中考数学黄金知识点系列专题28与圆有关的角0309128【含解析】
初三数学圆知识点总结

初三数学圆知识点总结要点总结:一、圆的定义与相关概念:圆是平面内到定点的距离等于定长的点的集合,定点为圆心,定长为半径。
圆心角、弧、弦、弦心距之间有一定关系。
弦是圆上任意两点的线段,直径是经过圆心的弦,直径等于半径的2倍。
圆弧分为优弧和劣弧,圆心角是圆心所对的角。
二、过三点的圆和垂径定理:不在同一条直线上的三点可以确定一个圆。
三角形的外接圆圆心是三边垂直平分线的交点。
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
三、与圆相关的角:圆心角、圆周角、弦切角是与圆相关的角。
圆心角的度数等于它所对的弦的度数,圆周角等于所对弦角的一半。
同弧或等弧所对的圆周角相等,半圆所对的圆周角相等。
弦切角等于它所夹的弧所对的圆周角,两个弦切角所夹的弧相等,那么这两个弦切角也相等。
四、点与圆的位置关系。
文章改写:圆是平面内到定点的距离等于定长的点的集合,其中定点为圆心,定长为半径。
圆的位置由圆心确定,大小由半径确定,半径相等的两个圆为等圆。
圆可以通过线段OA绕圆心O旋转一周,另一个端点A随之旋转所形成的图形来定义。
另外,圆的相关概念包括弦、直径、圆弧、圆心角等。
弦是圆上任意两点的线段,直径是经过圆心的弦,直径等于半径的2倍。
圆弧分为优弧和劣弧,圆心角是圆心所对的角。
圆心角、弧、弦、弦心距之间有一定关系,其中定理是:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等。
推论是:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
通过不在同一条直线上的三点可以确定一个圆,三角形的外接圆圆心是三边垂直平分线的交点。
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
与圆相关的角包括圆心角、圆周角、弦切角,它们有一些性质,例如圆心角的度数等于它所对的弦的度数,圆周角等于所对弦角的一半,同弧或等弧所对的圆周角相等,半圆所对的圆周角相等,弦切角等于它所夹的弧所对的圆周角,两个弦切角所夹的弧相等,那么这两个弦切角也相等。
中考数学考点知识与题型专题讲解28---与圆有关的角

如答图,连接 DO, ∵DO=CO,∴∠1=∠2 . ∵DM=CM,∴∠4=∠3. ∵∠2+∠4=90°,∴∠1+∠3=90°. ∴直线 DM 与⊙O 相切.
【答案】(1)证明见解析;(2)当 MC=MD(或点 M 是 BC 的中点)时,直线 DM 与⊙O 相切,理由见解析. 【解析】
∵∠ACB=90°,∴∠DCB+∠ACD=90°. ∴∠DCB=∠A. (2)当 MC=MD(或点 M 是 BC 的中点)时,直线 DM 与⊙O 相切,理由如下:
7 / 18
中考数学考点知识与题型专题讲解 专题 28 与圆有关的角
聚焦考点☆温习理解 一、弧、弦、弦心距、圆心角之间的关系定理 1、圆心角 顶点在圆心的角叫做圆心角。 2、弧、弦、弦心距、圆心角之间的关系定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相 等。 推论:在同圆 或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中 有一组量相等,那么它们所对应的其余各组量都分别相等。 3、圆周角 顶点在圆上,并且两边都和圆相交的角叫做圆周角。 4、圆周角定理 一条弧所对的圆周角等于它所对的圆心角的一半。 推论 1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。 推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。 推论 3:如果 三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
OD
∴ r − 2 = 1 ,解得 r =4, r2
∴OE=4-2=2, ∴ DE = OD2 − OE2 = 42 − 22 = 2 3 . ∴CD=2DE= 4 3 .
考点典例三 圆周角与切线之间的关系 【例 3】(2016 海南省第 12 题)如图,AB 是⊙O 的直径,直线 PA 与⊙O 相切于点 A, PO 交⊙O 于点 C,连接 BC.若∠P=40°,则∠ABC 的度数为( ) A.20° B.25° C.40° D.50°
初中数学圆的知识点总结

初中数学圆的知识点总结圆虽然是最熟悉的几何图形之一,但它有很多新的知识点,尤其是这里重要的知识点,都与前面的知识紧密联系着,下面是wtt整理的初中数学圆的知识点,欢迎大家阅读分享借鉴。
初中数学圆的知识点一、圆的相关概念1、圆的定义在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、直线圆的与置位关系1.线直与圆有唯公一共时,点做直叫与圆线切2.三角的外形圆接的圆叫做三心形角外心3.弦切角于所等夹弧所对的的圆心角4.三角的内形圆切的圆叫做三心形角内心5.垂于直径半直线必为圆的的切线6.过径半外的点并且垂直端于半的径直线是圆切线7.垂于直径半直线是圆的的切线8.圆切线垂的直过切于点半径3、圆的几何表示以点O为圆心的圆记作“⊙O”,读作“圆O”二、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为:过圆心垂直于弦直径平分弦知二推三平分弦所对的优弧平分弦所对的劣弧三、弦、弧等与圆有关的定义1、弦连接圆上任意两点的线段叫做弦。
(如图中的AB)2、直径经过圆心的弦叫做直径。
(如途中的CD)直径等于半径的2倍。
3、半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
4、弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的'弧叫做劣弧(多用两个字母表示)四、圆的对称性1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
初三数学圆的知识点总结及经典例题详解

圆的基本性质1.半圆或直径所对的圆周角是直角.2.任意一个三角形一定有一个外接圆.3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.4.在同圆或等圆中,相等的圆心角所对的弧相等.5.同弧所对的圆周角等于圆心角的一半.6.同圆或等圆的半径相等.7.过三个点一定可以作一个圆.8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等.0.经过圆心平分弦的直径垂直于弦。
直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切.2.三角形的外接圆的圆心叫做三角形的外心.3.弦切角等于所夹的弧所对的圆心角.4.三角形的内切圆的圆心叫做三角形的内心.5.垂直于半径的直线必为圆的切线.6.过半径的外端点并且垂直于半径的直线是圆的切线.7.垂直于半径的直线是圆的切线.8.圆的切线垂直于过切点的半径.圆与圆的位置关系1.两个圆有且只有一个公共点时,叫做这两个圆外切.2.相交两圆的连心线垂直平分公共弦.3.两个圆有两个公共点时,叫做这两个圆相交.4.两个圆内切时,这两个圆的公切线只有一条.5.相切两圆的连心线必过切点.正多边形基本性质1.正六边形的中心角为60°.2.矩形是正多边形.3.正多边形都是轴对称图形.4.正多边形都是中心对称图形.圆的基本性质1.如图,四边形ABCD内接于⊙O,已知∠C=80°,则∠A的度数是.A. 50°B. 80°C. 90°D. 100°2.已知:如图,⊙O中, 圆周角∠BAD=50°,则圆周角∠BCD的度数是.A.100°B.130°C.80°D.50°3.已知:如图,⊙O中, 圆心角∠BOD=100°,则圆周角∠BCD的度数是.A.100°B.130°C.80°D.50°4.已知:如图,四边形ABCD内接于⊙O,则下列结论中正确的是.A.∠A+∠C=180°B.∠A+∠C=90°C.∠A+∠B=180°D.∠A+∠B=905.半径为的圆中,有一条长为的弦,则圆心到此弦的距离为.A B C D6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD的度数是.A.100°B.130°C.80°D.507.已知:如图,⊙O中,弧AB的度数为100°,则圆周角∠ACB的度数是.A.100°B.130°C.200°D.508. 已知:如图,⊙O中, 圆周角∠BCD=130°,则圆心角∠BOD的度数是.A.100°B.130°C.80°D.50°9. 在⊙O中,弦AB的长为,圆心O到AB的距离为,则⊙O的半径为cm.A.3B.5 D. 10点、直线和圆的位置关系1.已知⊙O的半径为10㎝,如果一条直线和圆心O的距离为10㎝,那么这条直线和这个圆的位置关系为.A.相离B.相切C.相交D.相交或相离2.已知圆的半径为,直线l和圆心的距离为,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D. 相离或相交3.已知圆O的半径为,PO=,那么点P和这个圆的位置关系是A.点在圆上B. 点在圆内C. 点在圆外D.不能确定4.已知圆的半径为,直线l和圆心的距离为,那么这条直线和这个圆的公共点的个数是.A.0个B.1个C.2个D.不能确定5.一个圆的周长为a cm,面积为a cm2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D. 不能确定6.已知圆的半径为,直线l和圆心的距离为,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D.不能确定7. 已知圆的半径为,直线l和圆心的距离为,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D. 相离或相交8. 已知⊙O的半径为,PO=,则PO的中点和这个圆的位置关系是.A.点在圆上B. 点在圆内C. 点在圆外D.不能确定圆与圆的位置关系1.⊙O1和⊙O2的半径分别为和,若O1O2=,则这两圆的位置关系是.A. 外离B. 外切C. 相交D. 内切2.已知⊙1、⊙O2的半径分别为和,若O1O2=,则这两个圆的位置关系是.A.内切B. 外切C. 相交D. 外离3.已知⊙1、⊙O2的半径分别为和,若O1O2=,则这两个圆的位置关系是.A.外切B.相交C. 内切D. 内含4.已知⊙1、⊙O2的半径分别为和,若O1O2==,则这两个圆的位置关系是.A.外离B. 外切C.相交D.内切5.已知⊙1、⊙O2的半径分别为和,两圆的一条外公切线长4,则两圆的位置关系是.A.外切B. 内切C.内含D. 相交6.已知⊙1、⊙O2的半径分别为和,若O1O2=,则这两个圆的位置关系是.A.外切B.相交C. 内切D. 内含公切线问题1.如果两圆外离,则公切线的条数为.A. 1条B.2条C.3条D.4条2.如果两圆外切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条3.如果两圆相交,那么它们的公切线的条数为.A. 1条B. 2条C.3条D.4条4.如果两圆内切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条5. 已知⊙1、⊙O2的半径分别为和,若O1O2=,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条6.已知⊙1、⊙O2的半径分别为和,若O1O2=,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条正多边形和圆1.如果⊙O的周长为10πcm,那么它的半径为.A. B.cm C D.5πcm2.正三角形外接圆的半径为2,那么它内切圆的半径为.A. 2B.C.1D.3.已知,正方形的边长为2,那么这个正方形内切圆的半径为.A. 2B. . D.4.扇形的面积为,半径为2,那么这个扇形的圆心角为= .A.30°B.60°C.90°D. 120°5.已知,正六边形的外接圆半径为R,那么这个正六边形的边长为.A.RB.RC.RD.6.圆的周长为C,那么这个圆的面积S= .A. B. C. D.7.正三角形内切圆与外接圆的半径之比为.A.1:2B.1:C.:2D.1:8. 圆的周长为C,那么这个圆的半径R= .A.2B.C.D.9.已知,正方形的边长为2,那么这个正方形外接圆的直径为.A.2B.2 D.20.已知,正三角形的外接圆半径为3,那么这个正三角形的边长为.A. 3B.C.3D.3。
中考数学总复习课件之与圆有关的角

(2)若AB=10,AD=8,求DE的长。
ED C
A
O
B
2020/8/18
8
8.如图P是⊙O外一点,PO交⊙O 于C.D两点,过⊙O上一点A作弦 AB⊥PD,E为垂足,已知PA是 ⊙O的切线,求证:
(1)AC平分∠PAB
(2) PC·PD=PE·PO
B
P
CE O
D
2020/8/18
9
A
9.如图,梯形ABCD内接于⊙O, AD∥BC,过点B引⊙O的切线分别交 DA.CA的延长线于点E.F。
(1)求证:AB2=AE·BC
(2)已知BC=8,CD=5,AF=6,求EF
的长。
F
A
D
E
2020/8/18
O
B
C
10
2020/8/18
O
B
C
A
D
4
4.如图,△ABC中,∠A的平分线 交BC于点D,圆O过点A且与BC相 切于点D,与AB.AC分别相交于点 E.F,AD与EF相交于点G。求证:
AF·FC=GF·DC
A
2020/8/18
E
O
G
F
B
C
5
D
5.如图,⊙O1和⊙O2相交于A,
B,直线PE与⊙O1相切于P,PA
2020/8/18
1
1.如图,⊙O切BT于B, ∠CBT=430,求∠BAC和∠BOC 及弧BC的度数。
A
O C
B
T
2020/8/18
2
2.如图,在RT△ABC中,∠C= RT ,∠AC= 6 ,BC= 2 , 以AB为弦的⊙O与AC相切于点 A,求⊙O的面积。
与圆有关的角(解析版)

