1n +1-1n +2, 所以T 10=12⎝⎛⎭⎫32-111-112=175264,故选A. 12.已知数列{a n }的通项a n =nx(x +1)(2x +1)…(nx +1),n ∈N * ,若a 1+a 2+a 3+…+a 2 018<1 ,则实数x 可以等于( )A .-23B .-512C .-1348D .-1160答案 B解析 ∵a n =nx (x +1)(2x +1)…(nx +1)=1(x +1)(2x +1)…[n (x -1)+1]-1(x +1)(2x +1)…(nx +1)(n ≥2),∴a 1+a 2+…+a 2 018=x x +1+1x +1-1(x +1)(2x +1)…(2 018x +1)=1-1(x +1)(2x +1)…(2 018x +1),当x =-23时,x +1>0,nx +1<0(2≤n ≤2 018,n ∈N *),此时1-1(x +1)(2x +1)…(2 018x +1)>1.当x =-512时,x +1>0,x +2>0,nx +1<0(3≤n ≤2 018,n ∈N *),此时1-1(x +1)(2x +1)…(2 018x +1)<1;当x =-1348时,x +1>0,x +2>0,x +3>0,nx +1<0(4≤n ≤2 018,n ∈N *),此时1-1(x +1)(2x +1)…(2 018x +1)>1;当x =-1160时,x +1>0,x +2>0,x +3>0,x +4>0,x +5>0,nx +1<0(6≤n ≤2 018,n ∈N *), 此时1-1(x +1)(2x +1)…(2 018x +1)>1.故选B.二、填空题(本大题共4小题,每小题5分,共20分)13.设等差数列{a n }的公差为d ,其前n 项和为S n ,若a 4+a 10=0,2S 12=S 2+10,则d 的值为________. 答案 -10解析 由a 4+a 10=0,2S 12=S 2+10,得⎩⎪⎨⎪⎧a 1+3d +a 1+9d =0,2×⎝⎛⎭⎫12a 1+12×112d =2a 1+d +10,解得d =-10. 14.(2019·沈阳东北育才中学模拟)等差数列{a n },{b n }的前n 项和分别为S n 和T n ,若S n T n =2n +13n +2,则a 3+a 11+a 19b 7+b 15=________.答案129130解析 原式=3a 112b 11=32·2a 112b 11=32·a 1+a 21b 1+b 21=32·S 21T 21=32·2×21+13×21+2=129130.15.(2019·荆州质检)已知数列{a n }的前n 项和为S n ,若a n =(2n -1)sin ⎝⎛⎭⎫n π2+2 019π,则S 2 019=________. 答案 2 020解析 ∵a n =(2n -1)sin ⎝⎛⎭⎫n π2+2 019π =(1-2n )sinn π2, ∴a 1,a 2,…,a n 分别为-1,0,5,0,-9,0,13,0,-17,0,21,0,…, 归纳可得,每相邻四项和为4, ∴S 2 019=504×4+a 2 017+a 2 018+a 2 019 =2 016+[(1-2×2 017)+0+(2×2 019-1)] =2 016+4=2 020.16.(2019·长沙长郡中学调研)已知点列P 1(1,y 1),P 2(2,y 2),P 3(3,y 3),…,P n +1(n +1,y n +1)在x 轴上的投影为Q 1,Q 2,…,Q n +1,且点P n +1满足y 1=1,直线P n P n +1的斜率1n n P P k +=2n .则多边形P 1Q 1Q n +1P n +1的面积为________. 答案 3×2n -n -3解析 根据题意可得y n +1-y n =2n ,结合y 1=1,应用累加法,可以求得y n +1=2n +1-1, 根据题意可以将该多边形分成n 个直角梯形计算,且从左往右,第n 个梯形的面积为S n =y n +y n +12=3×2n -1-1,总的面积应用分组求和法,可求得多边形的面积为S =3(2n -1)-n =3×2n -n -3. 三、解答题(本大题共70分)17.(10分)已知{a n }是以a 为首项,q 为公比的等比数列,S n 为它的前n 项和. (1)当S 1,S 3,S 4成等差数列时,求q 的值;(2)当S m ,S n ,S l 成等差数列时,求证:对任意自然数k ,a m +k ,a n +k ,a l +k 也成等差数列. (1)解 由已知,得a n =aq n -1,因此S 1=a ,S 3=a (1+q +q 2),S 4=a (1+q +q 2+q 3).当S 1,S 3,S 4成等差数列时,S 4-S 3=S 3-S 1, 可得aq 3=aq +aq 2,化简得q 2-q -1=0. 解得q =1±52.(2)证明 若q =1,则{a n }的各项均为a , 此时a m +k ,a n +k ,a l +k 显然成等差数列.若q ≠1,由S m ,S n ,S l 成等差数列可得S m +S l =2S n , 即a (q m -1)q -1+a (q l -1)q -1=2a (q n -1)q -1,整理得q m +q l =2q n .因此a m +k +a l +k =aq k -1(q m +q l )=2aq n +k -1 =2a n +k ,所以a m +k ,a n +k ,a l +k 成等差数列.18.(12分)(2019·安徽皖南八校联考)数列{a n }的前n 项和记为S n ,且4S n =5a n -5,数列{b n }满足b n =log 5a n .(1)求数列{a n },{b n }的通项公式;(2)设c n =1b n b n +1,数列{c n }的前n 项和为T n ,证明T n <1.(1)解 ∵4S n =5a n -5,∴4a 1=5a 1-5,∴a 1=5. 当n ≥2时,4S n -1=5a n -1-5,∴4a n =5a n -5a n -1, ∴a n =5a n -1,∴{a n }是以5为首项,5为公比的等比数列, ∴a n =5·5n -1=5n . ∴b n =log 55n =n .(2)证明 ∵c n =1n (n +1)=1n -1n +1,∴T n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1<1.19.(12分)(2019·安徽皖中名校联考)已知数列{a n }满足:a n +1=2a n -n +1,a 1=3. (1)设数列{b n }满足:b n =a n -n ,求证:数列{b n }是等比数列; (2)求出数列{a n }的通项公式和前n 项和S n . (1)证明 b n +1b n =a n +1-(n +1)a n -n =2a n -n +1-(n +1)a n -n=2(a n -n )a n -n =2,又b 1=a 1-1=3-1=2,∴{b n }是以2为首项,2为公比的等比数列. (2)解 由(1)得b n =2n ,∴a n =2n +n ,∴S n =(21+1)+(22+2)+…+(2n +n )=(21+22+…+2n )+(1+2+3+…+n ) =2(1-2n )1-2+n (n +1)2=2n +1-2+n (n +1)2.20.(12分)(2019·湖南衡阳八中月考)已知数列{a n }的前n 项和为S n ,且S n =2a n -n (n ∈N *). (1)证明:{a n +1}是等比数列; (2) 若数列b n =log 2(a n +1),求数列⎩⎨⎧⎭⎬⎫1b2n -1·b 2n +1的前n 项和T n . (1)证明 当n =1时,S 1=2a 1-1,∴a 1=1. ∵S n =2a n -n ,∴S n +1=2a n +1-(n +1), ∴a n +1=2a n +1, ∴a n +1+1=2(a n +1),∴ {a n +1}是以a 1+1=2为首项,2为公比的等比数列. (2)解 由(1)得a n +1=2n , ∴b n =log 22n =n ,∴1b 2n -1·b 2n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1∴T n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=n2n +1. 21.(12分)(2019·青岛调研)已知数列{a n }的各项均为正数,其前n 项和为S n . (1)若对任意n ∈N *,S n =n 2+n +12都成立,求a n ;(2)若a 1=1,a 2=2,b n =a 2n -1+a 2n ,且数列{b n }是公比为3的等比数列,求S 2n . 解 (1)由S n =n 2+n +12,得S n -1=(n -1)2+n2,n ≥2,两式相减得a n =n ,n ≥2,又a 1=S 1=32,不满足a n =n , ∴a n =⎩⎪⎨⎪⎧32,n =1,n ,n ≥2.(2)S 2n =a 1+a 2+…+a 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n , ∵b 1=a 1+a 2=3,{b n }是公比为3的等比数列, ∴S 2n =b 1+b 2+…+b n =3(1-3n )1-3=32(3n-1).22.(12分)(2019·湖南岳阳一中质检)已知数列{a n }的前n 项和为S n ,S n =2a n -2. (1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,b 1=1,点(T n +1,T n )在直线x n +1-y n =12上,若存在n ∈N *,使不等式2b 1a 1+2b 2a 2+…+2b na n ≥m 成立,求实数m 的最大值.解 (1)∵S n =2a n -2, ① ∴S n +1=2a n +1-2, ② ∴②-①得a n +1=2a n +1-2a n (n ≥1), ∴a n +1=2a n ,即a n +1a n=2,∴{a n }是首项为2,公比为2的等比数列. ∴a n =2n .(2)由题意得,T n +1n +1-T n n =12,∴⎩⎨⎧⎭⎬⎫T n n 成等差数列,公差为12.首项T 11=b 11=1,∴T n n =1+12(n -1)=n +12,T n =n (n +1)2, 当n ≥2时,b n =T n -T n -1=n (n +1)2-n (n -1)2=n ,当n =1时,b 1=1成立,∴b n =n .∴2b n a n =2n 2n =n2n -1=n ⎝⎛⎭⎫12n -1, 令M n =2b 1a 1+2b 2a 2+…+2b na n ,只需(M n )max ≥m .∴M n =1+2×12+3×⎝⎛⎭⎫122+…+n ×⎝⎛⎭⎫12n -1,③ 12M n =12+2×⎝⎛⎭⎫122+3×⎝⎛⎭⎫123+…+n ×⎝⎛⎭⎫12n ,④ ③-④得,12M n =1+12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -1-n ×⎝⎛⎭⎫12n =1-⎝⎛⎭⎫12n1-12-n ×⎝⎛⎭⎫12n=2-(n +2)⎝⎛⎭⎫12n, ∴M n =4-(n +2)⎝⎛⎭⎫12n -1.∵M n +1-M n =4-(n +3)⎝⎛⎭⎫12n-4+(n +2)⎝⎛⎭⎫12n -1=n +12n >0. ∴{M n }为递增数列,且(n +2)⎝⎛⎭⎫12n -1>0,∴M n <4. ∴m ≤4,实数m 的最大值为4.。

2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练:第八章第1讲 空间几何体的结构、三视图和直观图

2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练:第八章第1讲 空间几何体的结构、三视图和直观图

第1讲空间几何体的结构、三视图和直观图一、选择题1.关于空间几何体的结构特征,下列说法不正确的是()A.棱柱的侧棱长都相等B.棱锥的侧棱长都相等C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等解析根据棱锥的结构特征知,棱锥的侧棱长不一定都相等.答案 B2.如图所示的几何体是棱柱的有()A.②③⑤B.③④⑤C.③⑤D.①③解析由棱柱的定义知③⑤两个几何体是棱柱.答案 C3.(2017·衡水中学月考)将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为()解析易知侧视图的投影面为矩形,又AF的投影线为虚线,即为左下角到右上角的对角线,∴该几何体的侧视图为选项D.答案 D4.如图是一几何体的直观图、正视图和俯视图,该几何体的侧视图为()解析由直观图和正视图、俯视图可知,该几何体的侧视图应为面P AD,且EC投影在面P AD上且为实线,点E的投影点为P A的中点,故B正确.答案 B5.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.62B.4 2C.6D.4解析如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥A-BCD,最长的棱为AD=(42)2+22=6.答案 C6.某几何体的正视图和侧视图均为如图所示的图形,则在下图的四个图中可以作为该几何体的俯视图的是()A.①③B.①④C.②④D.①②③④解析 由正视图和侧视图知,该几何体为球与正四棱柱或球与圆柱体的组合体,故①③正确. 答案 A7.(2015·全国Ⅱ卷)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A.18B.17C.16D.15解析 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16.剩余部分的体积V 2=13-16=56.因此,V 1V 2=15.答案 D8.(2017·石家庄质检)一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为( )解析 由题图可知,该几何体为如图所示的三棱锥,其中平面ACD ⊥平面BCD .所以该三棱锥的侧视图可能为选项D. 答案 D 二、填空题9.(2017·福建龙岩联考)一水平放置的平面四边形OABC ,用斜二测画法画出它的直观图O ′A ′B ′C ′如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC 面积为________.解析 因为直观图的面积是原图形面积的24倍,且直观图的面积为1,所以原图形的面积为2 2. 答案 2 210.(2017·兰州模拟)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于________. 解析 由题知此正方体的正视图与侧视图是一样的,正视图的面积与侧视图的面积相等为 2. 答案211.某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为________.解析 由题中三视图可知,三棱锥的直观图如图所示,其中P A ⊥平面ABC ,M 为AC 的中点,且BM ⊥AC .故该三棱锥的最长棱为PC.在Rt△P AC中,PC=P A2+AC2=22+22=2 2.答案2 212.如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的正视图与侧视图的面积的比值为________.解析三棱锥P-ABC的正视图与侧视图为底边和高均相等的三角形,故它们的面积相等,面积比值为1.答案 113.在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①②③④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②解析如图,在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④,俯视图为②.答案 D14.如图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是()A.4B.5C.3 2D.3 3解析 由三视图知几何体的直观图如图所示,计算可知线段AF 最长,且AF =BF 2+AB 2=3 3.答案 D15.(2017·长郡中学月考)已知△ABC 的平面直观图△A ′B ′C ′是边长为a 的正三角形,那么原△ABC 的面积为________.解析 如图,过C ′作y ′轴的平行线C ′D ′,与x ′轴交于点D ′.则C ′D ′=32asin 45°=62a . 又C ′D ′是原△ABC 的高CD 的直观图,所以CD =6a . 故S △ABC =12AB ·CD =62a 2. 答案 62a216.(2016·北京卷)某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析 由题中三视图可画出长为2、宽为1、高为1的长方体,将该几何体还原到长方体中,如图所示,该几何体为四棱柱ABCD -A ′B ′C ′D ′.故该四棱柱的体积V =Sh =12×(1+2)×1×1=32. 答案 32。

2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练第八章第4讲 直线、平面平行的判定及其性质 Word版

2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练第八章第4讲 直线、平面平行的判定及其性质 Word版

第讲直线、平面平行的判定及其性质一、选择题.(·保定模拟)有下列命题:①若直线平行于平面α内的无数条直线,则直线∥α;②若直线在平面α外,则∥α;③若直线∥,∥α,则∥α;④若直线∥,∥α,则平行于平面α内的无数条直线.其中真命题的个数是( )解析命题①可以在平面α内,不正确;命题②直线与平面α可以是相交关系,不正确;命题③可以在平面α内,不正确;命题④正确.答案.设,是不同的直线,α,β是不同的平面,且,⊂α,则“α∥β”是“∥β且∥β”的( ).充分不必要条件 .必要不充分条件.充要条件 .既不充分也不必要条件解析若,⊂α,α∥β,则∥β且∥β;反之若,⊂α,∥β且∥β,则α与β相交或平行,即“α∥β”是“∥β且∥β”的充分不必要条件.答案.(·长郡中学质检)如图所示的三棱柱-中,过的平面与平面交于,则与的位置关系是( ).异面.平行.相交.以上均有可能解析在三棱柱-中,∥,∵⊂平面,⊄平面,∴∥平面,∵过的平面与平面交于.∴∥,∴∥.答案.下列四个正方体图形中,,为正方体的两个顶点,,,分别为其所在棱的中点,能得出∥平面的图形的序号是( ).①③.①④.②③ .②④解析①中,易知∥′,∥′,∴平面∥平面′,可得出∥平面(如图).④中,∥,能得出∥平面.在②③中不能判定∥平面.答案.已知,表示两条不同直线,α表示平面,下列说法正确的是( ).若∥α,∥α,则∥.若⊥α,⊂α,则⊥.若⊥α,⊥,则∥α.若∥α,⊥,则⊥α解析若∥α,∥α,则,平行、相交或异面,错;若⊥α,⊂α,则⊥,因为直线与平面垂直时,它垂直于平面内任一直线,正确;若⊥α,⊥,则∥α或⊂α,错;若∥α,⊥,则与α可能相交,可能平行,也可能⊂α,错.答案二、填空题.在四面体-中,,分别是△,△的重心,则四面体的四个面中与平行的是.解析如图,取的中点.连接,,由于,分别是△,△的重心,所以,分别过,,则∶=∶,∶=∶,所以∥.因为⊂平面,⊄平面,⊂平面,⊄平面,。

2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练第八章第5讲 直线、平面垂直的判定及其性质 Word版

2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练第八章第5讲 直线、平面垂直的判定及其性质 Word版

第讲直线、平面垂直的判定及其性质一、选择题.(·浙江卷)设α,β是两个不同的平面,,是两条不同的直线,且⊂α,⊂β( ).若⊥β,则α⊥β.若α⊥β,则⊥.若∥β,则α∥β.若α∥β,则∥解析由面面垂直的判定定理,可知选项正确;选项中,与可能平行;选项中,α与β可能相交;选项中,与可能异面.答案.(·深圳四校联考)若平面α,β满足α⊥β,α∩β=,∈α,∉,则下列命题中是假命题的为( ).过点垂直于平面α的直线平行于平面β.过点垂直于直线的直线在平面α内.过点垂直于平面β的直线在平面α内.过点且在平面α内垂直于的直线必垂直于平面β解析由于过点垂直于平面α的直线必平行于平面β内垂直于交线的直线,因此也平行于平面β,因此正确.过点垂直于直线的直线有可能垂直于平面α,不一定在平面α内,因此不正确.根据面面垂直的性质定理知,选项,正确.答案.如图,在正四面体-中,,,分别是,,的中点,下面四个结论不成立的是( )∥平面⊥平面.平面⊥平面.平面⊥平面解析因为∥,⊂平面,⊄平面,所以∥平面,故选项正确.在正四面体中,⊥,⊥,∩=,∴⊥平面,∥,则⊥平面,又⊂平面,从而平面⊥平面.因此选项,均正确.答案.(·西安调研)设是直线,α,β是两个不同的平面,则下列说法正确的是( ).若∥α,∥β,则α∥β.若∥α,⊥β,则α⊥β.若α⊥β,⊥α,则∥β.若α⊥β,∥α,则⊥β解析中,α∥β或α与β相交,不正确中,过直线作平面γ,设α∩γ=′,则′∥,由⊥β,知′⊥β,从而α⊥β,正确中,∥β或⊂β,不正确中,与β的位置关系不确定.答案.(·天津滨海新区模拟)如图,以等腰直角三角形的斜边上的高为折痕,把△和△折成互相垂直的两个平面后,某学生得出下列四个结论:①⊥;②△是等边三角形;③三棱锥-是正三棱锥;④平面⊥平面.其中正确的是( ).①②④.①②③.②③④.①③④解析由题意知,⊥平面,且⊂平面,故⊥,①正确;为等腰直角三角形斜边上的高,平面⊥平面,所以==,△是等边三角形,②正确;易知==,又由②知③正确;由①知④错.答案二、填空题.如图,已知⊥平面,⊥,则图中直角三角形的个数为.解析∵⊥平面,,,⊂平面,。