专题08 与圆有关的角知识网络重难突破知识点一圆心角1.圆心角:顶点在圆心的角叫做圆心角.圆心角的度数等于它所对的弧的度数.2.圆心角性质定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各组量都相等.【典例1】(2020•项城市三模)如图,圆O通过五边形OABCD的四个顶点.若=150°,∠A=75°,∠D=60°,则的度数为何?()A.25°B.40°C.50°D.60°【点拨】连接OB,OC,由半径相等得到△OAB,△OBC,△OCD都为等腰三角形,根据∠A=75°,∠D=60°,求出∠1与∠2的度数,根据的度数确定出∠AOD度数,进而求出∠3的度数,即可确定出的度数.【解析】解:连接OB、OC,∵OA=OB=OC=OD,∴△OAB、△OBC、△OCD,皆为等腰三角形,∵∠A=75°,∠D=60°,∴∠1=180°﹣2∠A=180°﹣2×75°=30°,∠2=180°﹣2∠D=180°﹣2×60°=60°,∵=150°,∴∠AOD=150°,∴∠3=∠AOD﹣∠1﹣∠2=150°﹣30°﹣60°=60°,则的度数为60°.故选:D.【点睛】此题考查了圆心角、弧、弦的关系,多边形内角与外角,弄清圆心角、弧、弦的关系是解本题的关键.【变式训练】1.(2019秋•鹿城区月考)一个圆的内接正多边形中,一边所对的圆心角为72°,则该正多边形的边数是()A.6 B.5 C.4 D.3【点拨】根据正多边形的中心角=计算即可.【解析】解:设正多边形的边数为n.由题意=72°,∴n=5,故选:B.【点睛】本题考查正多边形的有关知识,解题的关键是记住正多边形的中心角=.2.(2019秋•余杭区期中)如图,在△ABC中,∠C=90°,的度数为α,以点C为圆心,BC长为半径的圆交AB于点D,交AC于点E,则∠A的度数为()A.45°﹣αB.αC.45°+αD.25°+α【点拨】连接OD,求得∠DCE=α,得到∠BCD=90°﹣α,根据等腰三角形的性质和三角形的内角和即可得到结论.【解析】解:连接OD,∵的度数为α,∴∠DCE=α,∵∠ACB=90°,∴∠BCD=90°﹣α,∵BC=DC,∴∠B=(180°﹣∠BCD)=(180°﹣90°+α)=45°+α,∴∠A=90°﹣∠B=45°﹣α,故选:A.【点睛】本题考查了圆心角,弧,弦,直角三角形的性质,等腰三角形的性质,正确的作出辅助线是解题的关键.3.(2019秋•鄞州区期末)如图,AB为⊙O的直径,点D是弧AC的中点,过点D作DE⊥AB于点E,延长DE交⊙O于点F,若AC=12,AE=3,则⊙O的直径长为()A.10 B.13 C.15 D.16【点拨】连接OF,首先证明AC=DF=12,设OA=OF=x,在Rt△OEF中,利用勾股定理构建方程即可解决问题.【解析】解:如图,连接OF.∵DE⊥AB,∴DE=EF,=,∵点D是弧AC的中点,∴=,∴=,∴AC=DF=12,∴EF=DF=6,设OA=OF=x,在Rt△OEF中,则有x2=62+(x﹣3)2,解得x=,∴AB=2x=15,故选:C.【点睛】本题考查垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.4.(2019春•西湖区校级月考)如图,AB是⊙O的直径,M、N分别是AO,BO的中点,CM⊥AB,DN⊥AB,则的度数60°.【点拨】根据圆心角、弧、弦的关系和含30°的直角三角形的性质解答.【解析】解:∵AB是⊙O的直径,M、N分别是AO,BO的中点,∴2OM=OC,2ON=OD,∵CM⊥AB,DN⊥AB,∴∠CMO=∠DNO=90°,∴∠MCO=∠NDO=30°,∴∠MOC=∠NOD=60°,∴∠COD=180°﹣60°﹣60°=60°,∴的度数是60°,故答案为:60°【点睛】此题考查圆心角、弧、弦,关键是根据圆心角、弧、弦的关系和含30°的直角三角形的性质解答.5.(2018秋•丽水期中)如图,已知OA、OB、OC是⊙O的三条半径,点C是弧AB的中点,M、N分别是OA、OB的中点.求证:MC=NC.【点拨】根据弧与圆心角的关系,可得∠AOC=∠BOC,又由M、N分别是半径OA、OB的中点,可得OM=ON,利用SAS判定△MOC≌△NOC,继而证得结论.【解析】证明:∵弧AC和弧BC相等,∴∠AOC=∠BOC,又∵OA=OB,M、N分别是OA、OB的中点∴OM=ON,在△MOC和△NOC中,,∴△MOC≌△NOC(SAS),∴MC=NC.【点睛】此题考查了弧与圆心角的关系以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.知识点二圆周角1.圆周角:顶点在圆上,两边分别和圆相交的角叫做圆周角.圆周角的度数等于它所对弧上的圆心角度数的一半.2.圆周角性质定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.【典例2】(2019秋•义乌市期末)如图,已知AB为半圆O的直径,AC,AD为弦,且AD平分∠BAC.(1)若∠ABC=28°,求∠CBD的度数;(2)若AB=6,AC=2,求AD的长.【点拨】(1)利用圆周角定理得到∠C=∠ADB=90°,则根据互余计算出∠CAB=62°,再根据角平分线的定义得到∠CAD=∠CAB=31°,然后根据圆周角定理得到∠CBD的度数;(2)连接OD交BC于E,如图,先利用勾股定理计算出BC=4,由∠CAD=∠BAD得到=,根据垂径定理得到OD⊥BC,BE=CE=BC=2,则OE=1,然后根据勾股定理计算出BD,接着计算出AD.【解析】解:(1)∵AB是⊙O的直径,∴∠C=∠ADB=90°,∴∠CAB=90°﹣28°=62°,∵AD平分∠BAC,∴∠CAD=∠CAB=31°,∴∠CBD=∠CAD=31°;(2)连接OD交BC于E,如图,在Rt△ACB中,BC==4,∵AD平分∠BAC,∴∠CAD=∠BAD,∴=,∴OD⊥BC,∴BE=CE=BC=2,∴OE=AC=×2=1,∴DE=OD﹣OE=3﹣1=2,在Rt△BDE中,BD==2,在Rt△ABD中,AD==2.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.【变式训练】1.(2019秋•海曙区期末)如图,点A,B,C,D在⊙O上,AC是⊙O的直径,若∠CAD=25°,则∠ABD 的度数为()A.25°B.50°C.65°D.75°【点拨】先根据圆周角定理得到∠ADC=90°,∠ABD=∠ACD,然后利用互余计算出∠ACD,从而得到∠ABD的度数.【解析】解:∵AC是⊙O的直径,∴∠ADC=90°,∴∠ACD=90°﹣∠CAD=90°﹣25°=65°,∴∠ABD=∠ACD=65°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.2.(2020•绍兴)如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为()A.45°B.60°C.75°D.90°【点拨】首先连接BE,由圆周角定理即可得∠BEC的度数,继而求得∠BED的度数,然后由圆周角定理,求得∠BOD的度数.【解析】解:连接BE,∵∠BEC=∠BAC=15°,∠CED=30°,∴∠BED=∠BEC+∠CED=45°,∴∠BOD=2∠BED=90°.故选:D.【点睛】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.3. (2020•温州一模)如图,四边形ABCD内接于⊙O,若∠AOC=∠B,则∠D的度数为60°.【点拨】根据圆周角定理得到∠AOC=2∠D,根据题意得到∠B=2∠D,根据圆内接四边形的对角互补列式计算,得到答案.【解析】解:由圆周角定理得,∠AOC=2∠D,∵∠AOC=∠B,∴∠B=2∠D,∵四边形ABCD内接于⊙O,∴∠D+∠B=180°,∴∠D+2∠D=180°,解得,∠D=60°,故答案为:60.【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.4.(2019春•西湖区校级月考)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E连接EB、DE,EC=2,BC=6,则⊙O的半径为 4.5.【点拨】连接BE,AD,求出CD,根据圆周角定理求出∠CAD=∠CBE,证△CAD∽△CBE,得出比例式,求出AC,即可得出答案.【解析】解:连接BE,AD,∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵BC=6,AB=AC,∴CD=BD=3,∵由圆周角定理得:∠CAD=∠CBE,∵∠C=∠C,∴△CDA∽△CEB,∴=,∴=,解得:AC=9,∵AB=AC,∴AB=9,∴⊙O的半径为=4.5,故答案为:4.5.【点睛】本题考查了等腰三角形的性质,圆周角定理,相似三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.5.(2019秋•温州期末)如图,点A、B、C、D、E都在⊙O上,AC平分∠BAD,且AB∥CE,求证:=.【点拨】由于AC平分∠BAD则∠BAC=∠DAC,再利用平行线的性质得∠BAC=∠ACE,所以∠DAC =∠ACE,然后根据圆周角定理得到结论.【解析】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵AB∥CE,∴∠BAC=∠ACE,∴∠DAC=∠ACE,∴=.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.(2018秋•西湖区校级期中)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若∠B=75°,求弧DE的度数;(3)若BD=3,BE=4,求AC的长.【点拨】(1)连结AE,如图,由圆周角定理得∠AEC=90°,而AB=AC,则根据等腰三角形的性质即可判断BE=CE;(2)连结OD、OE,如图,在Rt△ABE中,利用互余计算出∠BAE=15°,再根据圆周角定理得∠DOE =2∠DAE=30°,然后根据圆心角的度数等于它所对的弧的度数即可得到弧DE的度数为30°;(3)连结CD,如图,BC=2BE=8,设AC=x,则AD=x﹣3,由圆周角定理得∠ADC=90°,在Rt △BCD中,利用勾股定理得CD2=55,然后在Rt△ADC中再利用勾股定理得到(x﹣3)2+55=x2,接着解方程求出x即可.【解析】解:(1)证明:连结AE,如图,∵AC为直径,∴∠AEC=90°,∴AE⊥BC,∵AB=AC,∴BE=CE;(2)解:连结OD、OE,如图,在Rt△ABE中,∠BAE=90°﹣∠B=90°﹣75°=15°,∴∠DOE=2∠DAE=30°,∴弧DE的度数为30°;(3)解:连结CD,如图,BC=2BE=8,设AC=x,则AD=x﹣3,∵AC为直径,∴∠ADC=90°,在Rt△BCD中,CD2=BC2﹣BD2=82﹣32=55,在Rt△ADC中,∵AD2+CD2=AC2,∴(x﹣3)2+55=x2,解得x=,即AC的长为.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的判定与性质.知识点三圆内接四边形1.圆的内接四边形:如果一个四边形的各个顶点在同一个圆上,那么这个四边形叫做圆的内接四边形,这个圆叫做四边形的外接圆.2. 圆内接四边形的性质:圆的内接四边形的对角互补.【典例3】(2018秋•崇川区校级月考)如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F.(1)若∠E=∠F,求证:∠ADC=∠ABC;(2)若∠E=∠F=40°,求∠A的度数;(3)若∠E=30°,∠F=40°,求∠A的度数.【点拨】(1)根据外角的性质即可得到结论;(2)根据圆内接四边形的性质和等量代换即可求得结果;(3)连结EF,如图,根据圆内接四边形的性质得∠ECD=∠A,再根据三角形外角性质得∠ECD=∠1+∠2,则∠A=∠1+∠2,然后根据三角形内角和定理有∠A+∠1+∠2+∠E+∠F=180°,解方程即可.【解析】解:(1)∠E=∠F,∵∠DCE=∠BCF,∠ADC=∠E+∠DCE,∠ABC=∠F+∠BCF,∴∠ADC=∠ABC;(2)由(1)知∠ADC=∠ABC,∵∠EDC=∠ABC,∴∠EDC=∠ADC,∴∠ADC=90°,∴∠A=90°﹣40°=50°;(3)连结EF,如图,∵四边形ABCD为圆的内接四边形,∴∠ECD=∠A,∵∠ECD=∠1+∠2,∴∠A=∠1+∠2,∵∠A+∠1+∠2+∠E+∠F=180°,∴2∠A+30°+40°=180°,∴∠A=90°﹣=55°.【点睛】本题考查了圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.【变式训练】1.(2019秋•越城区期末)如图,四边形ABCD内接于⊙O,若∠A:∠C=5:7,则∠C=()A.210°B.150°C.105°D.75°【点拨】根据圆内接四边形对角互补可得∠C=180°×=105°.【解析】解:∵∠A+∠C=180°,∠A:∠C=5:7,∴∠C=180°×=105°.故选:C.【点睛】此题主要考查了圆内接四边形,关键是掌握圆内接四边形对角互补.2.(2020•仙居县模拟)如图,四边形ABCD是⊙O的内接四边形,若∠BCD=143°,则∠BOD的度数是()A.77°B.74°C.37°D.43°【点拨】根据圆内接四边形的性质求出∠A,再根据圆周角定理解答即可.【解析】解:∵四边形ABCD为⊙O的内接四边形,∠BCD=143°,∴∠A=180°﹣∠BCD=37°,由圆周角定理得,∠BOD=2∠A=74°,故选:B.【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.3..如图,已知ABCD是一个以AD为直径的圆内接四边形,分别延长AB和DC,它们相交于P,若∠APD =60°,AB=5,PC=4,则⊙O的面积为()A.25πB.16πC.15πD.13π【点拨】连接AC,由圆周角定理可得出∠ACD=90°,再由圆内接四边形的性质及三角形内角和定理可求出∠P AC=30°,由直角三角形的性质可求出AP、AC的长,由相似三角形的判定定理及性质可得出CD的长,再根据勾股定理接可求出AD的长,进而求出该圆的面积.【解析】解:连接AC,∵AD是⊙O的直径,∴∠ACD=90°,∵∠APD=60°,∴∠P AC=30°,∴AP=2PC=2×4=8,∵AB=5,∴PB=8﹣5=3,∵四边形ABCD是以AD为直径的圆内接四边形,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∠APD=∠APD,∴△PCB∽△P AD,∴=,即=,PD=6,∴CD=PD﹣PC=6﹣4=2,∴AC===4,在Rt△ACD中,AD===2.∴OA=AD=,∴⊙O的面积=π×()2=13π.故选:D.【点睛】本题考查的是相似三角形的判定与性质、圆内接四边形的性质、勾股定理,解答此题的关键是作出辅助线,构造出直角三角形求解.4.(2019秋•萧山区期中)如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=2.【点拨】连接AC,由圆内接四边形的性质和圆周角定理得到∠BAE=∠CDA,∠ABD=∠ACD,从而得到∠ACD=∠CDA,得出AC=AD=5,然后利用勾股定理计算AE的长.【解析】解:连接AC,如图,∵BA平分∠DBE,∴∠ABE=∠ABD,∵∠ABE=∠CDA,∠ABD=∠ACD,∴∠ACD=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE===2.故答案为:2.【点睛】本题考查了圆内接四边形的性质、等腰三角形的判定、圆周角定理、勾股定理、角平分线定义等知识;熟练掌握圆周角定理和圆内接四边形的性质是解题的关键.6.(2019•黄埔区一模)如图,四边形ABCD内接于⊙O,AD,BC的延长线交于点E,F是BD延长线上一点,∠CDE=∠CDF=60°.(1)求证:△ABC是等边三角形;(2)判断DA,DC,DB之间的数量关系,并证明你的结论.【点拨】(1)根据圆内接四边形的性质得到∠CDE=∠ABC=60°,根据圆周角定理、等边三角形的判定定理证明;(2)在BD上截取PD=AD,证明△APB≌△ADC,根据全等三角形的性质证明结论.【解析】(1)证明:∵∠CDE=∠CDF=60°,∴∠CDE=∠EDF=60°,∵四边形ABCD内接于⊙O,∴∠CDE=∠ABC=60°,由圆周角定理得,∠ACB=∠ADB=∠EDF=60°,∴△ABC是等边三角形;(2)解:DA+DC=DB,理由如下:在BD上截取PD=AD,∵∠ADP=60°,∴△APD为等边三角形,∴AD=AP,∠APD=60°,∴∠APB=120°,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,∴DB=BP+PD=DA+DC.【点睛】本题考查的是圆内接四边形的性质、等边三角形的性质、全等三角形的判定和性质,掌握圆内接四边形的性质是解题的关键.巩固训练1.(2019秋•福田区期末)下图中∠ACB是圆心角的是()A.B.C.D.【点拨】根据圆心角的概念判断.【解析】解:A、∠ACB不是圆心角;B、∠ACB是圆心角;C、∠ACB不是圆心角;D、∠ACB不是圆心角;故选:B.【点睛】本题考查的是圆心角的概念,掌握顶点在圆心的角叫作圆心角是解题的关键.2.(2019秋•诸暨市期末)用直角三角板检查半圆形的工件,下列工件哪个是合格的()A.B.C.D.【点拨】根据90°圆周角所对的弦是直径即可判断.【解析】解:根据90°的圆周角所对的弦是直径得到只有C选项正确,其他均不正确;故选:C.【点睛】本题考查圆周角定理、解题的关键是灵活运用圆周角定理解决问题,属于中考常考题型.3.(2019秋•拱墅区校级期末)下列语句中,正确的是()①相等的圆周角所对的弧相等;②同弧或等弧所对的圆周角相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接平行四边形一定是矩形.A.①②B.②③C.②④D.④【点拨】根据圆周角定理、垂径定理、圆内接四边形的性质定理判断.【解析】解:①在同圆或等圆中,相等的圆周角所对的弧相等,本说法错误;②同弧或等弧所对的圆周角相等,本说法正确;③平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,本说法错误;④圆内接平行四边形一定是矩形,本说法正确;故选:C.【点睛】本题考查的是命题的真假判断,掌握圆周角定理、垂径定理、圆内接四边形的性质定理是解题的关键.4.(2019春•西湖区校级月考)圆的内接四边形ABCD的四个内角之比∠A:∠B:∠C:∠D的可能的值是()A.1:2:3:4 B.4:2:3:1 C.4:3:1:2 D.4:1:3:2【点拨】因为圆的内接四边形对角互补,则两对角的和应该相等,比值所占份数也相同,据此求解.【解析】解:∵圆的内接四边形对角互补,∴∠A+∠C=∠B+∠D=180°,∴∠A:∠B:∠C:∠D的可能的值是4:3:1:2.故选:C.【点睛】要掌握圆的内接四边形对角互补的特性.5.(2018秋•句容市校级月考)如图,AB,CD是⊙O的直径,弦CE∥AB,弧CE的度数为40°,∠AOC 的度数70°.【点拨】连接OE,由弧CE的度数为40°,得到∠COE=40°,根据等腰三角形的性质和三角形的内角和定理可求出∠OCE=(180°﹣40°)÷2=70°,而弦CE∥AB,即可得到∠AOC=∠OCE=70°.【解析】解:连接OE,如图,∵弧CE的度数为40°,∴∠COE=40°,∵OC=OE,∴∠OCE=∠OEC,∴∠OCE=(180°﹣40°)÷2=70°,∵弦CE∥AB,∴∠AOC=∠OCE=70°.【点睛】本题考查了在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等,等腰三角形的性质和平行的性质以及三角形的内角和定理.6.(2020•浙江自主招生)如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为弧AN 的中点,P是直径MN上一动点,则P A+PB的最小值为.【点拨】首先利用在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点P的位置,然后根据弧的度数发现一个等腰直角三角形计算.【解析】解:作点B关于MN的对称点C,连接AC交MN于点P,则P点就是所求作的点.此时P A+PB最小,且等于AC的长.连接OA,OC,∵∠AMN=30°,∴∠AON=60°,∴弧AN的度数是60°,则弧BN的度数是30°,根据垂径定理得弧CN的度数是30°,则∠AOC=90°,又OA=OC=1,则AC=.【点睛】此题主要考查了确定点P的位置,垂径定理的应用.7.(2019春•西湖区校级月考)如图,在⊙A中,弦BC、ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,BC=9,∠BAC+∠EAD=180°,则⊙A的直径等于3.【点拨】延长CA,交⊙A于点F,易得∠BAF=∠DAE,由圆心角与弦的关系,可得BF=DE,由圆周角定理可得:∠CBF=90°,然后由勾股定理求得弦CF的长即可.【解析】解:作直径CF,连结BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴,∴DE=BF=6,∵CF是直径,∴∠CBF=90°,∴CF===3,故答案为:3.【点睛】此题考查了圆周角定理、垂径定理、三角形中位线的性质以及勾股定理.正确作出辅助线是解题的关键.8.(2019秋•香坊区校级期中)如图,AB为 ⊙O的弦,半径OC,OD分别交AB于点E,F.且=.(1)求证:OE=OF;(2)作半径ON⊥AB于点M,若AB=8,MN=2,求OM的长.【点拨】(1)连接OA、OB,证明△AOE≌△BOF(ASA),即可得出结论;(2)连接OA,由垂径定理得出AM=AB=4,设OM=x,则OA=ON=x+2,在Rt△AOM中,由勾股定理得出方程,解方程即可.【解析】(1)证明:连接OA、OB,如图1所示:∵OA=OB,∴∠A=∠B,∵=,∴∠AOE=∠BOF,在△AOE和△OBF中,,∴△AOE≌△BOF(ASA),∴OE=OF;(2)解:连接OA,如图2所示:∵OM⊥AB,∴AM=AB=4,设OM=x,则OA=ON=x+2,在Rt△AOM中,由勾股定理得:42+x2=(x+2)2,解得:x=3,∴OM=3.【点睛】本题考查了圆心角、弧、弦的关系,等腰三角形的性质,全等三角形的判定与性质,垂径定理,勾股定理等知识;熟练掌握圆心角、弧、弦的关系和垂径定理是解题的关键.9.(2019秋•滨江区期中)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC 交于点E.(1)若∠B=70°,求弧CD的度数;(2)若AC=24,DE=8,求半圆O的半径.【点拨】(1)根据直径所对的圆周角是直角求出∠BAC的度数,根据平行线的性质求出∠AOD的度数,然后求出∠DOC的度数可确定弧CD的度数;(2)先证明OE⊥AC得到AE=CE=AC=12,设半径为r,则OE=r﹣8,然后利用勾股定理得到(r ﹣8)2+122=r2,然后解方程即可.【解析】解:(1)连接OC,如图,∵AB是半圆O的直径,∴∠ACB=90°,又∠B=70°,∴∠BAC=20°,∵OD∥BC,∴∠AOD=∠B=70°,又OD=OA,∴∠OAD=55°,∴∠DAC=35°,∴∠DOC=2∠DAC=70°,∴的度数是70°;(2)∵OD∥BC,∴∠OEA=∠ACB=90°,∴OE⊥AC,∴AE=CE=AC=12,设半径为r,则OE=r﹣8,在Rt△AOE中,(r﹣8)2+122=r2,解得r=5,即半圆O的半径为5.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.10.(2020•雅安)如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.【点拨】(1)根据三个内角相等的三角形是等边三角形即可判断;(2)过点A作AE⊥CD,垂足为点E,过点B作BF⊥AC,垂足为点F.根据S四边形ABCD=S△ABC+S△ACD,分别求出△ABC,△ACD的面积,即可求得四边形ABCD的面积,然后通过证得△EAB≌△DCB(AAS),即可求得△BDE的面积=四边形ABCD的面积=.【解析】(1)证明:∵四边形ABCD内接于圆.∴∠ABC+∠ADC=180°,∵∠ABC=60°,∴∠ADC=120°,∵DB平分∠ADC,∴∠ADB=∠CDB=60°,∴∠ACB=∠ADB=60°,∠BAC=∠CDB=60°,∴∠ABC=∠BCA=∠BAC,∴△ABC是等边三角形.(2)过点A作AM⊥CD,垂足为点M,过点B作BN⊥AC,垂足为点N.∴∠AMD=90°,∵∠ADC=120°,∴∠ADM=60°,∴∠DAM=30°,∴DM=AD=1,AM===,∵CD=3,∴CM=CD+DM=1+3=4,∴S△ACD=CD•AM=×=,Rt△AMC中,∠AMD=90°,∴AC===,∵△ABC是等边三角形,∴AB=BC=AC=,∴BN=BC=,∴S△ABC=×=,∴四边形ABCD的面积=+=,∵BE∥CD,∴∠E+∠ADC=180°,∵∠ADC=120°,∴∠E=60°,∴∠E=∠BDC,∵四边形ABCD内接于⊙O,∴∠EAB=∠BCD,在△EAB和△DCB中,,∴△EAB≌△DCB(AAS),∴△BDE的面积=四边形ABCD的面积=.【点睛】本题考查圆内接四边形的性质,等边三角形的判定和性质,勾股定理,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.。
重难点 圆中的计算及其综合专项 中考数学