2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练:第8讲 二项分布与正态分布 Word版含解析

2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练:第8讲 二项分布与正态分布 Word版含解析

第8讲 二项分布与正态分布一、选择题1.(2014·全国Ⅱ卷)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A.0.8B.0.75C.0.6D.0.45解析 记事件A 表示“一天的空气质量为优良”,事件B 表示“随后一天的空气质量为优良”,P (A )=0.75,P (AB )=0.6.由条件概率,得P (B |A )=P (AB )P (A )=0.60.75=0.8. 答案 A2.(2017·衡水模拟)先后抛掷硬币三次,则至少一次正面朝上的概率是( ) A.18B.38C.58D.78解析 三次均反面朝上的概率是⎝ ⎛⎭⎪⎫123=18,所以至少一次正面朝上的概率是1-18=78. 答案 D3.(2016·青岛一模)设随机变量X 服从正态分布N (1,σ2),则函数f (x )=x 2+2x +X 不存在零点的概率为( ) A.14B.13C.12D.23解析 ∵函数f (x )=x 2+2x +X 不存在零点,∴Δ=4-4X <0,∴X >1,∵X ~N (1,σ2),∴P (X >1)=12,故选C. 答案 C4.(2017·武昌区模拟)某居民小区有两个相互独立的安全防范系统A 和B ,系统A和系统B 在任意时刻发生故障的概率分别为18和p ,若在任意时刻恰有一个系统不发生故障的概率为940,则p =( ) A.110B.215C.16D.15解析 由题意得18(1-p )+⎝ ⎛⎭⎪⎫1-18p =940,∴p =215,故选B.答案 B5.(2016·天津南开调研)一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( ) A.C 1012⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582B.C 912⎝⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫58238 C.C 911⎝⎛⎭⎪⎫582⎝ ⎛⎭⎪⎫382D.C 911⎝⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582 解析 由题意知第12次取到红球,前11次中恰有9次红球2次白球,由于每次取到红球的概率为38, 所以P (X =12)=C 911⎝⎛⎭⎪⎫389×⎝ ⎛⎭⎪⎫582×38.答案 D 二、填空题6.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.解析 设种子发芽为事件A ,种子成长为幼苗为事件B (发芽又成活为幼苗). 依题意P (B |A )=0.8,P (A )=0.9.根据条件概率公式P (AB )=P (B |A )·P (A )=0.8×0.9=0.72,即这粒种子能成长为幼苗的概率为0.72. 答案 0.727.假设每天从甲地去乙地的旅客人数X 是服从正态分布N (800,502)的随机变量,记一天中从甲地去乙地的旅客人数800<X≤900的概率为p0,则p0=________.解析由X~N(800,502),知μ=800,σ=50,又P(700<X≤900)=0.954 4,则P(800<X≤900)=12×0.954 4=0.477 2.答案0.477 28.设随机变量X~B(2,p),随机变量Y~B(3,p),若P(X≥1)=59,则P(Y≥1)=________.解析∵X~B(2,p),∴P(X≥1)=1-P(X=0)=1-C02(1-p)2=59,解得p=13.又Y~B(3,p),∴P(Y≥1)=1-P(Y=0)=1-C03(1-p)3=1927.答案19 27三、解答题9.(2015·湖南卷)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列.解(1)记事件A1为“从甲箱中摸出的1个球是红球”,A2为“从乙箱中摸出的1个球是红球”,B为“顾客抽奖1次能获奖”,则B表示“顾客抽奖1次没有获奖”.由题意A1与A2相互独立,则A1与A2相互独立,且B=A1·A2,因为P(A1)=410=25,P(A2)=510=12,所以P (B )=P (A 1·A 2)=⎝ ⎛⎭⎪⎫1-25·⎝ ⎛⎭⎪⎫1-12=310,故所求事件的概率P (B )=1-P (B )=1-310=710. (2)设“顾客抽奖一次获得一等奖”为事件C , 由P (C )=P (A 1·A 2) =P (A 1)·P (A 2)=15,顾客抽奖3次可视为3次独立重复试验,则X ~B ⎝ ⎛⎭⎪⎫3,15,于是P (X =0)=C 03⎝⎛⎭⎪⎫150⎝ ⎛⎭⎪⎫453=64125,P (X =1)=C 13⎝ ⎛⎭⎪⎫151⎝ ⎛⎭⎪⎫452=48125, P (X =2)=C 23⎝ ⎛⎭⎪⎫152⎝ ⎛⎭⎪⎫451=12125, P (X =3)=C 33⎝⎛⎭⎪⎫153⎝ ⎛⎭⎪⎫450=1125. 故X 的分布列为10.复检、文考(文化考试)、政审.若某校甲、乙、丙三位同学都顺利通过了前两关,根据分析甲、乙、丙三位同学通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,由于他们平时表现较好,都能通过政审关,若后三关之间通过与否没有影响.(1)求甲、乙、丙三位同学中恰好有一人通过复检的概率; (2)设只要通过后三关就可以被录取,求录取人数X 的分布列.解 (1)设A ,B ,C 分别表示事件“甲、乙、丙通过复检”,则所求概率P =P (A B C )+P (A B C )+P (A B C )=0.5×(1-0.6)×(1-0.75)+(1-0.5)×0.6×(1-0.75)+(1-0.5)×(1-0.6)×0.75=0.275. (2)甲被录取的概率为P 甲=0.5×0.6=0.3,同理P乙=0.6×0.5=0.3,P丙=0.75×0.4=0.3.∴甲、乙、丙每位同学被录取的概率均为0.3,故可看成是独立重复试验,即X ~B (3,0.3),X 的可能取值为0,1,2,3,其中P (X =k )=C k 3(0.3)k ·(1-0.3)3-k.故P (X =0)=C 03×0.30×(1-0.3)3=0.343, P (X =1)=C 13×0.3×(1-0.3)2=0.441, P (X =2)=C 23×0.32×(1-0.3)=0.189, P (X =3)=C 33×0.33=0.027,故X 的分布列为11.(2016·郑州二模)先后掷骰子两次,落在水平桌面后,记正面朝上的点数分别为x ,y ,设事件A 为“x +y 为偶数”,事件B 为“x ≠y ”,则概率P (B |A )=( ) A.12B.14C.13D.23解析 若x +y 为偶数,则x ,y 两数均为奇数或均为偶数.故P (A )=2×3×36×6=12,又A ,B 同时发生,基本事件一共有2×3×3-6=12个,∴P (AB )=126×6=13,∴P (B |A )=P (AB )P (A )=1312=23.答案 D12.(2017·长沙模拟)排球比赛的规则是5局3胜制(无平局),甲在每局比赛获胜的概率都为23,前2局中乙队以2∶0领先,则最后乙队获胜的概率是( ) A.49B.827C.1927D.4081解析 乙队3∶0获胜的概率为13,乙队3∶1获胜的概率为23×13=29,乙队3∶2获胜的概率为⎝ ⎛⎭⎪⎫232×13=427.∴最后乙队获胜的概率为P =13+29+427=1927,故选C. 答案 C13.某一部件由三个电子元件按如图所示方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.解析 设元件1,2,3的使用寿命超过1 000小时的事件分别记为A ,B ,C ,显然P (A )=P (B )=P (C )=12,∴该部件的使用寿命超过1 000小时的事件为(AB +AB +AB )C ,∴该部件的使用寿命超过1 000小时的概率 P =⎝ ⎛⎭⎪⎫12×12+12×12+12×12×12=38.答案 3814.(2016·山东卷节选)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星对”得3分;如果只有一人猜对,则“星对”得1分;如果两人都没猜对,则“星对”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求: (1)“星队”至少猜对3个成语的概率; (2)“星队”两轮得分之和X 的分布列.解 (1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”, 记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D . 由事件的独立性与互斥性,得P (E )=P (ABCD )+P (A BCD )+P (A B CD )+P (AB C D )+P (ABC D ) =P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+ P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )=34×23×34×23+2×⎝ ⎛⎭⎪⎫14×23×34×23+34×13×34×23=23.所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得 P (X =0)=14×13×14×13=1144,P (X =1)=2×⎝ ⎛⎭⎪⎫34×13×14×13+14×23×14×13=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144, P (X =3)=34×23×14×13+14×13×34×23=12144=112, P (X =4)=2×⎝ ⎛⎭⎪⎫34×23×34×13+34×23×14×23=60144=512,P (X =6)=34×23×34×23=36144=14. 可得随机变量X 的分布列为。