重难点 圆中的计算及其综合考点一:圆中的角度计算圆中角度的相关考点主要是圆周角定理和圆心角定理,这两个定理都有对应推论,考察难度不大,题型基本以选择、填空题为主,所以重点是要把这两个定理及其推论熟练掌握即可!题型01 圆中常见的角度计算易错点:圆中角度定理都有一个大前提——在同圆或等圆中,特别是一些概念性选择题,没有这个前提的话,对应结论是不正确的。
解题大招01:圆中角度计算口诀——圆中求角度,同弧或等弧+直径所对圆周角是90度圆心角定理、圆周角定理以及其推论为圆中角的计算提供了等量关系,圆中的等角也是解决角度问题中常见的转化关系,所以特别要注意同弧或等弧所对的圆周角相等,以及直径所对圆周角=90°的固定关系解题大招01:圆中求角度常用的其他规律:圆内接四边形的一个外角=其内对角折叠弧过圆心→必有30°角以等腰三角形的腰长为直径的圆→必过底边中点圆中出现互相垂直的弦,常作两弦心距→必有矩形(当弦相等,则得正方形)【中考真题练】1.(2023•河南)如图,点A,B,C在⊙O上,若∠C=55°,则∠AOB的度数为( )A.95°B.100°C.105°D.110°2.(2023•吉林)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是( )A.70°B.105°C.125°D.155°3.(2023•枣庄)如图,在⊙O中,弦AB,CD相交于点P.若∠A=48°,∠APD=80°,则∠B的度数为( )A.32°B.42°C.48°D.52°4.(2023•眉山)如图,AB切⊙O于点B,连结OA交⊙O于点C,BD∥OA交⊙O于点D,连结CD,若∠OCD=25°,则∠A的度数为( )A.25°B.35°C.40°D.45°5.(2023•湖北)如图,在△ABC中,∠ACB=70°,△ABC的内切圆⊙O与AB,BC分别相切于点D,E,连接DE,AO的延长线交DE于点F,则∠AFD= .【中考模拟练】1.(2024•连云区一模)如图,正五边形ABCDE内接于⊙O,点P是劣弧上一点(点P不与点C重合),则∠CPD=( )A.45°B.36°C.35°D.30°2.(2024•岱岳区一模)如图,AB是⊙O的直径,点D是的中点,∠BAC=40°,则∠ACD的度数是( )A.40°B.25°C.40°.D.30°3.(2024•甘井子区校级一模)如图,在⊙O中,OA、OB、OC为半径,连接AB、BC、AC.若∠ACB=53°,∠CAB =17°,则∠OAC 的度数为( )A .10°B .15°C .20°D .25°4.(2024•连云区一模)如图,一块直角三角板的30°角的顶点P 落在⊙O 上,两边分别交⊙O 于A ,B 两点,连结AO ,BO ,则∠AOB 的度数 °.5.(2024•新城区模拟)如图,在△ABC 中,∠B =70°,⊙O 是△ABC 的内切圆,M ,N ,K 是切点,连接OA ,OC .交⊙O 于E ,D 两点.点F 是上的一点,连接DF ,EF ,则∠EFD 的度数是 .题型02 “知1得4”模型的常见题型解题大招:圆中模型“知1得4”由图可得以下5点:①AB=CD;②⋂⋂=CD AB ;③OM=ON;④F E ∠=∠;⑤COD AOB ∠=∠;以上5个结论,知道其中任意1个,剩余的4个都可以作为结论使用。
初三数学--与圆有关的角考点总结

与圆有关的角考点聚焦圆是重要的平面图形,与圆有关的角(圆心角,圆周角,圆内接四边形的内角,与切线有关的夹角,扇形的圆心角等)是圆中最基础最重要的内容之一纵观近年来各地的中考数学试卷,与圆有关的角相关的考题都占有一定的比重,有的直接单一考查圆周角、圆心角的有关知识点,这类问题多以选择题和填空题的形式出现;有的则与其他知识点或生活实际相结合,成为综合解答类试题,以考查学生综合运用有关知识分析问题与解决问题的能力.其考点则主要聚焦在以下几个方面.考点1求圆心角的度数例1(2017•绍兴)如图1,一块含45°角的直角三角板,它的一个锐角顶点A 在圆上,边,AB AC 分别与⊙O 交于点,D E ,则DOE ∠的度数为.解:Q 点A 在圆上45DAE ∠=︒,1452DAE DOE ∴∠=∠=︒.90DOE ∴∠=︒.评注:根据图形特点,利用同弧(»DE)所对的圆心角DOE ∠等于圆周角DAE ∠的2倍,可使问题获得解答.同步练习1(2017•兰州)如图2.在⊙O 中,AB BC =,点D 在⊙O 上,25CDB ∠=︒,则AOB ∠=()A.45° B.50°C.55°D.60°考点2求圆周角的大小例2(2017•重庆)如图3,BC 是⊙O 的直径,点A 在圆上,连接,,64AO AC AOB ∠=︒,则ACB ∠=.解:由题设知ACB ∠是弧AB 所对的圆周角,AOB ∠是弧AB 所对的圆心角.又64AOB ∠=︒,1322ACB AOB ∴∠=∠=︒.评注:此类考题是基础题,理解并掌握同一条弧所对的圆周角等于圆心角的一半是正确解题的关键.同步练习2(2017•自贡)如图4,AB 是⊙O 的直径,PA 切⊙O 于点,A PO 交⊙O 于点C ,连接BC ,若40P ∠=︒,则B ∠=()A.20°B.25°C.30°D.40°考点3求与圆心角和圆周角相关的其它角的度数例3(2017•泰安)如图5,ABC ∆内接于⊙O ,若A α∠=,则OBC ∠=()A.1802α︒-B.2αC.90α︒+D.90α︒-解:如图6,连接OC .O Q 为圆心,A α∠=,22BOC A α∠=∠=.又OB OC =,OBC OCB ∴∠=∠.21801802OBC BOC α∴∠=︒-∠=︒-,即90OBC α∠=︒-故选D.评注:根据题设条件,作出辅助线OC ,构造出圆心角BOC ∠是解答本题的切入点,而利用BOC ∠与A ∠之间的关系,以及等腰三角形的性质,用含α的式子表示出OBC ∠是解答本题的关键.同步练习3(2017•扬州)如图7,已知⊙O 是ABC ∆的外接圆,连接AO ,若40B ∠=︒,则OAC ∠=.考点4圆内接四边形的内角例4(2017•南京)如图8,四边形ABCD 是菱形,⊙O 经过点,,A C D ,与BC 相交于点E ,连接,AC AE ,若78D ∠=︒,则EAC ∠=.解:Q 四边形ABCD 是菱形,//AD BC ∴.78D ∠=︒Q ,102BCD ∴∠=︒.1512ECA BCD ∴∠=∠=︒.Z又四边形AECD 为⊙O 的内接四边形,180AEC D ∴∠+∠=︒.102AEC ∴∠=︒.1801801025127EAC AEC ECA ∴∠=︒-∠-∠=︒-︒-︒=︒.评注:圆内接四边形的四个内角都是圆周角,它们的内对角互补.同步练习4(2017•淮安)如图9,在圆内接四边形ABCD 中,若,,A B C ∠∠∠的度数之比为4:3:5,则D ∠的度数是.考点5弧、弦、圆心角、圆周角之间的关系例5(2017•湖州)如图10,已知,在ABC ∆中,AB AC =,以AB 为直径作半圆O ,交BC 于D .若40BAC ∠=︒,则»AD 的度数是度.解:如图11,连接OD .,40AB AC BAC =∠=︒Q ,70ABC C ∴∠=∠=︒,即70ABD ∠=︒.2270140AOD ABD ∴∠=∠=⨯︒=︒.∴»AD 的度数是140°.评注:本题考查了弧、圆周角、圆心角之间的关系,明确所求弧的度数等于这条弧上的圆心角的度数是正确解题的关键.同步练习5(2017•北京)如图12,AB 为⊙O 的直径,,C D 为⊙O 上的点,»»AD CD=,若40CAB ∠=︒,则CAD ∠=.考点6与圆心角有关的弧长计算例6(2017•安徽)如图13,已知等边ABC ∆的边长为6,以AB 为直径的⊙O 与边,AC BC 分别交于,D E 两点,则»DE 的长为.解:如图14,连接,,OD OE AE .ABC ∆Q 为等边三角形,60BAC ∴∠=︒.又AB 为直径,90AEB ∴∠=︒.即AE BC ⊥.30BAE CAE ∴∠=∠=︒.260DOE DAE ∴∠=∠=︒.又132OD OA AB ===Q ,»DE ∴的长603180ππ⨯⨯==.评注:求弧长,必须知道弧所对的圆心角的大小.本题根据等边三角形“三线合一”的性质先求出圆周角DAE ∠的度数,从而可得到圆心角DOE ∠的度数,然后利用弧长公式可求出»DE的长.同步练习6(2017•枣庄)如图15,在ABCD Y 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知12,60AB C =∠=︒,则»FE 的长为.考点7与切线有关的夹角问题例7(2017•滨州)如图16,点E 是ABC ∆的内心,AE 的延长线交BC 于点F ,交ABC ∆的外接圆⊙O 于点D ,连接BD ,过点D 作直线DM ,使BDM DAC ∠=∠.求证:直线DM 是⊙O 的切线.证明:如图17,连接OD .Q 点E 是ABC ∆的内心,AE 的延长线交⊙O 于点D ,BAD DAC ∴∠=∠.»»BDCD ∴=,即D 为»BC 的中点.OD BC ∴⊥.,BDM DAC DAC DBC ∠=∠∠=∠Q ,BDM DBC ∴∠=∠.//DM BC ∴.OD BC ⊥Q ,DM OD ∴⊥.∴直线DM 是⊙O 的切线.评注:当过半径外端点的一条直线(DM )与过这个端点的一条弦(DB )所夹的角(BDM ∠),等于这个角所夹弧上的圆周角(BAD ∠)时,则这条直线必是圆的切线.值得注意的是,上述命题的逆命题也成立.即知道一条直线是圆的切线时,则切线与弦的夹角等于其所夹弧上的圆周角(有兴趣的读者可自证之).熟知上述两个结论,在求解有关问题(特别是选择题和填空题)时,可简化过程,收到事半功倍的效果.同步练习7(2017•福建)如图18,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,点P 在CA 的延长线上,45CAD ∠=︒.(1)若AB =4,求»CD的长;(2)若»»BCAD =,AD AP =,求证:PD 是⊙O 的切线.考点8与其他知识结合的综合性问题例8(2017•台州)如图19,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与,B C 重合),PE 是ABP ∆的外接圆⊙O 的直径.(1)求证:APE ∆是等腰直角三角形;(2)若⊙O 的直径为2,求22PC PB +的值.解:(1)证明:ABC ∆Q 为等腰直角三角形,,90AC AB CAP BAP ∴=∠+∠=︒.PE Q 为⊙O 的直径,90BAE BAP ∴∠+∠=︒.CAP BAE ∴∠=∠.Q 四边形AEBP 为⊙O 的内接四边形,180APB AEB ∴∠+∠=︒.又180APC APB ∠+∠=︒,APC AEB ∴∠=∠.ACP ABE ∴∆≅∆.AP AE ∴=.又90PAE ∠=︒,APE ∴∆是等腰直角三角形.(2)ACP ABE ∆≅∆Q ,CP BE ∴=.PE Q 为⊙O 的直径,90PBE ∴∠=︒.222,2EB PB PE PE +==Q .222224PC PB PE ∴+===.评注:本题由全等三角形和圆周角及其推论(直径所对的圆周角是直角),证出APE ∆是等腰直角三角形;在ACP ABE ∆≅∆的基础上,结合勾股定理并利用整体求值的思想方法计算出22PC PB +的值,知识间联系自然,具有较好的综合性.同步练习8(2017•天津)已知AB 是⊙O 的直径,AT 是⊙O 的切线,50ABT ∠=︒,BT 交⊙O 于点,C E 是AB 上一点,延长CE 交⊙O 于点D .(1)如图20,求T ∠和CDB ∠的大小;(2)如图21,当BE BC =时,求CDO ∠的大小.参考答案1.B2.B3.50°4.120°5.25°6.π7.(1)π(2)»»BCAD =Q ,BOC AOD ∴∠=∠,90COD ∠=︒Q ,45AOD ∴∠=︒,18067.52AOD ODA ︒-∠∴∠==︒,又45,CAD AD AP ∠=︒=,122.52ADP APD CAD ∴∠=∠=∠=︒,67.522.590ODP ODA ADP ∴∠=∠+∠=︒+︒=︒,即OD PD ⊥.∴PD 是⊙O 的切线.8.(1)40T ∠=︒,40CDB ∠=︒.(2)15CDO ∠=︒。
初中数学中考圆的知识点-初三数学圆知识点