2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练:第八章第5讲 直线、平面垂直的判定及其性质

2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练:第八章第5讲 直线、平面垂直的判定及其性质

第5讲直线、平面垂直的判定及其性质一、选择题1.(2015·浙江卷)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β()A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m解析由面面垂直的判定定理,可知A选项正确;B选项中,l与m可能平行;C选项中,α与β可能相交;D选项中,l与m可能异面.答案 A2.(2017·深圳四校联考)若平面α,β满足α⊥β,α∩β=l,P∈α,P∉l,则下列命题中是假命题的为()A.过点P垂直于平面α的直线平行于平面βB.过点P垂直于直线l的直线在平面α内C.过点P垂直于平面β的直线在平面α内D.过点P且在平面α内垂直于l的直线必垂直于平面β解析由于过点P垂直于平面α的直线必平行于平面β内垂直于交线的直线,因此也平行于平面β,因此A正确.过点P垂直于直线l的直线有可能垂直于平面α,不一定在平面α内,因此B不正确.根据面面垂直的性质定理知,选项C,D正确.答案 B3.如图,在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面P AEC.平面PDF⊥平面P AED.平面PDE⊥平面ABC解析因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确.在正四面体中,AE⊥BC,PE⊥BC,AE∩PE=E,∴BC⊥平面P AE,DF∥BC,则DF⊥平面P AE,又DF⊂平面PDF,从而平面PDF⊥平面P AE.因此选项B,C均正确.答案 D4.(2017·西安调研)设l是直线,α,β是两个不同的平面,则下列说法正确的是()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l∥βD.若α⊥β,l∥α,则l⊥β解析A中,α∥β或α与β相交,不正确.B中,过直线l作平面γ,设α∩γ=l′,则l′∥l,由l⊥β,知l′⊥β,从而α⊥β,B正确.C中,l∥β或l⊂β,C不正确.D 中,l与β的位置关系不确定.答案 B5.(2017·天津滨海新区模拟)如图,以等腰直角三角形ABC的斜边BC上的高AD 为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①BD⊥AC;②△BAC是等边三角形;③三棱锥D-ABC是正三棱锥;④平面ADC⊥平面ABC.其中正确的是()A.①②④B.①②③C.②③④D.①③④解析由题意知,BD⊥平面ADC,且AC⊂平面ADC,故BD⊥AC,①正确;AD为等腰直角三角形斜边BC上的高,平面ABD⊥平面ACD,所以AB=AC =BC,△BAC是等边三角形,②正确;易知DA=DB=DC,又由②知③正确;由①知④错.答案 B二、填空题6.如图,已知P A⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.解析∵P A⊥平面ABC,AB,AC,BC⊂平面ABC,∴P A⊥AB,P A⊥AC,P A⊥BC,则△P AB,△P AC为直角三角形.由BC⊥AC,且AC∩P A=A,∴BC⊥平面P AC,从而BC⊥PC,因此△ABC,△PBC也是直角三角形.答案 47.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD(只要填写一个你认为正确的条件即可).解析由定理可知,BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,有PC⊥平面MBD.又PC⊂平面PCD,∴平面MBD⊥平面PCD.答案DM⊥PC(或BM⊥PC等)8.(2016·全国Ⅱ卷)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________(填写所有正确命题的编号).解析对于①,α,β可以平行,也可以相交但不垂直,故错误.对于②,由线面平行的性质定理知存在直线l⊂α,n∥l,m⊥α,所以m⊥l,所以m⊥n,故正确.对于③,因为α∥β,所以α,β没有公共点.又m⊂α,所以m,β没有公共点,由线面平行的定义可知m∥β,故正确.对于④,因为m∥n,所以m与α所成的角和n与α所成的角相等.因为α∥β,所以n与α所成的角和n与β所成的角相等,所以m与α所成的角和n与β所成的角相等,故正确.答案②③④三、解答题9.(2017·青岛质检)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(1)求证:EF⊥平面BCG;(2)求三棱锥D-BCG的体积.(1)证明由已知得△ABC≌△DBC,因此AC=DC.又G为AD的中点,所以CG⊥AD.同理BG⊥AD,又BG∩CG=G,因此AD⊥平面BCG.又EF∥AD,所以EF⊥平面BCG.(2)解在平面ABC内,作AO⊥BC,交CB的延长线于O,如图由平面ABC⊥平面BCD,平面ABC∩平面BDC=BC,AO⊂平面ABC ,知AO ⊥平面BDC .又G 为AD 中点,因此G 到平面BDC 的距离h 是AO 长度的一半.在△AOB 中,AO =AB ·sin 60°=3,所以V D -BCG =V G -BCD =13S △DBC ·h =13×12BD ·BC ·sin 120°·32=12.10.(2016·北京卷)如图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC .(1)求证:DC ⊥平面P AC ;(2)求证:平面P AB ⊥平面P AC ;(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得P A ∥平面CEF ?说明理由.(1)证明 因为PC ⊥平面ABCD ,所以PC ⊥DC .又因为AC ⊥DC ,且PC ∩AC =C ,所以DC ⊥平面P AC .(2)证明 因为AB ∥CD ,DC ⊥AC ,所以AB ⊥AC .因为PC ⊥平面ABCD ,所以PC ⊥AB .又因为PC ∩AC =C ,所以AB ⊥平面P AC .又AB ⊂平面P AB ,所以平面P AB ⊥平面P AC .(3)解 棱PB 上存在点F ,使得P A ∥平面CEF .理由如下:取PB 的中点F ,连接EF ,CE ,CF ,又因为E 为AB 的中点,所以EF ∥P A .又因为P A ⊄平面CEF ,且EF ⊂平面CEF ,所以P A ∥平面CEF .11.设m ,n 是两条不同的直线,α,β是两个不同的平面.则下列说法正确的是( )A.若m ⊥n ,n ∥α,则m ⊥αB.若m ∥β,β⊥α,则m ⊥αC.若m ⊥β,n ⊥β,n ⊥α,则m ⊥αD.若m ⊥n ,n ⊥β,β⊥α,则m ⊥α解析 A 中,由m ⊥n ,n ∥α可得m ∥α或m 与α相交或m ⊂α,错误;B 中,由m∥β,β⊥α可得m∥α或m与α相交或m⊂α,错误;C中,由m⊥β,n ⊥β可得m∥n,又n⊥α,所以m⊥α,正确;D中,由m⊥n,n⊥β,β⊥α可得m∥α或m与α相交或m⊂α,错误.答案 C12.(2017·贵阳模拟)如图,在正方形ABCD中,E,F分别是BC,CD的中点,沿AE,AF,EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,P点在△AEF内的射影为O,则下列说法正确的是()A.O是△AEF的垂心B.O是△AEF的内心C.O是△AEF的外心D.O是△AEF的重心解析由题意可知P A,PE,PF两两垂直,所以P A⊥平面PEF,从而P A⊥EF,而PO⊥平面AEF,则PO⊥EF,因为PO∩P A=P,所以EF⊥平面P AO,∴EF⊥AO,同理可知AE⊥FO,AF⊥EO,∴O为△AEF的垂心.答案 A13.如图,已知六棱锥P-ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).解析由P A⊥平面ABC,AE⊂平面ABC,得P A⊥AE,又由正六边形的性质得AE⊥AB,P A∩AB=A,得AE⊥平面P AB,又PB⊂平面P AB,∴AE⊥PB,①正确;又平面P AD⊥平面ABC,∴平面ABC⊥平面PBC不成立,②错;由正六边形的性质得BC ∥AD ,又AD ⊂平面P AD ,BC ⊄平面P AD ,∴BC ∥平面P AD ,∴直线BC ∥平面P AE 也不成立,③错;在Rt △P AD 中,P A =AD =2AB ,∴∠PDA =45°,∴④正确.答案 ①④14.(2016·四川卷)如图,在四棱锥P -ABCD 中,P A ⊥CD ,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .(1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由.(2)证明:平面P AB ⊥平面PBD .(1)解 取棱AD 的中点M (M ∈平面P AD ),点M 即为所求的一个点,理由如下:因为AD ∥BC ,BC =12AD .所以BC ∥AM ,且BC =AM .所以四边形AMCB 是平行四边形,从而CM ∥AB .又AB ⊂平面P AB .CM ⊄平面P AB .所以CM ∥平面P AB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明 由已知,P A ⊥AB ,P A ⊥CD .因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交,所以P A ⊥平面ABCD .又BD ⊂平面ABCD ,从而P A ⊥BD .因为AD ∥BC ,BC =12AD ,M 为AD 的中点,连接BM ,所以BC ∥MD ,且BC =MD .所以四边形BCDM 是平行四边形,所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面P AB .又BD⊂平面PBD,所以平面P AB⊥平面PBD.。