初中数学中考圆的知识点:初三数学圆知识点
圆的知识:平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
圆心:
(1)如定义(1)中,该定点为圆心
(2)如定义(2)中,绕的那一端的端点为圆心。
(3)圆任意两条对称轴的交点为圆心。
(4) 垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O表示
直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。
直径一般用字母d表示。
半径:连接圆心和圆上任意一点的线段,叫做圆的半径。
半径一般用字母r表示。
圆的直径和半径都有无数条。
圆是轴对称图形,每条直径所在的直线是圆的对称轴。
在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。
计算时,通常取它的近似值,π≈3.14。
直径所对的圆周角是直角。
90°的圆周角所对的弦是直径。
圆的面积公式:圆所占平面的大小叫做圆的面积。
πr,用字母S表示。
一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
初三数学常考圆的知识点归纳

初三数学常考圆的知识点归纳(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!初三数学常考圆的知识点归纳在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。
中考数学一轮复习 与圆有关的角

中考数学一轮复习 与圆有关的角知识考点:1、掌握与圆有关的角,如圆心角、圆周角、弦切角等概念;2、掌握圆心角的度数等于它所对弧的度数;3、掌握圆周角定理及其推论;4、掌握弦切角定理及其推论;5、掌握各角之间的转化及其综合运用。
精典例题:【例1】如图,在等腰△ABC 中,AC =BC ,∠C =1000,点P 在△ABC 的外部,并且PC =BC ,求∠APB 的度数。
分析:注意条件AC =BC =PC ,联想到圆的定义,画出以点C 为圆心,AC 为半径的圆,问题则得以解决。
解:∵AC =BC ,PC =BC∴A 、B 、P 三点在以C 为圆心,AC 为半径的圆上 若P 、C 在AB 的同侧,则∠APB =21∠ACB ∵∠ACB =1000,∴∠APB =500若P 、C 在AB 的异侧,则∠APB =1800-50=1300【例2】如图,在△ABC 中,∠B =900,O 是AB 上一点,以O 为圆心,OB 为半径的圆与AB 交于E ,与AC 切于点D ,直线ED 交BC 的延长线于F ,若AD ∶AE =2∶1,求cot ∠F 的值。
分析:由AD ∶AE =2∶1和△ADE ∽△ABD 有DE ∶DB =1∶2,而∠F =∠EBD ,则cot ∠F=cot ∠EBD =DEBD,故结论得证。
解:连结BD∵AC 为⊙O 的切线,∴∠1=∠2 ∵∠A =∠A ,∴△ADE ∽△ABD∴DE BD AE AD=,即12=AE AD ∴212==DEDB∵BE 为⊙O 的直径,∴∠BDE =900∴∠2+∠BEF =900,∵∠F +∠BEF =900,∴∠2=∠F ∴cot ∠F =cot ∠2=DEBD=2 【例3】如图,由矩形ABCD 的顶点D 引一条直线分别交BC 及AB 的延长线于F 、G ,连结AF 并延长交△BGF 的外接圆于H ,连结GH 、BH 。
(1)求证:△DFA ∽△HBG ;'•例1图P CBA•例2图21OEFDCBA(2)过A 点引圆的切线AE ,E 为切点,AE =33,CF ∶FB =1∶2,求AB 的长; (3)在(2)的条件下,又知AD =6,求tan ∠HBG 的值。
初三数学圆的有关性质及有关的角(含答案)

第三讲圆的有关性质及有关的角一、知识要点:1、圆是平面上到的距离等于的点的集合。
2、的三点确定一个圆;任何一个三角形都有一个外接圆,外接圆的圆心叫做三角形的心,它是三角形的的交点。
3、圆是以为轴的轴对称图形,又是以为中心的中心对称图形。
4、垂径定理的条件是,结论是。
5、在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦心距中,有一组量相等,那么它们所对应的其余各组量都。
重、难点:圆的基本性质,垂径定理。
基础知识圆的有关性质和计算①垂径定理: 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.弦的垂直平分线经过圆心,并且平分弦所对的两条弧.平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.②弧、弦、圆心角之间的关系:在同圆或等圆中,如果两条劣弧(优弧)、两条两个圆心角中有一组量对应相等,那么它们所对应的其余各组量也分别对应相等.③在同一圆内,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半.④圆内接四边形的性质: 圆的内接四边形对角互补,并且任何一个外角等于它的内对角.1、圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的;半圆(或直径)所对的圆周角是;90°的圆周角所对的弦是。
2、弦切角它所夹的弧对的圆周角。
3、圆内接四边形的对角;任何一个外角都等于它的。
二、例题讲解(1)圆的认识1、(2005•扬州)下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为()A.1个B.2个C.3个D.4个2、下列命题中,正确的是()A.圆只有一条对称轴B.圆的对称轴不止一条,但只有有限条C.圆有无数条对称轴,每条直径都是它的对称轴D.圆有无数条对称轴,每条直径所在的直线都是它的对称轴3、过圆上一点可以作出圆的最长弦的条数为()A.1条B.2条C.3条D.无数条4、下列命题中,正确的个数是()(1)不同的圆中不可能有相等的弦;(2)优弧一定大于劣弧;(3)半径相等的两个圆是等圆;(4)一条弦把圆分成的两段弧中,至少有一段是优弧.A.1个B.2个C.3个D.4个(2)垂径定理及推论例1、1.(2012•新疆)如图,圆内接四边形ABCD,AB是⊙O的直径,OD⊥BC于E.(1)请你写出四个不同类型的正确结论;(2)若BE=4,AC=6,求DE.练习1、(2019•南通)如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O 位于AB,CD的上方,求AB和CD的距离.变式题1:(2010•襄阳)圆的半径为13cm,两弦:AB∥CD,AB=24cm,CD=10cm,求两弦AB、CD的距离。
中考数学专题复习 与圆有关的角

专题与圆有关的角阅读与思考与圆有关的角主要有圆心角、圆周角、弦切角.特别的,直径所对的圆周角是直角.圆内接四边形提供相等的角、互补的角,在理解与圆有关的角的概念时,要注意角的顶点与圆的位置关系、角的两边与圆的位置关系.角在解题中经常发挥重要的作用,是证明角平分线、两线平行、两线垂直,判定全等三角形、相似三角形的主要条件,而圆的特点又使角的互相转化具备了灵活多变的优越条件,是解题中最活跃的元素.熟悉以下基本图形和以上基本结论.例题与求解【例1】如图,在△ABC中,AB=AC=5,BC=2,以AB为直径的⊙O分别交AC,BC于点D,E,则△CDE的面积为___________.(海南省竞赛题)例1题图例2题图解题思路:作DF⊥BC于F,需求出CE,DF的长.由AB为⊙O的直径作出相关辅助线.»BC的中点,AM交BC于点D,若AD=3,DM=1,则MB 【例2】如图,△ABC内接于⊙O,M是的长是()A.4B.2C.3D.3解题思路:图中隐含许多相等的角,利用比例线段计算.【例3】如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中,∠DCE是直角,点D在线段AC上.(1)证明:B,C,E三点共线;(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=2OM;(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(如图2).若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=2OM1是否成立?若是,请证明;若不是,说明理由.解题思路:对于(2),充分利用条件中的多个中点,探寻线段之间的数量关系与位置关系.图1图2【例4】如图所示,ABCD为⊙O的内接四边形,E是BD上的一点,∠BAE=∠DAC.求证:(1)△ABE∽△ACD;(2)AB·DC+AD·BC=AC·BD.(陕西省竞赛试题)解题思路:由(1)可类比猜想,为(2)非常规问题的证明铺平道路.【例5】如图1,已知⊙M与x轴交于点A,D,与y轴正半轴交于点B,C是⊙M上一点,且A(-2,0),B(0,4),AB=BC.(1)求圆心M的坐标;(2)求四边形ABCD的面积;(3)如图2,过C点作弦CF交BD于点E,当BC=BE时,求CF的长.解题思路:作出基本辅助线(如连接BM或AC),这是解(1)、(2)的基础;对于(3),由BC=BE,得∠BEC=∠BCE,连接AC,将与圆无关的∠BEC转化为与圆有关角,导出CF平分∠ACD,这是解题的关键.【例6】如图,AB,AC,AD是⊙O中的三条弦,点E在AD上,且AB=AC=AE.求证:(1)∠CAD=2∠DBE;(2)AD2-AB2=BD·DC.(浙江省竞赛试题)解题思路:对于(2),AD2-AB2=(AD+AB)(AD-AB)=(AD+AE)(AD-AE)=(AD+AE)·DE,需证(AD+AE)·DE=BD·DC,从构造相似三角形入手.能力训练A级1.如图,AB是⊙O的直径,点C在⊙O上,∠BAC=30°,点P在线段OB上运动.设∠ACP=x,则x的取值范围是________.2.如图,AB是⊙O的直径,弦CD⊥AB,F是CG的中点,延长AF交⊙O于E,CF=2,AF=3,则EF的长为________.3.如图,AB,CD是⊙O的两条弦,它们相交于点P.连接AD,BD,已知AD=BD=4,PC=6,那么CD的长为________.BD=1.设AD=x,4.如图,圆内接四边形ABCD中的两条对角线相交于点P,已知AB=BC,CD=12用x的代数式表示PA与PC的积:PA·PC=__________.(宁波市中考试题)5.如图,ADBC是⊙O的内接四边形,AB为直径,BC=8,AC=6,CD平分∠ACB,则AD=()A.50B.32C.52D.42第4题图第5题图第6题图6.如图,在△ABC中,AD是高,△ABC的外接圆直径AE交BC边于点G,有下列四个结论:①AD2=BD·CD;②BE2=EG·AE;③AE·AD=AB·AC;④AG·EG=BG·CG.其中正确结论的个数是()A .1个B .2个C .3个D .4个(哈尔滨市中考试题)7.如图,正△ABC 内接于⊙O ,P 是劣弧»BC上任意一点,PA 与BC 交于点E ,有如下结论:①PA =PB +PC ;②111AP PB PC=+;③PA ·PE =PB ·PC .其中正确结论的个数是()(天津市中考试题)A .3个B .2个C .1个D .0个8.如图,四边形ABCD 内接于⊙O ,延长AD ,BC 交于点M ,延长AB ,DC 交于点N ,∠M =20°,∠N =40°,则∠A 的大小为()A .35°B .60°C .65°D .70°第7题图第8题图第9题图9.如图,已知⊙O 的内接四边形ABCD 中,AD =CD ,AC 交BD 于点E .求证:(1)AD DE BD AD=;(2)AD ·CD -AE ·EC =DE 2;(扬州市中考试题)10.如图,已知四边形ABCD 外接圆⊙O 的半径为5,对角线AC 与BD 交于点E ,且AB 2=AE •AC ,BD =8,求△ABD 的面积.(黑龙江省中考试题)11.如图,已知⊙O 的内接△ABC 中,AB +AC =12,AD ⊥BC 于D ,AD =3.设⊙O 的半径为y ,AB 的长为x .(1)求y 与x 之间的函数关系式;(2)当AB 的长等于多少时,⊙O 的面积最大?并求出⊙O 的最大面积.(南京市中考试题)12.如图,已知半圆⊙O 的直径AB =4,将一个三角板的直角顶点固定在圆心O 上.当三角板绕着O 点转动时,三角板的两条直角边与半圆周分别交于C ,D 两点,连接AD ,BC 交于点E .(1)求证:△ACE ∽△BDE ;(2)求证:BD =DE ;(3)设BD =x ,求△AEC 的面积y 与x 的函数关系式,并写出自变量x 的取值范围.(广东省中考试题)B 级1.如图,△ABC 内接于直径为d 的圆,设BC =a ,AC =b ,那么△ABC 的高CD =__________.2.如图,在平面直角坐标系中,△OCB 的外接圆与y 轴相交于点A (0,2),∠OCB =60°,∠COB =45°,则OC =__________.第1题图第2题图第3题图3.如图,AB 为⊙O 的直径,CD ⊥AB ,设∠COD =α,则2sin 2AB AD =________.(江苏省竞赛试题)4.如图,已知圆内接四边形ABCD 中,AD ≠AB ,∠DAB =90°,对角线AC 平分∠DAB .若AD =a ,AB =b ,则AC =___________.(“东亚杯”竞赛试题)5.如图,ABCD 是一个以AD 为直径的圆内接四边形,AB =5,PC =4,分别延长AB 和DC ,它们相交于点P ,若∠APD =60°,则⊙O 的面积为()A .25πB .16πC .15πD .13π6.如图,AB =AC =AD ,若∠DAC 是∠CAB 的k 倍(k 为正数),那么∠DBC 是∠BDC 的()A .k 倍B .2k 倍C .3k 倍D .以上答案都不对第4题图第5题图第6题图7.如图,AD 是Rt △ABC 斜边BC 上的高,AB =AC ,过A ,D 两点的圆与AB ,AC 分别相交于E ,F ,弦EF 与AD 相交于点G ,则图中与△GDE 相似的三角形的个数为()A .5个B .4个C .3个D .2个8.如图,AB 为⊙O 的直径,AC 交⊙O 于点E ,BC 交⊙O 于点D ,CD =BD ,∠C =70°,现给出以下四个结论:①∠A =45°;②AC =AB ;③»»AE BE;④CE ·AB =2BD 2.其中正确结论的序号是()A .①②B .②③C .②④D .③④(苏州市中考试题)第7题图第8题图第9题图9.如图,四边形ABCD 内接于⊙O ,BC 为⊙O 的直径,E 为DC 边上一点,若AE ∥BC ,AE =EC =7,AB =6.(1)求AD 的长;(2)求BE 的长.(绍兴市竞赛题)10.如图1,已知M(12,32,以M为圆心,MO为半径的⊙M分别交x轴,y轴于B,A.(1)求A,B两点的坐标;(2)C是»AO上一点,若BC=3,试判断四边形ACOM是何种特殊四边形,并说明理由;(3)如图2,在(2)的条件下,P是»AB上一动点,连接PA,PB,PC.当P在»AB上运动时,求证:PA+POPC的值是定值.11.如图,四边形ABCD为正方形,⊙O过正方形的顶点A和对角线的交点P,分别交AB,AD于点F,E.(1)求证:DE=AF;(2)若⊙O的半径为32,AB=2+1,求AEED的值.(江苏省竞赛题)。
2025年中考数学考点分类专题归纳之 圆