2020届高考步步高数学(理)一轮复习(京津鲁琼用解析版)第八章 8.7

2020届高考步步高数学(理)一轮复习(京津鲁琼用解析版)第八章  8.7

§8.7 立体几何中的向量方法(二)——求空间角和距离最新考纲 1.能用向量方法解决线线、线面、面面的夹角的计算问题.2.体会向量方法在研究几何问题中的作用.1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |. 3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 概念方法微思考1.利用空间向量如何求线段长度?提示 利用|AB →|2=AB →·AB →可以求空间中有向线段的长度. 2.如何求空间点面之间的距离? 提示 点面距离的求法:已知AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离为 |BO →|=|AB →||cos 〈AB →,n 〉|.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)两直线的方向向量所成的角就是两条直线所成的角.( × )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × ) (3)两个平面的法向量所成的角是这两个平面所成的角.( × )(4)两异面直线夹角的范围是⎝⎛⎦⎤0,π2,直线与平面所成角的范围是⎣⎡⎦⎤0,π2,二面角的范围是[0,π]. ( √ )(5)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.( × ) 题组二 教材改编2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45° B .135° C .45°或135° D .90°答案 C解析 cos 〈m ,n 〉=m·n |m||n |=11·2=22,即〈m ,n 〉=45°. ∴两平面所成二面角为45°或180°-45°=135°.3.如图,正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为______.答案 π6解析 如图,以A 为原点,以AB →,AE →(AE ⊥AB ),AA 1→所在直线分别为x 轴、y 轴、z 轴(如图)建立空间直角坐标系,设D 为A 1B 1的中点,则A (0,0,0),C 1(1,3,22),D (1,0,22),∴AC 1→=(1,3,22), AD →=(1,0,22).∠C 1AD 为AC 1与平面ABB 1A 1所成的角, cos ∠C 1AD =AC 1,→·AD→|AC 1→||AD →|=(1,3,22)·(1,0,22)12×9=32,又∵∠C 1AD ∈⎣⎡⎦⎤0,π2,∴∠C 1AD =π6. 题组三 易错自纠4.在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A.110 B.25 C.3010 D.22 答案 C解析 以点C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.设BC =CA =CC 1=2,则可得A (2,0,0),B (0,2,0),M (1,1,2),N (1,0,2),∴BM →=(1,-1,2),AN →=(-1,0,2). ∴cos 〈BM →,AN →〉=BM ,→·AN →|BM →||AN →|=1×(-1)+(-1)×0+2×212+(-1)2+22×(-1)2+02+22=36×5=3010. 5.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为________. 答案 30°解析 设l 与α所成角为θ,∵cos 〈m ,n 〉=-12,∴sin θ=|cos 〈m ,n 〉|=12,∵0°≤θ≤90°,∴θ=30°.题型一 求异面直线所成的角例1 如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.(1)证明 如图所示,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1. 由∠ABC =120°, 可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC =2,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt △EBG 中,可得BE =2,故DF =22. 在Rt △FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322,从而EG 2+FG 2=EF 2,所以EG ⊥FG .又AC ∩FG =G ,AC ,FG ⊂平面AFC , 所以EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)解 如图,以G 为坐标原点,分别以GB ,GC 所在直线为x 轴、y 轴,|GB →|为单位长度,建立空间直角坐标系Gxyz ,由(1)可得A (0,-3,0),E (1,0,2),F ⎝⎛⎭⎫-1,0,22, C (0,3,0),所以AE →=(1,3,2),CF →=⎝⎛⎭⎫-1,-3,22.故cos 〈AE →,CF →〉=AE ,→·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 思维升华 用向量法求异面直线所成角的一般步骤 (1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.跟踪训练1 三棱柱ABC -A 1B 1C 1中,△ABC 为等边三角形,AA 1⊥平面ABC ,AA 1=AB ,N ,M 分别是A 1B 1,A 1C 1的中点,则AM 与BN 所成角的余弦值为( ) A.110 B.35 C.710 D.45 答案 C解析 如图所示,取AC 的中点D ,以D 为原点,BD ,DC ,DM 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,不妨设AC =2,则A (0,-1,0),M (0,0,2), B (-3,0,0),N ⎝⎛⎭⎫-32,-12,2,所以AM →=(0,1,2), BN →=⎝⎛⎭⎫32,-12,2,所以cos 〈AM →,BN →〉=AM ,→·BN →|AM →|·|BN →|=725×5=710,故选C.题型二 求直线与平面所成的角例2 (2018·全国Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. (1)证明 由已知可得BF ⊥PF ,BF ⊥EF , PF ∩EF =F ,PF ,EF ⊂平面PEF , 所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD. (2)解 如图,作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE . 又DP =2,DE =1, 所以PE = 3.又PF =1,EF =2,所以PE ⊥PF . 所以PH =32,EH =32. 则H (0,0,0),P ⎝⎛⎭⎫0,0,32,D ⎝⎛⎭⎫-1,-32,0, DP →=⎝⎛⎭⎫1,32,32,HP →=⎝⎛⎭⎫0,0,32.又HP →为平面ABFD 的法向量, 设DP 与平面ABFD 所成的角为θ,则sin θ=|cos 〈HP →,DP →〉|=|HP ,→·DP →||HP →||DP →|=343=34.所以DP 与平面ABFD 所成角的正弦值为34. 思维升华 若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l ·n ||l ||n |.跟踪训练2 (2018·全国Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -P A -C 为30°,求PC 与平面P AM 所成角的正弦值. (1)证明 因为P A =PC =AC =4, O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 如图,连接OB .因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,所以OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .因为OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,OB ,AC ⊂平面ABC , 所以PO ⊥平面ABC .(2)解 由(1)知OP ,OB ,OC 两两垂直,则以O 为坐标原点,分别以OB ,OC ,OP 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系Oxyz ,如图所示.由已知得O (0,0,0),B (2,0,0), A (0,-2,0),C (0,2,0), P (0,0,23),AP →=(0,2,23).由(1)知平面P AC 的一个法向量为OB →=(2,0,0). 设M (a ,2-a ,0)(0≤a ≤2),则AM →=(a ,4-a ,0). 设平面P AM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0,得⎩⎨⎧2y +23z =0,ax +(4-a )y =0,可取y =3a ,得平面P AM 的一个法向量为n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=OB ,→·n |OB ,→||n |=23(a -4)23(a -4)2+3a 2+a 2. 由已知可得|cos 〈OB →,n 〉|=cos 30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32, 解得a =-4(舍去)或a =43.所以n =⎝⎛⎭⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面P AM 所成角的正弦值为34.题型三 求二面角例3 (2018·济南模拟)如图1,在高为6的等腰梯形ABCD 中,AB ∥CD ,且CD =6,AB =12,将它沿对称轴OO 1折起,使平面ADO 1O ⊥平面BCO 1O .如图2,点P 为BC 中点,点E 在线段AB 上(不同于A ,B 两点),连接OE 并延长至点Q ,使AQ ∥OB .(1)证明:OD ⊥平面P AQ ;(2)若BE =2AE ,求二面角C —BQ —A 的余弦值.(1)证明 由题设知OA ,OB ,OO 1两两垂直,所以以O 为坐标原点,OA ,OB ,OO 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设AQ 的长度为m ,则相关各点的坐标为O (0,0,0),A (6,0,0),B (0,6,0),C (0,3,6),D (3,0,6),Q (6,m ,0).∵点P 为BC 中点,∴P ⎝⎛⎭⎫0,92,3, ∴OD →=(3,0,6),AQ →=(0,m ,0),PQ →=⎝⎛⎭⎫6,m -92,-3, ∵OD →·AQ →=0,OD →·PQ →=0,∴OD →⊥AQ →,OD →⊥PQ →,且AQ →与PQ →不共线, ∴OD ⊥平面P AQ .