2025年中考数学考点分类专题归纳圆知识点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.备注:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等.备注:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.4.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.备注:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.知识点二、与圆有关的位置关系1.判定一个点P是否在⊙O上设⊙O的半径为,OP=,则有点P在⊙O 外;点P在⊙O 上;点P在⊙O 内.备注:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点A1,A2……A n在同一个圆上的方法当A1O=A2O=……=A n O=R时,A1,A2……A n在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R,点O到直线的距离为.(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.4.切线的判定、性质(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.知识点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.备注:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.知识点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.备注:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.1.(2024•贺州)如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB,BD=5,则AH的长为()A.B.C.D.2.(2024•张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm3.(2024•襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.2C.D.24.(2024•衢州)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm5.(2024•枣庄)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.86.(2024•安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm7.(2024•临安区)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.8.(2024•乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸9.(2024•日照)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED 的正切值等于()A.B.C.2 D.10.(2024•巴中)如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB 等于()A.B.2 C.2D.311.(2024•赤峰)如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠AOD=130°,则∠C的度数是()A.50°B.60°C.25°D.30°12.(2024•盘锦)如图,⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为()A.15°B.25°C.30°D.50°13.(2024•陕西)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°14.(2024•柳州)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°15.(2024•铜仁市)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120°D.125°16.(2024•通辽)已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°17.(2024•咸宁)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6 B.8 C.5D.518.(2024•陇南)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°19.(2024•盐城)如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°20.(2024•邵阳)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°21.(2024•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.822.(2024•牡丹江)如图,△ABC内接于⊙O,若sin∠BAC,BC=2,则⊙O的半径为()A.3B.6C.4D.223.(2024•自贡)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.B.C.D.24.(2024•湘西州)已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定25.(2024•湘西州)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10 B.8 C.4D.426.(2024•福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°27.(2024•宜昌)如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A.30°B.35°C.40°D.45°28.(2024•重庆)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2C.3 D.2.529.(2024•海南)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D 在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_______.30.(2024•烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为_________.31.(2024•孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是______cm.32.(2024•广元)如图是一块圆环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C 与的中点D的距离CD=2cm.则此圆环形玉片的外圆半径为___cm.33.(2024•舟山)如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为________cm.34.(2024•毕节市)如图,AB是⊙O的直径,C、D为半圆的三等分点,CE⊥AB于点E,∠ACE的度数为_____.35.(2024•随州)如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B=____度.36.(2024•黑龙江)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=_____.37.(2024•吉林)如图,A,B,C,D是⊙O上的四个点,,若∠AOB=58°,则∠BDC=____度.38.(2024•北京)如图,点A,B,C,D在⊙O上,,∠CAD=30°,∠ACD=50°,则∠ADB=_____.39.(2024•绥化)如图,△ABC是半径为2的圆内接正三角形,则图中阴影部分的面积是________(结果用含π的式子表示).40.(2024•常州)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是___.41.(2024•新疆)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部分的面积是__.42.(2024•临沂)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是______cm.43.(2024•内江)已知△ABC的三边a,b,c,满足a+b2+|c﹣6|+28=410b,则△ABC的外接圆半径=_.44.(2024•益阳)如图,在圆O中,AB为直径,AD为弦,过点B的切线与AD的延长线交于点C,AD=DC,则∠C=____度.45.(2024•枣庄)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.46.(2024•徐州)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求的长.。
中考数学圆知识点

中考数学圆知识点中考数学圆知识点8篇在日常的学习中,是不是经常追着老师要知识点?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。
为了帮助大家掌握重要知识点,下面是店铺整理的中考数学圆知识点,欢迎大家借鉴与参考,希望对大家有所帮助。
中考数学圆知识点1圆的初步认识一、圆及圆的相关量的定义1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
2.圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
3.顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。
两圆圆心之间的距离叫做圆心距。
7.在圆上,由2条半径和一段弧围成的图形叫做扇形。
圆锥侧面展开图是一个扇形。
这个扇形的半径成为圆锥的母线。
二、有关圆的字母表示方法圆--⊙ 半径—r 弧--⌒ 直径—d扇形弧长/圆锥母线—l 周长—C 面积—S三、有关圆的基本性质与定理(27个)1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
中考数学黄金知识点系列专题28与圆有关的角

专题28 与圆有关的角聚焦考点☆温习理解一、弧、弦、弦心距、圆心角之间的关系定理1、圆心角顶点在圆心的角叫做圆心角。
2、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
3、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。
4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
名师点睛☆典例分类考点典例一、圆心角、圆周角之间的换算.【例1】(2016山东济宁第5题)如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40° B.30° C.20° D.15°【答案】C.【解析】考点:圆周角定理.【点睛】此题运用了圆周角定理.一条弧所对的圆周角等于它所对的圆心角的一半.【举一反三】(2016湖南娄底第6题)如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为()A.20° B.40° C.50° D.70°【答案】C.【解析】试题分析:根据圆周角定理可得∠B=∠D=40°,∠ACB=90°,所以∠CAB=90°﹣40°=50°.故答案选C.考点:圆周角定理.考点典例二、圆周角与垂径定理的关系【例2】(2016内蒙古巴彦淖尔第3题)如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=40°,则∠ABD 与∠AOD分别等于()A.40°,80°B.50°,100°C.50°,80°D.40°,100°【答案】B.【解析】。
2019年中考数学黄金知识点系列专题28与圆有关的角培优讲义128

专题28 与圆有关的角聚焦考点☆温习理解一、弧、弦、弦心距、圆心角之间的关系定理1、圆心角顶点在圆心的角叫做圆心角。
2、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
3、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。
4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
名师点睛☆典例分类考点典例一、圆心角、圆周角之间的换算.【例1】(中考山东济宁第5题)如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40° B.30° C.20° D.15°【答案】C.【解析】考点:圆周角定理.【点睛】此题运用了圆周角定理.一条弧所对的圆周角等于它所对的圆心角的一半.【举一反三】(中考湖南娄底第6题)如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为()A.20° B.40° C.50° D.70°【答案】C.【解析】试题分析:根据圆周角定理可得∠B=∠D=40°,∠ACB=90°,所以∠CAB=90°﹣40°=50°.故答案选C.考点:圆周角定理.考点典例二、圆周角与垂径定理的关系【例2】(中考内蒙古巴彦淖尔第3题)如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=40°,则∠ABD与∠AOD分别等于()A.40°,80°B.50°,100°C.50°,80°D.40°,100°【答案】B.【解析】考点:圆周角定理;垂径定理.【举一反三】如图,在⊙O中,CD⊥AB于E,若∠BAD=30°,且BE=2,则CD= .【答案】.【解析】试题分析:如答图,连接OD,设⊙O的半径为r,∵∠BAD=30°,∴∠BOD=2∠BAD=60°.∵CD⊥AB,∴DE=CE.在Rt△ODE中,OE=OB-BE=r-2,OD=r,∵OE cos EOD cos60OD ∠=︒=,∴r21r2-=,解得r =4,∴OE=4-2=2,∴DE∴CD=2DE=.考点典例三圆周角与切线之间的关系【例3】(中考海南省第12题)如图,AB 是⊙O 的直径,直线PA 与⊙O 相切于点A ,PO 交⊙O 于点C ,连接BC .若∠P=40°,则∠ABC 的度数为( ) A .20° B .25° C .40° D .50°【答案】B. 【解析】【举一反三】(中考黑龙江哈尔滨第18题)如图,AB 为⊙O 的直径,直线l 与⊙O 相切于点C ,AD⊥l,垂足为D ,AD 交⊙O 于点E ,连接OC 、BE .若AE=6,OA=5,则线段DC 的长为 .【答案】4. 【解析】试题分析:令OC 交BE 于F ,∵AB 为⊙O 的直径,∴∠AEB=90°,∵AD ⊥CD ,∴BE ∥CD ,∵CD 为⊙O 的切线,∴OC ⊥CD ,∴OC ⊥BE ,∴四边形CDEF 为矩形,∴CD=EF ,在Rt △ABE 中,822=-=AE AB BE ,∵OF⊥BE ,∴BF=EF=4,∴CD=4.考点:1切线;2矩形的性质;3勾股定理. 考点典例四 与圆周角有关的证明【例4】(中考湖北黄石第19题)(本小题满分7分)如图,⊙O 的直径为AB ,点C 在圆周上(异于B A ,),CD AD ⊥.(1)若BC =3,5=AB ,求AC 的值;(2)若AC 是DAB ∠的平分线,求证:直线CD 是⊙O 的切线.【答案】(1)4;(2)详见解析. 【解析】(2)证明:AC 是DAB ∠的角平分线,BAC DAC ∠=∠∴ 又︒=∠=∠∴⊥90,ACB ADC DC ADADC ∆∴∽CBA DCA ACB ∠=∠∴∆,又OC OA = ,OCA OAC ∠=∠∴︒=∠=∠+∠∴︒=∠+∠90,90OCD ACD OCA OBC OAC DC ∴是⊙O 的切线.解法二(2)证明:AC 是DAB ∠的角平分线,BAC DAC ∠=∠∴ 圆的性质OC OA = ,OCA OAC ∠=∠∴OCA DAC ∠=∠∴ 即AD ∥OC ,又DC AD ⊥ ,DC OC ⊥∴DC ∴是⊙O 的切线 考点:圆周角定理;勾股定理;切线的判定. 【举一反三】A第19题图如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连接CD.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.【答案】(1)证明见解析;(2)当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切,理由见解析. 【解析】∵∠ACB=90°,∴∠DCB+∠ACD=90°. ∴∠DCB=∠A.(2)当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切,理由如下:如答图,连接DO,∵DO=CO,∴∠1=∠2.∵DM=CM,∴∠4=∠3.∵∠2+∠4=90°,∴∠1+∠3=90°. ∴直线DM与⊙O相切.课时作业☆能力提升一.选择题1.(中考江苏常州第5题)如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A B.5cm C.6cm D.10cm【答案】B.【解析】考点:圆周角定理;勾股定理.2.(中考四川达州第7题)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.B.2 C.D.【答案】C.【解析】考点:圆周角定理;锐角三角函数的定义.3.(中考湖北襄阳第8题)如图,I是∆ABC的内心,AI向延长线和△ABC的外接圆相交于点D,连接BI,BD,DC下列说法中错误的一项是( )A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI熏合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合【答案】D.【解析】考点:内心的概念;圆周角定理.4.(中考湖南娄底第6题)如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为()A.20° B.40° C.50° D.70°【答案】C.【解析】试题分析:根据圆周角定理可得∠B=∠D=40°,∠ACB=90°,所以∠CAB=90°﹣40°=50°.故答案选C.考点:圆周角定理.5.(中考内蒙古巴彦淖尔第3题)如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=40°,则∠ABD与∠AOD 分别等于()A.40°,80°B.50°,100°C.50°,80°D.40°,100°【答案】B.【解析】考点:圆周角定理;垂径定理.6.如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是()A. 26° B. 116° C. 128° D. 154°【答案】C.【解析】试题分析:∵∠A=64°,∴∠BOC=2∠A=2×64°=128°.故选C.考点:圆周角定理.二.填空题1. (中考内蒙古包头第18题)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为.【解析】考点:切线的性质;锐角三角函数.2.(中考湖南湘西州第7题)如图,在⊙O中,圆心角∠AOB=70°,那么圆周角∠C=.【答案】35°.【解析】试题分析:根据在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,可得∠C=21∠AOB=21×70°=35°. 考点:圆周角定理.3. (中考山东枣庄第15题)如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,则tan D = .【答案】22.【解析】试题分析:如图,连接BC ,根据直径所对的圆周角为直角可得△ACB 为直角三角形,在直角三角形△ACB 中,AC=2,AB=6,由勾股定理可得BC=42,由圆周角定理可得∠A=∠D,所以tan D =tan A =22224==AC BC.考点:圆周角定理;勾股定理;锐角三角函数.4. (中考贵州铜仁第16题)如图,点A ,B ,C 在⊙O 上,∠OBC =18°,则∠A = .第15题图【答案】72°.【解析】考点:圆周角定理.5.(中考浙江台州第13题)如图,△ABC的外接圆O的半径为2,∠C=40°,则AB的长是.【答案】89π.【解析】试题分析:∵∠C=40°,∴∠AOB=80°,∴AB的长是802180π⨯⨯=89π.故答案为:89π.考点:三角形的外接圆与外心;弧长的计算.6.(中考广西来宾第18题)如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α= .【答案】140°.【解析】考点:圆周角定理.7.(中考广西河池第16题)如图,AB是⊙O的直径,点C,D都在⊙O上,∠ABC=50°,则∠BDC的大小是.【答案】40°.【解析】试题分析:∵∠ABC=50°,∴ADC的度数为100°,∵AB为直径,∴BC的度数为80°,∴∠BDC=12×80°=40°,故答案为:40°.考点:圆周角定理.8.(中考青海第10题)如图,在⊙O中,AB为直径,CD为弦,已知∠CAB=50°,则∠ADC= .【答案】40°.【解析】考点:圆周角定理.9.(中考重庆A 卷第15题)如图,OA ,OB 是⊙O 的半径,点C 在⊙O 上,连接AC ,BC ,若∠AOB =120°,则∠ACB = 度.【答案】60.【解析】试题分析:∵OA ⊥OB ,∴∠AOB =120°,∴∠ACB =120°×12=60°,故答案为:60. 考点:圆周角定理.10.(中考辽宁葫芦岛第15题)如图,A ,B ,C ,D 是⊙O 上的四个点,∠C=110°,则∠BOD= 度.【答案】140.【解析】试题分析:已知A ,B ,C ,D 是⊙O 上的四个点,∠C=110°,可知四边形ABCD 是圆内接四边形,根据圆内接四边形对角互补和可得∠C+∠A=180°,再由∠A=70°,∠BOD=2∠A ,可得∠BOD=140°.考点:圆周角定理;圆内接四边形的性质.三、解答题1.(中考湖北黄石第19题)(本小题满分7分)如图,⊙O 的直径为AB ,点C 在圆周上(异于B A ,),CD AD ⊥.(1)若BC =3,5=AB ,求AC 的值;(2)若AC 是DAB ∠的平分线,求证:直线CD 是⊙O 的切线.【答案】(1)4;(2)详见解析.【解析】(2)证明:AC 是DAB ∠的角平分线,BAC DAC ∠=∠∴ 又︒=∠=∠∴⊥90,ACB ADC DC ADADC ∆∴∽CBA DCA ACB ∠=∠∴∆,又OC OA = ,OCA OAC ∠=∠∴︒=∠=∠+∠∴︒=∠+∠90,90OCD ACD OCA OBC OAC DC ∴是⊙O 的切线.解法二(2)证明:AC 是DAB ∠的角平分线,BAC DAC ∠=∠∴ 圆的性质OC OA = ,OCA OAC ∠=∠∴OCA DAC ∠=∠∴ 即AD ∥OC ,又DC AD ⊥ ,DC OC ⊥∴DC ∴是⊙O 的切线 考点:圆周角定理;勾股定理;切线的判定.A 第19题图。
2017年中考数学黄金知识点系列专题28与圆有关的角

最大最全最精的教育资源网专题 16 直角三角形聚焦考点☆复习理解一、直角三角形1.定义有一个角是直角的三角形叫作直角三角形2.性质(1)直角三角形两锐角互余 .(2)在直角三角形中,假如一个锐角等于30°,那么它所对的直角边等于斜边的一半;( 3)在直角三角形中,斜边上的中线等于斜边的一半.3.判断( 1)两个内角互余的三角形是直角三角形.( 2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.二、勾股定理及逆定理1.勾股定理:直角三角形的两条直角边a、 b 的平方和等于斜边 c 的平方,即: a2+b2=c 2;2.勾股定理的逆定理假如三角形的三条边a、 b、 c 相关系: a2+b2=c2,那么这个三角形是直角三角形.三、直角三角形全等的判断:关于特别的直角三角形,判断它们全等时,除了有一般三角形全等的判断方法,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)四、互抗命题、互逆定理1.互抗命题假如一个命题的题设和结论是另一个命题的结论和题设,我们把风这两个命题叫做互抗命题. 把此中一个叫做原命题,那么另一个叫做它的抗命题.2.互逆定理若一个定理的抗命题是正确的,那么它就是这个定理的逆定理,称这两个定理为互逆定理.名师点睛☆典例分类【例 1】( 2016 湖北鄂州第15 题)如图, AB=6, O是 AB的中点,直线l 经过点O,∠1=120°,P是直线l 上一点。
当△APB为直角三角形时,AP=.【答案】 3或 33或37.【分析】【贯通融会】以下四组线段中,能够组成直角三角形的是( )A. 4,5,6B.1.5,2 ,2.5C. 2,3,4D. 1, 2 ,3【答案】 B.【分析】考点:勾股定理的逆定理.考点典例二、直角三角形的性质【例 2】(2016 湖北随州第13 题)如图,在△ ABC中,∠ ACB=90°, M、 N分别是 AB、 AC的中点,延伸BC至点 D,使 CD= BD,连结 DM、 DN、 MN.若 AB=6,则 DN=.【答案】 3.【分析】考点:三角形中位线定理;直角三角形斜边上的中线;平行四边形的判断与性质.【贯通融会】1.( 2016 贵州铜仁第 9 题)如图,已知∠AOB=30°,P是∠AOB均分线上一点,CP∥OB,交OA于点C,PD ⊥ OB,垂足为点 D,且 PC=4,则 PD等于()A.1B.2C.4D.8【答案】 B.【分析】试题剖析:过点P作 PE⊥OA于点 E,∵ OP是∠ AOB的均分线,∴ PE=PD.∵PC∥ OB,∴∠ POD=∠ OPC,∴∠ PCE=∠ POC+∠ OPC=∠ POC+∠ POD=∠ AOB=30°,∴ PE=1PC=2,∴ PD=2.故2选 B.考点:角均分线的性质;含30 度角的直角三角形.考点典例三、直角三角形斜边上的中线【例 3】( 2016 辽宁葫芦岛第9 题)如图,在△ ABC中,点 D, E 分别是边AB, AC的中点, AF⊥BC,垂足为点 F,∠ ADE=30°, DF=4,则 BF 的长为()A.4B.8C.23 D .43【答案】 D.【分析】考点:三角形中位线定理;直角三角形斜边上的中线.【点睛】此题主要考察了三角形的中位线定理及直角三角形斜边上的中线的性质,解题的重点是据图找出规律.【贯通融会】( 2016 四川达州第9 题)如图,在△ ABC中, BF 均分∠ ABC,AF⊥ BF 于点 F,D 为 AB 的中点,连结DF延伸交 AC于点 E.若 AB=10, BC=16,则线段EF 的长为()A.2B. 3C.4D.5【答案】 B.【分析】考点典例四、命题【例 4】( 2016 年福建龙岩第 4 题)以下命题是假命题的是()A.若 |a|=|b|,则a=bB.两直线平行,同位角相等C.对顶角相等22D.若 b ﹣ 4ac> 0,则方程ax +bx+c=0( a≠ 0)有两个不等的实数根【答案】 A.【分析】试题剖析:选项A:若 a=1, b=-1 ,则 |a|=|b|,但a≠ b,此命题为假命题;选项B:两直线平行,同位角相等是真命题;选项C:对顶角相等是真命题;选项D:若 b2﹣ 4ac > 0,则方程ax2+bx+c=0( a≠ 0)有两个不等的实数根是真命题.应选 A.考点:命题与定理.【点睛】此题考察了命题与定理的相关问题,关于假命题举出反例证明即可. .【贯通融会】( 2016 内蒙古包头第10 题)已知以下命题:①若a> b,则 a2> b2;②若 a>1,则( a﹣ 1)0=1;③两个全等的三角形的面积相等;④四条边相等的四边形是菱形.此中原命题与抗命题均为真命题的个数是()A.4 个 B.3 个 C.2 个 D.1 个【答案】 D.【分析】试题剖析:①当a=0,b=﹣ 1 时, a2<b2,因此命题“若a> b,则 a2> b2”为假命题,其抗命题为若a2> b2;,则 a> b“,此抗命题也是假命题,如 a=﹣ 2,b=﹣ 1;②若 a> 1,则( a﹣1)0=1,此命题为真命题,它的抗命题为:若( a﹣1)0=1,则 a> 1,此抗命题为假命题,由于( a﹣ 1)0=1,则 a≠ 1;③两个全等的三角形的④面积相等,此命题为真命题,它的抗命题为面积相等的三角形全等,此抗命题为假命题;四条边相等的四边形是菱形,这个命题为真命题,它的抗命题为菱形的四条边相等,此抗命题为真命题.故答案选 D.考点:命题与定理.课时作业☆能力提高一、选择题1.(2016贵州铜仁第6 题)以下命题为真命题的是()A.有公共极点的两个角是对顶角最大最全最精的教育资源网B.多项式x34x因式分解的结果是 x(x24)C.a a a2D.一元二次方程2无实数根x x 2 0【答案】 D.【分析】考点:命题与定理.2.(2016湖南岳阳第7 题)以下说法错误的选项是()A.角均分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形【答案】 C.【分析】考点:中心对称图形;角均分线的性质;直角三角形斜边上的中线;菱形的性质.3.(2016黑龙江绥化第6 题)如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点 A 处)在距她家北偏东60°方向的500 米处,那么水塔所在的地点到公路的距离AB是()A.250 米B.2503米C.500 3米D.500 2 米3【答案】 A.【分析】试题剖析:由题意∠AOB=90°﹣60°=30°, OA=500,∵ AB⊥ OB,∴∠ ABO=90°,∴ AB=1AO=250米.应选2A.考点:解直角三角形的应用- 方向角问题.4.( 2016 四川南充第 7 题)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则 DE的长为()A.1B.2C.3D.1+3【答案】 A.【分析】试题剖析:如图,∵在Rt△ ABC中,∠ C=90°,∠ A=30°,∴ AB=2BC=2.又∵点D、 E 分别是 A C. BC 的中点,∴ DE是△ ACB的中位线,∴ DE=1AB=1.应选A.2考点:三角形中位线定理;含30 度角的直角三角形.5.(2016广东广州第7 题)如图 2,已知三角形ABC,AB=10,AC=8,BC=6,DE是 AC的垂直均分线,DE交 AB 于 D,连结 CD, CD=( )A、3B、4C、4.8D、5CEA D B图 2【答案】 D.【分析】考点:勾股定理及逆定理; 中位线定理 ; 中垂线的性质 .二、填空题6. ( 2016 黑龙江哈尔滨第17 题)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点 P 为边 BC的三均分点,连结 AP,则 AP的长为.【答案】 13 或10 .【分析】试题剖析:①如图1,∵∠ ACB=90°, AC=BC=3,∵ PB=1BC=1,∴ CP=2,∴AP AC 2PC 213 ,3②如图 2,∵∠ ACB=90°, AC=BC=3,∵ PC=1BC=1,∴2210,的长为或AP AC PC1310 . 3AP考点: 1 分类思想; 2 等腰直角三角形.7.(2016湖北武汉第16 题)如图,在四边形ABCD中,∠ ABC=90°, AB=3,BC=4, CD=10, DA=5 5,则 BD的长为_______.【答案】 241 .【分析】考点:相像三角形判断及性质;勾股定理.8. 在△ABC中,∠B=30°,AB=12,AC=6,则BC=.【答案】 6 3.【分析】试题剖析:∵∠ B=30°, AB=12,AC=6,∴△ ABC是直角三角形,∴BC=AB 2AC2=12262= 6 3 ,故答案为: 6 3.考点: 1.含 30 度角的直角三角形;2.勾股定理.最大最全最精的教育资源网9. 如图,在Rt △ ABC中,∠ ABC=90°, AB=3, AC=5,点 E 在 BC上,将△ ABC沿 AE折叠,使点 B 落在 AC边上的点 B′处,则BE的长为.【答案】 3 .2【分析】考点: 1.折叠的性质; 2. 勾股定理; 3. 方程思想的应用.10.( 2016 福建莆田第 16 题)魏朝期间,刘徽利用以下图经过“以盈补虚,进出相补”的方法,即“勾自乘为朱方,股自乘为青方,令进出相补,各从其类” ,证了然勾股定理.若图中 BF=1, CF=2,则 AE的长为__________ .【答案】 3 10 .【分析】考点:勾股定理;相像三角形的判断与性质.11. ( 2016 福建泉州第 14 题)如图,在 Rt △ABC 中, E 是斜边 AB 的中点,若 AB=10,则 CE=. 【答案】 5.【分析】试题剖析:依据直角三角形斜边上的中线等于斜边的一半,可得 CE=1 AB=5.2考点:直角三角形斜边上的中线.三、解答题12. ( 2016 贵州贵阳第 18 题)(10 分)如图,点 E 正方形 ABCD 外一点,点 F 是线段 AE 上一点,△ EBF 是 等腰直角三角形,此中∠ EBF =90°,连结 CE 、 CF .( 1)求证:△ ABF ≌△ CBE ;( 2)判断△ CEF 的形状,并说明原因.【答案】(1)证明看法析; ( 2)△ CEF 是直角三角形.【分析】考点:正方形的性质;全等三角形的判断与性质;等腰直角三角形.13.(2016 湖北襄阳第 19 题 ) ( 本小题满分 6 分)如图,在△ ABC中. AD均分∠ BAC,且 BD=CD, DE⊥ AB于点 E, DF⊥AC于点 F.(1)求证: AB=AC;(2)若 AD=23,∠ DAC=30°,求 AC的长.【答案】(1)详看法析;( 2) 4.【分析】试题剖析: (1) 依据角均分线的性质可得DE=DF,再依据 HL 证明Rt BDE Rt CDF ;依据全等三角形的性质可得B C ,即可证得AB=AC;( 2)依据等腰三角形三线合一的性质可得AD BC ,在Rt ? ADC 中, AD=2 3,∠ DAC=30°,即可求得AC的长.试题分析: (1) 证明:∵ AD均分∠ BAC,DE⊥ AB,DF⊥ AC,∴DE=DFBD CD , Rt BDE Rt CDF .B C. AB AC.(2)AB AC,BD CD, AD BC.在Rt ? ADC中,DAC 30 ,AD 2 3, AC AD 4.cos30考点:角均分线的性质;全等三角形的判断及性质;直角三角形的性质.14.如图,在等边三角形 ABC中,点 D, E 分别在边 BC, AC上,且 DE∥ AB,过点 E 作 EF⊥ DE,交 BC的延伸线于点 F.(1)求∠ F 的度数;(2)若 CD=2,求 DF的长 .【答案】(1) 30°;( 2) 4.【分析】(2)∵∠ ACB=60°,∠ EDC=60°,∴△ EDC是等边三角形.∴ ED=DC=2.∵∠ DEF=90°,∠ F=30°,∴ DF=2DE=4.考点: 1. 等边三角形的判断与性质; 2. 平行的性质; 3. 含 30 度角的直角三角形的性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题28 与圆有关的角聚焦考点☆温习理解一、弧、弦、弦心距、圆心角之间的关系定理1、圆心角顶点在圆心的角叫做圆心角。
2、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
3、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。
4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
名师点睛☆典例分类考点典例一、圆心角、圆周角之间的换算.【例1】(2016山东济宁第5题)如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40° B.30° C.20° D.15°【答案】C.【解析】考点:圆周角定理.【点睛】此题运用了圆周角定理.一条弧所对的圆周角等于它所对的圆心角的一半.【举一反三】(2016湖南娄底第6题)如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为()A.20° B.40° C.50° D.70°【答案】C.【解析】试题分析:根据圆周角定理可得∠B=∠D=40°,∠ACB=90°,所以∠CAB=90°﹣40°=50°.故答案选C.考点:圆周角定理.考点典例二、圆周角与垂径定理的关系【例2】(2016内蒙古巴彦淖尔第3题)如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=40°,则∠ABD 与∠AOD分别等于()A.40°,80°B.50°,100°C.50°,80°D.40°,100°【答案】B.【解析】考点:圆周角定理;垂径定理.【举一反三】如图,在⊙O中,CD⊥AB于E,若∠BAD=30°,且BE=2,则CD= .【答案】.【解析】试题分析:如答图,连接OD,设⊙O的半径为r,∵∠BAD=30°,∴∠BOD=2∠BAD=60°.∵CD⊥AB,∴DE=CE.在Rt△ODE中,OE=OB-BE=r-2,OD=r,∵OE cos EOD cos60OD ∠=︒=,∴r21r2-=,解得r =4,∴OE=4-2=2,∴DE==∴CD=2DE=.考点典例三圆周角与切线之间的关系【例3】(2016海南省第12题)如图,AB 是⊙O 的直径,直线PA 与⊙O 相切于点A ,PO 交⊙O 于点C ,连接BC .若∠P=40°,则∠ABC 的度数为( )A .20°B .25°C .40°D .50°【答案】B.【解析】【举一反三】(2016黑龙江哈尔滨第18题)如图,AB 为⊙O 的直径,直线l 与⊙O 相切于点C ,AD⊥l,垂足为D ,AD 交⊙O 于点E ,连接OC 、BE .若AE=6,OA=5,则线段DC 的长为 .【答案】4.【解析】试题分析:令OC 交BE 于F ,∵AB 为⊙O 的直径,∴∠AEB=90°,∵AD ⊥CD ,∴BE ∥CD ,∵CD 为⊙O 的切线,∴OC ⊥CD ,∴OC ⊥BE ,∴四边形CDEF 为矩形,∴CD=EF ,在Rt △ABE 中,822=-=AE AB BE ,∵OF⊥BE ,∴BF=EF=4,∴CD=4.考点:1切线;2矩形的性质;3勾股定理.考点典例四 与圆周角有关的证明【例4】(2016湖北黄石第19题)(本小题满分7分)如图,⊙O 的直径为AB ,点C 在圆周上(异于B A ,),CD AD ⊥.(1)若BC =3,5=AB ,求AC 的值;(2)若AC 是DAB ∠的平分线,求证:直线CD 是⊙O 的切线.【答案】(1)4;(2)详见解析.【解析】(2)证明:AC 是DAB ∠的角平分线,BAC DAC ∠=∠∴又︒=∠=∠∴⊥90,ACB ADC DC ADADC ∆∴∽CBA DCA ACB ∠=∠∴∆,又OC OA = ,OCA OAC ∠=∠∴︒=∠=∠+∠∴︒=∠+∠90,90OCD ACD OCA OBC OACDC ∴是⊙O 的切线.解法二(2)证明:AC 是DAB ∠的角平分线,BAC DAC ∠=∠∴圆的性质OC OA = ,OCA OAC ∠=∠∴OCA DAC ∠=∠∴即AD ∥OC ,又DC AD ⊥ ,DC OC ⊥∴DC ∴是⊙O 的切线考点:圆周角定理;勾股定理;切线的判定.【举一反三】A 第19题图如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连接CD.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.【答案】(1)证明见解析;(2)当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切,理由见解析. 【解析】∵∠ACB=90°,∴∠DCB+∠ACD=90°. ∴∠DCB=∠A.(2)当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切,理由如下:如答图,连接DO,∵DO=CO,∴∠1=∠2.∵DM=CM,∴∠4=∠3.∵∠2+∠4=90°,∴∠1+∠3=90°.∴直线DM与⊙O相切.课时作业☆能力提升一.选择题1.(2016江苏常州第5题)如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A B.5cm C.6cm D.10cm【答案】B.【解析】考点:圆周角定理;勾股定理.2.(2016四川达州第7题)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.B.2 C.D.【答案】C.【解析】考点:圆周角定理;锐角三角函数的定义.3. (2016湖北襄阳第8题)如图,I是∆ABC的内心,AI向延长线和△ABC的外接圆相交于点D,连接BI,BD,DC下列说法中错误的一项是( )A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI熏合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合【答案】D.【解析】考点:内心的概念;圆周角定理.4.(2016湖南娄底第6题)如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为()A.20° B.40° C.50° D.70°【答案】C.【解析】试题分析:根据圆周角定理可得∠B=∠D=40°,∠ACB=90°,所以∠CAB=90°﹣40°=50°.故答案选C.考点:圆周角定理.5.(2016内蒙古巴彦淖尔第3题)如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=40°,则∠ABD与∠AOD分别等于()A.40°,80°B.50°,100°C.50°,80°D.40°,100°【答案】B.【解析】考点:圆周角定理;垂径定理.6.如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是()A. 26° B. 116° C. 128° D. 154°【答案】C.【解析】试题分析:∵∠A=64°,∴∠BOC=2∠A=2×64°=128°.故选C.考点:圆周角定理.二.填空题1. (2016内蒙古包头第18题)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为.【解析】考点:切线的性质;锐角三角函数.2.(2016湖南湘西州第7题)如图,在⊙O中,圆心角∠AOB=70°,那么圆周角∠C=.【答案】35°.【解析】试题分析:根据在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,可得∠C=21∠AOB=21×70°=35°. 考点:圆周角定理.3. (2016山东枣庄第15题)如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,则tan D = .【答案】22.【解析】试题分析:如图,连接BC ,根据直径所对的圆周角为直角可得△ACB 为直角三角形,在直角三角形△ACB 中,AC=2,AB=6,由勾股定理可得BC=42,由圆周角定理可得∠A=∠D,所以tan D =tan A =22224==AC BC.考点:圆周角定理;勾股定理;锐角三角函数.4. (2016贵州铜仁第16题)如图,点A ,B ,C 在⊙O 上,∠OBC =18°,则∠A = .第15题图【答案】72°.【解析】考点:圆周角定理.5.(2016浙江台州第13题)如图,△ABC的外接圆O的半径为2,∠C=40°,则AB的长是.【答案】89π.【解析】试题分析:∵∠C=40°,∴∠AOB=80°,∴AB的长是802180π⨯⨯=89π.故答案为:89π.考点:三角形的外接圆与外心;弧长的计算.6.(2016广西来宾第18题)如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α= .【答案】140°.【解析】考点:圆周角定理.7.(2016广西河池第16题)如图,AB是⊙O的直径,点C,D都在⊙O上,∠ABC=50°,则∠BDC的大小是.【答案】40°.【解析】试题分析:∵∠ABC=50°,∴ADC的度数为100°,∵AB为直径,∴BC的度数为80°,∴∠BDC=12×80°=40°,故答案为:40°.考点:圆周角定理.8.(2016青海第10题)如图,在⊙O中,AB为直径,CD为弦,已知∠CAB=50°,则∠ADC= .【答案】40°.【解析】考点:圆周角定理.9.(2016重庆A 卷第15题)如图,OA ,OB 是⊙O 的半径,点C 在⊙O 上,连接AC ,BC ,若∠AOB =120°,则∠ACB = 度.【答案】60.【解析】试题分析:∵OA ⊥OB ,∴∠AOB =120°,∴∠ACB =120°×12=60°,故答案为:60. 考点:圆周角定理.10.(2016辽宁葫芦岛第15题)如图,A ,B ,C ,D 是⊙O 上的四个点,∠C=110°,则∠BOD= 度.【答案】140.【解析】试题分析:已知A ,B ,C ,D 是⊙O 上的四个点,∠C=110°,可知四边形ABCD 是圆内接四边形,根据圆内接四边形对角互补和可得∠C+∠A=180°,再由∠A=70°,∠BOD=2∠A ,可得∠BOD=140°.考点:圆周角定理;圆内接四边形的性质.三、解答题1.(2016湖北黄石第19题)(本小题满分7分)如图,⊙O 的直径为AB ,点C 在圆周上(异于B A ,),CD AD ⊥.(1)若BC =3,5=AB ,求AC 的值;(2)若AC 是DAB ∠的平分线,求证:直线CD 是⊙O 的切线.【答案】(1)4;(2)详见解析.【解析】(2)证明:AC 是DAB ∠的角平分线,BAC DAC ∠=∠∴ 又︒=∠=∠∴⊥90,ACB ADC DC ADADC ∆∴∽CBA DCA ACB ∠=∠∴∆,又OC OA = ,OCA OAC ∠=∠∴︒=∠=∠+∠∴︒=∠+∠90,90OCD ACD OCA OBC OAC DC ∴是⊙O 的切线.解法二(2)证明:AC 是DAB ∠的角平分线,BAC DAC ∠=∠∴ 圆的性质OC OA = ,OCA OAC ∠=∠∴OCA DAC ∠=∠∴ 即AD ∥OC ,又DC AD ⊥ ,DC OC ⊥∴DC ∴是⊙O 的切线 考点:圆周角定理;勾股定理;切线的判定.A 第19题图。