(2)解 ∵BE =2AE ,AQ ∥OB ,∴AQ =12OB =3,则Q (6,3,0),∴QB →=(-6,3,0),BC →=(0,-3,6). 设平面CBQ 的法向量为n 1=(x ,y ,z ), ∵⎩⎪⎨⎪⎧n 1·QB ,→=0,n 1·BC ,→=0∴⎩⎪⎨⎪⎧-6x +3y =0,-3y +6z =0,令z =1,则y =2,x =1,则n 1=(1,2,1), 易知平面ABQ 的一个法向量为n 2=(0,0,1),设二面角C —BQ —A 的平面角为θ,由图可知,θ为锐角,则cos θ=⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=66. 思维升华 利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量;②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解.跟踪训练3 (2018·全国Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. (1)证明 由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD , 故BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM .又BC ∩CM =C ,BC ,CM ⊂平面BMC , 所以DM ⊥平面BMC .又DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Dxyz . 当三棱锥M -ABC 体积最大时,M 为CD 的中点.由题设得 D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0), 设n =(x ,y ,z )是平面MAB 的法向量,则⎩⎪⎨⎪⎧n ·AM ,→=0,n ·AB ,→=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2),DA →是平面MCD 的一个法向量,因此 cos 〈n ,DA →〉=n ·DA ,→|n ||DA ,→|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.利用空间向量求空间角例 (12分)如图,四棱锥S -ABCD 中,△ABD 为正三角形,∠BCD =120°,CB =CD =CS =2,∠BSD =90°.(1)求证:AC ⊥平面SBD ;(2)若SC ⊥BD ,求二面角A -SB -C 的余弦值. (1)证明 设AC ∩BD =O ,连接SO , 如图①,因为AB =AD ,CB =CD ,所以AC 是BD 的垂直平分线, 即O 为BD 的中点,且AC ⊥BD . [1分] 在△BCD 中,因为CB =CD =2,∠BCD =120°, 所以BD =23,CO =1.在Rt △SBD 中,因为∠BSD =90°,O 为BD 的中点,所以SO =12BD = 3.在△SOC 中,因为CO =1,SO =3,CS =2,所以SO 2+CO 2=CS 2,所以SO ⊥AC . [4分] 因为BD ∩SO =O ,BD ,SO ⊂平面SBD ,所以AC ⊥平面SBD . [5分] (2)解 方法一 过点O 作OK ⊥SB 于点K ,连接AK ,CK ,如图②,由(1)知AC ⊥平面SBD ,所以AO ⊥SB .因为OK ∩AO =O ,OK ,AO ⊂平面AOK ,所以SB ⊥平面AOK . [6分] 因为AK ⊂平面AOK ,所以AK ⊥SB .同理可证CK ⊥SB . [7分] 所以∠AKC 是二面角A -SB -C 的平面角. 因为SC ⊥BD ,由(1)知AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC , 所以BD ⊥平面SAC .而SO ⊂平面SAC ,所以SO ⊥BD . 在Rt △SOB 中,OK =SO ·OB SB =62.在Rt △AOK 中,AK =AO 2+OK 2=422, 同理可求CK =102. [10分] 在△AKC 中,cos ∠AKC =AK 2+CK 2-AC 22AK ·CK =-10535.所以二面角A -SB -C 的余弦值为-10535. [12分] 方法二 因为SC ⊥BD ,由(1)知,AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC ,所以BD ⊥平面SAC .而SO ⊂平面SAC ,所以SO ⊥BD . [6分] 由(1)知,AC ⊥平面SBD ,SO ⊂平面SBD , 所以SO ⊥AC .因为AC ∩BD =O ,AC ,BD ⊂平面ABCD ,所以SO ⊥平面ABCD .[7分]以O 为原点,OA →,OB →,OS →的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图③,则A (3,0,0),B (0,3,0),C (-1,0,0),S (0,0,3). 所以AB →=(-3,3,0),CB →=(1,3,0),SB →=(0,3,-3). [8分] 设平面SAB 的法向量n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧AB ,→·n =-3x 1+3y 1=0,SB ,→·n =3y 1-3z 1=0,令y 1=3,得平面SAB 的一个法向量为n =(1,3,3). 同理可得平面SCB 的一个法向量为m =(-3,1,1).[10分] 所以cos 〈n ,m 〉=n ·m |n ||m |=-3+3+37×5=10535.因为二面角A -SB -C 是钝角,所以二面角A -SB -C 的余弦值为-10535. [12分]利用向量求空间角的步骤第一步:建立空间直角坐标系,确定点的坐标; 第二步:求向量(直线的方向向量、平面的法向量)坐标; 第三步:计算向量的夹角(或函数值),并转化为所求角.1.已知两平面的法向量分别为m =(1,-1,0),n =(0,1,-1),则两平面所成的二面角为( ) A .60° B .120° C .60°或120° D .90°答案 C解析 cos 〈m ,n 〉=m·n|m||n |=-12·2=-12, 即〈m ,n 〉=120°.∴两平面所成二面角为120°或180°-120°=60°.2.如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成角的余弦值为( )A.55 B.53 C.56D.54答案 A解析 设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=0+4-14+4+1×0+4+1=15=55,故选A. 3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12 B.23 C.33 D.22 答案 B解析 以A 为原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1),A 1E →=⎝⎛⎭⎫1,0,-12. 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则有⎩⎪⎨⎪⎧ A 1D ,→·n 1=0,A 1E ,→·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23×1=23,即所成的锐二面角的余弦值为23.4.在正方体ABCD —A 1B 1C 1D 1中,AC 与B 1D 所成角的大小为( ) A.π6 B.π4 C.π3 D.π2 答案 D解析 以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设正方体的边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0). ∴AC →=(1,1,0),B 1D →=(-1,1,-1), ∵AC →·B 1D →=1×(-1)+1×1+0×(-1)=0, ∴AC →⊥B 1D →,∴AC 与B 1D 所成的角为π2.5.(2018·上饶模拟)已知正三棱柱ABC -A 1B 1C 1,AB =AA 1=2,则异面直线AB 1与CA 1所成角的余弦值为( ) A .0 B .-14 C.14 D.12答案 C解析 以A 为原点,在平面ABC 内过A 作AC 的垂线为x 轴,以AC 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,则A (0,0,0),B 1(3,1,2),A 1(0,0,2),C (0,2,0), AB 1→=(3,1,2),A 1C →=(0,2,-2), 设异面直线AB 1和A 1C 所成的角为θ, 则cos θ=|AB 1→·A 1C →||AB 1→|·|A 1C →|=|-2|8·8=14.∴异面直线AB 1和A 1C 所成的角的余弦值为14.6.(2018·上海松江、闵行区模拟)如图,点A ,B ,C 分别在空间直角坐标系O -xyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2,1,2),设二面角C -AB -O 的大小为θ,则cos θ等于( )A.43B.53C.23 D .-23 答案 C解析 由题意可知,平面ABO 的一个法向量为OC →=(0,0,2), 由图可知,二面角C -AB -O 为锐角,由空间向量的结论可知,cos θ=|OC ,→·n ||OC ,→||n |=|4|2×3=23.7.在三棱锥P -ABC 中,P A ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,P A =2,则直线P A 与平面DEF 所成角的正弦值为________. 答案55解析 以A 为原点,AB ,AC ,AP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,由AB =AC =1,P A =2, 得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝⎛⎭⎫12,0,0, E ⎝⎛⎭⎫12,12,0,F ⎝⎛⎭⎫0,12,1. ∴P A →=(0,0,-2),DE →=⎝⎛⎭⎫0,12,0, DF →=⎝⎛⎭⎫-12,12,1. 设平面DEF 的法向量为n =(x ,y ,z ), 则由⎩⎪⎨⎪⎧n ·DE ,→=0,n ·DF ,→=0,得⎩⎪⎨⎪⎧y =0,-x +y +2z =0.取z =1,则n =(2,0,1),设直线P A 与平面DEF 所成的角为θ,则sin θ=|cos 〈n ,P A →〉|=|P A ,→·n ||P A ,→||n |=55,∴直线P A 与平面DEF 所成角的正弦值为55. 8.如图,在正方形ABCD 中,EF ∥AB ,若沿EF 将正方形折成一个二面角后,AE ∶ED ∶AD =1∶1∶2,则AF 与CE 所成角的余弦值为________.答案 45解析 ∵AE ∶ED ∶AD =1∶1∶2, ∴AE ⊥ED ,即AE ,DE ,EF 两两垂直, 所以建立如图所示的空间直角坐标系,设AB =EF =CD =2,则E (0,0,0),A (1,0,0),F (0,2,0),C (0,2,1), ∴AF →=(-1,2,0),EC →=(0,2,1), ∴cos 〈AF →,EC →〉=AF ,→·EC →|AF →||EC →|=45,∴AF 与CE 所成角的余弦值为45.9.如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是__________.答案 60°解析 以B 点为坐标原点,以BC 所在直线为x 轴,BA 所在直线为y 轴,BB 1所在直线为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1), 则EF →=(0,-1,1),BC 1→=(2,0,2), ∴EF →·BC 1→=2,∴cos 〈EF →,BC 1→〉=EF ,→·BC 1→|EF →||BC 1→|=22×22=12,∵异面直线所成角的范围是(0°,90°], ∴EF 和BC 1所成的角为60°.10.(2018·福州质检)已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________. 答案23解析 方法一 延长FE ,CB 相交于点G ,连接AG ,如图所示.设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于点H ,连接EH ,则∠EHB 为所求锐二面角的平面角. ∵BH =322,EB =1,∴tan ∠EHB =EB BH =23.方法二 如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得 A (1,0,0),E ⎝⎛⎭⎫1,1,13, F ⎝⎛⎭⎫0,1,23,AE →=⎝⎛⎭⎫0,1,13, AF →=⎝⎛⎭⎫-1,1,23, 设平面AEF 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AE ,→=0,n ·AF ,→=0,得⎩⎨⎧y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3), 取平面ABC 的法向量为m =(0,0,-1), 设平面AEF 与平面ABC 所成的锐二面角为θ, 则cos θ=|cos 〈n ,m 〉|=31111,tan θ=23. 11.(2018·皖江八校联考)如图,在几何体ABC -A 1B 1C 1中,平面A 1ACC 1⊥底面ABC ,四边形A 1ACC 1是正方形,B 1C 1∥BC ,Q 是A 1B 的中点,且AC =BC =2B 1C 1,∠ACB =2π3.(1)证明:B 1Q ⊥A 1C ;(2)求直线AC 与平面A 1BB 1所成角的正弦值.(1)证明 如图所示,连接AC 1与A 1C 交于M 点,连接MQ .∵四边形A 1ACC 1是正方形, ∴M 是AC 1的中点, 又Q 是A 1B 的中点, ∴MQ ∥BC ,MQ =12BC ,又∵B 1C 1∥BC 且BC =2B 1C 1, ∴MQ ∥B 1C 1,MQ =B 1C 1,∴四边形B 1C 1MQ 是平行四边形,∴B 1Q ∥C 1M , ∵C 1M ⊥A 1C ,∴B 1Q ⊥A 1C .(2)解 ∵平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,CC 1⊥AC ,CC 1⊂平面A 1ACC 1, ∴CC 1⊥平面ABC .如图所示,以C 为原点,CB ,CC 1所在直线分别为y 轴和z 轴建立空间直角坐标系,令AC =BC =2B 1C 1=2,则C (0,0,0),A (3,-1,0),A 1(3,-1,2),B (0,2,0),B 1(0,1,2), ∴CA →=(3,-1,0),B 1A 1→=(3,-2,0), B 1B →=(0,1,-2),设平面A 1BB 1的法向量为n =(x ,y ,z ), 则由n ⊥B 1A 1→,n ⊥B 1B →,可得⎩⎨⎧3x -2y =0,y -2z =0,可令y =23,则x =4,z =3,∴平面A 1BB 1的一个法向量n =(4,23,3), 设直线AC 与平面A 1BB 1所成的角为α, 则sin α=|n ·CA ,→||n |·|CA ,→|=23231=9331.12.(2018·赣州模拟)如图,在四棱锥P -ABCD 中,侧面P AD ⊥底面ABCD ,底面ABCD 为直角梯形,其中AB ∥CD ,∠CDA =90°,CD =2AB =2,AD =3,P A =5,PD =22,点E 在棱AD 上且AE =1,点F 为棱PD 的中点.(1)证明:平面BEF ⊥平面PEC ; (2)求二面角A -BF -C 的余弦值. (1)证明 在Rt △ABE 中, 由AB =AE =1,得∠AEB =45°,同理在Rt △CDE 中,由CD =DE =2,得∠DEC =45°, 所以∠BEC =90°,即BE ⊥EC . 在△P AD 中,cos ∠P AD =P A 2+AD 2-PD 22P A ·AD =5+9-82×3×5=55,在△P AE 中,PE 2=P A 2+AE 2-2P A ·AE ·cos ∠P AE =5+1-2×5×1×55=4, 所以PE 2+AE 2=P A 2,即PE ⊥AD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,PE ⊂平面P AD , 所以PE ⊥平面ABCD ,所以PE ⊥BE . 又因为CE ∩PE =E ,CE ,PE ⊂平面PEC , 所以BE ⊥平面PEC ,所以平面BEF ⊥平面PEC .(2)解 由(1)知EB ,EC ,EP 两两垂直,故以E 为坐标原点,以射线EB ,EC ,EP 分别为x 轴、y 轴、z 轴的正半轴建立如图所示的空间直角坐标系,则B (2,0,0),C (0,22,0),P (0,0,2),A ⎝⎛⎭⎫22,-22,0,D (-2,2,0),F ⎝⎛⎭⎫-22,22,1, AB →=⎝⎛⎭⎫22,22,0,BF →=⎝⎛⎭⎫-322,22,1,BC →=(-2,22,0),设平面ABF 的法向量为m =(x 1,y 1,z 1), 则⎩⎨⎧m ·AB ,→=22x 1+22y 1=0,m ·BF →=-322x 1+22y 1+z 1=0,不妨设x 1=1,则m =(1,-1,22), 设平面BFC 的法向量为n =(x 2,y 2,z 2), 则⎩⎨⎧n ·BC ,→=-2x 2+22y 2=0,n ·BF ,→=-322x 2+22y 2+z 2=0,不妨设y 2=2,则n =(4,2,52), 记二面角A -BF -C 为θ(由图知应为钝角), 则cos θ=-|m ·n ||m |·|n |=-|4-2+20|10·70=-11735,故二面角A -BF -C 的余弦值为-11735.13.如图,在四棱锥S -ABCD 中,SA ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,∠BAD =90°,且AB =4,SA =3.E ,F 分别为线段BC ,SB 上的一点(端点除外),满足SF BF =CE BE =λ,当实数λ的值为________时,∠AFE 为直角.答案916解析 因为SA ⊥平面ABCD ,∠BAD =90°,以A 为坐标原点,AD ,AB ,AS 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Axyz .∵AB =4,SA =3,∴B (0,4,0),S (0,0,3). 设BC =m ,则C (m ,4,0), ∵SF BF =CE BE=λ,∴SF →=λFB →. ∴AF →-AS →=λ(AB →-AF →).∴AF →=11+λ(AS →+λAB →)=11+λ(0,4λ,3),∴F ⎝⎛⎭⎫0,4λ1+λ,31+λ.同理可得E ⎝⎛⎭⎫m1+λ,4,0,∴FE →=⎝ ⎛⎭⎪⎫m1+λ,41+λ,-31+λ. ∵F A →=⎝ ⎛⎭⎪⎫0,-4λ1+λ,-31+λ,要使∠AFE 为直角,即F A →·FE →=0,则0·m 1+λ+-4λ1+λ·41+λ+-31+λ·-31+λ=0,∴16λ=9,解得λ=916.14.(2018·海南五校模拟)如图,已知直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =1,AB ⊥AC ,M ,N ,Q 分别是CC 1,BC ,AC 的中点,点P 在直线A 1B 1上运动,且A 1P →=λA 1B 1→(λ∈[0,1]).(1)证明:无论λ取何值,总有AM⊥平面PNQ;(2)是否存在点P,使得平面PMN与平面ABC的夹角为60°?若存在,试确定点P的位置,若不存在,请说明理由.(1)证明连接A1Q.∵AA1=AC=1,M,Q分别是CC1,AC的中点,∴Rt△AA1Q≌Rt△CAM,∴∠MAC=∠QA1A,∴∠MAC+∠AQA1=∠QA1A+∠AQA1=90°,∴AM⊥A1Q.∵N,Q分别是BC,AC的中点,∴NQ∥AB.又AB⊥AC,∴NQ⊥AC.在直三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∴NQ⊥AA1.又AC∩AA1=A,AC,AA1⊂平面ACC1A1,∴NQ⊥平面ACC1A1,∴NQ⊥AM.由NQ∥AB和AB∥A1B1可得NQ∥A1B1,∴N,Q,A1,P四点共面,∴A1Q⊂平面PNQ.∵NQ∩A1Q=Q,NQ,A1Q⊂平面PNQ,∴AM⊥平面PNQ,∴无论λ取何值,总有AM⊥平面PNQ.(2)解如图,以A为坐标原点,AB,AC,AA1所在的直线分别为x轴、y轴、z轴建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1), M ⎝⎛⎭⎫0,1,12,N ⎝⎛⎭⎫12,12,0, Q ⎝⎛⎭⎫0,12,0, NM →=⎝⎛⎭⎫-12,12,12,A 1B 1→=(1,0,0). 由A 1P →=λA 1B 1→=λ(1,0,0)=(λ,0,0), 可得点P (λ,0,1), ∴PN →=⎝⎛⎭⎫12-λ,12,-1. 设n =(x ,y ,z )是平面PMN 的法向量, 则⎩⎪⎨⎪⎧n ·NM ,→=0,n ·PN ,→=0,即⎩⎨⎧-12x +12y +12z =0,⎝⎛⎭⎫12-λx +12y -z =0,得⎩⎨⎧y =1+2λ3x ,z =2-2λ3x ,令x =3,得y =1+2λ,z =2-2λ,∴n =(3,1+2λ,2-2λ)是平面PMN 的一个法向量. 取平面ABC 的一个法向量为m =(0,0,1). 假设存在符合条件的点P , 则|cos 〈m ,n 〉|=|2-2λ|9+(1+2λ)2+(2-2λ)2=12,化简得4λ2-14λ+1=0,解得λ=7-354或λ=7+354(舍去).综上,存在点P ,且当A 1P =7-354时, 满足平面PMN 与平面ABC 的夹角为60°.15.在四棱锥P -ABCD 中,AB →=(4,-2,3),AD →=(-4,1,0),AP →=(-6,2,-8),则这个四棱锥的高h 等于( ) A .1 B .2 C .13 D .26答案 B解析 设平面ABCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ⊥AB →,n ⊥AD →,即⎩⎪⎨⎪⎧4x -2y +3z =0,-4x +y =0,令y =4,则n =⎝⎛⎭⎫1,4,43, 则cos 〈n ,AP →〉=n ·AP →|n ||AP →|=-6+8-323133×226=-2626,∴h =2626×226=2. 16.如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF .(1)求证:EF ⊥平面BCF ;(2)点M 在线段EF 上运动,当点M 在什么位置时,平面MAB 与平面FCB 所成的锐二面角最大,并求此时二面角的余弦值. (1)证明 设AD =CD =BC =1, ∵AB ∥CD ,∠BCD =120°,∴AB =2, ∴AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3, ∴AB 2=AC 2+BC 2,则BC ⊥AC . ∵CF ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC ⊥CF ,而CF ∩BC =C ,CF ,BC ⊂平面BCF , ∴AC ⊥平面BCF . ∵EF ∥AC , ∴EF ⊥平面BCF .(2)解 以C 为坐标原点,分别以直线CA ,CB ,CF 为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,设FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1), ∴AB →=(-3,1,0),BM →=(λ,-1,1). 设n =(x ,y ,z )为平面MAB 的法向量, 由⎩⎪⎨⎪⎧n ·AB ,→=0,n ·BM ,→=0,得⎩⎨⎧-3x +y =0,λx -y +z =0,取x =1,则n =(1,3,3-λ).易知m =(1,0,0)是平面FCB 的一个法向量,∴cos 〈n ,m 〉=n ·m |n ||m |=11+3+(3-λ)2×1=1(λ-3)2+4 . ∵0≤λ≤3,∴当λ=0时,cos 〈n ,m 〉取得最小值77, ∴当点M 与点F 重合时,平面MAB 与平面FCB 所成的锐二面角最大,此时二面角的余弦值为77.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4讲直线、平面平行的判定及其性质
一、选择题
1.(2017·保定模拟)有下列命题:
①若直线l平行于平面α内的无数条直线,则直线l∥α;
②若直线a在平面α外,则a∥α;
③若直线a∥b,b∥α,则a∥α;
④若直线a∥b,b∥α,则a平行于平面α内的无数条直线.
其中真命题的个数是()
A.1
B.2
C.3
D.4
解析命题①l可以在平面α内,不正确;命题②直线a与平面α可以是相交关系,不正确;命题③a可以在平面α内,不正确;命题④正确.
答案 A
2.设m,n是不同的直线,α,β是不同的平面,且m,n⊂α,则“α∥β”是“m∥β且n∥β”的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析若m,n⊂α,α∥β,则m∥β且n∥β;反之若m,n⊂α,m∥β且n∥β,则α与β相交或平行,即“α∥β”是“m∥β且n∥β”的充分不必要条件.
答案 A
3.(2017·长郡中学质检)如图所示的三棱柱ABC-A1B1C1中,过A1B1
的平面与平面ABC交于DE,则DE与AB的位置关系是()
A.异面
B.平行
C.相交
D.以上均有可能
解析在三棱柱ABC-A1B1C1中,AB∥A1B1,
∵AB⊂平面ABC,A1B1⊄平面ABC,
∴A1B1∥平面ABC,
∵过A1B1的平面与平面ABC交于DE.
∴DE∥A1B1,∴DE∥AB.
答案 B
4.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是()
A.①③
B.①④
C.②③
D.②④
解析①中,易知NP∥AA′,
MN∥A′B,
∴平面MNP∥平面AA′B,
可得出AB∥平面MNP(如图).
④中,NP∥AB,能得出AB∥平面MNP.
在②③中不能判定AB∥平面MNP.
答案 B
5.已知m,n表示两条不同直线,α表示平面,下列说法正确的是()
A.若m∥α,n∥α,则m∥n
B.若m⊥α,n⊂α,则m⊥n
C.若m⊥α,m⊥n,则n∥α
D.若m∥α,m⊥n,则n⊥α
解析若m∥α,n∥α,则m,n平行、相交或异面,A错;若m⊥α,n⊂α,则m⊥n,因为直线与平面垂直时,它垂直于平面内任一直线,B正确;若m⊥α,m⊥n,则n∥α或n⊂α,C错;若m∥α,m⊥n,则n与α可能相交,可能平行,也可能n⊂α,D错.
答案 B
二、填空题
6.在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四
个面中与MN平行的是________.
解析如图,取CD的中点E.
连接AE ,BE ,由于M ,N 分别是△ACD ,△BCD 的重心,所以AE ,BE 分别过M ,N ,则EM ∶MA =1∶2,EN ∶BN =1∶2,
所以MN ∥AB .
因为AB ⊂平面ABD ,MN ⊄平面ABD ,AB ⊂平面ABC ,MN ⊄平面ABC , 所以MN ∥平面ABD ,MN ∥平面ABC .
答案 平面ABD 与平面ABC
7.如图所示,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为
AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF
的长度等于________.
解析 在正方体ABCD -A 1B 1C 1D 1中,AB =2,∴AC =2 2.
又E 为AD 中点,EF ∥平面AB 1C ,EF ⊂平面ADC ,平面ADC ∩平面AB 1C =
AC ,∴EF ∥AC ,∴F 为DC 中点,∴EF =12AC = 2.
答案 2
8.(2017·承德模拟)如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,
E ,
F ,
G ,
H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是
BC 的中点,点M 在四边形EFGH 及其内部运动,则M 只
需满足条件________时,就有MN ∥平面B 1BDD 1.(注:请填
上你认为正确的一个条件即可,不必考虑全部可能情况)
解析 连接HN ,FH ,FN ,则FH ∥DD 1,HN ∥BD ,
∴平面FHN ∥平面B 1BDD 1,只需M ∈FH ,则MN ⊂平面FHN ,∴MN ∥平面B 1BDD 1.
答案 点M 在线段FH 上(或点M 与点H 重合)
三、解答题
9.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.
(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由);
(2)判断平面BEG 与平面ACH 的位置关系,并证明你的结论.
解 (1)点F ,G ,H 的位置如图所示.
(2)平面BEG ∥平面ACH ,证明如下:因为ABCD -EFGH 为正
方体,
所以BC ∥FG ,BC =FG ,
又FG ∥EH ,FG =EH ,所以BC ∥EH ,BC =EH ,于是四边形BCHE 为平行四边形,所以BE ∥CH .又CH ⊂平面ACH ,BE ⊄平面ACH ,
所以BE ∥平面ACH .同理BG ∥平面ACH .
又BE ∩BG =B ,所以平面BEG ∥平面ACH .
10.(2014·全国Ⅱ卷)如图,四棱锥P -ABCD 中,底面
ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点.
(1)证明:PB ∥平面AEC ;
(2)设AP =1,AD =3,三棱锥P -ABD 的体积V =3
4,求A 到平面PBC 的距离.
(1)证明 设BD 与AC 的交点为O ,连接EO .
因为ABCD 为矩形,所以O 为BD 的中点.
又E 为PD 的中点,所以EO ∥PB .
又因为EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平
面AEC .
(2)解 V =16P A ·AB ·AD =36AB .
由V =34,可得AB =32.作AH ⊥PB 交PB 于H .
由题设知AB ⊥BC ,P A ⊥BC ,且P A ∩AB =A ,所以BC ⊥平面P AB .又AH ⊂平面P AB ,所以BC ⊥AH ,
又PB ∩BC =B ,故AH ⊥平面PBC .
∵PB ⊂平面PBC ,∴AH ⊥PB ,
在Rt △P AB 中,由勾股定理可得PB =132,
所以AH =P A ·AB PB =31313.
所以A 到平面PBC 的距离为31313.
11.给出下列关于互不相同的直线l ,m ,n 和平面α,β,γ的三个命题:①若l 与m 为异面直线,l ⊂α,m ⊂β,则α∥β;
②若α∥β,l ⊂α,m ⊂β,则l ∥m ;
③若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n .
其中真命题的个数为( )
A.3
B.2
C.1
D.0
解析 ①中当α与β不平行时,也可能存在符合题意的l ,m ;②中l 与m 也可能异面;③中 ⎭
⎬⎫ l ∥γ l ⊂αα∩γ=n ⇒l ∥n ,同理,l ∥m ,则m ∥n ,正确.
答案 C
12.在四面体ABCD 中,截面PQMN 是正方形,则在下列结论中,
错误的是( )
A.AC ⊥BD
B.AC ∥截面PQMN
C.AC =BD
D.异面直线PM 与BD 所成的角为45°
解析 因为截面PQMN 是正方形,所以MN ∥QP ,又PQ ⊂平面ABC ,MN ⊄平面ABC ,则MN ∥平面ABC ,由线面平行的性质知MN ∥AC ,又MN ⊂平面PQMN ,AC ⊄平面PQMN ,则AC ∥截面PQMN ,同理可得MQ ∥BD ,又MN ⊥QM ,则AC ⊥BD ,故A ,B 正确.
又因为BD ∥MQ ,所以异面直线PM 与BD 所成的角等于PM 与QM 所成的角,即为45°,故D 正确.
答案 C
13.如图所示,棱柱ABC -A 1B 1C 1的侧面BCC 1B 1是菱形,设D 是A 1C 1上的点且A 1B ∥平面B 1CD ,则A
1D ∶DC 1的值为________.
解析设BC1∩B1C=O,连接OD.
∵A1B∥平面B1CD且平面A1BC1∩平面B1CD=OD,
∴A1B∥OD,∵四边形BCC1B1是菱形,∴O为BC1的中点,
∴D为A1C1的中点,则A1D∶DC1=1.
答案 1
14.(2015·江苏卷)如图,在直三棱柱ABC-A1B1C1中,已知
AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:
(1)DE∥平面AA1C1C;
(2)BC1⊥AB1.
证明(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC. 又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,
所以DE∥平面AA1C1C.
(2)因为棱柱ABC-A1B1C1是直三棱柱,
所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.
又因为AC⊥BC,CC1⊂平面BCC1B1,
BC⊂平面BCC1B1,BC∩CC1=C,
所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,
所以BC1⊥AC.因为BC=CC1,
所以矩形BCC1B1是正方形,因此BC1⊥B1C.
因为AC,B1C⊂平面B1AC,AC∩B1C=C,
所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,
所以BC1⊥AB1.。

相关文档
最新文档